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A B S T R A C T   

Anaesthesia, crucial to surgical practice, is undergoing renewed scrutiny due to the integration of artificial in-
telligence in its medical use. The precise control over the temporary loss of consciousness is vital to ensure safe, 
pain-free procedures. Traditional methods of depth of anaesthesia (DoA) assessment, reliant on physical char-
acteristics, have proven inconsistent due to individual variations. In response, electroencephalography (EEG) 
techniques have emerged, with indices such as the Bispectral Index offering quantifiable assessments. This 
literature review explores the current scope and frontier of DoA research, emphasising methods utilising EEG 
signals for effective clinical monitoring. This review offers a critical synthesis of recent advances, specifically 
focusing on electroencephalography (EEG) techniques and their role in enhancing clinical monitoring. By 
examining 117 high-impact papers, the review delves into the nuances of feature extraction, model building, and 
algorithm design in EEG-based DoA analysis. Comparative assessments of these studies highlight their meth-
odological approaches and performance, including clinical correlations with established indices like the Bis-
pectral Index. The review identifies knowledge gaps, particularly the need for improved collaboration for data 
access, which is essential for developing superior machine learning models and real-time predictive algorithms 
for patient management. It also calls for refined model evaluation processes to ensure robustness across diverse 
patient demographics and anaesthetic agents. The review underscores the potential of technological advance-
ments to enhance precision, safety, and patient outcomes in anaesthesia, paving the way for a new standard in 
anaesthetic care. The findings of this review contribute to the ongoing discourse on the application of EEG in 
anaesthesia, providing insights into the potential for technological advancement in this critical area of medical 
practice.   

1. Introduction 

Anaesthesia, essential for modern surgical practice, enables 
controlled, temporary loss of sensation and consciousness, aiding in 
pain-free procedures [1]. Traditional depth of anaesthesia (DoA) 
assessment methods, based on physical characteristics, is often incon-
sistent due to individual variations. Objective techniques, such as elec-
troencephalography (EEG), have emerged, with indices like the 
Bispectral Index (BIS) providing quantifiable assessments. The 
complexity of determining the ideal DoA, influenced by factors like age 
and health, has led to the development of diverse devices and tech-
niques, including machine learning algorithms, to enhance precision 
and safety in anaesthesia care. The current literature focuses on the 
scope of EEG analysis for the DoA, emphasising machine learning ap-
plications, and strives to improve technology to reduce variability and 

improve patient outcomes. 
This literature review critically evaluates the landscape of EEG-based 

Depth of Anaesthesia (DoA) analysis, focusing on the integration of 
emerging methods and the comparative effectiveness of different ap-
proaches. The objective of this review is to provide a comprehensive 
analysis of the latest methodologies in anaesthesia and consciousness 
research, with a primary focus on EEG-based techniques. It examines 
recent advancements in technical model building and feature extraction 
for assessing cognitive states during induced unconsciousness, drawing 
from papers published in the last five years to incorporate the most 
current and pertinent findings. The review methodically analyses each 
stage of model design, as outlined in Section 2.2 comparing the per-
formance of developed algorithms with existing methods regarding ac-
curacy, reliability, and computational efficiency. 

The primary research question guiding this literature review is: How 
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do current EEG-based methods for Depth of Anaesthesia (DoA) analysis, 
particularly those involving machine learning, compare in terms of ac-
curacy, reliability, and computational efficiency? This review is struc-
tured around several key objectives, which collectively aim to address 
the primary research question:  

1. To critically evaluate and summarise the current landscape of EEG- 
based DoA analysis.  

2. To provide a comprehensive analysis of the latest methodologies in 
anaesthesia and consciousness research, focusing primarily on EEG- 
based techniques.  

3. To assess recent advancements in model building and feature 
extraction in EEG signal processing. 

The following sections of this literature address these objectives by 
examining recent advancements in EEG-based DoA methods. The sec-
tions of this paper are organized as follows; 2. Background of EEG-based 
DoA analysis, 3. Literature review selection and methodology, 4. Latest 
Algorithms for each DoA assessment stage, 5. Limitations and future 
direction. 

2. Background 

Anaesthesia is crucial in surgery, offering benefits like amnesia, pain 
relief, muscle relaxation, and autonomic reflex regulation. Effective 
Depth of Anaesthesia (DoA) monitoring improves patient outcomes, 
minimizes intraoperative awareness, and aids quicker recovery [2,3]. 
However, excessive anaesthetic doses can lead to postoperative com-
plications like nausea and cognitive issues [1,4,5]. EEG monitoring plays 
a vital role in assessing DoA by analysing cortical feedback suppression, 
which affects complex information processing in the brain. Anaesthetists 
typically evaluate DoA by observing physiological responses and esti-
mating the effects of anaesthetic drugs. EEG signals from the frontal 
cortex, reflecting cortical and subcortical brain states, can indicate 
consciousness levels [6,7]. This method encounters challenges such as 
the lack of standardised EEG indices and variability in response to 
different anaesthetic agents and between patients. This variability 
highlights the need for effective evaluation of current methodologies 
and further development of EEG-based DoA analysis methods. The rapid 
advancements in signal processing and machine learning have opened 
new avenues for extracting valuable insights from complex data that are 
shown to provide substantiative contributions to the field of DoA 
analysis. 

2.1. The role of EEG in determining the DoA 

Traditional methods to assess the depth of anaesthesia (DoA) use 
simple biological indicators such as muscle reflexes, pulse rate, and 
blood pressure. However, their reliability is limited due to patient 
variability in response to anaesthetics. The electrical activity of the 
brain, measured by EEG, reflects the effects of anaesthetic agents on the 
primary target, the brain. Thus, EEG provides a direct, non-invasive 
assessment of anaesthetic states, more accurate than other methods 
[8,9]. EEG signals exhibit characteristic changes in their frequency, 
amplitude, and complexity as the depth of anaesthesia increases or de-
creases. For instance, during the transition from wakefulness to uncon-
sciousness, the EEG typically shows a shift from low-amplitude, high- 
frequency activity to high-amplitude, low-frequency activity [5]. The 
key benefit of the use of EEG in determining the DoA lies in its ability to 
provide a direct, real-time, and continuous measure of brain activity 
during anaesthesia. While there are limitations and challenges to over-
come, recent advancements in the field have led to improved EEG-based 
monitoring systems that can enhance patient safety and optimize 
anaesthesia management in clinical practice [6,9]. 

2.2. General process of determining the DoA from EEG 

The general approach to DoA evaluations can be visualised in Fig. 1. 
Typically, the initial stage is the collection of raw EEG data from the 
patient, which is then denoised and subjected to feature extraction. 
Using supervised machine learning, changes in the EEG are associated 
with anaesthetic states. The feature extraction and index design pro-
cesses often lead to variations among different DoA estimation methods. 
Section 4 of this review paper offers an overview of prevailing research 
trends in these domains, which are feature extraction, model building, 
and evaluation and testing. 

