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Abstract 23 

This paper aims to propose a hybrid deep learning (DL) model that combines a convolutional 24 

neural network (CNN) with a bi-directional long-short term memory (BiLSTM) for week-25 

ahead prediction of daily flood index (IF) for Bangladesh. The neighbourhood component 26 

analysis (NCA) is assigned for significant feature selection with synoptic-scale climatic 27 

indicators. The results successfully reveal that the hybrid CNN-BiLSTM model outperforms 28 

the respective benchmark models based on forecasting capability, as supported by a minimal 29 

mean absolute error and high-efficiency metrics. With respect to IF prediction, the hybrid CNN-30 

BiLSTM model shows over 98% of the prediction errors were less than 0.015, resulting in a 31 

low relative error and superiority performance against the benchmark models in this study. The 32 

adaptability and potential utility of the suggested model may be helpful in subsequent flood 33 

monitoring and may also be beneficial to policymakers at the federal and state levels. 34 

 35 

Keywords flood index, climate indices, deep hybrid learning; feature extraction, 36 

Bangladesh 37 

Nomenclature 38 

ABMR   All Bangladesh Monsoon Rainfall 39 

ACF    Autocorrelation Function 40 

ANN    Artificial Neural Network 41 

AO    Arctic Oscillation 42 

AWRI   Available Water Resources Index 43 

BiLSTM  Bi-directional Long- short term memory  44 

BMD   Bangladesh Meteorological Department 45 

BOB   Bay of Bengal  46 



BOM    Australian Bureau of Meteorology 47 

BWDB  Bangladesh Water Development Board  48 

CNN-BiLSTM      Hybrid Model integrating the CNN with BiLSTM  49 

CCF   Cross Correction Function 50 

CNN   Convolutional Neural Network 51 

DL   Deep Learning 52 

DMI   Dipole Model Index  53 

EMI   El-Nino southern oscillation Modoki index  54 

ENSO    El Niño Southern Oscillation  55 

EPI   East Pole Index 56 

EP   Effective Precipitation  57 

FC    Fully Connected  58 

GBI   Greenland Block Index  59 

GRU   Gated Recurrent Unit 60 

IF   Flood Index  61 

IOD    Indian Ocean Dipole 62 

IPO    Interdecadal Pacific Oscillation 63 

KNMI    Royal Netherlands Meteorological Institute 64 

LM   Legates-McCabe’s Index 65 

LSTM   Long- short term memory  66 

MAE    Mean Absolute Error  67 

MAPE   Mean Absolute Percentage Error 68 

MSE    Mean Squared Error 69 

NAO    North Atlantic Oscillation 70 

NCA   Neighbourhood Component Analysis  71 



NOAA   National Oceanic and Atmospheric Administration 72 

NSE    Nash–Sutcliffe Efficiency 73 

NSW   New South Wales   74 

PACF   Partial Autocorrelation Function 75 

PDO    Pacific Decadal Oscillation 76 

QGIS    Quantum GIS 77 

r    Correlation Coefficient  78 

RAM   Random Access Memory  79 

ReLU   Rectified Linear Unit 80 

RMSE    Root-Mean-Square-Error 81 

SAM   Southern Annular Mode  82 

SGD    Stochastic Gradient Descent Optimization  83 

SOI    Southern Oscillation Index 84 

SST   Sea Surface Temperature  85 

STR    Subtropical Ridge  86 

SVR    Support Vector Regression 87 

TPI    Tri-pole Index  88 

WPI   West Pole Index 89 

 90 

1 Introduction   91 

Floods cause considerable damage in South Asia than in any part of the world 92 

(Matheswaran et al., 2018). The most affected areas are grasslands, mountain forest ecosystems 93 

of the Himalayas, and the Sundarbans (Hasnat et al., 2018). Bangladesh lies geographically at 94 

the confluence of three large rivers, the Ganges, Brahmaputra, and Meghna, with about 92.5% 95 

of the basin area outside its boundaries (Khairul et al., 2022). Most of the monsoon rainfall and 96 



its water runoff flow through its river network, which might severely exceed the capacity of 97 

the drainage channels and cause flooding. Examples of major flood events are 1954, 1955, 98 

1974, 1987, 1988, 1998, 2004, 2007, and 2012, which inundated from 20.5% up to 70% of the 99 

country on average (Alam et al., 2021). Therefore, it is essential to quantify the direct and 100 

indirect costs and hazards of floods to take primitive measures before the events, which requires 101 

predictive information of flood characteristics, for example, the start time (flood onset), 102 

duration, volume, and peak level.  103 

Because of the high probability and massive impact of flood events, the success of 104 

seasonal forecasts and the warning system is critical in seasonal flood management in 105 

Bangladesh (Chowdhury, 2005). Accurate and timely prediction of floods can help the relevant 106 

stakeholders minimize their drastic effects. Furthermore, government policies can be drawn to 107 

identify various options for mitigation. For example, successful flood policies will strengthen 108 

relevant planning and implantation agencies (Brammer, 1990). Thus, there is tremendous 109 

potential for hydrologic models to be helpful in various applications, particularly in the context 110 

of flood preparedness and planning for future climate variability.  111 

Many flood inundation models have been developed recently and effectively 112 

implemented in various parts (Bhagabati & Kawasaki, 2017). Despite such models can 113 

simulate detailed flood dynamics, they suffer from several significant shortcomings. The 114 

significant restrictions of flood inundation models consist of the requirement of complicated 115 

data inputs, computational effort, and differences in modelling results (Teng et al., 2017).  116 

