
 

Disturbance and resilience in riparian 

woodlands on the highly modified 

Upper Condamine floodplain 

 

Kathryn Mary Reardon-Smith  

BNatRes (Hons), MSc 

 

 

 

A thesis submitted for the award of Doctor of Philosophy 

University of Southern Queensland 

2011 



ii 

ABSTRACT 

Remnant ecosystems in agricultural landscapes are poorly understood in terms of 

their diversity, function and dynamics under altered disturbance regimes, and of how 

these influence resilience to future disturbance. Understanding native ecosystem 

responses to novel and multiple disturbances is a crucial foundation for adaptive 

management to maintain and enhance biodiversity and critical ecosystem services in 

production landscapes. This is particularly significant where environmental change 

drives irreversible threshold responses and ecosystem transitions to less functional, 

or less preferred, alternative ecological states. This research was conducted in 

remnant riparian woodland ecosystems along a regulated section of the Condamine 

River, southern Queensland, an ephemeral dryland river system draining an 

intensively farmed landscape in eastern Australia. Riparian woodland remnants on 

the Upper Condamine floodplain are subject to significant changes in hydrological 

regimes and land use intensity. They also exhibit dieback and limited recruitment of 

canopy species, as well as widespread invasion by the introduced perennial herb 

Phyla canescens (lippia); however, efforts to address these issues have largely failed 

to curb ongoing degradation, potentially due to a lack of understanding of the key 

drivers of ecological change operating in this complex socio-ecological landscape. 

This research addressed questions about the drivers of floristic composition, 

functional diversity and woodland condition in fragmented riparian woodland 

communities associated with a regulated dryland river system, and embedded in a 

production landscape. In particular, it investigated ecological responses to the range 

of disturbances (including altered hydrology, land use intensity, resource availability, 

and key species interactions) prevalent in this highly modified landscape. Two of the 

four studies presented test the hypothesis that the composition and condition of 

riparian woodland remnants on the Upper Condamine floodplain are associated with 

current levels of longitudinal and lateral hydrological connectivity. These studies 

used a stratified sampling design which partitioned the study area into river sections, 

and also considered the influence of lateral overbank and overland flood flows, and 

grazing within ecosystem fragments (remnants). Full floristic sampling and condition 

assessments of mature Eucalyptus camaldulensis/E. tereticornis trees were 

conducted at a total of 24 sites in 2004/05. Significant patterns in floristic 

composition, functional diversity and woodland condition were explained by 
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differences in hydrological variability; however, the confounding influence of land 

use and interaction between within-remnant land use (specifically grazing) and 

hydrological factors for some measures, indicated response to a complexity of 

drivers. 

A third study investigated the influence of local and landscape-scale hydrological 

and land use variables. It used a Bayesian model averaging (BMA) approach to 

identify informative model sets of explanatory variables, and key environmental 

predictors of floristic composition, community structure and ecological condition. A 

novel method was developed to examine dynamic transitions in species richness and 

abundance between reciprocal pairs of functional groups; this method used the ratio 

of species richness (or total abundance) in corresponding pairs of functional trait 

groups (e.g. C3:C4 species) as a community response variable reflecting the relative 

importance of each group along the environmental gradients tested. Groundwater 

decline was the primary predictor of ecosystem response, with lower floristic and 

functional diversity and more severe dieback associated with increasing depth to 

groundwater; this result suggests an overarching reliance on shallow groundwater 

resources for maintenance of ecosystem resilience not previously reported for this 

ecosystem type in Australia. Lippia abundance and dominant tree condition were 

also important biotic drivers of ecosystem condition in these communities, and key 

predictors of floristic composition and functional group richness and abundance 

transitions. Poor tree condition and loss of hydraulic function was associated with 

secondary impacts on less well adapted „terrestrial‟ groundcover species, while the 

subdominant species Acacia stenophylla responded positively to competitive release 

due to poor tree function and reduced tree density. Lippia cover was also strongly 

associated with the density (positively) and mortality (negatively) of mature trees. 

Small scale species interactions were investigated in a study which tested differences   

in groundcover vegetation composition and lippia cover, reproductive condition and 

growth habit between „distance from tree‟ and topographic position treatments in a 

riparian woodland on the Upper Condamine floodplain. Sampling was conducted 

along twelve transects extending from the base of mature Eucalyptus 

camaldulensis/E. tereticornis trees into canopy gaps. Results indicated that scattered 

trees play a significant role in facilitating the abundance and condition of lippia in 

this landscape, with evidence of high lippia abundance, reproductive effort and 
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consolidated clonal growth under trees canopies (described as a „halo‟ effect).  This 

interaction is likely to play a significant role in the persistence of this mesic, though 

highly adaptive, species in this drought prone landscape. Lippia cover greater than 

approximately 20% was also found to have a significant impact on the abundance 

and diversity of non-lippia species in these grassy woodlands. 

Results of this research are synthesised in a conceptual resilience-based state and 

transition „riparian woodland response‟ model identifying three critical transitions for 

riparian ecosystem condition and function related to effectively irreversible changes 

in the landscape: (i) transformation to a lippia-invaded landscape with the 

introduction, establishment and spread of lippia on the floodplain; (ii) transformation 

from riparian communities which are well buffered against drought, due to 

connection with shallow groundwater, to communities reliant on and susceptible to 

stochastic climatic variability; and (iii) population failure in the dominant functional 

canopy species complex, Eucalyptus camaldulensis/E. tereticornis, and  

transformation to non-eucalypt-dominant floodplain ecosystem types such as  Acacia 

stenophylla-dominant woodlands, floodplain grasslands or lippia-dominant herblands 

with significantly reduced capacity to provide essential ecosystems services in  

riparian contexts. 

In conclusion, this research indicates that observed condition in riparian woodlands 

on the Upper Condamine floodplain is an integrated response to a range of 

disturbances, but that certain changes (in particular, groundwater decline due to 

overextraction in combination with extended drought) may be critical to the long-

term persistence and function of these remnants. This study indicates the importance 

of systems-based empirical research to developing better understanding of the 

function and dynamics of remnant ecosystems in highly modified landscapes subject 

to both natural and anthropogenic disturbance regimes. The resilience-based 

approach also focuses attention on the key drivers of stability and critical transitions 

in these complex socio-ecological systems. Such research is vital to evaluating and 

predicting changes in remnant native ecosystems and the provision of important 

ecosystem services, and as a basis for adaptive management in multi-use production 

landscapes. 
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Chapter 1 General Introduction 

1.1 Research overview 

Natural systems worldwide are increasingly impacted by human activity (Chapin et 

al. 2006a, Hobbs et al. 2006, Safriel 2009), resulting in significant loss of ecological 

diversity (Laliberte et al. 2010). Yet ecosystem diversity (composition and function, 

sensu Noss 1990) is the fundamental basis of landscape function and the provision of 

ecosystem goods and services that underpin system productivity and human well-

being (McCann 2000, Millennium Ecosystem Assessment 2005). The combined 

effects of anthropogenic pressures, often in combination with natural stressors such 

as prolonged drought, may drive significant change in terms of composition and 

function, reducing the capacity of natural systems to respond to disturbances (Folke 

et al. 2004, Hooper et al. 2005), and leaving ecosystems prone to ongoing 

degradation, reinforced by further biodiversity decline (Folke et al. 2004, Safriel 

2009). They also contribute to secondary impacts in terms of ecosystem service 

provision, leading to productivity constraints and higher input requirements in 

production systems (Bell 1999, Laliberte et al. 2010), and significant societal costs 

associated with addressing impacts such as species invasions, loss of landscape 

function, and declining water quality and availability for downstream water uses 

(Sinden and Griffith 2007). Understanding the impact of human activity on 

ecosystems and the consequences of biodiversity change for ecosystem function and 

service provision is fundamental to ensuring sustainable land management 

(Lindenmayer et al. 2008). 

This is especially apparent in floodplain landscapes, which are some of the most 

highly modified landscapes worldwide (Décamps 1993, Tockner and Stanford 

2002). Their low slope, inherent fertility and proximity to water make them a focus 

for agricultural development, resulting in significant change in land cover and the 

types and levels of disturbances (Swift 1984, Marston et al. 1995). Increasing 

evidence of declining biodiversity and ecosystem function associated with major 

land and water use development indicates that ecosystems in highly modified 

landscapes such as floodplains are at significant risk (Decamps et al. 1988, Peterken 

and Hughes 1995, Kingsford and Thomas 2002). Such landscapes provide an ideal 

model to investigate the impacts of, and ecological responses to, altered disturbance 
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regimes associated with human activity, and can contribute significantly to our 

understanding of how ecological systems respond to change. This knowledge is not 

only vital to our understanding of how management might most effectively respond 

to limit loss of biodiversity and vital ecosystem services, but also how future 

disturbances such as climate change might play out across landscapes. There is a 

significant social imperative to better understand the function and adaptive capacity 

of such ecosystems in order to minimise degradation and management constraints in 

high value production landscapes. However, remnant ecosystems in agricultural 

landscapes in general and floodplain agricultural landscapes in particular are 

relatively little studied and poorly understood in terms of their diversity, function 

and dynamics (resilience) under altered disturbance regimes. 

This current research investigates the impacts and responses in remnant (sensu 

Saunders et al. 1991) floodplain riparian woodland ecosystems in a highly modified, 

relictual (sensu McIntyre and Hobbs 1999) production landscape. This review 

outlines the theoretical basis for the research, as well as current understanding of 

floodplain ecology and ecological responses to modified disturbance regimes 

associated with floodplain development. It concludes with an overview of the studies 

undertaken in this research, the key questions addressed and the significance of the 

research in terms of management and restoration of ecosystem function in the model 

socio-ecological landscape. 

1.1.1 Theoretical background  

One of the key ecological insights of the 1970s was the recognition of the 

importance of disturbance and non-equilibrial processes in ecosystems (Huston 

1994). This has led to major developments in ecological theory regarding ecosystem 

change and the regulation of species diversity (i.e. how diversity varies in space and 

time), and also to a greater understanding of the role of disturbance as a fundamental 

driver of ecosystem dynamics (Holling 1973, Wu and Louks 1995, Gunderson 

2000). It has also led to increasing recognition of the complexity of ecosystem 

responses and the potential for multiple alternative outcomes or ecosystem states (in 

terms of composition and function) for a given range of environmental conditions 

(e.g. Westoby et al. 1989, Seastedt and Knapp 1993, Huston 1994, Gillson 2004). 
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Non-linearities in system response and the possibility of alternative trajectories and 

ecosystem endpoints challenge the capacity of ecology to predict how systems will 

respond to new types or levels (intensity, frequency) of disturbance. Yates and 

Hobbs (1997), Shea and Chesson (2002) and Shea et al. (2004) all identify the need 

for an integrated theoretical framework within which disturbance dynamics can be 

adequately interpreted and outcomes predicted. Resilience thinking and a conceptual 

view of ecosystems (particularly socio-ecological systems which incorporate humans 

as a significant active component) as complex adaptive systems (CAS; Folke et 

al.1996, Levin 1998, Walker et al. 2004, Kinzig et al. 2006) represent significant 

progress in this regard. These also provide an overarching framework within which 

to investigate, interpret and better understand the mechanics of individual systems. 

Predicting ecosystem outcomes, particularly where there are likely to be non-linear 

system responses to multiple disturbances, remains a significant challenge 

(Groffman et al. 2006). 

Complexity 

Ecological systems are inherently complex, comprising large numbers of diverse 

interacting components which exhibit collective behaviour (patterns and processes) 

due to emergent properties (Gallagher and Appenzeller 1999) such as self-

organisation and adaptation (i.e. system development) in response to environmental 

change (Holling 1992, Levin 1998, 1999, Wu and Marceau 2002). Self-organization 

is evident in the hierarchical organization (e.g. trophic webs), spatial and temporal 

heterogeneity (patch dynamics), connections or flows (interactions, feedbacks) 

between components, and non-linearities (resilience, threshold behaviour) of 

ecosystems (Carpenter et al. 1999, Levin 1999, Wu and David 2002, Wu and 

Marceau 2002). 

Adaptive capacity describes an ecosystem‟s ability to maintain a diversity of 

components (e.g. species with different traits and presumed „function‟) (Liebold & 

Norberg 2004) and critical processes under dynamic environmental conditions 

(Norberg 2004). It also encompasses the system‟s ability to evolve through processes 

such as the sorting (filtering) and recombination of component species in response to 

change and altered selection processes (Liebold and Norberg 2004). CAS theory 

focuses on how community patterns result from the interaction of system 
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components, and how changes in individual components lead to system-level 

responses and adaptation (Hartvigsen et al. 1998, Norberg 2004, Green and Sadedin 

2005). 

The CAS concept has led to significant development in ecological thinking in 

relation to landscape ecology and phenomena such as pattern formation and patch 

dynamics, connectivity and fragmentation, and epidemic processes such as invasion 

of alien plants (Green 1993, Green and Sadedin 2005). Ecological foundations for 

the study of complex adaptive systems include an understanding of the role of 

disturbance in generating heterogeneous patterns within ecosystems (Wu and Loucks 

1995), interactions or feedbacks between pattern, process and scale in the landscape 

context (Wu 1995), and the dynamics of system responses (i.e. stability/resilience, 

threshold behaviour) (Holling 1973, Gunderson 2000). 

Disturbance 

Disturbance has been variously defined (e.g. Grime 1979, Huston 1979, 1994, 

Pickett et al. 1989), but includes any discrete event that changes the physical 

environment or disrupts population, community or ecosystem structure (White and 

Pickett 1985, Petraitis et al. 1989, Laska 2001). Individual disturbance events may 

have marked effects in terms of biomass removal, and subsequent resource 

availability and ecosystem productivity (Myster 2001, Yeakley et al. 2003, Clarke et 

al. 2005). Disturbance initiates reorganization within ecosystems, frequently 

exposing new regeneration surfaces, increasing resource availability, and increasing 

opportunities for the establishment of novel species (Colautti et al. 2006, Richardson 

et al. 2007). It also potentially alters species interactions, fundamental processes 

such as nutrient cycling, successional trajectories and system feedbacks (Bendix and 

Hupp 2000, Raffa et al. 2008). 

The history and sequence of disturbance events can significantly influence 

successional trajectories and ecosystem development (Turner et al. 1998), and 

combinations of different disturbance types, acting at different temporal and spatial 

scales, can lead to cross-scale interactions and complex ecosystem responses 

(Holling 1992, Peters et al. 2007). Greater levels of uncertainty and variability in 

successional trajectories are also associated with the occurrence of large infrequent 

disturbances (Turner et al. 1998), as species are unlikely to have evolved adaptive 
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responses to this scale of event. However, long-term dynamics within ecosystems 

are predominantly influenced by the nature of the prevailing disturbance regime (i.e. 

the magnitude and timing of historical disturbance events; Hobbs and Huenneke 

1992). 

Disturbance is a significant driver of diversity (Connell 1978, Huston 1979, 1994) 

and function in ecosystems (Hobbs and Huenneke 1992), altering the availability of 

specific resources and the dynamics of interspecific interactions at the local scale 

(influencing within-patch or alpha diversity) (Huston 1979, Hobbs and Huenneke 

1992). Variation in disturbance intensity across landscapes contributes to 

heterogeneous patch conditions and asynchronous community development due to 

differential responses to the timing and intensity of disturbance events. In this way, 

disturbance also plays a key role in maintaining diversity at the landscape level (beta 

diversity) by creating a mosaic of patches of different ages and successional stages 

(Turner 1987, Hobbs and Huenneke 1992, Legendre et al. 2005). Succession, in turn, 

is influenced by differential rates of establishment, maturation and reproduction of 

species and outcomes of species interactions within patches, as well as biotic 

exchange (colonisation) between patches (Pickett et al. 1987). Current understanding 

of the importance of disturbance in supporting diverse, well-functioning landscapes 

is based on the concept of ecosystems as meta-communities which comprise 

multiple spatially linked (in terms of dispersal) but temporally independent patches 

(Ward  and Stanford 1995b, Gillson 2004). 

System response to disturbance can be measured in terms of  resilience (i.e. capacity 

of a system to recover from disturbance and retain its fundamental character in terms 

of composition and function); resistance (i.e. the level of change in the natural 

disturbance regime which can be tolerated before significant change in ecosystem 

composition or function occurs); pattern of response (linear or non-linear); and rate 

of response (non-linear system responses may show no measurable change until 

some threshold level is reached, after which a rapid rate of change may occur; 

response may also occur some time after a disturbance where ecosystems are 

dominated by long-lived species) (Orwin and Wardel 2004, Orwin et al. 2006). A 

diverse well-functioning system subject to the range and intensity of disturbance 

historically experienced is expected to exhibit dynamic „stability‟, indicative of a 

high level of system resilience (Turner et al. 1993, Szabo and Meszena 2007). 
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Conversely, disturbances which exceed the limits of natural dynamics over time may 

reduce resilience and increase the potential for unexpected system responses 

including transition to alternative ecological states with significant changes in 

community composition or condition indicative of fundamental change in ecosystem 

function (Cumming and Collier 2005, Briske et al. 2008). 

Resilience 

The concept of ecosystem resilience is fundamental to understanding the nature and 

dynamics of disturbance-driven systems. Resilient systems can undergo a level of 

change in response to disturbance, but will recover and retain their fundamental 

identity (composition, structure and function) through the influence of negative 

stabilizing feedbacks which confer „dynamic stability‟ (Suding et al. 2004, Briske et 

al. 2006, Suding and Hobbs 2009). Theoretically, a diverse system with high 

redundancy (functional response diversity sensu Walker 1992) will be more resilient 

to disturbance and exhibit greater dynamic stability than one in which overall and, 

specifically, functional diversity is limited (Elmqvist et al. 2003, Hooper et al. 

2005). Systems with low diversity, but a high proportion of resistant species, may 

also exhibit limited response to disturbance, but are likely to exhibit limited 

functionality (Loreau and Behera 1999, Maestre and Cortina 2004). 

Disturbance, which alters underlying abiotic conditions or dominant species 

interactions and reduces the functional response diversity of a system, may result in 

loss of resilience (Scheffer et al. 2001, Folke et al. 2004, van Nes and Scheffer 2007, 

Hagerthey et al. 2008) and increased risk of a „switch‟ from negative regulatory 

feedbacks to positive feedbacks which reinforce change (Briske et al. 2006, Suding 

and Hobbs 2009). Change associated with exceeding ecological tipping points 

(thresholds) is indicated by a fundamental shift in the identity, composition and 

function of a system, and reorganization into a new stability domain and „alternative 

stable state‟ maintained by a new set of negative feedbacks (a „regime shift‟) (Mayer 

and Rietkerk 2004, Carpenter and Scheffer 2009). A system which has undergone a 

regime shift to an alternative stable state is likely also to develop increasing 

resilience and resistance with time (Laycock 1991, Mayer and Rietkerk 2004, 

Suding et al. 2004), and will generally require management intervention and 

significant input (energy, investment) to return to its previous (preferred) condition 
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(Folke et al. 2004, Prober et al. 2005, Chartier and Rostagno 2006). System recovery 

may also be unpredictable in a system exhibiting threshold dynamics unless the 

biotic and/or abiotic changes which induced the threshold response are effectively 

addressed (Prober et al. 2002b, 2005, Hobbs 2007, Suding and Hobbs 2009). 

1.1.2 Floodplain landscapes: patterns and processes 

Riparian and active floodplain (i.e. parts of the floodplain subject to periodic 

inundation and progressive drying between flood events) systems are dynamic 

heterogeneous non-equilibrial adaptive systems, which integrate landscape processes 

across spatial and temporal scales (Frissell et al. 1986, Ward et al. 2002, Wiens 

2002). The dynamics of riverine landscapes are primarily driven by the action of 

flowing water (Walker and Thoms 1993, Ward et al. 1999, Naiman et al. 2005), 

which drives geomorphic processes such as erosion and sedimentation, channel 

migration and floodplain formation (Hughes 1997, Ward et al. 2002), as well as 

species dispersal through the movement of plant propagules (Brown 2002, Ward et 

al. 2002) and flood-dependent establishment processes (Mahoney and Rood 1998, 

Pettit and Froend 2001a,b, Cooper et al. 2003a). However, as transitional ecosystems 

between riverine and terrestrial systems (Thoms 2003), they are also influenced by 

disturbance within the wider catchment (Tabacchi et al. 1998, Thoms et al. 1999, 

Allan et al. 2002). In combination, these events contribute to the exchange of 

materials and energy between riverine and floodplain systems, driving ecological 

processes, supporting floodplain function, and shaping and sustaining associated 

ecosystems (Lorenz et al. 1997, Gallardo 2003, Naiman et al. 2005). 

Appreciation of the importance of dynamic processes (e.g. disturbance, recruitment, 

succession) in terrestrial systems (Wu and Loucks 1995) has contributed to greater 

understanding of the evolution of complex riverine and floodplain landscapes (Thorp 

et al. 2006), the importance of cross-scale interactions (Thorp et al. 2006; Figure 

1.1) and mechanisms behind the spatial and temporal heterogeneity evident in 

dynamic riverine environments (Poole 2002, Thorp et al. 2006). Current 

understanding of the nature and function of active floodplain ecosystems is based on 

the interactive roles of connectivity and disturbance in driving ecological processes 

and patterns which shape ecosystem resilience in floodplain landscapes (e.g. Sedell 

et al. 1990, Stromberg et al. 1993). 
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Figure 1.1 Hierarchical relationships between hydrological, geomorphic and ecological 

systems associated with rivers (adapted from Thoms and Parsons 2002). This conceptual 

diagram (based on the River Ecosystem Synthesis; Thorp et al. 2006) comprises hydro-geo-

ecological hierarchies and cross-scale interactions driving abiotic and biotic processes 

(including connectivity) and ecological patterns (including heterogeneity) in riverine 

(riparian and floodplain) landscapes. Arrows indicate potential direction of major 

flows/influences, but are not exclusive of interactions in any direction, or across/between 

scales. 

 

 

Connectivity 

Conceptual hypotheses developed to explain geomorphic and ecological processes in 

river corridors focus on the spatial and temporal nature of hydrological connections. 

These include the River Continuum concept (Vannote et al. 1980), the Flood Pulse 

(a view of the floodplain as a mobile „aquatic/terrestrial transition zone‟; Junk et al. 

1989) and Flow Pulse (Tockner et al. 2000) concepts, the Hyporheic Corridor 

concept (the hyporheos being the saturated substrate beneath the stream; Stanford 
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and Ward 1993, Boulton 2007), and the River Ecosystem Synthesis (Thorp et al. 

2006). Overall, these concepts recognise four key dimensions of hydrological 

connectivity: longitudinal (upstream-downstream linkages along the river corridor); 

lateral (transverse linkages across the floodplain associated with overbank flooding); 

vertical (surface-groundwater linkages within the river corridor); and temporal (the 

range of timescales relevant to these spatial linkages). 

Spatial connectivity plays a critical role in physically linking components across 

floodplain landscapes. The linear configuration and directional flow of energy and 

resources highlight the importance of longitudinal and lateral connectivity within the 

stream corridor (Tabacchi et al. 1998, Grant et al. 2007), and the ecological 

consequences of flows and floods are generally well recognised. In-stream flow 

supports aquatic and semi-aquatic species and ecosystems, and movement (including 

dispersal) of these within the river corridor (Tabacchi et al. 1998, Grant et al. 2007, 

Gurnell et al. 2008). Overbank flooding refills floodplain wetlands and promotes 

increased productivity by supplementing soil moisture and redistributing sediment 

and plant propagules across the floodplain (Thoms 2003, Leyer 2006, Gurnell et al. 

2008). The importance of vertical connectivity is also recognised (e.g. Brunke and 

Gonser 1997, Mackay 2006, Boulton 2007). Exchange between surface and 

groundwater systems fills shallow alluvial aquifers, access to which is a critical 

resource for groundwater-dependent (phreatophytic) riparian vegetation (Busch et al. 

1992, Smith et al. 1998, Costelloe et al. 2008) and an important buffer to streamflow 

(as baseflow back to the stream) during extended periods of low rainfall/drought 

(Dahm et al. 2003). Temporal variations in connectivity also play a major role in 

determining processes which influence the composition, structure and function of 

riverine (including floodplain) ecosystems (Amoros and Bornette 2002, Thoms et al. 

2005, Porter et al. 2007). Temporal connectivity is often scaled into a hierarchy of 

hydrological phenomena including the flow regime, flow history, flood pulse, and 

flow hydraulics (Thoms and Sheldon 2000a,b, 2002, Thoms and Parsons 2003), 

which are linked to geomorphological and ecological responses (Figure 1.1). 

The importance of spatial and temporal connectivity is especially evident in river 

systems in more arid regions („dryland rivers‟), where rainfall patterns are variable 

and erratic and result in ephemeral flows and contrasting states of flood and drought 

which, in many cases, occur at unpredictable intervals (Sheldon 2005). Ecosystem 
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processes in these naturally highly fragmented (temporally and spatially) river 

systems may differ significantly from those in perennially flowing river systems, 

being strongly influenced by wetting and drying cycles (Capon 2003) and by spatial 

and temporal scales of connectivity (highly variable and often short-lived levels of 

connectedness during floods, highly disconnected during droughts) between riverine 

and floodplain components (Sheldon et al. 2002, Sheldon and Thoms 2006b). 

Vertical connectivity between surface waterbodies and shallow alluvial aquifers 

supports persistence of floodplain waterholes and wetlands during periods of low 

surface flows (Hatton and Evans 1998, Murray et al. 2003, Brunke et al. 2003), and 

may be critical to the health and diversity of riparian ecosystems (Horton et al. 

2001a, Harner and Stanford 2003, Lamontagne et al. 2005a) in these landscapes. 

Groundwater access may provide a critical temporal buffer for species either directly 

or indirectly dependent on shallow groundwater systems for survival during periods 

of extended and severe drought (Elmore et al. 2003, 2006a). 

Heterogeneity 

Variable levels of hydrological connectivity mean that floodplain ecosystems are 

naturally fragmented along rivers where large-scale dynamic natural processes (e.g. 

flooding, drought) occur (Ward et al. 2001, Thoms et al. 2005, Sheldon and Thoms 

2006b). Interactions between climate, floods, and plant succession produce variable 

rates and levels of connectivity and patch turnover (Tockner et al. 1998, Whited et 

al. 2007) resulting in significant complexity with different patterns and processes 

occurring at a range of spatial scales in riverine and floodplain environments (e.g. 

Huggenberger et al. 1998, Thoms et al. 2005, 2007). These different landscape 

legacies (Foster et al. 1998, Parsons et al. 2006) influence the structure, composition 

and function of floodplain communities and contribute to high levels of 

heterogeneity in floodplain ecosystems (Gann et al. 2005, Jenkins et al. 2005, 

Jansson et al. 2007). 

Vegetation patterns in floodplain ecosystems also arise from component species‟ 

tolerance and physiological response to disturbance and hydrological conditions 

such as inundation and waterlogging (Chen et al. 2002, Leyer 2005, Capon 2007), 

wetting-drying cycles, and frequency and timing (seasonality) of flows including 

floods and no-flow periods (Capon 2003, 2005, Stromberg et al. 2006). These 
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phenomena determine the survival, growth, competitive and reproductive fitness of 

individuals, and act as selective filters on the distribution and abundance of species. 

Flooding disturbance effectively limits the occurrence of species intolerant of high 

flow velocities, mobile substrates (scouring, sedimentation) or inundation in these 

landscapes (Turner et al. 2004), while floodplain ecosystems associated with dryland 

river systems may also exhibit limited diversity of species which are poorly adapted 

to cope with drought and extreme moisture conditions (e.g. Cleverley et al. 1997, 

Horton and Clark 2001). 

Resilience in floodplain ecosystems 

Resilience in floodplain ecosystems is fundamentally associated with variability in 

temporal and spatial connectivity, and the resultant heterogeneity of resources and 

species distributions across the active floodplain landscape (Tockner 2007). 

Community assemblages, comprising a diversity of species adapted to the range of 

conditions associated with the historical disturbance regime, retain the capacity 

(often through the formation of persistent seedbanks; e.g. Holzel and Otte 2004, 

Capon and Brock 2006) to respond to this variability, and maintain ecosystem 

function (e.g. Bagstad et al. 2005). For example, Capon (2005) found that frequently 

flooded sites on the Cooper Creek floodplain, central Australia, were more similar to 

each other than those which were rarely flooded. Capon and Brock (2006) similarly 

reported that spatial patterns in soil seed bank composition were associated with the 

broad flood frequency gradient in this same landscape. Extreme variability (e.g. 

severe drought) in arid and semi-arid floodplain systems may also be buffered by 

residual connectivity with shallow alluvial groundwater systems providing critical 

drought refugia (Sedell et al. 1990) which enable species persistence and facilitate 

the recovery of ecosystem function following drought (Lake 2003). 

1.1.3 Floodplain development 

By contrast, rivers and floodplains significantly modified by human activities are 

increasingly disconnected and at odds with their evolutionary dynamics. 

Anthropogenic changes in landscape configuration (e.g. ecosystem fragmentation), 

in combination with management intensity, mean that natural disturbance regimes 

are likely to be significantly altered (Hobbs and Huenneke 1992). Water resource 
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development (flow regulation or extraction) to support and protect irrigated 

agriculture or urban settlements has led to significant modification of hydrological 

flow in rivers (Baron et al. 2002). Streamflow modification, resulting in altered 

streamflow and flooding, constrains the exchange of materials (e.g. water, nutrients, 

sediment) and energy between riverine and floodplain systems which drives natural 

processes, supports floodplain function, and shapes and sustains associated 

ecosystems (above). Extraction of water resources to ensure supply to production 

systems on developed floodplain landscapes results in declining availability to 

support water-dependent natural systems (Zekster et al. 2005, Elmore et al. 2006a). 

In addition to significant landscape and hydrological change, major land use 

modification is also almost universally associated with increased presence and 

diversity of non-native (alien) species (Vitousek et al. 1997). These species 

potentially increase the overall diversity of native ecosystems in these landscapes, 

particularly where they possess novel traits, occupy alternative niches or contribute 

to the functional response diversity of what are effectively now novel ecosystems 

(sensu Hobbs et al. 2006, 2009). However, where these species are competitive 

strategists (sensu Lambdon et al. 2008a), with traits that enable them to access a 

greater proportion of resources (e.g. Maron and Marler 2008, Schmidt et al. 2008) or 

directly inhibit other species (e.g. Callaway and Ridenour 2004, Vivanco et al. 

2004), they may become dominant and contribute to declining diversity and 

heterogeneity within a landscape (Lodge 1993, Lambdon et al. 2008a, b). Such 

species constitute a major disturbance to invaded ecosystems (Mack and D‟Antonio 

1998, Gooden et al. 2009a,b), significantly reducing and displacing native species, 

altering ecosystem function (Hobbs and Huenneke 1992) and system responses to 

disturbances (Prober et al. 2002b), and modifying subsequent disturbance regimes 

(the frequency/intensity/type of disturbances) (D‟Antonio and Vitousek 1992, 

Brooks et al. 2004). 

Highly modified floodplain landscapes and their remnant native (often invaded) 

ecosystems represent integrated social-ecological systems (sensu Carpenter et al. 

2001), with new or altered drivers of ecosystem structure and function, altered 

ecological processes and outcomes (Walker and Meyers 2004, Walker et al. 2006), 

and potentially altered resilience (Walker and Salt 2006). In many cases, undesirable 

changes in composition (with loss of key species and spread of invasives) and a 
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decline in ecosystem function are observed in these landscapes (Fischer and 

Lindenmayer 2007, Prober and Smith 2009). Despite recognition, the capacity to 

restore ecological function to developed landscapes is fundamentally constrained by 

a number of social, ecological and environmental factors. These include the social 

legitimacy of agricultural land and water use for food and fibre production, the legal 

property and resource access rights of current landholders, the legacy of historical 

development (including current extent of biodiversity change and lag effects into the 

future, and ecological feedbacks to environmental processes and provision of 

ecosystem services), and lack of understanding of the critical drivers of ecosystem 

function (Baron et al. 2002, Hooper et al. 2005). 

1.1.4 Disturbance ecology in modified floodplain landscapes 

Changes associated with floodplain development have effectively suppressed the 

range of fluvial dynamics in river systems (Ward and Stanford 1995b), reducing 

connectivity, limiting the range of natural disturbances and contributing to reduced 

heterogeneity across floodplain landscapes (Ward et al. 1999, Ward and Tockner 

2001). This loss of natural environmental dynamism and heterogeneity poses a 

serious threat to the composition, function and persistence of riverine and floodplain 

ecosystems (Langhans et al. 2006, Stromberg et al. 2007a) and may have significant 

consequences for the continued function of these important socio-ecological systems 

(Naiman et al. 2005). Tockner and Stanford (2002) suggest that up to 90% of 

floodplains in Europe and North America are essentially functionally extinct as a 

result of land use change and altered hydrology, with consequent loss of ecological 

integrity, biodiversity (aquatic and riparian species) and capacity to provide 

ecosystem services. 

‗Disconnectivity‘ 

A well-recognised consequence (and threat to biodiversity) of land use change is the 

incremental fragmentation of native ecosystems, leading to increasingly smaller and 

more isolated remnant patches within a relatively inhospitable matrix (Cox et al. 

2001) and significant secondary impacts on biodiversity (McAlpine et al. 2002). 

Patch size and connectedness (proximity to similar patches) are important factors for 

the persistence of many species within agricultural landscapes (Dale et al. 2000, 
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Prober and Smith 2009), influencing the extent of available habitat and dispersal of 

native species (e.g. Cale 2003). However, it is not clear that this hypothesis is 

directly applicable to dynamic disturbance-driven riparian ecosystems (Holl and 

Crone 2004, Wimberly 2006), or to plant species whose dispersal is facilitated by the 

directional movement of water (Tabacchi et al. 1998, Jensen et al. 2008a, b). 

Fragmentation of riparian ecosystems may be more strongly associated with the 

presence of in-stream and floodplain structures, such as dams, weirs and levees, 

which constrain flow, disrupt dispersal pathways and natural disturbance regimes, 

shorten environmental gradients and upstream-downstream linkages, and isolate 

river channels from riparian and floodplain systems (Ward 1998, Andersson et al. 

2000, Jansson et al. 2000 a,b). These alterations interfere with successional 

trajectories, habitat diversification, migratory pathways and other processes 

associated with connectivity within riverine and floodplain systems (Ward 1998). 

The term „serial discontinuity‟ (Ward and Stanford 1993, 1995a), was coined to 

describe the disruption of riverine biotic and abiotic processes as a consequence of 

dam and weir construction along the river continuum. However, this was based on 

an understanding of unregulated rivers as single-thread continually flowing systems 

(Ward and Stanford 1995a), and fails to account for the variability inherent in many 

systems (Ward et al. 2002). In reality, flow regulation may have disparate impacts, 

depending on the nature of the stream and the attribute of interest (Nagler et al. 

2007). In ephemeral streams which undergo periodic fragmentation due to highly 

variable precipitation and flow conditions, smaller regulatory structures such as 

weirs may have limited adverse impact, and in fact may act to enhance the frequency 

of in-stream drought refugia (Sedell et al. 1990, Lake 2000) and the extent of 

surface-groundwater exchange (shallow groundwater aquifer recharge) (Lane and 

Zinn 1980). 

Of greater significance to riparian ecosystems, particularly in dryland river systems, 

is flow regulation and management for flood mitigation or water supply purposes 

which significantly alter the frequency and seasonality of flows and reduce the 

inherent temporal variability of in-stream flow patterns (Ward and Stanford 1995b). 

In terms of spatial connectivity, flow regulation moderates flood peaks and the 

frequency, extent and duration of over-bank flooding, and hence, the extent of lateral 

connectivity across the floodplain (Ward and Stanford 1995b, Ward et al. 1999). 
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Failure to reconnect and rejuvenate floodplain wetlands, for example, limits 

dispersal and recruitment of flood- and wetland-dependent vegetation species and 

enables ecological succession to proceed, leading to increasing terrestrialisation 

(sensu Ward et al. 2001) and replacement with flood-intolerant habitat-generalist 

species (Marston et al. 1995). This may eventually result in loss of wetland 

ecosystems (Ward et al. 1999, Deil 2005) and functional diversity (specifically, 

species adapted to flooding) across the landscape (Capon 2007). Floodplain riparian 

forest structure may also be significantly impacted by altered flows which mimic 

drought conditions and restrict successful recruitment of ecosystem dominants, such 

as Populus and Salix in regulated sections of the upper Colorado basin, USA (e.g. 

Cooper et al. 2003b). 

Water extraction (for urban, mining or agricultural purposes) can also have a major 

impact on in-stream flow volumes, particularly in dryland river systems subject to 

variable precipitation and flow (Pringle 2000, CSIRO 2008). This is further 

complicated where flows are diverted and distributed away from the main river 

channel, and where groundwater pumping from the shallow alluvial aquifer 

contributes to dewatering of river reaches (Zekster et al. 2005, Evans 2007, CSIRO 

2008). Increasing discontinuity (intermittency of flow) in ephemeral streams and 

declining groundwater levels, associated with prolonged drought or dewatering of 

groundwater aquifers through extraction, can lead to disconnection between surface 

and underground waterbodies (Braaten and Gates 2003, Evans 2007, CSIRO 2008). 

This disconnectivity has potentially important consequences for phreatic 

(groundwater-dependent) species and ecological systems, exacerbating drought 

conditions and leading to decline in individual species and loss of functional 

diversity across affected landscapes (Stromberg et al. 1996, Elmore et al. 2003). 

Riparian species have been referred to as „drought avoiders‟ due to their reliance on 

ready access to water (usually subsurface/groundwater) (Smith et al. 1998). They are 

frequently physiologically adapted to and dependent on high water availability, lack 

the physiological capacity to reduce water use, and risk significant physiological 

constraints due to hydraulic failure under low water conditions (Alder et al. 1996, 

Pockman and Sperry 2000, Rood et al. 2000). Decline in groundwater levels or 

reduced flooding can contribute to increased mortality in such species (e.g. Akeroyd 

et al. 1998, Lytle and Merritt 2004, Horner et al. 2009). 
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Homogeneity 

Altered biodiversity patterns at a range of scales (e.g. reduced landscape diversity, 

ecosystem homogenisation, changes in species composition and population fitness) 

are universally reported where floodplain landscapes are subject to land use 

development and modified hydrological regimes (e.g. Rood and Mahoney 1990, 

Stromberg et al. 2005a, Dufour et al. 2007). Reduced frequency, extent and duration 

of flooding limit the lateral connectivity of the floodplain, its water bodies and 

vegetation communities with the main river channel. Fluvial processes and 

associated channel migration, erosion and sedimentation, become less dynamic 

(Shields et al. 2000), and dispersal of floodplain organisms or their propagules is 

suppressed (Beauchamp and Stromberg 2008, Middelton and Wu 2008), as is 

reproduction and recruitment in species responsive to flooding (Horton and Clark 

2001, Stromberg et al. 2007a). 

Comparisons between regulated and unregulated river systems show evidence of loss 

of heterogeneity at a range of temporal and spatial scales with reduced inundation 

and connectivity across the floodplain (Bowen et al. 2003). This includes a range of 

impacts, from reduced variation in patch distribution across the floodplain landscape 

(Ward and Stanford 1995b, Stromberg et al. 2007a) to changes in nutrient cycling and 

ecological processes associated with a moving littoral zone (Bowen et al. 2003). Lack of 

flooding and increasing isolation of the floodplain from the river removes an 

important environmental selection filter which maintains flood-dependent species 

and constrains the more terrestrial or flood-intolerant species, leading to increasing 

terrestrialisation and reduced functional diversity of vegetation patches across 

previously active floodplains (Ward et al. 2001, Petrone et al. 2005). 

In combination, flow modification and geomorphic changes associated with reduced 

flooding result in a more homogeneous landscape, with overall loss of patch 

diversity and simplification of within-patch structure (Stromberg et al. 2005a) (i.e. 

reduced beta-diversity). Changes in species composition and declining species 

richness in response to reduced temporal and spatial heterogeneity associated with 

reduced disturbance and reduced resource availability contribute further to 

ecosystem homogenisation (Stromberg et al. 2005a) (i.e. reduced alpha-diversity). 

Reduced flooding, dewatering of rivers and associated aquifers, especially in 
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combination with periodic drought, drive floodplain landscape drying 

(‘desertification’) and may induce compositional shifts toward drought-tolerant 

species (e.g. Stromberg et al. 1996, 2005a). 

These processes are also evident in dryland ephemeral river systems; flow regulation 

and abstraction contribute to significant flood modification and dewatering of the 

river system, its alluvial aquifer and potentially the floodplain landscape. However, 

the presence of in-stream regulatory structures such as weirs may act to counter the 

trend towards overall homogeneity and biodiversity decline to some extent, 

providing critical drought refugia which enable some species to persist (e.g. Sedell  

et al. 1990, Jacobsen and Kleynhans 1993, Kinzli and Myrick 2009), and 

supplementing alluvial aquifers through groundwater recharge (Lane and Zinn 

1980). 

Resilience in modified floodplain ecosystems 

Altered hydrological pattern is a significant driver of change in riverine and riparian 

ecosystems, contributing to decline in dominant tree species (e.g. Rood and 

Mahoney 1990, Lytle and Merritt 2004, Stromberg et al. 2007a), increased 

opportunity for invasion by alien species (e.g. Stromberg et al. 2007b) and 

potentially a shift in community structure (Capon 2003), although few studies have 

investigated this. Stromberg et al. (2007a) report reduced diversity and cover of 

herbaceous (and particularly perennial) species at local scales and reduced landscape 

patch heterogeneity, where river regulation and water diversion resulted in 

increasing intermittency of in-stream flows, associated groundwater decline and 

replacement of dominant canopy species by more drought-tolerant and less 

groundwater-dependent canopy species. Altered sedimentation rates and coarsening 

of substrates downstream of reservoirs in this study also reduced the water- and 

nutrient-holding capacity of soils, contributing further to altered cover and richness 

of herbaceous vegetation (Stromberg et al. 2007a). Elmore et al. (2003, 2006a) 

report a shift in species composition in alkali meadows from perennial to alien 

annual herbaceous species where groundwater declined below the average rooting 

depth of 2.5 m, resulting in the decoupling of vegetation cover from shallow 

groundwater, which provided a buffer during drought, and a functional shift to 

increased response to precipitation. The study showed a slower rate of change where 
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deep-rooted woody (shrub) species were present suggesting that these moderated the 

effect of groundwater decline to some extent (Elmore et al. 2006a). 

Altered hydrological regimes are also reported to facilitate the dominance of 

invasive alien species which further contribute to the altered composition, structure 

and function of remnant ecosystems in these landscapes. Flow regulation and the 

subsequent dampening of the hydrological variability of streams in the arid south-

western USA have contributed to decline in the native dominant canopy species, 

Populus spp. and Salix spp., and increased prevalence of the more drought-tolerant 

alien invasive species, Tamarix ramosissima (Stromberg 1998a,b, Stromberg et al. 

2007b). However, the potential impact of such species on community structure and 

resilience in riparian ecosystems has received limited attention.  In South Africa, 

restoration of alien-invaded riparian zones relies on regeneration of native species 

from the persistent soil seedbank after clearing of alien tree species such as Acacia 

longifolia; however, not all riparian species are represented in the soil seedbank 

(Vosse et al. 2008), indicating a potential impact on functional response diversity in 

invaded communities. 

1.1.5 Key knowledge gaps 

Increasing awareness of the importance of ecosystem services, in conjunction with 

evidence of significant decline in native ecosystems in highly modified landscapes, 

has led to an increased focus on understanding the response (i.e. resilience, stability, 

threshold behaviour) of these systems to anthropogenic change (Walker et al. 2002, 

Carpenter et al. 2006, Laliberte et al. 2010). However, despite considerable 

development in the theories of resilience and complex adaptive systems (Hobbs and 

Suding 2009), there has been limited empirical research reported to date. Research to 

identify alternative states and potential thresholds in managed ecosystems 

(predominantly in grazed rangelands) has also incorporated key elements of 

resilience thinking (Briske et al. 2006, 2008). However, terrestrial ecological 

systems research has largely focused on compositional and functional responses to 

grazing disturbances, predominantly in semi-natural grazed rangelands (e.g. 

McIntyre et al. 1995, Lavorel et al. 1999a, Diaz et al. 2007). Few studies have been 

conducted in highly modified landscapes where multiple, potentially interacting 

disturbances are at play, with the exception of work on resilience in socio-ecological 
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systems (sensu Holling 2001) (Walker et al. 2002, 2004, Folke 2006, Kinzig et al. 

2006). As a result, there is limited understanding of the resilience of natural systems 

to the cumulative impacts of multiple disturbance gradients. 

Studies into the ecology of remnant ecosystems in modified landscapes have focused 

on the geometry of landscapes (patch size, shape and separation) (Forman 1995) and, 

to a lesser extent, impacts associated with the nature of the surrounding agricultural 

matrix (e.g. Collard 2007, Martin et al. 2006). The majority of such studies have 

focused on individual (or select groups of) faunal species (e.g. Martin et al. 2006, 

Kath et al. 2009, Brady 2010), although Batterham (2008) investigated the effect of 

patch geometry on tree health and population processes in the dominant floodplain 

canopy species Eucalyptus populnea. Declining health of canopy species in response 

to land use intensification has also been investigated in a number of instances (e.g. 

Jones et al. 1990, Wylie et al. 1992, 1993, Davidson et al. 2007, Banks 2006). 

However, there has been little focus on understanding the effect of surrounding land 

use on the overall condition, composition or function of remnant ecosystems in these 

landscapes (Kleyer et al. 2007), and few, if any, studies looking at impacts on 

riparian communities. 

Research in riparian communities has focused on the impacts of river regulation and 

altered flow regimes on diversity, health and population processes in dominant 

riparian canopy tree species (e.g. Shafroth et al. 2002a,b, Cooper et al. 2003a, 

Lambs et al. 2006). While these species are possibly keystone species (Mills et al. 

1993, Manning et al. 2006) in these environments and often important in terms of 

ecosystem function (Stromberg et al. 1996, Sabater et al. 2000), the flow-on effects 

of changes in dominant structural species on community structure and resilience has 

received limited attention. Widespread recognition that floodplain riparian systems 

are disturbance-driven ecosystems, and of considerable importance in terms of 

ecological function and environmental service provision (Tockner and Stanford 

2002, Sweeney et al. 2004), indicates a need for a systems-based understanding. The 

time-lag involved in measurable response in relatively long-lived and adaptive 

species such as canopy tree species (e.g. Chapin et al. 1993, Kozlowski and Pallardy 

2002) further reinforces the potential risk associated with an approach which uses 

these as indicators of system response, increasing the risk that critical ecological 
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thresholds may be exceeded before the need for management response is apparent 

(Eamus et al. 2006, Michelson 2008). 

A limited number of studies have investigated changes in the composition, structure 

and function of these systems in response to altered hydrology (e.g. Leyer 2004, 

2005, Sluis and Tandarich 2004, Stromberg et al. 2005a, 2007b, Uowolo et al. 

2005), and some have identified hydrological thresholds associated with alternative 

ecosystem states (e.g. Leyer 2004, Stromberg et al. 2005a). No such studies appear 

to have been conducted in Australia, where the focus has been on riparian and 

floodplain canopy tree health and population processes in response to altered 

flooding regimes (e.g. Pettit and Froend 2001b, Robertson et al. 2001), landscape 

hydrology and salinisation (e.g. Jolly et al. 1993, 1996, Overton et al. 2006). 

Despite limited ecological understanding, there is considerable evidence that 

changes to hydrological regimes, as a result of flow modification and associated 

water resource development, are having significant ecological impact in riverine and 

riparian environments, including adverse impacts on population processes in a 

number of water-dependent species groups (e.g. waterbirds, fish, riparian tree 

species) (Kingsford 2000, Bunn and Arthington 2002). Within the last decade in 

Australia, there have been increasing moves to address this through the provision of 

environmental flows designed to meet the requirements of identified „environmental 

assets‟ such as iconic species (e.g. Murray river cod Maccullochella peelii peelii and 

river red gum Eucalyptus camaldulensis) and high priority wetlands (e.g. the 

Barmah-Millewa Forest, Chowilla Floodplain, the Lower Murray lakes) (Reid and 

Brooks 2000, Stewart and Harper 2002). Within the Murray-Darling Basin, in which 

hydrological regimes are highly modified and water resources are significantly over-

allocated (Kingsford 2000, CSIRO 2008), this process faces significant social and 

legal (policy) hurdles associated with the current level of development (Ladson and 

Finlayson 2002). Lack of scientific „certainty‟ is a significant factor in the public 

debate (White et al. 2010), and frequently acts to undermine both political will and 

ultimately the capacity for change. Variation in over-arching climatic systems across 

Australia also signifies the need for better understanding of the particular dynamics 

of individual systems, and the incorporation of these into planning and management, 

and increased adherence to and application of the „precautionary principle‟ in natural 

resource management policy (COMEST 2005). 
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1.2 Aims and scope of current study 

The review of literature presented above indicates a growing understanding of the 

role of disturbance, and in particular the hydrological regime, as a key driver of 

ecological patterns and dynamics in floodplain and riparian ecosysytems. However, 

it also indicates the importance of better understanding how these factors operate in 

conjunction with changes associated with anthropogenic modification in socio-

ecological landscapes where ecosystem values, including the provision of ecosystem 

services, are significantly altered. This research seeks to address the fundamental 

need for hypothesis-driven systems-based empirical research to document, 

understand and predict native ecosystem responses and the socio-ecological 

consequences of altered hydrological regimes and land use change, to aid informed 

land and water management decision-making aimed at optimizing social, economic 

and ecological outcomes within „working‟ landscapes such as the Upper Condamine 

Floodplain. 

1.2.1 Research questions 

This study examines the relationship between major landscape (land cover, land use) 

and hydrological change and the resilience of remnant native floodplain ecosystems 

embedded in a production landscape in southern Queensland. It investigates 

ecosystem responses to landscape modification and current disturbance regimes in 

riparian vegetation communities associated with the regulated section of the 

Condamine river system in an intensively farmed area of the Upper Condamine 

floodplain. It identifies major land and water use gradients associated with patterns 

in floristic composition and ecosystem condition in this landscape. It also 

investigates finer-scale interactions between community composition and key 

species which play a critical functional role in these communities. 

Specific questions addressed include: 

(i) are patterns in floristic composition and ecological condition in riparian 

woodland remnants associated with current levels of longitudinal, lateral, 

vertical and temporal hydrological connectivity on the Upper Condamine 

floodplain; 
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(ii) is the hydrological regime the dominant driver of floristic composition, 

community structure and ecological condition in remnant riparian woodland  

communities within the highly modified production landscape of the Upper 

Condamine floodplain; 

(iii) what are the key environmental gradients driving community dynamics as 

evident in measures of  floristic composition, community structure and 

dominant species condition in remnant riparian woodland  communities on 

the Upper Condamine floodplain; 

(iv) do interactions between key species (dominant canopy species, dominant 

invasive weed species) play a significant role in determining floristic 

composition and ecological condition in these communities; and 

(v) what are the implications of significant landscape modification for continued 

ecological function, including resilience, in riparian woodland remnants on 

the Upper Condamine floodplain? 

1.2.2 Thesis outline 

A detailed overview of the study area is provided in Chapter 2, which describes the 

biophysical characteristics and major environmental changes associated with land 

and water use development on the Upper Condamine Floodplain. In particular, this 

chapter documents patterns in streamflow and land use type and intensity at the river 

section and river bank scales by which the riparian landscape is stratified in studies 

reported in Chapters 3 and 4. 

