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Abstract: In agricultural machinery design and optimization, the discrete element method (DEM)
has played a major role due to its ability to speed up the design and manufacturing process by
reducing multiple prototyping, testing, and evaluation under experimental conditions. In the field
of soil dynamics, DEM has been mainly applied in the design and optimization of soil-engaging
tools, especially tillage tools and furrow openers. This numerical method is able to capture the
dynamic and bulk behaviour of soils and soil–tool interactions. This review focused on the various
aspects of the application of DEM in the simulation of tillage and furrow opening for tool design
optimization. Different contact models, particle sizes and shapes, and calibration techniques for
determining input parameters for tillage and furrow opening research have been reviewed. Discrete
element method predictions of furrow profiles, disturbed soil surface profiles, soil failure, loosening,
disturbance parameters, reaction forces, and the various types of soils modelled with DEM have
also been highlighted. This pool of information consolidates existing working approaches used in
prior studies and helps to identify knowledge gaps which, if addressed, will advance the current soil
dynamics modelling capability.

Keywords: calibration; DEM contact models; soil dynamics; soil failure; soil forces; cohesive and
frictional soils

1. Introduction

In mechanized agriculture, the energy use for soil tillage operations can be as high as
50% of the total energy used in crop production [1,2]. The energy-use efficiency associated
with tillage can be increased by improving the design of tillage implements and through
their correct operation and settings [3–5]. The design optimization of tillage tools and
furrow openers conventionally relies on repeated prototyping and evaluation through soil
bins and field experimentation. This task is laborious, time-consuming, and expensive [6,7].
In order to reduce the resource intensity involved, various analytical and numerical models
for predicting soil–tool interaction and soil forces have been developed. Analytical models
are typically based on the universal earthmoving equation (Equation (1)) [8,9].

P = (γd2Nγ + cdNc + cadNa + qdNq)w (1)
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where P is soil cutting force (N), γ is the specific weight of soil (N m−3), d is working depth
(m), c is soil cohesion (Pa), ca is soil–metal adhesion (Pa), q is surcharge stress (Pa), w is
tool width (m), and Nγ, Nc, Na, and Nq are dimensionless N factors that are dependent on
gravity, cohesion, adhesion, and surcharge, respectively.

Analytical models require a preliminary assumption of soil failure patterns to predict
soil and implement forces [10,11]. These models use simple and approximate geometric
profiles such as wedges and crescents that are easily expressed mathematically to model soil
failure patterns [4,8,9,12,13]. They also aim to predict the maximum soil reaction force at
incipient soil failure, rather than the average soil forces during the tillage process. However,
in practice, soil failure occurs in more complex patterns. Analytical models also regard soil
failure as bulk soil movement without accounting for interactions between individual soil
particles, aggregates, and macro-organic matter evident in field conditions [7].

Numerical models, such as finite element modelling (FEM) and computational fluid
dynamics (CFD), have also been employed to predict soil failure patterns and soil forces
with some degree of accuracy [14,15]. However, their use is limited because they consider
soil as a continuum body rather than being made up of discrete particles. Thus, continuum
numerical models fail to account for variations in soil structure, physical conditions, flow,
and the mixing and translocation of soil particles [6]. To overcome the shortcomings of
analytical and continuum numerical methods, the discrete element method (DEM) can be
employed. DEM is a discontinuum numerical method used for modelling the mechanical
behaviour of granular materials. Initially developed by Cundall and Strack [16], DEM is
used to model particle interactions within granular materials such as gravel, grain, soil, and
powder. Unlike analytical and other numerical (continuum) approaches, DEM accounts for
the discrete nature of granular particles and their interactions with neighbouring particles
and interfacing objects such as contact walls and machine parts. The DEM approach
involves the dynamic creation and breaking of bonds between contacting particles [7,16]
and can simulate soil–tool reaction forces, as well as track particle movements and model
mixing and translocating processes.

Several studies have shown that DEM can be successfully employed to model 2- and
3-dimensional space interactions between granular particles and machine parts. Operations
such as grain flow in a hopper, soil movement in bulldozing, and soil deformation and
displacement during field traffic, tillage and furrow opening processes have been modelled
in DEM, achieving results that closely agree with experimental observations [17–21]. Fig-
ure 1 shows a comparison between a tine furrow opener interaction with soil (left) and
its simulation with DEM (right) [21]. Other applications of DEM include modelling of
cohesionless and cohesive/adhesive particles [10,18,20]. Discontinuum approaches such as
DEM offer greater potential for more accurate prediction of soil–tool interactions in soil
dynamics applications compared with continuum approaches. Thus, DEM is a powerful
tool that can accurately guide and speed-up the design optimization process by researchers,
developers, and manufacturers.

The objective of the work reported in this article was to review the various aspects of
the application of DEM in the field of soil dynamics by focusing on soil tillage and furrow
opening research for tool performance optimization. Contact models for soil particles; DEM
particle size and shape considerations; calibration techniques for determining accurate
input parameters; predictions of soil failure, particle movement and reaction forces; and
the types of soils modelled with DEM have been reviewed. Knowledge gaps that need
attention in future research, and that will go some way to advance soil dynamics modelling
capability, have also been identified.
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Figure 1. Discrete element method simulation of a narrow tine furrow opener operating in a moist 
sandy-loam soil. Modified from Barr et al. [21]. 
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Figure 1. Discrete element method simulation of a narrow tine furrow opener operating in a moist
sandy-loam soil. Modified from Barr et al. [21].

2. Modelling Agricultural Soils with DEM

The discrete element method is used to model soil as a collection of a finite number of
individual spherical particles that interact with neighbouring particles and machine parts
when subjected to external forces and forced displacement at the soil–tool interface, such as
from a soil tillage tool [7]. This process induces the relative motion of particles within the
bulk. Contact forces between these particles and their resultant motion are calculated using
Newton’s Second Law [22]. These calculations involve repeating the same algorithm at
each time step of the simulation process, using results from previous calculations as input.