 The flood index (IF) is an alternative candidate for supporting disaster management and 117 

flood risk assessment in simplicity and practical applicability (Cian et al., 2018). The 118 

development of IF often requires simple inputs such as streamflow or precipitation. The IF has 119 

been demonstrated to be a reliable and effective mathematical tool for determining whether or 120 



not a given area is flooded at a specific time and location (Quintero et al., 2020). The IF has 121 

also been successfully implemented to monitor flood conditions and characteristics (Moishin 122 

et al., 2021b). The reliable and accurate prediction of IF is critical for early warnings that 123 

different societies can use for better management and mitigation.  124 

Prediction of IF using artificial intelligence methods has developed rapidly in recent 125 

years. For example, Prasad et al. (2021) proposed an M5 tree-based machine learning (ML) 126 

model integrated with advanced multivariate empirical mode decomposition to predict daily IF 127 

values in Lockyer Valley in southeast Queensland, Australia. Moishin et al. (2021a) developed 128 

a hybrid deep learning (DL) model, combining Convolutional Neural Network (CNN) and 129 

Long Short-Term Memory (LSTM) to predict the daily IF in Fiji. The results indicated that the 130 

hybrid DL model outperformed the standalone model (LSTM) and machine learning model 131 

(Support Vector Regression). Technically, DL models employ many feature extraction layers 132 

to efficiently extract non-linear and complex compound connections from data (Ghimire et al., 133 

2019). Additionally, DL algorithms are highly effective in extracting data attributes when 134 

handling enormous volumes of complicated data and possessing strong computational and 135 

sophisticated mapping capabilities (Gong et al., 2019).  136 

Several studies have demonstrated the influence of large-scale climate indices on 137 

monsoon precipitation in the Indian subcontinent, however varying depending on the 138 

geographic variation of the region (Kumar et al., 1999; Roy & Tedeschi, 2016; Xavier et al., 139 

2007). Han and Webster (2002) showed that the Indian Ocean Dipole (IOD) occurrences 140 

significantly influence sea-level changes in the Bay of Bengal and that sea level anomalies in 141 

the northern bay may be a predictor of flooding and cholera outbreaks in Bangladesh. Gill et 142 

al. (2015) studied correlations between seasonal rainfall and Pacific sea surface temperatures 143 

(SSTs) to reveal spatially distinct relationships between El Niño–Southern Oscillation (ENSO) 144 

and Indian summer monsoon rainfall over the entire monsoon season, as well as three sub 145 



seasons. Furthermore, the interactions between large-scale climate indices, e.g., IOD and 146 

ENSO can affect the relationship between individual climate indices (e.g., ENSO) and Indian 147 

summer monsoon rainfall (Pothapakula et al., 2020). Because of the well-known complicated 148 

relationship between the monsoon season and ENSO, the large-scale climate drivers likely have 149 

a significant role in regulating the food potential of Bangladesh (Ghose et al., 2021; Islam et 150 

al., 2021).  151 

This research aims to examine how the extreme phases of climate indices affect the 152 

week ahead IF in the region of Bangladesh. We developed a novel hybrid DL model (i.e., CNN-153 

BiLSTM) by incorporating a Neighbourhood Component Analysis (NCA) algorithm to 154 

optimise the significant predictors. The DL methods such as LSTM and gated recurrent 155 

networks (GRU) have shown an effective predictive methodology in hydrology and water 156 

resources (Ahmed, Deo, Feng, et al., 2021; Ahmed, Deo, Raj, et al., 2021). Moreover, the CNN 157 

algorithm can extract relevant features of the predictor variables (Ghimire et al., 2019).  In the 158 

past researches (Ahmed, Deo, Feng, et al., 2021; Ghimire et al., 2019), incorporating CNN and 159 

an LSTM or GRU model has shown significant performance in predicting hydrological 160 

variables. Nonetheless, to our best knowledge, such incorporation has not been piloted in IF 161 

prediction yet, particularly in Bangladesh. Thus, this research addresses the gap in research that 162 

needs to be taken for developing countries such as Bangladesh using advanced DL 163 

methodology for extreme weather events. 164 

2 Theoretical overview of data intelligent models  165 

2.1 Convolutional neural network (CNN)  166 

The Convolutional Neural Network (CNN) is proposed by LeCun et al. (1989). CNN reduces 167 

parameters and overfitting risk by processing input data via local connections and parameter sharing  168 

(Zang et al., 2020). CNN has been extensively used in image recognition, natural language 169 



processing, and time series prediction (Ahmed, Deo, Feng, et al., 2021; Ahmed, Deo, Raj, et 170 

al., 2021; Cannizzaro et al., 2021).  171 

A convolutional layer in CNN incorporates various convolution kernels for extracting 172 

different features. Convolutional and pooling layers combine to minimise parameters and 173 

accelerate computations (Ghimire et al., 2022). The fully connected layer then uses the 174 

convolution kernel’s features to calculate the final prediction. Additionally, in the fully 175 

connected layer of the architecture, all of the parameters for logic inference are learned from 176 

training data (Ghimire et al., 2021). The mathematical notation of feature extraction by one-177 

dimensional convolution is explained as: 178 

𝑎𝑗(𝑙+1)(𝜏) = 𝜎(𝑏𝑗𝑙 + ∑ 𝐾𝑗𝑓𝑙 (𝜏) ∗ 𝑎𝑓𝑙 (𝜏))𝐹𝑙𝑓=1 = 𝜎(𝑏𝑗𝑙 +∑ [∑ 𝐾𝑗𝑓𝑙 (𝑝)𝑎𝑓𝑙 (𝜏 − 𝑝)]𝑝𝑙𝑝=1𝐹𝑙𝑓=1 )          (1) 179 

where 𝑎𝑗(𝑙+1)(𝜏) denotes feature map j in layer l, σ means non-linear function, 𝐹𝑙 denotes 180 

number of feature maps in layer l, 𝐾𝑗𝑓𝑙  denotes the kernel convolved over feature map f in 181 

layer l to create the feature map j in layer l+1, 𝑝𝑙 denotes the length of kernels in 182 

layer l and 𝑏𝑗𝑙 denotes a bias vector. Figure 1 provides the basic architecture of CNN model.  183 

