
University of Wollongong
Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences

2013

A novel approach to data deduplication over the
engineering-oriented cloud systems
Zhe Sun
University of Wollongong, zs789@uow.edu.au

Jun Shen
University of Wollongong, jshen@uow.edu.au

Jianming Young
University of Southern Queensland

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Publication Details
Sun, Z., Shen, J. & Yong, J. (2013). A novel approach to data deduplication over the engineering-oriented cloud systems. Integrated
Computer Aided Engineering, 20 (1), 45-57.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/infopapers
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/


A novel approach to data deduplication over the engineering-oriented
cloud systems

Abstract
This paper presents a duplication-less storage system over the engineering-oriented cloud computing
platforms. Our deduplication storage system, which manages data and duplication over the cloud system,
consists of two major components, a front-end deduplication application and a mass storage system as back-
end. Hadoop distributed file system (HDFS) is a common distribution file system on the cloud, which is used
with Hadoop database (HBase). We use HDFS to build up a mass storage system and employ HBase to build
up a fast indexing system. With a deduplication application, a scalable and parallel deduplicated cloud storage
system can be effectively built up. We further use VMware to generate a simulated cloud environment. The
simulation results demonstrate that our deduplication storage system is sufficiently accurate and efficient for
distributed and cooperative data intensive engineering applications

Keywords
approach, data, engineering, novel, oriented, systems, cloud, over, deduplication

Disciplines
Physical Sciences and Mathematics

Publication Details
Sun, Z., Shen, J. & Yong, J. (2013). A novel approach to data deduplication over the engineering-oriented
cloud systems. Integrated Computer Aided Engineering, 20 (1), 45-57.

This journal article is available at Research Online: http://ro.uow.edu.au/infopapers/2543

http://ro.uow.edu.au/infopapers/2543


A novel approach to data deduplication over 
the engineering-oriented cloud systems 

Zhe SUN a, b, Jun SHENa, *, Jianming YONGc 
a School of Information Systems and Technology, University of Wollongong, Wollongong, NSW, Australia 
b Information Management Center, Huaneng Shandong Shidao Bay Nuclear Power Co., Ltd, Shandong, China 
c School of Information Systems, University of Southern Queensland, Toowoomba, QLD, Australia 

Abstract. This paper presents a duplication-less storage system over the engineering-oriented cloud computing platforms. Our 
deduplication storage system, which manages data and duplication over the cloud system, consists of two major components, a 
front-end deduplication application and a mass storage system as back-end. Hadoop distributed file system (HDFS) is a com-
mon distribution file system on the cloud, which is used with Hadoop database (HBase). We use HDFS to build up a mass 
storage system and employ HBase to build up a fast indexing system. With a deduplication application, a scalable and parallel 
deduplicated cloud storage system can be effectively built up. We further use VMware to generate a simulated cloud environ-
ment. The simulation results demonstrate that our deduplication storage system is sufficiently accurate and efficient for distrib-
uted and cooperative data intensive engineering applications. 

Keywords: Cloud storage, data deduplication, Hadoop distributed file system, Hadoop database 
 

                                                           
 
*Corresponding author: Jun Shen, E-mail: jshen@uow.edu.au, tel: +61-2-42213873, fax: +61-2-42214045 
 

1.  Introduction 

Modern society is a digital universe. Almost no in-
formation or industry applications can survive with-
out this digital universe. The size of this digital uni-
verse in 2007 is 281 exabytes and in 2011 [10], it 
becomes 10 times larger than it was in 2007. The 
most critical issue is that nearly half the digital uni-
verse cannot be stored properly in time. This is 
caused by several reasons: firstly, it is hard to find 
such a big data container; secondly, even if a big con-
tainer can be found, it is still impossible to manage 
such a vast dataset; and finally, for economic reasons, 
building and maintaining such a huge storage system 
will cost a lot of money. This is particularly challeng-
ing for non-IT sectors, for example, engineering and 
bio-chemistry industries. According to our experi-
ences, a typical information management center at a 
city-level nuclear power generation factory needs to 
process hundreds of gigabytes of new data each day. 
Such data should also be easily accessible and used 
for different purposes by other information centers 
located in other cities in the power grid, as well as 

government authorities at different levels. In the area 
of computer aided engineering (CAE), some efforts 
are made to tackle challenges in the management of 
large quantity distributed data and knowledge [20, 
28]. But the issue of scalability remains. 

Fortunately, with the rocket-like development of 
cloud computing, the advantages of cloud storage 
have amplified significantly, and the concept of cloud 
storage has become vastly accepted by the commu-
nity.  

Cloud computing consists of both applications and 
hardware delivered to users as a service via the Inter-
net [13, 18]. With the rapid development of cloud 
computing, more and more cloud services have 
emerged, such as SaaS (software as a service), PaaS 
(platform as a service) and IaaS (infrastructure as a 
service).  

The concept of cloud storage is derived from cloud 
computing. It refers to a storage device accessed over 
the Internet via Web service application program 
interfaces (API). HDFS (namely Hadoop Distributed 
File System, hadoop.apache.org) is a distributed file 
system that runs on commodity hardware; it was de-



veloped by Apache for managing massive data. The 
advantage of HDFS is that it can be used in a high 
throughput and large dataset environment. HBase is 
Hadoop database, which is an open-source, distrib-
uted, versioned, column-oriented database [5]. It is 
good at real time queries. HDFS has been used in 
numerous large scale engineering applications. Based 
on these features, in our work, we use HDFS as a 
storage system. We use HBase as an indexing system. 

Currently cloud computing is applied more in data-
intensive areas such as e-commerce or scientific 
computations. There is little research on engineering-
oriented cloud system. There especially lack direct 
applications or experiments for cooperative work in 
design, where data sharing and duplication manage-
ment have always been challenges.  

This paper presents a deduplication cloud storage 
system, named “DeDu”, which runs on commodity 
hardware. Deduplication means that the number of 
the replicas of data that were traditionally duplicated 
on the cloud should be managed and controlled to 
decrease the real storage space requested for such 
duplications. At the front end, DeDu has a deduplica-
tion application. At the back end, there are two main 
components, HDFS and HBase, used respectively as 
a mass storage system and a fast indexing system. 
Promising results were obtained from our simulations 
using VMware to simulate a cloud environment and 
execute the application on the cloud environment. 