2.1. DEM Contact Models

DEM contact models are developed to describe the mechanical and physical interac-
tions of granular particles with neighbouring particles or external objects. The interactions
are modelled using equations of motion and contact models expressed as linear, adhesive,
and elastoplastic normal contact models, as well as viscosity, tangential force, and torque
models. The tangential force and torque models account for friction, rolling, and tor-
sion [23,24]. Physical interactions between particles are expressed via combining functional
elements of springs, dampers, and tangential friction. Total contact forces are expressed
as the sum of spring (Fs) and damping (Fd) forces. Some commonly used contact models
in DEM simulations are listed in Table 1 and reviewed below. These contact models have
been implemented in commercially available software such as Bulk Flow Analyst™, Chute
Analyst™, Chute Maven®, DEMpack™, Altair® EDEM™, ELFEN, GROMOS-96, ITASCA
PFC (2D & 3D), LiGGGHTS®, MIMES, PASSAGE/DEM, Rocky, SimPARTIX®, StarCCM+,
UDEC, 3DEC, and YADE [25,26]. Table 1 also shows the various DEM software that have
been used in tillage and furrow opening research and the types of soil the contact models
have been used to model.
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Table 1. Discrete element method contact models, their advantages and disadvantages, types of soil modelled, and software used.

Contact Model Advantages Disadvantages Types of Soil Modelled References Software Used by Researchers

Linear spring contact model • Simple to use.
• Does not account for

nonlinearity in loading and
unloading cycles and plastic
deformation of soil.

Sandy Tanaka et al. [27], Asaf et al. [10],
Shmulevich et al. [6], Ono et al. [28] PFC2D, EDEM

Linear spring contact model with
cohesion

• Allows users to consider
cohesion in the linear spring
contact model.

• Only considers the cohesion
through the normal direction. Vertosol Bravo et al. [18] DEMeter++

Hertz–Mindlin contact model

• Simple to use.
• Although this model was

designed for fine, dry particles, it
can be used to model wet
particles as well.

• Inaccurate prediction for
vertical tillage force. Sandy Ucgul et al. [29] EDEM

Parallel bond model (PBM) or
Hertz–Mindlin contact model with
cohesion

• Allows users to model cohesion. • Excessive forces cause the
bonds to be broken irrationally.

Coarse sand, loamy, sandy loam,
loessal, clay, sandy clay loam,
loamy clay

Tamas et al. [30], Chen et al. [7], Bo et al.
[31], Hang et al. [32], Cheng et al. [33], Yang
et al. [34], Hoseinian et al. [35]

EDEM
PFC3D

Hertz–Mindlin contact model with
Johnson–Kendall–Roberts (JKR)

• Enables the modelling of strongly
adhesive bonds such as exist in
dry powders or wet materials.

• - Clay, silty clay loam Cheng et al. [33], Du et al. [36],
Zhai et al. [37] EDEM

Hysteric spring contact model

• Accounts for plastic deformation
during loading and unloading of
soil.

• Suitable for both cohesive
cohesionless soils.

• It requires a large number of
input parameters, making its
setup and calibration complex.

Sandy Ucgul et al. [38], Ucgul et al. [29] EDEM

Hysteric spring contact model with
linear cohesion contact model

• Allow users to consider cohesion
in the hysteretic spring contact
model.

• Only considers the cohesion
through the normal direction.

Sandy loam,
clay (Vertosol)

Barr et al. [21], Barr et al. [39], Makange et al.
[40], Aikins et al. [41], Awuah et al. [42],
Wang et al. [43]

EDEM

Edinburgh elasto-plastic adhesion
model

• It is versatile since it can be used
as a linear or non-linear Hertzian
spring model.

• It also allows tensile forces to
develop and a non-linear
force-displacement behaviour in
compression.

• It requires a lot of input
parameters.

Clay, clay loam, sandy loam, loam,
sandy

Kim et al. [44], Wu et al. [45], Zhao et al. [46],
Sun et al. [47] EDEM, PFC3D, LiGGGHTS
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The movement of particles due to the contact forces are governed by Newton’s equa-
tion of motion for linear and angular motion as expressed by Equations (2) and (3). By
solving these equations, the motion of the particles can be determined. For two spherical
particles (i = 1,2) of masses mi and radii ri, located at xi in contact, taking F as contact force,
g as acceleration due to gravity, Ii as the moment of inertia of a particle, ωi as the angular
velocity of a particle, and Ti as torque due to the tangential component of the contact force:

mi
..
xi = Fi + mig (2)

Ii
.

ωi = Ti (3)

2.1.1. Linear Spring Contact Model

This contact model is linearly elastic and is the simplest contact model often used to
simulate soil–tool interactions (Table 1) [6,27]. A contact force is created between the two
spherical particles in contact as described above. The contact force can be decomposed
into normal and tangential force components. The overlap at the contact point generates a
repulsive contact force and energy dissipation. When an overlap δn > 0 is formed between
the two particles at a relative velocity

.
δn in a direction normal to the contact surface, a

normal contact force Fn is created based on the spring and dashpot models (Figure 2)
such that:

Fn = knδn + dn
.
δn (4)Agriculture 2023, 13, x FOR PEER REVIEW 6 of 30 
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spring contact model.

The parameter kn is the normal stiffness, while dn is the damping coefficient. Consid-
ering an imaginary rod of radius r = (r1 + r2)/2 between the centres of the two particles
and Young’s Modulus E:

Fn = πEr/2 (5)

When the tangential component of the contact force, Ft > µtFn, sliding friction occurs.
The local friction coefficient µt = tan∅, where ∅ is the internal friction angle between
the particles.

The tangential component of the contact force is also given by:

Ft = −ktδt − dt
.
δt (6)
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where kt, δt, dt, and
.
δt are tangential components of stiffness, overlap, damping coefficient,

and relative velocity.

2.1.2. Hertz–Mindlin Contact Model

The Hertz–Mindlin contact model (HMCM), especially when it is used with the
parallel bond model (PBM, see Section 2.1.4), is the most popular contact model used by
researchers [7,30,33–35,48] to simulate soil–tool interaction in tillage research. However,
as an (non-linear) elastic contact model, it fails to predict vertical soil forces accurately
(Table 1) [49]. In this model, the contact force consists of a non-linear Hertz component
described by the hysteretic spring force-displacement relationship shown in Figure 3 and
a damping component (second part of Equation (7)). It is also resolved into normal and
tangential components. The HMCM and its parameters are described in Equation (7) to
(16) [20,29].
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Normal contact force, Fn:

Fn = −knδ3/2
n − dnδ1/4

n
.
δn (7)

kn = 2Eeq

√
reqδn (8)

dn =
ln e√

ln2 e + π2

√
knmeq (9)

where:
Equivalent radius,

req =

(
1
r1

+
1
r2

)−1
(10)

Equivalent Young’s modulus,

Eeq =

(
1− ν2

1
E1

+
1− ν2

1
E2

)−1

(11)
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Equivalent particle mass,

meq =

(
1

m1
+

1
m2

)−1
(12)

Tangential contact force, Ft:

Ft = −ktδt − dtδ
1/4
t

.
δt (13)

kt = 8Geq

√
reqδn (14)

dt =
ln e√

ln2 e + π2

√
ktmeq (15)

Equivalent shear modulus,

Geq =

(
2− ν1

G1
+

2− ν2

G2

)−1
(16)

2.1.3. Hysteretic Spring Contract Model

The hysteretic spring contact model (HSCM) is an elastic–plastic contact model that
accounts for the plastic deformation that occurs during the loading and unloading of
soil. It makes the particles behave as though they undergo plastic deformation after the
load reaches a yield point, as shown in Figure 4 [50]. The main disadvantage of this
contact model is that it requires a large number of input parameters, making its setup
and calibration of DEM material properties complex (Table 1) [49]. The HSCM comprises
two parts: the spring characteristic illustrated in Figure 2 and damping. A comparative
study by Ucgul et al. [29] revealed that the HSCM could model soil–tool interaction more
accurately than the HMCM. The HSCM has been used to predict soil reaction forces as well
as furrow profiles successfully, especially with the linear cohesion model [39–41,43]. The
governing equations of the HSCM are described in Equation (17) to (20).
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Normal contact force, Fn:
During loading,

Fn = −k1δn − nc

√√√√ 4meqk1

1 +
(

π
ln e
)2 ·

.
δn (17)
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During unloading and reloading,

Fn = −k2(δn − δ0)− nc

√√√√ 4meqk1

1 +
(

π
ln e
)2 ·

.
δn (18)

During unloading again,

Fn = 0− nc

√√√√ 4meqk1

1 +
(

π
ln e
)2 ·

.
δn (19)

where k1 and k2 are the loading and the unloading stiffnesses, respectively, and e is the
coefficient of restitution of the particles, and they are related as e =

√
k1/k2.

Tangential contact force, Ft:

Ft = −nkk1δt −

√√√√ 4meqnkk1

1 +
(

π
ln e
)2 ·

.
δt (20)

where nk is the stiffness factor equal to the tangential stiffness ratio to normal loading
stiffness.

2.1.4. Accounting for Cohesion with DEM Contact Models

In reality, agricultural soils exhibit varying levels of cohesion between particles and
adhesion to walls and tools they come in contact with. Attractive pressure (that is, cohesive
and adhesive forces) are induced due to the capillary effect and water bridge that exists
between particles in unsaturated soils [25,51,52]. Thus, a more realistic contact model
for agricultural soils should account for cohesion and adhesion. The linear cohesion and
parallel bond models have been used in the DEM modelling of agricultural soils (Table 1).

Linear Cohesion Model

When this model is used, a cohesive or adhesive force is added to the normal force
component of the contact model used for cohesionless soils. Even though the linear cohesion
model itself does not include a tangential component, its addition increases the normal force,
which consequently increases frictional force for greater resistance to slippage [41,50,52,53].
The linear cohesion model can be added to any of the three contact models discussed in
Section 2.1.1 to Section 2.1.3 above [50]. If Fca (Equation (21)) is the cohesive or adhesive
force, then the normal contact force is modified, as shown in Equation (22).

Fca = r2
c πĉ (21)

Fn = Fs
n + Fd

n + Fca (22)

rc =

(
3reqFs

n

4Eeq

) 1
3

(23)

The parameter rc is the contact radius between particles and can be determined using
Equation (23). Equation (21) is called the constant cohesion model because the cohesive
stress ĉ is a constant. The constant cohesion model makes the model particles too sticky [52].
A modification has therefore been proposed, depending on the degree of compression
between two adjacent particles. If compression between two adjacent particles is given by
Equation (24), then the cohesive stress increases with time t according to Equation (25).

σn =
Fn

πr2
c

(24)
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ĉ(t=n) = kcmax
(

σ
(t=1)
n , σ

(t=2)
n , . . . ..σ(t=n−1)

n

)
(25)

Parallel Bond Model

An adaptation of the Hertz–Mindlin contact model (HMCM) for cohesive soils is the
parallel bond model (PBM) developed by Potyondy and Cundall [54]. The PBM, based on
beam theory, uses rectangular (2D) or cylindrical (3D) cement entities as parallel bonds at
the point of contact between the two cohesive particles (Figure 5). This bond is modelled
as an elastic beam whose length approaches zero and could be represented by a set of
springs uniformly distributed over the contact plane and centred at the contact point [54].
After bond formation, normal and tangential bond forces and moment are calculated in
addition to contact forces [50,55,56]. Thus, the bond can withstand or transmit both forces
and moments between particles. The bond breaks when its predefined maximum normal
or shear strengths are exceeded [57,58]. When no bond exists between particles, the PBM
reverts to the HMCM [26]. The PBM is able to model clod formation and the brittle nature
of agricultural soils in a more realistic manner [30,59]. It can be used only for particle-
particle bonding, not particle-wall (tool) bonding [30,50]. The PBM is the most used model
in cohesive soil tillage research [7,30,31,51,55–70]. Because the base contact model of the
PBM is the HMCM, it also fails to predict vertical soil forces accurately as revealed in
Table 2 [55,69]. Details of the PBM can be found in Potyondy and Cundall [54].
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Johnson–Kendall–Roberts Cohesion

Another cohesion contact model combined with the HMCM is the Johnson–Kendall–
Roberts (JKR) cohesion model [71]. It has been used by researchers such as Cheng et al. [33],
Du et al. [36], and Zhai et al. [37] to model cohesive soils in soil tillage simulations with
DEM (Table 1). Using this model, the tangential contact force and the normal and tangential
damping forces of the HMCM are maintained, while the normal contact force is modified to
include cohesion [36]. This modification enables the modelling of strongly adhesive bonds
such as exist in dry powders or wet materials (e.g., wet soil). It captures the influence of
Van der Waals forces due to contact between two surfaces [50]. A cohesion or adhesion
parameter called surface energy is introduced. When this surface energy is zero, the model
reverts to the HMCM. The normal contact force in HMCM-JKR is given by Equations (26)
and (27), as follows:

Fn =
4Eeqa3

3Req
− 4
√

πγEeqa3 (26)

δn =
a2

Req
− 2

√
πγa
Eeq

(27)

where a is JKR contact radius and γ is surface energy (J/m2).
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Table 2. Relative errors in DEM-predicted soil–tool reaction forces, travel speeds, and operating depths reported in the various literature across soil types.