2.2 Bi-directional long short term memory (BiLSTM) 184 

The bidirectional long short-term memory (BiLSTM) is a long short-term memory 185 

architecture with LSTM layers in forward and backward directions (Peng et al., 2021). 186 

BiLSTM uses forwards and backward LSTM layers in its architecture, as seen in Figure 2(b). 187 

Each memory block has two LSTM layers. The created two hidden-layer states have opposing 188 

temporal sequences using the forward LSTM layer 𝑆𝑡 , 𝑡 ∈ [1, 𝑇] and the backward LSTM layer 189 𝑆𝑡′, 𝑡 ∈ [𝑇, 1]; These layer states are then combined to deliver the identical output (Ahmed et 190 

https://www.sciencedirect.com/topics/engineering/nonlinear-function


al., 2022). The forwards and backwards LSTM layers, respectively, can learn about the past 191 

and future of the input sequence. (Wang et al., 2019).  192 

The hidden layer state 𝐻𝑡 of BiLSTM at time t contains forward ℎ𝑡⃗⃗  ⃗ and backward ℎ𝑡⃖⃗ ⃗⃗ :  193 ℎ𝑡⃗⃗  ⃗ =  𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ℎ𝑡−1, 𝑥𝑡, 𝑐𝑡−1), 𝑡 ∈ [1, 𝑇]      (2) 194 ℎ𝑡⃖⃗ ⃗⃗ =  𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑡+1, 𝑥𝑡, 𝑐𝑡+1), 𝑡 ∈ [𝑇, 1]      (3) 195 𝐻𝑡 = [ℎ𝑡⃗⃗  ⃗, ℎ𝑡⃖⃗ ⃗⃗  ]          (4) 196 

Here, T is the time series. The BiLSTM method has been successfully applied in 197 

hydrological prediction (Kang et al., 2020; Li et al., 2021; Prasad et al., 2018).    198 

2.3 Support vector regression (SVR)  199 

When dealing with limited sets of variables and pattern recognition with a high degree 200 

of dimension, Support Vector Regression (SVR) can solve problems. This technique depends 201 

on using a kernel function in a high-dimensional space. To calibrate the error between the 202 

kernel function and the target data, the relaxation and penalty coefficients are introduced. 203 

(Hamidi et al., 2015). For a particular training X, the input is first mapped onto a high-204 

dimensional feature space ϕ(x) (kernel function). After that it follows similar structure of a 205 

linear model. The linear vector expression can be as follows: 206 𝑓(𝑥) = 𝜔 ∙ ∅(𝑥) + 𝑏                          (5)     207 

where the weight vector, the constant, the mapping function of non-linear transformationis 𝜔 , 208 

b, and ϕ(x) respectively. By reducing the model complexity, the constant b and coefficient 𝜔 209 

are estimated by diminishing:  210 𝑅𝑟𝑒𝑔(𝑓) = 𝐶 1𝑁∑ 𝐿𝜀(𝑓(𝑥𝑖),𝑁𝑖=1 𝑦𝑖) + 12  ‖𝑤‖2       (6)     211 

𝐿𝜀(𝑓(𝑥) − 𝑦) =  {|𝑓(𝑥) − 𝑦| −  𝜀  𝑓𝑜𝑟|𝑓(𝑥) − 𝑦| ≥  𝜀0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               (7)     212 



Here, both the parameters C and 𝜀 are to be determined which influence the 213 

generalization performance, and the loss function assesses estimation quality 𝐿𝜀(𝑓(𝑥𝑖), 𝑦𝑖), 214 

known as 𝜀 intensive loss function. 𝐶 1𝑁∑ 𝐿𝜀(𝑓(𝑥𝑖),𝑁𝑖=1 𝑦𝑖) is the empirical error and 
12  ‖𝑤‖2 is 215 

the smoothness of the function. The trade-off between the experimental threat and the 216 

smoothness of the model is denoted by C. Moreover, the dual problem, given as transfer the 217 

optimization problem:   218 

            𝑓(𝑥) =  ∑ (𝛼𝑖 − 𝛼𝑖∗)𝑘 (𝑥𝑖 , 𝑥) + 𝑏𝑙𝑖=1              (8)      219 

where, 𝛼𝑖 and 𝛼𝑖∗ are the introduced Lagrange multipliers and 𝑘 (𝑥𝑖 , 𝑥) is the kernel function. 220 

The schematic structure of SVR is illustrated in Figure 2(a).   221 

2.4 Feature Selection: Neighbourhood Component Analysis (NCA) 222 

The feature selection plays a crucial role in developing predictive models. This is 223 

because it enables a reduction in the number of input variables, thereby minimizing processing 224 

costs, and improving the accuracy and interpretability of the model in terms of its properties 225 

and predictors (Bowden et al., 2005; Maier et al., 2010; Prasad et al., 2018; Yang et al., 2012). 226 

This study used Neighbourhood Component Analysis (NCA) to separate significant antecedent 227 

lagged predictor variables from potential input variables. This method was developed by Yang 228 

et al. (2012) and is non-rectilinear and non-parametric.  229 

The NCA feature selection was performed using the fsrnca algorithm in MATLAB with 230 

regularization, which was aimed at learning feature weights that minimize the average leave-231 

one-out regression loss across the training data. Through the NCA process, we trained a 232 

variable set to obtain a better understanding of the characteristics by weighting and minimizing 233 

the objective function while computing regression loss for soil moisture prediction. 234 