Chapters 3 and 4 present the results of a survey of Eucalyptus camaldulensis/E. 

tereticornis riparian woodlands and their composition and condition in relation to 

broad hydrological, spatial and land use criteria on the Upper Condamine floodplain. 

Chapter 3 focuses on major patterns in species composition, particularly in 

functional trait groups identified as relevant to the dominant disturbance regimes in 

this landscape. Chapter 4 is concerned with patterns in the abundance and condition 

of dominant canopy species. These studies test the hypothesis that longitudinal and 

lateral hydrological connectivity are key drivers of ecosystem pattern in riparian 

woodland remnants in this landscape (hence relate to Question1, above). They also 

test the role of within-remnant land use (i.e. grazing), which is reported to interact 
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with hydrological disturbance to influence community composition and structure in 

riparian landscapes (e.g. Sharp and Whittaker 2003, Lunt et al. 2007a, b). 

The study reported in Chapter 5 tests the over-riding importance of the hydrological 

regime in determining community patterns in remnant riparian woodland embedded 

in highly modified Upper Condamine floodplain landscape (i.e. Question 2, above) 

by modeling key community responses to sets of environmental variables which 

capture hydrological and spatial (land use/land cover) attributes at local landscape 

scales from within-patch to a multi-patch scale. This chapter also identifies key 

predictors („drivers‟) in these woodland response models (i.e, Question 3, above). 

Potential drivers include environmental variables which capture gradients in levels 

of disturbance, connectivity, land use intensity and resource availability, as well as 

the abundance and condition of dominant species (Eucalyptus camaldulensis/E. 

tereticornis and the invasive alien herb Phyla canescens) in these communities. 

Modelled community responses include multivariate floristic composition, gradients 

in community structure based on a newly developed dynamic measure of functional 

diversity transitions between reciprocal pairs of functional groups, and patterns in 

dominant species attributes. 

Chapter 6 presents the results of a study investigating the role of local-scale species 

interactions (facilitation and competition) in these woodlands (i.e. Question 4, 

above). This study tests the influence of trees on resource availability and 

groundcover composition, with a focus on the invasive perennial species Phyla 

canescens as an indicator and possible driver of ecosystem change within a riparian 

woodland remnant on the Upper Condamine floodplain. 

In Chapter 7, the results of these studies are synthesised and incorporated into a 

conceptual „state and transition‟ model which identifies alternative ecosystem states 

and critical transitions apparent in these riparian woodland remnants within the 

broad context of the Upper Condamine production landscape (i.e. Question 5, 

above). Research limitations are discussed, and knowledge gaps and future research 

priorities are identified. 

Chapter 8 presents the general conclusions from this research and discusses the 

potential implications (and limitations) for management aimed at supporting 

ecological function in remnant riparian woodlands on the Upper Condamine 



24 

floodplain. It also discusses the relevance of these findings to the broader context of 

management to retain well-functioning native ecosystems, and in particular water-

dependent ecosystems, in highly modified production landscapes. 
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Chapter 2 Hydrological and land use changes on the Upper Condamine 

floodplain 

2.1 The Upper Condamine floodplain 

Located in inland southern Queensland, Australia, the Condamine-Balonne River is 

a major headwater of the Murray-Darling, Australia‟s largest river system (Figure 

2.1). The Condamine section of the river rises on the western slopes of the Great 

Dividing Range and flows inland in a broad north-western arc (Figure 2.1). 

Approximately 250 km from its source, it joins Dogwood Creek, where it becomes 

the Balonne River, and flows south into New South Wales to then become the 

Darling. 

The Condamine catchment comprises an area of 29,150 km
2
 (McKay et al. 1999). 

Approximately 30% (8,500 km
2
) of this is alluvial floodplain (Knowles-Jackson and 

McLatchey 2002), identified regionally as the Upper Condamine, Jimbour and 

Brigalow floodplains (Figure 2.1). The area of the Upper Condamine Floodplain 

(between Warwick and Macalister, north-west of Dalby) is approximately 5,000 km
2
 

and encompasses the main branch of the Condamine River, the Condamine North 

Branch, and the lower sections of a number of tributary streams (Figure 2.1). 

2.1.1 Geology and Soils 

The Upper Condamine floodplain comprises predominantly basalt-derived alluvial 

sediments consisting of heterogeneous deposits of sandy-silty clays up to 134 m 

thick (Huxley 1982, Kelly and Merrick 2007). These extend from the main river 

channel and its tributaries to the valley margins, where they are bordered by a broad 

elevated volcanic plateau to the east, and by low sedimentary and igneous hills to the 

south and west (Huxley 1982). 

Major soil types on the floodplain are cracking clays, classed as Vertisols (Isbell 

1996) or Black Earths (Great Soil Groups Ug5.15 and 5.16; Dalgleish 1998), with 

characteristic high fertility, high surface pH (>7) and high moisture-holding capacity 

(Dalgleish 1998, Douglas et al. 1999). 
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Figure 2.1  Map of the Condamine catchment, showing the location of the Upper 

Condamine and adjacent floodplains, major towns and drainage patterns. Inset indicates the 

catchment position at the head of the Murray Darling Basin. 
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2.1.2 Climate 

The climate of the region is classed as an E4 agro-climate (Hutchinson et al. 1992, 

2005), characterised as warm and seasonally wet or dry, with long hot summers, 

mild winters and plant growth limited by moisture rather than temperature. Average 

temperatures at Dalby (Dalby Post Office, 1893–1992) range from 11.9
o
C to 26.2

o
C 

(BoM 2010), although frost and heat wave conditions are frequently experienced 

(Douglas et al. 1999). Average rainfall is summer-dominant (Figure 2.2), but 

significant rainfall events can occur at any time of the year. Rainfall patterns vary 

spatially across the catchment along an east-west gradient (Thoms and Parsons 

2003), with average annual rainfall of 944 mm.year
–1

 in Toowoomba (Toowoomba, 

1869–2007; BoM 2010) and 676 mm.year
–1

 in Dalby (Dalby Post Office, 1870–

1992; BoM 2010). 
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Figure 2.2 Mean monthly rainfall at Dalby (Dalby Airport Composite, 1870–2005; 

Clewett et al. 2003). Error bars are standard error. 
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Inter-annual variability is high, with annual rainfall at Dalby ranging from 268 mm 

to 1,273 mm over the recorded period (1870–2010) (BoM 2010). Significant supra-

decadal wetting and drying trends are also evident when the cumulative difference 

between annual and average rainfall is plotted using the cumulative rainfall 

departure method (Xu and van Tonder 2001, Weber and Stewart 2004) to provide a 

general indication of rainfall trends over the recorded period (e.g. Tilahun 2006) 

(Figure 2.3). The drying trend apparent since the 1990s (Figure 2.3) is in agreement 

with recent rainfall patterns (1997 to 2006), when average annual rainfall and runoff 

were 2% and 23% lower, respectively, than longterm (1895–2006) averages (CSIRO 

2008). 
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Figure 2.3 Cumulative rainfall departure patterns indicate major wetting (positive 

slope) and drying (negative slope) trends evident in annual rainfall from 1870 to 1999 at 

Dalby (Dalby Airport Composite; Clewett et al. 2003). 
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Drought is a common feature in the climate record of the region. Douglas et al. 

(1999) report 21 moderate to severe droughts at Dalby in the 126 years of rainfall 

records to 1999. These are defined as periods of 12 or more months‟ duration which 

receive less rainfall than the driest 10% (moderate) and 5% (severe) of calendar 

years at that location. The average duration of droughts recorded is 20 months 

(Dougls et al. 1999), and the longest duration drought on record was from August 

1990 to November 1993 (40 months, of which ten months was „severe‟) (Douglas et 

al. 1999, BoM 2010). In the decade since 1999, there have been three significant 

drought periods of 21, 15 and 24 months‟ duration, the most severe being from 

March 2004 to May 2005, with 75% of this period in severe drought (BoM 2010). 

2.1.3 Hydrology 

As with rainfall, average streamflow in the Condamine is summer-dominant (Figure 

2.4), but highly variable and essentially ephemeral, with periods of no-flow and 

occasional large over-bank flood events (Sheldon et al. 2000). Annual (water year) 

streamflow recorded at Cecil Plains Weir (the site of the longest running streamflow 

records) averaged 347.7 ± 57.5 GL.year
–1

 between October 1947 and September 

2005, but ranged from 0.3 GL.year
–1

 (2004/05 water year) to 1,695.9 GL.year
–1

 

(1987/88) (Figure 2.5). Over the period to 1999, localised flooding at Cecil Plains 

occurred on average every 1.1 years and major flooding (defined as gauged river 

heights of ≥ 8 m at Cecil Plains Weir) every 5.1 years (Douglas et al. 1999). 

Streamflow and flood events are naturally major sources of groundwater recharge to 

alluvial aquifers associated with the river (Kelly and Merrick 2007). Some 

contributions also derive from the upland basalt and sedimentary rock areas on the 

valley sides, but rainfall infiltration across the floodplain is thought to comprise a 

relatively small component (Kelly and Merrick 2007) due to the heavy clay soil 

types (Huxley 1982). Despite this, deep drainage under irrigated crops may be 

locally significant (Silburn et al. 2004, Kelly and Merrick 2007, Silburn and 

Montgomery 2008). 
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Figure 2.4 Mean monthly streamflow at Loudon Weir, Dalby (1970–1999; Clewett et 

al. 2003). Error bars are standard error. 

 

 

Figure 2.5 Annual streamflow at Cecil Plains Weir, 1949/50–2004/05 (Streamflow 

records, Streamgauge #422316a, DERM 2010b). 
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2.2 Development on the Upper Condamine floodplain 

2.2.1 Land use development on the Upper Condamine floodplain  

Extensive agricultural development on the Upper Condamine floodplain has 

occurred as a consequence of its deep fertile soils and relatively mild climate, 

supplemented by significant development of surface and underground water 

resources (McKay et al. 1999). First described by Alan Cunningham in 1827 as 

“open plains or downs of great extent” (Favenc 1908, cited in Scott 2005), the area 

was initially settled in 1840 when sheep were first brought across the Condamine 

from NSW (French 1989, cited in Fensham and Fairfax 1997). Large scale pastoral 

enterprises dominated until the early 1900s when land subdivisions, as well as 

improved transportation and refrigeration, saw the rise of dairying (French 1994). By 

1937, there were more than 6,500 dairy farms on the Darling Downs (Biggs and 

Carey 2006). 

The first recorded cropping on the Downs was near Warwick in 1843. By 1887, 

some 20,000 hectares, mostly of sloping, better-drained land, were under cultivation 

(Carberry 1995, cited in McCosker 1996). The first tractor reported on the Downs 

was in 1912, and the first successful wheat harvest on the black soil plains was in 

1931 (Queensland Newspapers 2001). Technological advances in large-scale 

farming equipment capable of cultivating heavy clay soils led to a rapid transition 

(post World War II) to cropping on the floodplain. By the late 1950s, most of the 

lower slopes and floodplains were under cultivation (Carberry 1995, cited in 

McCosker 1996). 

The development and intensification of both dryland and irrigated cropping has 

continued over the past 50 years or so. The floodplains of the Condamine catchment 

(part of the Darling Downs) are currently some of the most productive agricultural 

lands in Australia (Biggs and Carey 2006, CSIRO 2008). Current land use on the 

Upper Condamine floodplain is dominated by cropping (dryland and irrigated) 

(Figure 2.6), with a range of winter and summer crops grown including cereals, 

pulses, maize, sorghum and cotton (Biggs and Carey 2006). 
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Figure 2.6 Areal extents of different land uses on the Upper Condamine floodplain 

(Data source: DERM and BRS 1999). 

 

2.2.2 Water resource development on the Upper Condamine floodplain 

Since the 1960s, agricultural development, in particular the development of irrigated 

cropping, on the Upper Condamine has been accompanied and supported by 

significant water resource development (Thoms and Parsons 2003) to mitigate risk 

associated with the highly variable rainfall and streamflow of the region (McKay et 

al. 1999, Porter 2002). Water harvested for irrigation currently comprises regulated 

and unregulated in-stream flows, overland flow (rainfall runoff) and groundwater 

(Porter 2002). Water resource infrastructure in the Upper Condamine catchment 

includes Leslie Dam (a 106 GL capacity dam near Warwick and upstream of the 

Upper Condamine floodplain), a number of small in-stream regulatory weirs 

(publicly  and privately owned), privately owned off-stream water storages, and 

licensed (irrigation and rural town water supply) and unlicensed (stock-and-

domestic) groundwater bores (CSIRO 2008). 
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Regulation and harvesting of in-stream flows 

Regulated and unregulated flows on Upper Condamine section of the river and its 

major tributaries have been extensively developed for irrigation and are regarded as 

fully allocated (McKay et al. 1999). Total diversions are approximately 31% of total 

available water (297.3 GL.yr
–1

), based on modeled mean annual runoff and outflow 

(DSEWPC 2009), with a nominal 97.2 GL of in-stream surface water flow (30.6 GL 

regulated and 66.6 GL unregulated) licensed for extraction annually for irrigation 

purposes (CSIRO 2008). 

Flow regulation occurs downstream of Leslie Dam, with the regulated section of the 

main river channel extending to Cecil Plains Weir (Figure 2.7). In this section, the 

Upper Condamine Water Supply Scheme (Upper Condamine WSS) provides 

supplementary flows to service licensed Water Access Entitlements, predominantly 

for irrigation purposes. Entitlement volumes are nominal and actual allocations and 

extractions are determined by seasonal water availability (CSIRO 2008). For 

example, in the 2006/07 and 2008/09 drought years, „medium priority‟ (most 

irrigation) entitlements were reduced to 0%, but returned to 96% of nominal 

volumes in 2007/08 (SunWater 2009, SEC 2010). Harvested water is pumped from 

the river and diverted to privately owned off-stream storages located in riparian areas 

adjacent to the river. In 2001, there were 73 of these storages, with a total storage 

capacity of 53.5 GL, along the supplemented (Upper Condamine WSS) section of 

the river (Taylor and Meecham 2003). 

Nominal entitlements in the Upper Condamine WSS include 14.5 GL diverted to the 

Condamine North Branch via pipeline from the Yarramalong Weir (Figure 2.7), and 

distributed to irrigators (McKay et al. 1999, DERM 2010a, SEC 2010). The North 

Branch project was designed to alleviate pressure on local groundwater supplies 

(BAE 1976), which are significantly impacted by extraction for irrigation purposes 

(Barnett and Muller 2008, CSIRO 2008). Fifty percent (7.3 GL) of diversions to this 

project are classed as high priority entitlements (DERM 2010a), and surface water 

and groundwater entitlements are exchangeable under certain conditions (i.e. 

managed conjunctively) in this area (DERM 2010a). 
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Figure 2.7 Location of key in-stream storage structures on the Upper Condamine 

floodplain sections of the Condamine River, southern Queensland. 

 

 

Flow regulation in the Upper Condamine Supply Scheme is managed in response to 

seasonal conditions and ability to supply to registered users (DERM 2010a). While 

there is an element of retaining water in the system for environment purposes with 

„no-flow, no-take‟ restrictions in unregulated sections (DERM 2010a), a significant 

shortcoming in water resource planning in the Upper Condamine is a lack of detailed 

understanding of the water (volumes, dynamics) required to maintain ecological 

function within riverine and riparian ecosystems (e.g. Arthington and Pusey 2003). 
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Diversion and harvesting of overland flow 

Overland flow includes local on-farm stormwater runoff, general surface runoff from 

rainfall across the plains where there are no defined watercourses, flow in minor 

water courses, and overbank flow from major streams during flooding (Taylor and 

Meecham 2003, CSIRO 2008, DERM 2010a). This is an important component of 

regional water supply, with significant overland flow volumes currently intercepted 

and diverted into on-farm storages or „ring tanks‟ (Porter 2002, Figure 2.8). 

 

 

 

Figure 2.8 Aerial photograph showing floodplain ring-tanks (    ), roads, and 

distribution channels on the North Branch section of the Upper Condamine floodplain, 

September 2001. 
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Construction of private off-stream water storages and the capture of overland flow 

across the Condamine floodplains increased rapidly from the mid-1970s (Porter 

2002). Development of private storages, and the diversion, harvesting and storage of 

overland flow, was poorly regulated until the introduction of a moratorium on the 

construction of new ring tanks in 2000, and new legislation under the Queensland 

Water Act 2000 (Porter 2002). For example, there was a 57% increase in the number, 

and a 61% increase in total capacity, of private off-stream storages over a period of 

less than 3 years from early 1997 to late 1999, with a trend towards construction of 

larger capacity ring tanks (Porter 2002). By 1999, there were some 320 off-stream 

storages, storing water harvested from in-stream and overland flows (McKay et al. 

1999, Taylor and Meecham 2003). These had a combined capacity of approximately 

170 GL (greater than that of Leslie Dam), and approximately 50% of stored water 

derived from overland flow (McKay et al. 1999). Licensed ring tank capacity in the 

Upper Condamine is currently 41.9 GL, with volumes harvested limited by the size 

of the storage and maximum pumping restrictions of 8.4 GL.day
–1

 (CSIRO 2008). 

Diversion of overland flow intercepts significant volumes of run-off water, and can 

significantly reduce flows reaching receiving streams (Porter 2002). Porter (2002) 

modeled flows in two subcatchments on the Upper Condamine floodplain with and 

without ring tanks, and reported a 39 to 62% reduction in flows reaching receiving 

streams. Porter (2002) predicted that a further 50% increase in total storage volume 

from 1999 levels would result in an additional 9% (approximately 23.5 GL) 

reduction in average annual flows at Macalister at the downstream end of the Upper 

Condamine floodplain. 

Similarly, roads, rail corridors, irrigation channels, fence lines and crop strips 

represent significant impediments to historical overland flow paths across the 

floodplain (Knowles-Jackson and McLatchey 2002, Taylor and Meecham 2003). 

There has been limited planning or coordination of floodplain development, and the 

impact of these changes on local hydrological condition is essentially unknown 

(Knowles-Jackson and McLatchey 2002, Taylor and Meecham 2003). 

Groundwater extraction 

Extraction from registered groundwater bores constitutes between 18 and 61% of 

regional water use in the Condamine-Balonne system (highest in years of low 
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surface water availability) with around 97% of this occurring in the Upper 

Condamine (CSIRO 2008). Rapid development of regional groundwater resources 

occurred in the 1960s and „70s, resulting in declining groundwater levels in many 

areas (Kelly and Merrick 2007, DNRMW 2008). Extraction of groundwater 

resources in the Condamine Alluvium is now regulated within the Condamine 

Groundwater Management Area, consisting of five sub-areas known as Groundwater 

Management units or GMUs (Porter 2002, Kelly and Merrick 2007). However, 

despite regulation, groundwater usage of up to 54 GL.year
–1 

across the Condamine 

GMUs in the ten years to 2006 exceeded estimated viable (sustainable) yields by 

between 20 and 60% (Kelly et al. 2006). Annual groundwater extraction from the 

Condamine Alluvium currently exceeds recharge (modeled at between 31 and        

36 GL.year
–1

) in over 90% of modeled years (Barnett and Muller 2008, CSIRO 

2008). 

Significant development of groundwater resources is evident in the study area. In 

2003, there were 3,533 current groundwater authorisations in the Upper Condamine 

region (Free 2003, cited in Kelly et al. 2006). There are also an estimated 25% more 

unregistered (non-irrigation „stock and domestic‟) bores in the region (CSIRO 2008). 

Extraction pressure on groundwater resources varies spatially across the floodplain 

(Table 2.1), in response to soil type and level of floodplain development (i.e. relative 

proportions of dryland and irrigated agriculture), the availability of alternative water 

sources (e.g. surface water and overland flow harvesting), and water quality. For 

example, extensive floodplain development on good quality cropping soils, in 

combination with good quality (low salinity) groundwater, in the area between 

Brookstead (near Yarramalong Weir) and Dalby (GMU Sub-Area 3, encompassing 

the North Branch area) has resulted in high levels of groundwater extraction (Table 

2.1). The opposite is true of parts of the floodplain with limited development due to 

constraints such as soil type or water quality (e.g. GMU Sub-Area 5) (Table 2.1). 
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Table 2.1 Groundwater entitlements and annual extractions in relation to modelled 

sustainable yields, and average salinity across the 5 Groundwater Management Units 

(GMUs) of the Upper Condamine Groundwater Management Area. (Source: DSEWPC 

2009). 

GMU* Area Total Water 

Allocated 

Total Water Used Sustainable 

Yield 

Avge salinity 

 km2 ML/yr % of 

sustainable 

yield 

ML/yr % of 

sustainable 

yield 

ML/yr mg/l 

Sub-area 1 305 3,560 250% 2,157 150% 1,440 2,302 

Sub-area 2 500 10,723 430% 3,436 140% 2,490 656 

Sub-area 3  1,280 49,562 335% 18,323 125% 14,810 537 

Sub-area 4 500 3,694 190% 1,284 65% 1,930 548 

Sub-area 5  1,020 1,126 75% 155 10% 1,500 11,263 

* Sub-area 1: Dalby to MacAlister (north of the river); Sub-area 2: Cecil Plains to Mirrabooka (south of the river); Sub-area 

3: Brookstead to Dalby (east of the river); Sub-area 4: Leyburn-Brookstead; Sub-area 5: Millmerran to Cecil Plains (west of 

the river) 

 

 

Groundwater levels on the Upper Condamine floodplain have been monitored since 

the 1960s (DNRMW 2008, DSEWPC 2009). Monitoring bores close to the river 

generally maintained levels (with minor fluctuations in response to rainfall and 

streamflow) until the 1990s (Figure 2.9a). However, many bores, particularly those 

at greater distance from the river, have shown a steady decline in groundwater depth 

levels since recording began, in some cases in the 1960s (Figure 2.9b–d). Significant 

decline of between 6 and 20 m is evident from 1990 onward in the majority of bores 

in Sub-Area 3 (Table 2.1), extending east of the river from Brookstead (near 

Yarramalong Weir) to Dalby (DSEWPC 2009). Declining groundwater levels have 

been of particular concern in this GMU and, particularly, in the North Branch area, 

where extraction levels well in excess of estimated sustainable yields have resulted 

in a significant depression under the floodplain and disconnection of the alluvial 

aquifer from surface flows in the main river channel (Barnett and Muller 2008, 

CSIRO 2008). This section of the river (i.e. downstream from Yarramalong Weir; 

Figure 2.7) is classed as under „maximum losing‟ condition. However, little of this 

lost surface flow contributes to groundwater recharge due to the loss of connectivity 
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and resulting thickness of unsaturated sediments beneath the river (Barnett and 

Muller 2008). This is in contrast to the section upstream of Yarramalong Weir (the 

Talgai-Yarramalong reach; Figure 2.7) in which high losses from surface flows are a 

major source of groundwater recharge to the alluvial aquifer (CSIRO 2008). New 

coal seam gasfield developments across the northern Murray Darling Basin, 

including the Condamine catchment, are likely to exacerbate pressure on 

groundwater resources (Moran and Vink 2010). 

 

 

(a)  (b)  

  

(c)   (d)  

  
 

Figure 2.9 Groundwater trends in selected bores: (a) #42230060; (b) #42230071; (c) 

#42230061; (d) #42230069, within the Queensland Department of Environment and 

Resource Management groundwater monitoring network (DNRMW 2008). Bores were 

chosen to show the range of responses within the alluvial aquifer associated with the main 

Condamine River channel.  
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Altered hydrological regimes 

Changes in the spatial and temporal aspects of the Condamine-Balonne‟s hydrology 

associated with development have been investigated under modelled „reference‟ (no 

regulation, abstraction or catchment development) and „current‟ (1999–2000 water 

resource and catchment development conditions) scenarios (Sheldon et al. 2000, 

Thoms and Parsons 2003). Modelling by Sheldon et al. (2000) indicated that water 

resource development in the Condamine-Balonne has resulted in a 140% increase in 

the frequency of no flow periods, a 69% reduction in the frequency of low flows, 

and a 59% reduction in the frequency of medium and high flows compared with 

natural (predevelopment) flows. Thoms and Parsons (2003) concluded that the 

hydrological character (e.g. magnitude and frequency of flood events and low flows) 

of the mid-zone (which includes the Upper Condamine floodplain section) of the 

river is significantly altered under the current water-resource development scenario, 

with evidence of reduced spatial and temporal heterogeneity. These studies are in 

agreement with findings from studies in other river systems (e.g. Gaeuman et al. 

2005, Nilsson et al. 2005, Thoms et al. 2005) which indicate that water-resource 

development alters the hydrological character of rivers at the whole-of-river system 

scale (Ward 1998). However, Thoms and Parsons (2003) comment on the difficulty 

of determining the impacts of development on the hydrological regime based on 

historical data in the Condamine-Balonne, given the rapid rate of water resource 

development and the naturally variable flow regime of the river. This view is 

reiterated by the recent CSIRO Sustainable Yields report for the Condamine-

Balonne (CSIRO 2008). 

Modeling of hydrological condition in the Condamine-Balonne under different 

climate change scenarios indicates that runoff in the region is more likely to decrease 

than increase; the „best estimate 2030 climate‟ indicates reductions of 8% in surface 

water availability and 5% in average surface water diversions, an increase in the 

period between floods but a reduction in flood magnitude, and a decline in 

groundwater recharge (CSIRO 2008).  As above, estimates are constrained by lack 

of consistent and comprehensive long-term hydrological data for the region (CSIRO 

2008). 
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2.2.3 Land cover change on the Upper Condamine floodplain 

Floodplain sections of the catchment were originally covered by extensive floodplain 

grasslands and grassy open woodlands (EPA 2005). Land use change associated with 

agricultural development on the floodplain has resulted in significant land cover 

change, with over 75% of native vegetation converted to cropping (dryland and 

irrigated) land uses (Figure 2.6). Of the remaining native vegetation, most has been 

subject to some level of selective clearing, pasture modification or grazing pressure 

associated with livestock enterprises (Phillips and Moller 1995, Fensham 1998a, 

Sattler and Williams 1999). 

Currently, less than 5% of vegetation cover on the Upper Condamine floodplain 

remains as mapped native remnants (EPA 2005), and a number of vegetation types 

(Regional Ecosystems or REs) are identified as of significant conservation concern 

(Sattler and Williams 1999, DERM 2009). Extensive Queensland bluegrass 

(Dichanthium sericeum)-dominant grasslands (RE 11.3.21) originally covered 55.8% 

(over 272,000 ha) of the Upper Condamine floodplain, but have been largely 

converted to cropping land (Fensham 1998a, Sattler and Williams 1999, Goodland 

2000). The mapped area of remnant grassland on the floodplain is now 2,450 ha, just 

0.9% of the pre-European extent (EPA 2005), and this ecosystem type is currently 

listed as „critically endangered‟ under the Australian Government Environmental 

Protection and Biodiversity Conservation Act 1999. 

Clearing for agriculture has also contributed to a significant reduction in the extent 

of grassy woodland ecosystems systems on the floodplain. Poplar box (Eucalyptus 

populnea) woodlands (RE 11.3.2, Sattler and Williams 1999) currently occupy less 

than 5% (approximately 5,500 ha) of their original (pre-European or pre-clearing) 

extent (114,290 ha), and are at risk of further decline due to patch degradation and 

altered population processes (Batterham 2008). Riparian E. camaldulensis/E. 

tereticornis-dominant ecosystems (REs 11.3.25 and 11.3.4, Sattler and Williams 

1999) have been reduced to 14.3% (6,275 ha) of their 43,900 ha pre-clearing extent 

on the Upper Condamine floodplain (EPA 2005). All three of these floodplain 

woodland ecosystems types are currently classed as „of concern‟ (Sattler and 

Williams 1999, DERM 2009). 
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Extent of riparian woodlands 

Riparian E. camaldulensis/E. tereticornis-dominant woodlands (REs 11.3.25 and 

11.3.4, Sattler and Williams 1999) once formed a continuous belt of fringing 

(riparian) vegetation along the floodplain sections of the main river channel and its 

major tributaries (EPA 2005). Mapped as “Tall woodland or open forest of E. 

tereticornis on Cainozoic alluvial plains” (RE 11.3.4; Sattler and Williams 1999) 

and “Fringing woodlands of E. tereticornis or E. camaldulensis on Cainozoic 

alluvial plains” (RE 11.3.25; Sattler and Williams 1999), both ecosystem types occur 

on deep cracking clay soils in association with major watercourses on the floodplain. 

RE 11.3.4 occurs on alluvial plains and terraces adjacent to water courses, while RE 

11.3.25 is more closely associated with streambanks. Both have a prominent 

perennial grassy understorey, but RE 11.3.4 tends to lack a midstorey while RE 

11.3.25 often has a sparse, tall shrub layer dominated by species such as Acacia 

salicina and A. stenophylla (Sattler and Williams 1999). 

The distribution of these riparian woodland ecosystems is naturally constrained to 

long linear patches associated with the river channel, its main tributaries and alluvial 

plains and terraces (Sattler and Williams 1999). Altered extent of these woodlands is 

largely associated with the narrowing and fragmentation of remnants as floodplain 

agriculture, in particular irrigated cropping, has developed (Phillips and Moller 

1995). Both types are almost universally reduced to a narrow band of trees along the 

larger watercourses, and mapped as small highly fragmented ecosystem remnants 

(Sattler and Williams 1999). However, despite their limited extent, Eucalyptus 

tereticornis/E. camaldulensis forests and woodlands are significant features of the 

floodplain landscape of the Upper Condamine where they are frequently the only 

remaining native woody vegetation, providing critical habitat and connectivity 

across the agricultural landscape of the floodplain (DERM 2009). 

Condition in riparian woodlands 

Riparian woodland remnants on the floodplain are also significantly degraded, with 

widespread evidence of dieback and high mortality in mature eucalypts, limited 

recruitment of eucalypt seedlings and locally high abundance of invasive weed 

species (McCosker 1996, Voller 1998). This decline is of concern to land managers 

in the region (pers.obs.); however, there is limited understanding of the key drivers 
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of change in these ecosystems and restoration attempts have generally had limited 

success (Greening Australia 2003). 

Investigations into tree decline in these woodlands in the mid-1990s considered a 

range of potential causes (Voller and Eddie 1995), but failed to identify any primary 

driver (Voller 1998). Observed changes were attributed to a combination of factors, 

including repeated defoliation by possums (Trichosurus vulpecula), insect attack, 

damage by sulphur-crested cockatoo (Cacatua galerita)/little corella (C. sanguinea), 

drought severity, weed competition, grazing, and intensification of land use (Voller 

1998). Salinity was not closely associated with the observed decline (Voller 1998), 

and hydrological factors (e.g. altered flow and flood regimes, groundwater changes) 

were not considered. This current research represents a first attempt to better 

understand the role of changed hydrology, in combination with spatial context and 

land management, on riparian woodland composition and condition in this highly 

modified landscape. 

2.3 Assessment of environmental condition on the Upper Condamine 

floodplain 

The Upper Condamine floodplain landscape has been significantly modified for 

agricultural production purposes, with extensive development and intensification of 

both dryland and irrigated cropping. This has involved significant reduction in the 

extent of native floodplain vegetation communities, the areal extent of which is well 

below the nominal 30% threshold thought to be the minimum required to retain 

biodiversity and ecological function within landscapes (Fahrig 2003, Fischer and 

Lindenmayer 2007, Walker et al. 2009). Little of the remnant extent of these 

ecosystems is held in reserves, and larger remnants are generally used for grazing 

production purposes, frequently reported as a key driver of changes in community 

composition and function (e.g. Clarke 2003, Leonard and Kirkpatrick 2004). A 

number of previous studies report significant decline in remnant condition in native 

floodplain riparian woodland ecosystems in this landscape; however, there has been 

limited investigation of this, and there is little understanding of the proximal drivers 

of ecological change in this landscape. 
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While high levels of land use and water resource development are evident in this 

landscape, attempts to characterise hydrological changes by modeling the impacts of 

development on hydrological regimes in this system are constrained both by poor 

records of pre-development flows and the extreme natural variability in the system. 

Despite this uncertainty, diversion of in-stream flows is thought to have contributed 

significantly to altered hydrological regimes in this system (Sheldon et al. 2000, 

Thoms and Parsons 2003). Impacts include a reduction in low, medium and high 

flows and a significant increase (over modeled historical flows) in the duration of 

no-flow periods (Sheldon et al. 2000), effectively compounding the effects of 

significant climatic variability and leading to a greater degree of ephemerality (and 

potentially effective drought) in riverine flows in this system (e.g. Jenkins et al. 

2005). Changes in hydrological characteristics in the Condamine-Balonne river 

system vary both spatially and temporally, indicating potential for cross-scale 

interactions and complex ecological responses in this system (Thoms and Parsons 

2003). 

Along the Condamine-Balonne River, reductions in the magnitude of flows and in 

the extent and duration of overbank flooding increasingly disconnects parts of the 

floodplain from the main river channel (Thoms 2003, Sheldon and Thoms 2006b), 

and limits the soil moisture and nutrient supplementation usually associated with 

flooding (Thoms 2003). This is further compounded by the construction of roads, 

levees, storages and other infrastructure, which constrain overbank flooding and 

divert overland flows from historical flowpaths, limiting connectivity and resource 

supplementation within riparian areas and across the floodplain (Thoms 2003). 

Reductions in the frequency and duration of overbank flooding and overland flow 

diversions also limit deeper infiltration to subsoil and groundwater layers, and may 

further contribute to groundwater decline (Huxley 1982, Barnett and Muller 2008). 

While overland flows may make a relatively minor contribution to groundwater 

recharge in the Upper Condamine due to the high clay content and surface-sealing 

characteristic of Vertisol soil types (Huxley 1982, Kelly and Merrick 2007), 

significant localized infiltration occurs on high clay content soil types on the 

Chowilla floodplain, southern Australia, in association with trees and gilgai 

(„melonholes‟) (Bramley et al. 2003, Holland et al. 2006). This indicates that 

riparian areas may contribute significantly to groundwater recharge where overland 
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flows are not diverted and tree function/groundcover vegetation/soil structure is not 

compromised. 

There is also increasing disconnection of surface and groundwater systems in this 

system under current development and water management regimes. Increasing 

ephemerality of in-stream flows in this system constrains groundwater recharge to 

shallow alluvial aquifers associated with the river channel (Barnett and Muller 2008, 

Reid et al. 2009), while falling water tables contribute, in turn, to reduced baseflow 

back to surface waterbodies (Barnett and Muller 2008, Reid et al. 2009). This 

situation is compounded by unsustainable groundwater extraction evident in the 

sections of the river below Yarramalong Weir (Barnett and Muller 2008), the Middle 

and Lower sections in this study (Table 2.1). While these river sections are classed 

as under „maximum losing‟ condition by the CSIRO (2008) Sustainable Yields 

report, streamflow losses no longer contribute to groundwater recharge due to 

increasing disconnection between surface and groundwater systems resulting from 

unsustainable levels of groundwater extraction (Barnett and Muller 2008, CSIRO 

2008). This may have significant implications for water-dependent riparian and 

floodplain species in this part of the Upper Condamine, particularly during extended 

drought periods when access to shallow groundwater systems is likely to provide an 

important buffer against moisture stress (Kerle et al. 1992, Tyree et al. 1994, 

Pockman and Sperry 2000). 

In contrast to the situation in the southern Murray-Darling system (Holland et al. 

2006, Overton et al. 2006), groundwater quality in the Condamine Alluvium is 

considered to be good, with relatively low levels of salinity recorded in the majority 

of monitoring bores (DSEWPC 2009) and limited evidence of soil salinisation on the 

floodplain sections of the main river channel (Jolly et al. 2001, Biggs and Power 

2003). Widespread groundwater decline evident in the majority of monitoring bores 

intercepting these aquifers indicates a relatively low risk of salinisation associated 

with shallow (and rising) watertables (Biggs et al. 2009), although application of 

poorer quality groundwater for irrigation purposes is still a potential source of 

induced salinity (Rengasamy and Olsson 1993, Biggs and Power 2003). Poorer 

water quality (higher salinity levels) in groundwater systems on the left bank of the 

river (Sub-area 5 in Table 2.1) in part explains the limited development of irrigated 

cropping on this section of the floodplain. 
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National and state government moves to deliver environmental water allocations to 

support water-dependent species and ecosystems are yet to be implemented in the 

Condamine-Balonne (DERM 2010a). While the need for environmental water 

allocations in this highly modified system is not questioned, this research does 

question whether an understanding of system dynamics developed from research 

conducted predominantly in southern Australia is directly applicable to systems 

outside that region. Similarly, State government legislation limiting further clearing 

of mapped remnants and significant local effort invested in revegetation and weed 

control have had little apparent impact on the condition of these woodlands. 

2.4 Current land use and resource condition in the study area 

It is apparent from the review above that the Upper Condamine floodplain is a highly 

developed agricultural landscape exhibiting significant changes in hydrology, land 

use intensity and native vegetation cover. Native ecosystem remnants embedded in 

this landscape are significantly reduced in extent and generally reported to be in poor 

condition. Studies reported in subsequent chapters in this thesis investigate riparian 

woodland condition along the regulated floodplain section of the Upper Condamine 

(i.e. the river section, between Talgai and Cecil Plains weirs, receiving supplemental 

flows through the Upper Condamine Water Supply Scheme). This section of this 

chapter identifies spatial patterns in land use and resource condition on that portion 

of the floodplain (i.e. the study area). Specifically, it reports differences in 

hydrological patterns, as well as water and land use intensity, between the River 

Section and River Bank treatments which stratify the study area in studies reported 

in Chapters 3 and 4. 

The longitudinal zonation of rivers (both natural and anthropogenic) is well 

recognised (Chapter 1). Large-scale hydrogeomorphic gradients are evident from 

constrained upland zones to mobile and meandering zones on floodplains (Thoms 

and Parsons 2003). At finer scales, river reaches may differentiate into distinct 

„functional process zones‟ within riverine ecosystems (Thorp et al. 2006). In-stream 

structures associated with flow regulation are also frequently associated with 

changes in longitudinal connectivity (serial discontinuity) along rivers (Ward and 

Stanford 1995a, Stanford and Ward 2001), and to altered flood regimes and lateral 
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connectivity with their floodplains, and subsequent responses in riparian ecosystems 

(Ward and Stanford 1995b, Ward et al. 1999, Thoms et al. 2005). 

The importance of lateral connectivity associated with overbank flooding is also 

recognised in the literature (Chapter 1), but rarely investigated in the context of 

riparian or floodplain (non-wetland) vegetation communities. Lateral connectivity 

across floodplains is restricted (temporally and spatially) where flood frequencies 

and magnitudes are reduced by flow modification (Ward and Stanford 1995b, Ward 

et al. 1999). It can also be disrupted by the presence of anthropogenic structures on 

the floodplain (roads, channels, levees) (e.g. Kingsford 2000, Steinfeld and 

Kingsford 2008), which constrain both overbank flooding extent and overland 

rainfall runoff to riverine and riparian environments from upslope parts of 

catchments. Differences in runoff area, land surface condition, and the presence of 

structures associated with floodplain development can disrupt historical runoff 

flowpaths (e.g. Souchere et al. 1998, Kingsford 2000, Costelloe et al. 2005), 

potentially influencing floodplain and riparian ecosystem function and condition 

(Kingsford 2000). 

2.4.1 Method of assessment 

Study area stratification 

The relationship between current hydrological condition, floodplain development 

intensity (the integrated impacts of land use change, land cover change and resource 

use) and patterns in vegetation composition and condition was investigated within 

landscape elements broadly defined by longitudinal and lateral sections of the 

riparian landscape of the Upper Condamine. On this basis, the study area was 

subdivided into three river sections (based on the location of stream gauges at 

Talgai, Yarramalong, Lemon Tree and Cecil Plains weirs) (Figure 2.10, Table 2.2,), 

and two river bank sections (the Left and Right banks, facing downstream, between 

Talgai and Cecil Plains weirs) (Figure 2.10). 
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Figure 2.10  River section (Upper, Middle, Lower) and river bank (Left, Right) segments 

(buffered) on the Upper Condamine floodplain. 

 

 

Table 2.2 Details of weirs within the Upper Condamine Water Supply Scheme. 

(Source: DERM 2010a, SEC 2010)  

Weir Constructed AMTD* (km) Storage capacity 

(GL) 

Max. regulated 

discharge (ML.day
-1

) 

Talgai 1981 68.6 0.64 740 

Yarramalong 1989 131.2 0.39 560 

Lemon Tree 1979 154.5 0.30 830 

Cecil Plains 1947 206.8 0.70 0 

* Adopted Middle Thread Distance (i.e. within channel distance) downstream from Leslie Dam 
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Data collation 

Data presented in the following section were derived from a range of databases held 

by government departments and resource management bodies. These were in the 

form either of time-series records, which were analysed in Windows Excel 

(Microsoft Corporation 2003), or spatially arrayed datasets (data extracted using 

ArcGIS v9.2; ESRI 2007). 

The areal extent of floodplain land uses (cropping, irrigated cropping, grazing, water 

storages), major flood event extents (1975, 1981, 1988) and native vegetation 

remnants within river section and river bank segments was quantified within a 5 km 

buffer extending laterally from the main river channel (Figure 2.10). Values were 

standardised (i.e. converted to a proportion of buffer segment area) to enable 

meaningful comparison. 

Streamflow data were calculated from the daily time-series datasets (BOM 2010, 

DERM 2010b, SunWater pers.com.) for the key streamflow gauges at Talgai, 

Yarramalong, Lemon Tree, and Cecil Plains weirs. Seasonal (summer, winter) 

streamflow patterns (discharge volumes) are presented by „water year‟ (i.e. October 

to September), for the 10 year period preceding this study (i.e. 1995/96 to 2004/05). 

Numbers of groundwater bores were derived from the Queensland Government 

„Water Entitlements Register Database‟ (DNRMW 2008). Density of bores within 

the 5 km buffer zone was determined within river section and river bank segments, 

as above. Floodplain width and catchment width were measured in ArcGIS (above) 

at 5 km intervals along and perpendicular to the main river channel for each river 

bank. 

2.4.2 Results 

Streamflow 

Patterns in hydrological parameters were evident across river section (Upper, 

Middle, Lower) and river banks (Left, Right) segments of the study area. Catchment 

dimensions for river sections (Upper, Middle, Lower) increase with distance 

downstream (Table 2.3). Average streamflow volumes correspond to some extent to 

the geometric increase in cumulative catchment area in the longer-term (1995/96–
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2004/05). However, high variability in streamflow is evident between and within 

these stream sections, with most variability apparent in the Lower (59% of mean 

annual flow) and least in the Middle (28%) section (Table 2.3). Extended drought 

conditions were experienced over the 10-year period reported (1995/96 to 2004/05). 

Extremely low rainfall during the 2004/05 water year (e.g. 476 mm at Dalby; BoM 

2010) is reflected in low annual streamflow volumes across all river sections, with 

no flow recorded for the Middle section at Lemon Tree Weir, and only minor flows 

recorded for the Upper and Lower sections (Table 2.3). 

Mapping of major flooding in 1975, 1981 and 1988 indicates that flood inundation 

patterns in the study area are highly event-specific, and not consistent within river 

sections (Table 2.3). The most recent major flood event prior to sampling was in 

May 1996, when high rainfall resulted in high flows in all stream sections with 

significant flooding reported across the study area (Taylor and Meecham 2003). 

However, no flood mapping is available for this event (DERM, pers.com.), and 

spatial extent of flood inundation was unable to be determined. 
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Table 2.3 Hydrological details of study area River Sections (Upper, Middle, Lower). 

Streamflow volumes are end of river section volumes recorded at gauging stations (Upper: 

Yarramalong Weir; Middle: Lemon Tree Weir; Lower: Cecil Plains Weir). Flood extent (%) 

is the proportion of 5 km River Section buffers mapped as inundated by major floods (1975–

1988). (Sources: Sunwater 2009, DERM 2010b). 

River section Upper Middle Lower 

Length (km) 62.2 23.6 52.3 

Catchment area (km
2
) 6,357 7,080 7,795 

Cumulative catchment (km
2
) 24,717 31,797 39,592 

End of river section streamflow volumes (GL/water year ± SE) 

2004/05 (1 yr) 2.70 0.00 0.31 

2003/04–2004/05 (2 yrs) 24.2 ± 21.5 9.7 ± 9.7 64.7 ± 64.4 

1995/06–2004/05 (10 yrs) 132.1 ± 76.5 242.7 ± 68.7 246.2 ± 145.6 

Flood extent (%) 

1988 4 7 10 

1981 12 0 0 

1975 54 82 52 

 

 

Flood patterns associated with River Bank sections varied considerably between 

major flood events (1975, 1981, 1988), and showed no consistent relationship with 

either differences in catchment and floodplain width on opposite sides of the river 

(Table 2.4), or the greater rainfall runoff on the right hand side of the river which 

drains the higher rainfall slopes of the Great Dividing Range. 
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Table 2.4 Hydrological details of study area River Banks (Left, Right). Flood extent 

(%) is the proportion of 5km River Bank buffers mapped as inundated by major floods from 

1975-1988. 

 Left bank Right bank 

Flood extent (%)   

1988 8 5 

1981 2 9 

1975 69 48 

 

 

Seasonal streamflow records between 1995 and 2005 indicate variable patterns 

within and between stream sections. Records from weirs in the Upper and Lower 

sections exhibit similar patterns with maximum discharges generally occurring in 

summer months (October–March) and minimal flows in winter months (April–

September), with the exception of flooding rains received in May 1996 (Figure 

2.11). Records for the Middle (Lemon Tree Weir) section are anomalous, due to 

significant alteration of flow pattern (volumes and seasonality) associated with flow 

regulation and redistribution of in-stream flows through the Condamine North 

Branch irrigation area; Figure 2.11c). Volumes at Cecil Plains Weir reflect the 

greater downstream catchment area (Table 2.3).  
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 (a) (b) 

  
(c) (d) 

  

Figure 2.11  Streamflow patterns at (a) Talgai, (b) Yarramalong, (c) Lemon Tree and (d) Cecil Plains weirs by water year (Oct.–Sept.), 1995/96–2004/05. 

Summer flows (   ) and winter flows (   ) are indicated. (Source: DERM 2010b, SunWater 2009).  
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Data limitations are a significant impediment to more detailed investigation of 

historical flow and flood patterns in the Upper Condamine. Time-series records are 

not consistently available across the gauging stations on floodplain sections of the 

river, commencing in 1947 for Cecil Plains Weir, but in 1990 and 1995, respectively, 

for Yarramalong and Lemon Tree weirs (DERM 2010b). Other studies have noted the 

constraints imposed by the limited and inconsistent streamflow record in the 

Condamine-Balonne catchment to accurately assessing the impacts of water resource 

and floodplain development (regulation, diversion, extraction) on streamflow (Thoms 

and Sheldon 2002, Thoms and Parsons 2003) and predicting future impacts of climate 

change (CSIRO 2008). 

Overland flows 

Significant capacity to divert and store overland flow associated with rainfall runoff 

and overbank flooding is evident in the study area. The density of off-stream storages 

(ring tanks, associated levees and ditches) was greatest in the Middle and Lower river 

sections (Figure 2.12a), with the greater proportion, and almost six times the area, of 

these situated on the eastern side of the river (the right river bank) (Figure 2.12b). 
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Figure 2.12 Density of irrigation infrastructure (water storages), across (a) river sections 

(Upper, Middle, Lower) and (b) river banks (Left, Right) within a 5 km zone either side of 

the river. Data source: DERM and BRS 1999. 
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Groundwater 

A total of 620 registered groundwater bores occur within the buffered sections of the 

floodplain. The Middle river section (Yarramalong to Lemon Tree weirs) supports the 

greatest density of these (Figure 2.13a). Similarly, groundwater resources on the right 

bank of the river are more intensely developed than those on the left (Figure 2.13b), 

possibly due to the higher average salinity levels associated with groundwater in Sub-

area 5 (Table 2.2). 
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Figure 2.13 Density of registered bores across (a) river sections (Upper, Middle, Lower), 

and (b) river banks (Left, Right) within a 5 km zone either side of the river. (Data source: 

DNRMW 2008) 

 

 

Land use and land cover patterns 

Differences in the proportion of land cover and land use types are evident at the River 

Section scale. The Middle river section (Yarramalong-Lemon Tree weirs) is most 

developed, with a greater proportion (86%) of the total area under cropping (dryland 

and irrigated) (Figure 2.14a), and least grazing and mapped remnant vegetation cover 

compared to either the Upper or Lower sections (Figure 2.14c). The right side of the 

river is also more intensely developed with the greater proportion of cropping (in 

particular, irrigated cropping) land uses, and a lower proportion of natural vegetation 

(Figure 2.14b, d). 
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Figure 2.14 Relative proportions of cropping (dryland, irrigated, total), and native 

vegetation (mapped remnant vegetation, grazed native vegetation), across River Sections (a 

and c, respectively), and River banks (b and d, respectively) within a 5 km zone either side of 

the river. Data sources: DERM and BRS (1999). 
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2.4.3 Discussion 

Differences in the hydrology, land cover and intensity of land and water use are 

evident between River Sections defined by the location of in-stream weirs on the 

regulated floodplain portion of the Upper Condamine. These include differences in 

flow volumes and variability, differences in the extent of major flood events, and 

differences in seasonal discharge volumes in storages between the Upper (Talgai 

Weir to Yarramalong Weir), Middle (Yarramalong Weir to Lemon Tree Weir) and 

Lower (Lemon Tree Weir to Cecil Plains Weir) sections. 

Differences in land use and land cover variables were also evident across the three 

River Sections, indicating the potential for confounding influence on ecosystem 

response. The Middle river section, where flow volumes and variability are least, is 

also most heavily impacted by floodplain development with the highest levels of 

cropping and overall water resource development; this section also has the lowest 

levels of remnant vegetation and grazing land use. The Upper and Lower river 

sections both support lower levels of cropping and higher levels of grazing and native 

vegetation cover than the Middle section; however, while floodplain development in 

terms of the proportion of water storages is greatest on the Lower river section, the 

density of groundwater bores is least, in contrast to the Upper river section which has 

limited water storage infrastructure but a relatively high density of groundwater bores 

compared to the Lower river section. 

Differences were also apparent between the Left and Right river banks. Comparisons 

of hydrological, land cover and land use parameters showed that the Right bank of the 

river associated with this part of the floodplain is more intensely developed in terms 

of both land and water use, and supports a relatively smaller proportion of native 

vegetation. This portion of the floodplain represents the main depositional 

environment and constitutes the greater area of the floodplain, comprising sediments 

eroded from the eastern and northern slopes of the catchment (DNR and DoE 1998) 

under the influence of relatively higher rainfall and rainfall runoff. 
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2.4.4 Conclusions 

The highly developed agricultural landscape of the Upper Condamine floodplain 

exhibits significant changes in hydrology and native vegetation cover. Native 

ecosystem remnants embedded in this landscape are significantly reduced in extent 

and generally reported to be in poor condition. Despite this, riparian remnants are 

often the only relatively contiguous native habitat remaining on the floodplain, and 

their persistence is critical to both the retention of biodiversity and provision of a 

range of ecosystem services in this landscape. 

The hydrological regime of the Upper Condamine is governed to a large extent by 

significant climatic variability, resulting in ephemeral streamflow conditions 

punctuated by periodic and often widespread flooding, and it is likely that local 

species are, at least to some extent, adapted to significant environmental variability 

(Colloff and Baldwin 2010). However, high levels of water resource development 

have led to substantial changes in surface flows and groundwater levels, often 

compounding the effects of climatic variability. This has resulted in a more highly 

disconnected (temporally and spatially fragmented) hydrological system. 