Various commercially available devices utilise EEG to assess the 
anaesthetic effect, each outputting unique indices; these include the 
SedLine, BIS vista, Narcotrend Monitor, NeuroSENSE, and qCON 2000 
monitor. These monitors have been found to generally correlate with 
alertness assessments and reduce anaesthetic use and emergence time 
[10]. The BIS is seen to be the most popular device in clinical settings 
with a recent study indicating that 81 % of clinicians used the BIS with 
68.5 % indicating their indication that it is the most reliable DoA 
application on the market [11]. Despite the popularity of the BIS index 
known limitations include age dependence [12], drug dependence [13], 
time delay and vulnerability to noise [14,15]. Consequently, innovation 
in EEG-derived DoA estimation algorithm design is a critical area of 
research. 

3. Literature review method 

3.1. Search strategy 

This literature review provides a comprehensive and unbiased syn-
thesis of existing research on EEG analysis for determining the depth of 
anaesthesia (DoA). The literature employed a structured approach 
following the PRISMA guidelines, as illustrated in the accompanying 
flowchart, Fig. 3. The search was initiated with a comprehensive query 
across five major databases: PubMed, Cochrane, Scopus, CINAHL, and 
Google Scholar to ensure a wide coverage of potential literature, span-
ning various disciplines and research scopes. The search focused on 
papers published within the last 5 years to build upon and complement 
existing reviews in this field [13,15–17], ensuring the inclusion of the 
most recent and relevant findings. A breakdown of the publication date 
range for the included papers is included in Fig. 2. The search terms were 
structured around the following concepts: “anaesthesia or anaesthetist” 
and “consciousness monitors, monitor, depth of anaesthesia, machine 
learning, or artificial intelligence” and “electroencephalography or 
Bispectral index”. 

3.2. Study selection 

From the initial 2839 records identified, we systematically removed 
duplicates (n = 810) and those not meeting our initial screening criteria 
(n = 302), resulting in 1727 articles for detailed screening. Articles not 
retrieved (n = 58) and those excluded after a thorough review of the full 
texts (n = 120) for various reasons such as lack of relevance to the 
research question, insufficient methodological quality, or data incom-
pleteness, were documented at each stage. This process is transparently 
depicted in Fig. 3. The 295 full-text articles assessed for retrieval un-
derwent a rigorous eligibility evaluation, focusing on the study’s rele-
vance to the research question, methodological soundness, and the 
applicability of the findings. Ultimately, 117 studies met our inclusion 
criteria, which specified that selected works must be peer-reviewed, 
published in English, focused on human subjects, utilise EEG as the 
primary assessment tool for DoA, and be published within the last five 
years. This final cohort of articles forms the basis of our comprehensive 
review. Each included study was subjected to a quality assessment using 
standardised checklists appropriate for the study design to ensure the 
reliability and validity of our synthesis. Data extraction was performed 
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systematically, with information regarding study design, participant 
demographics, EEG methodologies, and key findings being collated 
using a predefined template. 

4. The latest algorithms for each DoA assessment stage 

The following sections highlight the current leading algorithms for 
the DoA assessment at each of the identified stages, as outlined in Fig. 1. 
The initial stage of denoising and artifact removal is fundamentally 
essential to EEG analysis due to the prevalence of electrical interference 
in EEG signals. The most common initial step in the preprocessing of 
EEG signals are temporal filtering using bandpass filters [14,18–48], 
typically between 0.5 Hz and 47 Hz [18]. Those methods occurred in 
approximately 70 % of the reviewed methodologies that implemented 
denoising. Other denoising methods seen in the literature include Non- 
Local Means (NLM) [49,50], Wavelet-based denoising [51,52], 

surrogates-Based Artifact Removal (SuBAR) method [53], and Sparse 
Denoising Autoencoder (SDAE) [54]. In some cases, the use of the Signal 
Quality Index (SQI) is available to assist in ensuring the data presented is 
of suitable clarity for analysis and model building [49,55–57]. 

4.1. Feature extraction methods 

One of the key steps in signal analysis is feature extraction (FE) 
which involves examining EEG signals to isolate characteristics that are 
associated with the level of cognition. Four categories are used in this 
paper to identify FE methods based on the purpose of the feature 
extraction technique; these are signal decomposition methods, entropy 
methods, complexity methods, and network and graph theory feature 
extraction methods. EEG signal analysis often uses non-linear methods 
due to the non-linear nature of state transitions, as evidenced in the 
literature [58]. Signal decomposition methods include all time, fre-
quency, and time-domain frequency decomposition techniques. Entropy 
and complexity measures, which often use non-linear techniques, are 
common to observe underlying consciousness dependent information in 
EEG signals. A rising trend is using raw EEG with deep learning, elimi-
nating initial feature extraction, and showcasing advancements in EEG- 
based DoA analysis. 

4.1.1. Signal decomposition based methods 
Signal decomposition is a technique in signal analysis to divide an 

observed signal into components or subsets to reduce the complexity of a 
signal for analysing and improving model building. The general classi-
fication for signal decomposition methods includes frequency, time, and 
time-frequency domain methods. The transformation of a signal from 
the time domain to the frequency domain using Fourier transform (FT) is 
a popular tool in EEG analysis for the DoA assessment 
[23,30,41,42,45,54,59–65]. A range of papers consider features 
extracted from ratios of relative frequency bands such as alpha or beta 
bands. Alpha band power is considered of particular significance to the 
DoA estimation [64,66,46] and refers to the amount of electrical activity 
or power within the alpha band is typically defined as the frequency 
range between 8 Hz and 12 Hz. Another popular analysis method is 
spectral edge frequency (SEF) [29,44,68,69]. The ordinal power spectral 

Fig. 1. The general process of a DoA index design based on EEG signals. Current advances in each of these areas are discussed in this work.  

Fig. 2. Articles referenced by publication year.  
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density (O-PSD) is demonstrated to capture spectral trends across fre-
quency bands and correlates strongly (Spearman’s correlation of 0.821) 
with clinical DoA assessments [70]. Recent analysis concludes that the 
alpha-wave amplitude and slow-wave-frequency modulatory processes 
can effectively track the transition between states of unconsciousness 
and burst suppression in anaesthetised patients [64]. Burst suppression 
is a deep state of unconsciousness that has been associated with post-
operative cognitive disorders [71]. 