 235 



In the fsrnca algorithm, a function 𝑔(𝑥): 𝑹𝑷 → 𝑹 is utilized to predict the response y 236 

based on several input variables, optimizing their nearest spaces. The weighted distance (Dw) 237 

between any two samples in the training set 𝑇 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1, 2, 3, … . , 𝑁}, where 𝑥𝑖 ∈ 𝑹𝑷 is 238 

the feature vectors (i.e., predictor variables) and 𝑦𝑖 ∈ 𝑹   is the target (i.e., the response 239 

variable), is calculated as follows: 240 𝐷𝑤(𝑥𝑎, 𝑥𝑏) =  ∑ 𝑤𝑗2𝐽𝑗=1 |𝑥𝑎, 𝑥𝑏|                     (9) 241 

During training, the fsrnca algorithm calculates the weighted distance (Dw) between two 242 

samples, xa and xb, by considering the weight, wj, associated with the jth feature. To improve 243 

the accuracy of the leave-one-out prediction during training, a probability distribution, pαβ, is 244 

used. This probability represents the likelihood that xα selects xβ as its reference argument. To 245 

select the feature subset and avoid overfitting, the algorithm uses a weighting vector, 'w', in 246 

conjunction with the gradient ascent method. A regularization component is included in this 247 

process to ensure that the model does not overfit the data. 248 

 249 

3 Case study description and data  250 

3.1 Study locations  251 

In this study, we validated 34 stations in Bangladesh (Figure 3(a), Table A1) to predict 252 

the IF using a hybrid DL model (i.e., CNN-BiLSTM). Bangladesh is a riverine country situated 253 

in the Ganges Delta, having a sub-tropical monsoon climate. Bangladesh lies in a unique 254 

position (20°45’N to 26°40’N and from 88°05’E to 90°45’E) where northern Bangladesh is in 255 

the foothills of the Himalayas, located in the Meghalaya Plateau, the Assam hill in the East, 256 

the Gangetic plain in the West and the Bay of Bengal in the South (Ahmed & Kim, 2003). The 257 

average annual rainfall varies between 2100 to 5100 mm, and 80% occurs during the monsoon 258 

(June to October) (BWDB, 2019). Bangladesh has 80% of the land in the floodplain areas, and 259 

over 50% is within 5m above sea level (Chowdhury, 1998; Rahman, 2010). Due to heavy 260 



rainfall and eventual flooding, the country suffers enormous impacts on its agriculture, 261 

economy, infrastructure, and population (Tingsanchali & Karim, 2005).  262 

3.2 Flood Index (IF)   263 

The daily rainfall (mm) of 34 weather stations in Bangladesh was acquired from the 264 

Bangladesh Meteorological Department’s Climate Division. In this study, the flood index (IF), 265 

as the response variable of our proposed DL model, is estimated from the effective precipitation 266 

(EP) followed by the principle in a recently published relevant study (Lu, 2009). Suppose 𝐸𝑚 267 

was the rainfall reported on any day, where m is between 1 to 365 and the summation length 268 

of the preceding day is N, 𝐸𝑃 for that (current 𝑖𝑡ℎ) day over a duration D was:  269 

               𝐸𝑃𝑖 = ∑ [∑ 𝐸𝑚𝑁𝑚=1𝑁 ]𝐷𝑁=1                                                                                          (10) 270 

In order to calculate the total amount of recent and accumulated precipitation, daily water loss 271 

(due to runoff, evapotranspiration, infiltration, etc.) and the length of accumulation , the 272 

Available Water Resources Index (AWRI) (Byun & Lee, 2002) is expressed as a function of 273 

weighting factor W summed over that duration: 274 

𝐴𝑊𝑅𝐼 = 𝐸𝑝𝑊                                         (11) 275 

𝑊 = ∑ 1𝑁𝑁=𝐷𝑁=1                                      (12) 276 

 In this study, we used the duration of 365 (D) days (ignoring the leap year for simplicity) as 277 

for the usual hydrological cycle and hence Equation (11) can be written as:   278 

        𝐴𝑊𝑅𝐼 = 𝐸1 + (𝑊−1)𝐸2𝑊 + (𝑊−1−12)𝐸3𝑊 +⋯+ 𝑊−1−12−⋯− 1364)𝐸365𝑊                                    (13) 279 

                      ≈ 𝐸1 + 0.85𝐸2 + 0.77𝐸3 +⋯+ 4.23 ∗ 10−4𝐸365                                                280 



In order to account for the gradual depletion of available water supplies, equation (13) 281 

incorporates the EP into an exponential time-dependent reduction function. That means the 282 

current day accounts for 100% of precipitation received 1 day before, ≈ 85% of that received 283 

2 days before, ≈ 77% of that received 3 days before, and so on to ≈ 0.0423% of that received 284 

365 days before. This is consistent with the physical rationale for diminishing water supply, as 285 

in rainfall-runoff models and latest studies of flood detection using daily data (Lu, 2009). 286 

However, this Equation is much simpler than rainfall-runoff models as it is useful for detecting 287 

whether there is an excess or shortage of water supplies that could lead to a flood catastrophe. 288 

This empirical model employs simply precipitation data and doesn't need any parameter 289 

estimates, unlike rainfall-runoff models, which have more complex data input specifications 290 

(Deo et al., 2018). 291 

Reduced weight means the depletion of water supplies due to hydrological cycles. A few days 292 

after a rainstorm event, the loss in water resources is anticipated to reach its peak (Moishin et 293 

al., 2021b). This perspective assumes that recent downpours have a substantial impact on the 294 

risk of a flood. However, the proposed approach considers the accumulated impacts of previous 295 

rainfall fairly. Generaly, if the AWRI exceeds the average, the water supplies are relatively 296 

ample, indicating the risk of flooding (Han & Byun, 2006). As such, the Flood Index (𝐼𝐹), a 297 

standardized metric, is expressed by equation (14): 298 

                   𝐼𝐹 = 𝐴𝑅𝑊𝐼 − 𝐴𝑅𝑊𝐼𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅20201983𝜎( 𝐴𝑅𝑊𝐼𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅20201983 )         (14) 299 

 where 𝐴𝑅𝑊𝐼𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅20201983  is the mean of annual maximum daily AWRI for the determined period 300 