Regarding contributions of this paper, there are 
two issues to be addressed. Firstly, how does the sys-
tem identify the data duplications? Secondly, how 
does the system manage and manipulate the data to 
reduce the duplications, in other words, to dedupli-
cate them? 

For the first issue, we use both the MD5 and SHA-
1 algorithm to make a unique fingerprint for each file 
or data block, and set up a fast fingerprint index to 
identify the duplications. For the second problem, we 
set up a distribution file system to store data and de-
velop ‘link files’ to manage files in a distributed file 
system.  

The details of the novel solutions will be presented 
in the rest of the paper. Section 2 introduces related 
work. Section 3 introduces our approaches. Section 4 
discusses the system design. Section 5 presents our 
simulation and experiments. Section 6 contains an 
overview of the performance results and discussion 
of the evaluations. Finally, Section 7 is the conclu-
sion and future work.  

2.  Related work 

There are many distributed file systems that have 
been proposed for large scale information systems, 
which can be distributed over the Internet and this 
includes mutable and non-trusted peers. All these 
systems have to tolerate frequent configuration 
changes. For example, Ceph [26], RADOS [21], Petal 
[9], GFS [12], Ursa Minor [19], Panasas [6], Farsite 
[1], FAB [27], and P2CP [23] are all systems de-
signed for a high performance cluster or data centered 
environments, which are not necessarily engineering 
oriented. Our DeDu is intended not only for large size 
industrial or enterprise-level data centers, but also for 
common users’ data storage. 

In CAE area, to deal with semi-structured data in 
database, a variant Hierarchical Agglomerative Clus-
tering (HAC) algorithm called k-Neighbors-HAC is 
developed in [11] to use the similarities between data 
format (HTML tags) and data content (text string 
values) to group similar text tokens into clusters. This 
approach avoids the pattern induction process by us-
ing clustering techniques on unlabelled pages. 

In [14], the authors describe a technique that sup-
ports the querying of a relational database (RDB) 
using a standard search engine. The technique in-
volves expressing database queries through URLs. 
The technique also includes the development of a 
special wrapper that can process the URL-query and 
generate web pages that contain the answer to the 
query, as well as links to additional data. By follow-
ing these specialized links, a standard web crawler 
can index the RDB along with all the URL-queries. 
Once the content and their corresponding URL-
queries have been indexed, a user may submit key-
word queries through a standard search engine and 
receive the most current information in the database. 

To handle scalable deduplication, two famous ap-
proaches have been proposed, namely sparse index-
ing [17] and Bloom filters [29] with caching. Sparse 
indexing is a technique used to solve the chunk 
lookup bottleneck caused by disk access, by using 
sampling and exploiting the inherent locality within 
backup streams. It picks a small portion of the chunks 
in the stream as samples; then, the sparse index maps 
these samples to the existing segments in which they 
occur. The incoming streams are broken up into rela-
tively large segments, and each segment is dedupli-
cated against only some of the most similar previous 
segments. The Bloom filter exploits Summary Vector, 
which is a compact in-memory data structure, for 
identifying new segments; and Stream-Informed 



Segment Layout, which is a data layout method to 
improve on-disk locality, for sequentially accessed 
segments; and Locality Preserved Caching with cache 
fragments, which maintains the locality of the finger-
prints of duplicated segments, to achieve high cache 
hit ratios.  

So far, several deduplication storage systems have 
been previously designed, including Venti [22], De-
De [2], HYDRAstor [7], Extreme Binnig [3], MAD2 
[25] and DDE[17]. 

Venti [22] is a network storage system. It uses 
unique hash values to identify block contents so that 
it reduces the data occupation of storage space. Venti 
builds blocks for mass storage applications and en-
forces a write-once policy to avoid destruction of data. 
This network storage system emerged in the early 
stages of network storage, so it is not suitable to deal 
with mass data, and the system is not scalable. 

DeDe [2] is a block-level deduplication cluster file 
system without centralized coordination. In the DeDe 
system, each host creates content summaries then the 
hosts exchange content summaries in order to share 
the index and reclaim duplications periodically and 
independently. These deduplication activities do not 
occur at the file level, and the results of deduplication 
are not accurate. 

HYDRAstor [7] is a scalable, secondary storage 
solution, which includes a back-end consisting of a 
grid of storage nodes with a decentralized hash index, 
and a traditional file system interface as a front-end. 
The back-end of HYDRAstor is based on Directed 
Acyclic Graph, which is able to organize large-scale, 
variable-size, content addressed, immutable, and 
highly-resilient data blocks. HYDRAstor detects du-
plications according to the hash table. The ultimate 
target of this approach is to form a backup system. It 
does not consider the situation when multiple users 
need to share files. 

Extreme Binning [3] is a scalable, paralleled dedu-
plication approach aiming at a non-traditional backup 
workload which is composed of low-locality individ-
ual files. Extreme Binning exploits file similarity 
instead of locality, and allows only one disk access 
for chunk look-up per file. Extreme Binning organ-
izes similar files into bins and deletes replicated 
chunks inside each bin. Replicates exist among dif-
ferent bins. Extreme Binning only keeps the primary 
index in memory in order to reduce RAM occupation. 
This approach is not a strict deduplication method, 
because duplications will exist among bins. 

MAD2 [25] is an exact deduplication network 
backup service which works at both the file level and 
the chunk level. It uses four techniques: a hash bucket 

matrix, a Bloom filters array, dual cache, and Dis-
tributed Hash Table based load balancing, to achieve 
high performance. This approach is designed for 
backup service not for a pure storage system. 

Duplicate Data Elimination (DDE) [16] employs a 
combination of content hashing, copy-on-write, and 
lazy updates to achieve the functions of identifying 
and coalescing identical data blocks in a storage area 
network file system. It always processes in the back-
ground. 

