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Abstract 
 
Most design and evaluation of software tools is based on the intuition and experience of the designers. Software 
tool designers consider themselves typical users of the tools that they build and tend to subjectively evaluate 
their products rather than objectively evaluate them using established usability methods. This subjective 
approach is inadequate if the quality of software tools is to improve and the use of more systematic methods is 
advocated. This paper summarises a sequence of studies that show how user interface design choices for 
software development tools can be evaluated using established usability engineering techniques. The 
techniques used included guideline review, predictive modelling and experimental studies with users. 
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1 Introduction 
Software development tools are designed to assist software developers in producing quality products in 
minimum time. Such tools should maximise the product quality and productivity achieved by enabling their 
users to perform their creative intellectual activity under optimal conditions, by preventing or detecting human 
errors as they occur, and by relieving users of routine mental and physical activity associated with the 
productive process. Achieving these desirable tool attributes critically depends on the user interface chosen for 
the tools concerned. Ideally, user interface choices should be determined, or at least validated, by application of 
a well-defined set of interface selection and evaluation criteria or procedures. 
 
In practice, such criteria and procedures are not used by many tool developers, either due to ignorance of 
results available in the literature, or due to the lack of a workable set of procedures for applying them. Tool 
developers typically rely on their own intuition in deciding on and choosing between user interface options – 
they consider themselves representative users and believe that other users have a similar sense of tool usability 
and usefulness. With many tools this is apparently not the case, since users have been slow to adopt these tools 
due to interaction concerns [13]. Software tools are frequently criticised for their idiosyncratic user interfaces 
and poor usability both by software engineers (the potential users of the tools) and by human factors 
researchers [7]. Thimbleby [27] suggested that there was evidence that software tool developers designed 
effective tools for their own use, but this led them to underestimate the problems that other users experienced 
when using the tools. 
 
Clearly, there is a requirement to make software tool developers more aware of the need for careful user 
interface design of their tools. A more systematic approach, which encompasses an understanding of the 
cognitive processes associated with software development and the tasks to be performed by the software 
engineer, was advocated over a decade ago [24], yet many tool designers continue to ignore such research and 
advice. Prototyping and empirical user testing (combined with iterative design) are the most basic elements of 
the usability engineering life-cycle model [16], but the typical design and development model applied by tool 
designers ignores empirical user testing. 
 
The preceding arguments and discussion suggest that tool developers have been remiss. They have failed to 
adequately evaluate the user interfaces of the tools they develop, relying instead on intuition and subjective 
evaluation in considering their usability. There is a need to show that evaluation techniques (other than 
intuition) have a place in the design of user interfaces for software tools. This paper reviews user interface 
design strategies applicable to the design of software tools and discusses the results of four studies used to 
investigate the feasibility of systematic approaches to evaluation of design choices for the user interface of 
typical software tools. 
 

2 User interface design strategies 
User interface design is an integral part of the overall design process. In considering the design of user 
interfaces generally, Eberts [4] categorised the possible approaches under the four headings:  
– empirical (using results from experiments)  
– predictive modelling (construction of engineering-style models to assist evaluation of design choices) 
– anthropomorphic (modelling human-computer interaction on human-human communication) 
– cognitive (using results from behaviour studies and psychology). 
 
Of course, some methods of user interface design transect these categories (for example, many predictive 
models are based on cognitive theories), but the categorisation is useful as an organisational tool. Intuition or 
experience (introspection) was not explicitly considered as an approach by Eberts but was mentioned as a 
baseline for examining the effectiveness of the other approaches. 
 
In general, user interface design methods are used either to identify or to evaluate design alternatives. 
Introspection as a methodology covers both identification and evaluation of design options. The empirical 
approach is primarily concerned with evaluation of design choices using statistically valid experiments with 



users. Predictive modelling approaches are also used in the evaluation process. In contrast, the 
anthropomorphic and cognitive approaches provide assistance in identifying design options for the designer to 
consider. Where alternatives occur, they can be evaluated using intuition, experiments or a predictive modelling 
approach. 
 
Probably the most common way that information about design choices is presented to the designer is through 
sets of guidelines and a wide range of handbooks and text books. Guidelines are based on examination of the 
extensive research literature available on human-computer interaction and, very often, on the experience of the 
particular authors (e.g., Smith and Mosier [23]). They encompass, or at least try to encompass, all the 
approaches above in presenting to the designer a comprehensive guide to the design of a user interface. Their 
main advantage is that the designer is freed from having to sift through the extensive literature on user interface 
design. Additionally, guideline reviews are a useful usability inspection method [12] that is usable by software 
engineers who are not necessarily user interface design specialists [8]. 
 
This paper examines these strategies from the perspective of their use in the development of software tools. 
Since the focus of this paper is on evaluation techniques, it reviews only the documented application of 
techniques for evaluation of design options. While there are well-documented applications of anthropomorphic 
and cognitive approaches to the identification of design options for software tools, these are seen to be beyond 
the scope of the paper. 
 

2.1  Design by intuition 
It is common for software engineers to develop a user interface for a software product with minimal reference 
to the potential users of that product – in effect, using their intuition and common sense to choose an 
appropriate user interface. This is especially true of the designers of software tools. There is a natural tendency 
for these designers to see themselves as typical users. As a result, they disregard the considerable variation that 
actually exists in individual users’ characteristics and how these characteristics evolve as users become more 
experienced with using a tool. The apparent consequence of this approach is a disappointing uptake of 
innovative software tools by their intended users. 
 
While such designer-centred intuition may be inappropriate, intuitive evaluation of tools by non-designers still 
has a potential role to play. It seems likely that some software tools have been informally evaluated by potential 
users of the tools (with such evaluations fed back to the designers), but explicit descriptions of this process 
have not been found. Zelkowitz [38] reported on a survey where computer science students were asked to rate 
and comment on their satisfaction with the syntax-directed editor SUPPORT, purely on an intuitive basis. The 
students rated SUPPORT lower than typical text editing environments available at the time. Development of 
the tool continued for several years and through several redesigns, but re-evaluations of these were not 
reported. 
 