The wavelet transform is a popular signal decomposition method in 
the reviewed literature; decomposing a signal into a set of scaled and 
translated wavelets. Discrete wavelet transform (DWT) is a computa-
tionally efficient version of the wavelet transform used in EEG analysis 
for the DoA analysis [19,72–74]. It uses a set of discrete wavelets that 
are derived from a single mother wavelet by dilations and translations 
[19]. DWT is more rigid and less flexible than other forms of wavelet 
transformation which may be a drawback of this method. Alternatively, 
continuous wavelet transform (CWT) allows for the extraction of a 
continuous family of wavelets, leading to a two-dimensional represen-
tation of the signal (time and scale) [75,76]. This method is more 
computationally intense yet more flexible than DWT. A variety of other 
wavelet transformations are seen in the literature, including spectral 
graph wavelet transformation (SQWT), stationary wavelet transform 
(SWT) [77–79] and empirical wavelet transform (EWT) [57]. These 
methods all serve a similar purpose of deconstructing a signal into 
packets for convenient analysis. 

Principal component analysis (PCA) is utilised extensively due to its 
ability to reduce the dimensionality of the data while retaining most of 
the original variance [23,24,51,80–83]. Other time domain signal 
decomposition techniques employed include non-linear PCA [20], and 
independent component analysis (ICA) [20,23,39,53,84,85]. Other 
decomposition methods employed include empirical mode decomposi-
tion (EMD), alongside its multivariate empirical mode decomposition 
(MEMD) [86], and EEG variability (EEGV) [69]. 

4.1.2. Entropy based methods 
Entropy-based measures quantify the unpredictability or random-

ness in the EEG signals; various entropy metrics are employed to assess 
the randomness and predictability in the EEG data [41]. Permutation 
entropy (PEn) is a robust and efficient tool that quantifies the complexity 
of a time series [42]. In the reviewed literature, permutation entropy 
was seen as a popular method of feature extraction 
[29,35,42,48,52,54,63,69,72]. This method is particularly useful for 
analysing dynamic changes in EEG signals by evaluating the order re-
lations between values. Permutation entropy is considered advanta-
geous due to the method’s noise tolerance and robustness [87]. Despite 
the popularity of this method, permutation entropy was observed to be 
significantly influenced by patient age in all settings except for narrow- 

band EEG activity [88]. Spectral entropy (SE) was implemented in the 
reviewed literature effectively decomposing EEG signals to extract fea-
tures from frequency bands of EEG signals for the effective DoA 
assessment [41,57,63]. Ra et al. [41] illustrated in a study involving 24 
patients, the PE showed a high correlation (the highest R2 = 0.793) with 
the BIS index, however, the SE presented an improved correlation (the 
highest R2 = 0.846). Several other entropy measures are seen in the 
reviewed literature including wave entropy [54], hierarchical dispersion 
entropy (HDE) [49], sample entropy [35,52,54,46,69,89], Hurst en-
tropy [52,63], singular value decomposition entropy [79], and fuzzy 
entropy [34,52]. 

4.1.3. Complexity based methods 
The intricate relationship between the complexity of EEG signal and 

state of awareness lends to the implementation of non-linear signal 
analysis. Lempel-Ziv Complexity (LZC) is a non-parametric method used 
to quantify the complexity or randomness of a finite sequence and has 
been used successfully in the DoA applications with EEG in the past 
[62,63] to quantify the complexity or irregularity of the EEG signal. 
Changes in LZC have been associated with various neurological condi-
tions and cognitive states [14,22,90], making LZC a useful tool for EEG- 
based diagnosis and monitoring. It was observed that brain activity 
complexity, when measured by LZC, may produce inconsistent associ-
ations with propofol concentration [22]. In a study of age dependency in 
EEG-based DoA estimators, Biggs et al. [14] observed that LZC also 
showed an age bias, underestimating the depth of hypnosis in elderly 
patients. An extension of LZC, permutation Lempel-Ziv Complexity 
(PLZC) is a method for analysing signal complexity. Unlike the tradi-
tional LZC, PLZC is more resilient to noise because it is based on the 
relative amplitude of the signal due [35,91]. 

In addition, detrended fluctuation analysis (DFA) operates by 
examining the fluctuations within a time series scale with a size of the 
observation window. Compared to other non-linear analysis methods, 
DFA offers advantages such as fewer stringent assumptions about signal 
stationarity and increased accuracy in correlation estimates allowing 
this feature to effectively illustrate features associated with levels of 
consciousness [35,45,62,63,92,93]. Other methods for measuring 
complexity include the second order difference plot (SODP) [57] and 
fractal dimension [20,30,42,75,77,78,90,94–96,98]. EEG signals often 
display fractal or self-similar characteristics, where their structure looks 
alike at various scales, a phenomenon that can be quantified using 
fractal dimension. In one study examining EEG characteristics of 36 
anaesthesia patients, the fractal dimension showed a strong association 
with the clinical assessment of the DoA, achieving an area under the 
curve (AUC) of 0.74 without remifentanil [98]. Several techniques exist 
for estimating the fractal dimension of EEG signals, such as the Higuchi, 
Katz, and Petrosian fractal dimensions. 

Fig. 3. Preferred reporting items for systematic reviews and meta-analyses diagram of screening and evaluation process.  
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4.1.4. Network & graph theory approaches for feature extraction 
The application of network and graph theory feature extraction 

methods has gained traction in the study of EEG based DoA assessment, 
particularly with the increasing availability of high-density EEG data. 
These mathematical frameworks facilitate the representation of intricate 
brain activity as a complex network, where the complex interactions 
between different brain regions can be systematically analysed 
(Table 1). 

Functional connectivity (FC) is a statistical measure that describes 
the dependencies or correlations between neurophysiological events in 
different regions of the brain. It quantifies the synchrony or correlation 
between these regions and can be measured using various methods, 
including correlation, coherence, and phase-locking value. FC has 
become an essential tool in understanding the neural mechanisms un-
derlying consciousness and anaesthesia, particularly in the context of 
the loss and recovery of consciousness [26,99]. Recent studies have 
further explored the role of FC in anaesthesia, focusing on the changes in 
brain network properties and community structure during the loss of 
consciousness (LOC) and recovery of consciousness (ROC). Findings 
reveal a breakdown of FC under anaesthesia, leading to impaired con-
nectivity between brain areas. Bi et al. [99] illustrated the effectiveness 
of sparse representation modelling with network parameters in detect-
ing significant FC differences in the frontal, occipital cortices, and the 
whole brain network. These results were obtained with a 256-channel 
high-density EEG and tested across three different General anaesthesia 
agents. Phase amplitude coupling (PAC) measures the interaction be-
tween the phase of a low-frequency oscillation and the amplitude of a 
high-frequency oscillation and is thought to play a key role in coordi-
nating neural activity. Specific PAC patterns in theta-alpha and alpha- 
beta observed in certain brain regions represented information pro-
cessing on multiple spatial scales and reflected cross-frequency coordi-
nation in different frequency bands and functional regions [24]. In 
addition, PAC feature extraction is noted as a valid FE method for ce-
rebral hemodynamic variables [103]. Furthermore, the PAC between 
delta-alpha frequency bands is associated with a consciousness state in 

