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Abstract

This paper investigates the determination of the concentration of a chemical vapor
as a function of several nonspecific microcantilever array sensors. The nerve agent
dimethyl methyl phosphonate (DMMP) in parts-per-billion concentrations in binary
and ternary mixtures is able to be resolved when present in a mixture containing
parts-per-million concentrations of water and ethanol. The goal is to not only de-
tect the presence of DMMP, but additionally to map the nonspecific output of the
sensor array onto a concentration scale. We investigate both linear and nonlinear
approaches — the linear approach uses a separate least-squares model for each com-
ponent, and a nonlinear approach which estimates the component concentrations in
parallel. Application of both models to experimental data indicate that both mod-
els are able to produce bounded estimates of concentration, but that the outlier
performance favors the linear model. The linear model is better suited to portable
handheld analyzer, where processing and memory resources are constrained.
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1 Introduction

The biological nose — and in particular, the canine nose — is a highly sensitive
detector which is unrivalled its overall performance. Mass spectrometry is able
to detect very small vapor concentrations, but such equipment is awkward,
bulky and usually requires special operator skill and/or calibration. Emerging
applications such as the war on terror, land mine detection, food product
analysis and medical applications demand a smaller device which is able to
quickly detect minute concentrations of chemical vapor.

Our electronic nose approach, using microcantilever sensor array and an artifi-
cial neural network for estimation of the concentrations, was initially reported
in [5]. This paper further investigates the algorithmic aspects of the training
and estimation phases, since the goal is to produce a reliable hand-held de-
vice which, necessarily, is constrained in processing and memory resources.
In recent work, we have used selective cantilevers (sorbents on the cantilever
surfaces) that make the cantilevers selective to explosive vapor molecules. Our
detection of explosive vapors has been enhanced by cantilever selectivity, fol-
lowed by pattern recognition techniques described here. To the best of our
knowledge, this is the first successful application of such techniques to esti-
mate three-component mixtures of such vapors.

The experimental setup is only briefly described here; more extensive details
on the experimental procedures may be found in [5] and [6].

2 Sensor and Signal Characterization

We employ a microcantilever array which produces nonspecific and reversible
response vectors to vapors to which the sensor array is exposed. The nonspe-
cific nature of these sensors is both their strength and weakness [5,6]. They
have a short recovery time, which means the measurement can be repeated
after a short interval. However, since they are nonspecific, the exact pattern
of response is not correlated to the analyte concentration in any obvious way.
Thus, we have a signal processing challenge to determine whether such a map-
ping from sensor response to target concentration is feasible, repeatable and
sufficiently accurate.

The sensor array consists of four Canti-4 piezoresistive microcantilever chips®.

Each chip has two coated and two uncoated (reference) microcantilever sen-
sors. Seven sensors were utilized for the results presented herein.
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Representative Sensor Responses
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Fig. 1. Representative sensor response profiles at various concentration mixtures for
the T-sensor array. The relative concentration of the 3 vapors are shown. The data
is for DMMP, water and ethanol mixtures with 100 Parts per Billion (PPB), 60
Parts per Million (PPM) and 60 PPM respectively (maximum concentration) for
each individual vapor. Each pulse segment represents 10 seconds.

Representative sensor responses are shown in Figure 1. Clearly, some sensors
responded similarly, and some differently, to each vapor mixture.

The approach taken is necessarily one of “training” the algorithm to detect
particular patterns in a given input analyte vapor. Thus, the electronic nose
approach is entirely different to the analytical chemistry approach where the
analytes of a mixture are normally first separated and subsequently identified
and quantified by comparison with analytical standards.

The linearity of the sensors is not a given; furthermore, the transient nature
of the sensor responses may also yield useful classification and quantification
information.

Representative response clusters are shown in Figure 2. This shows the po-
tential for discrimination of the presence or absence of certain chemicals, and
gives motivation to investigate the possibility of determining the concentra-
tions present.



Representative Sensor Responses for various input concentrations
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Fig. 2. Representative sensor responses shown on radial axes. The magnitude of
each sensor response is shown at a fixed angle. Clearly, different input mixtures
produce different responses, and there is no obvious relationship between mixture
concentration and sensor output.