Measurable differences in hydrology, land cover and land use occur between river 

sections and river banks in the study area, and these differences have potential 

implications for the composition and condition of remnant woodland ecosystems in 

this landscape. The following chapters investigate whether patterns in riparian 

woodland composition (Ch.3) and condition (Ch.4) are associated with these broad 

environmental patterns. Chapter 5 takes a finer-scale approach, focusing on potential 

drivers of change in these ecosystems by investigating the influence of gradients in 

hydrology, land cover and land use. 
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Chapter 3 Patterns in riparian woodland community composition, structure 

and function on the Upper Condamine floodplain 

3.1 Introduction 

Many of the world‟s river systems are under significant pressure to support human 

populations and activities, with modification of hydrological regimes through 

impoundment, flow regulation (including flood mitigation) and high levels of water 

extraction (Arthington and Pusey 2003). Native riparian and floodplain ecosystems 

along these rivers have evolved in response to disturbance driven by hydrological 

extremes (flooding, drought) and associated levels of resource availability (Junk et al. 

1989, Poff et al. 1997). However, human activities which appropriate resources (e.g. 

grazing, irrigated cropping), alter natural disturbance regimes or instigate novel 

disturbances (e.g. species invasions) contribute to new species combinations and 

biotic responses in these systems. These changes may introduce new thresholds and 

result in new emerging (Milton 2003) or „novel‟ (Hobbs et al. 2006, 2009) states 

within these ecosystems, with altered system dynamics and resilience to subsequent 

change. Understanding the relationships between disturbance, ecosystem pattern and 

underlying ecological processes in these novel ecosystems is critical to sustainable 

land management, and in particular, biodiversity conservation and ecosystem service 

provision in landscapes subject to significant anthropogenic change. 

3.1.1 Vegetation responses to changes in hydrological connectivity 

Hydrological drivers (e.g. overland flows, flood regimes) are considered to be of 

overriding importance to ecosystem composition and function in riparian and 

floodplain systems (Thoms and Sheldon 2002, Thoms et al. 2005). Studies of riparian 

ecosystem responses to altered hydrological regimes primarily focus on changes in 

longitudinal and lateral connectivity associated with in-stream regulatory structures, 

and, in particular, large dams (e.g. Uowolo et al. 2005, Lambs et al. 2006). These 

studies frequently call for water resource management to restore environmental flows 

which mimic historical hydrological dynamics (e.g. Hughes et al. 2001, Stromberg et 

al. 2007a). Such calls are based on an understanding of the direct effects of 

disturbance, connectivity and resource supplementation on species survival and 

fitness (e.g. Elger et al. 2004), and on community dynamics including succession 
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(Amoros et al. 1987, Corenblit et al. 2007). In terms of community composition, 

flooding disturbance acts as an ecological filter, screening out species unable to 

tolerate inundation or waterlogging (Poff 1997, Hobbs and Norton 2004, Toogood et 

al. 2008), while decline in the historical frequency, duration and extent of flood 

events may result in the loss of flood-dependent species (Poff 1997, Hobbs and 

Norton 2004). 

Comparisons of community composition on paired regulated and unregulated rivers 

indicates homogenization of floodplain riparian ecosystems, with reduced species 

diversity at both local and landscape scales (i.e. alpha- and beta-diversity) on 

regulated streams (Nilsson et al. 1991, Nilsson and Jansson 1995, Ward et al. 1999, 

Uowolo et al. 2005). Studies using functional trait approaches (specifically, 

hydrological response groups) also report increasing frequency of flood-intolerant 

species in riparian woody vegetation with flow regulation and altered hydrological 

regimes (Burton et al. 2009), and changes in proportions of hydric, mesic and xeric 

annuals with altered seasonal moisture conditions, flooding extent and streamflow 

permanence (Tabacchi et al.1996, Stromberg et al. 2005a, 2008). Extended periods 

without flooding in such systems may lead to drying out of floodplain wetlands 

(Ward and Stanford 1995), loss of flood-dependent species, and increased richness 

and abundance of flood-intolerant (terrestrial) species (Marston et al. 1995, Nicol et 

al. 2007). Such compositional change infers altered ecosystem function (e.g. changes 

in infiltration and moisture storage capacity; Rietkerk and van de Koppel 1997), as 

well as functional change in terms of community response diversity (Capon 2003, 

Bezemer et al. 2006), potentially leaving floodplain systems increasingly vulnerable 

to further degradation (Boer and Puigdefabregas 2005, Stromberg et al. 2007b). 

Equally important to ecosystem dynamics and resilience, particularly in systems 

associated with dryland rivers, are low flow periods. Many perennial species in these 

systems are adapted to survival during drought conditions which similarly act to 

screen out less well adapted species (Elmore et al. 2003, Gitlin et al. 2006). Other 

species exhibit adaptations to wetting and drying cycles, enabling them to survive 

(often in the persistent soil seedbank) and respond strategically when conditions are 

likely to be most favourable for establishment, growth or reproduction (Capon 2003). 

Significant changes in the frequency, duration and seasonality of drying events 

contribute to changes in the composition, condition and function of floodplain 
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ecosystems, altering the relative abundance of locally adapted species (e.g. Bren 

1992), contributing to increasing homogenization of vegetation patches across a 

landscape (Stromberg et al. 2007a), and potentially reducing the functional diversity 

of riparian and floodplain  ecosystems and their subsequent resilience to drought 

(Stromberg et al. 2007a). 

Floodplain development can also influence connectivity across floodplains. For 

example, flood mitigation levees which limit the extent of overbank flooding 

effectively act to alienate or disconnect the floodplain from overbank flood flows 

(Galat et al. 1998, Gergel et al. 2002a, Kang and Stanley 2005). These are reported to 

have significant ecological impact in terms of altered soil microbial activity (Kang 

and Stanley 2005), denitrification rates (Gergel et al. 2005), and riparian canopy tree 

composition (Gergel et al. 2002a) and condition (Steinfeld and Kingsford 2008). 

However, the ecological impact on riparian ecosystems of development infrastructure 

which diverts or interrupts lateral flow across floodplains to riparian ecosystems is 

rarely considered. Very few, if any, studies have investigated the impact of such 

structures on historical overland flows and the transport of nutrients, sediment and 

plant propagules in storm runoff to riparian ecosystems, although diversion of flood 

flow paths on floodplains is acknowledged as a potential risk to riparian ecosystems 

(Porter 2002, Knowles-Jackson and McLatchey 2002), and capture of overland flow 

as a potential risk to in-stream flows (Porter 2002, Kingsford and Roff 2008). 

3.1.2 Vegetation responses to grazing in riparian ecosystems 

Livestock grazing is also recognised as a key driver of degradation in riparian 

ecosystems (Lunt et al. 2007b), largely due to the tendency of stock to congregate 

close to water (Andrew 1988, James et al. 1999, Jansen and Robertson 2001). For 

example, grazed riparian woodlands along the Murrumbidgee River, southern 

Australia, are reported to have lower biomass of groundcover plants, less litter and 

particulate organic matter and a higher percentage of bare soil, as well as significantly 

fewer eucalypt seedlings and saplings, than areas without stock (Robertson and 

Rowling 2000). As in other landscapes, high grazing intensity alters the composition, 

structure and function of wetland and riparian communities by reducing the structural 

complexity and spatial heterogeneity of vegetation and facilitating exotic species 
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invasions (Robertson and Rowling 2000, Jansen and Robertson 2001, Hopfensperger 

et al. 2006). 

Interactions between grazing and resource availability are potentially important in 

terms of ecosystem stability (Allen-Diaz and Jackson 2000, Wright and Chambers 

2002, Lunt et al. 2007a), and may result in significant changes in vegetation species 

composition (Allen-Diaz and Jackson 2000, Wright and Chambers 2002). Soil 

compaction and reduced plant cover associated with grazing may alter the flow of 

resources and energy in riverine systems by reducing the capacity of vegetation to 

slow overland flow rates, and trap sediment and nutrients (Bilotta et al. 2007, Schacht 

and Reece 2008), potentially contributing to changes in community composition and 

function (Stromberg et al. 2007a, Beauchamp and Stromberg 2008). State shifts in 

low or reduced productivity riparian systems may lead to increasing resistance and 

resilience in the degraded state (e.g. due to altered soil condition, hydrology or a 

depleted seedbank) and limited recovery in vegetation condition (cover, richness and 

composition) with grazing exclusion (Lunt et al. 2007b). 

While river regulation and livestock grazing are both regarded as significant drivers 

of declining riparian condition, they are only rarely considered in conjunction (e.g. 

Meeson et al. 2002). Robertson and Rowling (2000) warn that restoration efforts that 

focus only on reducing the impact of altered flow regimes may be less than successful 

if livestock grazing is not considered as part of river ecosystem management, 

although Westbrooke et al. (2005) suggest that disturbance associated with major 

flood events is likely to override grazing impacts in floodplain riparian systems. 

3.1.3 Study overview 

This study investigated key community patterns in riparian woodland composition in 

relation to landscape-scale hydrological (longitudinal and lateral connectivity) and 

local-scale land use (grazing) factors associated with the highly modified intensive 

agricultural landscape of the Upper Condamine floodplain. Riparian remnants in this 

landscape are associated with an ephemeral river system subject to flow regulation 

and significant levels of water resource extraction (in-stream flows harvesting, 

overland flow diversion and harvesting, groundwater extraction) to support irrigated 

agriculture in the highly modified surrounding landscape. The region is also subject 
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to significant climatic variability (Chapter 2), which is likely to increase with ongoing 

climate change (Hughes 2003). 

Riparian woodland remnants on the Upper Condamine floodplain are reported to be 

in poor condition (Phillips and Moller 1995, Voller 1998), with significant dieback 

and limited recruitment of the dominant canopy species, Eucalyptus camaldulensis/E. 

tereticornis, and locally significant populations of the functionally important alien 

plant species, Phyla canescens (lippia). While these broad issues are well recognised, 

more detailed changes in riparian woodland composition and function in this 

landscape have not been investigated. Nor are mechanisms of ecological change in 

this landscape well understood. Significantly, management efforts over recent 

decades (e.g. weed management, grazing management, tree planting to address poor 

recruitment and survival of riparian eucalypts), as well as State vegetation clearing 

laws to protect the extent of native ecosystem remnants, have not noticeably 

redressed ecological decline in this system. A better understanding of vegetation 

responses to biophysical conditions associated with current levels of development, in 

conjunction with prevailing climatic conditions, will contribute to management aimed 

at enhancing ecosystem resilience and ecosystem service provision in this highly 

modified production landscape. 

This study asks whether current perceptions regarding key drivers of response 

dynamics in remnant floodplain riparian ecosystems subject to modified hydrological 

regimes are applicable in a highly modified production landscape. It takes a natural 

experimental approach (Diamond 1983) to test hypotheses relating to river flow, 

overland flow and land use. Specifically, the study investigates whether there are 

significant effects of longitudinal and lateral connectivity (i.e. between river section 

and between river bank treatments, respectively) and within-remnant land use (i.e. the 

presence or absence of livestock grazing) on the floristic composition and community 

structure of remnant riparian woodland ecosystems on the Upper Condamine 

floodplain. 
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3.2 Methods 

3.2.1 Site selection 

Remnant floodplain riparian woodlands along a 150 km section of the Condamine 

River were sampled between January and April in the summer of 2004–2005. A total 

of 24 sites was selected from mapped (EPA 2003) and unmapped remnants, verified 

in the field as Eucalyptus camaldulensis/E. tereticornis-dominant fringing or floodplain 

woodlands (Regional Ecosystems 11.3.4 and 11.3.25, Sattler and Williams 1999) 

associated with the main channel of the Condamine River (Figure 3.1). All sites were 

on private properties involved in agricultural production (cropping or grazing). 

Sampled remnants were characteristically linear configurations aligned with the river 

channel (mean remnant or riparian width was 355.0 ± 51.2 m and ranged from 

approximately 75 to 975 m), embedded in a contrasting matrix of irrigated and 

dryland cropland. 

The study area and survey sites were stratified a priori by (i) river section (Upper, 

Middle, Lower); (ii) river bank (Left, Right), and (iii) within-remnant land use 

(Grazed, Ungrazed by domestic livestock). River section strata corresponded to the 

scale of stream-flow data (end-points are streamflow gauging stations at in-stream 

weirs indicated in Figure 3.1) and were designed principally to capture longitudinal or 

„reach‟ differences in drainage, streamflow, surface-groundwater exchange, and water 

use patterns for this stretch of the river (Thoms and Parsons 2003, CSIRO 2008). 

However, these hydrological influences cannot be isolated from the associated land 

use/land cover context in this landscape. Hence, the study also effectively investigates 

vegetation patterns associated with differences in development intensity across these 

three river sections (Chapter 2). Similarly, River bank treatments capture differences 

in factors influencing lateral overland flow parameters on opposite sides of the main 

river channel. These are associated with variables influencing runoff such as 

floodplain extent, land use and land cover, and water-harvesting infrastructure 

(diversion channels, ringtanks), while floodplain hydrogeomorphology will also 

influence over-bank flooding patterns (Steiger and Gurnell 2003, Thoms 2006). 

Within-remnant land use was used as a third treatment factor, to enable investigation 

of patch-scale management impacts on vegetation composition and condition, as well 

as potential interactions between hydrology and grazing. Table 3.1 indicates the 
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distribution of sites. (Further details are provided in Appendix A). Replication in 

some groups was constrained by a lack of suitable remnants in this relictual 

landscape. 

 

 

 

 

Figure 3.1  Upper Condamine floodplain study area, indicating survey site locations and 

the location of weirs defining the end-points of river section treatments. 
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Table 3.1 Distribution (number) of survey sites per sampling stratification category 

(stream section, riverbank, land use). Weir and site locations are indicated in Figure 3.1.  

River 

section 

Reach (defined by in-

stream weirs) 

River bank  Land use  

Total 
Left Right  Grazed Ungrazed  

Upper  Talgai – Yarramalong  3 5  6 2  8 

Middle Yarramalong – Lemontree 4 5  3 6  9 

Lower Lemontree – Cecil Plains 3 4  1 6  7 

Total  10 14  10 14  24 

 

  

Sampling locations 

Sample sites within remnants were selected according to predetermined criteria. 

Those on the same side of the river were at least 500 m apart in different remnant 

patches or management units (to reduce spatial autocorrelation due to proximity of 

sites), in a representative patch of vegetation near the centre of the remnant (in terms 

of distance from the river channel) and, where possible, at least 40 m from both the 

river channel and the remnant edge to limit edge effects (e.g. Thorburn and Walker 

1994). 

Auto-correlation (spatial, temporal) of observations is a potential issue in studies 

where survey sites are not effectively independent at all relevant ecological scales 

(Wintle and Bardos 2006, Lawrence Lodge et al. 2007). While efforts were made to 

minimise this at the local patch scale, patterns related to precipitation (for example) 

across the study area could not be effectively managed and were assumed to be 

random. The study design in this case is inherently auto-correlated as river sections 

are related (effectively, nested catchment areas) in terms of location, and patterns 

which conformed to the order of river sections were interpreted cautiously. 

Site details 

For each site, location and elevation were recorded by hand-held GPS (easting, 

northing, UTM reference, altitude). Distances from river, remnant edge and property 

boundary were either measured or estimated (if greater than 100m). Patch condition 

and context were visually assessed for each site. Details recorded included landform 
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(floodplain, terrace), current within-patch land use, evidence of site disturbance and 

adjacent land use(s). Evidence of site disturbance (clearing, fire, grazing, weed 

control, flooding, erosion and mechanical disturbance was scored on a 5 point 

intensity scale (after Batterham 2008) (Table 3.2). 

 

 

Table 3.2 Site disturbance categories and scoring (after Batterham 2008) 

Disturbance Type (evidence) Intensity 

Clearing Selective (stumps), mechanical (windrowed) No evidence (0) – severe (4) 

Fire Recent, past (fire scars etc) No evidence (0) – severe (4) 

Grazing Native, domestic, feral (tracks, dung) No evidence (0) – severe (4) 

Flooding Recent (waterlogging, debris), past (flood scours) No evidence (0) – severe (4) 

Other Erosion, mechanical disturbance No evidence (0) – severe (4) 

 

 

No significant differences for clearing, fire or soil disturbance scores were identified 

across river section, river bank or land use treatments (Kruskal-Wallis and Mann-

Whitney U, p > 0.05; Table 3.3). Grazing scores differed significantly across river 

sections (p ≤ 0.05) and land use groups (p ≤ 0.005), but not river banks (p > 0.05). 

Grazing (native and domestic animals) was significantly greater at Upper section sites 

than Middle, with Lower section sites intermediate (p ≤ 0.05), and at Grazed sites 

than Ungrazed (p ≤ 0.005). Significantly higher scores for evidence of previous 

flooding were recorded for left bank than right bank sites (p ≤ 0.05), but there was no 

significant difference in flooding between river sections or land use groups (p > 0.05, 

Table 3.3). 
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Table 3.3 Measures of site condition and woodland structure by site groupings (river section, river bank, land use). Treatment values are means and 

standard errors (in parentheses). Significant differences within treatment factors are indicated in bold type; values sharing the same superscript are not 

significantly different (p > 0.05). 

Treatment factor River section1  River bank2  Land use2 

 Treatment level Upper Middle Lower  Left Right  Grazed Not grazed 

Number of sites 8 9 7  10 14  10 14 

Site condition          

Clearing (score: 0 – 4) 0.9 (0.5) 0.3 (0.2) 1.4 (0.3)  0.8 (0.2) 0.9 (0.3)  1.0 (0.4) 0.7 (0.2) 

Fire (score: 0 – 4) 0.3 (0.2) 0.4 (0.2) 0.3 (0.2)  0.5 (0.2) 0.2 (0.1)  0.2 (0.1) 0.4 (0.2) 

Grazing (score: 0 – 4) 1.9a (0.4) 1.0b (0.2) 1.1ab (0.1)  1.5 (0.3) 1.2 (0.2)  1.9a (0.3) 0.9b (0.1) 

Flooding (score: 0 – 4) 0.3 (0.3) 0. 6 (0.3) 0.0 (0.0)  0.7a (0.3) 0.0b (0.0)  0.4 (0.3) 0.2 (0.2) 

Soil disturbance (score: 0 – 4) 0.5 (0.3) 0.2 (0.2) 0.0 (0.0)  0.4 (0.3) 0.1 (0.1)  0.4 (0.2) 0.1 (0.1) 

Woodland structure3          

Trees > 20m (FPC%) 5.8a (1.9) 0.3b (0.2) 6.4ab (4.1)  4.2 (1.7) 3.7 (2.2)  4.2 (1.6) 3.7 (2.2) 

Trees 10 to 20m (FPC%) 7.6 (1.7) 5.4 (0.8) 5.9 (2.1)  5.7 (1.8) 6.7 (0.9)  6.4 (1.5) 6.2 (1.1) 

Trees < 10m (FPC%) 0.5a (0.3) 2.4a (1.2) 6.9b (2.0)  3.1 (1.4) 3.1 (1.2)  0.7a (0.4) 4.8b (1.3) 

Shrubs > 2m (FPC%) 0.1 (0.1) 0.0 (0.0) 0.6 (0.6)  0.0 (0.0) 0.3 (0.3)  0.0 (0.0) 0.3 (0.3) 

Shrubs 1 to 2m (FPC%) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)  0.0 (0.0) 0.1 (0.0)  0.0 (0.0) 0.1 (0.0) 

Shrubs < 1m (FPC%) 0.7 (0.4) 6.4 (3.4) 1.9 (0.9)  2.8 (1.6) 3.5 (2.1)  3.6 (2.9) 2.9 (1.1) 

Forbs (FPC%) 42.4 (5.5) 31.8 (7.2) 35.1 (8.9)  35.3 (7.0) 37.0 (5.2)  37.6 (8.2) 35.4 (4.2) 

Graminoids (FPC%) 49.3 (6.2) 50.6 (5.3) 54.3 (8.3)  61.5 (6.8) 51.0 (4.1)  53.4 (7.5) 49.6 (3.4) 

Logs > 30cm (FPC%) 1.4 (0.5) 1.0 (0.3) 1.3 (0.3)  1.1 (0.3) 1.3 (0.3)  1.0 (0.3) 1.4 (0.3) 

Logs 10 to 30cm (FPC%) 1.0 (0.3) 0.9 (0.1) 1.1 (0.3)  0.9 (0.2) 1.0 (0.2)  1.1 (0.2) 0.9 (0.2) 

Woody litter < 10cm (FPC%) 0.8 (0.2) 0.9 (0.2) 0.7 (0.3)  0.9 (0.2) 0.7 (0.2)  0.6 (0.2) 0.9 (0.2) 

Non-woody litter (FPC%) 47.6 (11.9) 66.1 (6.1) 66.0 (11.7)  70.1 (8.5) 52.7 (7.3)  54.1 (10.8) 64.1 (6.2) 

Bare ground (FPC%) 1.9 (0.7) 2.1 (1.0) 1.6 (1.4)  1.2 (0.6) 2.4 (0.9)  2.2 (1.0) 1.7 (0.8) 
1  Kruskal-Wallis (MannWhitney U); 2 MannWhitney U; 3 non-parametric analyses due to heteroscedastic variances for many variables (unable to be corrected by data transformation)
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Structural composition 

Vegetation structure within a 1,000 m
2
 sampling quadrat was subjectively determined 

by estimating projected cover (%) for trees (>20 m, 10-20 m, <10 m), shrubs (>2 m, 

1-2 m, <1 m), forbs, graminoids, logs (>30 cm diameter, 10-30 cm diameter), woody 

litter (<10 cm diameter), non-woody litter, rocks and bare ground (after Le Brocque 

and Buckney 1997). 

There were significant differences in the cover of trees greater than 20 m in height 

and trees less than 10 m in height across river sections (Kruskal-Wallis, p ≤ 0.05; 

Table 3.3), and for trees less than 10 m in height between land use treatments (Mann-

Whitney U, p ≤ 0.05). The cover of trees greater than 20 m high was significantly 

higher for Upper river section sites than Middle river section sites (Mann-Whitney U, 

p ≤ 0.05); Lower river section sites were intermediate and not significantly different 

from either Upper or Middle river section sites (p > 0.05), although there was greater 

variability in tall tree cover at Lower river section sites (standard error = 4.1). Upper 

and Middle river section sites had significantly lower cover of trees less than 10 m 

high than Lower river section sites (p ≤ 0.05), and grazed sites also had significantly 

lower cover of smaller trees less than 10 m high than ungrazed sites (p ≤ 0.05). There 

were no significant differences in other measures of woodland structure across river 

section or land use treatments, and no significant differences between river banks 

(Table 3.3). 

3.2.2 Data collection 

Floristic composition 

Floristic composition was assessed using a modified 1,000 m
2
 nested quadrat system 

(Morrison et al. 1995) comprising seven concentric square subquadrats (cumulative 

areas: 1, 2, 5, 10, 100, 500 and 1,000 m
2
). All vascular plant species rooted in a 

quadrat were recorded and assigned a frequency score (0 to 7) based on the number of 

subquadrats in which they were found. This method limits sampling bias due to non-

random dispersion (e.g. clumping) of organisms, enables higher detection rates of rare 

species than standard quadrat sampling methods, and provides a reasonable 

approximation of species density and improved ability to detect patterns particularly 

in species-poor communities (Morrison et al. 1995). It has been successfully adopted 
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in a number of studies to investigate vegetation community patterns (e.g. Le Brocque 

and Buckney 1997, King and Buckney 2002, Clarke 2003, Lewis et al. 2008, Le 

Brocque et al. 2009). Frequency methods are generally appropriate to the 

investigation of ecosystem response to disturbance as minor species, which constitute 

the bulk of site diversity and system redundancy (Walker 1992), are more heavily 

weighted compared to cover abundance methods (Lavorel et al. 2008). 

A key weed species investigated in this study was the introduced invasive species, 

Phyla canescens (lippia), which has been present in the Upper Condamine since 1927 

(Lucy et al. 1995, Earl 2003). Lippia is a flood-tolerant perennial clonal C3 forb. It is 

capable of both sexual and asexual reproduction, and its propagules (seed and 

vegetative fragments) are readily dispersed by floodwaters. It proliferates rapidly on 

moist heavy clay soils, such as occur on the Upper Condamine floodplain, 

particularly where the cover of competitive native species (e.g. tussock grasses) is 

reduced by disturbance or overgrazing, and has been of significant concern to the 

grazing industry, particularly in riparian and floodplain pastures in the northern 

Murray-Darling Basin (Lucy et al. 1995, Earl 2003). It is also widespread and highly 

abundant in this landscape (pers. obs.). 

As a result, cover of herbaceous groundcover species (including lippia) was also 

estimated in four 1 m
2
 quadrats randomly positioned within each quadrant of the 

largest 1,000 m
2
 quadrat above.  This was necessary as the nested quadrat frequency 

score method fails to pick up differences in the abundance of very common over- or 

evenly dispersed species due to saturation effects common to all frequency methods 

(Morrison et al. 1995). Randomisation was by pairs of random numbers pre-

generated using an online randomiser. 

3.2.3 Data treatment 

Floristic composition 

Plant species identifications were based on Stanley and Ross (1983, 1986, 1989), 

Harden (1990–1993) and Sharp and Simon (2002), and verified against specimens in 

herbarium collections at the University of Southern Queensland, Toowoomba and the 

Queensland Herbarium, Mt. Coot-tha. Current nomenclature was updated according 

to the Australian National Botanic Gardens‟ Australian Plant Name Index (ANBG 
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2009). Observations for three pairs of closely related species which could not readily 

be distinguished were combined. These were (i) Eucalyptus camaldulensis and E. 

tereticornis (referred to as Eucalyptus camaldulensis), (ii) Einadia nutans and E. 

polygonoides (referred to as Einadia spp.), and (iii) Eriochloa procera and E. 

pseudoachrotricha (Eriochloa spp.). Eucalyptus camaldulensis and E. tereticornis 

can be similar in form and not readily distinguishable unless fruiting (the 

distinguishing characteristic is the operculum on flower buds) (Doran and Burgess 

1993, McDonald et al. 2009). They have also been noted to interbreed when 

occurring in close proximity creating a hybrid type which has intermediate 

characteristics (Butcher et al. 2002, 2009). Einadia nutans and E. polygonoides were 

readily distinguished when fresh fruit was present, but less so from leaf form which 

can be variable and similar (Harden 1990). Eriochloa procera and E. 

pseudoachrotricha were difficult to distinguish unless grain was present. 

A number of broad functional response groups were identified on the basis of traits 

associated with responses to disturbance (flooding and grazing), and resource 

availability. Species were then assigned to a total of ten different (but not mutually 

exclusive) response groups on the basis of physiology (C3, C4), life history (short-

lived, perennial), growth form (forb, tussock grass, clonal), and habitat preference 

(wetland, floodplain, terrestrial) (Table 3.4) on the basis of information available 

from the literature and other sources (Appendix B). Native and alien species were 

treated equally. Within functional groups, alien species may be expected to perform 

similar or complementary functions to native species (Hobbs et al. 2006, 2009). 

Richardson et al. (2007) suggest that it is legitimate to include both native and alien 

species in an analysis of ecosystem function. This is particularly so for highly 

modified systems, where alien propagule pressure is typically high and both natural 

and anthropogenic disturbances promote invasion (Hobbs and Huenneke 1992, 

Richardson et al. 2007). 
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Table 3.4 Selected functional groupings, including categories within groups, gradient reflected and reported responses. 

Group Categories Environmental gradient(s) Response References 

life history short-lived, perennial nutrient availability annual and short-lived species favoured under high 

nutrient conditions  

Chapin 1980; Prober et al. 2002b, 2005; McIntyre & 

Lavorel 2007 

disturbance annual and short-lived species favoured under high 

levels of disturbance, including grazing 

Dorrough et al. 2004a,b; McIntyre & Lavorel 2001, 

2007 

life form forb, graminoid disturbance forbs benefit where limits to grass production exist 

(e.g. under grazing) 

Lavorel et al. 1999 a,b; McIntyre & Lavorel 2001; 

Fay et al. 2003 

physiology C3, C4 water availability C4 species favoured over C3 species under water-

limited conditions due to their high intrinsic water use 

efficiency 

Epstein  et al. 1997; Yu et al. 2005 

clonality clonal 

 

grazing 

 

high resprouting capacity favoured with grazing 

disturbance; long distance clonal growth forms (i.e. 

plants producing rhizomes or stolons) favoured in 

disturbed sites 

Fahrig et al. 1994; Kleijn & Steinger 2002; McIntyre 

& Lavorel 2007 

resource availability/risk clonal species well adapted for finding and occupying 

gaps in heterogeneous environments 

De Kroon & Hutchings 1995; Stuefer & Huber 1999; 

Rosenthal & Lederbogen 2008 

habitat wetland, floodplain, 

terrestrial 

flood disturbance flood-tolerant and intolerant (terrestrial) species 

composition and abundance provide consistent 

indication of flooding regime  

Turner et al. 2004; Lite et al. 2005 

 

water availability mesic (wetland) and xeric (terrestrial) species 

composition and abundance sensitive to water 

availability 

Lite et al. 2005 
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Functional group approaches to investigating ecosystem responses to disturbance 

provide insight into the mechanisms driving change in multi-species communities, 

particularly in disturbance-driven and invasion-prone systems such as riparian 

communities (Richardson et al. 2007). Sorting species into functional response 

groups relevant to the type of disturbance under investigation thus facilitates critical 

examination of compositional change which may relate directly to emergent 

ecosystem function (or dysfunction) and indicate potentially critical changes in 

ecosystem dynamics/resilience. Reduced richness, abundance or associated diversity 

in functional response groups may indicate a loss of resilience (functional 

redundancy sensu Walker 1992) within communities to environmental change, and 

suggests that these groups might be most responsive (and potentially vulnerable) to 

changes in this landscape. 

Floristic and functional group indices 

Species richness (S: the number of species per sample area) and diversity (H‟: 

Shannon-Wiener diversity index) were calculated for total species, total native 

species and total alien species in the 1000m
2
 quadrat. Cumulative abundance (N) 

indices were calculated by summing over frequency data (nested quadrat scores). 

Richness, abundance and diversity measures for the functional response groups 

listed in Table 3.4 were also calculated. 

3.2.4 Statistical analyses 

Multivariate analyses 

Variation in community composition was investigated using the PRIMER software 

package v5.2.9 (PRIMER-E Ltd. 2002, Clarke and Gorley 2001). The sites by 

species matrix of frequency data was converted to a matrix of similarities using the 

Bray-Curtis similarity coefficient. The dataset was standardised but not transformed 

as it was already effectively geometrically scaled (Morrison et al. 1995). Analysis of 

Similarity (ANOSIM) was used to investigate differences in community composition 

between river section, river bank and land use treatments. Significant interaction 

between groups (2-way crossed ANOSIM) was addressed by averaging the test 

group across the interacting group (Clarke and Gorley 2001). Results of pairwise 

tests (ANOSIM) were interpreted using Global R values due to the relatively small 



 
74 

number of samples (Global R > 0.75 indicated well separated; > 0.5, overlapping but 

clearly separated; < 0.25, barely separable: Clarke and Green 1988, Clarke and 

Gorley 2001). Similarity percentage (SIMPER) analyses were used to identify the 

relative contributions of species to identified patterns (similarity within and 

dissimilarity between site groupings) (Clarke and Warwick 2001). 

Univariate analyses 

Community response variables (species richness, abundance and Shannon-Wiener 

diversity of total, native and alien species, and functional groups), were compared 

across treatments (river section, river bank, land use) using the 3-way Analysis of 

Variance (3-way ANOVA) procedures in SPSS version 18.0 for Windows (SPSS 

Inc. 2009). Prior to analysis, bounded (proportional) data were arcsine transformed, 

and all data were screened and transformed (either square root or log10), where 

required, to meet assumptions of normality and homoscedascity (Quinn and Keogh 

2002). Where heteroscedastic variances were unable to be corrected for by 

transformation, no further analysis was undertaken. Where variances were 

homogeneous (Levene‟s), 3-way ANOVA was conducted and Tukey‟s unplanned 

multiple comparison procedure with Bonferroni adjustment for unequal sample size 

(Day and Quinn 1989) was used to determine significant difference between 

treatment pairs in treatments with significant main effects. Where there was 

significant interaction between river section, river bank and land use treatments, 

results indicating significant main effect differences were not able to be interpreted 

(Zar 1999); however, major patterns were explored graphically. 

Pearson‟s correlation procedure in SPSS version 18.0 for Windows (SPSS Inc. 2009) 

was used to investigate the strength of association between native and alien species 

richness, abundance and Shannon-Wiener diversity. Prior to analysis, bounded 

(proportional) data were arcsine transformed, and all data were screened and 

transformed (either square root or log10), where required, to meet assumptions of 

normality and homoscedascity (Quinn and Keogh 2002). 

 



 
75 

3.3 Results 

3.3.1 General floristics 

A total of 131 vascular plant species was recorded in this survey, of which 95 

(72.5%) were native and 36 (27.5%) alien (Appendix C). Of these, the five most 

frequently recorded species were the alien Phyla canescens (present at all 24 sites), 

and natives, Einadia spp., Eucalyptus camaldulensis, Dichanthium sericeum, 

Cyperus gunnii and Elymus multiflorus (each recorded at 23 sites). The five most 

abundant species were the alien species Phyla canescens (with a mean within-site 

frequency of 6.9 ± 0.1), and the natives Einadia spp. (4.9 ± 0.6), Cyperus gunnii (4.2 

± 0.5), Dichanthium sericeum (3.7 ± 0.5) and Eriochloa spp.1 (3.3 ± 0.5). 

3.3.2 Patterns in community composition 

No significant interaction was evident in overall floristic composition between river 

section and river bank or river section and land use treatments (2-way crossed 

ANOSIM, p > 0.05); however, there was a significant interaction between river bank 

and land use treatments (p ≤ 0.05). There was a significant, but limited, difference in 

community composition between river sections (ANOSIM: Global R = 0.196, p = 

0.002; Table 3.5) and a significant difference between grazed and ungrazed sites 

when land use effects were compared within riverbank treatments (2-way crossed 

ANOSIM, grouping across riverbanks; Global R = 0.312, p = 0.004), but no 

significant difference in community composition between left and right river bank 

groups (Global R = -0.052, p > 0.05). 

 

 

Table 3.5 Summary of pairwise tests (ANOSIM) on species abundance data between 

river section groups. Values are R statistics with significance levels indicated. Significant 

difference is indicated in bold type (** p ≤ 0.005, * p ≤ 0.05).  

 Upper Middle 

Middle 0.207* - 

Lower 0.223* 0.168* 
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Dissimilarity 

Differences in the relative abundance of native perennial species contributed most to 

the dissimilarity between river section treatments (SIMPER, Table 3.6). The alien 

perennial forb, Phyla canescens (lippia), contributed less than 0.5% to dissimilarity 

between treatment factors (Table 3.6). 

 

 

Table 3.6 Species contributing to 20% of Dissimilarity between river sections. Lippia 

(Phyla canescens) contribution is also shown. „Abundance‟ is frequency recorded across 

seven nested quadrats (maximum abundance = 7). 

Species Average abundance Contribution % Cumulative % 

Average Dissimilarity = 62.1 Upper Middle   

Einadia spp. 1 

Cyperus gunnii 

Eriochloa spp. 

Dichanthium sericeum 

Panicum decompositum 

Marsilea sp. 

Eulalia aurea 

Paspalidium aversum 

Phyla canescens  

4.4 

3.4 

2.4 

4.6 

1.6 

4.0 

3.3 

2.8 

7.0 

4.7 

5.6 

4.4 

3.6 

2.4 

2.8 

1.6 

1.4 

7.0 

3.2 

3.0 

2.7 

2.6 

2.6 

2.5 

2.5 

2.4 

0.0 

3.2 

6.2 

8.9 

11.5 

14.0 

16.6 

19.0 

21.4 

- 

Average Dissimilarity = 59.0 Middle Lower   

Leptochloa divaricatissima 

Cynodon dactylon 

Einadia spp. 1 

Cyperus gunnii 

Paspalidium aversum 

Eriochloa spp. 

Phyla canescens 

1.8 

1.3 

4.7 

5.6 

1.4 

4.4 

7.0 

5.3 

4.9 

5.7 

3.3 

3.0 

3.0 

6.6 

4.3 

4.1 

3.5 

3.4 

2.8 

2.7 

0.4 

4.3 

8.4 

11.9 

15.3 

18.1 

20.8 

- 

Average Dissimilarity = 62.9 Upper Lower   

Leptochloa divaricatissima 

Cynodon dactylon 

Marsilea sp. 

Einadia spp. 1 

Paspalidium aversum 

Cyperus gunnii 

Dichanthium sericeum 

Carex inversa 

Phyla canescens 

1.1 

2.5 

4.0 

4.4 

2.8 

3.4 

4.6 

1.9 

7.0 

5.3 

4.9 

1.9 

5.7 

3.0 

3.3 

2.9 

2.4 

6.6 

3.8 

2.8 

2.6 

2.6 

2.6 

2.3 

2.2 

2.2 

0.3 

3.8 

6.7 

9.3 

11.9 

14.5 

16.8 

19.0 

21.2 

- 
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Similarity 

Lippia was the most abundant species across all treatments, contributing 18.4%, 

20.7% and 15.1% to the Bray-Curtis Similarity (PRIMER SIMPER) within Upper, 

Middle and Lower river section treatments, respectively; 21.1% and 18.6% in Left 

and Right river bank treatments, respectively; and 19.5% and 18.0% in Grazed and 

Ungrazed land use treatments, respectively. The next most influential species were 

native perennial species (e.g. Dichanthium sericeum, Cyperus gunnii, Einadia spp.) 

whose contributions never exceeded 13.3%. 

3.3.3 Patterns in community richness, abundance and diversity 

Total species richness ranged from 17 to 50 species per 1,000 m
2
 quadrat; native and 

alien species richness ranged from 14 to 35 and 3 to 16 species, respectively 

(Appendix C). 

There was a significant interaction between the river section and land use treatments 

for total species richness (3-way ANOVA, p ≤ 0.05; Table 3.7, Figure 3.2a), but no 

significant interaction between river section and land use treatments for other 

measures reported in Table 3.7 (p > 0.05). There were significant differences in 

native and alien species richness, and total and native Shannon-Wiener diversity 

between river section treatments (p ≤ 0.05). Middle river section sites had 

significantly lower native and alien species richness and total and native diversity 

than Upper river section sites (p ≤ 0.05); Lower river section sites were intermediate 

(p > 0.05). There was no significant difference in species abundance between river 

section treatments (p > 0.05, Table 3.7). 

There were significant interactions between river bank and land use treatments for 

total diversity and native species richness (Figure 3.2b), abundance and diversity (p 

≤ 0.05); interactions patterns were consistent across these measures. No significant 

interactions were found for total species richness or abundance, or alien species 

richness, abundance or diversity (p > 0.05). There were no significant differences in 

main effects for richness, abundance or diversity between river bank treatments or 

land use treatments (p > 0.05, Table 3.7). 
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Table 3.7 3-way ANOVA results for total, native and alien species richness, abundance and Shannon-Wiener diversity by treatments (river section, river 

bank, land use). Treatment values are means and standard errors (in parentheses). Significant main effects are indicated in bold type; values sharing the same 

superscript are not significantly different (p > 0.05). Interaction values are F statistics with significance indicated in bold type (** p ≤ 0.005, * p ≤ 0.05). 

 TREATMENTS  INTERACTIONS 

 River section (RS)  River bank (RB)  Land use (LU)  
RS x RB RS x LU RB x LU RS x RB x LU  

 Upper Middle Lower  Left right  Grazed Not grazed  

n 8 9 7  10 14  10 14      

Total species1   

S 36.3 (3.2) 26.3 (3.0) 32.1 (1.8)  30.0 (2.7) 32.3 (2.4)  31.6 (2.2) 31.1 (2.7)  0.04 4.91* 3.78 2.85 

N2 104.5 (10.9) 81.4 (11.0) 95.9 (7.8)  94.4 (10.1) 92.6 (7.8)  93.6 (8.2) 93.1 (8.8)  0.27 2.32 4.33 0.50 

H 3.4a (0.1) 3.0b (0.1) 3.3ab (0.1)  3.1   (0.1) 3.2   (0.1)  3.2   (0.1) 3.2   (0.1)  0.13 2.77 5.37* 3.92 

Native species1   

S 27.5a (3.0) 20.6b (2.2) 24.9ab (1.3)  23.4 (2.2) 24.6 (2.0)  24.9 (2.3) 23.6 (1.9)  0.09 3.27 5.52* 0.60 

N2 82.6 (11.7) 63.2 (8.7) 73.4 (4.2)  74.0 (8.6) 71.7 (6.9)  75.4 (8.9) 70.7 (6.7)  0.19 2.57 5.26* 0.15 

H4 3.1a (0.1) 2.8b (0.1) 3.0ab (0.0)  2.9   (0.1) 2.9   (0.1)  3.0  (0.1) 2.9  (0.1)  0.01 3.11 6.32* 0.35 

Alien species1   

S3 8.8a (1.4) 5.8b (0.8) 7.3ab (1.4)  6.6   (1.1) 7.6   (1.0)  6.7   (0.9) 7.6   (1.1)  0.24 1.23 0.00 3.85 

N2,3 21.9  (2.9) 18.2 (2.8) 22.4 (5.1)  20.4 (3.0) 20.9 (2.7)  18.2 (2.2) 22.4 (3.0)  0.07 0.05 0.08 1.71 

H 1.8   (0.2) 1.4   (0.2) 1.7   (0.2)  1.5   (0.2) 1.7   (0.1)  1.6   (0.2) 1.7   (0.1)  0.38 0.54 0.20 3.57 

1 S is species richness, N is total abundance, H is Shannon-Wiener diversity (loge); 
2 arcsin transformed; 3 square root transformed; 4 log10 transformed.  
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a. 

 

b. 

 

Figure 3.2  Significant interactions between river sections and land use (grazed, 

ungrazed) for patterns in total species richness (a), and river bank and land use (grazed, 

ungrazed) for patterns in native species richness (b) on the Upper Condamine floodplain.  

Values are means for grazed (solid line) and ungrazed (broken line) sites; error bars are 

standard error. 

 



 
80 

3.3.4 Patterns in functional group diversity 

There were significant interactions between river section and land use treatments for 

C3, perennial, forb, terrestrial and floodplain species richness and forb Shannon-

Wiener diversity, and complex 3-way interactions for tussock grass species and 

terrestrial species diversity (3-way ANOVA, p ≤ 0.05; Table 3.8); these conformed 

with the pattern for total species richness indicated in Figure 3.2a. Heterogeneous 

variances (Levene‟s, p ≤ 0.05) for tussock grass species richness and perennial 

species Shannon-Wiener diversity could not be corrected by transformation, and 

further analysis was not conducted on these variables (Table 3.8). 

Middle river section sites had significantly lower abundance of forbs and perennial 

species, and lower diversity of C3 and C4 species than the Upper section (p ≤ 0.05); 

Lower river section sites were intermediate and not significantly different from 

Upper and Middle river section sites for any of these measures (p > 0.05, Table 3.8). 

There was no significant interaction between river section and riverbank or land use 

treatments for these response variables (3-way ANOVA, p > 0.05; Table 3.8). 

There were significant interactions between river bank and land use treatments for 

perennial, forb and wetland species richness, perennial and wetland species 

abundance and forb Shannon-Wiener diversity, and in all measures for terrestrial 

species (3-way ANOVA, p ≤ 0.05; Table 3.8). Interactions patterns were consistent 

with those of native species richness (Figure 3.2b), with the exception of wetland 

species richness (Figure 3.3a) and abundance (Figure 3.3b). There were no 

significant differences in main effects for river bank or land use treatments (p > 0.05, 

Table 3.8). 



 
81 

Table 3.8 3-way ANOVA results for functional response group species richness, abundance and Shannon-Wiener diversity by treatments (river section, 

river bank, land use).  Treatment values are means and standard errors (in parentheses). Significant main effects are indicated in bold type; values sharing the 

same superscript are not significantly different (p > 0.05). Interaction values are F statistics with significance indicated in bold type (** p ≤ 0.005, * p ≤ 0.05). 

 TREATMENTS  INTERACTIONS 

 River section (RS)  River bank (RB)  Land use (LU)  
RS x RB RS x LU RB x LU RS x RB x LU  

 Upper Middle Lower  Left Right  Grazed Not grazed  

C3 species1   

S 19.9 (2.4) 13.0 (1.3) 17.9 (1.4)  15.5 (1.9) 17.6 (1.5)  16.0 (1.3) 17.2 (1.8)  0.41 6.64* 0.92 1.17 

N2 52.6 (6.3) 39.1 (4.5) 50.4 (5.5)  45.6 (5.5) 47.9 (4.1)  42.3 (4.3) 50.2 (4.6)  0.11 0.93 1.34 0.15 

H 2.7a (0.1) 2.3b (0.1) 2.6ab (0.1)  2.4 (0.1) 2.6 (0.1)  2.5 (0.1) 2.6 (0.1)  0.36 2.37 1.64 1.91 

C4 species1   

S3 11.1 (1.2) 8.6 (1.2) 10.6 (0.6)  9.5 (1.0) 10.4 (0.9)  10.5 (1.1) 9.6 (0.9)  0.06 1.54 2.84 1.30 

N2 36.6 (4.9) 29.7 (5.9) 37.1 (3.2)  33.9 (4.2) 34.4 (4.1)  37.6  (5.2) 31.7 (3.3)  0.01 2.29 4.62 2.15 

H 2.2a (0.1) 1.9b (0.2) 2.2ab (0.1)  2.0 (0.1) 2.1 (0.1)  2.2 (0.1) 2.0 (0.1)  0.08 1.58 3.63 1.54 

Perennial species1   

S 28.8 (2.5) 18.7 (2.3) 25.1 (1.2)  23.1 (2.5) 24.5 (1.9)  24.9 (2.0) 23.2 (2.2)  0.47 4.59* 6.96* 0.98 

N2 88.5 a (10.1) 62.3 b (9.0) 77.1 ab (4.3)  77.0 (9.1) 74.2 (6.6)  79.8 (7.8) 72.2 (7.2)  0.61 2.77 5.59* 0.19 

H5 3.1 (0.1) 2.6 (0.1) 3.0 (0.0)  2.9 (0.1) 2.9 (0.1)  3.0 (0.1) 2.9 (0.1)  - - - - 

Short-lived (annual/biannual) species1   

S4 7.5 (1.2) 7.7 (1.0) 7.0 (1.5)  6.9 (0.8) 7.8 (1.0)  6.7 (0.6) 7.9 (1.1)  0.19 1.21 0.03 2.29 

N2,3 16.3 (2.8) 19.1 (3.6) 18.7 (5.4)  17.4 (3.4) 18.5 (2.9)  14.0 (1.8) 20.9 (3.4)  0.05 0.22 0.41 1.69 

H 1.8 (0.1) 1.8 (0.1) 1.7 (0.2)  1.7 (0.1) 1.8 (0.1)  1.7 (0.1) 1.8 (0.1)  0.28 0.99 0.01 2.40 

Forbs1   

S 12.9 (1.9) 7.7 (1.3) 10.3 (1.4)  8.9 (1.4) 11.1 (1.3)  10.4 (1.4) 10.0 (1.4)  0.23 6.91* 8.03* 0.33 

N2 33.3 a (4.8) 21.0 b (2.7) 28.1ab (5.2)  24.1 (4.1) 29.4 (3.3)  25.8 (3.3) 28.1 (3.8)  0.38 2.72 4.66 0.02 
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 TREATMENTS  INTERACTIONS 

 River section (RS)  River bank (RB)  Land use (LU)  
RS x RB RS x LU RB x LU RS x RB x LU  

 Upper Middle Lower  Left Right  Grazed Not grazed  

H 2.2 (0.2) 1.7 (0.2) 2.0 (0.1)  1.8 (0.2) 2.1 (0.1)  2.0 (0.2) 1.9 (0.1)  0.19 4.49* 10.68* 1.40 

Tussock grasses1   

S5 11.8 (1.3) 9.4 (1.2) 10.1 (0.3)  10.2 (0.9) 10.6 (0.9)  10.5 (0.9) 10.4 (0.9)  - - - - 

N2 38.4 (4.8) 33.2 (6.1) 37.1 (3.3)  37.7 (4.9) 34.9 (3.6)  37.5 (4.7) 35.1 (3.7)  0.03 1.13 3.78 1.83 

H3 2.3 (0.1) 2.0 (0.1) 2.2 (0.0)  2.1 (0.1) 2.1 (0.1)  2.2 (0.1) 2.1 (0.1)  0.14 0.99 2.45 4.81* 

Clonal species1   

S 9.0 (0.5) 7.1 (0.7) 7.6 (0.7)  7.8 (0.4) 7.9 (0.6)  8.7 (0.5) 7.3 (0.6)  0.10 3.60 1.07 2.56 

N2 32.4 (2.0) 24.8 (2.1) 26.6 (3.2)  29.3  (2.3) 26.8  (2.0)  31.8 (1.6) 25.0 (2.0)  0.07 1.49 0.01 0.23 

H 2.0 (0.1) 1.7 (0.1) 1.8 (0.1)  1.8 (0.1) 1.8 (0.1)  2.0 (0.0) 1.7 (0.1)  0.12 2.44 0.93 1.29 

Terrestrial (generalist) species1   

S 24.6a (2.3) 15.8 (2.5) 20.7 (2.1)  19.0 (2.1) 21.0 (2.1)  20.9 (1.9) 19.6 (2.2)  0.11 4.05* 4.81* 3.23 

N2 61.6 (7.8) 41.8 (8.7) 53.7 (6.9)  52.0 (7.3) 51.8 (6.5)  53.8 (6.8) 50.5 (6.8)  0.37 2.35 7.04* 0.49 

H 3.0  (0.1) 2.5 (0.2) 2.8 (0.1)  2.7 (0.1) 2.8 (0.1)  2.8 (0.1) 2.7 (0.1)  0.29 1.91 6.33* 5.02* 

Wetland species1   

S 2.3 (0.3) 2.7 (0.2) 2.3 (0.3)  2.5 (0.3) 2.4 (0.2)  2.4 (0.3) 2.4 (0.2)  0.84 0.31 7.76* 0.61 

N2,3 8.9 (1.9) 9.8 (1.6) 6.7 (1.7)  10.3 (2.0) 7.4 (0.9)  9.5 (2.0) 7.9 (1.0)  0.03 1.28 5.07* 0.43 

H 0.7 (0.1) 0.8 (0.1) 0.7 (0.1)  0.7 (0.1) 0.7 (0.1)  0.7 (0.1) 0.7 (0.1)  0.59 0.45 3.80 0.34 

Floodplain species1   

S4 11.6 (1.1) 10.6 (0.7) 11.4 (0.6)  11.0 (0.8) 11.3 (0.6)  10.7 (0.6) 11.5 (0.7)  1.33 3.85* 0.10 1.83 

N2 43.1 (4.5) 39. 7 (3.3) 42.1 (3.9)  42.4 (3.5) 40.9 (2.9)  40.0 (3.1) 42.6 (3.1)  0.05 0.58 0.04 0.31 

H 2.2 (0.1) 2.1 (0.1) 2.2 (0.1)  2.2 (0.1) 2.2 (0.1)  2.2 (0.1) 2.2 (0.1)  0.01 1.26 0.17 0.65 

1 S is species richness, N is total abundance, H is Shannon-Wiener‟s diversity index (loge); 
2 arcsin transformed; 3 square root transformed; 4 log10 transformed; 7 transformation unable to correct for heteroscedascity 

(unequal variance). 
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a. 