adults and children [65]. 
Directed coherence is a measure of the directionality of the infor-

mation flow between different brain regions [36]. Changes in temporal 
dynamics of neuronal oscillations are shown to be associated with 
consciousness. Long-range temporal correlations (LRTC) refer to a sta-
tistical phenomenon where the values of a time series are correlated over 
a wide range of time lags. Beta LRTC combined with alpha amplitude 
provides the highest observed classification accuracy (above 80 %) for 
consciousness state prediction [45]. Changes in the characteristic path 
length (CPL) may reflect disruption in functional connectivity. The 
disruptions in CPL were observed with a multi-channel method utilising 
a time-varying fuzzy entropy. This approach identified specific disrup-
tions in connectivity, including frontal-occipital connectivity during the 
early LOC stage and inner-frontal connectivity during the later LOC 
stage [34]. The functional relationship between brain regions was 
illustrated with the posteriorizing/anteriorization (P/A) index and was 
effective at determining recall under sedation [21]. This index is 
calculated based on the ratio between the strongest posterior activity 
and the strongest anterior activity. For each segment, the number of 
valid (non-noisy) epochs where the posterior/anterior ratio was greater 
than 1 was counted, indicating that the alpha posterior activity exceeded 
the alpha anterior activity. This count of greater posterior activity was 
then divided by the total number of valid epochs per segment to derive 
the P/A index. This index was found to differentiate between patients 
with or without recall under sedation in a study involving 26 sedated 
patients. In comparison with the BIS index, both indexes were effective 
in distinguishing between patients with and without recall. However, 
while the BIS differentiation appeared to be sensitive to the specific 
sedation drug used (midazolam vs. propofol), the P/A index did not 
exhibit similar drug-based sensitivity. The P/A index showed a statisti-
cally significant difference under sedation between patients who had 
recall (median 66.75) and those who did not (median 22) [21]. 

Microstate analysis involves segmenting the EEG signal into a series 
of quasi-stable states typically 40 to 100 milliseconds in duration. These 
microstates may be considered representative of basic building blocks of 
brain activity and represent periods of scalp activity that manifest as 
spatially organized topographical maps. In one study involving 22 adult 
surgical patients, 6-channel EEG recordings were taken throughout the 
perioperative period to observe microstate transitions. Most notably, 
during surgical anaesthesia, patients demonstrated increased mean 
duration and, consequently, a reduction in the occurrence of microstates 
when compared to both preoperative baseline and PACU admission 
[31]. In a separate study, microstate analysis combined with the Hidden 
Markov Model (HMM) was used to accurately estimate the DoA state 
based on 128-channel EEG [101]. Global field power and global inter-
pretation variance were generated to examine the characteristics of 
corresponding microstate sequences; the accuracy in distinguishing 
between the baseline and moderate sedation states was found to be 
80.16 % [38]. 

4.2. Model building methods 

Model building processes typically follows the extraction of relevant 
features from the EEG signal that encapsulates its essential character-
istics. Model building for the DoA analysis typically employs supervised 
machine learning techniques with few exceptions [51,101]. In most 
cases, training is based on the label provided by industry models (for 
example the BIS), or clinical assessment of the DoA state (CAD) for index 
design, and classification models respectively. Methods in this review 
are grouped according to the model-building methodology employed 
with information about the feature extraction technique implemented. 

4.2.1. Traditional machine learning methods 
Traditional Machine Learning methods employed in the literature 

include regression techniques (such as the Gaussian process, linear and 
logistical), support vector machines, decision trees, random forests, and 

Table 1 
Network and graph feature extraction methods.  

Method Channels Authors 

Community detection 19 channel 
EEG 

Dong et al. [26] 

Mutual information 7 channel EEG Dong et al. [27] 
Sparse representation (SR) 256 channel 

EEG 
Bi et al. [99] 

Directed coherence 32 channel 
EEG 

Lioi et al. [36] 

Long-range temporal correlation (LRTC) 64 channel 
EEG 

Thiery et al. [45] 

Spatiotemporal dynamics 60 channel 
EEG 

Lee et al. [33] 

Posteriorization/anteriorization index 
(P/A index) 

5 channel EEG Baron Shahaf et al. 
[21] 

Gray-level co-occurrence matrix (GLCM) 15 channel 
EEG 

Mousavi et al. [100] 

Characteristic path length (CPL) 128 channel 
EEG 

Li et al. [34] 

Common spatial pattern (CSP) 128 channel 
EEG 

Rimbert et al. [61] 

Microstate analysis 16 channel 
EEG 

Lapointe et al. [31] 

128 channel 
EEG 

Si et al. [101] 

91 channel 
EEG 

Liu et al. [38] 

Occipital delta power 256 channel 
EEG 

Casey et al. [23] 

Phrasal relationship 19 channel 
EEG 

Dong et al. [24]. 

19 channel 
EEG 

Xiao et al. [102]  
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k-NN algorithms). These methods are grouped according to the evalu-
ation metrics with classification and regression methods presented 
separately (Table 2). 

Studies have achieved variable success with Linear Regression 
modelling based on the effectiveness of the feature extraction method 
and sample size examined [41,72,104]. Linear regression models exhibit 
relatively low computational intensity, making them potentially more 
feasible for real-time analysis [87]. However, their performance is often 
overshadowed by more complex models like SVM, which demonstrate 
higher accuracy but may require more computational resources. 

The review reveals machine learning models like Gaussian process 
regression and SVM tend to show high correlation with BIS index, 
indicating strong potential for clinical application. However, the varia-
tion in correlations across studies suggests a significant influence of 
feature extraction methods and sample sizes on model performance. The 
use of spectral graph wavelet transforms achieved a high correlation of 
0.95681 with the BIS, underscoring the importance of advanced feature 
extraction techniques [50]. However, this also implies a trade-off be-
tween model complexity and interpretability. 

Huang et al. [52] illustrated Gaussian process regression models’ 
ability to model complex, non-linear relationships, which achieved a 
correlation of 0.9491 with the BIS in a study involving 73 patients. 
Support vector machine (SVM) have seen validity in both classification 
and regression cases. A correlation of 0.834 and Cohen’s Kappa of 0.809 
with the BIS was observed with this method utilising non-linear features 
based on Empirical Wavelet Transformation [57] (Table 3). 