3 Linear Estimation

The first 3 eigenvalues of each autocorrelation matrix revealed that there was
significant correlation between the sensors. For the sensor array, we define
each component ¢ and develop a linear model from the experimental observa-
tions The output concentration y. (where ¢ is the index of the particular gas
component) is assumed to be linearly related to sensor steady-state responses
T

80% of the available vectors were used for estimating the covariance matrix,
with the remaining 20% used for testing, so as to not bias the result in any
way. For N experiments and M sensors, we can formulate the linear response
for each concentration y.,, using a linear model as
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We can write this as
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where the output concentration for component c is given by

yc,l
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with sensor array response vector (1 | xg) formed into the matrix X
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The parameter vector weights are thus
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We seek the optimal solution to
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to yield the predictor parameters

Qe M

The optimal solution which minimizes the least-squares distance between y
and Xp is?

p:=(X"X) 'XTy. (8)

Empirical distributions for the predictor parameters can be established using
the bootstrap estimate, as follows [7]. The predictor p is estimated using the
pseudoinverse as before. Then the estimated output and error are calculated
as
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We then resample € to give

2 If the sensors are correlated, the inverse may not exist. In practice, this would
need to be verified at an earlier stage of the process.



Fig. 3. Bootstrap estimates for the linear estimation parameters. Each column rep-
resents one of the mixture vapor components (DMMP-water-ethanol), with the
distribution of each of the 8 predictor components (for 7 sensors plus a constant
offset) shown.

The resulting bootstrap estimates are shown in Figure 3 for the (M + 1) =8
sensors and ¢ = 3 components.

4 Nonlinear Estimation

The above assumes that a linear prediction model is appropriate. That is,
that the specific concentration of an analyte may be found as a weighted linear
combination of all averaged sensor responses. The linearity issue is investigated
in this section; the wisdom of averaging the sensor responses is also briefly
investigated.

We employ a standard multilayer perceptron (MLP) configuration as indicated
in Figure 4 [4,2]. In this configuration, the M = 7 sensor inputs are used to
simultaneously predict the ¢ = 3 concentration outputs in the ternary mixture.

Referring to Figure 4, defining x; as the i** successive layer from input through
hidden nodes, dj, as the target (desired) output, s; as the weighted summation
at each layer, weighted using w;; from i to j. Each weighted output is subjected
to a nonlinearity f. This so-called neuron activation function is a standard
“sigmoid” function
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Fig. 4. Neural network architecture for the component estimation.

1
f(s,0)= 14 ¢ (540 (13)
with each neuron (node) performing the summation
Sj :Zwkjmk (14>
k

The training methodology is somewhat different to the linear case, which has a
closed-form solution. Similar to the linear case, we have split the experimental
data into 80/20 proportions so as not to bias the performance testing (ie the
test data remains unseen). The learning algorithm is incremental; at each
update we incrementally adjust the weights w;; according to

71 is the empirically chosen learning rate, and affects the convergence of the
training. In these experiments, 7 = 0.1 was utilized, though it is not critical.
The internal parameter ¢§; is necessary to estimate the gradient of the mean-
square error with respect to the weight parameters, and is found for output
nodes to be

0; =y (1 —y;)(d; —y;) (16)

and for internal (hidden) nodes

(5j:ZL’k(1 —xj)25kwjk (17>
k



The bias b is a special case of the weight w where the input is considered to
be unity. To speed up the learning process, a “momentum” term « is utilized
in the gradient descent

Because the gradient term 6 — 0 as x — =1, the inputs x; were scaled to be
between 0.2 and 0.8. This scaling is reversed for the outputs ;.

Tables 1 and 2 give some indicative results using this approach for the dimethyl
methyl phosphonate (DMMP) and acetone-water-ethanol (AWE) mixtures for
the test data set (selected to be outside the training data). Estimation of the
output concentration is good in the majority of cases. One problem in practice
is that the inverse scaling at the output of the network does not necessarily
produce results which satisfy the conditions 0 < y, < 1 and Y}y, = 1. This
posterior-probability summation is required to ensure the concentrations sum
to 100%.