1983–2020 and 𝜎( 𝐴𝑅𝑊𝐼𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅20201983 ) is the standard deviation. In light of this, the criterion of the 301 

daily 𝐼𝐹 being more than zero can be used to determine the risk of flooding on any given day. 302 

 303 



The severity of a flood event can be evaluated based on the sum of positive 𝐼𝐹 values from the 304 

onset of the flood [𝑡𝑜𝑛𝑠𝑒𝑡 i. e. , the first day when 𝐼𝐹 > 0] to its end [𝑡𝑒𝑛𝑑 , last day before 𝐼𝐹 < 305 

0]. The highest event of flood danger I𝐹𝑚𝑎𝑥 is determined by identifying the maximum value of 306 𝐼𝐹 from 𝑡𝑜𝑛𝑠𝑒𝑡 and 𝑡𝑒𝑛𝑑. The duration of the flood event, 𝐷𝐹, can be measured by calculating 307 

the number of days between 𝑡𝑜𝑛𝑠𝑒𝑡 and 𝑡𝑒𝑛𝑑. Notably, various characteristics of flood events 308 

can be measured and evaluated using a straightforward running-sum approach  309 

(Yevjevich, 1967):  310 

                𝐼𝐹𝑎𝑐𝑐 = ∑ 𝐼𝐹𝑡𝑡=𝑡𝑒𝑛𝑑𝑡= 𝑡𝑜𝑛𝑠𝑒𝑡   t where 𝐼𝐹𝑡 > 1                                      (15)  311 

                I𝐹𝑚𝑎𝑥 = max(𝐼𝐹) 𝑡𝑒𝑛𝑑−𝑡𝑜𝑛𝑠𝑒𝑡                                                   (16) 312 

                𝐷𝐹 =   𝑡𝑒𝑛𝑑 − 𝑡𝑜𝑛𝑠𝑒𝑡 (days)                                                   (17)            313 

During a period of flooding, the index of the flood for a particular day t is denoted by 𝐼𝐹𝑡, and 314 

it is only relevant when 𝐼𝐹> 0 and 𝑡𝑜𝑛𝑠𝑒𝑡 ≤ t ≤ 𝑡𝑒𝑛𝑑. The regular 𝐼𝐹 observed during the study 315 

period is a time-varying signal that generates positive or negative index values in response to 316 

significant (or low) rainfall, as established by Nosrati et al. (2010). A positive value of 𝐼𝐹 317 

indicates a flooding event, and the flood properties are analyzed during this period of flooding.  318 

3.3 Large scale climate indices    319 

Fifteen large-scale daily climate indices were utilised as predictor variables to anticipate 320 

the IF using a hybrid DL CNN-BilSTM model. Table 1 provides the list of climate indices and 321 

respective sources. Figure 4 shows a map of the research area with oceanic representation used 322 

to determine the climatic mode indices. 323 

3.4 Development of hybrid CNN-BiLSTM model  324 



The proposed CNN-BiLSTM model was developed with a 3.6 GHz Intel i7 processor 325 

and 16 GB of RAM machine. The Python interface of the models uses TensorFlow (Abadi et 326 

al., 2016) and Keras (Ketkar, 2017) DL frameworks to generate a multi-phase CNN-BiLSTM 327 

model. Keras is a DL API that integrates with TensorFlow, a capable Python machine learning 328 

framework. Keras is a highly usable interface for modern DL techniques. Also, NCA is 329 

implemented in MATLAB R2020b. The predicted IF is also visualised using matplotlib (Barrett 330 

et al., 2005) and seaborn (Waskom et al., 2020). Quantum GIS (QGIS) software was also 331 

utilised to visualise the study area and geographical plots. A list of nine statistical measures is 332 

employed to investigate the practical implications of forecasting models. The following stages 333 

were taken in the creation of the proposed CNN-BiLSTM model. The schematic workflows of 334 

the CNN-BiLSTM hybrid model are illustrated in Figure 1. The optimum architectures of the 335 

hybrid CNN-BiLSTM and BiLSTM-based predictive model are tabulated in Table 2.   336 

3.4.1 Predictor variables selection   337 

Despite the lack of a precise technique to determine whether model predictors are 338 

reliable (Tiwari & Adamowski, 2013), to select the time series of IF 's lag-time memories and 339 

predictors for an appropriate framework, different techniques are applied. These methods 340 

include trial and error, autocorrelation function (ACF), partial autocorrelation function 341 

(PACF), and cross-correlation function (CCF) (Masrur Ahmed et al., 2021). A significant 342 

antecedent behaviour in terms of the lag of IF from the predictors was found using the PACF 343 

(Tiwari & Adamowski, 2013; Tiwari & Chatterjee, 2011). By monitoring the statistical 344 

resemblance between the predictors and the dependent variable, the CCF is in charge of 345 

choosing the input signal pattern based on the antecedent lag of the predictors. For example, 346 

Figure 5 (a) depicts the rcross between IF and GBI and Niño1+2 at Sylhet and Khulna stations. 347 

According to the figure, previous monthly delays have been statistically significant. If we look 348 

at the climate indices, the GBI revealed significant rcross, ranging from +0.60 to +0.68, 349 



respectively. To increase the diversity, the correlation coefficient (r) between predictors (i.e., 350 

GBI and Niño1+2) and target (IF) is illustrated in Figures 5(b) and 5(c). It is found that the 351 

earliest legs provided comparatively higher correlations.    352 

 The NCA method also tests the significant antecedent lag memories of large-scale 353 

climate indices and IF. This method delivers the required improvements in prediction accuracy 354 

and understanding of its predictors' predictive model traits and nature while reducing the 355 

dimensionality of input variables and computing cost. 356 

3.4.2 Hybrid CNN-BiLSTM model design   357 

The proposed hybrid CNN-BiLSTM model is established by using a CNN as feature 358 

extraction and a BiLSTM as a predictive model. The primary task is the configuration of hyper-359 

parameters and the optimisation of these parameters. A large number of hyper-parameters must 360 

be addressed to develop a successful DL method. For this experiment, the default Keras 361 

parameters are used for network initialisation. This is the set of default-training parameters: the 362 

number of epochs in the training set is 200; the batch size is five, and the look-up size is one. 363 