Reference

Relative Error in DEM
Prediction (%) Relative to

Measured Data
Travel Speed

(km h−1)
Operating Depth

(mm)
Tillage Tools Soil Texture

Dry Bulk Density
(kg m−3)

Soil Water
Content (%,

w/w)

Cohesive
Strength (kPa) Contact Model

Draught Vertical Force

Sadek et al. [58] n/a n/a n/a n/a n/a Sandy soil

990
1280
1360
1500

0.02
13

21.5 1.23-32.70 PBM

Chen et al. [7] 4 to 31 n/a 3.19 (average) 100 Sweep tine
Coarse sand
Loamy sand
Sandy loam

1410
1330
1410

8.98
14.84
18.2

15.7
25.2
36

PBM

Obermayr et al. [52] n/a n/a 2.16–4.5 10–200 Bulldozer blade n/a 1900 n/a 11.16 LSCM + cohesion

Tamas et al. [30] 4 to 12 n/a 1.8–8.64 200 Sweep tine Sandy soil 1850 6.33 11.86 PBM

Bravo et al. [18] 9, 24 n/a - 150–500 Para-plough and
mouldboard plough Clay (Vertosol)

1000
1200
1400

8
18
20
35

25–125 LSCM + cohesion

Li et al. [56] 3 to 15 n/a 3.6 180–260 Subsoiler n/a n/a 19 n/a PBM

Mak and Chen [61] n/a n/a 2.2–6.59 50–200 Sweep tine Loamy sand 1320 11.3 13.9 PBM

Obermayr et al. [72] n/a n/a 100–200 Straight-vertical blade
and bulldozer blade Sand

1520
1980
1870

10
15 6–22.5 LSCM + cohesion

Ucgul et al. [38] ≤11.6 ≤15.2 5–12.5 70 Sweep tine Sandy loam 1750 8 6 HSCM

Ucgul et al. [53] n/a n/a 4–12 75 Sweep tine Sandy loam
1320
1780
1880

1
15
13

3
15
22

HSCM + LCM

Kotrocz et al. [60] n/a n/a n/a 50–150 Cone penetrometer Loamy sand 1632 15.8 6.61–8.66 PBM

Li et al. [70] 2.99 3–18 Claw Sandy loam 1300 n/a 17.5 PBM

Murray [69] 1.86 50.7 8 38 Disc and hoe openers Clayey lacustrine 1560 19.6 n/a PBM

Hang et al. [32] n/a n/a 3 300 Subsoiler Loamy clay 1346 12.5 11.8 PBM

Milkevych et al. [62] n/a n/a 3.2 100 Sweep tine Coarse sand
Loamy sand

1410
1330

9
14.8

15.8
25.1 PBM

Tekeste et al. [55] 9, 12 -59, -49 0.79–9.65 102 Sweep tine Loam 1307 8.99 33 PBM

Tong et al. [73] <10 <10 7.2 300–450

Subsoiler (straight
shank-sweep tine,

curved shank-chisel
tine, curved

shank-sweep tine,
bentleg-chisel tine)

n/a 1230–1420 n/a n/a not stated
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Table 2. Cont.

Reference

Relative Error in DEM
Prediction (%) Relative to

Measured Data
Travel Speed

(km h−1)
Operating Depth

(mm)
Tillage Tools Soil Texture

Dry Bulk Density
(kg m−3)

Soil Water
Content (%,

w/w)

Cohesive
Strength (kPa) Contact Model

Draught Vertical Force

Kim et al. [44] 5.16 to 9.9 n/a 7.64–7.9 5–200 Mouldboard plough Loam 1496–1904 24.5–34.02 n/a EEPA

Aikins et al. [41] 5 to 31 8, 20 and
greater 8 100 Bentleg and narrow

point openers Clay (Vertosol) 1504 23.7 46.4 HSCM + LCM

Wang et al. [74] 15.08 n/a 3 300 Winged subsoiler Sandy loam 1404–1833 n/a n/a PBM

Sadek et al. [75] ≤20.2 n/a 4–16 127 Disc Sandy loam 1700 16.32 n/a PBM

Saunders et al. [76] n/a n/a 4.5–10 25–100 Plough skimmers Sandy loam 1523.8 8.3 n/a HSCM + LCM

Ma et al. [77] 2.88 to 5.97 n/a 1.08–2.16 120 Scraper Sandy loam 1389 10 n/a not stated

Hoseinian et al. [35] 2 2.5 0.9 150 Dual sideway-share Sandy clay loam 1565 11.5 15.4 PBM
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Edinburgh Elasto-Plastic Adhesion Model

Consolidation stress history is one of the main sources of cohesion in cohesive granular
materials, and it must be accounted for to accurately model such materials in DEM [78].
The Edinburgh elasto-plastic adhesion model (EEPA) contact model uses a non-linear
hysteretic spring model to account for the elastic–plastic contact deformation and an
adhesive or cohesive force (pull-off strength) component—acting between dissimilar or
similar materials, respectively based on the assumption that this force increases with
increasing plastic contact area [50,79]. This model is versatile because, depending on its
input parameters, it can be used as either a linear spring model (Figure 6a) or a non-
linear Hertzian spring model (Figure 6b) [79]. Figure 6 shows “a schematic diagram of
particle contact and normal force-overlap (fn-δ) curve” for the EEPA contact model. A full
description of the EEPA contact model can be found in Morrissey et al. [78]. The EEPA
contact model has been used recently for modelling the interaction between tillage tools
and agricultural soils [44–46].
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2.2. Particle Size and Shape

Particle shape and size used in DEM significantly affect the necessary simulation time
and the accuracy of simulation results [10,28,38]. They are input parameters that should be
carefully chosen during calibration for DEM particle interactions to be as close to reality
as possible [20,49]. In DEM simulations, it is ideal to use particles of similar sizes to the
actual granular materials being modelled. For instance, the actual sizes of agricultural
soil particles are relatively small, ranging from several nanometres to about 2 mm for
very coarse sand [80]. To model actual particle sizes in DEM requires unrealistically long
computation time and impractically high computer processing power [78]. The most time-
consuming part of soil particle DEM simulations is contact detection, and is proportional
to the number of particles [81]. For this reason, larger particle sizes than real soil particle
sizes are generally employed in DEM [20,38,76]. The larger particles are sometimes implied
to represent soil aggregates instead of individual soil particles and somewhat capture the
bulk behaviour of a structured soil profile [78].

In reality, soil particles come in various irregular shapes. Thus, particles used in DEM
should be not only of a similar size range but also of a similar shape range to actual soil
particles to ensure simulations are more representative of realistic bulk behaviour. The
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basic shape of a DEM particle is a sphere (or circle in 2D modelling) under most DEM
codes [20]. Spherical particles approximate and simplify simulations by improving contact
detection efficiency and reducing computation time [82]. Usually, irregular (non-spherical)
particles are created by clumping a number of spherical particles together, as shown in
Figure 7 [28,32,46,83]. This enables the use of spherical particle contact detection algorithms
that are simpler and require shorter computation time than those of irregular shapes [24,84].
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effects of soil particle shape on bulk behaviour.