2.2  Experiments to assist in design choices 
Experimental studies with prototypes and users are a valuable means of selecting between user interface design 
options. Unfortunately, empirical studies of users interacting with software tools are not common. Where 
evaluations have been done and reported, they were usually informal and primarily anecdotal. The CHI’90 
Workshop on Structure Editors [15] noted experimental studies by only three sets of researchers and concluded 
that there was far too little of this type of research. The consensus of the workshop participants was that the 
complexity of the tools, the types of tasks and actions in which tool users engaged, and decisions about what 
and how to evaluate, hindered research in this area. More recently the report from the ICSE-16 Workshop on 
Software Engineering and Computer-Human Interaction [26] criticised the lack of testing and evaluation in this 
area, noting how immature many studies were, particularly those consisting only of questionnaires. 
 
In a recent review of structure-oriented environments [37], it was noted that evaluation of the usability of these 
environments had received little attention. They highlighted only three articles and reported on only one 
continuing project. Several reasons were given for this lack of attention: designers tended to rely on their own 



evaluations or informal evaluations by their peers; usability evaluations were hampered by the relatively weak 
market penetration of tools and the consequent lack of experience of users with the tools; and 
between-environment evaluations were difficult to undertake due to the diversity of facilities offered. 
 

2.3  Predictive models for comparing designs 
Another alternative to intuition for evaluating design choices is the predictive modelling approach. Here the 
idea is to predict the performance of humans interacting with computers in a similar way to predictions with 
engineering models. Thus a model is built and used to help evaluate various user interface design options even 
before prototyping. 
 
Modelling techniques, such as GOMS/KLM [3], predict potential usage patterns for systems and timings for 
specific tasks. Text editors, which are primitive software tools, have been studied extensively using predictive 
models. Embley and Nagy [5] reviewed the literature on the application of predictive models to text editing 
tasks, and indeed much of the discussion in Card et al. [3] was based on examination of editor use. All studies 
reported the usefulness of the approach in accurately predicting user actions and task times. Since then, 
however, the technique does not seem to have been applied in the area of software tools. 
 

2.4  Use of guidelines in design 
Choices about user interface design options can be assisted by reference to standards and guidelines. By 
encapsulating generalisable results obtained by either experience-based or model-based design, guidelines 
communicate these results, together with knowledge from areas such as psychology and graphic design, to 
software engineers. 
 
Guidelines, and their use in assisting the design of user interfaces, have been studied extensively, but as far as 
can be ascertained there are few studies of their use in the design of the user interface for software tools. The 
OPEN LOOK guidelines have been considered in designing the look and feel of a specific language-based 
editor [1]. Another small study [11] examined the use of Motif guidelines by four designers in generating the 
interface for a tool that supported the browsing of files for modules for reuse. Of the designs produced in this 
study, only one was fully Motif-compliant. More significantly, nearly half of the design deviations identified 
were violations of general design recommendations and best practice as documented in available guidelines. 
Other instances of the use of guidelines in this domain probably exist, but explicit reference to such use has not 
been found. In general, the design rationales for software tools that are available rarely indicate the basis for the 
design of the user interface. 
 

3 Evaluation of software tool interfaces 
It is reasonable to suppose that software development tools are amenable to the same types of evaluation as 
other software products, and four studies to illustrate this have been undertaken. The studies conducted 
included a guideline review, building predictive models, and experimentally evaluating aspects of user 
interfaces of selected software tools, specifically language-based editors. 
 
Software tools are available for all phases of the software development life cycle and can be categorised by the 
roles they play. Typical roles of a software tool include construction (and editing), display and checking of 
static or dynamic objects. Sommerville [25, pages 508–509] provided a functional and an activity-based 
classification of tools. Language-based editors are typical software tools in that they support construction, 
display and checking activities. They were therefore used as a representative tool class in these evaluations. 
The conclusions drawn from these experiments on the applicability of usability evaluation techniques should 
therefore be generalisable to a wide range of software tools. 
 
In addition, however, it is noted that language-based editors have yet to achieve the usage that their designers 
and implementors think they deserve. This lack of uptake may be attributable to the inappropriateness of either 



the functionality they provide or the user interface by which they provide it. This study may therefore cast light 
on usability problems specific to language-based editors, as well as the more general applicability of usability 
evaluation techniques for designing software tools. 
 

3.1 A guideline review of a language-based editor 
By comparing the existing or proposed user interface of a software tool with a typical set of guidelines, it is 
possible to gauge the extent to which the tool conforms to the guidelines. We have reported elsewhere [29] 
about such an assessment using guidelines from Smith and Mosier [23] and the language-based editor UQ1 
[36]. 
Of the 944 guidelines contained in the guideline set, 437 (46.3%) were considered applicable to the UQ1 editor. 
This compared favourably with the survey reported by Smith and Mosier [22] on the application of guidelines. 
They found that respondents indicated that they only applied 40% of the guidelines published in another report 
[21]. Table 1 shows the distribution of applicable guidelines in each of the six functional areas distinguished in 
the guidelines. 
 
 

Table 1 . Distribution of applicable and non-applicable guidelines 
Functional Area Applicable To t a l % Applicable 

Data entry 
Data display 
Sequence control 
User guidance 
Data transmission 
Data protection 

94 
134 
84 
85 
0 

40 

199 
298 
184 
110 
83 
70 

47 
45 
46 
77 
0 

57 

To t a l 437 944 46 

 
The number of guidelines available and the task of determining their applicability immediately raise the 
question of the effort involved. Software tools are available to assist in the review and selection of relevant 
guidelines -in this case NaviText SAM [19] was used. The effort involved in conducting the guideline review 
was still significant - three person-months were required. This included learning how to use the editor, learning 
how to use the guidelines software, studying the guidelines themselves, comparing the guidelines with the 
editor, and documenting the review. 
 