ReLU is applied to the CNN-BiLSTM and BiLSTM networks as an activation function (see 364 

Table 2). 365 

In addition, the SGD optimiser is employed, with a learning rate of 0.001. The number 366 

of hidden layer units varies between 70 and 60 for all layers of DL models, depending on their 367 

architecture. A feature extraction method involving three convolution layers was used, with 368 

each layer having its own set of filter and kernel size parameters, such as (70, 4) and (60, 4), 369 

respectively. Mean Square Error (MSE) was used as a loss function in the model to represent 370 

the error. Aside from that, we scale the predictor variables between 0 and 1 using a min-max 371 

normalisation function. The missing values are filled in with the mean value of the same date.  372 



The input data are divided into three sets to develop predictive models: training, testing, 373 

and validation. The model is trained on the same data set in each iteration. As a result, the 374 

model will better understand the data’s features as it is trained. Validation sets are used to 375 

analyse and validate models during development as compared to training sets. The information 376 

obtained from this validation procedure is meant to be used to change the model 377 

hyperparameters as necessary. Finally, the testing phase is used only after a model has been 378 

trained (using the train and validation sets), and it is primarily used to evaluate the model. 39 379 

years of data were used in this study, and 70% of the data sets were used for training, 15% for 380 

validation, and 15% for testing. 381 

3.4.3 Performance metrics   382 

The prediction performance was done by a rigorous and insightful evaluation of the 383 

objective model CNN-BiLSTM with other counterpart models. Our study evaluated multiple 384 

of graphical and statistical metrics in the independent testing phase. The paper uses statistical 385 

metrics such as Pearson’s correlation coefficient (r), Mean Absolute Percentage Deviation 386 

(MAPD; %), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Nash–387 

Sutcliffe Efficiency (NSE). The mathematical notations of the statistical parameters are listed 388 

below, Eq. (14-17).  389 

Mean Absolute Error (𝑀𝐴𝐸) = 1𝑛∑ |𝐼𝐹𝑓𝑜𝑟 − 𝐼𝐹𝑜𝑏𝑠|𝑛𝑖=1                         (8)          390 

Nash − Sutcliffe Efficiency (𝑁𝑆𝐸) = 1 − [1 − ∑ (𝐼𝐹𝑓𝑜𝑟)2𝑛𝑖=1∑ (𝐼𝐹𝑜𝑏𝑠− 𝐼𝐹𝑓𝑜𝑟̅̅ ̅̅ ̅̅ )2𝑛𝑖=1 ]               (9) 391 

Correlation Coefficient (𝑟) =  ( 
 ∑ (𝐼𝐹𝑜𝑏𝑠− 𝐼𝐹𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )(𝐼𝐹𝑓𝑜𝑟− 𝐼𝐹𝑓𝑜𝑟̅̅ ̅̅ ̅̅ )𝑛𝑖=1√∑ (𝐼𝐹𝑜𝑏𝑠−𝐼𝐹𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2  ∑ (𝐼𝐹𝑓𝑜𝑟− 𝐼𝐹𝑓𝑜𝑟̅̅ ̅̅ ̅̅ )𝑁𝑖 =1 2𝑛𝑖=1 ) 

 2
               (10) 392 



Mean Absolute Percentage Error (𝑀𝐴𝑃𝐷;%) = 1𝑛  (∑ |(𝐼𝐹𝑓𝑜𝑟−𝐼𝐹𝑜𝑏𝑠)𝐼𝐹𝑜𝑏𝑠  |i=1𝑛 ) ∗ 100    (11) 393 

Root Mean Square Error (𝑅𝑀𝑆𝐸) = √1𝑛∑ (𝐼𝐹𝑓𝑜𝑟 − 𝐼𝐹𝑜𝑏𝑠)2𝑛𝑖=1                (12) 394 

Percent Bias (PBIAS,%)  = ∑ |𝐼𝐹𝑓𝑜𝑟−𝐼𝐹𝑜𝑏𝑠|𝑛𝑖=1∑ (𝐼𝐹𝑜𝑏𝑠)𝑛𝑖=1                         (13) 395 

Where 𝐼𝐹𝑜𝑏𝑠  is the the observed and 𝐼𝐹𝑓𝑜𝑟 is the model-predicted value from the ith element; 396 𝐼𝐹𝑜𝑏𝑠̅̅ ̅̅ ̅ and 𝐼𝐹𝑓𝑜𝑟̅̅ ̅̅ ̅
 show their average, respectively, and n denotes the number of observations of 397 

the IF.  398 

4 Results and discussions 399 

4.1 Results of flood index  prediction   400 

We present a deep hybrid predictive model (CNN-BiLSTM) to predict the IF of thirty-401 

four selected stations in Bangladesh, compared with two benchmark models (i.e., BiLSTM and 402 

SVR). Statistical metrics and infographics were also used to understand the predictive 403 

capability of the proposed model. Overall, the proposed CNN-BiLSTM model was found to 404 

predict IF values using large-scale climate indices accurately.   405 

Figure 6 shows that, when compared to other benchmark models, the proposed hybrid 406 

DL model (CNN-BiLSTM) exhibits significant improvement in IF prediction for a loop of 407 

thirty-four stations, as demonstrated by the evaluation metrices correlation coefficient (r) and 408 

mean absolute error (MAE). The figure also displays better distributions of r and MAE values 409 

of the CNN-BiLSTM model between the lower quartile (25th percentile) and the upper quartile 410 