K-Nearest Neighbours (K− NN) algorithm, used in various studies, 
showed high accuracy (ranging from 91 % to 95.32 %) in smaller patient 
cohorts [30,100]. In the largest of these studies, Nguyen-Ky et al. [74] 
achieved 93 % accuracy in a 25-patient study with power spectral 
density (PSD) and Hurst method denoising. However, these high accu-
racies raise questions about the model’s performance in larger, more 
diverse populations. 

Decision tree classifiers have shown promising results when applied 
to SEF95 alongside spectral beta power ratio, and energy in four fre-
quency bands achieved a classification accuracy of 92.2 % and latency of 
1 second (s) [44]. This outcome was substantiated in a large study 
involving two EEG databases with a total of 95 patients [73] with 
sensitivity and specificity of 95.4 % and 97.7 % respectively. 

Extending this concept, random forest is an ensemble learning 
method that builds multiple decision trees and combines their pre-
dictions to reduce overfitting. In a recent study utilising a large number 
of time-series features, random forest classification methods out-
performed other classification algorithms, including support vector 
classifier, XG boost classifier, gradient boost classifier and decision trees, 
in estimating the DoA states [106]. This study observed a classification accuracy of 83 %. 

Studies employing high-density EEG and advanced feature extrac-
tion methods, like functional connectivity, show promise but also un-
derscore the challenges in interpreting complex EEG data. Xiao et al. 
[102] demonstrated the potential to create a brain connection network 
system by employing functional connectivity (FC) characteristic pa-
rameters of 19 channel EEG signals. Utilising graph theory features, 
including phase locking value and phase lag index, in conjunction with a 
random forest model, the researchers were able to assess the state of 
anaesthesia with an accuracy of 93.88 %. 

In a 10-patient study, the graded changes in EEG directional con-
nectivity relative to propofol effect-site concentrations were assessed. 
Using a 32-channel system and directed coherence feature extraction 
methods with an SVM classifier, 95 % accuracy was observed [36]. 
Tacke et al. [63] achieved a prediction probability of 0.935 with this 
modelling method utilising both EEG and auditory evoked potential 
(AEP) signals. Applying functional connectivity (FC) with SVM classi-
fication from 256-channel high-density EEG monitoring AUC 0.97 was 
observed [23]. The study identified that sensory disconnection was 
characterized by extensive spatial and spectral changes, whereas 

Table 2 
Traditional model building methods for index design/regression.  

Method FE method Author Outcome 

Gaussian 
process 
regression 

Range of entropy features 
including fuzzy entropy 

Huang et al. 
[52] 

Correlation = 94.91 
(BIS) 

Linear 
regression 

FFT with spectral entropy Ra et al. [41] Correlation =
0.9196 (BIS) 

Spectral graph wavelet 
transform (SGWT) with 
average energy of 
wavelets and scale 
coefficients 

Diykh et al. 
[50] 

Correlation =
0.95681 (BIS) 

DWT with standard 
deviation, entropy, 
median, root mean square 
of coefficients 

Diykh et al. 
[72] 

Correlation = 0.798 
(BIS) 

SVM 
regression 

EWT with SODP and SE Schmierer 
et al. [57] 

Correlation =
0.834, Choen’s 
Kappa of 0.809 
(BIS)  

Table 3 
Traditional model building methods for classification.  

Method FE method Author Outcome 

Decision tree 
(DT) 

DWT with a range of 
temporal and spectral 
features 

Khan & 
Saadeh [73] 

Sensitivity: 95.4 
%, Specificity: 
97.7 % (CAD) 

FFT with a range of 
temporal and spectral 
features 

Khan et al. 
[60] 

79 % accuracy 
(CAD) 

FFT with SEF, beta ratio, 
and four bands of spectral 
energy (FBSE) 

Saadeh et al. 
[44] 

92.2 % accuracy 
(CAD) 

Genetic 
algorithm 
SVM 

Permutation and sample 
entropy, permutation 
Lempel-Ziv complexity 
measure (PLZC), DFA 

Liang et al. 
[35] 

92.3 % accuracy 
(CAD) 

K-NN Range of time-domain, 
spectral-domain, and 
entropy features. 

Kashkooli 
et al. [30] 

91 % accuracy 
(CAD) 

PSD features in each 
epoch. Max PSD and 
standard deviation of PSD 

Nguyen-Ky 
et al. [74] 

93 % accuracy 
(BIS mapping to 
DoA state) 

15-Channel EEG with 
gray-level co-occurrence 
matrix (GLCM) 

Mousavi et al. 
[100] 

95.32 % 
accuracy (BIS 
mapping to DoA 
state) 

Logistic 
regression 

Range (44) of time- 
domain, spectral-domain, 
and entropy features. 

Ramaswamy 
et al. [42] 

AUC = 0.83 
(0.17) (CAD) 

SVM Atomic decomposition Nagaraj et al. 
[39] 

AUC = 0.9 
(CAD) 

256-Channel EEG with 
occipital delta power and 
power spectrum density 
(PSD) 

Casey et al. 
[23] 

AUC = 0.622 
(CAD) 

32-Channel EEG with 
directed coherence 

Lioi et al. [36] 95 % accuracy 
(CAD) 

EEG and AEP with a range 
(10) of spectral-domain 
and entropy-domain 
features extracted. 

Tacke et al. 
[63] 

Prediction 
Probability =
0.935 (CAD) 

Linear 
discriminant 
analysis 

128-Channel EEG to 
generate brain 
topography based on 
common spatial pattern 
(CSP) features 

Rimbert et al. 
[61] 

Accuracy = 74 % 
(CAD) 

Random 
Forrest 
classifier 

19-Channel EEG with 
phasal relationship 

Xiao et al. 
[102] 

Accuracy =
93.88 % (based 
on 2 states, CAD) 

Range of time series 
features (63) extracted 

Anand et al. 
[106] 

Accuracy = 83 % 
(based on 2 
states BIS)  
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unconsciousness was typically marked by localised decreases in activity 
in the anterior and posterior cingulate cortices. A genetic SVM method 
achieved 92.3 % accuracy in estimating the DoA state based on clinical 
assessment when measured on a sample of 18 patients using single- 
channel EEG [35]. 

Logistic regression [42] and linear discriminant analysis (LDA) [95] 
for both regression and classifications were observed in the literature 
with varied effectiveness. The variability in the effectiveness of logistic 
regression and LDA suggests a need for more nuanced model selection 
and feature engineering strategies. 

While these models show promise, their clinical relevance remains a 
subject for further investigation. The reliance on high-accuracy models 
in small-scale studies highlights a gap in current research methodolo-
gies. Some models, particularly those using high-dimensional feature 
sets, may be prone to overfitting, especially in studies with limited 
sample sizes. The applicability of these models in diverse clinical set-
tings, considering factors like patient variability and different anaes-
thetic regimes, requires further assessment. Additionally, there is a need 
for real-time processing capabilities to make these models viable in 
clinical settings. Exploring hybrid models that combine the simplicity of 
linear regression with the accuracy of more complex models might also 
be a worthwhile direction. There is a critical need for larger-scale studies 
to validate these findings and for methodologies that can handle the 
complexity of EEG data while being applicable in diverse clinical 
settings. 