It could be argued that there were too many guidelines and the set could have been significantly simplified. 
Others have argued for the use of smaller sets of guidelines to assist designers. In practice, however, it seems 
that still larger sets are becoming available (e.g., ISO 9241 reportedly will contain well over 1000 guidelines). 
Some guidelines were trivial to apply. For example, guideline 1.1*2 required that the cursor be designed so that 
it did not obscure any character displayed in the position designated by the cursor. Clearly any editor needs to 
comply with this and UQ1 did comply. 
 
In other cases it was sometimes difficult to interpret the guidelines as presented. Smith and Mosier indicate that 
it is hazardous to interpret their guidelines using only the comments and examples given. These may be too 
narrow and specific, and the designer needs to recognise the generality of a guideline and apply it 
appropriately. Such guidelines have become a focusing mechanism - focusing the attention of a designer on a 
generic design issue for user interfaces rather than being prescriptive about a specific user interface design. 
 
Of the guidelines for which a logical interpretation was apparent, many simply reinforced the original intuitive 
design decisions taken for UQ1. Where the guidelines were at odds with design decisions, in many cases they 
served to confirm subsequent choices made for the interface to UQ1’s successor, UQ* [35]. Clearly, if these 
guidelines had been readily available at the time of UQ1’s design, then their use would have been beneficial. 
Some issues raised by guidelines relate less to physical issues of user interface design and more to higher level 
issues of concern. Such issues included feedback and response rate, editor functionality, document structure 



and appearance, input device consistency, and user needs and user models. Some guidelines, such as those on 
response rate, seemed obvious and easy to accept but could involve enormous technical difficulties in 
implementation. 
 
For some issues, guidance was incomplete. The guidelines encouraged designers to provide overviews where a 
hierarchical structure existed in an application. However there was no discernible advice on how such 
overviews should be presented. As the designers of UQ1 have noted [34], the user model of documents (in their 
case, hierarchic block-structured programs) might be used to justify a diagrammatic presentation (as adopted, 
for example, by Jesshope et al. [9]) but in practice UQ1 uses an indented text list. Validation of this design 
decision requires more than the application of the Smith and Mosier guidelines, and is considered further in 
Sect. 3.2. 
 
As might be expected with such a large set of guidelines, there were some conflicts between seemingly 
applicable guidelines (a problem also noted in Myers [14]). For example, the guidelines offered conflicting 
requirements about the need to maintain input device consistency. Conflicting advice was also given on a very 
basic design decision dealing with the correspondence between user requirements and the design of data entry. 
For language-based editors the most important design decision is whether to adopt the tree building 
(template-based) or text-recognition paradigm for document input and maintenance. As argued in Welsh et al. 
[34], this choice can be seen as mapping the user model of document structure (and the requirements this 
implies) onto corresponding data entry features, but the user models themselves may be pluralistic. The choice 
also has implications for input device consistency – the recognition paradigm encourages keyboard-only input, 
while the tree-building paradigm is most naturally implemented using both keyboard and mouse. It is 
interesting to note that the most significant unresolved issue in language-based editor design coincides with 
issues on which the Smith and Mosier guidelines gave conflicting advice. 
 
In summary, the Smith and Mosier guidelines proved effective in validating many design decisions in the UQ1 
interface or in highlighting design problems that had subsequently been identified by other means. While the 
cost of applying the guidelines was non-trivial, it would have been justified at the time of UQ1’s original 
design by the early elimination of these design problems. 
 
Guidelines, however, did not resolve all user interface design issues. For some they failed to give any guidance; 
for others they gave conflicting advice. In such cases, other means of systematic user interface design and 
evaluation must be considered, as illustrated in the next two subsections. 
 

3.2 The hierarchy overview problem 
Given the adage ‘A picture is worth a thousand words’, many tool designers assume that graphical 
presentations improve a text-based interface. In practice, the improvement is highly dependent on the context 
involved and needs careful evaluation in each case. The previous subsection noted the problem of displaying 
the hierarchical tree structure of the modules or blocks of a program in UQ1. Such a display is frequently used 
by programmers in reviewing the overall structure of a program and in examining the various dependencies 
between modules. This view of the program may also act as a menu from which the programmer selects a block 
for detailed display or editing. UQ1’s use of an indented text list for this purpose is potentially at variance with 
the user model of document structure at this level [34]. Validation of this choice is a typical user interface 
problem for tool designers. 
 
There have been many studies of menu layout and use, but it is important to recognise that this is a more 
complex problem. The users’ primary requirement is to view and analyse the overall hierarchic structure 
involved. Selection of a specific component within this hierarchy for further perusal is an optional secondary 
step. As far as can be determined, no previous study had addressed this problem in a systematic manner. 
To obtain a result that is as widely applicable as possible and to allow the use of less specialised subjects, we 
generalised the problem to the display of any hierarchy whose overall meaning is known to the user, followed 
by the selection of a hierarchy component identified by absolute or relative hierarchy position, domain-specific 
criteria or both. User performance and preferences related to graphical and indented text views of such 



hierarchies were examined in an experiment [33]. 
 