Nonetheless, clumped particles also require relatively higher computational time
than when purely spherical particles are used. Therefore, most studies adopt spherical
particles to represent soil particles or soil aggregates in DEM simulations. Spherical particle
assemblies simulating the soil profile are characterized by considerably lower internal
friction and shear strength than actual soil particles due to lower impact of rolling friction.
However, this is usually overcome by introducing an arbitrary high rolling friction coef-
ficient to simulate the interlocking tendencies that exist between the irregular shape soil
particles [83,85].

3. Calibration Techniques for Determining DEM Input Parameters

Running a DEM model involves providing it with such input parameters aimed at
simulating soil behaviour as close to real soils as possible. Accurate results can only be
obtained with accurate input parameters [57,86]. Several approaches exist for calibrating
DEM input parameters that accurately represent both soil to soil particle properties and
soil particle to tool or machine interface properties. The most common calibration methods
for the former include the angle of repose and hopper discharge, direct shear and triaxial
tests, and corresponding in situ soil measurements. The most common calibration methods
for the latter include the inclined plane test, the modified shear test, and corresponding
in situ measurements. All these approaches are focused on bulk responses (i.e., natural
stable state and force reactions) of soil under an applied load. After experimental runs in
the laboratory or field, these experiments are then replicated numerically as closely as pos-
sible, optimizing parameters iteratively until bulk numerical responses agree with field or
laboratory measurements [20]. Trial and error methods have traditionally been relied upon
in the past while, more recently, the application of response surface methodology (RSM)
is demonstrating benefits of significantly reducing the number of numerical simulations
required for accurate calibration [34,45,87–91].
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3.1. Angle of Repose Test

The angle of repose test is used to assess flowability and inter-particle friction of loose
soil [92–94]. This test is also essential when there is a need for a qualitative assessment of soil
surface and furrow profiles in tillage simulations [29]. Various researchers [21,42,84,88,95]
used the angle of repose test to calibrate coefficients of static and rolling friction between
soil particles.

In this test, the soil is allowed to flow by gravity onto a flat surface to form a cone
pile. The angle of repose is measured as shown in Figure 8a [29]. Another approach for
the angle of repose test is to confine the particles being modelled within the walls of a box,
ensuring the top of the particles is levelled. By removing one of the sidewalls, the particles
flow to form the angle of repose as shown in Figure 8b [83]. This test is usually used for
cohesionless particles and particles with low cohesion with good flowability. However,
the general principle is that repeatable observations can be made during key stages of
the “angle of repose” experiment. For instance, Roessler and Katterfeld [96] reported
successfully calibrating DEM parameters for cohesive soil using the angle of repose test. A
cylinder was filled with the cohesive soil, and the cylinder was gradually lifted as shown in
Figure 8c. Reproducible phases of soil flow were observed, namely “the build-up of a stable
bulk material column, the convex bending of the column, and the beginning of collapse
of the column.” Aikins et al. [41] observed a reproducible dome-like pile of cohesive soil
(Figure 9a,b) and used the results to calibrate soil–soil coefficients of static and rolling
friction values.
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3.2. Inclined Plane Test

The inclined plane test has been used to determine soil–tool or soil–machine coeffi-
cients of static and rolling friction [29]. A schematic diagram of the setup for the inclined
plane test is shown in Figure 10. A flat bed of the soil to be modelled is packed into a tray
and held on a table with adjustable horizontal inclination. A block of tool material and ball
bearings are separately placed on the flat bed, and the table is tilted to an angle Ψ at which
the block just starts sliding or the ball just starts rolling down the inclination. The block is
used for the determination of the soil–tool coefficient of static friction (µs), while the ball
bearing is used in the determination of the soil–tool coefficient of rolling friction (µr). If
the mass of the block is ms, the mass of the ball is mr, and the angles at which sliding and
rolling occur are Ψs and Ψr, respectively, then the coefficients are calculated according to
Equations (28) and (29) [29,97].
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Soil–tool coefficient of static friction,

µs =
msg sin Ψs

msg cos Ψs
= tan Ψs (28)

Soil–tool coefficient of rolling friction,

µr =
mrg sin Ψr

mrg cos Ψr
= tan Ψr (29)

3.3. Direct Shear Test

The direct shear test is used to determine internal soil parameters namely, cohesion
and internal friction angle (for soil-to-soil particle interactions). The modified shear test
is used to determine the adhesion and external friction angle (for soil to tool or machine
interface properties). These are typically used as direct DEM input parameters to support
the calibration of other parameters. It has been used for cohesive and adhesive soils, as
well as cohesionless soils [41,44,53].

This approach uses the normal and shear stresses acting on a column of granular
materials’ cross-section. The experimental setup consists of two shear boxes, one placed
on the other and filled with the granular material being modelled. One half is fixed while
the other is made movable horizontally in one direction (Figure 11a). A specified normal
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force (Fa) is applied while an increasing horizontal (shearing) force (Fb) is applied to the
movable half till a certain amount of displacement occurs [98]. At that point, the horizontal
force would have reached a maximum value and remain constant or slightly increase or
decrease afterward [30]. The experiment is repeated several times with different normal
force values.
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In the modified shear box test, the bottom half of the shear box is replaced with a
material matching that of the tool or machine part. Normal force and shearing forces
are applied the same way as described above. Corresponding normal and shear stresses
are plotted as shown in Figure 11b. Given that the cohesive strength of the soil is c, the
cross-sectional area of the shear box is A, and the internal friction angle is φ, the relationship
between the normal force and the horizontal force is displayed in Equation (30).