(75th percentile) compared to BiLSTM and SVR, indicating the ability of accurate prediction 411 

of the proposed model for all the study sites. In addition, Table 3 shows that the proposed CNN-412 

BiLSTM model yields better r-values ≈ 0.987 - 0.996, that it is superior to the BiLSTM model 413 



with r ≈ 0.977 - 0.993. On the other hand, the classical machine learning model (i.e., SVR) has 414 

lower r-values ≈ 0.888 - 0.992. The same results were observed using the MAE. The proposed 415 

hybrid DL prediction model outperforms the other two competing methods as demonstrated by 416 

the r and MAE values. 417 

Figure 7 contains further information on IF prediction regarding the coefficient of 418 

determination (R2) and RMSE. In general, the newly developed CNN-BiLSTM model can 419 

provide the highest value of R2 and the lowest values of RMSE. The R2 values generated by 420 

the CNN-BiLSTM model ranged between 0.995 and 0.996 over 80% of the total stations. The 421 

second candidate is the BiLSTM model, with R2 ranging from 0.977 to 0.992, while the SVR 422 

model has the lowest R2 values of 0.965 to 0.991. Overall stations, the deep hybrid CNN-423 

BiLSTM prediction model outperformed other benchmark models. 424 

Further evaluation of the predictive model (i.e., CNN-BiLSTM) is performed by scatter 425 

plot, as shown in Figure 8. The scatter plot is plotted with the goodness-of-fit between predicted 426 

and observed IF and a least-square fitting line. As illustrated in Figure 8, the suggested model 427 

outperforms the baseline model by a significant margin, with an R2 value significantly higher 428 

than the baseline model. The proposed hybrid DL model (CNN-BiLSTM) performed 429 

noticeably better for the Sylhet station than for the other stations and models in terms of IF 430 

forecasting, recorded the magnitudes that were most similar to one (m|R2 ≈ 0.656|0.996), 431 

followed by the BiLSTM (0.627|0.993) model. Additionally, the Comilla station exhibits 432 

substantial performance with the proposed CNN-BiLSTM (0.65|0.997) model when compared 433 

to the BiLSTM (0.64|0.994), and SVR (0.69|0.974) models, respectively. Hence, it is evident 434 

that the DL hybrid CNN-BiLSTM predictive model is well appropriate for forecasting the 435 

week-ahead IF forecast.  436 



A time series plot does further evaluation; the predictive abilities of the hybrid and 437 

standalone models that were used in the study are further established. Figure 9 compares the 438 

predicted and observed IF time series plot between the proposed hybrid (i.e., CNN-BiLSTM) 439 

model and the standalone model (i.e., SVR). To illustrate, Figure 9 depicts the predicted IF at 440 

two stations using the proposed model and classical machine learning model (i.e., SVR), 441 

resulting in an extremely near IF to the one that was seen, showing that the model is highly 442 

predictable. A significant improvement in forecasted IF was achieved due to the application of 443 

the NCA algorithm.  444 

The inclusion of the Taylor diagram (Taylor, 2001) in the study adds additional support 445 

a more thorough analysis that proves how closely the correlation coefficients (r) are related to 446 

the predicted and observed IF.  The hybrid CNN-BiLSTM model in four selected stations with 447 

a pool of synoptic climate indices produces substantially similar output to the observed value 448 

than any other applied models. When it came to achieving the closest possible match to the 449 

observed data, the proposed model (i.e., CNN-BiLSTM) for the Rangpur and Sylhet stations is 450 

the closest. Regardless of improved performance, Ambagan and Chittagong stations showed 451 

much deviation from the observed IF.  452 

The promoting percentage of root means squared error (RMSE), Mean Absolute Error 453 

(MAE), and Mean Absolute Percentage Deviation (MAPD) are additional metrics used to 454 

evaluate the proposed deep hybrid CNN-BiLSTM model's predictive performance. It should 455 

be noted that the BiLSTM and SVR models are compared using the promoting percentage 456 

given as the incremental performance (∇) of the objective model over rival techniques. In 457 

addition, as shown in Figure 11, the assessment of ∇𝑀𝐴𝐸, ∇𝑀𝐴𝑃𝐷, and ∇𝑅𝑀𝑆𝐸 significantly 458 

improves the corresponding parameters as compared to the traditional BiLSTM and SVR 459 

model. For the case of  ∇𝑀𝐴𝐸The improvement is 1.1 to 25% and 0 to 50% for BiLSTM and 460 



SVR accordingly. Similarly, ∇𝑀𝐴𝑃𝐷 (%) and ∇𝑅𝑀𝑆𝐸  (%) displayed comparable performance 461 

ranging from 0 to 89% and 0 to 98% and 6.3 to 91.8%, and 0.2 to 101.3% for BiLSTM and 462 

SVR. This demonstrates that our proposed model was the most responsive forecasting.  463 

4.2 Discussions  464 

 465 

Several studies, including Maplecroft (2011) and the United Nations (2015), have 466 

identified Bangladesh to be highly susceptible to climate change. Geographically, it is 467 

particularly prone to the physical consequences of climate change, with these consequences 468 

exacerbating the already-existing sustainability challenges that this densely populated country 469 

is dealing with (Mahmud & Prowse, 2012). The harmful effects can be lessened by locating, 470 

creating, and validating innovative scientific methodologies that can be used for flood-risk 471 

warning and regular monitoring, as well as flood risk reduction and adaptation. In addition, 472 

operational flood monitoring and decision-making demand the creation of an index that 473 

monitors daily or weekly flood extents, allowing for a more precise assessment of short-term 474 

events. A daily flood monitoring index can be used to determine the beginning, length, and 475 

intensity of flood event(s) for shorter period like week  or month or for longer period like year  476 