However, what sets DeDu decisively apart from all 
these approaches is that DeDu exactly deduplicates 
and calculates hash values at the client side right be-
fore data transmission, all at file level. 

3. Approaches  

In the early 1990s, the ‘once write multi read’ stor-
age concept was set up and the optical disk was wide-
ly used as storage media. The challenges posed by 
this storage concept were the great obstacles encoun-
tered when sharing data via the Internet and the 
enormous wastage of storage space to keep replica-
tions. In the novel cloud computing era, we propose a 
new network storage system, “DeDu”, to store data 
that is easy to share, and at the same time, to save 
storage space, even for duplicated replicas. 

3.1 System Mechanism 

In DeDu, when a user uploads a file for the first 
time, the system records this file as source data, and 
the user will receive a link file for this user himself, 
and the same for other potential users, to access the 
source data. When the source data has been stored in 
the system, if the same data is uploaded by other us-
ers, the system will not accept the same data as new, 
but rather, the new user, who is uploading data, will 
receive a link file to the original source data. Users 
are allowed to read the source data but not to write. 
Once the initial user changes the original data, the 
system will set the changed data as a new one, and a 
new link file will be given to the user. The other users 
who connect to the original file will not be impacted 
[24]. Under these conditions, the more users share the 
same data, the more storage space will be saved.  

  

3.2 Identifying the duplications 

To delete the duplications, the first step is to iden-
tify the duplications. The two normal ways to identify 



duplications are: comparing data blocks or files bit by 
bit and comparing data blocks or files by hash values. 
To compare blocks or files bit by bit would guarantee 
accuracy, at the cost of additional time consumption. 
To compare blocks or files by hash value would be 
more efficient, but the chances of accidental colli-
sions would be increased. The chance of accidental 
collision depends on the hash algorithm. However, 
the chances are minute. Thus, using a combination 
hash value to identify the duplications will greatly 
reduce the collision probability. Therefore, it is ac-
ceptable to use a hash function to identify duplica-
tions [4, 15]. 

The existing approaches for identifying duplica-
tions are always carried out on two different levels. 
One is at the file level; the other is at the chunk level. 
On the file level, the hash function will be executed 
for each file, and all hash values will be kept in the 
index. The advantage of this approach is that it de-
creases the quantity of hash values significantly. The 
drawback is that, the system will be experiencing 
some lag when dealing with a large file. On the 
chunk level, data streams are divided into chunks, 
each chunk will be hashed, and all these hash values 
will be kept in the index. The advantage of this ap-
proach is that it is convenient for a distributed file 
system to store chunks, but the drawback is having an 
increasing quantity of hash values. It means that hash 
values will occupy more RAM usage and increases 
lookup time.  

In this paper, our deduplication method is at the 
file level and is based on comparing hash values. 
There are several hash algorithms, such as MD5 and 
SHA-1. We use both the SHA-1and MD5 algorithms 
to identify duplications. Because both MD5 and 
SHA-1 are mature products, and furthermore they 
have a series of hash algorithms, we can quickly find 
substitutes to update them if needed. 

The reason for choosing file level deduplication is 
that we want to keep the index as small as possible in 
order to achieve high lookup efficiency. On the other 
hand, although the probability of accidental collision 
is extremely low, we still combine MD5 and SHA-1 
together. We merge the MD5 hash value and the 
SHA-1 hash value as the primary value in order to 
avoid any possible accidental collisions. If the MD5 
algorithm and the SHA-1 algorithm are not suitable 
for our system scale, it can be changed at any time.  

3.3 Storage System 

We need two mechanisms to set up our storage 
system. One is used to store mass data, and the other 
is used to keep the sparse index. On the one hand, 
there are several secondary storage systems, like 
Ceph [24], Petal [9], being used as mass data storage 
systems. On the other hand, there are several database 
systems such as SQL, Oracle, HBase, and BigTable 
[8] that can be used as index systems. All these sys-
tems have their own features, but we need two sys-
tems combined together to achieve our data access 
requirements. With regard to our requirements, in 
order to store masses of information, the file system 
must be stable, scalable, and fault-tolerant; for the 
sparse index, the system must perform nicely on real 
time queries. 

Considering these requirements, we employ HDFS 
and HBase to structure our storage mechanisms. The 
advantage of HDFS is that it can be used under high 
throughput and large dataset conditions, and it is sta-
ble, scalable, and fault-tolerant. HBase is advanta-
geous in queries. Both HDFS and HBase were devel-
oped by Apache for storing mass data which was 
modeled by Google File System and BigTable. Based 
on these features, in our system, we use HDFS as a 
storage system and use HBase as an index system. 
We will introduce how HDFS and HBase collaborate 
in the Section 4.  

 

4. System design 

4.1 Storage platform  

Our storage platform consists of HDFS and HBase. 
Fig. 1 shows the architecture of the DeDu deduplica-
tion cloud storage system. It consists of one DFS 
master, one HBase master and several data nodes. 
DFS master is the master node of HDFS. The advan-
tage of using HDFS and HBase is to have data 
awareness between the jobtracker and tasktracker. It 
does not store any file by itself, whereas it only keeps 
the location information of original data files which 
are stored on data nodes. HBase master does not store 
index either, it keeps the location information of 
sparse index which is stored on data nodes. Data 
nodes could be dynamic, scalable and load balanced. 
If a DFS master or HBase master is halted, any data 
node will be able to replace the master node. In this 
way, storage platform will keep running without 
downtime. 



In the system, control flow passes the managing 
information of the storage system while data flow 
transfers data. In addition, control flow and data flow 
are separated in our system. Clients connect to master 
nodes with control flow; while master nodes also 
communicate with data nodes through control flow. 
On the other hand, original data are only transmitted 
between clients and data nodes, thus the system 
avoids the bottleneck which could be caused by the 
master node performance. 

 

Fig. 1: Architecture of deduplication cloud storage system. 

4.2 Data organization 

In this system, HDFS and HBase must collaborate 
to guarantee that the system is working well. There 
are two types of files saved in HDFS, one is source 
file, and the other one is link file. We separate source 
files and link files into different folders (see Fig. 2).  

 

Fig. 2: Data organisation. 