The experiment was carried out at the University of Southern Queensland with 15 subjects selected from 
academic staff and postgraduate students with computing backgrounds. There were two treatments: 
1.   Graphical representation of a hierarchy 
2.   Text-based indented list representation of a hierarchy 
 
Four hierarchies were used, and for each hierarchy there were three questions asked of subjects. Hierarchy and 
question combinations were randomly presented to subjects with all subjects seeing both representations. In all 
hierarchy and question instances the subjects were presented with two windows: one briefly describing the 
hierarchy to be used and one displaying the instructions. The instruction window included a START button 
which, when clicked, displayed the relevant hierarchy. After the START button was clicked, selection of an 
item from the hierarchy was made by pointing to the item and clicking the mouse button. The time required to 
correctly find and make selections was analysed by analysis of variance for each hierarchy and question 
combination. Table 2 shows the mean time to selection for each of the treatment, hierarchy and question 
combinations. Only one combination of hierarchy and question types (those denoted by B and III in Table 2) 
produced a statistically significant difference between treatments (P < 0.01). 
  
 

Table 2  Mean time (seconds) for selection of items from graphical and list-based representation styles 
Menu Instance Treatment 

Hierarchy Question Graphic List 

A I  
II  
III 

6.096 
7.382  
8.717 

5.165  
6.354  
8.324 

 
B 

I  
II  
III 

4.385  
5.816  
8.234 

4.408  
4.867  
3.195 

C I 
II  
III 

5.370  
7.060  
5.293 

4.792  
6.850  
9.749 

D I  
II  
III 

7.234  
8.179  
3.954 

5.541  
9.199  
5.520 

 
Aesthetically, subjects preferred the graphical representation over the text-based list representation by a ratio of 
2:1. A post-design analysis of this new treatment, user preference, was conducted. There was no statistically 
significant difference in performance between those subjects who preferred the graphical representation and 
those who preferred the text-based list representation for any of the hierarchy and question combinations. 
 
The results from this limited experiment indicate that for the presentation of an overview of a hierarchic 
structure, such as the block structure of a program, and its use as a menu for (block) selection, a graphical 
representation is no more efficient than a more simply implemented text-based representation. In this sense the 
original UQ1 design choice was validated. Based on the stated user preferences, however, there is an argument 
that, since the graphical view was preferred by some users, it should be offered, in some form, as a configurable 
option. 
 
This experiment may be seen as an ideal case in user interface experimentation in that it embodied a simple 
concept for investigation, a good population from which to select, controlled conditions, simple tasks, and 
relatively easy execution and analysis. In contrast, the experiment reported in the next subsection, on choice of 
an editing paradigm, is more problematic. Selection of tasks, subjects, and parameters to be compared pose 
many more problems. 



 

3.3 The editing paradigm problem 
As previously indicated, two basic paradigms for editing are commonly associated with language-based editors: 
tree building and text recognition. With text recognition the user manipulates the displayed representation in 
textual terms, and the editor parses any changes to deduce the program tree required. With the tree-building 
paradigm the user is allowed only operations that ensure the structural correctness of the program tree at all 
times. To extend a program at a given point, for example, the user selects a template from a menu of templates 
allowable at that point. As pure tree editing at the lowest syntactic levels is tedious, however, most 
tree-building editors are actually hybrid editors, allowing the user to input or edit lower-level phrases on a text 
basis with delayed parsing on completion of each phrase. 
 
The debate about the choice between tree building and text recognition as language-based editing paradigms is 
a continuing one. For example, [10] suggested that the strict discipline imposed by the tree-building approach 
was appropriate for novices but not for experienced software developers. Whittle et al. [37] proposed no single 
solution as they suggested that a subjective stalemate had been reached between advocates of one or the other 
of these approaches to language-based editing. 
 
The key word above is subjective. As far as can be determined, no systematic attempt has been made to 
demonstrate the advantage of one paradigm or the other, either by application of relevant theories or by 
experimental investigation. Next we describe two analyses that seek to resolve the problem: one using 
predictive modelling, the other using an experimental approach. 
 

3.3.1 Predictive modelling of language-based editing 
In an initial study of the editing paradigm problem [30], the Keystroke-Level Model (KLM) [2] was used to 
assess the efficiency of available implementations of the two paradigms. With KLM, time to execute a task can 
be described using four physical operators, K (keystroking), P (pointing), H (homing) and D (drawing), one 
mental operator M and a system response operator R. 
 
Time estimates of these operators were determined by Card et al. [2]. Total time spent in keystroking and 
button pressing is based on the number of keys pressed (keys, not characters, so an upper case A is two 
keystrokes – SHIFT a) and average typing speed (40 wpm) for the typical non-secretarial typist of 0.28 sec. per 
keystroke. 
 
The P operator represents pointing to a target using a mouse, an average 1.1 sec. With multiple input devices, 
the user must shift hands between these devices. The homing H operator accounts for this movement with an 
average 0.4 sec. between devices. 
 
The D operator represents using the mouse to draw straight line segments. Originally this was included by Card 
et al. [2] to indicate the wide scope of tasks that could be covered by the KLM (for example computer-aided 
drafting, graphics and painting), but in our studies it was adapted to indicate text highlighting tasks that were 
effectively drawing tasks (point-button down-draw-button up). The D operator has two parameters: the number 
of lines drawn and the length of those lines. The time taken to draw a single line of length ID cm is 0.9 + 0.16 ID 
sec. 
 
Time spent ‘preparing’ to carry out a physical operator is covered by the M operator, which is an average of 
1.35 sec. Heuristic rules describe the placement of M operators in an analysis of a task [3, page 265]. 
 
The R operator represents the system response time. It is only relevant when the user has to wait before 
execution of one of the four physical operators and may be partially or totally subsumed by an M operator. 
The ‘physical encoding’ for the KLM operators is relatively simple - it follows typical use of a system by an 
experienced-expert user. However the ‘cognitive encoding’ (use of the M operator) is more difficult, although 
the heuristic rules act as a guide to its placement. These rules have an underlying psychological principle that 



users cognitively organise methods according to submethod ‘chunks’. The estimate for the M operator 
represents the time to retrieve a chunk of information from long-term memory into working memory. 
 