Fb = cA + Fa tan φ (30)

3.4. Triaxial Compression Test

This test can also determine the soil cohesive strength and internal friction angle and
used to calibrate DEM input parameters for cohesive-frictional soils [52,72]. A triaxial
compression test consists of loading an undisturbed cylindrical soil specimen insulated
with an impermeable membrane and subjected to an adjustable confining pressure within a
water chamber [18,99,100]. The specimen is then subjected to combined axial (σ1) and radial
(σ3) stresses as indicated in Figure 12 until soil failure is achieved [98]. The radial stress (σ3)
is first applied around the specimen to a set level via the confining water pressure. An axial
strain is then mechanically applied at a controlled rate which generates a corresponding
additional deviator stress (q) logged over time and combining with σ3 to form a resultant
axial stress σ1. The above steps are repeated several times under increasing radial stress.
The plots of the deviator stress (q = σ1 – σ3) against axial strain identify each deviator stress
value at failure and a simple process—for instance using the Mohr circle method—is then
used to quantify soil cohesion and internal friction angle [101].
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3.5. In Situ Approaches

Measurements of soil mechanical properties are most accurately done in the labo-
ratory [103]. However, while laboratory methods can precisely measure soil properties,
samples may not always be fully representative of field soil conditions due to sampling and
handling limitations and time-related changes between sampling and testing. Hence, some
researchers have used in situ approaches to measure soil properties for DEM calibration
purposes. Kim et al. [44] used an on-site measurement system to determine soil mechanical
properties such as shear modulus, Young’s modulus, and soil–tool static and rolling friction
(Figure 13). On the other hand, Aikins et al. [41] used an on-site cone penetration test
(Figure 14) to calibrate Young’s modulus of a Black Vertosol.
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Figure 14. (a) Motorised cone penetrometer for in situ measurements, and (b) DEM cone penetration
simulation used by Aikins et al. [41].

Asaf et al. [10] proposed grouser shear and sinkage or penetration tests using wedges
of different wedge angles and a plate for calibrating DEM contact parameters. Jang et al. [82]
also used a rectangular plate, while Ucgul et al. [38] and Ucgul et al. [29] used circular
disc and cone penetration tests to calibrate model parameters. Cheng et al. [33] used a
soil adhesion mass test to determine DEM input parameters of wet clay soil by employing
the Plackett–Burman test and response surface methodology (RSM) to optimise input
parameters.

4. Prediction of Soil Failure, Loosening, and Disturbance Parameters
4.1. Soil Failure and Loosening

Tamas et al. [30] and Barr et al. [21] have revealed the ability of DEM to predict soil
rupture and crack propagation, which is an advantage over FEM. Some researchers have
used velocity profiles [7,32] or displacement profiles [41,69,104] as soil loosening indicators.
Others [21,30] used porosity (in PFC3D Particle Flow Code) or voidage (in EDEM 2.7TM),
respectively, to measure the degree of particles loosening in DEM. In the work of Tamas
et al. [30], for instance, it was found that the DEM modelled soil porosity and soil-break-up
resulting from loosening by sweeps increased with both increasing speed and rake angle,
which agrees with experimental results.

Identifying particle movement or loosening is mainly used in defining the boundary
between disturbed and undisturbed particles to simulate soil failure boundary or furrow
profile. Barr et al. [21] argued that using velocity and displacement profiles is based on
the assumption that particle movement results in only soil loosening, ignoring the fact
that particle movement also occurs during a soil compaction process. The validity of this
assumption is therefore limited to tools operating above their critical depth. Additionally,
these approaches are open to subjective decisions since a threshold has to be arbitrarily
defined to differentiate between the “so-called” loosened and unloosened particles. For
example, Murray [69] had to describe loosened particles as having a displacement mag-
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nitude above 5 mm. Barr et al. [21] instead proposed and used a voidage grid (Figure 15)
to define failure boundaries. A voidage grid was applied to the DEM particles after the
tillage process was completed and the particles had settled, which reflects experimental
practice. Voidage is similar to soil porosity as it measures the proportion of volume not
occupied by particles. An empty space will have a voidage of 100%, while a completely
filled space will have a voidage of 0%. With Vg being grid volume and Vp the total volume
of particles whose centroids are located within the grid, voidage can be calculated according
to Equation (31).

Voidage =
Vg −Vp

Vg
× 100% (31)
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Aikins et al. [41] used particle displacement (PD) analysis to determine the loosened
furrow boundary in DEM. The displacement threshold was not set arbitrarily as was
done by Murray [69]. Aikins et al. [41] defined the loosened furrow boundary based on
two criteria:

1. Minimum particle displacement caused directly by an opener occurs with particles
just adjacent to the bottom part of the opener (for wide tines) or particles aligning the
walls of the slot below critical depth (for narrow tines).

2. To establish a sharp contrast between displaced and undisturbed particles, particle
locations immediately after particle loosening (i.e., before the particle settle) has to
be used.

Aikins et al. [41] traced the minimum particle displacement up the profile to produce a
loosened furrow boundary as shown in Figure 16a. Figure 16a is a contour plot of the width
and depth of the virtual soil bin profile against displacements (resultant) for each particle
within the profile. In some studies [21,32], disturbed soil surface profile after tillage was
determined using voidage grid binning and velocity profile. However, Aikins et al. [41]
used the profile of the top surface of displaced DEM particles as the disturbed surface
profile after the particles had settled because that gives more realistic results and is similar
to what actually happens in field experiments. Wang et al. [74] employed another approach
using the “clipping” module in EDEM simulation software to define the disturbed soil
boundary (Figure 16b). The furrow profile was obtained by connecting the boundaries of
the different layers of disturbed soil.
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4.2. Soil Movement and Disturbance Parameters

From the loosened criteria described in the previous section, furrow profile, soil move-
ment, and various soil disturbance parameters have been predicted or determined in DEM
simulations with varying levels of relative error (RE) compared to experimental results.
Such soil disturbance parameters include the lateral, forward, and upward movement
of particles; furrow width at soil surface; loosened furrow cross-sectional area; furrow %
backfill and dip area. Barr et al. [21] found an RE of 9% in loosened furrow cross-sectional
area, 26% in furrow width, 14% in dip area, 0.8% in furrow backfill, 16% in ridge height, and
9% in lateral soil throw in a DEM prediction of soil disturbance parameters with narrow
point openers operating in a sandy-loam soil. Barr and Fielke [105] closely predicted lateral
soil throw and soil layer mixing using narrow tine openers with 35◦ and 90◦ rake angles
and a bentleg opener (Figure 17). Using furrow openers with different rake angles and
cutting edge cross-sections, Aikins et al. [41] closely predicted furrow profiles and similar
patterns for surface profiles. The majority of DEM predictions of furrow cross-sectional
area, furrow width, critical depth, and lateral soil throw had an RE of 1% to 20%. However,
poor predictions were made for ridge height due to the use of large DEM particles (radius
of 5 mm) [41].
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Wang et al. [74] determined soil looseness, furrow width, soil disturbance coefficient,
and soil disturbance area ratio with an RE from 3.24% to 41.64% for a winged subsoiler and
0.24% to 28.74% for a non-winged subsoiler. There was also a satisfactory agreement in
“shape and magnitude” of lateral, forward, and upward displacement of different soil layers
resulting from a sweep cultivator between experimental and DEM simulation results [62].
Using a disc with tilt angles from 0◦ to 20◦, Murray [69] estimated an average absolute RE
of about 10.53% for lateral soil throw. The DEM simulation also revealed, in agreement
with the experimental result, that lateral soil throw increased with increasing tilt angle. For
a hoe furrow opener, a RE of 14.8% was recorded.