In the DeDu system, each source file is named af-
ter the combination hash value and saved in a folder 

which is named by date. When the source file is over 
64MB, it will be divided into 64MB chunks and 
saved in the system, but these chunks will be distrib-
uted in different data nodes. As for the link file, the 
filename is in the form “***.lnk”, where “***” is the 
original name/extension of the source file. Every link 
file records one hash value for each source file and 
the logical path to the source file, and it uses ap-
proximately 320 bytes to store the essential informa-
tion. Both link file and the folder created by the user 
are saved in the distribution file system.  

HBase records all the hash values for each file, the 
number of links, and the logical path to the source 
file. There is only one table in HBase, which is 
named “dedu”. There are three columns in the table, 
which have the headings: hash_value, count, and path. 
Hash_value is the primary key. Count is used to cal-
culate the number of links for each source file. Path is 
used for recording the logical path to the source file. 

4.3 Procedures to store the files 

In DeDu, there are three main steps to save a file. 
Firstly, it is necessary to make a hash value at the 
client; secondly, the system identifies any duplica-
tion; thirdly, the system saves the file. Fig. 3 shows 
the procedures for storing a file.  

Firstly, users select the files or folders which are 
going to be uploaded and stored by using a DeDu 
application. The application uses the MD5 and SHA-
1 hash functions to calculate the file's hash value, and 
then pass the value to HBase. 

Secondly, the table ‘dedu’ in HBase keeps all file 
hash values. HBase is operated in the HDFS envi-
ronment. It will compare the new hash value with the 
existing values. If it does not exist, a new hash value 
will be recorded in the table, and then HDFS will ask 
clients to upload the files and record the logical path; 
if it does exist, HDFS will check the number of links, 
and if the number is not zero, the counter will be in-
cremented by one. In this case, HDFS will tell the 
clients that the file has been saved previously. If the 
number is zero, HDFS will ask the client to upload 
the file and update the logical path. 

Thirdly, HDFS will store source files, which are 
uploaded by users, and corresponding link files, 
which are automatically generated by DeDu. Link 
files record the source file's hash value and the logi-
cal path of the source file. 



 

Fig. 3: Procedures for storing a file 

4.4 Access to the files  

In our system, we use a special approach to access 
a file, which is the link file. Each link file records two 
types of information: the hash value and the logical 
path to the source file. When clients access the file, 
they first access the link file, and the link file will 
pass the logical path of the source file to HDFS. 
HDFS will then enquire the master node for the block 
locations. When the clients get the block locations, 
they can retrieve the source file from the data nodes. 
Fig. 4 shows the procedures to access a file. 

 

 

Fig. 4: Procedures to access a file. 

4.5 Deletion of files 

 In our system, there are two types of approaches 
for deletion: in one case, the file is pseudo-deleted, 
and in the other case, it is fully-deleted. This is be-
cause different users may have the same authority to 
access and control the same file. We don't allow one 
user to delete a source file which is shared by other 
users, so we use pseudo-deletion and fully-deletion to 
solve this problem. When a user deletes a file, the 
system will delete the link file which is owned by the 
user, and the number of links will be decremented by 
one. This means that this particular user loses the 
right to access the file, but the source files are still 
stored in the HDFS. The file is pseudo-deleted. A 
source file may have many link files pointing to it, so 
while the user may delete one link file, this has no 
impact on the source file. When the last link file has 
been deleted, however, the source file will be deleted; 
so the file is now fully-deleted. Fig. 5 shows the pro-
cedures for deleting a file. 



 

Fig. 5: Procedures to delete a file. 

5. Simulations and experiments 

In DeDu, we developed a graphic user interface to 
help clients to use it. Clients can upload, download, 
and delete files. The graphic interface is very easy to 
use and just involves dragging and dropping the file 
to the local system or HDFS. We designed 4 different 
experiments for performance evaluations on DeDu:  

Experiment 1: 

In our experiment 1, our cloud storage platform 
was set up on a VMware 7.10 workstation. The con-
figuration of the host machine is that, the CPU is 3.32 
GHz; RAM is 4 GB; Hard disk is 320GB; Operation 
system is Windows XP Professional 5.1.2600, Ser-
vice Pack 3. Five virtual machines exist in the cloud 
storage platform, and each virtual machine has the 
same configuration. The configuration of each virtual 
machine is that the CPU is 3.32 GHz; RAM is 512 
MB; Hard disk is 20 GB. The net adaptor is bridged 
for each machine. The operating system is Linux 
mint. The version of HDFS is Hadoop 0.20.2, and the 
version of HBase is 0.20.6.  

Experiment 2: 

In our experiment 2, the cloud storage platform 
was also set up on a VMware 7.10 workstation. But 
the configuration of the host machine is that the CPU 
is Intel Xeon E7420 2.13 GHz; RAM is 8 GB; Hard 
disk is 1T = 320GB * 4; Operation system is Win-
dows Server 2003 Enterprise Edition, Service Pack 2. 
The configuration of virtual machine is that the mas-
ter node’s RAM being increased to 2GB, and the 
CPU is 8 cores. The data nodes’ RAM is 512MB, and 
the CPU is 8 cores.  

Experiment 3: 

In our experiment 3, we change the parameter of 
the data nodes. The master node keeps the same con-
figuration. All the data nodes’ RAM is still 512MB, 
but the CPU is 2 cores. 

Experiment 4: 

In our experiment 4, we repeat the experiment 3, 
but with the disk compression. The detailed informa-
tion is listed in Table 1. 

Table 1 

Configuration of virtual machines. 

 

 Physical  
Host 

Virtual 
Hosts 

CPU RAM Disk 
com-
pression 

Master 
nodes 

2 Core  512MB None Ex 1. CPU core 
3.32 GHz,  
RAM 2GB,  
Disk 320GB Data 

nodes 
2 Core  512MB None 

Master 
nodes 

8 Core 2 GB None Ex 2 

Data 
nodes 

8 Core 512MB None 

Master 
nodes 

8 Core 2 GB None Ex 3 

Data 
nodes 

2 Core 512MB None 

Master 
nodes 

8 Core 2 GB Yes Ex 4 

 
 
CPU  
Xeon  E7420 
2.13GHz 
 
RAM 8GB 
 
Disk  
4* 320GB 

Data 
nodes 

2 Core 512MB Yes 

 
All the experiment results are showed in section 6. 