 

b. 

 

Figure 3.3  Significant interactions between river bank and land use (grazed, ungrazed) 

for patterns in wetland species richness (a) and abundance (b) on the Upper Condamine 

floodplain.  Values are means for grazed (solid line) and ungrazed (broken line) sites; error 

bars are standard error. 
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3.3.5 Patterns in lippia abundance 

Heterogeneous variances (Levene‟s, p ≤ 0.05) for lippia frequency and cover could 

not be corrected by transformation, and further analysis was not conducted on these 

variables (Table 3.9). 

 

 

Table 3.9  Lippia frequency (1000 m
2
 quadrats) and cover (FPC%, 1 m

2
 quadrats) by 

treatments (river section, river bank, land use). Values are means and standard errors (in 

parentheses).  

 TREATMENTS 

 River section  River bank  Land use 

 Upper Middle Lower  Left Right  Grazed Not grazed 

n 8 9 7  10 14  10 14 

Lippia frequency1,2 7.0 (0.0) 7.0  (0.0) 6.6  (0.4)  7.0 (0.0) 6.8  (0.2)  7.0  (0.0) 6.8  (0.2) 

Lippia cover1,2 21.7 (4.6) 12.1  (3.0) 10.1  (2.6)  16.3 (4.1) 13.6  (2.5)  17.3  (4.7) 12.9  (1.8) 

1 arcsin transformed; 2 transformation unable to correct for heteroscedascity 

 

 

3.4 Discussion 

Overall, this study found significant variation in floristic composition and community 

structure between longitudinal river sections, and significant interactions between 

river bank and within-patch land use (grazed, ungrazed) treatments in riparian 

woodland remnants on the Upper Condamine floodplain. 

Within river section treatments, and for measures in which significant patterns were 

detected, Middle river section sites supported consistently lower floristic richness, 

abundance and diversity than Upper river section sites, while Lower river section 

sites were consistently intermediate to the other river sections. This pattern was 

evident for native and alien species richness and total and native species diversity, 

and for the functional group measures, forb and perennial species abundance and C3 

and C4 Shannon-Wiener diversity. These patterns correspond with broad differences 

in land and water use intensity patterns across the river sections reported in Chapter 2, 
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with the Middle river section exhibiting more extreme hydrological patterns and a 

greater level of land use development than the Upper river section, while the Lower 

river section was in many cases intermediate. 

No significant patterns in community structure were evident in relation to river bank 

treatments, despite major differences in floodplain and catchment width and in land 

use development on opposing sides of the river (Chapter 2). Nor were there 

significant patterns evident in response to grazing (i.e. within-remnant land use). 

However, significant interaction between river section, riverbank and within-remnant 

land use treatments was evident for a number of measures, indicating that community 

patterns in this landscape may be the result of complex responses to a number of 

drivers operating at different scales. 

Treatments effects on lippia frequency and cover were unable to be analysed in this 

study due to heterogeneous variances. However, lippia had higher frequency and 

cover across all treatments than any other species in this study, and contributed more 

than any other species to floristic similarity and relatively little to dissimilarity 

between treatment levels, indicating that it was a dominant and widespread species in 

riparian woodland remnants on the Upper Condamine floodplain, and that its 

presence had an overall homogenizing effect on floristic composition in these 

communities. 

3.4.1 Pattern in community diversity 

Total species richness (131 species) in this landscape was considerably lower than 

that reported from floodplain landscapes elsewhere (e.g. Pollock et al. 1998, Bagstad 

et al. 2005, Aguiar et al. 2006, Beauchamp and Stromberg 2008), although the 

proportion of alien species (28%) was at the higher end of the reported range. For 

example, Aguiar et al. (2006) reported 9% alien richness in floodplain communities 

in southern Portugal, while Stohlgren et al. (1998) found levels ranging from 6 to 

24% in riparian communities of the central grasslands in the USA. While low total 

species richness in this study may, in part, be due to the prevailing drought conditions 

experienced in the period prior to sampling (BoM 2010, Chapter 2), it may also be 

indicative of significant degradation in the state of these woodlands as a result of 

changes in the landscape associated with current levels of development, associated 

hydrological changes or the prevalence of the dominant invasive alien species, Phyla 
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canescens (lippia). The legacy of past land use, which involved significantly greater 

levels of grazing across the landscape and more intense use of riparian ecosystems 

(e.g. QMDC 2005, Chapter 2), may also continue to influence current community 

composition as has been reported elsewhere (e.g. Turner et al. 2004, Dale et al. 2005, 

Elmore et al. 2006b). 

The richness of alien species recorded in this landscape indicates, from a community 

assembly viewpoint, that native ecosystem remnants in this landscape are not 

particularly resistant to invasion by non-native species (Gilbert and Lechowicz 2005). 

Non-equilibrial disturbance-driven systems such as riparian communities are 

inherently prone to invasion (Hobbs and Huenneke 1992), and disturbance, in 

conjunction with propagule pressure (Foxcroft et al. 2007), is widely recognised as a 

key driver of species invasion (Vosse et al. 2008). Disturbances such as flooding, 

drought and grazing result in stochastic establishment opportunities and fluctuating 

resource levels which facilitate establishment of species (both alien and locally 

adapted native species) capable of rapid response to these conditions (Davis and 

Pelsor 2001, Kreyling et al. 2008). Similar response in alien and native species 

diversity also indicates that both native and alien species in this landscape respond 

more strongly to environmental gradients than to each other (Shea and Chesson 2002, 

Deutschewitz et al. 2003, Gilbert and Lechowicz 2005). This is in agreement with the 

Coexistence Theory which proposes that temporal and spatial environmental 

heterogeneity (e.g. variations in resource availability) increase invasion success (e.g. 

of opportunistic native and alien species) and promote species coexistence (Davies et 

al. 2005, Melbourne et al. 2007, Stohlgren et al. 2008). Conversely, environmental 

filters (e.g. resource limitation, lack of stochastic disturbance), associated with a 

degraded system and which result in native species loss and subsequent low native 

niche-saturation levels due to recruitment limitation (Sax and Brown 2000, Moore et 

al. 2001), may also limit invasion success of alien species (Kreyling et al. 2008). 

Reduced richness, abundance and diversity of native and, to a lesser extent, alien 

species potentially indicate a more degraded or, at least, a less heterogeneous state 

(Chapter 1) in the Middle river section of this study. Negligible in-stream flows in 

this river section in the one and two year periods preceding sampling (Chapter 2), 

indicate a relatively low level of resources associated with moisture availability, 

potentially exacerbating prevailing drought conditions. Highly variable flow patterns 
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in streamflow volumes recorded at Lemon Tree Weir over the 10 years prior to 

sampling indicate considerable variability and altered seasonality in the Middle river 

section compared to the Upper and Lower sections. However, in this instance, it is 

likely that these influence only a small portion of this river section (that immediately 

upstream of the weir), and do not represent flow within the full reach due to the 

confounding influence of the Condamine North Branch Project (Chapter 2); the 

diversion of up to 14.5 GL of annual in-stream flows from the Yarramalong Weir 

represents a significant reduction in in-stream flows and increased potential for 

impacts on the hydrological dynamics of this section of the river. This is supported by 

reported declines in exchange between surface flows and groundwater (CSIRO 2008, 

Chapter 2) in this river section. The floodplain adjacent to the Middle river section is 

also the most highly developed and modified of the three river sections sampled, with 

a greater relative proportion of cropping, offstream storages and groundwater bores 

and a lower proportion of natural vegetation than either the Upper or Lower river 

sections (Chapter 2). 

Shallow alluvial aquifers have been found to play a critical role in supporting 

phreatophytic vegetation and buffering riparian ecosystems through periods of low 

precipitation and soil moisture availability (Elmore et al. 2006a). Reduced buffering 

capacity, contributing to more extreme „effective drought‟ conditions (Elmore et al. 

2006a), may drive a higher rate of species decline in this section of the study area, 

relative to the Upper and, in some cases, Lower river sections. Surrounding land use 

has been found to play a large role in riparian community condition (e.g. Tabacchi et 

al. 1996, Aguiar and Ferreira 2005), and has significant potential to influence both 

native species diversity (Moffatt and McLachlan 2004,  Martin et al. 2006) and the 

presence and dispersion of alien plant species (Moffatt and McLachlan 2004). 

The significant interaction between river section and grazing treatments for total 

species richness and diversity may also be important, although lack of adequate 

replication for grazed sites in the Lower river section indicates that this result should 

be treated cautiously. Significant grazing-precipitation interaction reported in other 

studies (e.g. Burke et al. 1998, Allen-Diaz and Jackson 2000, Lunt et al. 2007a), 

especially at higher grazing intensities, suggests that interactions between grazing and 

resource availability are potentially important factors in the stability of ecosystems. 

This is supported by evidence of significant interaction between grazing and flooding 
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on the condition of riverine and riparian ecosystems along the Murrumbidgee River, 

southern NSW (Roberston and Rowling 2002), and also in the lippia-invaded Gwydir 

wetlands, northern NSW (Berney et al. 2010, Price et al. 2010a). These findings 

indicate the potential for cross-scale interactions and for complex ecosystem 

responses in floodplain landscapes. 

3.4.2 Patterns in functional group diversity 

Differences in richness, abundance and diversity patterns in a number of functional 

response groups across river section treatments further support an interpretation of 

reduced hydrological and ecological function (or increased dysfunction; Chapter 1) 

along the Middle river section of the study area. While the functional groups 

examined are not mutually exclusive (i.e. species in this dataset are members of 

several functional response groups), and responses are likely to be the result of 

multiple interacting influences in this landscape, significant response in these groups 

(specifically, C3, C4, forb and perennial species groups) supports the proposition that 

this more degraded (less dynamic) ecological state is likely to be predominantly 

associated with more intense effective drought conditions due to a low level of 

accessible moisture resources. 

Both C3 and C4 species are significantly impacted by severe dehydration. Species 

with C3 physiology are physiologically vulnerable to low moisture availability (Yu et 

al. 2005). In these species, stomatal closure to prevent dehydration constrains 

photosynthesis, resulting in poor fitness (i.e. low growth and reproductive effort) (Lee 

and Bazzaz 1986, Moreno et al. 2008). While C4 species are physiologically adapted 

to avoid moisture stress and inherently more water-use efficient than C3 species (Yu 

et al. 2005), they have also been found to suffer metabolic failure under extreme soil 

moisture deficit (Kalapos et al. 1996, Ripley et al. 2007). 

Regardless of metabolic pathway, many perennial species in water-stressed 

environments develop deep-root systems (Owensby et al. 1999, Huang and Fu 2000), 

and persistence of these species in drought periods may depend on continued access 

to stored subsoil moisture (Gibbens and Lenz 2001, Veneklaas and Poot 2003). In 

alkali meadows in California USA, such species have been found to be highly 

responsive to the presence of shallow groundwater, which effectively buffers them 

against drought and soil moisture deficit (Elmore et al. 2006a). However, over a 
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period of 16 years, groundwater decline below the average maximum effective 

rooting depth of perennial groundcover species in that system (2.5 m) induced a 

threshold response in the abundance of those species; cover remained high at 

groundwater depths above 2.5 m, despite variation in precipitation, but was 

significantly reduced where depths exceeded 2.5 m (Elmore et al. 2006a). 

More complex interactions are also reported in some systems. Persistence of 

perennial species in drought periods may be dependent on access to moisture 

redistributed by deep-rooted species through hydraulic lift from deeper soil layers 

(Dawson 1993a,b,c, Hawkins et al. 2009). In the study reported by Elmore et al. 

(2006a), significantly slower response to groundwater decline was evident where 

there was greater cover of deep-rooted shrubs, which acted to minimise the impact on 

associated herbaceous species. However, Ludwig et al. (2004a, b) report that 

increased competition for scarce surface soil moisture from hydraulic lift by Acacia 

tortilis in East Africa results in no net benefit for undercanopy herbaceous species. 

Diverse groups, such as forbs, are likely to encompass both short-lived and perennial 

species, and C3 and C4 species, and hence a wide range of adaptations and water-use 

efficiencies. Ephemeral forbs, in particular, are adapted to rapid response 

(germination, establishment, growth, reproduction) to improved environmental 

conditions, and are therefore likely to be adversely affected by low resource 

conditions (Tsialtas et al. 2001, Lechmere-Oertel et al. 2005). However, species not 

specifically adapted to the hydrological extremes experienced in dryland floodplain 

environments (Colloff et al. 2010, Colloff and Baldwin 2010) may be more 

susceptible to changes in landscape hydrology which increase effective drought 

conditions and act to filter poorly adapted species (Chapin et al. 1993). 

While reduced hydrological function is likely to be a primary factor in the observed 

responses in this study, significant interaction between land use and river section 

treatments was also apparent in a number functional group patterns, indicating the 

potential for complex ecological responses to interactions between grazing and 

resource availability as previously recognised in a number of studies (e.g. Burke et al. 

1998, Allen-Diaz and Jackson 2000, Lunt et al. 2007a). This is reinforced by the 

finding that within-patch grazing had limited independent impact on functional group 

responses in this study. However, significant functional group response is generally 

associated with gradients in grazing intensity (e.g. Lavorel et al. 1997, McIntyre and 
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Lavorel 2001); these were not tested in this study, which was concerned only with 

broad responses to the presence or absence of grazing per se. 

The lack of significant response in the abundance and diversity of clonal species in 

this study is counter to previous studies which generally classify such species in the 

„increaser‟ response group under high grazing pressure (Lavorel et al. 1997, McIntyre 

and Lavorel 2001, Vesk and Westoby 2001). Such species are well adapted to 

surviving grazing damage, possessing multiple resprouting buds (Liu et al. 2007, 

Benot et al. 2010), and frequently increase under grazing pressure as other more 

susceptible species decline (Liu et al. 2007). They are also well adapted to flooding 

disturbance, and are typically common in floodplain environments, where interactions 

between flooding and grazing can frequently contribute to their proliferation (Benot 

et al. 2010, Berney et al. 2010). Limited response in this group under current climatic 

conditions may be an indication that this group is not well-buffered against drought or 

that responses in this group occur at a finer scale than was tested in this study, as 

suggested above. 

3.4.3 Patterns in the dominant weed, lippia 

Lippia, a clonal deep-rooted perennial C3 species, was the most frequent and 

abundant species recorded in this study. As predicted, frequency was a poor measure 

for such a pervasive (over-dispersed) species (Morrison et al. 1995). Cover estimates 

(1 m
2
 quadrats) indicated a high level of variability between samples, especially 

where grazing was present; however, distinct patterns were not evident at the scales 

investigated in this study (landscape-and patch-scale). Patterns in lippia abundance 

have been noted in response to different grazing and flooding intensities (Price et al. 

2010a), small-scale variations in microclimatic conditions due to topography (Arias et 

al. 2005) and interactions with other species (Taylor and Ganf 2005). 

The prevalence of lippia in the study landscape has been linked to high stocking rates 

and grazing pressure (both current and historical) in these woodlands (QMDC 2005). 

Lippia establishment and abundance is promoted by flooding, in combination with 

disturbances such as grazing which provide areas of bare soil and reduce competition 

from existing groundcover species (Price et al. 2011). Grazing exclusion enables 

recovery of native groundcover (QMDC 2005) and results in a decline in lippia cover 

in many, but not all, instances (pers. obs.). However, this study indicates that, despite 
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this, lippia persists and is a dominant component of native ecosystems in this 

landscape independent of current land management. 

Lippia has been present in the study landscape for over 80 years, having been first 

recorded at Tummaville (in the Upper river section of this study, between Talgai and 

Yarramalong weirs) in 1927 (Lucy et al. 1995, Earl 2003). Prior to the 1950s and 

„60s and development for cropping, the predominant land use on the floodplain was 

livestock grazing (Chapter 2). Interactions between flooding and high intensity 

grazing are likely to have promoted the spread and establishment of lippia, 

particularly within riparian areas (Stokes et al. 2007, Price et al. 2010a, 2011, Berney 

et al. 2010). The removal of grazing from many of these areas with the development 

and intensification of irrigated agriculture has seen a decline in the abundance of 

lippia in many remnants (e.g. QMDC 2005); however, lippia persists as the most 

widespread species within floodplain riparian vegetation communities in the Upper 

Condamine landscape. A soil seedbank germination trial conducted in conjunction 

with this study (results not presented) indicated that this species has a significant 

persistent germinable soil seedbank at most sites (22 of 24 sites sampled, and second 

only to Einadia spp. in terms of abundance) in this landscape. This is further 

supplemented by its ability to propagate from vegetative fragments, which are also 

spread by floodwaters (Taylor and Ganf 2005), under suitable conditions (MacDonald 

2008, Price et al. 2011). These factors are indicative of ongoing significant risk to 

native riparian ecosystems associated with lippia in the Upper Condamine landscape. 

While this study was not designed to investigate the ecological impact of lippia, it 

does report the major contribution by lippia to the similarity of sites within treatments 

in this study. This suggests a significant homogenizing effect (Reinhart et al. 2005, 

McKinney and La Sorte 2007) on community composition and diversity in the study 

landscape. This may be particularly associated with reduced diversity of ephemeral 

herbs (forbs and graminoids) in this landscape, in response to past or current 

prevalence of lippia in these ecosystems. Forbs contribute significantly to ecosystem 

biodiversity and provide important inter-tussock groundcover in native perennial 

grasslands (Tremont and McIntyre 1994, Fensham 1998a). Lippia, a perennial clonal 

forb with highly plastic growth habits (Taylor and Ganf 2005), is adept at pre-

empting space in invaded landscapes (Taylor and Ganf 2005). This species exhibits a 

densely rooted matting („phalanx‟) growth form under suitable growing conditions of 
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high light (Xu et al. 2010b) and nutrient (Clech-Goods 2010) availability, in 

combination with adequate soil moisture (Taylor and Ganf 2005). Where conditions 

are less suitable, especially where taller-growing perennial tussock grasses are 

dominant, it tends to grow in an elongated trailing exploratory („guerrilla‟) form 

(Taylor and Ganf 2005). Both forms indicate a capacity to pre-empt available space 

and temporally available resources in invaded landscapes, roles usually occupied by 

ephemeral species (e.g. Morgan 1998a,b, Rosenthal and Lederbogen 2008) which 

may consequently be excluded. Long-term persistence of lippia in these landscapes 

may further exacerbate the decline of ephemeral native species, including forbs, 

through depletion of persistent seedbanks (Benson and Hartnett 2006, Navarro et al. 

2006). 

3.4.4 Significance and limitations 

This study confirms the perception that the Upper Condamine is a lippia-dominated 

landscape, at least in riparian and active floodplain sections of the catchment. This 

species has high reproductive capacity and the ability to form an abundant and 

persistent germinable soil seedbank (Macdonald 2008), as well as effective dispersal, 

establishment and growth strategies under suitable disturbance and resource 

availability conditions (Stokes et al. 2007, 2008, Price et al. 2011), and is unlikely to 

be readily controlled in these systems. These systems therefore fall into the category 

of novel ecosystems as defined by Hobbs et al. (2006), where altered species 

composition, due to the effectively irreversible presence of alien species or „human 

agency‟, implies new interactions, responses and function in these systems. Hobbs et 

al. (2006, 2009) argue that the management of such systems is therefore more 

efficiently and effectively directed towards retaining ecological function than in 

attempting to restore these systems to an original pre-development state, particularly 

given the limited societal resources and potential trade-offs involved. 

In terms of function in these systems, this study identifies significantly different 

floristic composition and lower response diversity (functional redundancy) in a 

number of functional response groups in the Middle and, to a lesser extent, the Lower 

river sections of the Upper Condamine Water Supply Scheme. This coincides with 

evidence of more highly impacted in-stream flow patterns, more intense water 

resource use and greater levels of floodplain development reported in Chapter 2. 
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However, this study was not able to effectively separate either the spatially correlated 

influence of current hydrological conditions and adjacent land use, or the temporally 

correlated impact of past land use and altered hydrological regimes, on overall 

community composition and structure. 

Despite this, drought impacts at the time of the study were more intense in the Middle 

and Lower river sections, with significantly greater response in hydrologically 

sensitive groups (i.e. C3, C4 and forb species). Species associated with dryland river 

systems are likely to be variously adapted to the hydrological extremes of both 

drought and flooding (Colloff and Baldwin 2010), and may display considerable 

resilience in landscapes which have historically experienced a high degree of 

stochasticity in these events (Capon 2003). However, the potential for ecological 

processes to buffer the full impact of these extremes (e.g. Elmore et al. 2006a) 

indicates that susceptible species may also show limited response where stabilizing 

feedbacks (e.g. hydraulic lift in response to declining soil moisture levels) occur in 

such systems. Significant decline in these functional groups in this study may be 

associated with increased sensitivity to rainfall variability due to reduced buffering 

capacity in parts of the landscape where there has been more extensive groundwater 

decline (CSIRO 2008, Chapter 2) or which support a relatively low cover of deep-

rooted phreatic species (as suggested by Elmore et al. 2006a); this is supported by 

evidence of reduced abundance of perennial herbaceous species in this study, which 

also corresponds with findings previously reported by Elmore et al. (2006a). 

While community response in this study varied in relation to longitudinal river 

sections, the impact of flow regulation on overall ecosystem function is difficult to 

establish with any certainty in such a highly modified landscape, where the level of 

hydrological modification and land use intensification are interconnected (Chapter 2). 

In addition, this study was not designed to test temporal variability associated with 

patch dynamics (e.g. in response to flooding), the influence of historical landscape 

legacies, or variability associated with species interactions at finer (within-patch) 

scales which may be relevant in these dynamic woodland ecosystems (Fay et al. 

2008). 

Similarly, response to differences in lateral connectivity (i.e. between river bank 

treatments which captured broad hydrological and land use patterns lateral to the 

main river channel), may also have been confounded by differences in land use 



 
94 

development intensity (as indicated in Chapter 2). Patterns associated with lateral 

flows (and responses associated with disruption to these) may also be more apparent 

at the local scale at which changes in historical flowpaths (e.g. due to diversion and 

capture of overland flow and the location of floodplain infrastructure) and 

interactions between hydrological connectivity and land use intensity are likely to 

occur. This is supported by evidence of significant interaction between river bank and 

within-patch land use treatments in many of the responses measured in this study (e.g. 

multivariate floristic composition; total or native species richness, abundance and 

diversity; and a number of functional group measures). 

Within-remnant land use (i.e. the presence or absence of grazing) had no discernable 

over-riding impact on total, native or alien richness, abundance or diversity in this 

study. Grazing at the scale measured in this study was not designed to differentiate 

between different levels of grazing pressure (often highly influential in terms of 

vegetation composition responses, e.g. Fuhlendorf et al. 2001, Allsopp et al. 2007), 

hence data from sites that were more conservatively grazed may have masked more 

substantial responses at those which were intensively utilised. Nor did this study 

account for the previous grazing history (legacy) of sites, which may continue to 

influence composition (Lunt et al. 2007a) at both currently grazed and ungrazed sites. 

For example, Prober et al. (2002b) report a hysteresis effect in previously grazed 

grassy box woodlands in south-eastern Australia, associated with feedbacks between 

high soil nutrient levels and annual weed species, which prevents recovery. However, 

as stated above, significant interactions between grazing and hydrology (in particular, 

lateral connectivity) were apparent and may be important. 

3.5 Conclusions 

The overall conclusion from this study is that a number of community patterns in 

riparian woodland remnants on Upper Condamine floodplain conform to broad-scale 

longitudinal patterns in hydrology and land use, with significant changes in 

community structure and response diversity in sites along river sections most 

significantly impacted by floodplain development and by changes in hydrological 

conditions (as identified in Chapter 2). Significant patterns in vegetation community 

composition and structure (overall and functional group richness, abundance and 

diversity) were especially apparent in groups which were sensitive to drought 
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conditions at the time of sampling, suggesting reduced buffering capacity and 

increased sensitivity to drought in these sections of the landscape. While this research 

was not designed to identify causal relationships, the potential involvement of 

groundwater in conferring resistance/resilience to drought raises questions regarding 

the impact of groundwater decline and potentially the function of deep-rooted canopy 

trees in these ecosystems. These issues are explored further in Chapters 4 and 5. 

The study also confirms the invaded extent and abundance of the introduced clonal 

perennial herb, Phyla canescens (lippia) within these woodlands (e.g. Voller 1998, 

McCosker 1996), and supports a general conclusion that the Upper Condamine 

floodplain is a lippia-invaded landscape (Earl 2003). However, there was no 

significant pattern in lippia abundance in this landscape in relation to large-scale 

hydrological connectivity or land use intensity, or within-patch land use, indicating 

the need for a different approach to investigating lippia responses in these ecosystems 

(Chapters 5 and 6). 

The relative importance of hydrological connectivity in shaping ecosystem response 

was unable to be identified due to confounding patterns in land use development 

intensity in this landscape. This study also indicates the importance of cross-scale 

interactions between hydrological connectivity and land use, and the potential for 

complex ecosystem responses in highly modified floodplain landscapes. This 

suggests the need to consider the range of interacting factors, both locally and within 

the broader landscape context, including land use intensity, hydrology, the presence 

of invasive weed species, and the role of deep-rooted phreatic species, in order to 

determine factors driving ecosystem condition and function, and to enable assessment 

of the resilience and potential future status of these systems (Chapter 5). 
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Chapter 4 Patterns in canopy tree condition in riparian woodland 

communities on the Upper Condamine floodplain 

4.1 Introduction 

Native floodplain ecosystems in production landscapes are subject to significant 

degradation pressure associated with altered disturbance regimes (Tockner and 

Stanford 2002). Modification of the hydrological, material and energy flow regimes 

which define floodplain ecosystem structure and function (Walker and Thoms 1993, 

King et al. 2009) can contribute to reduced resilience to disturbance, and threaten the 

long-term persistence of native ecosystems (Walker and Meyers 2004, Walker et al. 

2006). The impacts of disturbance and environmental change on key functional 

species, such as dominant canopy species in woodland or forest ecosystems, may be 

of critical importance in understanding the response dynamics of these systems 

(Walker 1995). This may be particularly true in systems in which these species play a 

critical functional role on which other species depend (Ebenman and Jonsson 2005). 

Changes in the condition (health, population structure) of dominant „controlling‟ 

(sensu Holling 1992) or „driver‟ (sensu Walker 1995) species may contribute 

disproportionately to the rate of ecological change (Ebenman and Jonsson 2005), and 

be indicative of significant shifts in the structure and function of ecosystems subject 

to anthropogenic modification (Jones et al. 1994, Walker 1995, Peterson et al. 1998). 

Response dynamics in such species may provide a critical indication of ecosystem 

health and resilience and an important yardstick to sustainable land management for 

ecosystem service provision (including biodiversity conservation) in highly modified 

landscapes. 

This chapter explores the condition of dominant canopy species in remnant riparian 

grassy woodland ecosystems on the Upper Condamine floodplain, a highly modified 

production landscape. 

4.1.1 Trees and resilience in grassy woodland ecosystems 

Savanna ecosystems exhibit key characteristics of complex adaptive systems (Mills et 

al. 2006, Chapter1). Their structure and productivity are governed by dynamic 

interactions between climate, soils, and disturbances such as fire and herbivory 
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(House et al. 2003, Beerling and Osborne 2006), operating across temporal and 

spatial scales (Coughenour and Ellis 1993). Water availability appears to be an 

important factor controlling the tree: grass ratio in these environments. Coexistence is 

based on resource partitioning by shallow-rooted herbaceous species and deeper-

rooted tree species, with relative rooting depth (and tree separation) increasing with 

aridity (Schenk and Jackson 2002a,b). The rooting depth of plants has important 

implications for hydrological balance and carbon and nutrient cycling in ecosystems 

(Canadell et al. 1996); this is particularly the case where species influence ecosystem 

water balance through hydraulic redistribution, a phenomenon reported in a number 

of savanna-type ecosystems (e.g. Scholz et al. 2002, Ludwig et al. 2003, 2004b, Scott 

et al. 2008). 

In harsh environments, woody species may contribute to increased community 

diversity by moderating microclimatic conditions and soil physical and chemical 

properties, thereby facilitating recruitment and improving the water status, nutrient 

content, carbon assimilation rates and growth of herbaceous species (Moro et al. 

1997a,b, Ludwig et al. 2004b, Armas and Pugnaire 2005). While community patterns 

and dynamics are the product of multiple, complex interactions including resource 

competition (e.g. Ludwig et al. 2003, 2004a), facilitative processes such as hydraulic 

redistribution, „nurse‟-plant effects and N-fixation are increasingly recognised as 

critically important processes in plant communities (Callaway 1995, Pugnaire et al. 

1996). Positive interactions such as these underpin the importance of functional 

(keystone, foundation, driver) species, particularly in highly variable environments, 

and highlight the potential risks associated with their loss (or in some cases, 

introduction). 

Forests and woodlands with only one or two foundation species, have limited 

functional redundancy (Walker 1992, Chapter 1). The loss of such species entails a 

loss of ecosystem function, and is also likely to lead to rapid and irreversible non-

linear shifts in biological diversity, system-wide changes in structure and function 

(Ebenman and Jonsson 2005) and the emergence of novel forest types (Ebenman and 

Jonsson 2005, Hobbs et al. 2009). However, while there is general understanding that 

plants contribute to overall ecosystem function through changes to micro-climatic 

conditions and regulation of resource availability (Facelli and Pickett 1991), the 

specific role of key plant species in the function and stability of ecosystems has not 
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been widely investigated or reported (Ellison et al. 2005). Ellison et al. (2005) warn 

that because such tree species tend to be common, abundant, and large, our responses 

to their decline are frequently too late and at inappropriate scales. This is 

compounded by the incremental pattern of decline in such species across a range of 

temporal and spatial scales, often resulting in a mosaic of increasingly fragmented 

remnant communities across landscapes (Ellison et al. 2005), which is likely to 

escape attention unless systematically monitored. 

4.1.2 Tree condition in modified landscapes 

Studies investigating tree decline in dominant species have shown association with a 

range of often interacting factors, including drought, insect irruptions and 

intensification of land use (e.g. Fensham 1998b, Reid 1999, Banks 2006, Allen 2007). 

Dieback responses in eucalypts appear to be driven by fundamental abiotic stressors 

such as drought (Rice et al. 2004, Fensham and Fairfax 2007), and altered disturbance 

(fire, flooding) regimes (Jurskis 2005a, Wen et al. 2009) associated with changed 

land use cover and management (Wylie et al. 1992). While dieback has been noted in 

larger woodland or forested areas (e.g. Kemmerer et al. 2008, Cunningham et al. 

2010), it is particularly evident in rural landscapes which have been significantly 

modified and developed for agriculture (Landsberg and Wylie 1988, Wylie et al. 

1992, 1993). In a survey of rural tree dieback, landholders in Queensland reported 

poor condition in 67 species (Wylie et al. 1992); this was thought to be symptomatic 

of changes in resource availability associated with land degradation. (e.g. changes in 

landscape function; Ludwig and Tongway 1995) or altered hydrological processes 

(e.g. Bramley et al. 2003). Alternatively, altered tree condition may be in response to 

novel environmental factors introduced as a component of current land use. For 

example, Banks (2006) reported significant impact on tree condition in Eucalytus 

populnea associated with herbicide drift on the intensively farmed Liverpool Plain, 

northern NSW. Biotic factors, such as root fungi (e.g. Weste and Marks 1987) and 

chronic insect attack (Landsberg 1990a, Lowman and Heatwole 1992, Clarke and 

Schedvin 1999), can also play a critical role. However, biotic involvement appears to 

be generally associated with physiological responses in trees (e.g. production of 

palatable nutrient-rich epicormic growth, changed chemical signals) to initial 

(primary) environmental stresses (Lowman and Heatwole 1992, Clarke and Schedvin 

1999, Hanks et al. 1999). 
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Changes in tree condition may also actively reinforce land degradation trends through 

positive feedback loops (Hobbs and Suding 2009). For example, some eucalypt 

species (e.g. Eucalyptus nova-anglica) on the New England tablelands, northern 

NSW, are subject to high levels of insect defoliation linked to fertilization of non-

native „improved‟ pastures to improve livestock productivity (Reid 1999, Close and 

Davidson 2004). Tree responses to defoliation in these species include prolific 

production of fresh epicormic growth which reinforces further insect attack in a 

positive feedback loop contributing to declining fitness and increased risk of 

mortality in individual trees (Lowman and Heatwole 1992), altered population 

processes in affected species, and landscape change in terms of tree cover and species 

dominance (Reid 1999). Changes in catchment hydrology associated with broadscale 

tree clearing in the wheat-sheep belt of southern Australia has resulted in groundwater 

rise, increasing soil salinity, and tree decline in discharge (frequently floodplain) 

environments (Jolly et al. 1993, Overton et al. 2006). The ecological impact of this 

process is compounded by declining functionality and evapotranspiration in deep-

rooted trees in these environments, contributing to further groundwater rise, more 

widespread salinisation and accelerating tree decline (Thorburn et al. 1993). 

4.1.3 Riparian tree responses to changes in hydrological connectivity 

The function and dynamics of floodplain riparian ecosystems are understood to be 

largely controlled by hydrological disturbance regimes (Hughes 1997); however, 

much of this understanding is based on studies of ecological responses in floodplain 

and riparian ecosystem on perennially flowing streams in humid environments with a 

long history of human-induced landscape modification (Thoms and Sheldon 2002, 

Vervoort 2007). Flooding in these systems provides recruitment opportunities for 

flood-adapted and flood-tolerant tree species, filters out those which are less well 

adapted to cope with flooding disturbance or inundation, and maintains a stable 

species dominance regime (Hughes 1997, e.g. Bornette and Amoros 1996, Cowell 

and Dyer 2002). Hydrological modification (flow regulation) and altered dynamics in 

these systems contribute to increased diversity of generalist canopy species and 

woodland systems which are more susceptible to major flood events (e.g. Deiller et 

al. 2001, Cowell and Dyer 2002). 
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In ephemeral dryland (semi-arid) systems, riparian community responses indicate that 

native tree species in these systems are adapted to, and often dependent on natural 

disturbance dynamics and associated levels of resource availability inherent in these 

systems (e.g. Thorburn and Walker 1994, Stromberg and Patten 1996). In such 

landscapes, flow regulation and extraction of water resources for agricultural 

production (irrigation) or urban purposes can result in extreme hydrological stress in 

affected ecosystems (Horton et al. 2001a,b), and changes in the condition and 

function of individual trees, population processes of dominant species or the structure 

and function of ecological communities (Rood and Mooney 1990, Scott et al. 1999, 

Lite and Stromberg 2005). 

Riparian tree species, even in arid and semi-arid regions, are frequently mesic and 

highly dependent on access to reliable water sources, including in-stream surface 

water, soil moisture (supplemented by over-bank flooding), and shallow groundwater 

(e.g. Mensforth et al. 1994, Thorburn and Walker 1994, Stromberg and Patten 1996). 

Such species tend to be poorly adapted to cope with water deficit, and their health is 

likely to be closely related to hydrological status (McDowell et al. 2008, e.g. Bacon et 

al. 1993, Cooper et al. 2003b). Under water deficit conditions due to drought or 

modified hydrological conditions, trees in these systems may exhibit stress responses 

ranging from adaptive canopy thinning and minor branch sacrifice, which reduce 

transpirational demand and conserve hydraulic status (Tyree and Sperry 1988, Rood 

et al. 2000), to irreversible failure (embolism and cavitation) in transporting xylem 

tissue (Tyree and Ewers 1991, Breda et al. 2006, McDowell et al. 2008). Changes in 

critical plant processes (e.g. water uptake, photosynthesis) associated with hydraulic 

dysfunction may result in secondary impacts associated with carbon starvation. These 

may include reduced capacity for root growth (Friend et al. 1994), and potentially 

reduced resistance to biotic agents, such as borers, often observed in drought-stressed 

trees (e.g. Hanks et al. 1999). 

Native tree species in systems affected by hydrological stress due to regulation and 

extraction often exhibit major shifts in population dynamics which contribute to 

altered community dominance, ecological function, and system dynamics (e.g. 

Merritt and Cooper 2000, Lite and Stromberg 2005). For example, on semi-arid zone 

rivers in western USA, flow regulation and diversion have dampened hydrological 

dynamics, reduced flooding and contributed to declining groundwater levels (e.g. 
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Shafroth et al. 2000, Stromberg et al. 2007a). Reported impacts include declining 

health and altered population processes in dominant native riparian woodland canopy 

species such as Populus fremontii and Salix gooddingii, and an increase in 

establishment and replacement opportunities for more drought-tolerant tree species 

such as the alien Tamarix ramosissima (e.g. Stromberg et al. 1996, Smith et al. 1998, 

Lite and Stromberg 2005). 

River red gum responses to hydrological change 

The river red gum Eucalyptus camaldulensis (Dehnh.) is one of the most widespread 

species in Australia, occurring along many inland river systems including those of the 

Murray-Darling (Wen et al. 2009). Declining crown condition in E. camaldulensis 

communities in the southern Murray-Darling Basin has been reported in association 

with increasing landscape salinisation, reduced flooding due to river regulation and 

surface water extraction, and persistent drought on the Murray and Murrumbidgee 

floodplains (Cunningham et al. 2010, Wen et al. 2009). Poor tree health is reported 

particularly where flooding is restricted in conjunction with high salinity levels (e.g. 

Chowilla floodplain, Jolly et al. 1993, 1996, Overton et al. 2006). Despite moderate 

to high salinity tolerance (Bell 1999, Benyon et al. 1999), E. camaldulensis exhibits 

reduced leaf area and loss of hydraulic function with increasing salinity levels above 

8 dSm
-1 

(Benyon et al.1999), and water stress (physiological drought) at levels over 

40 dSm
-1

 (Mensforth et al. 1994). Flooding plays a vital role in maintaining tree 

health by flushing salt from surface soils where it has accumulated due to rising 

groundwater tables (Slavich et al. 1996, Akeroyd et al. 1998, Bramley et al. 2003). 

Conversely, river regulation resulting in a higher frequency of unseasonal flows and 

flooding has contributed to widespread tree decline where E. camaldulensis forests 

occur in conjunction with effluent wetlands in this system (e.g. the Barmah-Millewa 

forest) (Chong and Ladson 2003). This may be associated with a number of 

environmental factors, including duration of inundation, moisture stress following 

inundation, and salinity. Bren (1987) reported that E. camaldulensis was able to 

survive extended continuous inundation for 24 to 48 months before showing signs of 

stress.  Kozlowski (1997) suggests that, while flood-tolerant species such as E. 

camaldulensis exhibit a range of morphological and physiological adaptations to 

waterlogging, extended periods of inundation may lead to reduced drought-tolerance 

post-flooding due to changes in root function, mycorrhizal associations, and the 
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root:shoot ratio. Combinations of inundation and salinity may also have greater 

impact on growth and survival than either stress alone (Kozlowski 1997). Seedlings 

of E. camaldulensis have been reported to be relatively tolerant of waterlogging 

conditions, but less so of waterlogging where waters are highly saline (van der 

Moezel et al. 1989). 

Declining condition in E. camaldulensis due to water deficit has been reported in 

sections of the Murray Darling Basin over the recent prolonged drought and 

associated period of low-flow conditions (Doody and Overton 2009). Poor condition 

of E. camaldulensis on the Macquarie River and sections of the Macquarie Marshes 

in central New South Wales has also been linked to disconnection of the floodplain 

from the river due to a proliferation of earthen banks and levees associated with 

floodplain farming which limit the extent of overbank flooding (Steinfeld and 

Kingsford 2008), although it is not clear from this study whether this response was 

primarily due to water deficit or the involvement of salinisation processes. 

Access to groundwater during drought periods is likely to be an important factor for 

E. camaldulensis, which is well-recognised as a facultative phreatophyte (Mensforth 

et al. 1994, Thorburn and Walker 1994); however, the impact of groundwater decline 

on this species has not been widely investigated. Groundwater decline due to 

extended drought or lack of flooding was thought to be a significant factor in 

increased mortality in a 40-year old E. camaldulensis plantation on the 

Murrumbidgee floodplain (Horner et al. 2009). This study reported significantly 

increased mortality where groundwater depths exceeded 12–15 m. Rooting depth is 

an adaptive characteristic in young E. camaldulensis, as indicated by rapid root 

extension in saplings in response to falling subsoil moisture levels (Calder et al. 

1997); however, in other species, trees which have matured during periods of high 

water availability may be less tolerant of water stress than those which have survived 

water deficit as they were growing, indicating a limit to further adaptation in older 

trees (Shafroth et al. 2000, Kozlowski and Pallardy 2002). 

4.1.4 Tree responses to grazing in riparian ecosystems 

Few studies have considered the additional impacts associated with within-remnant 

management (e.g. grazing) in riparian ecosystems (Robertson and Rowling 2000, 

Jansen and Robertson 2001), and none have specifically addressed the impact of 
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grazing on the condition of riparian trees. Studies conducted in riparian woodlands 

are largely focused on the impact of grazing on canopy species population processes, 

and specifically recruitment (e.g. Meeson et al. 2002). Seedling survival is also 

frequently constrained by grazing (Fischer et al. 2009) leading to recruitment failure 

and skewed populations of canopy species in grazed landscapes (e.g. Pettit 2002). 

4.1.5 Study overview 

Community patterns, including floristic composition, community structure and 

response diversity, in riparian woodland remnants on Upper Condamine floodplain, 

reported in Chapter 3, conform to broad-scale longitudinal patterns in hydrology and 

land use in this highly modified landscape. Significant response was apparent in 

functional groups which were sensitive to drought, suggesting reduced buffering 

capacity and increased sensitivity to drought particularly in the most altered Middle 

river section of the landscape. The question was raised regarding links between 

groundwater decline and the function of deep-rooted phreatic canopy trees 

(Eucalyptus camaldulensis/E. tereticornis) in these ecosystems. High levels of 

dieback, reported in this species complex, are potentially indicative of major 

ecological change and altered processes in this landscape. 

While light to moderate eucalypt dieback was reported earlier on the Darling Downs 

(Wylie et al. 1992), significant decline in the condition of the floodplain „river 

frontage‟ forests occurred following the onset of prolonged drought in 1991 (Voller 

1998). Voller (1998) identified changes in the riverine landscape over the 60 years 

since 1935, including increased evidence of dieback symptoms in canopy species, 

limited regeneration and growth of dominant eucalypt species, and increased 

prevalence of the native subcanopy species Acacia stenophylla. Several potential 

causes (salinity, psyllids, herbivory) of tree decline in Upper Condamine riparian 

woodlands were investigated by Voller and Eddie (1995), but the study failed to 

identify any primary cause (Voller 1998). Observed changes were attributed to a 

combination of factors, including repeated defoliation by high common brushtail 

possum (Trichosurus vulpecula) numbers, combined with insect attack and cockatoo 

damage, drought severity, weed competition, grazing, and intensification of land use 

(Voller 1998). Salinity was not found to be closely associated with the observed 
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decline (Voller 1998), and hydrological factors (e.g. altered flow and flood regimes, 

groundwater changes) and broader landscape patterns were not considered. 

As indicated above, studies in other river systems have found significant impacts on 

the condition and survival of mature canopy trees in riparian woodlands associated 

with rivers subject to altered hydrological regimes due to impoundment, flow 

regulation or diversion. This study asks whether current perceptions regarding the 

impact of modified hydrological regimes on the response dynamics of dominant tree 

species in remnant floodplain riparian ecosystems are applicable in this highly 

modified production landscape. It uses the stratified design implemented in Chapter 3 

to investigate whether there are significant effects of differences in longitudinal and 

lateral connectivity (i.e. between river section and between river bank treatments, 

respectively) and within-remnant land use (i.e. the presence or absence of livestock 

grazing) on the size, condition and frequency of Eucalyptus camaldulensis/E. 

tereticornis and Acacia stenophylla in remnant riparian woodland ecosystems on the 

Upper Condamine floodplain. 

4.2 Methods 

A general description and map of the study area is provided in Chapter 2. 

4.2.1 Survey design 

This study used the same survey design and sites as the study reported in Chapter 3. 

In summary, a total of 24 sites was sampled within remnant Eucalyptus 

camaldulensis/E. tereticornis-dominant riparian woodlands along the regulated section 

of the Condamine River between January and April in the summer of 2004–2005. 

The study area was stratified a priori by (i) river section (Upper, Middle, Lower); (ii) 

river bank (Left, Right), and (iii) within-remnant land use (Grazed, Ungrazed by 

domestic livestock). River sections corresponded to the scale of stream-flow data, 

with end-points of each longitudinal section marked by the location of streamflow 

gauging stations at in-stream weirs: Talgai to Yarramalong (Upper), Yarramalong to 

Lemon Tree (Middle), Lemon Tree to Cecil Plains Weir (Lower). River bank 

treatments investigated differences in factors influencing lateral overland flow 

parameters on opposite sides of the main river channel. Within-remnant land use 
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captured broad patch-scale management impacts on vegetation composition and 

condition. 

Sample site locations are as described in Chapter 3. 

4.2.2 Data collection 

Site details 

Site condition and woodland structural composition details are reported in Chapter 3. 

Woody species composition 

At each site, seedling count data were collected for woody species rooted within the 

modified 1,000 m
2
 nested squares quadrat system, as reported in Chapter 3. 

Tree health 

The size, dispersion, canopy condition and reproductive condition of the four mature 

canopy trees (one per quadrant) nearest to the centre point of the 1,000 m
2
 quadrat 

were recorded. 

Measurements included distance from the quadrat centre point, tree girth (D130: 

circumference at 130 cm height converted to diameter), and tree height. Canopy 

projected foliage cover (%) of trees was estimated visually. Canopy condition was 

scored on a 4-point scale (0: no evidence to 3: considerable evidence; after Le 

Brocque and Buckney 1995) for dieback (as indicated by tip death, epicormic 

growth), pathology (yellowing or necrosis of leaves), arboreal herbivory (damaged 

leaves), and cockatoo damage (tip pruning), where „tip‟ refers to new growth at the 

outer canopy edge and „tip pruning‟ was quantified on the basis of the quantity of „tip 

litter‟ (pruned tips) on the ground. Reproductive condition was scored using the same 

4-point scale for abundance of buds, flowers and fruit. The number of mistletoe on 

trees, and the number of standing stags (size classes: >50 cm D130, 20-50 cm D130, 

<20 cm D130) within the sampling quadrat was also recorded. 

Measures indicative of tree condition (Table 4.1) were recorded for each tree, 

including foliage index (FI: estimated proportion remaining of entire canopy) and 

percentage tree remaining (PTR, a measure of structural integrity). Canopy thinning 

and loss of major branches resulted in lower estimates for FI and PTR (Banks 2006).
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Table 4.1 Definitions for (a) tree health parameters, including (b) categories used 

to assess crown structure, and (c) categories to assess the position of crown dieback, 

used in assessments of tree health in mature Eucalyptus camaldulensis/E. tereticornis 

in Upper Condamine riparian woodlands. 

(a)  Tree health parameters (after Wylie et al. 1992, 1993 and Banks 2006). 

Variable Code Data type Definition 

Foliage Index (FI) (%)  FI % percent leaf biomass present relative to healthy 
reference tree (full crown) 

Percent tree remaining 
(PTR) (%) 

PTR % percent woody architecture remaining: from 100% 
(perfect habit) to 10% (trunk only) 

Crown structure (CS) CS categorical 4 categories(b) describing the states of the foliage in the 

dominant proportion of the tree crown 

Crown Dieback (CD) CD categorical 4 categories(c) describing the position of dieback in the 

crown and the pattern of foliage loss 

Foliage colour - ordinal 4 categories describing the severity of foliage necrosis 

(browning) or chlorosis (yellowing): 4-point scale (0: 
no evidence to 3: considerable evidence) 

Foliage growth pattern  categorical % of canopy for 4 types of foliage growth: tip growth, 

normal growth, epicormic growth (primary branches), 
epicormic growth (stem)  

Dropped branches - binary absence (1) or presence (2) – indicative of recent 

structural damage 

Tree size D130 ratio tree size, as a surrogate measure of age 

Mistletoe - ratio number of mistletoe 

Herbivory (insect, arboreal 

herbivores) 

- ordinal 4 categories describing the severity of arboreal 

herbivory/damage: 4-point scale (0: no evidence to 3: 
considerable evidence) 

Cockatoo/corella  damage  ordinal 4 categories describing the extent of tip-pruning 

activity: 4-point scale (0: no evidence to 3: 
considerable evidence)  

 

 (b) Crown structure (CS) categories (as in Banks 2006) 

Crown Structure category Definition 

1 Primary crown – typical form of a healthy tree in its class 

2 Secondary crown – developed from epicormic shoots ≥50cm 

3 Recent epicormic growth ≤50cm – along the trunk and main branches 

4 Apparently dead crown 

 

(c) Crown dieback (CD) categories ( as in Banks 2006) 

Crown Dieback category Position of dieback/foliage loss 

1 One side of the tree 

2 Lower canopy 

3 Progressing from the top of the tree and tips of branches 

4 No pattern 



107 

 

4.2.3 Data manipulation 

Tree density and health 

Tree density was calculated using the point-centred quarter (PCQ) method (Cottam 

and Curtis 1956), based on the distance of measured trees from the centre point of 

the quadrat. Although Engerman et al. (1994) report that this (and other) plotless 

density estimation methods are prone to bias where distribution is non-random, the 

PCQ approach provides a quick and simple comparative measure appropriate to the 

purposes of this study (random dispersion of trees was assumed, based on a lack of 

evidence of significant clumping or even-dispersion) (e.g. Debski et al. 2000). 

Average Foliage Index (AFI) and mean Percentage Tree Remaining (mean PTR) 

were calculated from Foliage Index (FI) and Percentage Tree Remaining (PTR) 

estimates of measured trees at each site. Each tree was also categorised according to 

a health class (HC) system (Wylie  et al. 1992, Banks 2006), based on its FI and the 

condition of its woody architecture (Table 4.2). A tree health site index (Weighted 

Wylie Index or WWI; Wylie et al. 1992) was then calculated from the sum of the 

percentage of trees in each health class (1 to 5) multiplied by a progressive weighting 

factor to account for increasing levels of dieback severity (i.e. a low WWI indicates 

good site health): 

 

WWI   =   (%trees in HC1 x 1) + (%trees in HC2 x 2) + (%trees in HC3 x 3) 

 + (%trees in HC4 x 4) + (%trees in HC5 x 5) 
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Table 4.2  Definitions for (a) Health Class, and (b) Weighted Wylie Index (WWI) 

categories used in assessments of tree health in mature Eucalyptus camaldulensis/E. 

tereticornis in Upper Condamine riparian woodlands (after Wylie et al. 1992, 1993 and 

Banks 2006). 