Table 1
AWE estimation using ANN (20 nodes, 259 training patterns, 65 unseen test pat-
terns, MSE 0.0118) for test dataset (outside the training dataset).

AWE Mixture
Acetone Water Ethanol
Actual Predicted| Actual Predicted| Actual Predicted
0.00 0.00 0.00 0.00 1.00 0.99
0.10 0.03 0.00 0.00 0.90 0.97
0.20 0.18 0.00 0.04 0.80 0.76
0.40 0.37 0.00 0.00 0.60 0.62
0.60 0.72 0.20 0.21 0.20 0.09
0.40 0.43 0.40 0.43 0.20 0.11
0.20 0.03 0.40 0.45 0.40 0.50
0.20 0.15 0.40 0.42 0.40 0.39
1.00 0.80 0.00 0.00 0.00 0.20
0.50 0.41 0.00 0.01 0.50 0.58




Table 2
DMMP estimation using ANN (10 nodes, 646 training patterns, 162 unseen test
patterns, MSE 0.0042) for test dataset (outside the training dataset).

DMMP Mixture
DMMP Water Ethanol
Actual Predicted| Actual Predicted| Actual Predicted
0.70 0.70 0.10 0.12 0.20 0.15
0.70 0.70 0.0 0.04 0.30 0.26
0.50 0.42 0.40 0.46 0.10 0.11
0.50 0.42 0.0 0.06 0.50 0.54
0.30 0.25 0.70 0.73 0.0 0.01
0.30 0.27 0.60 0.53 0.10 0.19
0.30 0.25 0.50 0.51 0.20 0.24
0.30 0.19 0.0 0.04 0.70 0.77
0.10 0.08 0.90 0.88 0.00 0.03
0.10 0.08 0.0 0.02 0.90 0.88
0.60 0.46 0.30 0.44 0.10 0.08
0.00 0.02 0.10 0.13 0.90 0.83
5 Results

We have studied two vapor systems: one included the nerve gas stimulant
dimethylmethyl phosphonate (DMMP) at parts-per-billion (ppb) concentra-
tions and water and ethanol at parts-per-million (ppm) concentrations (DWE
mixtures); the other system included acetone, water and ethanol all of which
were at ppm concentrations (AWE mixtures). In both systems, individual,
binary and ternary mixtures were detected.

Figure 5 shows a comparison of predicted concentration errors for the AWE
experiment, for both the least-squares model, together with the MLP model
using various numbers of hidden nodes. Each 3-bar represents the distribution
of the 3 components in the mixture.

Figure 6 shows similar results for the DMMP experiment. It is evident that the
MLP requires of the order of 10-20 hidden nodes to produce good estimates,
especially for the outliers.

Several observations are in order. Firstly, the linear model produces surpris-
ingly good predictions, though this was not unexpected given the preliminary
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analysis of the covariance matrix of the experimental data. That is, some
degree of linear dependence is present, and may be removed by principal com-
ponent analysis. The linear model appears to function differently for the two
vapor mixtures compared, and this is a cause for concern if the approach were
to be generalized to other mixture types.

The neural network model is seen to give broadly similar performance for
smaller network configurations, and improves with the larger (20-node) model
parameterization. Care must be taken in this context, since too large a number
of hidden nodes can lead to the well-known problem of network “over-training”
— that is, where the output of each hidden node effectively “remembers” a
particular training pattern, and does not generalize to unseen patterns.

Considering the above results for linear and nonlinear models, for various
neural network parameterizations, it is suggested that a linear pre-processing
stage may also be beneficial, in order to decorrelate the input sensor data, and
leave only a nonlinear residual for analysis. It is not clear how this would be
effected, however, and may require a larger number of sensors for exploration.