6. Performance evaluations 

6.1 Deduplication Efficiency  

In our experiment, we uploaded 110,000 files, 
amounting to 475.2 GB, into DeDu. In a traditional 
storage system, they should occupy 475.2 GB as 
shown by the non-deduplication line in Fig. 6, and if 
they are stored in a traditional distribution file system, 
both the physical storage space and the number of 
files should be three times larger than 475.2 and 
110,000, that is, 1425.6 GB and 330,000 files, be-
cause in the traditional distributed file system, data 
has three copies conventionally. We did not show it 
in the figure, because the scale of the figure would 
become too large. In a perfect deduplication distribu-
tion file system, where there is no duplication, the 
resulted system should take up 37 GB, and the num-
ber of files should be 3,200; but in DeDu, we 
achieved 38.1 GB, just 1.1 GB larger than the perfect 
situation. The extra 1.1 GB of data are occupied by 
link files and the ‘dedu’ table, which is saved in 
HBase. The following figure (Fig. 6) shows the de-
duplication system efficiency.  

Deduplication Efficiency

0

50

100

150

200

250

300

350

400

450

500

0

0.
3 3 6 9

1.
2

1.
5

16
.8

34
.8 36 48 60 72 81 90 10
0

11
0

Number of files (Thousands)

S
to

ra
ge

 s
pa

ce
 (G

B
)

Non- Deduplication Perfect Deduplication Deduplication

 

Fig. 6: Deduplication efficiency 

By using the distribution hashing index, an exact 
deduplication result is achieved. In our storage sys-
tem, each file could only be kept in 3 copies at differ-
ent data nodes as backup, in case some data nodes are 
dead. This means that if a file is saved into this sys-
tem for less than three times, the efficiency of dedu-
plication is low. When a file is put into the system 
more than three times, the efficiency of deduplication 
will increase. Thus, the real deduplication efficiency 
depends on both the original data duplication ratio 

and how many times the original data has been saved. 
The higher the duplication ratio the original data has, 
the greater the deduplication efficiency will be 
achieved. It is also true that the more the number of 
times that the original data is saved, the greater the 
deduplication efficiency will be achieved.  

6.2 Data Distribution 

As we mentioned previously, in the DeDu system, 
each source file is named after the combination hash 
value and saved in a folder which is named by the 
DeDu system’s manipulation date on it.  

Fig. 7 shows that the source file is divided into 4 
chunks. Each chunk has three replicates, but these 
chunks are distributed in different data nodes. For 
example, chunks may be distributed into data node 1, 
data node 2, and data node 3 and data node 5 (IP ad-
dresses for all nodes are ranging from 192.168.58.140 
to 192.168.58.145). In this way, even if some data 
nodes may halt, the data availability will not be im-
pacted. Our test result of load balance will be showed 
in the section 6.3. 

 

Fig. 7: Distribution of blocks. 

6.3 Load Balance 

Because each data node keeps different numbers of 
blocks, and the client will directly download the data 
from the data nodes. In this case we have to keep an 
eye on load balance, in case some data nodes are 
overloaded, while others are idle.  

6.3.1 Static Load Balance 
Fig. 8 shows the balanced situation in 4 data nodes. 

In the situation of no deduplication, DN1 (Linux 
mint2) stores 116 gigabytes of data; DN3 (Linux 
mint4) stores 114 gigabytes of data; both DN2 (Linux 
mint3) and DN4 (Linux mint5) each store 115 giga-
bytes of data. With deduplication, DN2 stores 6.95 
gigabytes of data; DN3 stores 6.79 gigabytes of data; 
and DN1 and DN3 each store 7 gigabytes of data. 
The perfectly deduplicated situation, where there is 
no duplication in the system, should occur when each 
node stores 6.9 gigabytes of data.  



Static load balance

116 114 115

7 6.95 7 6.796.9 6.9 6.9 6.9

115

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

DN1 DN2 DN3 DN4

S
to

ra
g

e 
S

pa
ce

 (
G

B
)

None De-duplication De-duplication Perfect Deduplication

 

Fig. 8: Static load balance. 

We can see that each data node stores a different 
amount of data, no matter whether it is at the hundred 
gigabytes level or at the dozens of gigabytes level. 
The usage of storage space in each node is slightly 
different, but the differences between space occupa-
tions in the same situation with respect to the num-
bers of blocks will not be more than 10%. 

 

6.3.2 Dynamic Load Balance 

Load Balance

3.94 3.94 3.7 3.7 3.96 3.96 3.71

7
9.24

6.95
9.24

7
9.24

6.79

7.89
5.64

8.17
5.88

7.86
5.62

8.32

0

2

4

6

8

10

12

14

16

18

20

DN1 (DN1) DN2 (DN2) DN3 (DN3) DN4

Datanodes

C
o

n
fig

u
re

d
 c

ap
ac

ity
 =

 1
8.

82
G

B

Non DFS Used (GB) Used (GB) Remaining (GB)

 

 Fig. 9: Dynamic load balance. 

When we delete a node from, or add a new node 
into, the system, DeDu will achieve balance auto-
matically. Note the default communication bandwidth 

is 1 MB/s, thus the balance efficiency is a bit low, 
unless the balance command is entered manually. Fig. 
9 shows that the deduplication load is balanced in a 3 
data nodes environment, as indicated by brackets, and 
a 4 data nodes environment. We can see that when it 
is in the 3 data node environment, each data node 
stores 9.24 GB of data. After one more data node 
(DN4) is added into the system, DN2 stores 6.95 gi-
gabytes of data; DN3 stores 6.79 gigabytes of data; 
and DN1 and DN3 each store 7 gigabytes of data.  