4.2.2. Deep learning machine learning methods 
Various model-building methods based on deep learning was present 

in recent literature. These methods have been employed to model the 
complex and non-linear relationships between EEG signals and the DoA 
based on EEG signal analysis. A new development in the DoA research 
space has involved the implementation of DL models with no discrete FE 
stages, instead, simply utilising the capacity of different DL algorithms 
for both FE and model building based on raw EEG signals (Table 4). 

Deep learning models, such as artificial neural networks (ANN), can 
extract complex features from EEG signals and learn hierarchical rep-
resentations, which can be instrumental in accurately determining the 
DoA [29]. This group of methods may require substantial data and 
computational resources and may prone to overfitting [107]. Alsafy & 
Diykh [49] achieved an average coefficient of determination of 0.965 
using a DNN with a 15-patient study, indicating a strong predictive 
power of the model. The potential for overfitting must be critically 

evaluated in these models, especially in scenarios with limited training 
data. In classification models, the ANN achieved an accuracy of 89.2 % 
in clinical assessment of the DoA [90]. These results demonstrate the 
potential of ANNs and DNNs in providing accurate and reliable DoA 
estimation based on EEG signals. 

Feed forward neural networks (FFNNs) and multilayer perceptron 
(MLP) demonstrate high effectiveness in estimating the DoA from raw 
EEG signals as observed with a correlation of 0.94 with the BIS [32]. 
When utilising SWT with a combination of features including fractal, 
spectral and non-linear features MLP regressor network achieved an 
accuracy of ∼97 % in the clinical assessment of the DoA [78,79] 
(Table 5). 

Convolutional Neural Networks (CNN) excel at handling data with 
grid-like topology, such as image data, and can automatically and 
adaptively extract hierarchical features. However, they require sub-
stantial computational resources, posing challenges in some applications 
[111]. CNNs have been employed successfully as a classification method 
[43,109]. In a 50-patient study without a discreet feature extraction 
method, a CNN model achieved an average accuracy of 97.90 % [108]. 
When implemented on a broad range of features extracted following a 
wavelet transformation, a deep residual shrinkage network (DRSN) 
combined with a 1 × 1 convolution network reported a Spearman’s rank 
correlation coefficient of 0.9344 (PSI), indicating a strong positive as-
sociation [68]. However, the small patient sample size, (n = 18) suggests 
further investigation to ensure model generalisability in larger studies 
may be needed. A correlation of 0.872 with the perturbational 
complexity index (PCI) was found using a CNN model [33] that 
employed network and graph properties to analyse 60-channel EEG 
signals. The 3D EEG signal was initially transformed into 2D meshes 
based on spatial data and a 1D vector for temporal information. 

Comparing CNNs with LSTM models, the latter’s ability to effectively 
learn and remember long sequences is advantageous in utilising the 
temporal features of EEG signals. In a 56-patient, single-channel EEG 
study, long short-term memory (LSTM) modelling was observed to 
achieve a correlation of 0.70 and an area under the curve (AUC) of 0.93 
based on the BIS [55] demonstrating the potential of this approach in 
temporal data analysis. For a two-state classification assessment of the 
DoA based on clinical assessment, LSTM modelling achieved an accu-
racy of 98.5 % [110]. These methods effectively learn and remember 

Table 4 
Deep learning model building methods for index design/regression.  

Method FE method Author Outcome 

3-stage DNN: 1. 
CNN, 2. RNN 

No FE Afshar 
et al. 
[18] 

R2 = 81.55, Accuracy 
= 88.71 %. (BIS) 

Artificial neural 
network 

Hierarchical 
dispersion entropy 
(HDE) with WT 

Alsafy & 
Diykh 
[49] 

Average coefficient of 
determination =
0.965 (BIS) 

PEn with SEF Gu et al. 
[29] 

Correlation = 0.892 
(BIS) 

Feed Forward 
neural network 

No FE Lee 
et al. 
[32] 

Correlation = 0.94 
(BIS) 

Long short-term 
memory 

EEG variability and 
EEG analysis with a 
range of spectral- 
domain and entropy- 
domain features 

Chen 
et al. 
[55] 

Correlation = 0.70, 
AUC = 0.93 (BIS). 
Correlation = 0.80, 
AUC = 0.93 (CAD) 

Convolutional 
neural network 

60-Channel EEG with 
spatiotemporal 
dynamics 

Lee 
et al. 
[33] 

Correlation = 0.872 
(perturbational 
complexity index) 

Deep residual 
shrinkage 
network (DRSN) 
& 1 × 1 CNN 

WT with 14 features 
extracted including 
SEF and Sample 
Entropy 

Shi et al. 
[68] 

Spearman’s rank 
correlation coefficient 
= 0.9344 (PSI)  

Table 5 
Deep learning model building methods for classification.  

Method FE method Author Outcome 

Adaptive neuro- 
fuzzy Inference 
system with 
linguistic hedges 

Range (11) of spectral- 
domain and entropy- 
domain features 
including DFA 

Shalbaf 
et al. [62] 

Accuracy = 93 % 
(2 state CAD) 

CNN No FE Ferreira 
et al. [108] 

Accuracy = 97.90 
% 

Liu et al. 
[37] 

Accuracy = 93.50 
% (CAD) 

AlMeer & 
Abbod 
[109] 

Accuracy = 97 % 
(2 state CAD) 

Long short-term 
memory (LSTM) 

No FE Gupta & 
Kalla 
[110] 

Accuracy = 98.5 % 
(2 states CAD) 

Wang et al. 
[47] 

Accuracy = 81.8 % 
(CAD) 

Range of spectral 
domain and entropy 
domain features 

Li et al. 
[54] 

Pk value of 0.8556 
(Drug 
concentration) 

Multilayer 
perceptron 
regressor 
network 

Stationary wavelets 
transform (SWT) with 
fractal, non-linear and 
spectral features. 

Dutt & 
Saadeh 
[78] 

Accuracy = 96.8 % 
(CAD) 

Dutt & 
Saadeh 
[79] 

Accuracy = 97.1 
%, 
R2 = 0.9, MAE =
1.5  
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over long sequences making use of the temporal features present in the 
EEG signal. A three-stage DNN without the need for FE demonstrated an 
r2 of 0.82 [18] in a 176 patient study. 