Reduction in the forward movement of soil particles at greater depth has been pre-
dicted through DEM simulations [21,32,41]. Other researchers have previously described
this phenomenon [9,106–108] through experimental work and analytical models in the
concept of critical depth. Below the critical depth, soil movement changes from forward,
sideways, and upward directions (generating a loosened crescent-shaped soil failure) to
mainly forward and sideways, generating a compaction type failure in a horizontal plane.
Barr et al. [21] and Aikins et al. [41] closely predicted the narrowing of furrow down the pro-
file and critical depth with a 90◦ rake angle (Figures 15 and 16a). Hang et al. [32] observed
a reduction of the forward movement of particles in the inter-row zone between tines with
increasing tine spacing in both DEM and experimental results. Greater inter-row zone
soil movement with narrower tine spacing was attributed to more intensive interaction
between tines. DEM can also simulate greater soil movement with wing attachment to tine
cutting tools [31].

Greater soil upheaval observed with a low rake angle opener (35◦) and increased
lateral throw of soil (due to splashing effect) typically found with steeper (90◦) rake angle
openers have been successfully replicated with DEM [21]. However, Ucgul et al. [38]
observed that the dynamic height of soil flow under sweep openers was under-predicted
by 23% to 35% at speeds of 5 to 12.5 km/h and did not follow the observed shape using
spherical particles of 10 mm radii. The prediction was improved by using smaller particles
of radii 1.5 mm, which still underpredicted soil flow height by 15%. Using particles of
smaller radii, however, considerably increased computation time. Lateral soil throw was
also under predicted by about 32% and 9% with radii 10 and 1.5 mm, respectively.

Chen et al. [7] estimated a maximum of 3% RE in furrow cross-sectional area, up to
4% RE in disturbed width, from 14% to 26% more soil (by volume) heaped above the soil
surface and 5% to 15% more emptied cross-section below the soil surface. Overall, a close
agreement was observed between experimental and simulation results. Hang et al. [32]
estimated less than 20% RE between DEM predicted and experimentally determined
soil disturbance coefficient and soil looseness. Saunders et al. [76] reported significant
underprediction and correlations between measured and predicted furrow area (r = 0.82)
and maximum soil throw (r = 0.88) when optimizing the performance of a mouldboard
skimmer in a sandy-loam soil. Several furrow parameters from bentleg openers operating
in sandy-loam soil, including loosened cross-sectional area (RE = 14.9%), furrow dip area
(RE = 14.4%), backfill (RE = 1.8%), ridge height (RE = 16.8%), and lateral soil throw (RE =
14.9%), were accurately predicted using the voidage grid bin approach [39]. Furthermore,
Barr et al. [39] observed the same findings as those measured in soil bin investigations, with
DEM simulations of bentleg openers also achieving 100% backfill and cancelling furrow
spill over.

The DEM has also been used to simulate rotary tiller operations for design optimiza-
tion. Zhang et al. [109] and Hirasawa et al. [110] closely predicted the height and pattern of
soil surface undulations after rotary tillage in DEM. Soil movement pattern during rotary
tillage and improving soil layer mixing with tillage depth and travel speed for a rotary
tiller have also been closely predicted [36,109]. Cheng et al. [33] recorded an RE of 1.84% in
mass of soil that adhered to rotary tiller blades.
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5. Prediction of Tillage Forces

Most attention in the DEM simulation of soil cutting tools has been on predicting soil
forces. Table 2 shows relative error (RE) values in draught and vertical force predictions
with DEM, travel speed and operating depths for the stated tillage tools, soil types, and
DEM contact models. Draught force cycles between peaks at incipient soil failure and
troughs at the start of the reloading phase have been well captured in DEM simulations
of sweeps by Tamas et al. [30]. In the same DEM study, draught was found to increase
with greater speed and rake angle. Draught was predicted with 4% to 12% RE as speed
was increased from 0.5 to 2.4 m s−1 with a sweep tine. Bo et al. [31] observed a similar
trend between draught force measured for four subsoilers in the soil bin and that obtained
through DEM simulation. A winged subsoiler among the four had the highest draught
force in both soil bin tests (up to 50% more) and simulations (up to 55% more). With all
four subsoilers, DEM predicted draught force with relative errors below 4%.

Additionally, Wang et al. [74] showed that a winged subsoiler operating at a speed
and depth of 3 km h−1 and 300 mm, respectively, had an RE of 9.71%, whereas the non-
winged subsoiler obtained an RE of 15.08% when the draught force was compared with
the experimental result. Chen et al. [7] observed about 4–31% RE between the draught of
experimental and DEM results. A good correlation was obtained between the measured
and predicted draught forces (r = 0.95), whereas a more limited correlation was observed
for vertical force (r = 0.71). With blunt (R90B) and chamfered (C2S) narrow openers with a
90◦ rake angle, a blunt opener with a 45◦ rake angle, and a bentleg opener, Aikins et al. [41]
predicted draught force with REs of 20%, 22%, 31%, and 5%, respectively. Vertical force was
also predicted with 8% and 20% relative error for R90B and C2S, respectively, but poorly
for the two other openers.

DEM simulations with a mouldboard plough were also able to simulate the gradual
entry of the mouldboard into the soil with a gradual draught increase. For the two soil
conditions used in this study, 9% and 2.4% errors in cultivator tool draught were observed
for a soft-wet soil and a hard-dry soil, respectively. DEM also closely predicted an increase
in draught with increasing depth, with RE ranging from about 3% to 15% [56]. Kim
et al. [44] observed that draught force increased with increasing depth with an overall
average RE of 7.45%. Tong et al. [73] showed that, across four tillage depths, simulated
draught and vertical forces were up to 10% smaller than those measured in the field.