Application of KLM requires a precise definition of the user interaction sequences (keystrokes, mouse-clicks, 
etc.) that are required to carry out selected tasks. The tree-building paradigm has been implemented in a variety 
of editors, with potential differences in the precise interaction sequences involved. In this study the example 
used was a Pascal editor generated using the Synthesizer Generator [20], which is widely acknowledged as 
typical of the genre. This editor allowed the user to exercise the tree-building paradigm either via the use of the 
mouse (SG-TB) or keyboard (SG-TBk) for menu selection and cursor movement. The text recognition editors 
considered included variants of the UQ editors. UQ1 was available in its standard form as a bimodal pure 
text-recognition editor (UQ1-TR) and in an enhanced form which effectively simulated template-based input 
without compromising its basic editing paradigm (UQ1-TB). A modeless text-recognition editor was also 
considered (UQ*). 
 
Language-based editors are intended to benefit both program development (input of new program fragments) 
and program maintenance (editing existing program fragments). Keystroke-Level Models for some program 
development and maintenance examples were developed (details of these examples can be found elsewhere 
[28]) for the various editing paradigms and then the corresponding predicted execution times were compared. 
Figure 1 is a typical program development example. 
 
Table 3 provides the KLM analysis for one feasible way of using tree building for this program development 
example. The first column in the table presents the method used for each part of the task (for example, Select 

PROCEDURE Check;  
BEGIN 

IF Flag THEN count := count + 1 
END; 

Fig. 1. An example program input task, Check – PROCEDURE 
 
procedure from menu), while the second gives the physical operator encoding as set out in KLM (for example, 
P [procedure]). Column three represents the application of ‘Rule 0’ for inserting the mental operator M, while 
column four shows the application of the other heuristic rules for the removal of M operators [3, page 265]. It is 
this last column that provides the list of operators for the execution time estimate. The estimate of total time 
(seconds) to input the program development example using the mouse-based version of the tree-building editor 
and the estimates of the operators given previously is: 

    33K + 4P + 3H + 4M = 33 x 0.28 + 4 +3x0.4+4 
  = 20.24 sec 

 
Table 4 shows the time estimates for each of the editors for various program development examples (for 
program development, UQ* is the same as UQ1-TR since modality makes no difference during input of  
completely new text). Table 5 presents the results for selected maintenance tasks. 
 
For program development, text recognition was consistently more efficient than tree building. In more than half 
the cases, text recognition was more than 20% faster. The difference between tree building and text recognition 
was mainly attributable to the extra mental operators M. For 60% of the maintenance tasks modal text 
recognition was faster (up to 182% faster in one case) than tree building, and modeless text recognition was 
faster in all but one case. 
 



Table 3. KLM analysis for program code input for tree-building paradigm with mouse-based menu 
selection (SG-TB) 

Operation Physical Operators Include Ms Remove Ms 
Select procedure from menu P [procedure] MP MP 
 K [left button] MK K 
Select <name> of procedure P [<name>] P P 
 K [left button] K K 
Reach for keyboard H [keyboard] H H 
Enter Check 6K [Check] 6K 6K 
Reach for mouse H [mouse] H H 
Select < statement > P [<statement>] P P 
(in procedure) K [left button] K K 
Select ifthen from menu P [ifthen] MP MP 
 K [left button] MK K 
Reach for keyboard H [keyboard] H H 
Enter Flag 5K [Flag] 5K 5K 
Select forward-with-optionals K [RETURN] MK MK 
(move to <statement>)    
Enter count:=count+1 16K [count:=count+1] 16K 16K 
Select pointer-down K[4] MK MK 
(finish text input)    

 
Table 4. KLM analysis time estimates (seconds) for tree building (SG-TB), tree building 
with keyboard-based menu selection (SG-TBk), text recognition (UQ1-TR) and text recognition 
with mouse-based menu selection (UQ1-TB) paradigms for program development 
 

Procedure SG-TB SG-TBk UQ1-TR UQ1-TB 
Check - PROCEDURE 20.24 18.51 17.49 20.51 
AddNumbers - PROCEDURE 21.21 19.17 17.36 17.69 
AddNumbers - FOR 29.53 28.77 23.98 29.70 
StoreCount - CASE 50.77 50.23 40.22 50.05 
Random - FUNCTION 18.36 16.32 12.60 13.21 
ComputeChange - IF-THEN-ELSE 16.70 16.04 12.83 15.63 
CheckInput - REPEAT-UNTIL 37.70 36.76 33.55 34.72 
IterativeSum - WHILE-DO 30.03 28.31 25.66 28.96 

 
Table 5. KLM analysis time estimates (seconds) for tree building (SG-TB), tree building with 
keyboard-based menu selection (SG-TBk), text recognition (UQ1-TR), text recognition with mouse-based 
menu selection (UQ1-TB),and modeless text recognition (UQ*) for program maintenance 
 

Procedure SG-TB SG-TBk UQ1-TR UQ1-TB UQ* 
WHILE-DO change 32.39 22.38 14.36 16.53 5.64 
IF-THEN change 4.11 4.25 14.64 15.97 5.92 
AddNumbers–insert statement 15.12 15.12 15.15 15.15 12.14 
AddNumbers–remove statement 5.05 4.25 4.11 4.11 4.11 
AddNumbers–reverse loop 19.00 13.74 11.84 11.84 7.48 
AddNumbers–alter variable name 18.87 15.27 21.78 21.78 8.70 
ComputeChange–remove IF 29.03 16.37 10.28 10.28 7.27 
ComputeChange–insert IF 29.54 20.52 19.63 22.85 10.91 
ComputeChange–alter IF 4.69 4.69 7.96 7.96 3.20 
IterativeSum–remove WHILE 18.28 13.01 9.32 9.32 9.32 
IterativeSum–insert WHILE 19.04 16.91 21.03 23.81 12.31 



 
In summary, KLM has proved to be a useful design evaluation tool. By applying KLM, program development 
using text recognition was shown to be most efficient; however, the validity of this claim is dependent on the 
KLM operator estimates used, an issue dealt with in a later section. KLM not only assisted in comparing 
relevant design options but also indicated inadequacies of the UQ implementation as it currently stood. 
However, one of KLM’s main problems was the difficulty of the placement of M operators, which was critical 
to the comparative outcome. In general, their placement is nontrivial, needing careful thought and possibly 
experimentation for some design situations. 
 