(a) Health Class categories 

Health Class Definition 

1.  very healthy ≥ 95% Foliage Index (FI), vigorous, full habit, few or no stags 

2.  healthy 75–94% FI, vigorous, few stags, little epicormic growth 

3.  moderate to severe dieback 30–74% FI, loss of vigour, epicormic regrowth generally  present, 

moderate to poor health 

4.  very severe dieback ≤ 30% FI, loss of vigour, recent epicormic shoots along trunk and 

branches from main canopy, stags, very poor condition 

5.  dead No foliage, apparently dead crown 

 

 (b) Weighted Wylie Index (WWI) categories 

WWI range Dieback severity category 

0–100 No dieback 

101–200 Slight to moderate dieback 

201–300 Moderate to severe dieback 

301–400 Severe dieback 

401–500 Very severe dieback 

 

 

4.2.4 Statistical analyses 

Response variables including health, recruitment and abundance of dominant canopy 

species (Eucalyptus camaldulensis/E. tereticornis, Acacia stenophylla) were 

compared across treatments (river section, river bank, land use) using the 3-way 

Analysis of Variance (3-way ANOVA) procedure in SPSS version 18.0 for Windows 

(SPSS Inc. 2009). Prior to analysis, bounded (proportional) data were arcsine 

transformed, and all data were screened and transformed (either square root or log10), 

where required, to meet assumptions of normality and homoscedascity (Quinn and 

Keogh 2002). Where heteroscedastic variances were unable to be corrected for by 
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transformation, no further analysis was undertaken. Where variances were 

homogeneous (Levene‟s), 3-way ANOVA was conducted and Tukey‟s unplanned 

multiple comparison procedure with Bonferroni adjustment for unequal sample size 

(Day and Quinn 1989) was used to determine significant difference between 

treatment pairs in treatments with significant main effects. Where there was 

significant interaction between river section, river bank and land use treatments, 

results indicating significant main effect differences were not able to be interpreted 

(Zar 1999). 

Ordinal categorical variables were analysed using non-parametric procedures in 

SPSS version 18.0 for Windows (SPSS Inc. 2009). The Kruskal-Wallis procedure for 

k-independent samples (Quinn and Keogh 2002) was used to test for significant 

difference from expected in river section treatments, with post-hoc comparisons 

between pairs of river section treatments conducted using the non-parametric Mann-

Whitney U procedure (Day and Quinn 1989). The Mann-Whitney U procedure was 

used to test for significant differences from expected in riverbank and land use 

treatments. No test for treatment interactions was undertaken for these variables 

(Quinn and Keogh 2002). 

Spearman‟s rank correlation procedure in SPSS version 18.0 for Windows (SPSS 

Inc. 2009) was used to investigate the strength of association between measures or 

scores for tree dimensions (diameter, height, canopy area and volume, density), 

canopy growth (new tips, normal growth, epicormic growth on stems and primary 

branches), reproductive condition (buds, flowers, seed capsules), tree condition (dead 

tips, foliage colour, dropped branches, Health Class, Foliage Index (FI), Percent Tree 

Remaining (PTR)), and evidence of interacting species (mistletoe, arboreal 

herbivory, tip litter). 

4.3 Results 

4.3.1 Patterns in tree health 

Dominant canopy tree species condition varied considerably across the study area in 

terms of canopy integrity (AFI), structural integrity (PTR), and dieback severity 
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(WWI) (Table 4.3). There was also considerable variation in the ranges in size (mean 

D130) and density of mature canopy trees and in the number of dead trees and number 

of E. camaldulensis and A. stenophylla seedlings within 1000m
2
 quadrats (Table 

4.3). 

 

 

Table 4.3 Summary data for canopy species response variables. Values are mean and 

standard error (24 sites); minimum and maximum values are listed for each variable. 

Variable Mean (SE) Minimum Maximum 

Average Foliage Index (%) 47.6 (4.4) 17.5 86.3 

Weighted Wylie Index 327.8 (16.8) 175 475 

Mean Percentage Tree Remaining (%) 73.3 (3.7) 30.0 98.8 

Mean D130 (cm) 69.2 (4.2) 40.6 129.1 

Mature tree density (number/ha) 43.3 (3.9) 12.8 99.5 

Age structure (number of age classes) 3.0 (0.3) 1 6 

Dead trees (number/1000m
2
) 1.6 (0.3) 0 4 

Eucalyptus camaldulensis/E. tereticornis seedling 

density (number/1000 m
2
) 

0.6 (0.2) 0 4 

Acacia stenophylla seedling density (number/1000m
2
) 1.4 (0.6) 0 12 

 

 

There was no significant interaction between river section, riverbank or land use 

treatments for measures with homogeneous variances (3-way ANOVA, p > 0.05; 

Table 4.4). Heterogeneous variances (Levene‟s, p ≤ 0.05) for average foliage index 

(AFI), density of dead trees and eucalypt seedling density could not be corrected by 

transformation, and further analysis was not conducted on these variables. 

Significant patterns in canopy tree species health indices (WWI, mean PTR) were 

found across river section treatments (3-way ANOVA, p ≤ 0.05). Significantly 

higher levels of dieback (WWI) and lower levels of structural integrity (mean PTR) 

were found at Middle river section sites than at Lower river section sites, but there 

was no significant differences in these variables between either of these river 
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sections and the Upper river section sites (p > 0.05). There was significantly lower A. 

stenophylla seedling density (acregen) at grazed than ungrazed sites (3-way ANOVA, 

p ≤ 0.05; Table 4.4). 

There were no significant differences in canopy tree species health indices across 

land use or river bank treatments or in A. stenophylla recruitment across river section 

or river bank treatments (3-way ANOVA, p > 0.05), and no significant patterns for 

tree density (treedens), tree diameter (mean D130), or age structure of trees (p > 0.05, 

Table 4.4). 
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Table 4.4 3-way ANOVA results for key woody species attributes by treatments (river section, river bank, land use). Treatment values are means and 

standard errors (in parentheses). Significant main effects are indicated in bold type; values sharing the same superscript are not significantly different (p > 

0.05). Interaction values are F statistics with significance indicated in bold type (** p ≤ 0.005, * p ≤ 0.05). 

 TREATMENTS  INTERACTIONS 

 River section (RS)  River bank (RB)  Land use (LU)  
RS x RB RS x LU RB x LU RS x RB x LU  

 Upper Middle Lower  Left Right  Grazed Not grazed  

n 8 9 7  10 14  10 14      

AFI3 54.7 (7.4) 33.5 (5.5) 58.3 (10.2)  50.9 (8.0) 45.6 (6.1)  44.4 (7.2) 50.3 (6.5)      

WWI1,2 303.1ab (28.1) 383.3a (21.7) 282.1b (38.1)  317.5 (31.4) 333.9 (22.9)  345.0 (28.3) 314.3 (24.4)  0.49 0.83 1.26 0.01 

meanPTR1 74.4ab (6.9) 58.3a (4.4) 85.2b (6.3)  79.0 (5.6) 66.2 (5.2)  72.1 (6.5) 71.1 (5.2)  0.14 0.30 0.18 0.00 

treedens 32.3 (5.4) 49.6 (9.1) 50.2 (5.5)  43.1 (8.1) 44.6 (5.0)  39.1 (5.8) 47.5 (6.2)  0.76 0.80 0.04 3.67 

meanD130 86.8 (7.6) 57.7 (4. 4) 57.9 (4.5)  64.0 (4.2) 69.9 (6.7)  79.6 (7.3) 58.7 (3.8)  0.77 0.20 0.07 0.07 

agestruct4 2.6 (0.6) 2.7 (0.4) 4.0 (0.5)  3.1 (0.4) 3.0 (0.4)  2.3 (0.2) 3.6 (0.4)      

deaddens3 0.5 (0.3) 2.4 (0.5) 2.0 (0.5)  1.5 (0.4) 1.8 (0.4)  1.8 (0.6) 1.6 (0.3)      

eucregen3 0.4 (0.3) 0.6 (0.2) 0.4 (0.3)  0.9 (0.2) 0.1 (0.1)  0.4 (0.2) 0.5 (0.2)      

acregen 1.4 (1.4) 0.1 (0.1) 3.7 (1.6)  0.9 (0.6) 2.1 (1.1)  0.2a (0.2) 2.6b (1.1)  2.91 1.56 4.52 3.02 

1 arcsin transformed; 2 square root transformed; 3  transformation unable to correct for heteroscedascity (unequal variance) in 3-way ANOVA; 4 categorical variable (analysis by Kruskal-Wallis and/or MannWhitney U).  

AFI: average foliage index; WWI: Weighted Wylie Index; meanPTR: mean percent tree remaining; treedens: density of mature trees; meanD130: mean diameter at 130cm (mature trees); 

agestruct: age structure of trees; deaddens: density of dead trees; eucregen: number of eucalypt seedlings (1,000 m2 quadrat); acregen: number of Acacia stenophylla seedlings (1,000 m2 

quadrat). 
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4.3.2 Patterns in foliage growth 

There were significant differences between river sections for the proportions of 

normal growth and epicormic growth on tree stems (Kruskal-Wallis, p ≤ 0.05), but 

not for new tips or epicormic growth on primary branches (p > 0.05; Table 4.5). The 

proportion of normal growth was least and epicormic growth on stems greatest at 

Middle section sites (Mann-Whitney U, p ≤ 0.05), while Upper and Lower section 

sites did not differ significantly from each other in either case (p > 0.05). There was a 

significantly higher proportion of epicormic growth on stems at right bank sites than 

at left bank sites (p ≤ 0.05), while the proportion of new tip growth was significantly 

lower (p ≤ 0.005) and the proportion of epicormic growth on primary branches was 

higher (p ≤ 0.05) in trees at grazed sites compared with those at ungrazed sites (Table 

4.5). 

4.3.3 Patterns in canopy condition 

Scores for dead tips were significantly greater in trees on the left bank of the river 

(Mann-Whitney U, p ≤ 0.005), but did not differ significantly across river section or 

land use treatments (Kruskal-Wallis or Mann-Whitney U, p > 0.05). Trees at Middle 

section sites were in a significantly higher Health Class, exhibiting more dieback 

symptoms (Table 4.2a), than those in the Upper or Lower sections (Kruskal-Wallis 

and Mann-Whitney U, p ≤ 0.005). There were significant differences between all 

three river sections in terms of mean scores for dropped branches (Kruskal-Wallis, p 

≤ 0.005), with Middle section trees scoring significantly higher than those in the 

Upper section (Mann-Whitney U, p ≤ 0.05) and both significantly higher than Lower 

section trees (Mann-Whitney U, p ≤ 0.005). No significant pattern in foliage colour 

was evident across any of the treatments (Kruskal-Wallis or Mann-Whitney U, p > 

0.05; Table 4.5). 

4.3.4 Patterns in reproductive condition 

There were no significant patterns in reproductive condition (abundance of buds, 

flowers or seed capsules) across river section, riverbank or grazing treatments (p > 

0.05, Table 4.5). 
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Table 4.5 Reproductive condition, foliage condition, canopy condition and evidence of species interactions measures by site groupings (river section, 

river bank, land use). Treatment values are means and standard errors (in parentheses). Significant within-treatment effects are indicated in bold type; values sharing the 

same superscript are not significantly different (p > 0.05).  

 
River section1 

 
River bank2 

 
Land use2 

  Upper Middle Lower 
 

Left Right 
 

Grazed Not grazed 

Number of trees 32 36 28 
 

40 56 
 

40 56 

Reproductive condition 
         

Flower buds (score: 0-3) 0.8 (0.2) 0.7 (0.1) 0.8 (0.1) 
 

0.8 (0.1) 0.8 (0.1) 
 

0.7 (0.1) 0.9 (0.1) 

Flowers (score: 0-3) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
 

0.0 (0.0) 0.0 (0.0) 
 

0.0 (0.0) 0.0 (0.0) 

Seed capsules (score: 0-3) 1.2 (0.2) 1.5 (0.1) 1.3 (0.2) 
 

1.2 (0.2) 1.5 (0.1) 
 

1.1 (0.2) 1.5 (0.1) 

Foliage condition 
         

New tips (%) 8.9 (1.3) 10.8 (1.9) 16.4 (3.2) 
 

12.3 (1.6) 11.5 (1.9) 
 

7.6a (1.2) 14.8b  (2.0) 

Normal growth (%) 45.3a (7.0) 27.7b (5.7) 49.1a (6.7) 
 

46.8 (5.6) 34.8 (5.1) 
 

36.1 (6.2) 42.5 (4.8) 

Epicormic growth – primary branches (%) 34.4 (6.1) 35.6 (5.5) 21.9 (4.8) 
 

31.6 (4.7) 30.9 (4.5) 
 

40.8a  (5.5) 24.2b  (3.6) 

Epicormic growth - stem (%) 11.4a (4.1) 27.6b (5.6) 11.5a (4.8) 
 

8.6a (3.2) 23.8b  (4.4) 
 

15.7 (4.2) 18.7 (4.1) 

Foliage colour (score: 0-3) 1.1 (0.0) 1.2 (0.1) 1.1 (0.0) 
 

1.1 (0.0) 1.1 (0.0) 
 

1.1 (0.1) 1.1 (0.0) 

Canopy condition 
         

Dead tips (score: 0-3) 1.4 (0.1) 1.3 (0.1) 1.2 (0.1) 
 

1.7a  (0.1) 1.1b  (0.1) 
 

1.3 (0.1) 1.3 (0.1) 

Health Class (score: 0-3) 3.0a (0.2) 3.8b (0.2) 2.8a (0.3) 
 

3.2 (0.2) 3.3 (0.2) 
 

3.5 (0.2) 3.1 (0.2) 

Dropped branches (score: 0-3) 1.6a (0.1) 1.9b (0.1) 0.6c (0.2) 
 

1.4 (0.1) 1.5 (0.1) 
 

1.6 (0.1) 1.3 (0.1) 

Evidence of interacting species 
         

Mistletoe (count) 0.4 (0.2) 0.0 (0.0) 0.0 (0.0) 
 

0.0 (0.0) 0.2 (0.1) 
 

0.3a  (0.2) 0.0b  (0.0) 

Arboreal herbivory (score: 0-3) 0.6a (0.1) 0.5a (0.1) 1.0b (0.1) 
 

0.6 (0.1) 0.7 (0.1) 
 

0.5a  (0.1) 0.8b  (0.1) 

Cockatoo damage (tip litter score: 0-3) 1.0 (0.1) 0.9 (0.1) 1.1 (0.1) 
 

1.0 (0.1) 1.0 (0.1) 
 

1.0 (0.1) 0.9 (0.1) 

1 Kruskal-Wallis (Mann-Whitney U); 2 Mann-Whitney U  
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4.3.5 Patterns in interacting species 

There was a significant difference in mistletoe frequency across land use treatments, 

with all infested trees occurring at grazed sites (Mann-Whitney U, p ≤ 0.05; Table 

4.5). There were significantly higher levels of arboreal herbivory in trees at ungrazed 

sites than at grazed sites (p ≤ 0.05), and also in trees at Lower river section sites than 

those in either the Upper or Middle sections (p ≤ 0.005). No significant pattern in tip-

pruning scores (as a measure of cockatoo/corella damage) occurred across any of the 

treatments (p > 0.05, Table 4.5). 

4.3.6 Correlations between variables 

There was a significant correlation between flower bud score and the proportion of 

new tip growth, and a significant negative correlation between the flower bud and 

dead tips scores (Spearman‟s, p ≤ 0.05; Table 4.6). 

Significant association was found between measures of canopy stress and damage 

(scores for epicormic growth, foliage colour, and tip death) and measures of tree size 

(tree height, tree diameter; Table 4.6). Percent epicormic growth on primary 

branches and dead tips score were significantly correlated with tree height and 

diameter (D130, p ≤ 0.05), while percent epicormic growth on the main tree stem was 

negatively correlated with tree height (p ≤ 0.05). Percent epicormic growth, both on 

primary branches and the main tree stem, was also significantly correlated with the 

score for dropped branches (p ≤ 0.005). Foliage colour score was not significantly 

correlated with any measured tree attribute (p > 0.05), but was significantly 

correlated with reduced Foliage Index and a higher Health Class index (p ≤ 0.005, 

Table 4.6). 

Mistletoe abundance was significantly correlated with tree diameter (p ≤ 0.05), and 

cockatoo/corella damage (tip litter score) was significantly correlated with tree 

diameter and tree height (p ≤ 0.05, Table 4.6). Arboreal herbivory scores were not 

significantly associated with any of the tree dimension or canopy condition variables 

measured (p > 0.05; Table 4.6). 
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Table 4.6 Spearman‟s correlations between measures of tree health, tree size, reproductive condition, canopy condition and evidence of species 

interactions. Values are rho with significant correlation indicated in bold type; superscripts indicate p ≤ 0.005 (**) and p ≤ 0.05 (*). 
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Percent tree remaining (PTR) 0.72**                

Tree diameter (D130) -0.13 -0.16               

Tree height 0.04 0.17 0.68**              

Flower buds 0.03 -0.02 0.00 0.08             

Seed capsules 0.02 -0.10 -0.03 -0.01 0.09            

New tip growth 0.29** 0.29** -0.13 -0.11 0.23* 0.11           

Normal foliage growth 0.65** 0.58** -0.27* -0.04 -0.01 0.01 0.23*          

Epicormic growth - primary branches -0.29** -0.18 0.46** 0.43** -0.19 0.03 -0.31** -0.60**         

Epicormic growth - stem -0.56** -0.60** 0.05 -0.23* 0.06 -0.02 -0.27* -0.73** 0.11        

Foliage Colour -0.41** -0.06 -0.10 -0.00 -0.11 -0.01 -0.14 -0.05 0.00 0.05       

Tip death -0.23* -0.01 0.27* 0.28** -0.27* 0.01 -0.03 -0.02 0.31** -0.30** 0.15      

Health Class -0.96** -0.69** 0.19 0.04 -0.03 -0.06 -0.26* -0.68** 0.33** 0.57** 0.35** 0.25*     

Dropped branches -0.61** -0.77** 0.28* 0.02 0.07 0.13 -0.27* -0.56** 0.35** 0.49** 0.10 0.05 0.59**    

Mistletoe 0.07 -0.10 0.23* 0.20 0.05 0.06 -0.08 0.08 0.04 -0.05 -0.06 0.00 -0.01 0.14   

Arboreal herbivory -0.01 0.14 -0.14 -0.02 0.18 -0.02 0.07 0.01 -0.19 0.09 0.02 -0.15 0.01 -0.17 -0.03  

Cockatoo damage -0.01 -0.03 0.29* 0.23* -0.06 0.12 -0.06 -0.06 0.13 0.08 -0.17 0.01 -0.03 0.08 -0.09 0.02 
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4.4 Discussion 

Significant variation in canopy tree condition was evident between longitudinal river 

section treatments in this study. Middle river section sites exhibited significantly 

poorer tree health than sites in the Lower river section, with Upper river section sites 

intermediate to the other river sections. These patterns correspond to some extent 

with differences in land and water use intensity patterns across the river sections 

identified in Chapter 2, which indicated that the Middle river section exhibited more 

extreme hydrological impacts (greater loss of streamflow during the prevailing 

drought at the time of sampling, as well as altered seasonality of flows) and a greater 

level of land use development than either the Upper or, to a lesser extent, the Lower 

river sections. Evidence of relatively better tree health, but a high density of dead 

trees, in the Lower river section indicates a more complex response pattern than was 

evident for floristic composition (Chapter 3), although in this study there was no 

evidence of significant interaction between treatments in any tree health measure. 

No significant patterns in canopy tree condition were evident in relation to river bank 

treatments, despite major differences in floodplain and catchment width and in land 

use development on opposing sides of the river (Chapter 2). Higher mean eucalypt 

seedling densities were recorded on the Left than the Right bank, but low numbers 

and heterogeneous variance meant that the data for this measure could not to be 

statistically analysed). Similarly, presence or absence of livestock grazing at this scale 

did not significantly influence patterns in canopy tree condition, but there were 

significantly higher numbers of seedlings of Acacia stenophylla at ungrazed sites. 

4.4.1 Tree condition and hydrological connectivity 

Patterns in tree condition in riparian floodplain woodlands are frequently reported to 

be driven by hydrological parameters and by the dynamics of overbank flooding in 

particular (Bagstad et al. 2006, Wen et al. 2009). Evidence of poorest tree health, as 

indicated by measures of dieback severity (WWI) and structural integrity (PTR), 

along the more highly modified less dynamic Middle river section of the study area 

corresponds with this general finding. However, this may be more closely related to 

the availability of accessible water resources rather than the overall hydrological 

variability in the system. The combination of negligible in-stream flows in the period 
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preceding sampling (Chapter 2) and longer-term declines in surface-groundwater 

exchange and groundwater levels (CSIRO 2008, Chapter 2) in this river section 

indicate reduced availability of moisture resources, especially during drought 

conditions. Shallow alluvial aquifers have been found to play a critical role in 

supporting phreatic vegetation and buffering riparian ecosystems through periods of 

low precipitation and soil moisture availability (Elmore et al. 2006a). Reduced 

buffering capacity in the Middle section, relative to the Upper river section where 

surface-groundwater exchange remains active (CSIRO 2008), may contribute to more 

extreme „effective drought‟ conditions and increased dieback severity in this section 

of the study area. 

Substantial groundwater level decline is reported in the study area, particularly in the 

river sections below Yarramalong Weir (the Middle and Lower sections of this study) 

(CSIRO 2008, Chapter 2). However, the Middle river section supports a greater 

intensity of water resource infrastructure (water storages, groundwater bores) and use 

(irrigated cropping) than either the Upper or Lower river sections (Chapter 2). While 

the rate and extent of groundwater decline are not explored in this chapter (but see 

Chapter 5), the greater density of groundwater bores in the Middle river section of 

this study is indicative of relatively higher pressure on available groundwater 

resources, which may contribute to the poorer tree condition also evident in this 

section. Groundwater decline is recognised as a driver of dieback and significant 

decline in phreatic tree species in many riparian ecosystems (Horton et al. 2001a, 

Schume et al. 2004, Stromberg et al. 2007b). However, its effect on condition and 

mortality in either E. camaldulensis or E. tereticornis has not been reported in the 

scientific literature. E. camaldulensis is a facultative phreatophyte, reliant on shallow 

groundwater when soil moisture reserves are deficient (Thorburn and Walker 1994). 

It also exhibits preferential use of groundwater over in-stream water sources when 

these are accessible (Thorburn et al. 1994). E. camaldulensis is deep-rooting, and 

(younger) trees are capable of rapid root extension in response to declining subsoil 

water levels (Calder et al. 1997). While a maximum rooting depth of E. 

camaldulensis is not reported, Mensforth et al. (1994) report lateral root extension of 

at least 15m for trees growing adjacent to streams, and Horner et al. (2009) report 

increased mortality in plantation E. camaldulensis where groundwater depths exceed 

12 to 15 m. 
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However, significantly better tree health (lower levels of dieback severity and greater 

structural integrity) in canopy trees on the Lower river section is counter-intuitive; as 

in the Middle river section, this section of the river, extending to Cecil Plains Weir, is 

also significantly affected by groundwater decline (CSIRO 2008, DSEWPC 2009). 

However, despite classification of these as „highly disconnected‟ from the alluvial 

aquifer/groundwater system (i.e. surface flows no longer contribute to alluvial 

groundwater recharge), they are also termed „losing‟ reaches with significant volumes 

of surface flows „lost‟ in transmission (CSIRO 2008). The apparent paradox in tree 

condition results may be explained by the location of study sites in the Lower portion 

of the study area, which were (unavoidably) positioned at either end of the river 

section (Figure 3.1, Chapter 3), hence non-randomly in terms of proximity to weirs. 

More variable discharge patterns recorded at Lemon Tree Weir over the ten years 

prior to sampling, while not representative of flow within the full reach due to the 

confounding influence of the Condamine North Branch project (Chapter 2), indicate a 

significant pool of water held behind this weir in most months of the year. Similarly, 

Cecil Plains Weir is a relatively large in-stream structure holding a permanent body 

of water to ensure supply to the township of Cecil Plains. These two weirs may act to 

supplement local groundwater levels in their immediate vicinity and for some 

distance downstream (e.g. Lane and Zinn 1980, Schade et al. 2005), and may 

significantly supplement shallow groundwater in these locations, contributing to the 

observed „improvement‟ in tree health. 

The potential influence of weirs on local groundwater levels indicates an unintended, 

but positive, outcome  for the maintenance of tree health in highly modified dryland 

river systems, providing artificial refugia which enhance ecosystem stability under 

drought conditions (although further investigation is required to confirm this). This is 

in contrast to the effect of in-stream weirs and locks in permanently filled systems, 

such as the River Murray, which act to augment already shallow groundwater levels 

associated with altered catchment hydrology (Overton et al. 2006). Along the Murray 

River, rising groundwater levels and associated salinisation in surface soils, 

exacerbated by lack of flooding due to river regulation, result in poor condition and 

increased mortality in salt-stressed tree species (Slavich et al. 1999, Lamontagne et 

al. 2005c), including E. largiflorens and E. camaldulensis, both common species on 

the lower Murray floodplains (Lamontagne et al. 2005c). Poor tree health is also 

reported in E. camaldulensis flooded woodlands (e.g. the Barmah-Millewa wetlands 
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on the Murray River) where the seasonality of flooding flows and duration of 

inundation is significantly altered (Bren 1992, Ladson and Chong 2005). By contrast, 

altered flooding patterns, rising groundwater levels and associated salinisation do not 

appear to be significant factors in the current study area; natural flows in the Upper 

Condamine are essentially ephemeral and, although regulated to some degree, 

supplemented flows mimic natural patterns with higher flows in summer months 

(Davies et al. 2008). In addition, while there has been a significant decline in the 

magnitude of smaller flood events with hydrological modification in the Condamine-

Balonne system (Thoms 2003, Sheldon and Thoms 2006a,b), flooding associated 

with larger rainfall runoff events still periodically inundates significant areas of the 

floodplain, including the riparian woodlands associated with the main river channel 

(Chapter 2). Salinisation is also not a prominent feature on the Upper Condamine 

floodplain where shallow alluvial groundwater levels are in decline (Chapter 2). 

Lack of response to river bank treatments in this study also potentially indicates the 

lesser importance of overbank flooding in maintaining tree condition in this 

landscape.  A recent study along the Macquarie River (Steinfeld and Kingsford 2008) 

investigated the impact of floodplain earthworks associated with irrigation 

development, flood mitigation and erosion control on flood flow paths and river red 

gum (E. camaldulensis) mortality. That study found that river red gum mortality was 

significantly correlated with the density of earthworks, although this effect was 

variable across the study area ranging from highly positive to negative (i.e. mortality 

increased with density in one area, and decreased with increasing density in another), 

indicating potentially complex, location-specific hydrological patterns and ecological 

responses (Steinfeld and Kingsford 2008). A number of studies elsewhere have 

investigated the ecological impact of flood mitigation levees which limit the extent of 

overbank flooding across adjacent floodplains, and effectively act to alienate or 

disconnect floodplain ecosystems from overbank flood flows (Gergel et al. 2002a, 

Kang and Stanley 2005). Significant ecological impact has been reported in some 

disconnected floodplain ecosystems outside levees, including altered plant 

community structure and functional dynamics (Kang and Stanley 2005), but not 

others (e.g. Gergel et al. 2002a). 



 
121 

4.4.2 Tree condition and land use intensity 

Reduced hydrological connectivity also coincides with evidence of higher levels of 

floodplain development at Middle river section sites. As reported in Chapter 2, this 

section has greater overall proportions of cropping (irrigated and dryland), water 

storages and groundwater bores and a lower proportion of native vegetation than 

either the Upper or Lower river sections. The poor condition of trees on rural lands in 

southern Queensland has been previously reported by Wylie et al. (1992). Based on 

the results of a regional landholder survey, the study reported dieback in 67 species, 

of which E. tereticornis was identified as one of four „indicator‟ species for southern 

Queensland; dieback was reported on 62% of the 93 properties where this species 

occurred, and this species was reported as one of the first in many districts to exhibit 

dieback symptoms. Dieback in E. camaldulensis was reported on three of the five 

properties on which it was present. The study concluded that, while drivers of tree 

decline varied with locality, landscape modification and land use intensity were 

dominant factors associated with the incidence of dieback; the study also indicated 

that trees on floodplain properties exhibited more severe dieback (Wylie et al. 1992, 

Reid 1999). A subsequent study investigated E. tereticornis decline in riparian 

woodlands of the Mary River catchment, south-eastern Queensland, and also found 

more severe dieback in areas that were most extensively cleared or intensively 

managed (Wylie et al. 1993). In one of the few studies to investigate the impact of 

surrounding land use on tree condition, Banks (2006) investigated drivers of 

declining tree condition in dominant eucalypt species on the Liverpool Plains in 

northern NSW, a highly modified floodplain landscape very similar to that of the 

Upper Condamine in terms of topography, soil type and current land use (Banks 

2006). The study indicated significant impact on the condition of Eucalyptus 

populnea associated with low concentrations of agricultural pesticides dispersed 

locally on prevailing winds; however, there was no similar response in E. 

camaldulensis (Banks 2006), indicating different levels of susceptibility. It was 

suggested that poor condition in E. camaldulensis was associated with senescence in 

larger trees, suggesting a natural process due to aging (Banks 2006); however, in the 

current study, tree condition and tree size measures were only weakly correlated, 

bringing into question the over-riding importance of age-related processes in this 

species. 
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Within-remnant grazing did not significantly impact tree condition in this study. 

Livestock grazing has been associated with poor tree health, including eventual 

mortality of mature trees in other studies (e.g. Davidson et al. 2007); however, this is 

frequently linked to grazing intensification and associated pasture improvement 

(sowing of introduced pasture species including nitrogen-fixing legumes) and soil 

fertilization (Landsberg and Wylie 1988, Reid 1999, Close and Davidson 2004), 

factors not directly examined in this study. The grassy understorey of riparian 

woodlands on the Upper Condamine floodplain comprise predominantly native grass 

species, with only incidental evidence of introduced pasture grass species (Chapter 3). 

These areas are generally not fertilised, although elevated nutrients may occur within 

these remnants as a result of catchment run-off processes, as is frequently reported for 

riparian ecosystems (Allan et al. 1997); localised concentration of nutrients may also 

occur under shade trees (stock camps) in grazed remnants (Wilson et al. 2007, 

Chapter 6). Despite this, the findings in this study are in agreement with Fensham and 

Holman (1999) who also found no association between grazing and dieback in 

unimproved rangeland savanna landscapes in northern Queensland. 

4.4.3 Pattern and process in recruitment and survival of canopy species 

Eucalypt seedling numbers, where present, were low (0-4 per 1000 m
2
 quadrat) across 

the study area, and tree recruitment patterns were not significantly related to river 

section treatments; however, there were more E. camaldulensis/E. tereticornis 

seedlings recorded on the Left river bank where there was also greater incidence of 

previous flooding (evident in higher flood disturbance scores reported in Chapter 3). 

This is in agreement with studies in which flooding and sediment deposition are 

reported to be important factors in seedling recruitment for this species (e.g. Pettit and 

Froend 2001a,b, Di Stefano 2002), while low numbers of recruits may have been due 

to inhibition of seed production, poor dispersal, or limited seedling establishment and 

survival in the study area due to recent prolonged drought conditions (Jensen et al. 

2007, 2008a). 

Grazing is also often reported to have significant impacts on eucalypt seedling 

establishment and survival (e.g. Opperman and Merenlender 2000, Robertson and 

Rowling 2000, Fischer et al. 2009). Post-dispersal seed density in E. camaldulensis is 

significantly reduced by higher levels of seed predation by ants in riparian woodlands 
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grazed by cattle (Meeson et al. 2002). No evidence of grazing impacts on eucalypt 

seedling abundance was found at the scale of investigation conducted in this study; 

however, reduced cover of trees under 10 m high at grazed sites (Chapter 3) may 

reflect a history of reduced recruitment or seedling survival at these sites, expressed 

in current woodland structure but not apparent in more recent recruitment patterns 

due to extended drought and limited recruitment prior to sampling. Grazing within 

woodland remnants can have significant impacts on woodland structure, and is 

frequently associated with limited recruitment, lower survival of seedlings and 

skewed age (size) distributions in tree populations (e.g. Pettit 2002, Dorrough and 

Moxham 2005, Lunt et al. 2007a). 

In contrast to E. camaldulensis, there was evidence of greater recruitment in the 

canopy subdominant species Acacia stenophylla, a small tree which is tolerant of 

salinity, drought, waterlogging and alkaline soils and widespread on inland river 

systems (Roberts and Marston 2000, CSIRO 2004). There was also evidence of a 

significant reduction in recruitment of A. stenophylla at grazed sites in this study, 

supporting a report that seedlings and saplings of this species are susceptible to 

grazing, particularly at higher grazing intensities (Pettit 2002). Unlike E. 

camaldulensis, however, A. stenophylla recruitment is reported to be inhibited, rather 

than facilitated, by flooding (Nicol et al. 2007). The relative success of A. 

stenophylla, despite the prevailing drought conditions in this study may be indicative 

of its potential as a replacement canopy species where there are minimal impacts 

from grazing livestock, and hydrological or other factors act to constrain the 

dominance of E. camaldulensis/E. tereticornis in riparian communities. However, the 

study area is also at the limits of this species‟ distribution (CSIRO 2004) and the 

factors limiting the extent of this species on the Upper Condamine warrant further 

investigation. 

4.4.4 Species interactions and dominant tree condition 

Significant patterns in the abundance or intensity scores for species which have been 

observed, or are reported elsewhere, to adversely impact dominant tree condition (i.e. 

mistletoe, arboreal herbivores, but not Cacatuidae species) were found across river 

section and land use (grazed, ungrazed) treatments. Association between mistletoe 

occurrence and grazing has not been previously reported and may be an artifact of the 
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limited sampling, as the 12 individuals were recorded in only 3 trees, all of which 

were within grazed remnants. Norton et al. (1995) found the opposite response to 

grazing, with no mistletoe in remnants subject to grazing, indicating that this 

relationship requires further investigation in this landscape. However, there was no 

evidence of a significant correlation between mistletoe abundance and tree condition, 

in agreement with Ward (2005) who reported no association between mistletoe 

infestation and canopy dieback in pink gums Eucalyptus fasciculosa in the Mount 

Lofty Ranges, South Australia. Norton et al. (1995) indicated that water relations may 

be an important determinant of mistletoe abundance, with mistletoes sensitive to 

changes in the water status of host trees. Alternatively, the limited number of trees 

supporting mistletoe may be a function of low diversity or abundance of small 

frugivorous birds in these woodlands, important vectors for these hemiparasitic plant 

species (Norton et al. 1995). Open woodland structure is ideal habitat for noisy 

miners Manorina melanocephala (Clarke and Oldland 2007), an aggressive native 

bird species associated with limited diversity of other small woodland birds (Grey et 

al. 1997, Clarke and Oldland 2007), and a species frequently observed in the study 

area (pers.obs.). A combination of prolonged drought and limited dispersal may 

inhibit mistletoe abundance in these woodlands, which may further exacerbate 

decline in frugivorous vector species such as mistletoe birds Dicaeum hirundinaceum 

(Lavorel et al. 1999c, Watson 2002). Indications are that, while mistletoe species are 

a driver of decline in host tree species in some situations (Reid et al. 1994), they also 

play an important (keystone) role in supporting the diversity of invertebrates and 

nectarivores (birds, bats) in ecosystems (Watson 2002, Burns 2009). As such, their 

low frequency and abundance in this landscape is of concern. 

Conversely, evidence of herbivory by mammalian or insect folivores in dominant 

canopy trees was significantly greater at ungrazed than at grazed sites, and also 

significantly greater in trees at Lower river section sites in this study, but was not 

significantly correlated with any of the tree dimension or canopy condition variables 

measured. These results are counter to reports of widespread and significant insect-

related dieback in grazed pastures on the New England Tableland, northern NSW 

(Lowman et al. 1987), and also to evidence of greater herbivory in refoliating 

canopies (i.e. epicormic regrowth) in eucalypts elsewhere (Landsberg 1990b). These 

results may, however, reflect differences in the relative water status of trees in grazed 

and ungrazed remnants. Gordon et al. (1988) and Munks et al. (1996) both report that 
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tree selection in koalas Phascolarctis cinereus is significantly influenced by foliage 

water content, while Norton et al. (1995) report significant impacts on tree water 

status due to compaction of surface roots by grazing livestock, and a number of other 

studies report significant increases in soil bulk density (Bezkorowajny et al. 1993), 

degraded surface soil structure (Yates et al. 2000) and reduced soil water infiltration 

rates (Yates et al. 2000, Bramley et al. 2003) associated with trampling by cattle. 

Lack of significant association between herbivory levels and epicormic regrowth in 

this study may be associated with low tree water status and limited mobility and 

uptake of nutrients from surface soils (Sardans and J. Penuelas 2007) or constraints 

on insect or arboreal marsupial species population processes (Gordon et al. 1988, 

Kerle et al. 1992, Munks et al. 1996) as a result of drought. 

Significant pressure from arboreal marsupial herbivores on riparian canopy species 

has been reported in the study landscape (Voller and Eddie 1995). Common brushtail 

possums Vulpecula trichosurus and koalas P. cinereus are present, in relatively high 

numbers, in these woodlands. A supplementary long-term (14 year) study, analysed 

as part of this research (results not reported), compared canopy condition in paired 

banded (arboreal marsupial folivores excluded) and unbanded E. camaldulensis/E. 

tereticornis trees at four sites on the Upper Condamine floodplain. This trial found no 

significant difference in canopy condition between banded and unbanded trees, 

indicating that arboreal herbivory by possums or kolas is not a primary driver of tree 

decline in this landscape. However, within the control group of trees, there was 

evidence of unequal usage by these species, and high visitation rates were correlated 

with poor tree health, indicating that some trees were preferentially utilised. Foliage 

was analysed for moisture and N content, as well as the presence of a range of 

secondary phenolic compounds thought to constitute anti-herbivore defense in 

eucalypts (e.g. Scrivener et al. 2004, Moore and Foley 2005). Significant correlation 

was evident only between intensity of use by koalas or possums and available N, 

confirming the importance of a protein-rich diet for these species (Martin 1985); no 

significant association with foliage water content was found. Lack of evidence for the 

presence of clear chemical defenses in E. camaldulensis (also previously noted by Ian 

Wallis, pers.com.) may be a function of the range of stress gradients to which this 

species must respond (through selective allocation of limited carbon resources; e.g. 

Moore et al. 2004) in dryland river environments. 
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No significant patterns in canopy damage caused by sulphur-crested white cockatoo 

Cacatua galerita/little corella C. sanguinea were found in this study. Higher levels of 

use by these species were evident in larger (taller and  larger diameter) trees, but were 

not significantly associated with dieback symptoms. However, significant damage 

(debarking of branches) was apparent in individual trees and dead trees adjacent to 

permanent water appeared to be favoured as roost trees, confirming the highly–

localised usage patterns reported elsewhere (e.g. Bomford and Sinclair 2002). 

4.4.5 Significance and limitations 

This study confirms earlier reports on the condition of Upper Condamine floodplain 

riparian woodlands (e.g. Voller and Eddie 1995, McCosker 1996, Voller 1998) which 

identified poor condition, recruitment and survival of dominant canopy species, 

particularly Eucalyptus camaldulensis/E. tereticornis, and increases in the 

distribution and density of the midstorey species Acacia stenophylla. However, it 

also, importantly, quantifies canopy tree condition and begins to identify differences 

in dieback severity and canopy tree decline across this landscape. 

Poorest tree condition, with most severe dieback and reduced structural integrity, in 

mature trees of the dominant canopy species E. camaldulensis/E. tereticornis was 

associated with the Middle river section, the reach most significantly impacted by 

floodplain development and by changes in hydrological flows (Chapter 2). This 

finding conforms to patterns of significantly reduced floristic and functional diversity 

in this section reported in Chapter 3. Based on the same survey design, it also 

coincides with evidence of more highly impacted in-stream flow patterns, more 

intense water resource and land use, and greater levels of disruption to overland flow 

patterns in this river section, and was similarly subject to confounded spatial and 

temporal patterns. 

In contrast to Chapter 3 however, tree condition was significantly better (i.e. dieback 

was moderate rather than severe) on the Lower river section. It is suggested that this 

finding was influenced by study site locations in this river section, which were biased 

in terms of relative proximity to weirs. Pooling of surface waters behind weirs may 

contribute to localised saturation of shallow alluvial sediments, extending downslope 

of weirs; this may be accessible to neighbouring trees, enabling them to maintain 

condition through drought. The significant difference in tree condition between the 
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Middle and Lower river sections is potentially indicative of the importance of 

accessible groundwater in these ecosystems, but is contrary to the finding in Chapter 

3 in which there was no significant difference in floristic composition between the 

Middle and Lower river sections. 

Lack of significant pattern in tree condition in response to differences in lateral 

connectivity between river bank treatments was unexpected, given greater evidence 

of flooding and a lower incidence of floodplain structures with potential to modify 

overland flow patterns on the left bank. While this may have been associated with the 

broad scale of this comparison (i.e. impact may be more apparent at the local-scale), 

lack of significant difference at this scale may indicate that surface flow dynamics are 

perhaps not so important to tree condition in this landscape as reported in other 

systems (e.g. Jolly et al. 1996, Cunningham et al. 2010). This is potentially indicative 

of significantly different processes in this landscape, where there is limited 

salinisation and a positive association between trees and groundwater, compared to 

riparian equivalents in the southern Murray-Darling Basin (e.g. Jolly et al. 1993). By 

contrast, overbank flooding remains an important driver of E. camaldulensis/E. 

tereticornis population processes, particularly recruitment, as reported elsewhere 

(Pettit and Froend 2001a,b, Di Stefano 2002, Jensen et al. 2007, 2008b). No similar 

pattern was evident for recruitment in Acacia stenophylla, which is not flood-

dependent, and points to a significant differential between these two species, which 

may be relevant under a changing climate and /or changing levels of resource 

availability in this landscape. 

While overbank flooding is a major component of hydrological connectivity, local 

overland runoff flows, especially the broad unconcentrated flows which occur across 

low-sloping floodplain areas with poorly defined runoff flowpaths, are also a 

potentially important component of landscape connectivity (Clement et al. 2003). 

While levees are not a feature of the Upper Condamine floodplain landscape, 

significant development of on-farm storages and associated earthworks (banks, 

ditches, irrigation channels) to control overland flow/rainfall runoff and water flow 

patterns have resulted in highly modified flood flow paths (Knowles-Jackson and 

McLatchey 2002). The increased density of floodplain storages in the Middle river 

section of the study area has potential consequences (e.g, reduced soil moisture, 

reduced infiltration, reduced seed dispersal) for downslope riparian vegetation and 
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riverine systems into which these flows previously drained. The impact of these on 

riparian ecosystem function requires further investigation. 

Lack of significant pattern in relation to within-remnant land use (presence or absence 

of grazing) is also somewhat unexpected, as grazing has been an important factor in 

dieback studies elsewhere (e.g. Lowman and Heatwole 1992, Close and Davidson 

2004). This is, in part, a function of the relatively „natural‟ state of pastures in riparian 

woodlands in this landscapes (no „improved „pasture species, no fertiliser 

application), and conforms with the findings of Fensham (1998b) in grazed savanna 

woodlands in central Queensland. However, grazing on heavy clay soil types, such as 

the Vertisols of the Upper Condamine floodplain, is reported to cause significant 

compaction, damaging fine surface roots (Sharrow 2007) and altering soil moisture 

infiltration characteristics (Bramley et al. 2003), which is associated with tree decline 

elsewhere (Yates et al. 2000). This damage may be compounded with declining tree 

health, defoliation, and associated carbon deficit, which also reduce fine-root 

production (Friend et al. 1994). Reduction in the surface area of fine roots limits 

hydraulic function in trees and constrains processes such as hydraulic redistribution 

(Liang et al. 1999), further limiting surface soil moisture. Grazing is also reported to 

have significant impacts on canopy tree population recruitment processes, limiting 

establishment and survival of seedlings (Clarke 2002, Dorrough and Moxham 2005). 

The lack of interaction between treatments in this study, in contrast to evidence of 

this in Chapter 3, may be related to the extremely dry conditions at the time of 

sampling (Lunt et al. 2007b). The lack of significant pattern in E. camaldulensis/E. 

tereticornis seedling density in response to grazing is likely also to be an artefact of 

poor recruitment associated with the extended period since the last significant flood in 

1996. This was in contrast to the recruitment patterns in Acacia stenophylla, which 

had relatively high numbers of seedlings and high frequency of occurrence in non-

grazed areas. 

A critical factor confounding interpretation of eucalypt responses to altered 

disturbance and resource regimes is the often significant time-lag between cause and 

measurable effect in such long-lived adaptive species (Breda and Badeau 2008). 

Trees exhibit adaptive response to environmental stresses (Kozlowski and Pallardy 

2002), and may go through periods of decline and recovery, which in eucalypts is 

facilitated by the ability to reshoot from lignotubers and epicormic buds in the bark. 
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While the probability of ecological impact from hydrological changes associated with 

water resources development is generally well-established in riparian woodland 

systems, very few studies have conducted investigations which reflect both the altered 

hydrological and agricultural context of riparian ecosystems (Turner et al. 2004). 

River section treatments in this study were designed to pick up gradients in broad 

hydrological patterns within the study area; however, spatial variation in a number of 

other land cover and land use elements at this scale confound interpretation based on 

hydrology alone. Tree condition in remnant woodland communities elsewhere in 

Australia exhibits a relatively complex response gradient to a range of environmental 

factors (Landsberg and Wiley 1988, Landsberg 1990a). This study was not designed 

to test causal relationships or temporal variability associated with resource dynamics 

(e.g. in response to flooding) or the influence of historical landscape legacies, some of 

which may be important to current tree condition and many of which may confound 

interpretation (Landsberg and Wiley 1988). 

4.5 Conclusions 

The overall conclusions from this study are that tree condition in this landscape 

conforms to broad-scale patterns in relation to hydrology and land use intensity, with 

poorer condition at sites along the Middle river section, which is most significantly 

impacted by floodplain development and associated changes in hydrology. As in 

Chapter 3, it is likely that response in mature canopy trees is linked to reduced 

buffering of drought conditions in this part of the landscape. Poor structural integrity 

and advanced dieback in these phreatic trees is potentially indicative of severe water 

stress resulting in branch sacrifice and depletion of functional canopy (e.g. Van der 

Willigan and Pammenter 1998, Rood et al. 2000, Rice et al. 2004). This stress is 

likely to be associated with a combination of drought and severe water deficit within 

the soil profile, in conjunction with declining access to shallow groundwater levels. 

While this research is essentially correlative and not designed to identify causal 

relationships, it indicates again the potential importance of groundwater in supporting 

system function and resilience under drought conditions. 

This study also indicates the role of overbank flooding in terms of recruitment of the 

dominant eucalypt species E. camaldulensis/E. tereticornis in this landscape, and 

potentially identifies a key differential between this species complex and the 
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subdominant canopy species Acacia stenophylla. By contrast it indicates that biotic 

agents, previously thought to be significant drivers of poor tree condition in this 

landscape, have only localised impact; however, this requires further investigation 

under non-drought conditions as the level of interaction observed in this study may 

alter with greater availability of resources. Similarly, the general lack of interaction 

between tree condition, recruitment and within-remnant land use may be an artifact of 

the dry conditions at the time of sampling, and requires further investigation. 

As in Chapter 3, the relative importance of hydrological connectivity in supporting 

tree condition and population processes in dominant canopy eucalypts was unable to 

be identified due to confounding patterns in land use development intensity in this 

landscape. Important drivers influencing canopy health, and the role of mature 

eucalypts in these riparian woodlands, are further investigated in Chapter 5. 
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Chapter 5 Drivers of floristic composition, community structure and 

condition in riparian woodland communities on the Upper Condamine 

floodplain 

5.1 Introduction 

5.1.1 Environmental drivers in riparian ecosystems 

Hydrological gradients are significant predictors (drivers) of overall vegetation 

patterns in riparian ecosystems (Decocq 2002, Capon 2003, 2005, Leyer 2004, 2005). 

These gradients act in concert with a range of other variables, including small-scale 

changes in soil texture and nutrient levels (Beauchamp and Stromberg 2008), the 

presence of community-structuring species such as trees and functional weed species 

(e.g. Kercher and Zedler 2004, Stromberg et al. 2007a,b), and disturbances associated 

with grazing (Chaneton and Facelli 1991, Cornaglia et al. 2009) or fire (Busch and 

Smith 1993, Busch 1995, Pettit and Naiman 2007), to influence vegetation 

communities. Changes in hydrological flow regimes with surface flow modification 

(e.g. regulation or diversion of in-stream surface flows) are associated with reductions 

in high flows, as well as altered extent and magnitude of flooding and frequency and 

duration of low- and no-flow periods, and can have significant impacts on riparian 

ecosystem composition and function (Stromberg et al. 2007a). Altered hydrological 

gradients are also important determinants of condition in riparian tree species, with 

water stress a key factor in declining canopy health and tree mortality (O‟Connor 

2001, Cooper et al. 2003b, Horner et al. 2009). Reinstatement of historical in-stream 

flow and flood regimes is viewed as the predominant requirement for restoring 

ecosystem structure and function in riparian communities (e.g. Tiegs et al. 2005, 

Stromberg et al. 2007a,b). 

By contrast, the impact on remnant floodplain and riparian ecosystems of changes in 

resource and disturbance gradients associated with adjacent land use development and 

intensification has been little studied (Northcott et al. 2007). In terrestrial 

environments, land use change has been associated with altered community assembly 

processes, through ecological filtering of functional traits, resulting in significant 

changes in species richness, functional diversity and system function (Mayfield et al. 

2005). In a global meta-analysis, Laliberté et al. (2010) found reduced functional 
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redundancy and response diversity, indicating increasing vulnerability to future 

disturbances (Walker 1992, 1995), in native vegetation communities along land use 

intensification gradients. In an assessment restricted to studies from the Americas, 

Flynn et al. (2009) found limited response in plant species richness and functional 

diversity but significant reduction in the cover of large-statured plants with 

agricultural intensification. Limited studies of the impact of land use development in 

riparian systems indicate that land and water resource development may act 

independently and at times indirectly to significantly alter the structure (patch size) 

and function (dominant species recruitment) of riparian plant communities (Andersen 

et al. 2007, Northcott et al. 2007). 

In addition to abiotic drivers, novel biotic components within ecosystems, such as 

alien plant species, are often reported as potential drivers (engineers) of ecosystem 

change (e.g. Callaway and Maron 2006, Minchinton et al. 2006, Richardson et al. 

2007). For example, diffuse knapweed (Centaurea diffusa) significantly suppresses 

the growth of native species in invaded communities in western USA (Callaway and 

Aschehoug 2000, Vivanco et al. 2004), while significant species loss and structural 

shifts have been associated with high infestations of Lantana camara in tall open 

forest in southeastern Australia (Gooden et al. 2009a,b). Similarly, certain endemic 

species are identified as keystone elements which contribute disproportionately to the 

stability or resilience of an ecosystem; change in the abundance or function of such 

species may trigger significant change in ecosystem structure and dynamics (Mills et 

al. 1993, Fischer and Lindenmayer 2007, Manning and Lindenmayer 2009). 

However, while the potential for such change to have significant impact on vegetation 

community structure and function is recognised (Hooper et al. 2005, Manning et al. 

2006, 2009), it has not been widely investigated or reported. 

Fragmented riparian communities in highly modified agricultural landscapes are 

likely to be influenced by both altered hydrological and novel disturbance regimes 

associated with anthropogenic land use both within remnants (i.e. at highly localised 

within-patch scales) and in the surrounding landscape (i.e. at broader „meta-patch‟ 

scales which incorporate the agricultural matrix sensu McIntyre and Hobbs 1999). 

This study assesses the relative importance of potential environmental drivers of ecosystem 

structure and condition in riparian woodland remnants embedded in a floodplain production 

landscape. It compares community responses to hydrological and land use variables, and 
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combinations of these at scales ranging from within-remnant to the broader agricultural 

landscape surrounding remnants. It also investigates the role of key functional vegetation 

species in influencing ecosystem pattern in the study systems. 