In a DEM prediction of horizontal and vertical soil forces with DEM particles clumped
to form different shapes (similar to that shown in Figure 7), Ono et al. [28] obtained the
most accurate predictions with the three linearly overlapping spheres. The worst prediction
was obtained with simple spherical particles. Ucgul et al. [38] observed a linear increase in
draught force against sweep tine width measured experimentally and predicted using DEM
with a maximum RE of 8%. Likewise, a non-linear increase in vertical force against width
with a maximum RE of 13.7% was recorded. High correlations were recorded between
measured and predicted draught forces (r = 0.978) and vertical forces (r = 0.971) with tool
speeds from 5 to 12.5 km h−1 and a depth of 70 mm. Prediction of the effect of rake angle
on soil forces followed a similar trend (r values of 0.98 and 0.97) and had an RE of 11.6%
and 15.2% for draught and vertical forces, respectively. Ucgul et al. [111] again obtained an
accurate prediction of draught and vertical forces of a sweep tillage tool at varying speeds
and geometry with r values ranging from 0.84 to 0.92. Murray [69] estimated an average RE
of 1.86% for draught and 50.7% for vertical force with a flat single disc opener. For rotary
tillers, Zhang et al. [109] reported a 12% RE in power consumption, while Du et al. [36]
predicted increasing torque with tillage depth (150 to 180 mm) and travel speed (about 2 to
3 km h−1).

6. Soils Modelled in DEM Simulations

Tables 1 and 2 list soil types used in various tillage and furrow opener DEM simulations
and their bulk densities, soil water contents, and cohesive strengths. It can be seen that
most of the soils modelled with DEM are of sandy to sandy-loam textures. DEM modelling
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of highly cohesive soils is still relatively scarce in the literature. Bravo et al. [18] used DEM
to model highly cohesive clay soil (Vertosol) with cohesive strength of up to about 125 kPa
when the soil was highly compacted (bulk density of about 1400 kg m−3) and relatively dry
(soil water content of about 18%). Aikins et al. [41] also modelled a Vertosol with cohesive
strength of 46.4 kPa.

The properties and flow characteristics of sandy soils differ from those of clay soils,
which show cohesive and adhesive properties in the presence of sufficient moisture. The
successful modelling of a Vertosol and its interaction with tools in DEM by Bravo et al. [18]
and Aikins et al. [41] revealed the ability of DEM to model cohesive soils. Although some
authors [33,41,43,44,104,112,113] have recently modelled cohesive soils using DEM, more
attention is needed in future research to cover the wide spectrum of agricultural soils.

7. Conclusions

Based on this review, the following conclusions can be drawn:

1. Even though the Hertz–Mindlin contact model (HMCM) has been used in most DEM
studies of tillage and furrow opening, it consistently fails to predict vertical soil force
accurately. The Hysteretic Spring contact model (HSCM) can more accurately predict
soil forces and particle movement.

2. Angle of repose, inclined plane, direct shear, triaxial compression, and some in situ
tests (grouser shear, plate sinkage, and cone penetration tests) have been used to
measure and calibrate DEM input parameters. The angle of repose test has been used
mainly for cohesionless soils due to the poor flowability of cohesive soils. However,
using results from reproducible phases of the angle of repose experiment, successful
calibrations for cohesive soils have been achieved.

3. Unlike other numerical models, DEM is able to closely predict not only soil forces, but
it is also capable of modelling soil failure mechanisms, soil loosening, and soil particle
movement. Soil rupture and crack propagation, critical depth, three-dimensional
particle movement within the soil profile and lateral particle movement on top of the
soil have all been predicted in DEM.

4. Using voidage or porosity grids to determine loosened furrow cross-sectional profiles
has been found to be superior to using particle velocity and displacement profiles.
However, some researchers have successfully used a particle displacement approach
to determine accurate furrow profiles with a more objective criteria for defining
loosened furrow boundary.

5. Close predictions of draught and vertical forces (≤20%) have been obtained with
DEM. These predictions can be improved by using smaller particles of a near-real
shape. However, this must be balanced with computation time requirements.

Based on the review conducted, the following recommendations are made for
future research:

1. The Edinburgh elasto-plastic adhesion model (EEPA) has been successfully used to
model consolidated or cohesive powders. This contact model is recommended to be
studied more extensively for cohesive soils, although some researchers have used it.

2. Due to pore water pressure within wet and soft soils, coupling DEM and CFD is likely
to produce more accurate simulations. This idea can be explored in future research.

3. A comprehensive analysis of soil disturbance parameters has been successfully done
using voidage grids in EDEM® DEM software. Replication of this approach in other
DEM software is recommended.

4. The criteria introduced by Aikins et al. [41] for defining particle displacement thresh-
old for DEM furrow profile identification need further investigation with particles
of smaller radii than the 5 mm used in the study. This approach can provide greater
details on the three-dimensional soil translocation process.
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Nomenclature

γ Surface energy (J/m2)
ffin Linear overlap
.

ffin Normal component of relative velocity
.

ffit Tangential component of relative velocity
ĉ Cohesive stress
.

ffin Linear relative velocity
ffit Tangential component of overlap
¯t Friction coefficient
∅ Internal friction angle between the particles (Degree)
µr Coefficient of rolling friction
µs Coefficient of static friction
A Cross-sectional area of the shear box
a JKR contact radius
c Soil cohesion (Pa)
ca Soil–metal adhesion (Pa)
d Working depth (m)
dn Damping coefficient
dt Tangential component of damping coefficient
e Coefficient of restitution of the particles
E Young’s modulus
Eeq Equivalent Young’s modulus
F Contact force
Fa Normal force in direct shear test
Fb Horizontal (shearing) force in direct shear test
Fca Cohesive or adhesive force
Fd Damping force
Fn Normal contact force
Fs Spring force
Ft Tangential component of the contact force
g Acceleration due to gravity
Geq Equivalent shear modulus
Ii Moment of inertia of a particle
k1 Loading stiffnesses
k2 Unloading stiffnesses
kn Normal stiffness
kt Tangential component of stiffness

http://www.claas-stiftung.com/
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meq Equivalent particle mass
mi Mass of spherical particle
mr Mass of the ball used in inclined plane test
ms Mass of block used in inclined plane test
N N factor. Suffixes: γ = gravitational, c = cohesive, a = adhesive, q = surcharge
P Soil cutting force (N)
q Surcharge stress (Pa)
q Deviator stress in triaxial compression test
rc Contact radius
req Equivalent particle radius
ri, Radius of spherical particle
Ti Torque due to the tangential component of the contact force
Vg Voidage grid volume
Vp Total volume of particles with centroids within voidage grid
w Tool width (m)
xi Location of spherical particle
γ Specific weight of soil (N m−3)
εa Axial strain in triaxial compression test
σ1 Axial stress in triaxial compression test
σ3 Radial stress in triaxial compression test
Ψ Inclined plane tilt angle. Subscripts: s = sliding, r = rolling
ωi Angular velocity of a particle
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