3.3.2 A user-based experiment with editing paradigms 
A predictive model such as KLM enables a designer to predict the time taken by experienced-expert users in 
carrying out a given task using a given tool or paradigm. However, such models have practical limitations – 
and they only predict the time taken to execute a task and not the time taken in acquiring the information to 
execute the task, they assume error-free expert behaviour, and they are potentially sensitive to modelling 
choices such as the placement of M operators. 
 
Based on these arguments, a controlled experiment was undertaken using a small group of software engineers 
[31]. As with the predictive modelling approach, the relative efficiency of the two paradigms (i.e., finding 
which paradigm was more efficient for use by software engineers engaged in typical software development 
tasks) still remained of interest. The preference a user had for one paradigm over the other was also of interest. 
In this experiment there were three treatments: 
 
 – Program development and maintenance using text recognition via the standard UQ1 editor (UQ1-TR). 
 – Program development and maintenance using tree building via the enhanced UQ1 editor (UQ1-TB). 
 – Program development and maintenance using tree building via the Synthesizer Generator editor (SG-TB). 
 
For each of the five subjects there were 20 tasks to be completed on each of three days. These tasks included 
nine program development tasks and eleven program maintenance tasks, the same tasks as in the KLM study 
(the one extra program development task Count–PROCEDURE was identical to Check–PROCEDURE to 
examine any learning effect). The treatment sequence was randomly assigned for each subject. Subjects 
undertook the tasks for one paradigm on one day, another paradigm on the next day and the remaining 
paradigm on the following day. Randomisation and a reasonable delay between treatment application decreased 
any carry-over (or residual) effect of previous treatments. 
 
Time required to complete each task was analysed by analysis of variance. The number of error types and the 
actual number of errors associated with task completion were also analysed by analysis of variance after 
applying a log transformation typically applied before analysing data consisting of counts. Time associated 
with errors and average error times were analysed by analysis of variance as well. Some errors were filtered 
before any analysis. In particular, long time delays between ending one task and beginning the next were 
eliminated from analysis. Table 6 shows the mean times taken by subjects to complete the program 
development and maintenance tasks. 
 
In general, the subjects preferred the tree-building paradigm and estimated that their speed and accuracy were 
better with it. This perception of the users did not reflect the actual situation – mean completion times using 
text recognition were shorter than those using tree building for 60% of the tasks undertaken. Statistically, 
however, there were few significant differences between the paradigms for any of the usability parameters 
considered in the experiment. These parameters included task completion times, error frequency, error times, 
types of error and the learnability of each paradigm. 
 
The experiment itself was not without its limitations. There were only a small number of subjects (five) and 
they were not practicing software engineers but final year computer science students. We must ask whether the 
results from this experiment with its fairly small sample of students can be extrapolated to software engineers 
in general. The answer is probably no, but such experimentation and analysis do provide estimates of 



variability suitable for calculating sample sizes that are able to give more powerful tests of treatment 
differences for future experimentation. As such tools become used by a wider range of professionals, it may be 
possible to conduct the experiments with more experienced users. 
 
 
 
Table 6 . Overall completion times (seconds) for program development and maintenance tasks. Means 
within the same row, with the same or no superscript, are not significantly different 

Input Task UQ1-TR UQ1-TB SG-TB 
Check–PROCEDURE 33.47 56.51 46.92 
AddNumbers-PROCEDURE 19.81a 31.91ab 75.55 
AddNumbers-FOR 47.85 45.76 43.76 
StoreCount-CASE 95.76 73.66 87.58 
Random–FUNCTION 22.30 16.14 37.36 
ComputeChange-IF-THEN-ELSE 20.88 37.86 34.95 
Checklnput-REPEAT-UNTIL 62.20 54.74 65.57 
IterativeSum-WHILE-DO 58.96a 49.85ab 33.78 
Count–PROCEDURE 38.79 47.56 25.86 
Maintenance Task UQ1-TR UQ1-TB SG-TB 

WHILE-DO change 25.41 22.48 42.25 
IF-THEN change 21.66a 15.78a 2.16 
AddNumbers–insert statement 26.17 21.06 31.12 
AddNumbers–remove statement 4.64 3.55 13.10 
AddNumbers–reverse loop 19.36 23.07 23.60 
AddNumbers–alter var. name 28.58 26.94 28.99 
ComputeChange–remove IF 20.21 13.85 51.31 
ComputeChange–insert IF 37.70 37.86 49.24 
ComputeChange–alter IF 10.99 9.99 6.47 
IterativeSum–remove WHILE 29.43 19.70 26.85 
IterativeSum–insert WHILE 47.89a 66.33 38.72a 

 
To enable maximum correlation between the two investigations, the development and maintenance tasks used 
in the experiment were those originally chosen for the purpose of modelling editing tasks using KLM. Certainly 
the tasks were typical of the types of editing tasks undertaken by software engineers, but they were undertaken 
out of context, a criticism that can be levied at any such experiment. Studying long term, on-the-job use of such 
products by software engineers would be a useful complementary activity, but such situated research is 
expensive and there are many difficulties, in particular the lack of control and availability of appropriate 
subjects. 
 