While deep learning models have shown promising results in DoA 
assessment, achieving high accuracy and correlation with BIS, their 
reliance on substantial datasets and computational resources poses a 
challenge. This highlights a trade-off between model complexity and 
practicality in clinical settings. Comparing the performance of deep 
learning models with traditional machine learning methods, it is evident 
that while deep learning models can achieve higher accuracy, they often 
require more complex feature extraction and larger datasets. This ne-
cessitates a careful consideration of the balance between accuracy and 
feasibility in clinical practice regarding operational requirements and 
the clinical workflow. The potential impact on clinical decision-making 
processes, particularly in real-time monitoring, needs further explora-
tion. The diverse methodologies employed, from network and graph 
properties analysis to 3D EEG signal transformation, indicate a wide 
range of approaches within CNN applications. However, the varying 
degrees of correlation and accuracy across studies raise questions about 
the generalisability of these models to different patient groups and EEG 
signal types. Future research should explore ways to reduce the 
computational intensity of deep learning models without compromising 
their accuracy. 

4.2.3. Multimodal monitoring of the DoA 
Multimodal monitoring of the DoA represents a cutting-edge 

approach that integrates various physiological signals to provide a 
comprehensive and accurate assessment of a patient’s anaesthetic state. 
By considering signals such as electrocardiogram (ECG) and near- 
infrared spectroscopy (NIRS) alongside EEG, clinicians can simulta-
neously evaluate the cardiac activity and cerebral oxygenation for as-
sociation with the DoA. The following section outlines key innovations 
in the space of multimodal monitoring of DoA. For most methods pre-
sented, the concepts are in their infancy and represent high value fea-
tures for implementation in future work. 

HRV-derived features in the time and frequency domain combined 
with a deep neural network were able to classify the DoA state with an 
accuracy of 90.1 % in a 23-patient study [112]. The combination of EEG 
and ECG was able to predict interoperative events such as hypotension 
with an AUC of 0.935 based on 3-, 5-, 10- and 15-minute prediction 
windows [113]. The variations in the local regularity of EEG relative to 
HRV reflect the interaction of autonomic and central nervous system 
activities during anaesthesia [20]. Time-frequency ridge mapping 
applied to the combined information from joint EEG-ECG recordings on 
the same data set yielded strong classification results for the DoA states 
[114]. These features achieved a precision of 94.14 % and a prediction 
time of 0.28 s [19]. In a study of eighty patients, heart rate variability 
(HRV) was assessed using spectral analysis and short-term Detrended 
Fluctuation Analysis (DFAα1). It was found that light general anaes-
thesia increased short-term fractal correlations in heart rate dynamics, 
whereas deep general anaesthesia disrupted these fractal properties. 
This indicates that ECG-derived features could enhance existing EEG- 
based Depth of Anaesthesia (DoA) assessment methods [93]. 

The brain, while only 2.5 % of body weight, disproportionately 
consumes 20 % of the body’s oxygen and receives 15 % of cardiac 
output. General anaesthesia reduces the brain’s glucose and oxygen 
metabolic rates, observable via positron emission tomography. Anaes-
thetics also influence cerebral blood flow and the vascular responses in 
regions like the prefrontal cortex, measurable through changes in hae-
moglobin concentrations using NIRS techniques. Moreover, anaesthesia 
impacts neurovascular coupling—the relationship between neurons, 
support cells, and vascular cells—dampening the usual correlation be-
tween neuronal activation, metabolism, and local blood flow. Conse-
quently, effective monitoring of brain oxygenation levels can distinguish 
anaesthetic states [115]. The sample entropy based on NIRS 

demonstrated statistical consistency between the BIS index during the 
complete anaesthesia process [116]. Brain oxygenation can be assessed 
noninvasively using near-infrared spectroscopy and has been associated 
with the DoA estimation in recent research [46,103,115,117]. The as-
sociation between the phase-amplitude coupling of different frequency 
NIRS signals and the EEG signal are capable of effectively discriminating 
between the DoA states. It was found that the AUC of BIS was 0.9856 ±
0.0252, which was higher than that of Modulation Index (MI) (0.9760 
± 0.0143). Suggesting that MI is comparable to BIS in its ability to 
distinguish between the periods of anaesthesia maintenance and awake 
[103]. In addition, it is suggested that this technology could also be 
employed to gauge the autoregulation of cerebral blood flow, assisting 
in the individualised titration of arterial blood pressure, and enabling 
bedside diagnosis of disrupted autoregulation [118]. Ha et al. [117] 
proposes a multimodal head-patch system that represents innovation in 
the field by simultaneously measures EEGs and NIRS on the frontal lobe 
to improve the responsiveness and noise tolerance of the DoA moni-
toring devices. In a clinical trial, the combined signals of clinically 
important transition from the awake to deep state are observed that the 
BIS could not detect suggesting the viability of this multimodal index for 
further investigation. 

Despite the slower dynamics associated with the calcium signal, 
there exists a strong correlation between EEG signal and two-photon 
signals obtained from the neuropil outside neuronal somata. These 
findings indicate that calcium signals alone may be sufficient to identify 
activity patterns like slow oscillations, and thereby evaluate the brain 
state and level of anaesthesia [119]. 

4.3. Evaluation and testing methods 

A range of evaluation and performance metrics in both index and 
classification scenarios were present in the reviewed literature. Typi-
cally, classification evaluation methods were employed with compari-
sons to anaesthesiologist observations of the DoA states during the 
surgical procedure. A variety of metrics were employed to provide 
different perspectives on the performance of a classification model. The 
most popular classification evaluation metric observed in the literature 
was accuracy due to its simplicity and understandability. Additionally, 
the area under the receiver operating characteristic curve (AUC) pro-
vides a comprehensive view of the performance across thresholds and 
due to the information density of the AUC, it is considered the gold 
standard of evaluation metrics for this model type [120]. Prediction 
probability (PK) quantifies the ability of a predictive model to correctly 
classify two randomly chosen observations. It is typically chosen in the 
case of binary prediction or estimation. On the other hand, index or 
regression models were compared to known industry benchmarks, most 
often the BIS. Correlation, r, and coefficient of determination, r2, assess 
the linear relationship between variables and were the most popular 
metrics used in these cases. The mean squared error (MSE) and root 
mean squared error (RMSE) quantify the differences between predicted 
and actual values and provide a measure of how well the model’s pre-
dictions match the overall variation in the data. In general, these eval-
uation methods were employed during feature selection and were not 
often used to evaluate final models. In addition to these metrics, a range 
of visualisations were employed successfully to evaluate the perfor-
mance of features and models. The most popular visualisation metrics 
employed were time-domain plot and scatter plots. Q-Q plots and 
Poincaré plots were used to explain feature associations and justify 
feature selections. Alternatively, heat maps are popular to convey in-
formation related to functional connectivity when observed with high- 
density EEG signals. 