6.4 Reading Efficiency 

For file reading efficiency tests, we tested the sys-
tem with two data streams. One data stream is 295 
items amounting to 3.3GB and another data stream is 
22 items, amounting to 9.2 GB, in other words, we 
tested a large number of small files as well as a small 
number of large files. The details of reading (down-
loading) efficiency are given in Table 2. 

Table 2 

Reading efficiency 

 

6.5 Writing Efficiency 

In this section, we will consider the system’s writ-
ing (uploading) efficiency with two and four data 
nodes. Furthermore, in the real world, deduplication 

Reading efficiency 

Two nodes 
Time 
(Seconds) Items 

Size 
(GB) 

Speed 
(MB/s) 

Experiment 1 
Testing1 356 295 3.3 9.49 
Experiment 1 
Testing2 510 22 9.2 18.47 

 Four nodes 
Time 
(Seconds) Items 

Size 
(GB) 

Speed 
(MB/s) 

Experiment 1 
Testing1 345 295 3.3 9.79 
Experiment 1 
Testing2 475 22 9.2 19.83 
Experiment 2 
Testing1 418 295 3.3 8.08 
Experiment 2 
Testing2 453 22 9.2 20.83 
Experiment 3 
Testing1 477 295 3.3 7.08 
Experiment 3 
Testing2 622 22 9.2 15.12 
Experiment 4 
Testing1 807 295 3.3 4.18 
Experiment 4 
Testing2 1084 22 9.2 8.71 



happens randomly, thus we just consider the writing 
efficiency with complete deduplication and the writ-
ing efficiency without deduplication in this paper. We 
tested the system with two data streams as same as 
testing reading efficiency. Similarly, one data stream 
is 295 items amounting to 3.3GB and another data 
stream is 22 items, amounting to 9.2 GB. The details 
of writing efficiency without deduplication are listed 
in Table 3. The details of writing efficiency with 
complete deduplication are listed in Table 4.  

Table 3 

Writing efficiency without deduplication. 

Without deduplication 
Write into Two 
nodes 

Time 
(Seconds) Items 

Size 
(GB) 

Speed 
(MB/s) 

Experiment1 
Testing1 771 295 3.3 4.38 
Experiment1 
Testing2 2628 22 9.2 3.58 
Write into 

Four nodes 
Time 
(Seconds) Items 

Size 
(GB) 

Speed 
(MB/s) 

Experiment1 
Testing1 813 295 3.3 4.15 
Experiment1 
Testing2 2644 22 9.2 3.56 
Experiment 2 
Testing1 2421 295 3.3 1.40 
Experiment 2 
Testing2 2511 22 9.2 3.82 
Experiment 3 
Testing1 2477 295 3.3 1.36 
Experiment 3 
Testing2 1967 22 9.2 4.73 
Experiment 4 
Testing1 3776 295 3.3 0.90 
Experiment 4 
Testing2 3804 22 9.2 2.56 

Table 4 

Writing efficiency with complete deduplication 

Complete deduplication 
Write into 
Two nodes. 

Time 
(Seconds) Items 

Size 
(GB) 

Speed 
(MB/s) 

Experiment1 
Testing1 401 295 3.3 8.43 
Experiment1 
Testing2 462 22 9.2 20.39 
Write into 
Four nodes. 

Time 
(Seconds) Items 

Size 
(GB) 

Speed 
(MB/s) 

Experiment1 
Testing1 356 295 3.3 9.49 
Experiment1 
Testing2 475 22 9.2 19.83 
Experiment 2 
Testing1 482 295 3.3 7.01 
Experiment 2 522 22 9.2 18.04 

Testing2 
Experiment 3 
Testing1 491 295 3.3 6.88 
Experiment 3 
Testing2 457 22 9.2 20.61 
Experiment 4 
Testing1 672 295 3.3 5.02 
Experiment 4 
Testing2 820 22 9.2 11.49 

 
All of these transmission speeds are calculated by 

total cost of time on transmitting files. When we 
monitor the net adaptor, the peak writing speed is 
32MB/s; the peak reading speed is 71MB/s. All the 
test results shown in the tables are average of the 
multiple runs to minimize noise. 

6.6 Discussion on testing results  

Deduplication efficiency has two aspects: one is 
efficiency in identification of duplication, the other is 
efficiency in deletion of duplication. 

We can get valuable findings from Table 2 to Ta-
ble 4. First, we compare the reading efficiency results 
of experiment 1 (both testing 1 and testing 2) in two 
data nodes model and four data nodes model, respec-
tively. In the two data node situation, the download 
speeds for two testing are 9.49 MB/s and 18.47 MB/s 
respectively; the upload speeds without duplications 
are 4.38 MB/s and 3.58 MB/s; the upload speeds with 
complete duplication are 8.43 MB/s and 20.39 MB/s. 
In the four data node situation, the download speeds 
are 9.79 MB/s and 19.83 MB/s. The upload speeds 
without duplication are 4.15 MB/s and 3.56 MB/s; 
the upload speeds with complete duplication are 9.49 
MB/s and 19.83 MB/s. 

From these results, we find that, generally, the 
fewer the data nodes the real DeDu system has, the 
higher the writing efficiency it will get, however it 
comes at the cost of lowered reading efficiency. The 
more data nodes there are, the lower the writing effi-
ciency it will get, but the higher the reading effi-
ciency.  

Secondly, we compare the results of experiment 1 
and experiment 2, as well as experiment 1 and ex-
periment 3, in four data nodes model. We got a sur-
prising result that neither reading nor writing effi-
ciency was enhanced even if the system was 
equipped with better host machine's configuration. 
This is caused by the host machine’s operation sys-
tem. Experiment 2 and experiment 3 were running 
upon the Windows Server 2003 enterprise edition. 
This version system is 32 bit, so it only supports 4 
GB RAM, rather than 8 GB RAM. But the total RAM 



of virtual machines is 4 GB and it does not include 
host operation system’s RAM. Thus the required 
RAM is beyond the host machine’s configuration. 
This leads both reading and writing efficiency to de-
crease no matter how we changed the machines’ ca-
pability. 