5.1.2 Ecological response to environmental gradients 

Environmental gradients and scale 

Ecosystem composition, structure and function are, in effect, the outcome of multiple 

spatial and temporal environmental filters which result in the selection of individuals 

(thus species, functional groups, communities, ecosystems) with the ability to respond 

successfully to the various gradients (Lavorel and Garnier 2002). Plants respond 

individually to a range of inherently small-scale environmental gradients in abiotic 

(micro-climate, soil) and biotic (identity and abundance of interacting species) factors 

(Hook and Burke 2000, Reynolds et al. 2003). At the local patch scale, vegetation 

patterns are an amalgam of species responses to heterogeneous patterns in resource 

availability, current and past disturbances, and resultant community dynamics (Diaz 

et al. 1999). In floodplain communities, these factors are often determined by 

gradients in hydrology and connectivity (e.g. Leyer 2004), which, in highly modified 

landscapes, can be significantly influenced by changes in land cover and levels of 

resource use at larger scales (Andersen et al. 2007). 

Interactions across scales are often cited as important drivers of regime shifts (e.g. 

Suding and Hobbs 2009) but are rarely investigated, with most vegetation community 

research conducted on relatively small (local, short time-frame) scales (Peterson et al. 

1998, Carpenter 1999), and focused predominantly on within-ecosystem responses to 

specific disturbance or resource availability gradients (e.g. McIntyre 2001, 2008, 

Sutton and Morgan 2009). By comparison, habitat suitability modelling in faunal 

community studies often includes variables relating to the larger-scale landscape 

context of vegetation communities (habitat) (e.g. Cushman and McGarrigal 2002, 

Collard 2007, Kath et al. 2009). 

Multivariate modelling offers an approach by which the composition of ecological 

communities may be modelled in relation to gradients in a range of environmental 

(habitat) variables seen a priori as potential drivers (predictors) of community 

responses (e.g. Knutson et al. 1999). Such modelling is essentially a correlative 

approach, rather than proof of cause and effect; however, the results of such studies 
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are frequently interpreted as strong inference of key drivers and possible mechanisms 

(e.g. Knutson et al. 1999, Kath et al. 2009). In addition, this exploratory approach can 

contribute to the generation of hypotheses which can be further investigated through 

experimentation (Knutson et al. 1999). Such studies can form an important part of the 

iterative process which enables greater understanding, especially of complex systems 

subject to anthropogenic change (e.g. Collard 2007, Kath et al. 2009). 

Measuring and interpreting community response 

A critical component of such studies is the choice of metrics relevant to the questions 

being asked. In plant community ecology, significant progress has been made in 

terms of developing methods which enable species to be grouped into functional 

response or effect groups, according to specific morphological and physiological 

traits (e.g. Volaire 2008, Mabry and Fraterrigo 2009) As examples, plants with high 

specific leaf area (i.e. leaf area per unit dry mass) are reported to be more successful 

under grazing disturbance (Golodets et al. 2009) or higher fertility conditions 

(Kuhner and Kleyer 2008), but more prone to moisture stress (Fonseca et al. 2000); 

plants with C4 metabolism are generally more successful (and abundant) in 

environments where temperatures are higher and/or there is limited moisture 

availability (Sage and McKown 2006); and many leguminous plants influence 

ecosystem processes by contributing to soil nitrogen levels (Fornara and Tilman 

2008). The classification of vegetation species according to functional trait groups 

enables comparisons of ecological responses to specific drivers across bioregions, 

which contributes to the development of general hypotheses of ecological processes 

and responses (e.g. Loreau 2000, Diaz et al. 2007, Suding et al. 2008). Diversity 

within functional groups has also been interpreted as a useful metric for investigating 

emergent properties of ecosystems in response to ecosystem change with altered 

disturbance regimes. Redundancy is a key concept relating to functional diversity and 

system resilience; high levels of diversity within functional groups (i.e. redundancy) 

is interpreted as indicative of a high capacity for response and recovery, (i.e. 

resilience), while low functional diversity implies limited options and greater risk 

(Walker 1992, 1995, Laliberte et al. 2010). 

Many studies report changes, along environmental gradients, in species composition 

between groups of species which are effectively reciprocal pairs within a functional 

trait space. For example, historical change along temperature and moisture 
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availability gradients has driven a transition between relevant functional correlates 

(e.g. C3 and C4 species) in subtropical bioregions (Huang et al. 2001, Nelson et al. 

2004). On a smaller scale, grazing disturbance is reported to drive a shift from taller-

growing perennial grasses to low-growing annual herbs along a grazing intensity 

gradient (Lunt 1997, Lavorel et al. 1999a). While significant development of the 

functional group concept continues to occur in terms of identifying key traits 

associated with response to particular disturbances, metrics based on group identity 

are essentially static, measured in terms of increased or decreased absolute (Wohl et 

al. 2004, Flynn et al. 2009) or relative (McIntyre et al. 2005, Lavorel et al. 2008) 

redundancy. Change in the proportion of richness (relative redundancy) within a 

functional trait group, while valuable in interpreting the validity of the functional 

group approach to identifying meaningful trait sets, implies (but doesn‟t test) an 

inverse response in its inverse group (e.g. C3 vs C4). As such, such response metrics 

can be difficult to interpret in a dynamic sense as indicators of change, or 

resistance/resilience, in community function. The relative richness or abundance of 

functional correlates (i.e. ratio of richness or abundance of one functional correlate to 

another) potentially provides a dynamic metric by which community response to a 

relevant environmental gradient can be tested/measured. This novel metric is used, in 

this study, to test response in community structure (at the functional group level) to 

environmental change. 

5.1.3 This study 

The studies reported in Chapters 3 and 4 found that patterns in the floristic 

composition and condition of riparian woodlands on the Upper Condamine floodplain 

conformed to some extent with broad hydrological and land use patterns at the scale 

of river sections. However, this effect was potentially confounded by issues of scale, 

and the inability to separate hydrological response from response to land use 

intensity. Interactions between within-remnant land use, river section and river bank 

treatments indicated the potential for relatively small scale cross-scale interactions 

between disturbance, resource availability and ecosystem processes. Significant levels 

of lippia infestation and dominant canopy species dieback were also evident, and may 

have significant impact on ecological function in these communities (MacDougall 

and Turkington 2005, Sardans and Penuelas 2007). 
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This study investigates the relative importance of hydrological and land use drivers as 

key determinants of community composition and condition in riparian remnants in 

this highly modified landscape. It asks how floristic and functional group 

composition and the condition of key dominant species in riparian woodlands respond 

to various combinations of potential environmental drivers associated with the 

hydrological and spatial context of woodland remnants at a range of local landscape 

scales; it also asks about the role of dominant species in these communities. It uses a 

multivariate modelling approach to test ecosystem responses, and identify key 

predictors of composition, condition and function variables. It also utilises a new 

dynamic functional group-based approach to investigate change in community 

composition in response to disturbance and gradients in levels of available resources. 

Hypotheses addressed in this study are: 

(i) that floristic and functional group composition and tree condition in 

riparian woodlands on the Upper Condamine floodplain are best explained 

by a combination of hydrological and spatial environmental variables 

capturing land and water use at a range of local scales; and 

(ii) that dieback severity and lippia cover are important predictors of floristic 

composition in riparian woodlands on the Upper Condamine floodplain. 

5.2 Methods 

5.2.1 Data collection and treatment 

Study area, study design and site selection 

Study area, design, site locations and site selection details are as reported in Chapter 

2. Three additional „reference‟ sites were included in this study (total of 27 sites); 

these were external to the river sections defined in Chapters 3 and 4 (one site was 

located above Talgai Weir, two below Cecil Plains weir; Figure 5.1). These were 

identified as „best-on-offer‟ sites where dominant threatening processes were 

minimised (Low Choy et al. 2005, Eyre et al. 2006). No sites that could be 

considered close to reference (pre-development) condition were available in the study 

area; reference sites outside the study area were not considered appropriate due to the 

potential for regional differences. 



 
137 

 

 

 

 

Figure 5.1 Upper Condamine floodplain study area, indicating survey site locations 

including additional reference „best on offer‟ sites (R1-3). 

 

 

Floristic data collection 

Floristic composition was surveyed using a 1000 m
2
 nested quadrat frequency 

sampling method (Le Brocque and Buckney 1997) as reported in Chapter 3. All 

species recorded were identified, and assigned to functional response groups on the 

basis of specific physiological, life-cycle, and growth form traits and habitat affinity 

(wetland, floodplain, terrestrial) (Chapter 3). Mean lippia cover (FPC%) was also 

recorded (1 m
2
 quadrats) as described in Chapter 3. Species richness, abundance 

(frequency) and diversity measures were derived as reported in Chapter 3. 
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Functional trait group transitions 

Ratios (richness, abundance) for pairs of contrasting variables within functional 

response groups (Chapter 3) were derived from the vegetation dataset in a novel 

approach to investigating floristic change. This approach applies the concept of 

redundancy or functional diversity (Walker 1992, 1995) as a measure of ecosystem 

resilience, where these „functional group transition ratios‟ represent potential shifts in 

functional response capacity within communities. The approach is based on 

assumptions that (i) functional response group identity is associated with a 

predictable response to changes in a specific environmental gradient, as outlined in 

Chapter 3 (Table 3.4); and (ii) ratios between contrasting pairs of functional groups 

(e.g. C3 and C4 physiology) reflect relative trends in collective species population 

processes  (cumulative abundance) which contribute to relative changes in functional 

diversity (richness) and provide a dynamic measure of community response. 

These functional group richness and abundance transition ratios are used to 

investigate whether shifts in vegetation community composition are associated with 

and, by inference, driven by change in relevant environmental variables. If so, this 

approach may contribute to better understanding of the impact of environmental 

change within communities, and provide an indication of the key drivers 

underpinning ecosystem degradation, loss of resilience or potential for regime 

change. A similar concept is suggested by Cote and Darling (2010) who indicate that 

selective mortality with disturbance in coral reef communities results in loss of coral 

species with stress-sensitive life histories and increased dominance (in terms of 

absolute and relative abundance) of stress-tolerant species. Changes in relative 

abundance (biomass) of species sorted along trait-based continua have also been used 

as measures of community response to nutrient and disturbance gradients in grassland 

ecosystems (Craine et al. 2001, Stampfli and Zeiter 2004). 

Key functional group transitions investigated in this study (5.1) represent potential 

compositional or functional shifts in response to resource availability or disturbance 

gradients associated with broader landscape patterns. For example, a relatively higher 

ratio of C4 to C3 species might represent a shift to more xeric conditions (Winslow et 

al. 2003, Yu et al. 2005). 
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Table 5.1  Functional group transitions tested in this study. 

Transition ratio Environmental gradient Reference 

Alien:native disturbance Ordonez et al. 2010 

Short-lived:perennial disturbance McIntyre et al. 1999b, Bagstad et al. 2005 

Forb:tussock grass moisture and/or grazing Ash and McIvor 1998; Clarke and Davison 

2004; McIvor et al. 2005 

C4:C3 moisture and/or nutrients Wand et al. 1999, Winslow et al. 2003, Yu 

et al. 2005 

Floodplain:terrestrial moisture and flooding 

disturbance 

Deiller et al. 2001, Stromberg et al. 2007a 

Wetland:terrestrial moisture Stromberg et al. 1997, 2007a, Thomas et al. 

2010 

Clonal:non-clonal flooding disturbance Lenssen et al. 2004a, Insausti and Grimoldi 

2006 

Clonal:tussock grass grazing disturbance Fahrig et al. 1994, Rosenthal and 

Lederbogen 2008 

 

 

Tree attributes, condition and recruitment 

Tree attributes (mature tree density, mature tree diameter), condition (dieback 

severity, average foliage index, structural integrity, density of dead trees) and 

recruitment (seedling density) data were recorded for the dominant canopy species 

complex Eucalyptus camaldulensis/E. tereticornis as described in Chapter 4; 

recruitment data were also recorded for the sub-dominant species Acacia stenophylla. 

Generation of environmental variables 

The landscape context of sites was quantified using spatially arrayed information on 

land use, land cover, drainage and infrastructure available through the Queensland 

Government Department of Environment and Resource Management and spatial 

analysis software (ArcGIS version 9.1, ESRI 2007). Spatial context parameters (e.g. 

proportions of different land uses, remnant vegetation extent) were measured within 

areas defined by 500 m, 2000 m and 5000 m buffers centred on each survey site 

(Figure 5.2) after Collard (2007); these were designed to characterise environmental 

factors at within-remnant (up to 500 m), adjacent to remnant (up to 2000 m) and local 

landscape or multi-patch (up to 5000 m) scales. Factors associated with overland flow 
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were captured within buffer segments (approximately quadrants) of the 500 m, 2000 

m and 5000 m circular buffers indicated above, defined on one side by the main river 

channel and, on the other side, by the estimated limit, based on slope, of overland 

flow to the site (Figure 5.2); these were designed to capture the influence of overland 

flow. A similar buffer segmentation approach was used by Banks (2006) to 

investigate the influence of agricultural chemical spray-drift, based on prevailing 

wind direction, on floodplain tree health. Linear measures (riparian width, distance to 

river channel, distance to remnant edge, distance to nearest groundwater bore, 

distance to nearest ring tank) were also calculated for each site. Two response 

variables, tree health (WWI) and lippia abundance (lippia cover), were also included 

as explanatory environmental variables; this was to enable the influence of these 

species as ecosystem dominants to be assessed with respect to their potential roles as 

ecosystem engineers (Jones et al. 1994) or keystone species (Mills et al. 1993) in 

these woodlands. 

 

 

 

Figure 5.2  Example of buffers and associated quadrants drawn (ArcGIS version 9.1) at 

500 m, 2000 m and 5000 m distance from a survey site. 
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A total of 82 environmental measures was generated (Appendix D). Prior to analysis, 

measures were sorted into five groups; these were sets of (i) environmental variables 

capturing hydrological and spatial attributes at all scales („Combination‟); (ii) 

hydrological environmental variables („Hydrology‟); (iii) spatial environmental 

variables capturing land use (type and intensity) and land cover (native vegetation) 

(„Spatial‟); (iv) environmental variables capturing hydrological and spatial attributes 

at the within-remnant scale („Patch-scale‟); and (v) environmental variables capturing 

hydrological and spatial attributes at the local-landscape scale („Local-scale‟). Model 

sets were reduced to minimum (parsimonious) test sets of potential environmental 

predictor variables (Table 5.2), using Pearson‟s correlation coefficient in SPSS 

version 18.0 (SPSS Inc. 2009) to identify colinearity within each data set. Where 

pairs of variables were highly correlated (Pearson‟s R ≥ 0.5), only one variable was 

retained, while preserving as much environmental information as possible in the final 

test sets (Wintle et al. 2003, Kath et al. 2009). 
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Table 5.2  Minimum sets of predictor variables used in Combination, Hydrology, 

Spatial, Patch-scale and Local-scale (local landscape-scale) models. Values (mean, SE 

and range) are given in Appendix D. 

Variable* Dataset 

  Combination Hydrology Spatial Patch-scale Local-scale 

allcropppnUQ2000  x     

bareground x   x  

cropnatratioUQ2000 x    x 

cropnatratioUQ500 x x    

distdownweir x x  x  

distGWprodbore    x  

distriv x   x  

drainage500 x x  x  

elevation  x    

grazppn500 x  x x  

grazppn5000   x   

grazppnUQ500  x    

GW500  x  x  

GW5000 x    x 

GWdepth5000 x x   x 

GWirrig5000     x 

GWtrend5000 x x   x 

irrigcropppn2000   x   

irrigcropppn500 x  x x  

irrigcropppn5000 x  x  x 

irrigcropppnUQ2000 x    x 

irrigcropppnUQ500  x    

irrigcropppnUQ5000  x    

lippiacov x   x  

north x  x x  

remvegppn2000   x   

REremppn2000 x  x  x 

REremppnUQ2000 x    x 

REremppnUQ500  x    

ringtankppnUQ500    x  

ringtankppnUQ2000 x    x 

ripwidthcurrent    x  

treedens x   x  

WWI x   x  

Total count 20 12 8 14 10 

* variable descriptions (sampling areas within buffers are indicated as 500, 2000 and 5000, and within quadrants as UQ500, 

UQ2000 and UQ5000): allcropppn: proportion of cropping land use (proportion of sampling area); bareground: mean percent 
cover of bare ground per site (1m x 1m quadrats);  cropnatratio: dominant land use (ratio all cropping: „natural‟ categories);  

distdownweir: distance from the nearest in-stream weir downstream of a site; distGWprodbore: distance from the nearest 

existing registered groundwater irrigation/production bore; distriv: distance to main river channel or mapped tributary;  
drainage500: length (km) of river channel/mapped drainage lines within sampling area; elevation: elevation (masl); grazppn: 

proportion of grazing land use within sampling area; GW: number of existing registered groundwater bores within sampling 

area; GWdepth: average depth to water table (m) (averaged over 2004-5 records) for groundwater monitoring bores within 
sampling area; GWirrig: number of existing registered groundwater irrigation bores within sampling area; GWtrend: average 

trend (rate of decline in m per decade) in water level of groundwater monitoring bores within sampling area; irrigcropppn: 

proportion of irrigated cropping land use within sampling area; lippiacov: mean percent cover of lippia per site (1m x 1m 
quadrats); north: northing; remvegppn: proportion of mapped remnant vegetation within sampling area; REppn: proportion of 

mapped RE 11.3.25 or 11.3.4 remaining (proportion of preclear extent) within sampling area; ringtankppn: proportion of ring 

tank storage area  within sampling area; ripwidthcurrent: riparian width; treedens: surveyed tree density (#/ha); WWI: 
surveyed dieback severity index (Chapter 4). 
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These explanatory variables capture a range of disturbance, resource level, 

connectivity and dominant species gradients in this landscape. These include: 

flooding disturbance (e.g. bareground, ripwidthcurrent, distriv); within-patch grazing 

disturbance (e.g. bareground, grazppn500); land cover (e.g. ripwidthcurrent, 

remvegppn2000, REremppn2000); land use type (e.g. allcropppn, grazppn500); land 

use intensity (e.g. GW500/5000, irrigcroppn500/2000/5000); resource availability 

(e.g. elevation, GWdepth5000, GWtrend5000); remnant connectivity (e.g. 

REremppnUQ500/UQ2000); hydrological connectivity (e.g. distdownweir, 

drainage500, ringtankppnUQ500/UQ2000); and dominant species function (e.g. 

lippiacov, treedens, WWI). 

5.2.2 Statistical analyses 

Multivariate analyses 

The PRIMER BIOENV procedure (Clarke and Warwick 2001) was used to identify 

patterns in environmental variables (Table 5.2) that best matched observed patterns in 

floristic composition. Each „sites by variables‟ matrix was converted to a similarity 

matrix using Euclidean distance (data normalised and standardised) and compared to 

Bray-Curtis similarity matrices (species frequency data, standardised) for total 

floristic composition using the Spearman‟s rank correlation method (Clarke and 

Gorley 2001). Sets of independent variables, from individual variables to several (up 

to 6), from the model test sets (Combination, Hydrology, Spatial, Patch-scale, Local-

scale; Table 5.2) were tested to identify the variable or set of variables which best 

„explained‟ (i.e. matched) community patterns (Clarke and Ainsworth 1993). 

Univariate analyses 

Response variables for functional group species richness and abundance transitions 

(Table 5.1), and key species (Eucalyptus camaldulensis, Acacia stenophylla and 

Phyla canescens) parameters were modeled using General Linear Modelling 

(multiple linear regression) and Bayesian Model Averaging (BMA) procedures (R 

version 2.9.0: R Development Core Team, 2005 and the BMA package: Raftery et al. 

2005) with uniform priors (Eicher et al. 2007). 

Bounded (proportional, percentage) data were arcsine transformed, and all data were 

screened and transformed (either square-root or log10), where required, to meet 
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assumptions of normality and homoscedascity (Quinn and Keogh 2002). Models were 

derived from the parsimonious sets of environmental predictor variables 

(Combination, Hydrology, Spatial, Patch-scale, Local-scale; Table 5.2). A minimum 

confidence set of models was identified using the Occam‟s Window approach 

(Hoeting et al. 1999), with models excluded where the maximum posterior model 

probability (see below) ratio exceeded 20 (Raftery et al. 1997, Kath et al. 2009). 

Models within each confidence set were ranked on the basis of the Bayesian 

Information Criterion (BIC), which balances goodness-of-fit and model complexity 

(e.g. Jiao et al. 2008), with the minimum (most negative) BIC value signifying the 

„quasi-true‟ or best predictive model (i.e. the most parsimonious model that is closest 

to the „truth‟) as in Burnham and Anderson (2004). Minimum BIC values were 

compared across the five model sets for each response variable using an information-

theoretic approach (Burnham and Anderson 2004, Hobbs and Hilborn 2006) to 

identify the model best supported by the data (i.e. the „most informative‟ set of 

predictor variables; Table 5.3). 

 

 

Table 5.3  Grades of evidence used to interpret the strength of the BIC values, BIC 

differences between models, and posterior effect probabilities for variable effect within 

Bayesian model averaging (BMA) models (after Raftery 1995) 

Minimum BIC BIC difference (diff) Probability* (%) Interpretation 

< -10.0 > 10.0 >99 very strong 

-10.0 ≤ BIC < -6.0 6.0 < diff ≤ 10.0 95 - 99 strong 

-6.0 ≤ BIC < -2.0 2.0 < diff ≤ 6.0 75 - 95 moderate 

≥ -2.0 ≤ 2. 0 50 - 75 weak 

* posterior effect probability 

 

 

Bayesian model averaging (BMA) was used to investigate the relative weight or 

importance of test variables within the larger Combination predictor set, identified as 

the most informative of the five test sets. Model averaging enables robust multi-

model inference which accounts for the uncertainty in model selection which is 
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inherent in conventional step-wise regression methods, particularly where a number 

of possible models perform to a similar level (Raftery 1995, Hoeting et al. 1999, 

Wintle et al. 2003). BMA aims instead to identify the best predictive inference from 

the data by considering all models within the defined confidence set (Raftery et al. 

1997). Parameter mean and standard deviation, and the posterior effect probability 

(probability of association), are calculated for each variable across all models, with a 

probability of 1.00 indicating that a variable is present in 100% of models in the 

confidence set (interpreted as very strong evidence of effect in the model, Raftery 

1995). The regression coefficient (r
2
) and posterior model probability (PMP) are 

calculated for each model; the regression coefficient (r
2
) equates to that in 

conventional step-wise regression methods, and the PMP indicates the percentage of 

total probability accounted for by an individual model (i.e. a higher PMP indicates a 

greater level of model certainty) (Hoeting et al. 1999). 

5.3 Results 

A total of 147 vascular plant species was recorded in this survey (Appendix C). 

Functional group transition ratios ranged from 0.32 – 0.94, a three-fold difference in 

the relative richness of C4:C3 species, to 0.04 – 1.24, a 31-fold difference in the 

abundance of wetland:terrestrial species (Table 5.4). There was also considerable 

variability in dominant species attributes (condition, size, density and cover; Table 

5.5) and environmental variables (Appendix D) across the study area. 



 
146 

Table 5.4 Functional group richness and abundance transition ratios for reciprocal pairs 

of functional groups (V1 and V2). Values are means, standard errors (in parentheses) and 

range (minimum - maximum) of ratios (V1: V2) and absolute values  (minimum – 

maximum) for each variable (V1, V2). 

 Variable (V1:V2) Mean (SE) 
 Ratio (V1:V2)  Range (min – max) 

 Min Max  V1 V2 

Richness        

alien:native  0.32 (0.03)  0.12 0.75  3 - 19 14 - 35 

Shortlived:perennial 0.32 (0.03)  0.13 0.73  4 - 16 13 - 38 

Forb:tussock grass 1.07 (0.08)  0.50 2.00  4 - 21 6 - 18 

C4:C3 0.61 (0.03)  0.32 0.94  5 - 17 6 - 34 

Floodplain:terrestrial 0.69 (0.05)  0.36 1.38  6 - 16 9 - 36 

Wetland:terrestrial 0.16 (0.02)  0.04 0.50  1 - 4 9 - 36 

Clonal:nonclonal 0.36 (0.02)  0.17 0.70  4 - 14 10 - 39 

Clonal:tussock grass 0.86 (0.04)  0.44 1.27  4 - 14 6 - 18 

Abundance        

alien:native  0.32 ( 0.04)  0.12 0.86  9 - 53 28 - 124 

Shortlived:perennial 0.25 (0.03)  0.07 0.80  6 - 48 40 - 130 

Forb:tussock grass 0.80 (0.05)  0.31 1.47  11 - 56 13 - 70 

C4:C3 0.74 ( 0.06)  0.31 1.49  13 - 59 21 - 97 

Floodplain:terrestrial 1.09 (0.11)  0.30 2.64  21 - 58 17 - 109 

Wetland:terrestrial 0.24 (0.05)  0.04 1.24  2 - 21 17 - 109 

Clonal:nonclonal 0.48 (0.05)  0.22 1.39  14 - 38 23 - 115 

Clonal:tussock grass 0.85 (0.06)  0.43 1.88  14 - 38 13 - 70 

 

Table 5.5  Dominant species attributes (condition, size, density and cover). Values are 

means, standard errors (in parentheses) and range (minimum - maximum). 

Dominant species attributes units Mean (SE) Min Max 

AFI % 46.7 (4.4) 17.5 86.3 

WWI - 327.8 (16.8) 175 475 

meanPTR % 73.3 (3.7) 30.0 98.8 

 treedens per ha 43.3 (3.9) 12.8 99.5 

 mean D130 cm 69.2 (4.2) 40.6 129.1 

 deadens per 1000m
2
 1.6 (0.3) 0 4 

 eucregen per 1000m
2
 0.6 (0.2) 1 4 

 acregen per 1000m
2
 1.4 (0.6) 0 12 

lippiacover % 16.5 (3.0) 0.6 74.0 

AFI: average foliage index; WWI: dieback severity; meanPTR: structural integrity; treedens: mature tree density; meanD130:  

mean mature tree diameter; deadens: dead tree density; eucregen:  eucalypt seedling density; acregen: Acacia stenophylla 

seedling density; lippiacover: mean lippia FPC% (1 m2 quadrats) 
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5.3.1 Best predictive model sets 

Multivariate models for community composition 

Floristic composition was best explained by a multivariate model based on the larger 

Combination test set (BIOENV, r = 0.45; Table 5.6). This model included a 

combination of five environmental variables, including mean groundwater depth in 

2004–05, mean groundwater trend (m/decade) and the number of existing registered 

groundwater bores, all within a 5 km radius of survey sites (GWdepth5000, 

GWtrend5000 and GW5000, respectively), the proportion of the ecosystem type 

remaining with a 2 km radius of survey sites (REremppn2000), and within-site lippia 

cover (Table 5.6). The single „best‟ variable in this test set was the depth of 

groundwater (GWdepth5000), which predicted 31% of the variation in community 

composition (Table 5.6). 

 

 

Table 5.6  BIOENV models (Combination, Hydrology, Spatial, Patch-scale) for 

floristic composition based on species frequency data. Spearman correlation values (rho) 

indicate the strength of the best model using 6 or fewer explanatory variables; the single 

„best‟ variable for each model is also listed. Variable codes are explained in Table 5.2. 

Model set Spearman 

correlation 

(best single) 

Explanatory 

variable           

(best single) 

Spearman 

correlation 

(best set) 

Explanatory variables         

(best set) 

Combination 0.31 GWdepth5000 0.45 GWdepth5000, lippia cover, 

GWtrend5000, REremppn2000, 

GW5000  

Hydrology 0.29 GWdepth5000 0.36 GWdepth5000, GWtrend5000 

Spatial 0.35 Grazppn5000 0.40 Grazppn5000, REremppn2000 

Patch-scale 0.17 Lippiacover 0.26 lippiacover, ripwidthcurrent, 

distGWprodbore, drainage500 

Local-scale 0.19 REremppn2000 0.34 REremppn2000, GWdepth5000, 

irrigcroppnUQ2000, 

GWirrig5000, GWtrend5000 
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Models based on subsets of predictor variables (i.e. Hydrology, Spatial, Patch-scale, 

Local-scale) explained a smaller percentage of variation in floristic composition, 

although models based on the spatial and hydrology variable sets (Spearman‟s rho = 

0.40 and 0.36, respectively; Table 5.6) were more informative that those based only 

on patch-scale variables (rho = 0.26). Key predictors in these sets were all either 

included in the best Combination model or highly correlated (Pearson‟s R > 0.50) 

with these variables. For example, Grazppn5000, a key predictor in the next best 

„Spatial‟ model, was highly correlated with GWdepth5000 in the Combination set 

(Pearson‟s R = -0.88). 

Models for functional group transition ratios and dominant species 

There were very strong best Combination models for alien:native and short-

lived:perennial functional group richness transition ratios (BIC < -10.0, Table 5.7); 

these were strongly superior to the alternative Hydrology, Spatial, Patch-scale and 

Local-scale models (BIC difference > 6.0). The Hydrology model for the 

floodplain:terrestrial richness transition ratio was very strong (BIC < -10.0) and 

moderately better than the next best Combination model (2.0 < BIC difference ≤ 

10.0). The Hydrology models for the wetland:terrestrial and clonal:tussock grass 

richness transition ratios, and Combination models for the C4:C3 and 

clonal:nonclonal richness transition ratios were moderately strong (-6.0 ≤ BIC < -

2.0), and weakly to moderately stronger than the next best models (2.0 < BIC 

difference ≤ 10.0). All models for the forb:tussock grass richness transition ratio were 

null (BIC = 0.0, Table 5.7). 
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Table 5.7  Bayesian information criteria (BIC) values for the best predictor models 

within the Combination, Hydrology, Spatial and Patch-scale test variable sets for functional 

group richness and abundance transition ratios and dominant species attributes. Values are 

BIC. Very strong models (BIC < -10.0) are indicated in bold type; asterisks indicate the 

relative strength of the best model over the next best model for each response variable (*** 

very strong, ** strong, * moderate; as in Table 5.3) 

Response variable Combination Hydrology Spatial Patch-scale Local-scale 

Functional group richness transition ratios  

alien:native -18.2** -4.3 0.0 -7.8 -10.8 

shortlived:perennial -29.6*** -10.6 -4.4 -9.0 -14.3 

forb:tussock grass 0.0 0.0 0.0 0.0 0.0 

C4:C3 -2.4 -2.0 0.0 -1.0 0.0 

floodplain:terrestrial -6.5 -10.3* -4.1 -6.5 -5.6 

wetland:terrestrial -2.0 -5.9* 0.0 -1.5 -0.4 

clonal:nonclonal -4.2 -1.8 0.0 -4.2 0.0 

clonal:tussock grass -3.6 -5.5 0.0 0.0 -3.6 

Functional group abundance transition ratios  

alien:native -19.5* -5.2 0.0 -10.7 -15.5 

shortlived:perennial -22.5*** -4.7 -4.2 -10.0 -4.5 

forb:tussock grass 0.0 -0.1 0.0 0.0 -2.1 

C4:C3 -12.7** -6.4 0.0 -3.5 0.0 

floodplain:terrestrial -13.9* -6.3 -6.7 -11.6 -6.2 

wetland:terrestrial -4.7 0. 0 0.0 -4.7 0.0 

clonal:nonclonal -0.7 -0.7 0.0 -0.7 0.0 

clonal:tussock grass 0.0 0.0 0.0 0.0 0.0 

Dominant species attributes    

AFI -7.1 -5.7 -7.2 -3.5 -1.4 

WWI -8.2 -5.2 -8.0 -1.1 -0.7 

meanPTR -21.2** -13.3 -9.6 -7.2 -2.0 

treedens -0.8 -1.6 0.0 -0.8 -5.1 

meanD130 -18.3 -12.7 -11.1 -15.5 -17.4 

deaddens -24.7* -16.4 -20.9 -12.5 -17.1 

eucregen 0.0 0.0 0.0 0.0 0.0 

acregen -23.1** -13.7 -1.7 -8.5 -3.4 

lippiacover -5.6 -11.0 -9.4 -4.5 -7.1 
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There were very strong best Combination models for alien:native, short-

lived:perennial, C4:C3 and floodplain:terrestrial abundance transition ratios (BIC < -

10.0, Table 5.7). The short-lived:perennial abundance transition ratio Combination 

model was very strongly superior to the next best Patch-scale model (BIC difference 

> 10.0), and the Combination models for the alien:native, C4:C3 and 

floodplain:terrestrial abundance transition ratios were moderately to strongly better 

than the next best Hydrology, Spatial, Patch-scale or Local-scale models (2.0 < BIC 

difference ≤ 10.0). The wetland:terrestrial Combination and Patch-scale models were 

both moderately strong (-6.0 < BIC ≤ -2.0). The Local-scale model for the 

forb:tussock grass abundance ratio was at the low range of moderately strong (BIC = 

-2.1), and all models for clonal:nonclonal and clonal:tussock grass abundance 

transition ratios were either weak or null (BIC ≥ -2.0, Table 5.7). 

Best Combination models were very strong (BIC < -10.0) for mean PTR and acacia 

regeneration data sets, and were strongly superior to the alternative Hydrology, 

Spatial, Patch-scale and Local-scale models (6.0 < BIC difference ≤ 10.0, Table 5.7). 

All models for meanD130 and the density of dead trees (deadens) were very strong 

(BIC < -10.0), but the Combination models were weakly to moderately superior (0.0 

< BIC difference ≤ 6.0). There were strong best models for AFI (Spatial) and WWI 

(Combination) but these were only weakly superior to other next best models (BIC 

difference ≤ 2.0). There was a very strong Hydrology model for lippia cover, but this 

was only weakly better than the next best Spatial model; the Combination model for 

lippia cover was only moderately strong (-6.0 ≤ BIC < -2.0, Table 5.7). The best 

Local-scale model for tree density was moderately strong (-6.0 ≤ BIC < -2.0), and 

moderately superior to the next best Hydrology model (2.0 < BIC difference ≤ 6.0). 

All models for eucalypt recruitment were null (BIC = 0.0, Table 5.7). 

5.3.2 Response models for functional group transition ratios 

Functional group richness transitions 

The „quasi-true‟ (Burnham and Anderson 2004) or best Combination models derived 

for alien:native and short-lived:perennial richness transition ratios explained a high 

proportion of variation in the dataset (BMA; r
2
 = 84% and 91%, respectively). 

Models in the minimum confidence set for these response variables (45 and 68 

models, respectively) were complex, with several predictor variables present in all 
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models (Table 5.8). Key predictors common to both models were drainage500 (the 

length of river channel and mapped drainage lines within 500 m), grazppn500 (the 

proportion of grazing land use within 500 m), and GWtrend5000 (mean trend in 

groundwater levels within 5000 m), which were all negatively correlated with 

increased relative richness of alien and short-lived species and/or decreases in the 

relative richness of native and perennial species. Of the other key predictors in the 

alien:native richness transition ratio model, distdownweir, irrigcropppnUQ2000 and 

REremppn2000 were all positively correlated, and GWdepth5000 was negatively 

correlated, with the relative proportion of alien to native species (Table 5.8). 

Bareground (mean percent cover of bare ground) and irrigcroppn5000 (the proportion 

of irrigated cropping land use within 5000 m) were both positive predictors in over 

95% of short-lived:perennial richness transition ratio models in the confidence set; 

lippiacover (the mean percent cover of lippia), north (the GPS northing reading, a 

surrogate for rainfall and elevation) and land cover within 2000 m upslope 

(cropnatratioUQ2000, ringtankareaUQ2000) were included in 84-95% of models in 

the confidence set, and all except ringtankareaUQ2000 were positively correlated 

with a higher relative proportion of short-lived species. 

Models for C4:C3, clonal:non-clonal and clonal:tussock grass richness transition 

ratios explained up to 42%, 36% and 63%, respectively, of variation in the data 

(Table 5.8). Lippia cover was the dominant predictor (p = 0.84) of a higher relative 

proportion of C3 species, while REremppnUQ2000 and irrigcropppn5000 were only 

moderately strong terms in the C4:C3 richness transition model. The clonal:non-

clonal richness transition ratio was best predicted by distance from the nearest 

downstream weir (p = 0.87) and tree density (p = 0.87), with a higher relative 

proportion of clonal species closer to the nearest downstream weir and where tree 

density was higher. Key predictors in the clonal:tussock grass richness transition ratio 

model were land cover within 2000 m upslope (cropnatratioUQ2000, 

ringtankareaUQ2000), while lippia cover and REremppnUQ2000 were terms in 69% 

and 57%, respectively, of models in the confidence set; the clonal:tussock grass 

richness transition ratio was positively associated with ringtankareaUQ2000 and 

lippiacover, and negatively correlated with cropnatratioUQ2000 and 

REremppnUQ2000. The forb:tussock grass richness transition was not predicted by 

the any of the model terms (Table 5.8). 
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Table 5.8 Individual models for functional species richness transitions using Bayesian model averaging (BMA). The most consistent model terms (p > 

50%) in the confidence sets for each response variable are indicated; numbers in parentheses are the probability of the term being included in a model in the 

confidence set, and bold type indicates a negative coefficient in the quasi-best model. The number of models in the confidence set (nmodels), and maximum r
2
 

and posterior model probability (summed PMP) of the top 5 quasi-best models, are listed. Model terms are explained in Appendix D.  

Response variable p >95% p >75%≤95% p>50%≤75% nmodels 
Max r2 

(best 5) 

∑PMP 

(best 5) 

Combination models       

Alien:native 

distdownweir (1.00), drainage500 (1.00), 

grazppn500 (1.00), GWdepth5000 (1.00), 

GWtrend5000 (1.00), irrigcropppnUQ2000 

(1.00), REremppn2000 (1.00) 

- - 45 0.84 0.32 

Shortlived:perennial 
bareground (1.00), drainage500 (1.00), 
GWtrend5000 (1.00), irrigcropppn5000 

(0.98) 

cropnatratioUQ2000 (0.95), north (0.94), 
lippiacover (0.94),  grazppn500 (0.93), 

ringtankareaUQ2000 (0.84) 

- 68 0.91 0.26 

Forb:tussock grass - - - 33 - 0.37 

C4:C3 - lippiacover (0.84) 
REremppnUQ2000 (0.62), 

irrigcropppn5000 (0.61) 
65 0.42 0.24 

Floodplain:terrestrial - WWI (0.85) GWdepth5000 (0.65) 23 0.45 0.22 

Wetland:terrestrial  distdownweir (0.63) GWdepth5000 (0.58) 58 0.33 0.24 

Clonal:non-clonal - distdownweir (0.87), treedens (0.87) - 42 0.36 0.35 

Clonal:tussock grass 
cropnatratioUQ2000 (0.98), 

ringtankareaUQ2000 (0.93) 
- 

lippiacover (0.69),  REremppnUQ2000 

(0.57) 
99 0.63 0.15 

Hydrology models       

Floodplain:terrestrial GWdepth5000 (1.00) 
REremppnUQ500 (0.95), distdownweir 

(0.90)  
- 28 0.56 0.46 

Wetland:terrestrial GWdepth5000 (0.99) 
distdownweir (0.94), REremppnUQ500 

(0.90) 
- 28 0.47 0.46 
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Combination models for floodplain:terrestrial and wetland:terrestrial richness 

transition ratios explained 45% and 33%, respectively, of variation in the dataset 

(Table 5.8). WWI (dieback severity) and GWdepth5000 were key (positive) 

predictors in 85% and 65%, respectively, of models within the confidence set for this 

response variable, while distdownweir (negative) and GWdepth5000 (positive) were 

key predictors in 63% and 58%, respectively, of wetland: terrestrial richness 

transition ratio models. The stronger Hydrology models for these response variables 

(BIC, Table 5.7) included GWdepth5000 in 100% and 99% of models within the 

respective confidence sets, and REremppnUQ500 and distdownweir in 90-95% of 

models. In these models, higher floodplain:terrestrial and wetland:terrestrial richness 

transition ratios were both predicted by greater mean 2004-05 groundwater depths 

within 5000 m, greater distance for the nearest downstream weir and reduced upslope 

riparian woodland remnant extent within 500 m (Table 5.8). 

Functional group abundance transitions 

Combination models explained up to 87% of variation in alien:native, short-

lived:perennial and C4:C3 species abundance transition ratios (BMA; r
2
 = 87%, 81% 

and 81%, respectively; Table 5.9). The alien:native species abundance transition ratio 

was most strongly predicted by a greater proportion of remnant vegetation within     

2 km (REremppn2000, p = 0.96), the short-lived:perennial species abundance 

transition ratio was most strongly predicted by a greater percentage of bare ground 

and lower dieback severity (WWI); and the C4:C3 species abundance transition ratio 

was best predicted by lower cover of bare ground and lippia. Floodplain:terrestrial 

and wetland:terrestrial abundance transition ratio models explained 61% and 41% of 

variation in the dataset. Dieback severity (WWI) was the most important predictor, 

present in 100% and 98%, respectively, of models for these response variables, while 

cropnatratioUQ500 (the ratio of all cropping:„natural‟ land use categories within   

500 m upslope) was a strong predictor in 89% of floodplain:terrestrial abundance 

transition models. Increased floodplain:terrestrial and wetland:terrestrial abundance 

ratios were associated with greater dieback severity, and floodplain:terrestrial 

abundance was positively correlated with an increased proportion of cropping 

upslope (Table 5.9). Models for forb:tussock grass, clonal:non-clonal and 

clonal:tussock grass abundance transition ratios were not well-predicted by the any 

of the model terms in the Combination model set (Table 5.9). 
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Table 5.9  Individual models for functional species abundance transitions using Bayesian model averaging (BMA). The most consistent model terms (p 

> 50%) in the confidence sets for each response variable are indicated; numbers in parentheses are the probability of the term being included in a model in the 

confidence set, and bold type indicates a negative coefficient in the quasi-best model. The number of models in the confidence set (nmodels), and maximum r
2
 

and posterior model probability (summed PMP) of the top 5 quasi-best models, are listed. Model terms are explained in Appendix D. 

Response variable p >95% p >75%≤95% p >50%≤75% nmodels Max r2 

(best 5) 
∑PMP 

(best 5) 

alien: native  REppn2000 (0.96) bareground (0.90), GWdepth5000 

(0.89), GWtrend5000 (0.85), 

irrigcropppnUQ2000 (0.82), 

drainage500 (0.80), distdownweir 

(0.75) 

grazppn500 (0.71), 

cropnatratioUQ2000 (0.66), distriv 

(0.61), WWI (0.53)  

72 0.87 0.23 

Shortlived: perennial bareground (1.00), WWI (0.97) ringtankppnUQ2000 (0.81) cropnatratioUQ2000 (0.73), 

irrigcropppn5000 (0.71), 

GWtrend5000 (0.51) 

102 0.81 0.18 

Forb: tussock grass - - - 97 - 0.19 

C4: C3 bareground (1.00), lippiacover 

(0.99) 

GW5000 (0.95), 

irrigcropppnUQ2000 (0.93), 

grazppn500 (0.92), drainage500 

(0.88)  

north (0.60), irrigcropppn5000 

(0.58), cropnatratioUQ500 (0.56)  

77 0.81 0.19 

Floodplain: terrestrial WWI (1.00) cropnatratioUQ500 (0.89) - 42 0.61 0.37 

Wetland: terrestrial WWI (0.98) - - 54 0.41 0.28 

Clonal: nonclonal - - distdownweir (0.64) 32 0.18 0.38 

Clonal: tussock grass - - - 53 - 0.25 
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5.3.3 Response models for dominant species attributes 

The best Combination models for the three tree condition response variables (AFI, 

WWI, meanPTR) accounted for varying proportions of variation in the dataset 

(BMA, r
2
 = 0.43, 0.63 and 0.84, respectively; Table 5.10). Strong predictors for 

average foliage index (AFI) were GWdepth5000 (the mean groundwater depth in 

2004-5 within 5000 m) and grazppn500 (the proportion of grazing land use within 

500 m) (p > 0.75), both of which were negatively correlated with response in this 

variable in the BMA model. Dieback severity (WWI) was very strongly predicted by 

GWdepth5000 and grazppn500 (p = 1.00 and 0.99, respectively), and also strongly 

predicted by GW5000 (the number of groundwater bores within 5000 m). Strong 

predictors of the structural integrity of mature trees (meanPTR) included the mean 

cover of bare ground (bareground), mean 2004-05 groundwater depth within 5000 m 

(GWdepth5000),  rainfall and elevation (north), distance from the nearest 

downstream weir (distdownstream), the proportion of irrigated cropping land use 

within 2000 m upslope (irrigcropppnUQ2000), the number of registered groundwater 

bores within 5000 m (GW5000) and mature tree density (treedens) (p > 0.75); 

structural integrity was positively correlated with north (a surrogate measure of 

declining average annual rainfall with distance downstream (Chapter 2) and 

inversely correlated with elevation, p = -.087, distance from the nearest downstream 

weir, the number of groundwater bores and mature tree density, and negatively 

correlated with increasing bare ground cover, groundwater depth and irrigated 

cropping upslope (Table 5.10). 

Tree size (meanD130) models accounted for 74% of variability in the dataset, and 

consistently included lippiacover (the mean percent cover of lippia) and 

cropnatratioUQ2000 (the relative proportion of cropping land use and native 

vegetation within 2000 m upslope) (p = 1.00 and 0.98, respectively), while treedens 

(the density of mature trees) and drainage500 (the length of river channel and 

mapped drainage lines within 500 m) were strong explanatory variables in 94% and 

85% of models in the Combination confidence set for this response variable. There 

was a positive correlation between mean tree size (meanD130) and both lippia cover 

and drainage500, and negative for mean tree size and cropnatratioUQ2000 and 

mature tree density. Models for the density of dead trees (deadens) explained 79% of 



 
156 

variation in the data, and were best predicted by increases in the proportion of 

grazing land use within 500 m (grazppn500) and the proportion of irrigated cropping 

with 5000 m (irrigcropppn5000), and decreased lippia cover. Mean groundwater 

trend (GWtrend5000) and mean 2004-05 groundwater depth (GWdepth5000) were 

predictor terms in 86% and 74% of models in the confidence set for this response.       

Mature tree density was not well-predicted by any of the model terms tested in the 

combination model set (p ≤ 0.50), but Local-scale models explained up to 60% of 

variation with 84% of models in the confidence set containing the predictor term 

GWdepth5000 and 75% containing ringtankareaUQ2000. Mature tree density in the 

BMA model was negatively associated with GWdepth5000 and positively associated 

with ringtankareaUQ2000 (Table 5.10). 

Models for Acacia stenophylla seedling density (acregen) explained up to 91% of 

variation in the dataset, but were relatively complex with several model terms 

consistently present in models (p ≥ 0.98). Very strong predictor terms with positive 

coefficients were the length of drainage500, north and WWI (dieback severity); very 

strong terms with negative coefficients included distriv (distance from the river), 

irrigcropppnUQ2000 (the proportion of irrigated cropping land use within 2000 m 

upslope) and REremppnUQ2000 (the proportion of mapped remnant woodland 

ecosystems within 2000 m upslope). Eucalyptus camaldulensis/E. tereticornis 

seedling density (eucregen) was not well-predicted by any of the model terms tested 

(p ≤ 0.50, Table 5.10). 

Mean lippia cover (lippiacover) was very strongly predicted by north (p = 0.99) in 

Combination models and elevation (p = 1.00) in Hydrology models, which predicted 

up to 50% and 44% of variation in the dataset (Table 5.10). Spatial models for lippia 

cover explained 59% of variation in this response variable; the strongest predictor 

variables in this model set were irrigcropppn2000 (the proportion of irrigated 

cropping within 2000 m), north, and grazppn5000 (the proportion of grazing land use 

within 5000 m) (p = 0.94, 0.86 and 0.80, respectively). Lippia cover was positively 

correlated with irrigcropppn2000 and grazppn5000, and negatively correlated with 

north in these models. 
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Table 5.10  Individual models for dominant species measures using Bayesian model averaging (BMA). Key model terms (p > 50%) in the confidence sets 

for each response variable are presented; numbers in parentheses are the posterior effect probability within the confidence set, and bold type indicates a 

negative coefficient in the BMA model. The number of models in the confidence set (nmodels), and maximum r
2
 and posterior model probability (summed PMP) 

of the top 5 quasi-best models, are listed. Model terms are explained in Appendix D. 

Response variable p > 0.95 p > 0.75 ≤ 0.95  p > 0.50 ≤ 0.75  nmodels 
Max r2 

(best 5) 

∑PMP 

(best 5) 

Combination models       

Average foliage index (AFI)* GWdepth5000 (1.00) grazppn500 (0.89) GW5000 (0.53) 68 0.47 0.25 

Dieback severity (WWI)* GWdepth5000 (1.00), grazppn500 (0.99) GW5000 (0.80) cropnatratioUQ500 (0.53) 63 0.63 0.24 

Structural integrity 
(meanPTR)*  

bareground (1.00), GWdepth5000 (1.00), 
north (1.00), distdownweir (0.98) 

irrigcropppnUQ2000 (0.89), GW5000 
(0.88), treedens (0.83) 

ringtankareaUQ2000 (0.53) 56 0.84 0.31 

Mature tree density 
(treedens)** 

- - - 46 0.20 0.31 

Mean mature tree diameter 

(mean D130) 

lippiacover (1.00), cropnatratioUQ2000 

(0.98) 
treedens (0.94), drainage500 (0.85) - 58 0.74 0.27 

Dead tree density (deadens)* 
grazppn500 (1.00),  lippiacover (0.99),  
irrigcropppn5000 (0.97) 

GWtrend5000 (0.86) GWdepth5000 (0.74) 35 0.79 0.36 

Eucalypt seedling density 
(eucregen) 

- - - 66 - 0.23 

Acacia stenophylla seedling 
density (acregen) 

distriv (1.00), drainage500 (1.00), 

irrgcropppnUQ2000 (1.00), north (1.00), 
REremppn2000 (1.00), WWI (0.98) 

REremppnUQ2000 (0.92), irrigcropppn5000 
(0.88), treedens (0.87)  

grazppn500 (0.66), GWdepth5000 (0.59) 65 0.91 0.23 

Mean lippia cover 
(lippiacover)*** 

north (0.99) - 
irrigcropppnUQ2000 (0.74), 

ringtankareaUQ2000 (0.53) 
75 0.50 0.19 

Alternative models       

treedensLoc  
GWdepth5000 (0.84), ringtankareaUQ2000 

(0.75) 
GWtrend5000 (0.65), cropnatratioUQ2000 

(0.63), irrigcroppn5000 (0.55) 
54 0.60 0.33 

lippiacoverHyd elevation (1.00) - - 21 0.44 0.51 

lippiacoverSpat - 
irrigcropppn2000 (0.94), north (0.86), 

grazppn5000 (0.80) 
irrigcropppn5000 (0.57) 38 0.59 0.40 

* Modelling conducted on the model set excluding WWI as response and predictor terms are not independent (Chapter 4); ** Modelling conducted on the model set excluding treedens as a predictor term; *** 

Modelling conducted on the model set excluding lippiacov as a predictor term. 
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5.4 Discussion 

Multiple environmental drivers of change operate to influence floristic composition, 

tree condition, and abundance of dominant species in riparian woodland remnants on 

the highly modified Upper Condamine floodplain, reflecting the complexity of 

change that has occurred in conjunction with land and water resource development in 

this landscape. These drivers include both hydrological and spatial (land use and land 

cover) variables, operating across spatial scales, from a within-remnant patch scale to 

a meta-patch (multiple remnant, local landscape) scale. This study also indicates that, 

while hydrological drivers are important predictors of a number of community 

responses, they act in conjunction with a range of novel disturbances associated with 

land use type and intensity on Upper Condamine floodplain. 