5. Limitations and future direction 

In the evolving landscape of depth of anaesthesia (DoA) research, 
several limitations, and prospective research directions warrant 
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attention. In the reviewed studies, most work uses single or dual-channel 
EEG data. The effect of functional connectivity and relational dynamics 
within brain chemistry is well known, and the limited signal source may 
represent a potential oversight of the nuanced spatial information that 
could be obtained from multiple channels. Even research employing 
high-density EEG often does not effectively utilise channel selection 
strategies to optimize the feature set for the DoA assessment. Future 
studies should prioritize the optimization of EEG channel selection, 
exploring the impact of utilising multi-channel data to capture the 
comprehensive spatial dynamics of brain activity during anaesthesia. A 
rigorous examination of channel selection methods, paralleling the 
current depth of feature selection, can enhance DoA indicator accuracy. 

Additionally, to combat the issue of data source limitations, a 
concerted effort is needed to create a consortium for data sharing. This 
could involve establishing agreements between research institutions and 
private entities to standardize the sharing of EEG datasets. A multi- 
phased initiative could be developed, beginning with the creation of a 
shared database protocol, followed by the integration of diverse datasets 
from global sources to foster a more representative and robust body of 
data. Currently, a scant proportion of the literature—less than 20 %— 
indicates the availability of their datasets for public use or upon request. 
It is, therefore, a priority to bolster the sharing and transparency of 
research databases to facilitate effective comparison and validation of 
findings, leading to advancements in the field of EEG-based DoA anal-
ysis. Enhancing collaboration among data centres is pivotal for broad-
ening access to diverse training and testing datasets, which is essential 
for the development of more sophisticated machine learning models. 
Such collaborative efforts should be aimed at improving the modelling 
and evaluation processes to ensure that the resulting models are robust 
and reliable across various patient demographics and anaesthetic types. 
An essential step in this direction includes the initiation of pilot studies 
to validate the efficacy of proposed models and the establishment of 
partnerships with clinical practitioners for real-world testing. Addi-
tionally, this work should account for the known limitations of current 
indices like BIS, aiming to either improve upon these standards or 
develop alternative metrics that could offer more reliable and compre-
hensive DoA assessments. 

The current state of the DoA research often focuses on classification 
models that use limited states, such as ‘awake’, ‘light anaesthesia’, and 
‘deep anaesthesia’. This approach may misrepresent the granularity of 
the DoA states and could potentially lead to misleading evaluation 
metrics. The complexity of anaesthetic states is not discrete but exists on 
a continuum. Some of the most novel developments in the DoA research 
in the reviewed work were for classification models. In response to the 
limitation of existing DoA classification models, future research should 
embrace the development of more sophisticated algorithms. These 
should be capable of identifying a wider spectrum of anaesthetic states, 
moving beyond binary or ternary classifications to incorporate multi- 
class or continuous output models. This nuanced approach will require 
the establishment of new evaluation metrics that consider the contin-
uum of DoA states, potentially redefining industry standards. Effective 
development of new models should consider both the detail of contin-
uous models based on industry standard indexes and the meaningfulness 
of classification models based on clinical assessment of anaesthesia. 

Additionally, a notable gap in the existing literature is in the devel-
opment of the DoA prediction algorithms. This area holds particular 
interest for anaesthetists and clinicians, as forecasting the DoA states 
based on EEG and other vital signs could offer substantial benefits to 
patient care. Future research should focus on predictive analytics. Such 
studies should integrate multimodal data analysis, combining EEG sig-
nals with other physiological parameters to develop predictive models. 
This calls for the adoption of advanced machine learning techniques and 
cross-disciplinary collaboration to refine predictive accuracy and clin-
ical utility. 

In summary, the future trajectory of DoA research should be char-
acterized by an integrated approach that includes optimizing EEG 

channel selection strategies, expanding, and standardizing data sources, 
refining classification models to more accurately reflect the DoA con-
tinuum, and advancing the development of predictive algorithms. 
Addressing these focus areas will significantly contribute to the preci-
sion and clinical relevance of DoA assessments, with the goal of 
enhancing patient outcomes in anaesthetic care. 

6. Conclusion 

The effective and comprehensive monitoring of anaesthetic state is 
crucial for effective patient management during surgery. In this review 
paper, we review the state-of-the-art anaesthesia monitoring method-
ologies with a principle focus on EEG signal analysis techniques. These 
methods can be categorised into three principal stages: feature extrac-
tion, model building, and evaluation. The feature extraction stage often 
employs signal decomposition techniques such as Fourier or wavelet 
transformation methods. Notably, the extraction of complexity and en-
tropy features has emerged as significant due to its reliability and 
computational efficiency. Traditional model building methods such as 
linear regression and SVMs persist in their popularity due to their 
simplicity and transparency. These methods highlight the effectiveness 
of novel feature extraction methods employed. While these models show 
promise, their clinical relevance remains a subject for further investi-
gation. The reliance on high-accuracy models in small-scale studies 
highlights a gap in current research methodologies. Some models, 
particularly those using high-dimensional feature sets, may be prone to 
overfitting, especially in studies with limited sample sizes. Specifically, 
models employing complex, high-dimensional features are at risk of 
overfitting, a concern amplified in research with constrained sample 
sizes. 

It was apparent that with the advancement of deep learning tech-
niques and artificial intelligence a shift towards integrating these 
advanced techniques with existing feature extraction methods is leading 
to great improvements in model’s quality and robustness. Furthermore, 
with the growing ability of machine learning algorithms to manage 
increasingly complex data, the analysis of high-dimensional signals 
using networks and graph theory is gaining further prominence. When 
assessing deep learning models against traditional machine learning 
approaches, it becomes clear that although deep learning can yield more 
accurate results, it typically demands more elaborate feature extraction 
and extensive datasets. This situation calls for a judicious balance be-
tween achieving high accuracy and maintaining practical feasibility in 
clinical settings. Future developments are anticipated to refine and 
integrate these methods with established feature extraction techniques, 
enhancing the effectiveness of DoA estimation indices. 

Moving forward, research in DoA should adopt a holistic approach, 
encompassing the optimization of EEG channel selection, broadening 
and standardizing data sources, and refining classification models for a 
more precise representation of the DoA spectrum. Additionally, the 
progression of predictive algorithms will be crucial. Concentrating on 
these key areas is expected to substantially enhance the accuracy and 
clinical applicability of DoA evaluations, ultimately aiming to improve 
patient outcomes in anaesthesia management. 

In summary, this paper reviews, evaluates and classifies the leading 
DoA analysis methods with an emphasis on the recent studies in this 
research area. The insights from this review not only shed light on the 
current landscape of the DoA analyses but also highlight promising av-
enues for future research and innovation in this critical aspect of 
anaesthetic research. 
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