Third, when we compare the results of experiment 
1’s testing 1 and testing 2, as well as the results of 
experiment 2’s testing 1 and testing 2 in four data 
nodes model, with complete deduplication and with-
out deduplication, we can find that when a single file 
is large, the time to calculate hash values becomes 
higher, but the time of whole transmission cost is 
relatively low. When a single file is small, the time to 
calculate hash values becomes lower, but the whole 
transmission cost is relatively high. This is because 
the speed of calculating hash value is much faster 
than data transmission. 

Fourth, when we compare the results of experi-
ment 2 and experiment 3, we can get that the per-
formance of DeDu is not only decided by the con-
figuration of master node, but also the configuration 
of data nodes. The configuration of virtual machine 
in experiment 2 is that the master node’s RAM is 
2GB, and the CPU is 8 cores. The data nodes’ RAM 
is 512MB, and the CPU is 8 cores. The configuration 
of virtual machine in experiments 3 is that, data 
nodes’ CPU is changed to 2 cores. From the testing 
results, we can see that the performance of data nodes 
with 8 cores is much better than 2 cores in general, 
particularly for reading (downloading from data 
nodes), except that in testing 2 of both experiments 2 
and 3, where the system shows an opposite result. 
This is because of the performance bottleneck associ-
ated with the master node. In our experiments, we 
calculated hash values on the master nodes, and each 
of the files needed to be hashed in testing 2 was quite 
large. This had caused the overall performance to 
deteriorate. In a real environment, calculation of the 
hash value can be deployed to clients. 

On the other hand, this comparison shows that, in 
cloud storage systems, the configuration of a single 
node will probably not impact the whole system to a 
large extent, depending on what computation and 
data transmission task has been deployed to which 
nodes. To enhance the cloud storage system perform-
ance, we must improve or modify a group of nodes’ 
configurations to balance the load and minimize the 
number of bottleneck nodes. 

Fifth, comparing the results of experiment 3 and 
experiment 4, we can find that data compression is a 
nightmare for data transmission. Both reading effi-
ciency and writing efficiency will be decreased sig-

nificantly by using data compression. Data compres-
sion could save storage spaces, but it sacrifices data 
transmission efficiency. In our experiment, during the 
data transmission process, more than 30% time is 
spent on dealing with data compression. 
 

7. Conclusions and future work 

In conclusion, we have introduced a novel ap-
proach to data deduplication over the engineering-
oriented cloud systems, which we have named as 
DeDu. DeDu is not only useful for IT enterprises or 
engineering industry to backup data, but also for 
common users who want to store data. Our approach 
exploits a file’s hash value as an index saved in 
HBase to attain high lookup performance, and it ex-
ploits ‘link files’ to manage mass data in a Hadoop 
distributed file system.  

In DeDu, the hash value is calculated at the client 
side prior to data transmission, and the lookup func-
tion is executed in HBase. When duplication is found, 
real data transmission will not occur. Based on our 
testing, the features of DeDu are as follows: The few-
er the data nodes that the system maintains, the high-
er the writing efficiency; but the lower the reading 
efficiency, will be achieved. The more data nodes 
there are, the lower the writing efficiency, but the 
higher the reading efficiency DeDu will get. When a 
single file is large, the time to calculate hash values 
becomes higher, but the time of transmission cost is 
relatively lower; when a single file is small, the time 
to calculate hash values becomes lower, but the over-
all transmission overhead in such a deduplication 
system is relatively higher. 

In DeDu, the higher configuration of a single node 
will not impact the performance of the whole system 
too much. To get better performance from such a 
cloud-type system, we need to consider how to tune 
up critical nodes’ configurations. Furthermore, data 
compression is another potential hurdle in DeDu. It 
sacrifices too much overall data transmission effi-
ciency to save the storage space in a deduplication 
application. We will look into these issues in future 
work, to circumvent the design objective of DeDu. 

References 

[1] A. Atul, J.B. William, C. Miguel, C. Gerald, C. Ronnie, R.D. 
John, H. Jon, R.L. Jacob, T. Marvin and P.W. Roger, Farsite: 
Federated, available, and reliable storage for an incompletely 
trusted environment, SIGOPS Oper. Syst. Rev., 2002, 36, pp. 
1-14  



[2] T.C. Austin, A. Irfan, V. Murali and L. Jinyuan, Decentralized 
deduplication in SAN cluster file systems, in Proceedings of 
the 2009 Conference on USENIX Annual technical conference, 
San Diego, California, 2009, pp. 101-114. 

[3] D. Bhagwat, K. Eshghi, D.D.E. Long and M. Lillibridge, 
Extreme Binning: Scalable, Parallel Deduplication for Chunk-
based File Backup, in 2009 IEEE International Symposium on 
Modeling, Analysis and Simulation of Computer and Tele-
communication Systems Mascots, 2009, pp. 237-245. 

[4] J. Black. Compare-by-hash: A reasoned analysis, in USENIX 
Association Proceedings of the 2006 USENIX Annual Tech-
nical Conference, 2006, pp. 85-90. 

[5] D. Borthakur, The Hadoop Distributed File System: Architec-
ture and Design, 2007. URL: http://hadoop. 
apache.org/hdfs/docs/current/hdfs_design.pdf, accessed in Oct 
2011. 

[6] W. Brent, U. Marc, A. Zainul, G. Garth, M. Brian, S. Jason, Z. 
Jim and Z. Bin, Scalable performance of the Panasas parallel 
file system, in Proceedings of the 6th USENIX Conference on 
File and Storage Technologies (FAST 2008), San Jose, Cali-
fornia, 2008, pp. 17-33. 

[7] D. Cezary, G. Leszek, H. Lukasz, K. Michal, K. Wojciech, S. 
Przemyslaw, S. Jerzy, U. Cristian and W. Michal, HYDRAs-
tor: a Scalable Secondary Storage, in Proccedings of the 7th 
conference on File and Storage Technologies, San Francisco, 
California, 2009, pp. 197-210. 