The experimental procedure and apparatus itself also had limitations. Unlike the hierarchic overview 
experiment, it was impractical to instrument the editors themselves to capture the necessary experimental data. 
Instead, this was achieved using an event logger to record relevant software interaction events and a video 
camera focussed on the computer screen to assist with interpretation of the events recorded. In practice, the 
video-recording was not particularly satisfactory. The resolution was relatively poor and the video-camera and 
computer screen were not synchronised, which produced a rolling effect on the play-back device when 
reviewing the tape. Instrumentation of the editors themselves rather than using an event logger would have 
facilitated better and easier data extraction. In general, however, this luxury is only possible in product 
evaluation if source code is available, and even then there are likely to be many difficulties in the 
instrumentation process itself. 
 
In summary, the experiment demonstrated that it is possible to address complex issues such as the editing 
paradigm design choice by experimental means, but also that significant challenges may have to be overcome 
to obtain reliable, statistically significant results. 



 

3.4 Validation of keystroke-level models 
The structure and conduct of the editing paradigm usability experiment meant that it was not only possible to 
examine usability issues related to the editors and editing paradigms but also to perform a validation of the 
theoretical Keystroke-Level Models [32]. Table 7 presents data generated by differencing overall task 
completion times and task error times and averaging for the subjects. These data are comparable to the KLM 
data given in Table 4 and Table 5.  
 
 
Table 7 . Empirically measured times (seconds) for program development and maintenance tasks used in 
the KLM study 

Input Task UQ1-TR UQ1-TB SG-TB 
Check–PROCEDURE 
AddNumbers–PROCEDURE 
AddNumbers–FOR 
StoreCount–CASE 
Random–FUNCTION 
ComputeChange–IF-THEN-ELSE 
CheckInput–REPEAT-UNTIL 
IterativeSum–WHILE-DO 
Count–PROCEDURE 

23.60 17.24 
28.81 56.44 
14.38 14.17 
41.67 32.38 
18.66 

35.90 21.95 
36.60 59.90 
15.38 19.75 
44.56 36.76 
30.11 

29.52 24.56 
31.75 56.59 
29.19 23.18 
42.06 26.60 
18.15 

Maintenance Task UQ1-TR UQ1-TB SG-TB 

WHILE-DO change IF-THEN change 
AddNumbers–insert statement 
AddNumbers–remove statement 
AddNumbers–reverse loop 
AddNumbers–alter var. name 
ComputeChange–remove IF 
ComputeChange–insert IF 
ComputeChange–alter IF 
IterativeSum–remove WHILE 
IterativeSum–insert WHILE 

13.15 13.97 
20.94 
4.64 14.23 
19.11 13.84 
15.20 
7.35 17.27 
26.33 

17.44 13.36 
17.28 
3.08 18.82 
18.95 13.61 
24.09 
5.15 11.42 
36.18 

31.07 
1.39 
19.51 
5.82 
14.46 
26.34 
27.17 
35.16 
6.29 
19.58 
24.67 

 
 
Several methods were available to compare predicted and empirical results. The two used were percentage 
absolute error and correlation/regression. Percentage absolute error was calculated as: 
 

 
Averages for these errors were calculated for each editor: UQ1-TR 17.7%, UQ1-TB 23.4%, SG-TB 26.8%. 
 
Correlation analyses between predicted and empirical times for individual subjects produced highly related 
results. For each editor there was a highly significant correlation (P < 0.01) between predicted execution times 
(KLM) and actual execution times. Linear regression relationships also reflected this high correlation with a 
linear relationship between predicted times (dependent variable) and actual times (independent variable) 
accounting for between 67:1% and 79:2% of the overall variation (Table 8). 
 
The three regression equations indicate that actual execution times are marginally greater than predicted values. 
This result is not as obvious from the percentage absolute error analysis since there the direction of any error is 



not available. Thus, although there is a reasonable correlation between empirical data and KLM predicted data, 
there appears to be a systematic difference as well. For example, for an actual execution time of 20 sec., the 
KLM predicted times for each editor are: UQ1-TR 17.23, UQ1-TB 16.67, SG-TB 18.84. 
 
 
Table 8. Correlation and regression results for comparing KLM predicted and actual times (seconds) 

Editor Correlation 
Coefficient 
(r) 

Linear Regression 

 
 

 
 

Intercept Slope 

UQ1-TR  
UQ1-TB  
SG-TB 

0.819  
0.890  
0.845 

7.05  
4.63  
5.02 

0.509  
0.602  
0.691 

 
 
Both analyses – average percentage absolute error and correlation and regression – indicate that 
model-predicted values represent close to 80% of empirical data values. This accords with other literature [2, 6, 
17, 18]. 
 
All key press, mouse button press and release events and timings were recorded for each subject and for each 
editor. The KLM predicted equivalent actions in each of the tasks analysed, so timings for model predictions 
were compared with actual timings. 
 
As already indicated, the principal concern with KLM was with the estimate of time for the mental operator M. 
For all instances with KLM, this operator was predicted to be 1.35 sec. With each task and editor there were 
events that were predicted to include this mental operator. There were four instances of such events (M2K, 
MK, MPK and MPD). 
 
1.  For the editors UQ1-TR and UQ1-TB an M operator was assumed to precede acceptance of downstream 
symbols using the two keystroke sequence, CTRL a. Such events were modelled as M2K and all were extracted 
from the computer-based log of events for each editor and subject. 
 
2.   Single keystroke sequences that were predicted to be preceded by an M operator were evident in all three 
editors. In both UQ editors the ESC key was used to exit from insertion mode and return to navigation mode. 
The SG-TB editor implemented the ENTER or RETURN key to finalise statements input by the subject and 
provide template holes for filling by the user. Such events were modelled by MK. 
 
3.   All three editors included event sequences that required subjects to use the mouse to point to items for 
selection purposes. Items included editing commands, such as insert, delete and change for the UQ editors, and 
language command menu items, such as ifthen and while  for the UQ1-TB and SG-TB editors. KLM 
placed Ms in front of all such events that were modelled as MPK. 
 