Few response variables in this study were best explained by models based only on 

hydrological variables; these were floodplain:terrestrial and wetland:terrestrial 

richness transitions and lippia cover. Other responses were at least as well or better 

explained by models based on combinations of hydrological and land use/land cover 

(spatial) variables, and included environmental influences at a range of local 

landscape scales. A number of strong predictor variables in these response models 

integrated both hydrological connectivity and land use/land cover (e.g. land use 

proportions in the upslope quadrant). A small number of published studies suggest the 

likelihood that both hydrology and surrounding land use are likely to influence 

riparian woodland community composition and function (e.g. Gergel et al. 2002b, 

Andersen et al. 2007, Freeman et al. 2007); however, few have specifically tested this 

(e.g. Aguiar and Ferreira 2005). These papers predict or report significant interaction 

between hydrology, land use and land cover, as generally indicated in this study. 

This study also indicates the significant role played by species interactions, 

particularly those with dominant functional species. Lippia cover and canopy species 

tree health (i.e. dieback severity), while responsive to abiotic gradients, were also 

significant predictors in models for floristic composition and community structure in 

this study. 
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5.4.1 Floristic composition (frequency) and functional group transitions  

A combination of hydrological and spatial environmental variables explained 45% of 

variation in overall floristic composition (frequency) in the survey dataset, with the 

most informative variable being groundwater depth (GWdepth5000). While 

essentially a hydrological variable and dependent on hydrological connectivity 

between in stream flow and the shallow alluvial aquifer, groundwater depth in this 

landscape is also, in many respects, a measure of land use intensity given the chronic 

groundwater decline experienced since the development of irrigated agriculture on the 

Upper Condamine floodplain (Chapter 2). This is also the case for the mean decadal 

groundwater trend (GWtrend5000) and the density of groundwater bores (GW5000) 

within 5000 m of survey sites, which were also important predictors of overall 

floristic composition; other key predictors were the non-hydrological variables, lippia 

cover (lippiacover) and the riparian woodland remnant proportion in and adjacent to 

surveyed remnants (REremppn2000). By comparison, the model based on 

hydrological variables only, explained considerably less (36%) of this variation. It is 

evident that a combination of key hydrological and spatial (land use/cover) variables, 

as well as the presence of a dominant invasive alien species, was strongly associated 

with observed floristic composition at the time of sampling in this landscape. The 

interpretation of multiple environmental drivers of community diversity in this 

landscape is further supported by significant changes along functional group species 

richness and abundance transition gradients in response to a number of abiotic and 

biotic environmental factors. 

The transition models used in this study confirm, to some extent, previous findings 

that different functional response groups are associated with different environmental 

gradients. For example, alien:native and short-lived:perennial richness gradients were 

associated with general levels of disturbance, including grazing (McIntyre and 

Lavorel 2001) and associated degradation (Holm et al. 2003). However, most 

response gradients (i.e. transitions) in species richness and abundance in this study 

were associated with combinations of, rather than single, environmental variables, 

supporting the contention that there are complex interacting drivers of ecosystem 

condition in highly modified floodplain landscapes (Schroder 2006). The exceptions 

to this were changes in the relative richness of wetland and floodplain species groups 

compared to habitat-generalist (terrestrial) species groups, which, as in other studies 
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(e.g. Turner et al. 2004, Lite et al. 2005), were best explained by landscape 

hydrology; in this study, this included including groundwater depth, flow-related 

propagule dispersal (REremppnUQ500) and proximity to the nearest downstream 

weir. On the other hand, the abundance ratios for these functional transitions were 

more strongly associated with tree health (i.e. dieback severity), supporting a 

proposition that, while deep-rooted trees operate effectively as intermediaries 

between groundwater and shallow-rooted herbaceous vegetation (Ludwig et al. 

2004a, Elmore et al. 2003, 2006a), this function may be compromised by declining 

groundwater depths (Elmore et al. 2003, 2006a) and reduced hydraulic function of 

trees. 

5.4.2 Dominant species responses 

Dominant tree condition responses 

Measures of tree condition were all best explained by combinations of hydrological 

and spatial (land use, land cover) variables. Canopy health and dieback severity were 

both strongly predicted by factors associated with patch-scale land use (e.g. grazing 

within 500 m of sites) and land use intensity at the larger meta-patch scale (e.g. 

groundwater depth and the density of groundwater bores within 5000 m of sites); both 

were most strongly predicted by the mean 2004–05 groundwater depth, which ranged 

from 9.1 to 19.6 m across the 27 sites in this study. Poorer tree condition (i.e. lower 

AFI and higher WWI) was predicted by deeper groundwater levels and greater 

numbers of groundwater bores at the meta-patch scale. 

Groundwater decline is a pervasive feature of the developed Upper Condamine 

floodplain, particularly in shallow alluvial aquifers associated with the main 

Condamine river channel and its tributaries (Chapter 2), and, as in other similar 

situations (e.g. Stromberg et al. 1996, Elmore et al. 2003), is potentially an important 

driver of ecosystem condition in these water-dependent woodlands. Previous studies 

indicate that there is likely to be an accessible groundwater depth threshold around  

15 m for Eucalyptus camaldulensis, a facultative phreatophyte dependent on access to 

shallow groundwater during periods of surface soil moisture deficit (Mensforth et al. 

1994, Thorburn and Walker 1994). Mensforth et al. (1994) report maximum root 

extension (though lateral) for E. camaldulensis of 15 m, and Horner et al. (2009) 

report increased mortality in a densely planted self-thinning E. camaldulensis 
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plantation with groundwater decline from 12 to 15 m during recent prolonged 

drought. The range of groundwater depths associated with survey sites in this study 

(9.1 to 19.6 m) straddles this potential threshold; groundwater decline which 

decouples tree roots from accessible moisture resources may contribute to significant 

decline in the health of trees, particularly during extended drought conditions when 

surface soil moisture levels are depleted, as indicated by increasing dieback severity 

with greater depth to groundwater in this study. The strong association between tree 

health and patch-scale grazing in this landscape, where there is limited pasture 

improvement or fertilization (as discussed in Chapter 4), is potentially associated with 

a detrimental impact of livestock on soil condition (degradation of surface soil 

structure, localised redistribution of soil nutrients) resulting in poor surface root 

function, reduced soil water infiltration rates and changes in microclimatic conditions 

at the soil surface, as reported in other studies (Yates et al. 2000, Bartley et al. 2006, 

Davidson et al. 2007). If the case, such impact would further contribute to effective 

drought conditions experienced by trees. 

Changes in the structural integrity (woody architecture) of trees (meanPTR), while 

connected with a broader set of environmental variables, are also strongly associated 

with soil moisture and other accessible water resources. Tyree and Sperry (1988) 

interpret „branch sacrifice‟ as a drought adaptation, hence loss of tree branches may in 

part be a natural occurrence in dominant riparian trees in semi-arid regions; however, 

loss of major branches is also indicative of significant physiological impact 

(embolism, xylem cavitation) in response to severe water deficit, and has been 

associated with declining groundwater levels in riparian woodlands of arid-zone river 

systems in North America (Tyree and Sperry 1988, Horton et al. 2001a,b, Rood et al. 

2000). 

The importance of groundwater depth to mature tree health has been reported in   

Banksia/Eucalyptus woodlands at Cooljarloo, south-western Western Australia, 

subject to seasonal drought in combination with mining resulting in periodic 

groundwater drawdown below rooting depth (Froend and Loomes 2007). Other 

studies have associated eucalypt dieback predominantly with increased land use 

intensity (e.g. Wylie et al. 1992), including pasture „improvement‟ (introduced 

pasture species, high levels of artificial fertilisation; Davidson et al. 2007) and high 

levels of agricultural chemicals, particularly herbicides, in cropping areas (e.g. Banks 
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2006). Riparian eucalypts along the River Murray, including E. camaldulensis, 

exhibit significant dieback in response to rising groundwater levels and soil 

salinisation, which is exacerbated by lack of flooding due to river regulation (e.g. 

Wylie et al. 1993, Jolly et al. 1993, 1996, 2008, Overton et al. 2006). Recovery in 

tree condition has been observed with reduced salinity levels where environmental 

flows are managed to create overbank flooding and flush salts from surface soils 

(Holland et al. 2009, Overton et al. 2010). There has been no published research into 

altered tree condition in riparian eucalypts, including E. camaldulensis, in areas 

where groundwater levels have declined to the extent reported in this study.  In 

contrast, dieback in phreatic riparian species (e.g. Salix and Populus spp.) in semi-

arid and arid regions in North America is reported to be strongly linked to declining 

groundwater levels (e.g. Horton et al. 2001b, Naumberg et al. 2005). These species 

show evidence of hydraulic stress and dieback symptoms with a decline in 

groundwater to depths greater than 2.5 to 3 m during periods of critical soil water 

deficit (Horton et al. 2001b). 

Froend and Loomes (2007) suggest that, in addition to groundwater depth, the 

magnitude and rate of water table decline are important factors impacting on the 

condition of phreatic vegetation. The rate of groundwater decline was not a major 

component of models for tree health in this study, with the exception of the density of 

dead trees, indicating that it may be important in some locations. There is an extended 

legacy of groundwater drawdown in this landscape and the magnitude of groundwater 

decline has continued to increase over the record period (Chapter 2). Maximum rates 

of groundwater decline associated with survey sites in this study were 1.8 m per 

decade (0.2 m.yr
-1

), which is low compared with Froend and Loomes‟ (2007) 

prediction that rates exceeding 0.75 m.yr
-1

 result in increased risk of impact on 

associated vegetation. 

Recruitment responses of canopy species 

Eucalypt recruitment (eucregen) was not associated with any of the environmental 

factors tested in this study. However, previous studies have indicated the influence of 

past land use, livestock grazing, distance to mature trees and cover of exotic annual 

vegetation for eucalypt regeneration in grassy woodland ecosystems (Dorrough and 

Moxham 2005). Regeneration in Eucalyptus camaldulensis is significantly associated 
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with flooding or rainfall events following canopy seed release, which peaks over 

summer in the southern Murray-Darling Basin (Jensen et al. 2008a). Seed release 

volumes are reported to be sensitive to tree condition, with water-stressed trees on the 

Chowilla floodplain, lower Murray River, releasing up to nine times less seed than 

healthy trees at the same location (5–915 seeds m
-2

 and 605–52,685m
-2

, respectively) 

during summer 2004–05. Limited seed release in drought periods or from trees in 

poor condition (Jensen et al. 2008a) may be exacerbated by interactions with grazing 

intensity which facilitate higher rates of seed predation by foraging ants in this 

species (Meeson et al. 2002), although Jensen et al. (2008a) suggests that seedling 

establishment is unlikely to be limited by seed availability or viability. Germination 

in E. camaldulensis requires water either from local rainfall or flooding, and, while 

seeds germinate readily along high-water strandlines, survival can be limited where 

soil moisture levels decline rapidly (Jensen et al. 2008a). Highly clumped seedling 

and sapling patterns on the Murray River floodplain at Banrock Station, South 

Australia, indicate episodic recruitment and opportunistic survival in this species in 

response to the high temporal and spatial variability of suitable conditions (George et 

al. 2005). These findings suggest that limited evidence of recruitment in the current 

study is likely to be predominantly related to the prolonged drought experienced in 

the years prior to sampling. 

Conversely, recruitment of Acacia stenophylla (river cooba) is not apparently 

constrained to the same extent by lack of flooding or drought conditions. The greater 

incidence of Acacia seedlings (and also greater overall A. stenophylla frequency) 

close to the river channel and where there was a higher density of drainage channels 

emphasises this species‟ apparent reliance on riverine processes which, though not 

defined, has been reported previously (Kingsford 2000, Doody et al. 2009). 

Recruitment of Acacia stenophylla in this study was higher where dieback severity in 

eucalypt species was greatest and mature tree density was least, suggesting a possible 

response to competitive release (Mueller et al. 2005, Fensham and Fairfax 2003, 

2007) in this sub-dominant species. 

Dominant weed responses 

Lippia abundance was not well-predicted, except by surrogate measures for long-term 

average precipitation (elevation, latitude), and a lesser association with grazing and 
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irrigated cropping land uses at relatively broad-scales (within 5 km, and within 2 km, 

respectively); lippia‟s preference for more mesic sites is concordant with its 

occurrence on clay soils with high moisture-holding capacity in riparian or other 

locations such as roadside table drains with poor drainage (Earl 2003). While tree size 

was not included in this study as a predictor term in models, as a response variable it 

was well-predicted by lippia cover; the converse of this relationship is more probable 

(i.e. that tree size is a strong predictor of lippia cover). Lippia‟s relationship with trees 

in this landscape is investigated more thoroughly in Chapter 6. 

5.4.3 Drivers of riparian woodland ecosystem condition  

Disturbance 

Disturbance gradients within remnants in this landscape are most likely to be 

associated with flooding, drought or grazing, as described in Chapter 2. There was 

limited support for flood disturbance as a major driver in this study, which was 

conducted eight years after the last major flood event and after a series of very dry 

years. This may not be the case under conditions of normal or above normal rainfall, 

when there would be a greater expectation of responses such as eucalypt recruitment 

and potentially higher richness and abundance of a range of drought-sensitive species 

which may persist in the germinable soil seedbank (Capon and Brock 2006, Capon 

2007). Conversely, drought is a more difficult disturbance to define in terms of 

ecological response, with the possible exception of altered condition responses in 

long-lived species (e.g. Tyree and Sperry 1988, Horton et al. 2001a,b, Rood et al. 

2000). Poor tree condition was apparent in this study, but showed significant 

variation across the study area, indicating that some parts of the landscape were better 

buffered against drought than others. The strong relationship between tree condition 

and groundwater depth indicates that accessible shallow groundwater is a critical 

resource for this phreatic species complex, particularly under drought conditions 

when there is a significant soil moisture deficit. In contrast, loss of species from the 

extant vegetation may not be indicative of reduced redundancy, except in species 

which do not form a persistent germinable soil seedbank (Holzel and Otte 2004, 

Capon 2007) or where the duration of drought exceeds historical norms, when less 

well adapted species may be selectively filtered from the system (Ooi et al. 2009). 
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Disturbance associated with patch-scale grazing was a strong driver of both tree 

condition and floristics (alien:native and shortlived:perennial richness transitions, and 

C4:C3 abundance transitions). Floristic response to grazing in these groups indicate 

interactions between selective grazing and drought impacts on population processes 

in short-lived ephemeral species, including alien species, and more mesic C3 species 

(McIntyre et al. 1999b, Fynn and O‟Connor 2000). However, different responses in 

these measures may be evident with normal or above-normal soil moisture 

conditions, where other studies have reported increased diversity of alien, short-lived 

and C3 species with medium levels of grazing intensity (e.g. McIntyre et al. 2003, 

McIvor et al. 2005). In this study, poor tree condition was predicted by patch-scale 

grazing (as above) and a greater density of dead trees, confirming the link suggested 

by Wylie et al. (1992) and Davidson et al. (2007). However, this is counter to the 

finding of Fensham (1998b) who found no effect of grazing on the drought mortality 

of trees in savanna communities in Central Queensland, indicating that the link may 

be influenced by landscape or environmental context. Higher density of Acacia 

stenophylla seedlings is an unexpected result in grazed remnants, given the findings 

in Chapter 4, but may be a short-term effect of de-stocking of these remnants due to 

drought (pers.obs.). Lack of significant response in the forb:tussock grass and 

clonal:tussock grass functional richness and abundance transitions, previously 

reported to be sensitive to grazing disturbance (e.g. Ash and McIvor 1998; Clarke and 

Davison 2004; McIvor et al. 2005, Fahrig et al. 1994, Rosenthal and Lederbogen 

2008), may also be indicative of drought impact. 

Land use type and intensity 

Surrounding land use/land cover type (e.g. proportion of irrigated cropping and the 

ratio of cropland to natural vegetation) were strong predictors of tree condition, lippia 

cover and individual floristic responses. Collard (2007) also reported significant 

influence on plant species richness and cover associated with agricultural land use 

pattern surrounding brigalow Acacia harpophylla remnants in southern Queensland. 

In the current study, strong responses to the level of irrigated cropping in the broader 

landscape were apparent (e.g. higher short-lived:perennial richness and abundance, 

higher density of Acacia stenophylla seedlings); however, both floristic composition 

and tree condition responded most strongly to the proportion of irrigated and total 

cropping within 2 km upslope of sites. Upslope land cover and land use may 
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influence the availability of plant propagules for dispersal by rainfall runoff (overland 

flow). There is likely to be greater richness of disturbance-adapted ephemeral species, 

as well as higher propagule pressure from these, associated with higher levels of 

cropping upslope (Cox and Allen 2008). In addition, the influx of materials which 

promote disturbance-adapted species, including sediments, nutrients and 

contaminants, is also likely from farming land (e.g. Jones et al. 2001). However, this 

potentially interacts with the presence of overland flow diversions, such as off-stream 

floodplain water storages and channels associated with irrigated cropping. These have 

significantly reduced contributions to in-stream flows on the Upper Condamine 

(Porter 2002), and are strong predictors of richness gradients in short-lived:perennial 

species and clonal:tussock grass species in this study (below). 

Land use intensity in this landscape is largely reflected in high levels of groundwater 

usage for irrigation purposes, as described in Chapter 2. Numbers of registered 

groundwater bores within 5 km of sites (GW5000) ranged from 17 to 78, confirming 

significant pressure on groundwater resources in this landscape (CSIRO 2008). 

GW5000, as a surrogate for land use intensity, was a strong predictor of poorer tree 

health (lower average foliage index and higher levels of dieback severity) and of 

higher relative C4:C3 abundance. Indicators of groundwater demand driven by land 

use intensity (groundwater depth (GWdepth5000) and groundwater trend 

(GWtrend5000)), were strong predictors of lower density of mature trees and 

increased density of dead trees, as well as changes along functional richness and 

abundance gradients. All three (GW5000, GWtrend5000 and GWdepth5000) were 

key predictors of overall floristic composition, with mean groundwater depth in 2004-

05 explaining 31% of variation in the floristic composition. 

Variation in groundwater level is reported to be an important predictor of floristic 

composition in riparian ecosystems in riparian systems elsewhere. Groundwater 

levels adjacent to river channels are frequently shallower and more accessible to 

vegetation than at greater distances from rivers (Wassen et al. 2003, Jolly et al. 2008), 

and many riparian species are phreatophytes, either totally dependent or occasionally 

so on access to groundwater resources. Access to groundwater may be critical for the 

persistence of these species (Cooper et al. 2003b), particularly in seasonally or 

stochastically variable climates where soil moisture levels may be periodically 

limiting. Consequently, reduced groundwater access may have significant impacts on 
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community composition in such environments (e.g. Stromberg et al. 1996, Elmore et 

al. 2003, 2006a). For example, on the San Pedro River floodplain, an arid zone river 

in Arizona (USA), groundwater decline due to periodic drought and over-extraction 

(pumping) from the alluvial aquifer contributed to reduced richness, cover and 

diversity and altered composition of riparian vegetation (Lite et al. 2005, Stromberg 

et al. 1996, 2006). In these studies, the depth, magnitude and rate of groundwater 

decline are reported to be important parameters; however, in contrast to the current 

study where groundwater depths ranged from 9 to 19 m, groundwater levels in these 

studies were relatively shallow (<0.2 m to 7 m), with significant change in species 

diversity and cover abundance reported with groundwater decline to depths in excess 

of 0.2 m (Lite et al. 2005, Stromberg et al. 1996). Significant floristic response to 

groundwater depth below the average rooting depth of herbaceous groundcover 

species in riparian woodland remnants on the Upper Condamine, indicates an indirect 

response potentially mediated through hydraulic redistribution of deeper soil moisture 

by perennial woody species, as has been reported by Elmore et al. (2003, 2006a) and 

Ludwig et al. (2004b). It is suggested that a critical threshold in this system is likely 

to occur where groundwater depths exceed around 15 m, which previous studies 

(Mensforth et al. 1994, Horner et al. 2009) indicate may be the maximum effective 

rooting depth for E. camaldulensis. 

Longitudinal and lateral hydrological connectivity 

Greater remnant extent in areas upslope of sites was an important predictor of some 

functional group transitions (i.e. higher C4:C3 richness, but lower clonal:tussock 

grass, floodplain:terrestrial and wetland:terrestrial richness ratios), potentially 

indicating greater dispersal of C4, tussock grass, and generalist species from upstream 

remnants or limitations on the dispersal of C3, clonal, floodplain and wetland species 

from these remnants. The availability of species propagules upstream may play a 

critical role in determining the species recruitment patterns and floristic diversity in 

riparian communities (Xiong et al. 2003, Jansson et al. 2005, Vosse 2007). This may 

be especially the case for mesic C3, clonal, floodplain and wetland species which are 

all likely to be transported predominantly by floodwaters (e.g. Leyer 2006, Stromberg 

et al. 2008). Conversely, species which are not specifically adapted for flood 

dispersal (e.g. terrestrial species) are likely to be widely dispersed across the 

landscape by a range of vectors (Drezner et al. 2001), or to exhibit no directional 
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pattern where adapted for dispersal by animal vectors whose movements are 

restricted to riparian habitats (Leyer 2006). 

Mesic C3, clonal, floodplain and wetland species are unlikely to have been well-

dispersed between riparian communities in the 8-9 years since the last flood event in 

this landscape in 1996, and functional transitions in these groups may be indicative of 

a broad shift in the functional diversity of extant vegetation in the absence of major 

flooding to restore longitudinal and lateral connectivity. However, significant 

association between the relative richness of these functional groups and the extent of 

remnant vegetation upslope is indicative of more localized response. Dispersal of 

species propagules between local plant communities in fragmented landscapes is 

identified as a critical factor underpinning the function of remnant patches as a 

metacommunity (Ozinga et al. 2004); hence, functional transitions to more generalist 

species where upslope remnant extent is limited may be indicative of metapopulation 

failure in more specialized species and ecosystem decline at a larger scale (Wimberly 

2006). 

An alternative explanation may lie in the greater level of flow diversion due to the 

presence of water storages, and associated levees and irrigation channels, in cropped 

areas in the study landscape. Previous studies have shown significant impact on 

floodplain tree mortality (eg Steinfeld and Kingsford 2008), soil microbial activity 

(Kang and Stanley 2005) and seedling number and species richness (Leyer 2006) with 

changes in the lateral extent of overbank flooding due to floodplain infrastructure 

such as levees,  channels and dykes. While not specifically tested in this study, 

significant localized impacts on riparian community structure and function may also 

occur where upslope infrastructure impedes overland flood flows and propagule 

dispersal within the riparian corridor. 

Dominant tree condition 

Poor tree condition (i.e. dieback severity) was a key predictor of a number of 

community response variables, including higher relative floodplain:terrestrial richness 

and abundance, higher relative wetland:terrestrial abundance and lower relative short-

lived:perennial abundance, and higher levels of A. stenophylla recruitment. The 

relationship between declining canopy tree condition and floristic composition, 

particularly the strongly linked transition to a greater abundance of short-lived species 
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relative to perennial species, suggests a similar situation to that reported by Elmore et 

al. (2003, 2006a). In that study, groundwater extraction and declining shallow 

groundwater levels were associated with decline in perennial herbaceous species, and 

an increase in short-lived ephemeral species which were significantly more 

responsive to rainfall (Elmore et al. 2003, 2006a); the rate at which this occurred was 

reduced where deeper-rooted woody vegetation played a facilitative role, accessing 

shallow groundwater resources and maintaining levels of soil moisture availability 

through the process of hydraulic lift, thereby buffering the community during 

drought. In this study, evidence of a similar response to loss of function in dominant 

deep-rooted woody species supports the role of Eucalyptus camaldulensis/E. 

tereticornis as mediators of soil moisture and floristic response to decline in 

groundwater at depths well below the average rooting depth of herbaceous 

groundcover species. The buffering role of these trees is further supported by the 

relative decline (selective filtering) of „terrestrial‟ species which are less well adapted 

to the hydrological extremes of semi-arid floodplains than species which typically 

occur on floodplains („floodplain‟ species, as defined in this study) or in floodplain 

wetlands („wetland‟ species). These adapted species, which also occur in floodplain 

grassland and wetland communities independent of the presence of trees, are more 

likely to be tolerant/resistant to stochastic variations in water availability typical of 

this landscape. Groundwater decline and poor condition in dominant phreatic species 

may therefore represent a significant shift in the factors controlling floristic response 

in these communities, with reduced buffering in periods of drought, greater 

responsiveness to stochastic rainfall events, and increasing risk of significant change 

over time. 

Lippia abundance 

The alien species P. canescens (lippia) is a dominant component of floodplain 

ecosystems of the northern Murray-Darling Basin (Earl 2003, Chapter 2); however, 

its relationship with floristic composition in native ecosystems has not previously 

been investigated or reported. In this study, lippia abundance was a key predictor of 

patterns in overall species composition, explaining up to 17% of variation in the 

multivariate dataset. Lippia cover was also a strong predictor of functional group 

transitions, including C4:C3 richness and abundance, short-lived:perennial richness 

and clonal:tussock grass richness. Dominance by invasive alien species in native 
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vegetation communities is often associated with reduced species diversity (e.g. Clarke 

et al. 2005, Stinson et al. 2007, Gooden et al. 2009a,b, Hejda et al. 2009) driven by 

direct competition for resources (e.g. Clarke et al. 2005, Cordell and Sandquist 2008) 

or, less frequently, recruitment limitation mechanisms such as allelopathy (Callaway 

and Ridenour 2004). Hejda et al. (2009) assessed the impact of 13 invasive species in 

the Czech Republic, and found reduced species richness, diversity and evenness in 

almost all cases and, in some instances, by up to 90%. In Australia, research into 

vegetation community responses to invasive weed species have found significant 

changes in floristic composition, species richness and abundance in response to 

invasion by species such as Cytisus scoparius  (Wearne and Morgan 2004) and 

Lantana camara (Gooden et al. 2009a,b). 

In this study, lippia was also a key predictor of larger tree size (mean D130) and 

reduced density of dead trees; however, these may represent correlations rather than 

direct cause and effect. Close association between tree size and lippia may be 

indicative of a facilitative effect on lippia cover by mature trees. Larger trees in this 

landscape may have greater access to soil moisture, groundwater and nutrients with 

roots occupying greater soil volumes and extending to greater depths (Meinzer et al. 

1999). In addition, larger trees are likely to have larger canopies, and potentially act 

to ameliorate abiotic conditions (e.g. light, temperature, soil moisture, evaporation) 

beneath their canopies to a greater degree (e.g. Belsky et al. 1989, Belsky et al. 

1993b). These localised effects may facilitate increased cover of lippia, a mesic C3 

species (Xu and van Klinken 2008). This is supported by evidence of a negative 

relationship between lippia cover and dead tree density where these conditions would 

not be modified to the same extent. The relationship between trees and lippia cover is 

explored in more detail in Chapter 6. 

Functional group transition ratios 

Responses in functional group richness and abundance transition ratios were 

associated with gradients in key environmental disturbance variables, indicating the 

potential of this approach in facilitating investigations into the dynamics and 

emergent properties of ecosystems, including redundancy and, potentially, resilience. 

It enables a space for time approach (e.g. Stromberg et al. 1996) which may enable 

predictions of future ecosystem response to processes already in train, but associated 
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with long lag-times in long-lived dominant species such as canopy dominants, or 

response to future change associated with predicted shifts in critical climatic 

conditions. These measures are a novel approach to measuring ecosystem response, 

based on evidence in the scientific literature of general responses within functional 

trait groupings to environmental gradients (e.g. Diaz et al. 2004). They take 

contrasting pairs of functional response groups based on species origin (alien, native) 

and traits, such as life cycle, life form and habitat affinity, to derive ratios of either 

the richness or cumulative abundance of contrasting functional group pairs (i.e. 

functional transition ratios), potentially providing a dynamic measure of ecosystem 

change along (in response to) specific environmental gradients. This study provides 

evidence of strong association between environmental gradients and a range of 

functional transition ratios, indicating the potential of this approach to identify change 

in ecological function or response capacity. 

Response to specific environmental gradients is inherent in the organisation of 

species into functional trait (response, effect) groups (e.g. Pettit et al. 1995, McIntyre 

et al. 2003, Rodriguez et al. 2003, Bagstad et al. 2005, del Pozo et al. 2006). 

Evidence of largely consistent (generalised) patterns in functional group responses to 

disturbance across a range of ecosystem types (e.g. Diaz et al. 2007, Garnier et al. 

2007) provide a sound basis for further development of this approach. Trait group 

proportions (of total richness) have been used in similar studies (e.g. McIntyre et al. 

1995, McIntyre and Lavorel 2001). However, this approach can result in some 

measures becoming effectively redundant with reciprocals exhibiting inverse 

environmental relationships, as was noted by McIntyre and Lavorel (2001). This 

study extends this concept to enable investigation of dynamic responses along 

functional group transition gradients (i.e. changes in the ratio of richness or total 

abundance of contrasting functional groups; e.g. C4:C3 species), where endpoints 

represent maximum (ratio approaches ∞) and minimum (ratio approaches 0) response 

diversity (effectively, relative redundancy) within a response set (and vice versa for 

its antithesis). 

Ratios of contrasting groups, as adopted in this study, integrate dynamic responses in 

transition group variables (i.e. across a transition spectrum) and may better enable 

fine scale composition patterns and trends to be investigated in terms of relevant 

ecological processes. Functional group transition ratios incorporate a fundamental 
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concept of ecosystem resilience (i.e. redundancy) and enable exploration of dynamic 

functional responses to disturbance and resource availability gradients. Such 

investigation of community responses to a range of environmental states is effectively 

a space for time study (e.g. Stromberg et al. 1996) which allows predictive insight 

into the composition and function of current and potential community states in this 

landscape. 

5.4.4 Significance and limitations 

Vegetation community studies frequently explore the influence of within-remnant 

environmental gradients, such as nutrient levels (e.g. Thomson and Leishman 2005) 

and disturbances associated with fire and grazing (e.g. Wardell-Johnson et al. 2004), 

and have used various modelling approaches to identify key drivers of floristic 

composition (e.g. Le Brocque and Buckney 1995). However, few (if any) take a 

broad multivariate approach which incorporates both within-remnant and broader 

landscape environmental gradients to elucidate ecological change in ecosystems in 

response to landscape modification (although see Collard et al. 2011). This approach 

may be particularly suited to examining drivers of composition and function in small 

remnants within a highly contrasting matrix landscape. Riparian woodlands on the 

Upper Condamine floodplain are highly fragmented, relictual ecosystem remnants 

(sensu McIntyre and Hobbs 1999), subject to significant within-remnant disturbance 

and surrounded by significant landscape change. The small relative size of these 

remnants in relation to the surrounding non-remnant agricultural matrix potentially 

sets them apart from the majority of native ecosystems studied in less highly modified 

landscapes, and makes consideration of surrounding landscape impacts essential. 

The exploratory approach adopted in this study involved choices about which 

environmental variables were most appropriately included in the model test sets. 

Selection of potential test variables was based on a priori knowledge or established 

understanding; however, the need to reduce the number of variables to a 

parsimonious test set, eliminating all but one of any highly correlated variables meant 

that many variables were „discarded‟. Choice of variables to retain in test sets in this 

study was a subjective process, and resulted in large numbers of discarded variables 

from each of the initial model test sets. Hence, while the results presented are valid, 

they are not exclusive as additional important relationships may exist with highly 
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correlated variables which were omitted from analysis (e.g. Kuhner and Kleyer 2008, 

Kath et al. 2009). 

Groundwater depth appears to play a key role in driving/buffering community 

responses especially under drought conditions in these communities. In this study, it 

was the most important driver of overall floristic composition, played a key role in 

maintaining tree health, and was a key predictor of community structure influencing a 

range of functional group transitions. The close link between mean groundwater 

depth, which was in excess of 9 metres, and responses in herbaceous species is likely 

to be mediated by E. camaldulensis, a deep-rooted phreatic tree species capable of 

hydraulic redistribution (Burgess et al. 1998). Groundwater decline beyond the 

effective rooting-depth of trees may result in the disconnection of canopy trees from 

this critical water source, resulting not only in greater incidence of dieback (as 

above), but also secondary impacts on groundcover vegetation reliant on redistributed 

groundwater particularly during drought. However, additional research is required to 

identify tree water sources in the Upper Condamine floodplain landscape. 

In Australia, altered groundwater levels have been previously reported to impact 

species richness and diversity only in situations of groundwater rise with associated 

mobilisation of subsoil salts (e.g. Lymbery et al. 2003). Concern regarding the 

adverse impacts of water resource development on ecosystem health has been 

associated with reduction in high and medium-level surface water (in-stream) flows, 

while groundwater research and management has focused on salinisation issues 

associated with rising water tables due to landscape-level hydrological change. 

Groundwater decline is generally viewed as a resource management issue impacting 

water-dependent production systems such as irrigated agriculture. However, detailed 

understanding of groundwater flows is limited; the links between declining 

groundwater levels and reduced low level in-stream flows and the associated 

limitation of surface-groundwater exchange have only recently been explicitly 

reviewed, and the role of groundwater in supporting water-dependent species and 

ecosystems appears to be even less well understood. In this study, „GWdepth5000‟ 

was a relatively coarse measure (due to a limited number of monitoring bores in the 

study area) derived by averaging reported 2004-05 groundwater depths across all 

monitoring bores within 5000 m of survey sites; however, the strength of the 

relationship between groundwater depth and community response in this study was 
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apparent despite limitations imposed by the poor resolution of groundwater level data. 

Further research is required to establish depths and conditions under which trees 

cease to access groundwater and become reliant on surface and subsoil moisture, 

hence increasingly vulnerable to rainfall variability and physiological failure. 

Dominant invasive weed species are often reported to exert significant and 

detrimental influence on ecosystem composition and function (e.g. Reinhart et al. 

2006a, Callaway and Ridenour 2004). There has been substantial recent research into 

the autecology of lippia and its impact in floodplain livestock production systems; 

however, there has previously been no investigation of the species‟ impacts within 

invaded native ecosystems in Australia. This study found lippia cover to be a key 

driver of floristic composition, explaining up to 17% of variation in the multivariate 

dataset, and, in combination with other variables, a strong predictor of a number of 

functional group richness and abundance transitions (C4:C3, short-lived:perennial, 

clonal:tussock grass). Lippia was also found to have a significant relationship with 

mature canopy trees in these woodlands, although this was not able to be clearly 

interpreted in this study. This is explored in more detail in Chapter 6. 

Important drivers (i.e. correlates) of ecological responses in tree condition, lippia 

cover and diversity within floristic functional groups in this study included  

groundwater depth (and to a lesser extent, the rate of groundwater decline), floodplain 

development intensity (e.g. the extent of irrigated cropping land uses or the number of 

registered groundwater bores surrounding survey sites), the proportion of land grazed 

and the area of mapped remnant vegetation surrounding survey sites. Key 

relationships identified in this study are summarised in Figure 5.3. 
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Figure 5.3 Conceptual flow diagram of key environmental factors associated with 

responses in ecosystem response variables (tree condition as indicated by site Weighted 

Wylie Index or WWI, lippia cover and floristic composition) in riparian woodland 

communities on the Upper Condamine floodplain. „development intensity‟ encompasses 

GW5000 and irrigcroppn2000; „native vegetation area‟ encompasses REremppn2000 and 

grazppn5000  (From Tables 5.6 and 5.10). Vegetation components are shown as shaded. 

Dotted lines indicate probable relationships not identified in this study; the relationship 

between lippia and trees is further explored in Chapter 6. 

 

 

5.5 Conclusions 

This study has identified significant association between ecosystem response 

(composition and condition) variables and a range of environmental variables in 

remnant floodplain riparian woodlands on the highly modified Upper Condamine 

Floodplain. Community composition, functional species group richness and 

abundance and dominant species attributes were generally best-explained by models 

based on combinations of hydrological and spatial (land use, land cover) variables 



 
176 

across a range of local landscape scales, rather than hydrological variables alone, 

although these were frequently strong predictors within these mixed models. 

There was evidence of significant association between ecosystem response 

(composition and condition) and a number of key environmental variables in these 

riparian woodland remnants which reflect gradients in levels of resource availability 

and disturbance, and in the condition and abundance of functionally important 

dominant canopy (Eucalyptus camaldulensis/E. tereticornis) and weed species (Phyla 

canescens). In particular, the impact of groundwater depth and, to some extent, the 

rate of groundwater decline, was a key predictor in a large number of the ecosystem 

response models generated, including mature tree health in the dominant canopy 

species complex Eucalyptus camaldulensis/E. tereticornis. This study also identified 

a link between declining dominant tree condition, groundwater decline and changing 

patterns in functional diversity. Functional decline due to dieback processes in canopy 

trees may represent a critical change in these ecosystems with significant implications 

for the persistence of these dominant species on this section of the floodplain. 

However, indication that these also mediate response in other species suggests that 

dysfunction in these ecosystems may be cumulative and potentially self-reinforcing; 

this is explored further through state and transition modelling in Chapter 7. 

This study also indicates the potential for a threshold response, in terms of function in 

E. camaldulensis/E. tereticornis, to groundwater depth; other studies suggest that this 

might occur at around 12 -15 m for E. camaldulensis (Mensforth et al. 1994, Horner 

et al. 2009). The significance of such a threshold, in terms of its impact on ecosystem 

resilience in these communities and the potential for accelerated (cascading) 

responses in other elements, raises deep concern about the future of these woodlands 

given the significant pressure on groundwater resources in this landscape (Chapter 2). 

Further research designed to identify the groundwater depth at which changes in tree 

condition occur in this landscape, and the environmental conditions under which 

these are likely to contribute to a threshold response in ecosystem function, is 

required. 

Further complexity is indicated by strong association between Phyla canescens 

(lippia) cover and tree size, and a strong negative relationship between lippia cover 

and the density of dead trees. While this study was unable to identify strong 
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predictors for lippia cover, apart from surrogate measures which encompassed 

improved soil moisture conditions, lippia is evidently a strong driver of floristic 

composition and community structure in these woodlands. In addition, interactions 

between tree condition and lippia cover may contribute to accelerated change in this 

landscape; these are further explored in Chapter 6. 
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Chapter 6 Lippia-tree interactions in an Upper Condamine floodplain 

riparian woodland 

6.1 Introduction 

Invasive species represent a significant threat to native ecosystems, contributing to 

native species decline and altered community composition, structure and ecosystem 

function (Barney and Whitlow 2008, Whitcraft et al. 2008). There are also significant 

societal costs associated with the control and management of invasive species and 

their impacts (Pimental et al. 2000). However, the drivers of alien species‟ 

invasiveness and native ecosystem susceptibility to invasion are often poorly 

understood (Dietz and Edwards 2006, Strayer et al. 2006, Barney and Whitlow 2008). 

An important factor in invasion success may be interaction between novel species and 

the receiving environment (e.g. Cavieres et al. 2005, Baiser et al. 2008). Such 

interactions may enable invasive species to overcome establishment barriers, and to 

become naturalised and, in some cases, invasive (Richardson et al. 2000, Rudgers et 

al. 2004, 2005). They may also contribute to conditions within an environment which 

further facilitate the success of the invasive species (e.g. Reinhart et al. 2006a). 

6.1.1 Species invasion in native ecosystems 

The success of alien species in novel ecosystems is, in part, a function of the inherent 

characteristics (autecology) of the species (i.e. its capacity for invasiveness) (Barney 

and Whitlow 2008). Invasive plant species frequently exhibit a combination of traits 

which underpin their success as invaders. These include adaptations for efficient 

dispersal by wind, water or animal vectors, rapid establishment and growth to 

reproductive age, the ability to rapidly sequester under-utilised resources, and prolific 

reproduction (Stohlgren and Schnase 2006). 

Time since introduction may also contribute to invader success (Barney and Whitlow 

2008). Local increase and establishment of a persistent seedbank provides significant 

propagule pressure, a key factor in the spread of invasive species (Colautti et al. 

2006). Some species also modify abiotic conditions in a way that enhances further 

invasion (MacDougall and Turkington 2005). Both mechanisms have been used to 

explain observed time lags between initial introduction and establishment in novel 
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environments, and subsequent rapid population growth in invasive species (Reinhart 

et al. 2006a,b, Wangen and Webster 2006). 

A third key factor in the success of invasive species is the susceptibility to invasion of 

native plant communities (Barney and Whitlow 2008). Elton (1958) contended that, 

in theory, the success of new species would be limited in native environments with 

high species diversity and niche occupancy. This is evident in some cases (Funk et al. 

2008) but, in others, invasion success is not significantly affected by species the 

richness or evenness (e.g. Mattingley et al. 2007), or functional diversity (e.g. Dukes 

2001), of native environments. Invasion of native habitats is frequently associated 

with disturbance, which often results in increased availability of resources (Adair et 

al. 2008). Fluctuating levels of resources may be a critical factor influencing the 

susceptibility of native communities to invasion, particularly when increases coincide 

with the availability of invasive species propagules (Davis et al. 2000, Insauasti and 

Grimoldi 2006) and match the autecology of the invasive species (Price et al. 2010a). 

Invasive species which become dominant, and alter community structure, ecological 

processes or abiotic conditions, may contribute to altered resilience and increased risk 

of significant change in the dynamics and function of invaded ecosystems (Reinhart 

et al. 2006a, b, Rudgers and Orr 2009). 

6.1.2 Interactions between native and invasive species 

Facilitation is increasingly recognised as an important process which contributes to 

community diversity and structure, promotes species coexistence and drives 

community dynamics in native vegetation communities (Callaway 1995, Brooker et 

al. 2008).  Such interactions may occur through amelioration of microclimatic 

conditions, reducing light intensity and evapotranspiration and enhancing the 

establishment and survival of juvenile plants (e.g. Nunez et al. 1999, Phillips and 

Barnes 2003, Armas and Pugnaire 2005). Alternatively, facilitation may be due to the 

concentration of resources such as soil nutrients or soil moisture under larger woody 

species (e.g. Facelli and Brock 2000, Facelli and Temby 2002, Ludwig et al. 2003). 

Vegetation community dynamics driven by the population dynamics of woody 

perennial species are an important source of spatial heterogeneity in resource limited 

environments (Facelli and Brock 2000) and may contribute significantly to species 

coexistence, hence greater diversity, in these systems (Facelli and Temby 2002). This 



 
180 

may be especially so in savanna landscapes where scattered trees contribute to 

significant levels of heterogeneity in terms of resources and micro-climatic conditions 

(e.g. Facelli and Brock 2000, Graham et al. 2004), and may play a major role in 

facilitating a range of other species (e.g. Ludwig et al. 2003, 2004a). 

The role of native plant-mediated facilitation in promoting invasion by alien plant 

species is less well known (Reinhart et al. 2006b), but has been shown to be 

important in some instances. For example, short-lived nitrogen-fixing native bush 

lupine shrubs (Lupinus arboreus) in California coastal prairie communities create 

nutrient-rich microsites which are readily colonised by annual alien species at the 

expense of native species as shrubs senesce (Maron and Connors 1996). Invasion 

success of Scotch broom (Cytisus scoparius) in montane shrub communities in New 

Zealand is facilitated by the presence of native shrubs and tussock grasses 

(Bellingham and Coomes 2003). Invasion of two Senecio species is facilitated in both 

grassland and shrubland, but not forested, communities in northern Spain in the 

absence of disturbance (Cano et al. 2007). 

Such interactions may be more widespread in more stressful environments (Callaway 

1995, Scholes and Archer 1997), where native species ameliorate harsh 

environmental conditions and may contribute significantly to the persistence of 

invasive species which are not well adapted (e.g. Ludwig et al. 2004a, Callaway et al. 

2003). For example, Badano et al. (2007) report facilitation of annual alien species by 

the cushion plant Azorella monantha at higher elevations, in the Andes mountains, 

Chile. Griffith and Loik (2008) report facilitation of the invasive annual grass Bromus 

tectorum by native shrubs Artemisia tridentata and Purshia tridentata in the Great 

Basin Desert, USA. However, these studies also indicate that the relative importance 

of facilitation (i.e. the balance between facilitation and competitive exclusion of the 

invasive species), and the strength and direction of native-alien species interactions, 

may vary with temporal conditions. Ludwig et al. (2004a) report a fine balance 

between competitive and facilitative interactions in savanna landscapes in East 

Africa, where competition for scarce water between neighbouring species was shown 

to overwhelm the facilitative effect of hydraulic lift. Griffith and Loik (2008) also 

found that both positive and negative interactions occurred, over a period of several 

years, between Bromus tectorum and native shrubs in the Great Basin Desert, USA. 



 
181 

6.1.3 Lippia on the Upper Condamine Floodplain 

Many introduced (alien) plant species have been recorded in the Upper Condamine 

(Phillips and Moller 1995, Fensham 1998a). However, of particular concern in 

riparian areas of the floodplain is the dominant invasive species lippia (Phyla 

canescens (Kunth) Greene: Verbenaceae) (McCosker 1996), a low-growing perennial 

clonal herb, native to floodplain environments of South America (Macdonald 2008). 

First recorded at Tummaville (within the Upper river section of this study) in 1927 

(Lucy et al. 1995, Earl 2003), lippia was increasingly viewed as a significant problem 

from the 1950s onward, infesting an estimated 40,000 ha in 1960 and 150,000 ha by 

the mid-1990s, at which time it was considered a serious and largely unmanageable 

risk to both pastoral enterprises and to riverine and riparian ecosystems on the Upper 

Condamine Floodplain (Lucy et al. 1995). In invaded floodplain communities 

(wetlands, grasslands, riparian woodlands) and landscapes of the Murray-Darling 

Basin, it significantly compromises remnant ecosystem condition, streambank 

stability and riverine water quality, pasture productivity and the profitability of 

grazing enterprises, as well as the integrity of floodplain infrastructure (roads, dams, 

levees) (Earl 2003). 

Considerable research has been conducted into the autecology of lippia since the 

establishment, in 2002, of the National Lippia Working Group, a consortium of land 

managers and researchers. This has included investigations into the species‟ 

reproductive ecology (Macdonald 2008, Gross et al. 2010), responses to top-down 

(enemies) and bottom-up (nutrient availability) control (Clech-Goods 2010), 

population genetics (Fatemi et al. 2008) and adaptive capacity (Xu et al. 2010a) in the 

species‟ invaded range, and investigation of potential bio-control agents in the 

species‟ native range (Julien et al. 2004). Lippia‟s capacity to inhibit the germination 

of other species through the production of allelopathic chemicals has also been tested 

(Tan et al. 2007). Investigations into lippia‟s response to disturbance regimes (e.g. 

flooding and grazing) have been conducted under controlled experimental conditions 

(Taylor and Ganf 2005) and within working (floodplain grazing) production systems 

(Price et al. 2008, 2010a). These studies also investigated the relative success of 

lippia and other dominant species under different levels of disturbance (Taylor and 

Ganf 2005, Price et al. 2008). 
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Lippia in Australia is a genetically diverse species (Fatemi et al. 2008) which is 

rapidly adapting to the variable climatic (and eco-hydrological) conditions across its 

invaded distribution (Xu et al. 2010a). It responds positively to disturbances such as 

flooding and grazing (Taylor and Ganf 2005, Barry et al. 2008, Macdonald 2008, 

Price et al. 2008, 2010a), but is sensitive to competition from other dominant species 

under certain conditions (Taylor and Ganf 2005, Price et al. 2010a). Modeling in 

relation to predicted climate change indicates that lippia poses an ongoing threat to 

native vegetation and production systems throughout the Murray-Darling Basin due 

to a persistent propagule bank and the species‟ capacity for population explosions 

following flood events of suitable duration and depth (Stokes et al. 2007, 2008, Barry 

et al. 2008, Macdonald 2008). Nutrient availability (specifically nitrogen) enhances 

lippia‟s success (Clech-Goods 2010), and clonal integration supports continued 

growth of ramets exposed to resource-poor (low light) conditions (Xu et al. 2010b). 

Lippia may alter soil attributes, such as soil moisture and carbon isotope signature, 

under field conditions (Xu and Van Klinken 2008). It also produces secondary 

compounds with allelopathic properties which affect the germination of some 

indicator species (e.g. leguminous species such as vetch and subterranean clover) but 

not others (e.g. grass species such as sorghum) under controlled experimental 

conditions (Daley et al. 2005, Tan et al. 2007), although it remains unclear from these 

trials to what extent these mechanisms contribute to the species‟ invasion success. 

Most lippia research has been driven by the species‟ significant impact on the 

productivity of floodplain grazing production systems (Lucy et al. 1995, Earl 2003). 

Research has focused on interactions between flooding and grazing, which have been 

found to be major factors in the dispersal, establishment and local expansion of lippia 

(e.g. Macdonald 2008, Price et al. 2008, 2011). There has been limited research in 

native vegetation systems aimed at understanding what impact lippia has on the 

composition, structure and ecological function of invaded ecosystems. In addition, no 

research to date has sought to identify the role played by these ecosystems in 

facilitating the persistence of lippia, particularly in parts of the landscape which are 

not subject to regular grazing or flooding. 
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6.1.4 This research 

Earlier chapters have shown lippia to be a dominant component of remnant riparian 

woodland ecosystems on the Upper Condamine floodplain, where it has a significant 

homogenizing effect on floristic diversity (Chapter 3) and is a key predictor and 

potential driver of change in floristic composition and structure (Chapter 5). Lippia 

cover was also found to be highly correlated with mature tree size (Chapter 5), 

highlighting a potential interaction between trees and lippia and calling into question 

the role of mature trees in facilitating lippia persistence and abundance in this 

landscape. This is supported by observations that lippia, a mesic C3 species (Earl 

2003, Xu and van Klinken 2008), persists in riparian remnants of the Upper 

Condamine, often as a „halo‟ (sensu Majer and Delabie 1999) of high lippia cover 

under the canopy of scattered trees in this landscape, despite grazing exclusion and 

extended drought (pers. obs.). The question arises, therefore, as to what role, if any, 

trees may play in the success of lippia in the climatically variable dryland 

riverine/riparian environments of the Upper Condamine, and potentially elsewhere in 

the northern Murray-Darling Basin. 

Observations that lippia is often also more persistent in lower lying parts of the study 

area indicate that microtopographic variations in the land surface may also act as 

spatial and temporal refugia for lippia relative to areas higher in the landscape which 

experience more variable soil moisture conditions. Elsewhere, small-scale 

topographic heterogeneity buffers the impact of adverse conditions on vegetation and 

contributes to native species persistence in salinity-affected landscapes (Cramer et al. 

2004), and enhances survival and growth of eucalypt seedlings in a 

microtopographically variable gilgaied floodplain landscape after flooding and fire 

(Fox et al. 2004). 

This study asks if there is a positive interaction between dominant canopy eucalypts 

(E. camaldulensis/tereticornis), and the cover of lippia (Phyla canescens) in riparian 

woodlands on the Upper Condamine floodplain, and, if so, does this influence change 

with topographic position in the landscape or the presence of non-lippia vegetation? It 

also asks which environmental variables influenced by the presence of trees and/or 

position on slope are associated with high lippia cover and reproduction, and whether 

this influence varies with tree size or condition. 



 
184 

The specific hypotheses addressed are: 

(i) that lippia (abundance, reproduction, growth form and/or condition) and 

community (groundcover richness, abundance and diversity) response and 

environmental variables (soil attributes, nutrients, soil moisture, light) 

vary along a gradient of increasing distance from trees and/or with 

topographic position; and 

(ii) that there is a correlation between tree size and/or tree condition, 

environmental variables and biotic responses, including lippia abundance 

and reproduction. 