(Nosrati et al., 2010).   477 

        Thus, predicted flood episodes between July 2019 and February 2020 were recorded and 478 

quantified for study sites selected based on the diverse classification of IF as shown in Table 4. 479 

In the case of moderate to extreme flood events, it has been observed that the flood began 480 

almost the same week, with the longest duration found for the Hatiya station (200 days). 481 

Following the application of the CNN-BiLSTM model to a flood situation, it has been 482 

discovered that higher flood scenarios provide perfect forecasting with bias error ranges 483 

ranging from 0.67% to 49%. Chuadanga station performed exceptionally poorly in forecasting 484 

results, with a high percentage of bias in the forecasting results (50%). At the same time, flood 485 



warnings were issued for Ambagan, Chittagong, Kepurpara, and Hatiya, which lasted for more 486 

than 190 days (consecutive days when IF > 0).  487 

We have addressed essential aspects of flood events, such as flood dangers, flood 488 

severity, peak floods, flood duration, and total precipitation. We find that the flood severity 489 

and peak flood are precisely the same. Observations have shown that when the flood intensity 490 

is highest, the peak flood also appears to be at its highest point. The findings also showed that 491 

the IF was useful for estimating the duration, seriousness, and intensity of flood scenarios as 492 

well as for classifying the seriousness of flood situations. It has resulted that the newly 493 

developed hybrid CNN-BiLSTM model is based on the flood index feature, which is an 494 

important concept to understand. Predicting floods is critical for better flood management and 495 

mitigation planning.  496 

 497 

5.0 Conclusions and outlook 498 

Deep learning algorithms were used in this paper to develop a new artificial intelligence 499 

methodology for daily flood index forecasting. They were trained on synoptic mode indices 500 

and reliable ground-truth observations from thirty-four stations in Bangladesh. Our novel 501 

method, the hybrid CNN-BiLSTM model combines Convolutional Neural Networks (CNN) 502 

with a Bi-directional Long Short-term Memory (BiLSTM) network. It has been demonstrated 503 

that the CNN-BiLSTM model can produce significant improvements in predictive performance 504 

and outperforms all the benchmark models like  BiLSTM and SVR.  505 

Upon thorough assessment of the suggested hybrid CNN-BiLSTM model, we have 506 

concluded that our method represents a promising approach for developing a predictive model 507 

for understanding flood scenarios in Bangladesh. The proposed hybrid CNN-BiLSTM model’s 508 

superior performance is supported by its high NSE (0.986–0.997) and low MAPD (1.01–3.59) 509 

values.  510 



Beyond these prediction issues, the suggested deep hybrid model can be applied to a 511 

variety of complicated or difficult prediction tasks, including, among other things, the 512 

forecasting of wind speed, energy costs, and tidal energy. Moreover, incorporating global 513 

climate models (GCM) to predict the flood index under global warming scenarios for better 514 

flood hazard management and mitigation.    515 
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Figures

Figure 1

Schematic work�ows of the CNN-BiLSTM hybrid model integrating neighborhood component analysis
(NCA). The Hybrid CNN-BiLSTM integrates convolution neural network (CNN) and bi-directional long
short-term memories (BiLSTM).



Figure 2

(a) Schematic structure of support vector regressions (SVR) and (b) Schematic structure of bidirectional
LSTM (BiLSTM)



Figure 3

(a) The selected weather stations of Bangladesh with total rainfall of 2019, (b) Time series plot of rainfall
(mm) vs. the �ood index (IF) of three selected stations (i.e., Bogra, Chittagong, and Sylhet). Note: the list
of geographical locations of the stations is tabulated in Table 1.



Figure 4

Map of the study region with oceanic representation used to calculate the climate mode indices (CI). The
details of the climate mode indices are provided in Table 2.



Figure 5

(a) Cross-correlation functions (CCF) showing the covariance between the objective variable (IF) and the
predictor variables (i.e., GBI and Nino1+2) for Sylhet stations, (b) Partial autocorrelation function (PACF)
plot of the predictor variables (i.e., GBI and Nino 1+2) of Sylhet stations and (c) Partial autocorrelation
function (PACF) plot of the target variable (i.e., IF) of Sylhet and Khulna stations. The pink line in the
�gures indicates the ±95% con�dence level.



Figure 6

Box plots of proposed hybrid models (i.e., CNN-BiLSTM) compared with their respective standalone
counterparts (i.e., BiLSTM and SVR) in predicting IF in terms of Correlation Coe�cient (r) and Mean
Absolute Error (MAE) for 34 selected stations in Bangladesh.



Figure 7

Geographic distribution of the coe�cient of determination (R2) and root means squared error (RMSE)
acquired from the proposed hybrid model (i.e., CNN-BiLSTM) and standalone counterparts (i.e., BiLSTM
and SVR) in forecasting IF across thirty-four stations in Bangladesh.



Figure 8

Scatter plot of forecasted vs. observed IF of a) Sylhet and b) Comilla sites using the proposed hybrid
model (i.e., CNN-BiLSTM) and Standalone models (i.e., BiLSTM and SVR). A least square regression line
and coe�cient of determination (R2) with a linear �t equation are shown in each sub-panel.



Figure 9

Comparison of time series distribution between forecasted IF and observed IF during model testing phase
using CNN-BiLSTM vs. SVR model for Sylhet and Comilla.



Figure 10

Tylor diagram representing correlation coe�cient and the standard deviation difference for proposed
hybrid CNN-BiLSTM vs. benchmark models (i.e., BiLSTM and SVR) for Ambagan, Chittagong, Rangpur,
and Sylhet.



Figure 11

Promoting Percentage of RMSE (RMSE,%), MAPD (MAPD,%), and MAE (MAE, %) to illustrate the
improvement percentage of the proposed model (i.e., CNN-BiLSTM) over standalone models (i.e., BiLSTM
and SVR) in IF forecasting.
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