4.   Editing operations involving SG-TB required subjects to use a pull-down menu to select editing 
operations, cut, copy and paste. Each event here involved pointing to a menu bar, holding down the left mouse 
button and drawing to the required editing operation (cut, copy or paste), and releasing the mouse button. This 
was modelled as MPD (D for draw). An alternative would have been to model this event as MPK press PK 
release since it was possible to use the menu in this way. However, actual use of the editor by subjects 
indicated that this was not the preferred method and MPD more closely simulated their actions. 
 
Separating the mental operator from the other operators proved difficult. To estimate memory operator times 
for these event types we also needed estimates of times for K, PK and PD. Estimates for K may be found by 
using the computer-based log of all keystrokes not involving or biased by memory operators. Unfortunately, 
estimates for the other two operator combinations were more problematic. It was possible to estimate the values 



of P and D by counting video frames, but the main difficulty was in knowing when to start the times for each 
operator, that is, when the M effect had stopped and the other operator started. We chose, therefore, to consider 
the events in toto rather than attempt to split them into component parts. 
 
Table 9 . Comparison of actual and predicted times (seconds) for KLM events including M2K, MK, 
MPK and MPD 
 

KLM  
Event 

Actual Predicted 
KLM 

 
 

UQ1-TR UQ1-T
B 

SG-TB  
 

M2K  
MK  
MPK  
MPD 

1.971  
1.372  
2.592 
- 

1.971 
1.317 
2.868 
- 

- 
0.976 
4.320 
2.774 

1.91  
1.63  
2.73  
3.67 

 
Some differences between predicted and empirically measured values were found. Table 9 shows a summary of 
the predicted and empirically determined timings for the KLM events analysed here. These values could be 
used as alternatives to those supplied in [2] when comparing design options for software development tools of 
the type described here. 
 
Using these empirically determined time estimates of KLM events a new set of KLM time estimates was 
predicted for the tasks. Percentage absolute errors were then recalculated and new correlation and regression 
equations were produced. Neither set of recalculations showed a marked improvement in association between 
predicted and empirical times. On this basis the original KLM estimates from [2] appear to be reasonable. 
Further improvements to the predictions might be obtained by considering alternative estimates of some of 
KLM’s other operators. Improvements might also be noticed if actual rather than estimated values of typing 
speed of users were included. Neither of these has been considered at this stage since the principal concern was 
with estimates and placement of M operators; however, this may be considered in future work. 
 

4 Conclusions 
The contributions of this research can be categorised under two headings: the process of user interface design 
and evaluation in the software tool domain, and specific outcomes relevant to the particular software 
development tools examined. 

Contributions to the process of design and evaluation are as follows: 
– Design evaluation strategies other than intuition are feasible for designing the user interface of software 

tools and are relevant to the usability of the subsequent tools. The designers of UQ1 did consider user 
models and related cognitive issues as the basis for design decisions for UQ1’s user interface, but there 
had been no validation of the models nor usability studies of the implementation based on the models. 
Strategies other than intuition have been used to successfully validate the models. 

 
– User interface design guidelines are an important resource that can and should be consulted by software 

tool designers. Using a retrospective analysis involving the application of guidelines to an existing user 
interface, it was shown that several inappropriate design decisions made for UQ1 could have been 
avoided if guidelines of significant coverage had been consulted. Guidelines do not provide complete 
advice on all issues, but their use may shorten the time to a final product by eliminating some design 
errors at an earlier stage. 

 
– Predictive modelling approaches for evaluation of competing design options are feasible, even for 

complex software tools such as language-based editors and the design decisions associated with them. 
Keystroke-Level Models built to allow a comparison between basic language-based editing strategies 



showed that text recognition was a more efficient approach to editing compared with its counterpart, 
tree building. Thus through the use of models it was shown that it was possible to predict efficiency of 
editor use before the editor had been built. Validation of the models, comparing them with actual 
experiments with users and various editor implementations, showed that the models were accurate 
provided that user errors were taken into account.  
 

– Experimental approaches to user interface evaluation of software development tools are feasible, but 
difficult. Some of these difficulties arise from the availability of appropriately trained and experienced 
users (where optimising user interaction is of interest); from the development of tasks that are typical, 
are of an appropriate size and are contextual for the users involved; and from the availability of 
appropriate experimental resources. Nevertheless, it has been shown that experimentation with 
complex tools and highly skilled users is possible. Many challenges remain, however, not the least of 
which is the need for a cultural shift in the software engineering community towards such user-based 
experimentation. 

Outcomes specific to language-based editors are as follows: 
– Graphical representations of the hierarchic structure of information are not necessarily ergonomically 

better than text-based representations. Providing an overview of a document’s structure is an important 
aspect identified from the user model of documents. At this level the model suggested that a graphical 
representation was more appropriate than a text-based one. Guidelines also indicated that providing an 
overview of any structured document was required as, indeed, were methods to manipulate the 
structure and its contents, but no advice on representation was given. For various reasons, including 
availability of display space and ease of implementation, UQ1 implemented a text-based view and not 
a graphical one. The experiment to compare these two representations showed that both representations 
were equally efficient. This result is only relevant in this context and does not hold for all graphical 
representations of program documentation. 

– Text recognition is at least as efficient if not better than tree building or hybrid editing paradigms for 
language-based editors. The predictive models and experiments with users and various editors 
confirmed the choice of text recognition as a viable and suitable editing paradigm. 

 
There are many unresolved issues associated with software development tools and the design of their user 
interfaces. Such issues should be resolved by experimentation wherever possible. While such experimentation 
is often difficult, it is hoped that these experiences will encourage tool designers to consider this more 
systematic approach. 
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