[8] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, 
M. Burrows, T. Chandra, A. Fikes and R.E. Gruber, 
Bigtable � A Distributed Storage System for Structured Data, 
in 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI 2006) Seattle, 2006, pp. 205–218 

[9] K.L. Edward and A.T. Chandramohan, Petal: distributed vir-
tual disks, in Proceedings of the Seventh International Confer-
ence on Architectural Support for Programming Languages 
and Operating Systems, Cambridge, Massachusetts, US, 1996, 
pp. 84-92. 

[10] J.F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. 
Schlichting and A. Toncheva, The Diverse and Exploding 
Digital Universe, March 2008. URL: 
http://www.emc.com/collateral/analystreports/diverseexplodin
g-digital-universe.pdf, accessed in Oct 2011. 

[11] X. Gao. L.P.B. Vuong and M. Zhang, Detecting Data Records 
in Semi-Structured Web Sites Based on Text Token Clustering, 
Integrated Computer-Aided Engineering, 2008, 15:4, pp. 297-
311.  

[12] S. Ghemawat, H. Gobioff and S.-T. Leung, The Google file 
system, in Proceedings of the nineteenth ACM symposium on 
Operating systems principles, ed. Bolton Landing, NY, USA: 
ACM, 2003, pp. 29-43. 

[13] J.O. Gutierrez-Garcia and K.M. Sim, Agent-based cloud work-
flow execution, Integrated Computer-Aided Engineering, 2012, 
19:1, pp. 39-56. 

[14] B. Harrington, R. Brazile and K. Swigger, A Practical Method 
for Browsing a Relational Database using a Standard Search 
Engine, Integrated Computer-Aided Engineering, 2009, 16:3, 
pp. 211-223. 

[15] V. Henson, An analysis of compare-by-hash, in Proceedings 
of the 9th conference on Hot Topics in Operating Systems Li-
hue, Hawaii, 2003, pp. 13-18. 

[16] B. Hong and D.D.E. Long, Duplicate data elimination in a san 
file system, In Proceedings of the 21st IEEE/12th NASA God-
dard Conference on Mass Storage Systems and Technologies 
(MSST), 2004, pp. 301-314. 

[17] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. 
Trezise and P. Camble, Sparse Indexing: Large Scale, Inline 
Deduplication Using Sampling and Locality, in 7th USENIX 

Conference on File and Storage Technologies, San Francisco, 
California 2009, pp. 111-123 

[18] A. Michael, F. Armando, G. Rean, D.J. Anthony, K. Randy, K. 
Andy, L. Gunho, P. David, R. Ariel, S. Ion and Z. Matei, 
Above the Clouds: A Berkeley View of Cloud Computing, 
2009..URL:www.eecs.berkeley.edu/Pubs/TechRpts/2009/EEC
S-2009-28.pdf, accessed in Oct 2011. 

[19] A.E.M. Michael, V. William, I. Courtright, C. Chuck, R.G. 
Gregory, H. James, J.K. Andrew, M. Michael, P. Manish, S. 
Brandon, R.S. Raja, S. Shafeeq, D.S. John, T. Eno, W. Mat-
thew. and J.W. Jay, Ursa minor: versatile cluster-based storage, 
in Proceedings of the 4th conference on USENIX Conference 
on File and Storage Technologies, USENIX Association, 2005, 
4, 59-72  

[20] U. Reuter, A Fuzzy Approach for Modeling Non-stochastic 
Heterogeneous Data in Engineering Based on Cluster Analysis, 
Integrated Computer-Aided Engineering, 2011, 18:3, pp. 281-
289. 

[21] A.W Sage, W.L. Andrew, A.B. Scott and M. Carlos, RADOS: 
a scalable, reliable storage service for petabyte-scale storage 
clusters, in Proceedings of the 2nd International Workshop on 
Petascale Data Storage: held in conjunction with Supercom-
puting, Reno, Nevada, 2007, pp. 35-44. 

[22] Q. Sean and D. Sean, Venti: A New Approach to Archival 
Data Storage, in Proceedings of the 1st USENIX Conference 
on File and Storage Technologies, ed. Monterey, CA: USE-
NIX Association, 2002, pp. 89-101. 

[23] Z. Sun, J. Shen and G. Beydoun, P2CP: A New Cloud Storage 
Model to Enhance Performance of Cloud Services, in Proceed-
ings of International Conference on Information Resources 
Management, Conf-IRM, 2011, on CD-ROM 

[24] Z. Sun, J. Shen and J. Yong, DeDu: Building a Deduplication 
Storage System over Cloud Computing. 15th International 
Conference on Computer Supported Cooperative Work in De-
sign (CSCWD 2011). pp 348 - 355  

[25] J. Wei, H. Jiang, K. Zhou and D. Feng, MAD2: A scalable 
high-throughput exact deduplication approach for network 
backup services, in Mass Storage Systems and Technologies 
(MSST), 2010 IEEE 26th Symposium on  Incline Village, NV, 
USA 2010 pp. 1-14  

[26] S.A. Weil, S. A. Brandt, E.L. Miller, D.E.E Long and C. Malt-
zahn, Ceph: a scalable, high-performance distributed file sys-
tem, in Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Seattle, Washington, 
2006, pp. 307-320. 

[27] S. Yasushi, F. Svend, V. Alistair, M. Arif and S. Susan, FAB: 
building distributed enterprise disk arrays from commodity 
components, in Proceedings of the 11th International Confer-
ence on Architectural Support for Programming Languages 
and Operating Systems, Boston, MA, USA, 2004, pp. 48-58. 

[28] F. Zhang, Z.M. Ma and L. Yan, Construction of Ontology 
from Object-oriented Database Model, Integrated Computer-
Aided Engineering, 2011, 18:4, in press. 

[29] B. Zhu, K. Li and H. Patterson, Avoiding the disk bottleneck 
in the data domain deduplication file system, in Proceedings of 
the 6th Usenix Conference on File and Storage Technologies 
(Fast '08), 2008, pp. 269-282. 


	University of Wollongong
	Research Online
	2013

	A novel approach to data deduplication over the engineering-oriented cloud systems
	Zhe Sun
	Jun Shen
	Jianming Young
	Publication Details

	A novel approach to data deduplication over the engineering-oriented cloud systems
	Abstract
	Keywords
	Disciplines
	Publication Details