It is also noted that the above results utilize only the steady-state sensor out-
put value, rather than the full transient response of each sensor. Whilst this
reduces the computational complexity (further discussed below), it may be
the case that the transient response profile (as shown at the beginning of the
paper) includes important information, which would obviously be overlooked
if only the steady-state sensor output is analyzed. Although some prelimi-
nary investigations into utilizing the entire time-response profile have been
conducted, the amount of data available by sampling each sensor at a suit-
able rate presents computational problems. In particular, pre-processing stage
would be required to smooth the transient response, before input to a neural
network. Simply feeding the raw time-response samples as input to a very large
(approximately 60 time samples per response) network produces results which
are not meaningful, because the network effectively tries to model the sensor
noise. Inspection of the time response profiles also indicates that smoothing
and perhaps time-alignment of each sensor output would be required.

6 Computational Complexity

As stated at the outset, the goal is to produce a handheld device which is
capable of estimating the vapor concentrations in real-time. In this context,
“real-time” is envisaged to be of the order of tens of seconds to a minute for
each sample. Since the sensor response times are fixed, the only variable is the
computational time for the algorithm.
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Fig. 5. Error histograms for the AWE vapor mixture.
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Fig. 6. Error histograms for the DMMP vapor mixture.

Both the linear and nonlinear models presented here are highly asymmetric.
That is to say, the determination of the parameter model in the off-line or
training phase takes considerable processing, whereas the on-line estimation
in practice using the predetermined parameters is considerably simpler. Fur-
thermore, the parameter estimation in the case of the linear model is bounded,
since the coefficients in the model are found by solving Equation (8). The most
complex calculation in this case is the matrix inversion, but this is also rel-
atively straightforward since (using the terminology defined previously) for
for N experiments and M sensors, the linear response for each concentra-
tion y.,, the computation (X?X)™! requires an inversion of order M, since
X is N x (M + 1). In the present case, M is 7, so the inversion is relatively
straightforward (though not trivial). The final computation performed in the
hand-held device is a multiplication of each steady-state value by the pre-
calculated coefficient (according to the model parameterization), and hence
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each component is calculated according to the corresponding row of Equa-
tion (1). Again, since M is relatively small (equal to the number of sensors),
this calculation is straightforward.

The nonlinear neural network model is more complicated in both parameter
derivation and on-line calculation. Unlike the linear model, the training time
for the parameters is not bounded, and depends on the convergence of the
iterative training used. This calculation is done off-line in the training phase,
and does not impact on the on-line performance of the device once trained.
The on-line calculation for each vapor concentration estimate requires a neural
network with M inputs, and H hidden nodes, and 3 outputs (in the present
case). The computation proceeds according to Equation (14) for the coefficient
multiplication and summation. The overall complexity is thus M x H+3 x H,
with a further H nonlinear activation functions computed according to 13. For
the case of M = 7 and H = 20 hidden notes (as presented in the example), the
complexity is of the order of 400 floating-point calculations (multiply-add) for
all 3 estimations. This is well within the “real-time” design constraint, even
for power-limited devices.

7 Conclusions

We have investigated linear and a multilayer perceptron estimators for the
mapping of nonspecific electronic sensors into vapor mixture concentrations.
For the present application, detection of the presence of a particular vapor
was insufficient; concentration estimates were also required. Microcantilever
sensors are utilized; these have the advantage of small size and fast response,
but are not specific to individual vapor responses like other chemical sensors.
It has been demonstrated that it is possible to estimate the concentration of
each vapor in a ternary mixture with surprising accuracy. Although it would
be assumed that the sensor responses are nonlinear, it has been demonstrated
that a linear model produces good estimates.

The linear approach requires a separate weight parameter vector for each com-
ponent, and the training phase comprises a one-pass calculation. The nonlinear
approach utilizes one set of interconnecting weights to simultaneously estimate
all three gas concentrations. However, it also requires a steepest-descent iter-
ative weight parameter re-estimation, and determination of the terminating
criteria can be problematic.

Further work requires the investigation of a dual linear-nonlinear hybrid ap-
proach, wherein the linear component is first removed, followed by a nonlinear
estimator. Also, the investigation of the usefulness of the transient response
profile of each sensor is promising, however initial linear filtering is required

13



because of the sensitive nature of the sensors themselves.
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