Results are interpreted in relation to lippia‟s adaptive response to fluctuating climatic 

conditions and levels of disturbance, and the dynamics of lippia-invaded woodlands 

in this landscape. Potential risks to downstream environments, associated with 

persistent lippia populations in headwater catchments, are considered. 

6.2 Methods 

6.2.1 Study area 

This study was conducted at St Ruth Reserve, a state-owned reserve (R81) adjacent to 

the Condamine River and approximately 10 km south of Dalby, southern Queensland 

(Figure 6.1). 
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Figure 6.1  Aerial photograph indicating the general location of transects (    ) at St. Ruth 

Reserve. 

 

 

St. Ruth Reserve comprises a 150 ha patch of remnant riparian and floodplain grassy 

woodland (predominantly RE 11.3.25; Sattler and Williams 1999), originally used for 

watering and resting traveling stock (Moran 1996) and, more recently, leased on a 

semi-permanent basis for livestock (cattle) grazing (Queensland Murray-Darling 

Committee (QMDC) 2005). Persistent over-stocking and over-grazing on the reserve 

resulted in significant change in groundcover composition and structure, from tall 

native perennial tussock grasses to a low-growing lippia-dominant „carpet‟ (Moran 
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1996, QMDC 2005). Increasing concern about the proliferation of lippia, in 

combination with evidence of significant tree decline, led to revoking of the grazing 

lease and reclassification of the site as a state recreation reserve in 1999 (QMDC 

2005). Woodland condition on the reserve has shown signs of recovery following 

grazing exclusion (QMDC 2005). There is evidence of recruitment of canopy 

eucalypt species, although recovery of mature E. camaldulensis/tereticornis trees is 

limited and, in many cases, dieback symptoms have continued to increase over the 

period of this research (2004–2007) (pers. obs.). There has also been a significant 

decline in lippia abundance post grazing exclusion (QMDC 2005) and a reciprocal 

increase in the relative abundance of other species, including native perennial grasses 

(pers. obs.). This has coincided with prolonged drought, which may have contributed 

to lippia decline. High lippia cover is only evident (persists) in lower lying areas or in 

association with trees (pers. obs.). 

6.2.2 Lippia-tree relations 

Study design 

This study used a 2-factor design to test for significant patterns in vegetation 

composition, including lippia cover and condition, and abiotic conditions in relation 

to trees („distance from tree‟ treatments) and relative elevation (topographic position 

treatments). Twelve transects, each extending from the base of a mature tree (E. 

camaldulensis/E. tereticornis), were established within a homogeneous patch of open 

woodland; distance from tree treatment levels were defined as multiples of the canopy 

radius (r): 0r, 0.5r, 1r, 1.5r, 2r and 3r (Figure 6.2). Four transects were located in each 

of three relative topographic positions: Low, Mid (intermediate) and High (with a 

maximum topographic variation across these of less than 3 m). The length of each 

transect was determined by the canopy radius („r‟ or the distance from tree base to 

canopy edge) along the transect line for that tree, and extended from the tree base into 

open grassland to a total distance of 3r (maximum r was 8 m and maximum transect 

length was 24 m). Transect direction was restricted to a south-westerly direction to 

reduce variation due to possible shading and slope. Tree selection was constrained by 

proximity of the transect to other trees; only transects which could be established at 

distances of greater than three times the canopy radius of adjacent trees were included 

in the study (Figure 6.2). 
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Figure 6.2 Transect design indicating distance from tree treatments based on multiples 

of r, the canopy radius, and limits in terms of proximity to neighbouring trees. 

 

 

There were no significant differences in tree height, tree diameter, canopy radius or 

canopy cover between topographic positions (ANOVA, p > 0.05; Table 6.1). 

 

 

Table 6.1 Attributes of transect trees across topographic position treatments. Treatment 

values are means and standard error (in parentheses). Significant difference is indicated in 

bold type (ANOVA; ** p ≤ 0.005, * p ≤ 0.05). 

 
Units 

 Topographic position  
Levene's F 

  low mid high  

Tree height m  20.0 (1.8) 23.3 (2.3) 24.6 (3.6)  1.75ns 0.78ns 

Tree diameter (D130) m  0.70 (0.18) 0.95 (0.06) 0.83 (0.19)  0.95ns 0.67ns 

Canopy radius m  4.5 (0.3) 3.8 (0.6) 5.0 (1.1)  1.37ns 0.72ns 

Canopy cover (FPC)1 %  33.0 (2.2) 14.5 (4.8) 23.0 (7.5)  2.21ns 3.03ns 

1 arcsin transformed 

 

1r 2r 3r 3r 0r 0.5r 1.5r 
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Data collection 

Sampling was conducted in March 2006. Projected foliage cover (FPC%) of all non-

woody vascular plant species was recorded in 1 m
2
 quadrats at the six „distance from 

tree‟ treatments (0r, 0.5r, 1r, 1.5r, 2r and 3r) along each transect. Plant species were 

identified, and grouped according to origin (native, alien) and functional response 

traits (physiology, life-cycle, growth form) as reported in Chapter 3. Species richness, 

abundance (cover) and Shannon-Wiener diversity were calculated as reported in 

Chapter 3. 

Lippia condition and reproductive effort were recorded in 0.25 m
2
 quadrats centred 

within the 1 m
2
 quadrats used above. Measures included the number of flower heads 

and seed heads (the total of which is referred to as „reproductive effect‟); evidence of 

herbivory, disease and discolouration (yellowing), scored on a 4-point scale (0: none, 

to 3: severe; after Batterham 2008); and dominant growth habit („matting‟ or 

„trailing‟; equivalent to the „phalanx‟ and „guerrilla‟ growth forms of Chen et al. 

(2010), and the „established‟ (rooted) and „infiltrated‟ (supported above the soil by 

neighbouring vegetation) forms of Taylor and Ganf (2005)). 

The circumference, height, canopy radius (along the transect line, to the nearest 0.5m) 

and canopy projected foliage cover (FPC%) of each transect tree was measured. 

Ambient light (measured beyond tree canopies and above the height of groundcover 

vegetation) and incident light at ground level were measured at two sampling points 

along each transect, nominally 0.5r (but measured in the centre of the canopy shade at 

the time of measurement) and 2r, using a line quantum sensor (Li-191, Li-Cor 2005). 

This equipment averages incident light over its 1 m length and is suited to 

measurement in dappled shade conditions as occur under relatively sparse canopies 

(LiCor 2005). The ratio of incident light at ground level to ambient light above the 

vegetation was used to account for temporal variation in light intensity. 

Soil moisture was measured at three depths at each transect sampling point. Surface 

(0-6 cm depth) sample measurements were taken using a soil moisture impedance 

probe (Theta Probe; Delta-T Devices, Cambridge, UK). Deeper soil moisture 

measures were taken using electromagnetic induction (EMI) equipment (EM38; 

Geonics Ltd, Canada), which measures the apparent bulk electrical conductivity 

(ECa) of the soil profile, providing an integrated measure of soil salinity, clay content 
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and soil moisture through the soil profile (Ganjegunte and Braun 2010). As EMI is 

sensitive to variation in soil moisture, the technique has been used to investigate 

differences in soil moisture within a defined area (Reedy and Scanlon 2003, Huth and 

Poulton 2007); this is considered a valid technique for use under non-saline 

conditions where responses are independent of conductivity (McNeill 1980, Huth and 

Poulton 2007). The EM38 has a horizontal and a vertical dipole, measuring ECa to 

depths of 75 cm and 150 cm, respectively (Reedy and Scanlon 2003, Ganjegunte and 

Braun 2010). No temperature corrections were made to readings (Reedy and Scanlon 

2003, Huth and Poulton 2007) as this study was concerned only with relative rather 

than absolute inferred soil moisture. 

Surface soil samples were collected for analysis of physical and chemical 

composition. Samples were collected within a 1 m
2
 area at two „distance from tree‟ 

sampling points (0.5r and 2r) per transect. Shallow samples (to 15cm) were collected 

using a foot corer, and deeper samples (at 30-70cm) were collected using a ute-

mounted 37 mm diameter hydraulic soil corer. Deep soil samples were collected from 

four transects only (two from Low and two from High topographic positions) due to 

cost and equipment availability constraints. Individual samples were placed in 

labelled sealed plastic bags, and kept cool in an esky to minimise loss of moisture and 

nitrogen. Analysis of a range of chemical and physical properties (Table 6.2) was 

conducted by AgriTech, Toowoomba Qld. 
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Table 6.2 Soil attributes measured in shallow soil and subsoil samples collected from St 

Ruth Reserve. 

Parameter Units Shallow samples Deep samples 

Texture -   

pH -   

Electrical Conductivity dS/m   

Magnesium mg/kg   

Exchangeable Calcium  meq/100g   

Exchangeable Sodium meq/100g   

Exchangeable Potassium meq/100g   

Exchangeable Magnesium meq/100g   

Sulphur mg/kg   

Nitrate Nitrogen mg/kg   

Chloride mg/kg   

Phosphorus mg/kg   

Calcium mg/kg   

Sodium mg/kg   

Potassium mg/kg   

Cation Exchange meq/100m   

Organic Carbon %   

 

 

Data analysis 

Patterns in floristic composition were investigated using multivariate analysis 

procedures in PRIMER, version 5 (Clarke and Warwick 2001). Ordination was 

conducted by non-metric multi-dimensional scaling (nMDS), with similarity matrices 

constructed (data standardised, no transformations) using the Bray-Curtis similarity 

measure. Floristic patterns associated with distance from tree and topographic 

position treatments were investigated using Analysis of Similarity (ANOSIM and 2-

way crossed ANOSIM). SIMPER was used to examine lippia‟s influence on species 

composition. 

Differences in univariate measures of lippia cover, lippia reproductive effort, species 

richness, total cover, non-lippia cover and Shannon-Wiener diversity were compared 

across treatments using 2-way Analysis of Variance (2-way ANOVA) procedures in 

SPSS version 18.0 for Windows (SPSS Inc. 2009). Bounded (proportional) data were 
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arcsine transformed, and all data were screened and transformed (either square root or 

log10), where required, to meet assumptions of normality and homoscedascity (Quinn 

and Keogh 2002). Where heteroscedastic variances were unable to be corrected for by 

transformation, no further analysis was undertaken (Quinn and Keogh 2002). Where 

variances were homogeneous (Levene‟s), 2-way ANOVA was conducted and 

Tukey‟s unplanned multiple comparison procedure (Day and Quinn 1989) was used 

to determine significant difference between treatment pairs within distance from tree 

and topographic position treatments. 

 The non-parametric Kruskall-Wallis procedure for k-independent samples was used 

to test for significant association between distance from tree or topographic position 

treatments and lippia condition scores (Quinn and Keogh 2002); the non-parametric 

Mann-Whitney U procedure was used to determine significant difference between 

treatment pairs where significant difference was evident (Day and Quinn 1989). 

Differences in univariate abiotic (soil chemistry, moisture, light) attributes 

(transformed where necessary, as above) between sampling positions (0.5r, 2r) and 

topographic positions (low, mid, high) were investigated using 2-way ANOVA with 

Tukey‟s unplanned multiple comparison procedure where appropriate (as above). 

Significant association between lippia cover, reproductive effort, tree size and 

condition and measured environmental (abiotic, biotic) variables was investigated 

using the non-parametric Spearman‟s rank correlation procedure in SPSS version 

18.0 for Windows (SPSS Inc. 2009). 

6.3 Results 

6.3.1 Floristic patterns 

A total of 44 plant taxa, comprising 35 native and 10 alien species, was recorded in 

this study (Appendix E). The most frequent and abundant species/taxon recorded was 

lippia (Phyla canescens), with a total frequency of 96% (present in 69 of 72 quadrats) 

and an overall mean abundance of 27.9 ± 3.4% (range: 0 – 97%). The next most 

common alien species was Glandularia aristigera (Mayne‟s pest; Verbenaceae) with 

a frequency of 31% and mean abundance of 2.2% ± 0.8%. The most common native 

species were Paspalidium distans (frequency: 71%; mean abundance: 11.4 ± 2.3%), 
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Einadia spp. (frequency: 68%; mean abundance: 8.2 ± 1.7%), and Cynodon dactylon 

(frequency: 65%; mean abundance: 5.5 ± 1.3%). 

Floristic composition 

There was no significant interaction effect between distance from tree and 

topographic position treatments on multivariate floristic composition (FPC) (2-way 

crossed ANOSIM; p > 0.05). There were significant differences in floristic 

composition between distance from tree treatments (ANOSIM; Global R = 0.194, p = 

0.001); there were significant differences between 0r and 0.5r, 1r, 1.5r, 2r and 3r, and 

between 0.5r and 1.5r, 2r, and 3r, but no differences between 1r, 1.5r, 2r, and 3r 

distances (pairwise tests, p ≤ 0.05, Table 6.3). There were no differences between 

topographic position treatments (ANOSIM; p > 0.05). 

 

 

Table 6.3  Results of Analysis of Similarity (ANOSIM) pairwise comparisons on FPC 

data for distance from tree treatments. Values are R statistics, with significance levels 

indicated (** p ≤ 0.005, * p ≤ 0.05, n.s. = p > 0.05). 

Distance from tree 0r 0.5r 1r 1.5r 2r 

0.5r 0.21**     

1r 0.44** 0.05 
ns

    

1.5r 0.58** 0.19** -0.04 
ns

   

2r 0.54** 0.17* -0.03 
ns

 -0.09 
ns

  

3r 0.60** 0.24** 0.05 
ns

 -0.01 
ns

 -0.07 
ns

 

 

 

An nMDS ordination of floristic composition by distance from tree treatments 

indicates clustering of sites at distances of 0r and 0.5r, and greater spread in the 1r, 

1.5r, 2r and 3r treatments (Figure 6.3). 
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Figure 6.3  Two-dimensional ordination (nMDS) of floristic abundance (FPC) x distance 

from tree. Filled symbols are „under canopy‟ distance from tree treatments: 0r (    ), 0.5r (    ), 

1r (    ); open symbols are „canopy gap‟ distance from tree treatments: 1.5r (     ), 2r (     ), 3r   

(     ). 

 

 

The average similarity of floristic composition was greatest (exceeding 50%) within 

the 0r and 0.5r distance from tree treatments, and least (< 40%) within the 1r, 1.5r, 2r 

and 3r treatments (SIMPER, Figure 6.4). Lippia cover contributed strongly to 

similarity (lippia contribution > 80%) within the 0r and 0.5r treatments, but least 

(lippia contribution < 50%) within the 1r, 1.5r, 2r and 3r treatments (Figure 6.4). 
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Figure 6.4  Average floristic similarity and lippia contributions to average similarity 

(SIMPER analysis in PRIMER) within distance from tree treatments. 

 

 

Differences between distance from tree and topographic position treatments for lippia 

cover and total Shannon-Wiener diversity were not able to be statistically tested due 

to non-homogeneous variances (Levene‟s, p ≤ 0.05) which could not be corrected by 

data transformation (Table 6.4). Mean lippia cover was higher (21.8% to 72.3%) but 

more variable at distances closer to trees (standard error was between 6.6% and 7.9% 

for the distances 0r, 0.5r and 1r) than at distances 1.5r, 2r and 3r, where cover and 

standard error values were lower (8.3% to 15.8% and 2.3% to 4.8%, respectively) 

(Table 6.4). 

There were no significant interactions between distance from tree treatments and 

topographic position for total cover, non-lippia cover, non-lippia species richness or 

non-lippia Shannon-Wiener diversity (2-way ANOVA, p > 0.05; Table 6.4). 

There was no significant difference between distance treatments for total cover (2-

way ANOVA, p > 0.05; Table 6.4). The cover of non-lippia vegetation was 
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significantly lower beneath tree canopies (at 0r and 0.5r) and higher at the tree canopy 

edge and beyond (1r – 3r), although there was no significant differences between non-

lippia cover at 0.5r and 2r (p > 0.05). There was no significant difference between 

topographic positions in the cover of non-lippia species (p > 0.05). There was no 

significant difference in non-lippia species richness or non-lippia Shannon-Wiener 

diversity between distance from tree or topographic position treatments (p > 0.05, 

Table 6.4). 
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Table 6.4  Differences between distance from tree and topographic position treatments for lippia cover; total species richness, cover and 

Shannon-Wiener diversity; and non-lippia species richness, cover and Shannon-Wiener diversity. Treatment values are means and standard error 

(in parentheses); interaction values are F values. Significant difference is indicated in bold type (** p ≤ 0.005, * p ≤ 0.05). 

 Distance from tree (D)  Topographic position (T)  Interaction 

 0r 0.5r 1r 1.5r 2r 3r  low mid high  D*T 

Lippia cover1,4 72.3 (6.7) 38.8 (7.9) 21.8 (6.6) 15.8 (4.8) 10.8 (2.3) 8.3 (2.6)  24.5 (4.2) 29.1 (6.9) 30.2 (6.6)   

Species richness 6.4 (0.8) 7.9 (0.8) 8.7 (1.0) 9.8 (0.9) 9.2 (0.8) 9.1 (0.7)  9.0 (0.5) 8.8 (0.7) 7.7 (0.6)  0.09 ns 

Total cover 86.8 (7.7) 63.1 (8.7) 74.3 (8.8) 76.7 (7.6) 56.9 (5.9) 63.0 (8.1)  66.4 (6.1) 75.1 (6.4) 68.9 (4.7)  0.43 ns 

Shannon-Wiener diversity4 0.6 (0.1) 1.1 (0.2) 1.2 (0.1) 1.4 (0.1) 1.5 (0.1) 1.4 (0.1)  1.3 (0.1) 1.3 (0.1) 1.0 (0.1)   

Non-lippia richness 5.4 (0.8) 7.0 (0.8) 7.7 (1.0) 8.8 (0.9) 8.2 (0.8) 8.3 (0.6)  6.7 (0..6) 8.0 (0.5) 7.9 (0.7)  0.10 ns 

Non-lippia cover 14.6a (2.7) 24.3ab (5.4) 52.5c (9.5) 60.8c (9.1) 46.2bc (6.7) 54.8c (8.4)  41.9 (6.3) 46.0 (6.7) 38.7 (5.4)  0.74 ns 

Non-lippia diversity 1.0 (0.2) 1.3 (0.2) 1.1 (0.2) 1.3 (0.1) 1.3 (0.1) 1.3 (0.1)  1.0 (0.1) 1.2 (0.1) 1.4 (0.1)  0.30 ns 

1 arcsin transformed; 2 square root transformed; 3 log10 transformed; 4 hereroscedastic variance (Levene‟s, p ≤ 0.05) not able to be corrected by transformation 
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Lippia reproduction and condition 

Mean lippia reproductive effort was not able to be statistically tested due to non-

homogeneous variances (Levene‟s, p ≤ 0.05), which were unable to be corrected by 

data transformation. Reproductive effort was high but variable at the under-canopy 

(0r and 0.5r distance from tree) positions, and consistently low at distances beyond 

the tree canopy (1.5r, 2r and 3r) (Figure 6.5). There was also a highly variable 

topographic effect with 39.8 ± 10.2 flower and seed heads at Low topographic 

positions, 46.8 ± 12.2 at Mid positions, and 57.2 ± 17.4 at High positions. No lippia 

seedlings were observed. 

 

 

 

Figure 6.5  Lippia reproductive effort (number of flower and seed heads) with distance 

from tree treatments. Errors are standard error. 
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Lippia growth habit scores were significantly lower at distances closest to trees (0r, 

0.5r), and higher at the canopy edge and beyond (1r to 3r) (Kruskal-Wallis; p ≤ 

0.005, Table 6.5). No evidence of disease was observed, and there were no 

significant differences between distance from tree treatments for lippia herbivory or 

leaf colour scores (p > 0.05). There were no significant differences between 

topographic positions for any of these measures (p > 0.05, Table 6.5). Graphical 

exploration (Quinn and Keogh 2002) indicated no interaction between treatment 

factors. 

 

 

Table 6.5 Mean lippia condition response (scores: 0-4) to distance from tree and 

topographic position treatments. Values are means with standard errors in parentheses; 

values bearing the same superscript are not significantly different (Kruskal-Wallis, p > 0.05) 

 Distance from tree  Topographic position 

 0r 0.5r 1r 1.5r 2r 3r  low mid high 

Herbivory 0.0 (0.0) 0.0 (0.0) 0.1 (0.1) 0.1 (0.1) 0.3 (0.1) 0.2 (0.1)  0.0 (0.0) 0.2 (0.1) 0.2 (0.1) 

Disease 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)  0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

Foliage colour 0.3 (0.1) 0.9 (0.1) 0.8 (0.2) 0.8 (0.1) 0.9 (0.2) 0.8 (0.2)  0.9 (0.1) 0.8 (0.1) 0.6 (0.1) 

Habit1 1.8 a (0.1) 2.3 b (0.1) 2.9 c (0.1) 2.9 c (0.1) 3.3 c (0.1) 3.3 c (0.1)  2.9 (0.1) 2.6 (0.1) 2.8 (0.2) 

1 Low habit score indicates predominantly matting growth form; high habit score indicates predominantly trailing exploratory 

growth form.   

 

 

Correlation between floristic response variables 

Lippia cover (FPC%) and lippia reproductive effort were significantly correlated 

(Spearman‟s; rho = 0.77, p ≤ 0.005). Lippia cover was significantly negatively 

correlated with non-lippia cover (total cumulative cover less lippia cover) and 

Shannon-Wiener diversity (rho = -0.62 and -0.44, respectively; p ≤ 0.005; Figure 

6.6). There was no significant correlation between lippia cover and non-lippia 

species richness (rho = -0.19, p > 0.05). 
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(a) 

 

 

 

 

 

 

 

 

(b)   

 

 

 

 

 

 

 

 

 

Figure 6.6  Scatter plots showing linear correlation between lippia Phyla canescens 

cover (FPC%) and (a) cover of non-lippia species (FPC%) (r
2
 = 0.30), and (b) Shannon-

Wiener diversity (r
2
 = 0.39). 
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Lippia cover (FPC%) was negatively correlated with the cumulative cover and 

species richness of the majority of functional and origin groups tested, including non-

lippia alien species (Table 6.6). These correlations were strongly significant for 

richness of C4 species and cover of native species, perennials, C3 species, 

graminoids, and short-lived (annual, biannual) species (Spearman‟s, p ≤ 0.005), and 

moderately significant for richness of native and short-lived (annual, biannual) 

species and cover of clonal species (p ≤ 0.05). Significant correlations between non-

lippia groups were all positive (Table 6.5). 

 

 

Table 6.6 Spearman‟s correlations between lippia cover and non-lippia functional and 

origin species groups richness and cover (FPC%). Values are rho; significant correlations are 

indicated in bold type (** p ≤ 0.005; * p ≤ 0.05). 

 Lippia Alien C3 C4 clonal forb gram. legume native 

Richness          

Alien -0.08         

C3 -0.17 0.70**        

C4 -0.38** 0.35** 0.16       

clonal 0.02 0.38** 0.52** 0.27*      

forb 0.00 0.72** 0.79** 0.19 0.59**     

graminoid -0.14 0.41** 0.57** 0.32* 0.76** 0.42**    

legume 0.13 0.10 0.32* -0.07 0.21 0.28* 0.17   

native -0.25* 0.43** 0.77** 0.27* 0.73** 0.66** 0.82** 0.28*  

perennial -0.14 0.53** 0.76** 0.38** 0.82** 0.67** 0.86** 0.20 0.92** 

short-lived -0.30* 0.47** 0.50** 0.05 0.07 0.48** 0.19 0.08 0.43** 

Cover          

Alien -0.15         

C3 -0.42** 0.38**        

C4 -0.08 0.36** 0.13       

clonal -0.27* 0.45** 0.40** 0.53**      

forb -0.05 0.74** 0.34** 0.46** 0.49**     

graminoid -0.41** 0.23 0.20 0.39** 0.48** 0.08    

legume 0.13 0.07 0.02 0.16 -0.15 0.09 -0.08   

native -0.57** 0.18 0.53** 0.17 0.31* -0.02 0.74** -0.04  

perennial -0.54** 0.39** 0.60** 0.24* 0.48** 0.17 0.76** -0.02 0.87** 

short-lived -0.36** 0.13 0.47** 0.02 0.05 0.07 0.05 -0.03 0.45** 
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6.3.2 Abiotic parameters 

Soils in the study area were medium to heavy clay, with a relatively high pH (7.0–

7.9), low electrical conductivity (EC, 0.08–0.27 dS.m
-1

) and low chloride levels (49.2 

± 3.4 mg.kg
-1

) (Appendix F). Cation exchange levels were relatively high (34.6–71.1 

meq.100g
-1

), with exchangeable cations in the very high range for calcium and 

magnesium (31.2 ± 1.3 and 17.2 ± 0.6 meq.100g
-1

, respectively) but moderate to low 

for potassium and sodium (2.5 ± 0.1 and 0.3 ± 0.1 meq.100g
-1

, respectively). Mean 

organic carbon was 3.6 ± 0.2%, and nitrogen (nitrate), phosphorus and sulphur levels 

averaged 9.5 ± 1.2, 164.6 ± 8.6, and 12.9 ± 0.9 mg.kg
-1

 (respectively). Soil pH 

increased with depth, but levels of other measured variables (EC, nitrate N, OC, 

phosphorus) decreased relative to surface soil levels (Appendix F). 

Differences between distance from tree and topographic position treatments for the 

surface soil attributes, organic carbon, sulphur and exchangeable sodium were not 

able to be statistically tested due to non-homogeneous variances (Levene‟s, p ≤ 

0.05), which could not be corrected by data transformation (Table 6.7). There was no 

significant interaction between distance from tree treatments and topographic 

position for other surface soil attributes (2-way ANOVA, p > 0.05; Table 6.7). 

Shallow soil chloride, cation exchange capacity (CEC), EC, exchangeable calcium 

and potassium, and phosphorus were significantly higher at 0.5r than at 2r (2-way 

ANOVA, p ≤ 0.05 (chloride) and p ≤ 0.005 (EC and exchangeable potassium); Table 

6.7), but there were no significant differences between the 0.5r and 2r distance from 

tree treatments for pH, nitrate, moisture or exchangeable magnesium cations in 

shallow soils (p > 0.05). 

There were no significant differences between topographic position treatments for 

shallow soil variables, with the exception of exchangeable magnesium cations (2-

way ANOVA, p > 0.05; Table 6.7), which were significantly higher at Low 

topographic positions than at High topographic positions (Tukey‟s, p ≤ 0.05). 



202 

Table 6.7  Differences between distance from tree (0.5r, 2r) and topographic position 

(low, mid, high) treatments for soil parameters. Treatment values are means and standard 

error (in parentheses); interaction values are F values. Significant difference is indicated in 

bold type (2-way ANOVA; ** p ≤ 0.005, * p ≤ 0.05). 

Factor Distance from tree   Topographic position  Interactions 

Factor level 0.5r 2r   low mid high  D x T 

Shallow soils         

Cation Exchnge (meq/100g) 55.0* (2.4) 47.4* (2.0)  53.4 (2.2) 51.1 (3.9) 49.2 (2.9)  0.24 

Chloride (mg/kg) 57.6* (4.8) 40.8* (3.5)  50.3 (4.9) 56.6 (6.5) 40.6 (5.3)  0.53 

EC  (dS/m) 0.19** (0.01) 0.13** (0.01)  0.16 (0.02) 0.16 (0.02) 0.16 (0.02)  0.11 

Ex. Calcium  (meq/100g) 34.1* (2.0) 28.3* (1.3)  31.3 (1.5) 30.9 (2.7) 31.3 (2.6)  0.35 

Ex. Magnesium (meq/100g) 17.8  (0.9) 16.6  (0.8)  19.0 a (0.9) 17.3 ab (1.1) 15.3 b (0.6)  0.09 

Ex. Potassium  (meq/100g) 2.71** (0.09) 2.20** (0.10)  2.53 (0.11) 2.50 (0.20) 2.35 (0.13)  0.11 

Ex. Sodium   (meq/100g)4 0.40  (0.09) 0.27  (0.02)  0.46 (0.14) 0.29 (0.02) 0.25 (0.02)   

Nitrate Nitrogen (mg/kg)2 8.5  (1.3) 10.4  (1.7)  7.1 (1.1) 11.1 (2.5) 10.1 (1.6)  1.56 

Organic Carbon (%)1,4 4.07 (0.26) 3.08 (0.13)  3.41 (0.23) 3.56 (0.37) 3.75 (0.33)   

pH1 7.34  (0.06) 7.30  (0.05)  7.26 (0.05) 7.29 (0.07) 7.40 (0.08)  1.50 

Phosphorus (mg/kg)4 183.9* (13.0) 145.3* (8.7)  164.3 (10.5) 175.0 (18.0) 154.5 (16.5)  0.18 

Sulphur (mg/kg)4 14.8 (1.1) 11.0 (1.2)  15.1 (1.7) 12.7 (1.7) 10.9 (0.9)   

Moisture (m3/m3) 0.28  (0.02) 0.25  (0.02)  0.24  (0.03) 0.27  (0.03) 0.27  (0.02)  0.07 

Deep soil samples         

EC (dS/m) 5 0.13  (0.02) 0.08  (0.01)  0.06 (0.01) 0.12 (0.02) 0.13 (0.01)   

Nitrate Nitrogen (mg/kg) 5 1.0  (0.0) 2.6  (1.5)  0.8 (0.3) 2.5 (1.5) 1.5 (0.5)   

Organic Carbon (%)5 1.23  (0.14) 1.15  (0.16)  0.85 (0.05) 1.25 (0.12) 1.40 (0.10)   

pH5 7.55  (0.14) 7.87  (0.22)  7.93 (0.04) 7.77 (0.23) 7.37 (0.08)   

Phosphorus (mg/kg) 5 93.8  (18.3) 79.0  (25.7)  35.5 (4.5) 90.3 (16.4) 129.5 (7.5)   

Moisture at 75 cm  (dS/m)2 0.30  (0.08) 0.27  (0.06)  0.27 (0.07) 0.37 (0.10) 0.23 (0.07)  0.03 

Moisture at 150 cm  (dS/m)2 0.20  (0.02) 0.24  (0.05)  0.33 a (0.07) 0.17 b (0.02) 0.17 b (0.01)  0.55 

Other         

Light (incident:ambient)2 0.32** (0.03) 0.10** (0.01)   0.19  (0.03) 0.23  (0.06) 0.22  (0.05)  2.00 

1 arcsin transformed; 2 square root transformed; 3 log10 transformed; 4 heteroscedascity unable to be corrected by transformation; 
5 insufficient sample size for analysis by 2-way ANOVA 
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Differences between distance from tree and topographic position treatments for the 

deep soil attributes, pH, EC, organic carbon, nitrate and phosphorus were not tested 

due to small sample size (Table 6.7). There was no significant interaction between 

distance from tree treatments and topographic position for soil moisture at 75 cm or 

at 150 cm depths, or for available light (2-way ANOVA, p > 0.05; Table 6.7). 

No significant differences occurred between the 0.5r and 2r distance from tree 

treatments for soil moisture at 75 cm and 150 cm (p > 0.05); however, there was a 

significant difference between topographic position treatments for soil moisture at 

150 cm (p ≤ 0.05) with significantly higher levels in the Low treatment, but no 

significant difference between the Mid and High treatments. Available light at 

ground level was significantly higher in 0.5r than in 2r distance from tree treatments 

(p ≤ 0.005), but did not differ significantly between topographic position treatments 

(p > 0.05, Table 6.7). 

Correlations with trees, lippia and floristics 

There was a significant negative correlation between canopy cover and available 

light at ground level (Spearman‟s, p ≤ 0.005; Table 6.8). Lippia cover was highly 

significantly correlated with available light at ground level (p ≤ 0.005), and 

significantly correlated with EC, organic carbon, exchangeable potassium and deep 

soil moisture at 150 cm (p ≤ 0.05). Lippia reproductive effort was highly 

significantly correlated with light (p ≤ 0.005) and the same soil variables 

(exchangeable K, EC, OC) as lippia cover (p ≤ 0.05), with the exception of deep soil 

moisture at 150 cm    (p > 0.05, Table 6.8). 
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Table 6.8  Spearman‟s correlation results for abiotic parameters and (a) tree attributes 

at 0.5r; and (b) lippia cover (FPC%) and lippia reproductive effort. Values are rho; bold type 

indicates significant correlation (** p ≤ 0.005, * p ≤ 0.05). 

  (a) Tree attributes   (b) Lippia attributes 

  n 
Tree 

height 

Tree 

diameter 

Canopy 

cover 
  n 

Lippia 

cover  

Lippia 

reproductive 

effort 

Cation Exchange 12 -0.09 -0.22 0.46  24 0.21 0.29 

Chloride 12 0.03 -0.11 0.16  24 0.27 0.4 

Electrical conductivity  12 -0.13 0.22 0.53  24 0.46* 0.51* 

Exchangeable Calcium 12 0.03 -0.2 0.41  24 0.23 0.31 

Exchangeable Magnesium 12 -0.34 -0.26 0.2  24 -0.02 0.06 

Exchangeable Potassium 12 -0.14 -0.08 0.54  24 0.46* 0.53* 

Exchangeable Sodium 12 -0.52 -0.12 0.56  24 0.21 0.31 

Nitrate Nitrogen 12 0.15 0.06 -0.2  24 -0.24 -0.33 

Organic Carbon 12 0.16 0.2 0.32  24 0.41* 0.47* 

pH 12 0.39 0.14 0.4  24 0.18 0.16 

Phosphorus 12 -0.33 -0.29 0.42  24 0.22 0.23 

Sulphur  12 -0.35 0.03 0.54  24 0.24 0.35 

Surface soil moisture  12 0.53 -0.02 -0.53  72 -0.02 -0.18 

Soil moisture at 75 cm 12 -0.56 -0.17 0.28  72 -0.07 0.07 

Soil moisture at 150 cm 12 0.04 -0.09 0.51  72 0.29* 0.17 

Light*  12 0.14 0.1 -0.60*   24 0.58** 0.57** 

* proportion of incident:ambient light at ground level  

 

 

6.4 Discussion 

Few studies have investigated the role of facilitation by native species on the success 

of an invasive species, and the majority of these focus on the establishment phase of 

the invasion process, and effects on seedling survival (Dunne and Parker 1999, 

Brooker et al. 2008). One of the few studies to investigate facilitation of an invasive 

species at a range of life stages trialled potential mechanisms by which native 

chenopod shrubs (e.g. Atriplex vesicaria) support the invasive clonal succulent 

groundcover species Orbea variegata in arid-zone South Australia (Lenz and Facelli 
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2003). None appear to have examined the role of facilitation in the context of 

multiple species interactions. 

This study confirms a close association between lippia abundance and mature 

Eucalyptus camaldulensis/E. tereticornis trees in a grassy riparian woodland at St 

Ruth Reserve, and suggests that trees facilitate the small-scale competitive advantage 

of lippia over other (non-lippia) groundcover species in this community. It also 

indicates that trees play a significant role in the persistence of lippia in the study area 

in the absence of regular disturbances, and potentially contribute to the ongoing 

invasion success of this species in both local and downstream environments over 

time. 

6.4.1 Trees as facilitators 

Many woody perennial plants exhibit „nurse‟-plant effects which  moderate 

microclimatic conditions and facilitate recruitment of herbaceous species by 

improving their water status, nutrient content, carbon assimilation rates and growth 

(Belsky et al. 1989, Ludwig et al. 2004b, Armas and Pugnaire 2005). Scattered trees 

can also have significant localised effects on soil properties, creating heterogeneous 

patches of enhanced soil quality and resource availability (Belsky et al. 1993a, 

Facelli and Brock 2000, Wilson 2002), which may contribute to invasion success 

under certain conditions (Prober and Thiele 1995). However, Graham et al. (2004) 

report that this effect may be, to some extent, species- and location-specific. 

This effect has not previously been reported for either E. camaldulensis or E. 

tereticornis, nor has it been tested in a riparian woodland system where nutrient 

dispersion and environmental heterogeneity are potentially strongly influenced by 

extrinsic factors such as flooding and catchment runoff processes (Naiman et al. 

1998, 2005). While broader scale processes such as these can have an over-riding 

influence on patch-scale heterogeneity and floodplain vegetation community 

structure and composition (Capon 2005, Turner et al. 2004), this study suggests that 

local within-patch heterogeneity may also be significant in these environments. The 

greater abundance of lippia in association with trees suggests that such heterogeneity 

may be an important influence on ecological diversity and ecosystem function which 

may facilitate alien species persistence (Prober et al. 2002a, b) in these systems. 
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Trees and light 

Belsky et al. (1989) report a 45–65% reduction in solar radiation, under tree canopies 

compared to open grassland in a semi-arid east African Acacia savanna ecosystem. 

Light availability under tree canopies in this study was similarly inversely related to 

canopy cover, with a 51–80% reduction in available photosynthetically active 

radiation (PAR). However, available light at groundlevel was significantly higher 

under tree canopies than in the open, canopy-gap areas, where PAR at groundlevel 

was reduced by 81–94%. This difference was associated with reduced cover of non-

lippia species, which included taller-growing perennial grass species such as 

Panicum queenslandicum and Dichanthium sericeum, and greater cover of low-

growing lippia under trees, and suggests a complex of competitive and facilitative 

interactions between trees, lippia cover and the cover of non-lippia species. 

Cole and Weltzin (2005) report that interactions between different canopy layers can 

significantly influence light availability and play an important role in determining the 

competitive relationship between invasive and native species. A closed cover of 

dominant tussock grass species can limit light availability at ground level and the 

establishment, survival and growth of lower-growing inter-tussock species (Morgan 

1998a). However, shading of this groundcover layer in proximity to scattered trees 

may disadvantage the dominant C4 floodplain grassland species occurring in the 

open areas in this study (Sage and McKown 2006), providing opportunities for 

establishment of more phenotypically plastic C3 (Sage and McKown 2006), but low-

growing  (Morgan 1998a), species such as lippia. 

Trees and shallow soil attributes 

Many of the surface soil attributes measured in this study showed consistently high 

values close to trees, with significant pattern found in a number of these in relation to 

distance from tree treatments. Shallow soil electrical conductivity (EC) and 

exchangeable potassium cations showed particularly strong patterns in relation to the 

presence of trees, while there were also higher levels of chloride, phosphorus, cation 

exchange capacity (CEC) and exchangeable calcium cations in shallow soils beneath 

the canopies of mature eucalypts (E. camaldulensis/E. tereticornis) than in open 

areas (canopy gaps) beyond tree canopies. These results largely conform with the 

findings of other studies, across a range of ecological communities both in Australia 
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and elsewhere, which have variously reported elevated levels of total carbon, total 

nitrogen, available phosphorus, exchangeable cations, pH and electrical conductivity 

associated with scattered trees (e.g. Tongway and Ludwig 1990, Belsky et al 1993a, 

b, Hastwell 2001, Jackson and Ash 2001, Prober et al. 2002 a, b, Wilson 2002, 

Graham et al. 2004, Wilson et al. 2007). 

Levels of nitrate N, sulphate S, pH, organic carbon (OC), cation exchange capacity 

(CEC) and exchangeable magnesium cations in this study were comparable to those 

previously reported for similar cracking clay soil types (uncropped, cropped) on the 

Darling  Downs and more generally in the northern Murray-Darling Basin (e.g. 

Conteh et al. 1997). Phosphorus concentrations (104–258 mg.g
-1

) were considerably 

higher than previously reported for the northern Murray-Darling Basin (5–78 mg.g
-

1
), including the Darling Downs (8–40 mg.g

-1
) (Conteh et al. 1997). Maximum levels 

of exchangeable potassium and calcium cations were 2.0 and 1.5 times, respectively, 

the highest values previously reported for the Darling Downs by Conteh et al. 

(1997), while levels of exchangeable sodium were relatively low at only 40% of 

previously recorded levels for the region (Conteh et al. 1997). These values may in 

part be due to the stratified design in this study which entailed sampling closer to 

trees than would be the case in a random design. They may also be a function of the 

riparian location, which many studies have previously noted as areas of relatively 

high nutrient status due to catchment runoff processes (Griffiths et al. 1997, 

Tabacchi et al. 1998). High calcium and low sodium salt levels have been previously 

attributed to the calcic geological foundation of cropping soils in the Condamine 

catchment (Shaw et al. 1994). 

Higher levels of chloride and electrical conductivity (hence salinity, as defined by 

Shaw 1999) closer to trees than in canopy gaps concur with patterns reported by 

Prober et al. (2002a,b), Munzbergova and Ward (2002), and Eldridge and Wong 

(2005). Trees have been noted for their influence on localised salt accumulation and 

distribution patterns resulting from shallow groundwater uptake and salt exclusion by 

tree roots at the capillary fringe (Nosetto et al. 2007). In the Negev Desert, this 

results in potential trade-offs for species growing in under-canopy environments, 

which need to balance the positive effects of higher nutrient levels against the 

negative impacts of higher soil salinity (Munzbergova and Ward 2002). However, 
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this is unlikely to be an issue for the majority of species in the study landscape where 

salinity ratings (Shaw 1999) were relatively low. 

Higher levels of exchangeable cations in association with trees have also been 

reported previously. Gomez-Aparicio et al. (2005) report increased levels of 

potassium cations in soils beneath dominant tree species grown in experimental plots 

in Spain. Prober et al. (2002a) also found higher levels of available potassium 

beneath trees than in open areas in temperate grassy woodland communities in 

southeastern Australia. 

While correlations between surface soil attributes and tree and canopy dimensions 

were not statistically significant in this study, possibly due to the limited sample size 

(hence low power of the analyses), higher correlations between some surface soil 

attributes (e.g. exchangeable sodium cations, soil moisture) and tree height or canopy 

cover suggest that the attributes of individual trees may be important in determining 

the level to which resources are accumulated and soil attributes are modified by 

scattered trees in woodland situations. Allometric relationships signify that larger 

trees are also likely to have larger root systems, capable of drawing resources from a 

greater volume of soil (Scholes and Archer 1997, Peichl and Arain 2007). Greater 

canopy cover is also likely to indicate a tree which is larger and healthier, more 

active in accessing resources and with more active process contributing to below-

canopy litter accumulation (Scholes and Archer 1997, Prescott 2002). Higher 

nutrient levels under older trees have also been attributed to length of residency, but 

may not be apparent until trees reach a critical age or size (Scholes and Archer 

1997). 

Trees and soil moisture 

Studies conducted under average rainfall conditions have shown a distinct depression 

in soil water content in the presence of trees (e.g. Belsky et al. 1989, Fensham and 

Fairfax 2007, Huth and Poulton 2007, Nosetto et al. 2007). Lack of significant 

patterning in soil moisture content in relation to the presence of trees in this study 

suggests that water availability in the study area was depleted at the time of 

sampling, presumably as a result of prolonged drought (e.g. Belsky et al. 1989). 
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Patterns in soil moisture appear to have been more closely associated with the 

attributes of individual trees. Positive and negative correlations for canopy cover and 

tree height with shallow and subsoil moisture levels indicate potentially complex 

interactions between the hydraulic function of trees and competitive effects of 

neighbouring plants as was found by Ludwig et al. (2003, 2004a,b), rather than 

amelioration of under-canopy groundcover evapotranspiration as  reported by Belsky 

et al. (1993a). 

6.4.2 Lippia response to environmental conditions 

Lippia and light 

In the current study, lippia showed a strong association with the amount of available 

light at ground level. While it appears counter-intuitive, this was higher beneath the 

canopies of trees in this study (which had an average cover of 23.5%, providing only 

light dappled shade and high levels of sun-flecks; Sage and McKown 2006) than in 

canopy gaps, where cover of taller non-lippia herbaceous vegetation, dominated by 

perennial graminoids, reduced light availability at ground level by up to 94%. This is 

also supported by the observed change in lippia growth habit from a densely rooted 

matting form beneath trees to a loosely trailing exploratory form amongst other 

groundcover species. This exploratory type of growth is related to the density and 

height of neighbouring species (Taylor and Ganf 2005, Chen et al. 2010), and is a 

response to limited resource availability (Slade and Hutchings 1987, Chen et al. 

2010), and increased competition for light (Taylor and Ganf 2005, Xu et al. 20010b). 

Lippia‟s requirement for a high light environment is supported by findings from a 

glasshouse trial investigating lippia response to full sun and reduced light (85% 

shade) conditions (Xu et al. 20010b). In that study, significant light-sensitive 

declines in leaf nitrogen (area-based), photosynthetic nitrogen use efficiency, 

chlorophyll to nitrogen ratio, and nitrogen stable-isotope signature occurred in lippia 

ramets (daughter plants) grown in reduced light conditions where these were 

isolated/separated from the genet or mother plant. This response was eliminated in 

shaded ramets which remained connected to the mother plant growing in full sun. 

This trial indicated not only the reduced performance of lippia under low light 
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conditions, but also the importance of clonal integration in maintaining access to 

essential resources (Xu et al. 20010b). 

Lippia and shallow soil attributes 

The current study indicates a significant relationship between lippia cover and 

reproduction and a range of surface soil attributes. Most significant of these was the 

concentration of exchangeable potassium cations, cation exchange capacity and 

organic carbon content. Cation availability and relative concentrations are recognised 

as important drivers of plant performance in agriculture (e.g. Oborn et al. 2005), but 

are rarely considered in native vegetation ecosystems although their potential role in 

the assembly of multi-species communities on low-fertility serpentine soils in the US 

has been suggested (Moore and Elmendorf 2011). Higher potassium levels have been 

found elsewhere to contribute to increased drought tolerance through increased plant 

water use efficiency (Egilla et al. 2001); for example, higher levels in soils under 

nurse shrubs in the Mediterranean were associated with improved seedling 

performance (Gomez-Aparicio et al. 2005). The strong association between lippia 

and available potassium cations in this study has not been reported previously.  Xu 

and van Klinken (2008) report consistently higher calcium levels in lippia leaf tissue 

than in the pasture grass species tested, and interpret this as a potential herbivore 

defence in lippia, but potassium levels are not reported. 

A strong association between lippia cover and organic carbon levels is apparent in 

this study, but has also not been reported elsewhere. Xu and van Klinken (2008) do 

not report organic carbon levels, but found altered soil carbon isotope ratios under 

lippia infestations. At the most heavily infested site, organic carbon 13C, typical of 

C4 grasslands (Boutton et al. 1999), was significantly depleted and up to 70% of the 

surface soil organic carbon pool had been substituted as a result of lippia invasion 

(Xu and van Klinken 2008). Altered carbon isotope ratios contribute to changes in 

soil microbial activity and communities (Ehrenfeld et al. 2001, Kramer and Gelixner 

2006), and potentially facilitate the competitive success of invasive species, as has 

been reported for spotted knapweed Centaurea maculosa in  native prairie 

ecosystems in north-western USA (Carey et al. 2004). 

Limited patterning in nitrate levels in relation to trees in this study, as well as limited 

association between lippia and nitrate, appears to indicate that this component of 
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available nitrogen is either not limiting in this environment or that accumulated 

nitrate under trees is rapidly acquired by lippia (e.g. Clech-Goods 2010). In grassy 

eucalypt woodlands, Prober et al. (2002a) found no relationship between nitrate 

concentration and the presence of trees, although nitrate levels were relatively lower 

in that study (ranging from 0.1–1.8 mg.kg
-1

 compared to a range of 2.0–24.0 mg.kg
-1

 

in the current study). Prober et al. (2002a) suggested that available nitrogen (nitrate, 

ammonium) patterns may be governed by the nitrogen uptake efficiency of the 

vegetation, including alien annuals which were found to be linked to rapid recycling 

of available nitrogen in that system. Xu and van Klinken (2008) found lower nitrate-

based nitrogen in soils under lippia infestations compared to non-lippia invaded 

pastures in eastern Australia, as well as low C:N ratio in lippia leaf material 

suggesting that lippia litter would be rapidly decomposed (Zhang et al. 2008). 

Significant changes in soil nutrient attributes (nutrient dynamics, stable isotope 

signature) have been reported under lippia infestations in invaded pastures in eastern 

Australia (Xu and van Klinken 2008). In addition to lower nitrate nitrogen 

concentration, invaded soils had lower pH and higher EC than non-invaded soils 

under either native or improved pasture (Xu and van Klinken 2008). While there was 

no apparent patterning in pH levels in this study, higher EC under tree canopies at 

0.5r, as well as significant correlation of lippia cover with EC, indicates that lippia 

could be an active contributor to this pattern. 

Lippia and soil moisture 

Lippia is renowned for its capacity to significantly reduce soil moisture content 

(Lucy et al. 1995). Significant changes in soil moisture under lippia infestations were 

confirmed by Xu and van Klinken (2008), who reported a 16–39% reduction in 

invaded soils compared with neighbouring uninvaded native grasslands and 

improved pastures in eastern Australia. In the current study, there was no significant 

association between shallow soil moisture content and lippia cover, and a relatively 

weak correlation between lippia cover and deeper soil moisture at 150 cm depth. 

This depth is below the reported maximum rooting depth (around 70 cm) of lippia 

(Taylor and Ganf 2005), although Ludwig et al. (2004b) report increased rooting 

depth in plants associated with trees where hydraulic lift occurs. This is interpreted 

as a response to increased competition between trees and neighbouring vegetation in 
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semi-arid regions (Ludwig et al. 2004a). Lippia‟s close association with deep-rooted 

trees capable of hydraulic redistribution in the study area suggests that this may be an 

important process which potentially contributes to the success of lippia in this 

landscape by facilitating the species‟ persistence through drought periods. However, 

this requires further investigation as neither groundwater depth nor tree condition 

were found to be strong predictors of lippia abundance on the Upper Condamine 

floodplain in the study reported in Chapter 5. 

The significant association between lippia cover and organic carbon levels under tree 

canopies may contribute to better soil moisture relations, benefiting lippia under tree 

canopies during drought conditions (Belsky et al. 1989, 1993a), although this is not 

reflected in significant surface soil moisture differences in this study. 

6.4.3 Vegetation responses to lippia 

In the current study, gradients in floristic composition were strongly associated with 

lippia abundance (cover); however, these were also apparent in relation to distance 

from, or proximity to, trees. While correlations between trees and lippia cover 

represent a potentially confounding influence on floristic composition in these 

communities, response to the presence of trees was most apparent in terms of 

variation in the cumulative cover of non-lippia species and, to a lesser extent, 

community diversity, both of which increased significantly with distance from trees. 

In contrast, species richness was not significantly influenced by the presence of trees. 

Lippia cover, independent of proximity to trees, was significantly negatively 

correlated with the abundance of co-occurring floristic species, including abundance 

within functional groups. This appeared to be particularly so where percentage cover 

of lippia was greater than 20%. Decline in species richness with increasing cover and 

dominance of lippia was also evident but more gradual. These findings are consistent 

with those reported from other research into the impact of invasive species on 

community composition. In a systematic review of studies which investigated the 

community level impacts of 13 invasive „neophytes‟ (novel plant species) in the 

Czech Republic. Hejda et al. (2009) found that, for individual invasive species, 

impacts on species richness, community evenness and diversity were driven 

predominantly by the ability of that species to monopolise space, confirming the 
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suggestion by Gordon (1998) that highly invasive species which become dominant 

are most likely to have significant impact. 

In the current study, lippia was significantly more dominant than any other species. 

Of the 44 species recorded, it was both the most frequently recorded (being present 

in 96% of the 72 sample quadrats) and, on average, the most abundant with a mean 

cover of 28%. The cover of lippia was, on average, 61% greater than the next most 

abundant species and most dominant native species in these communities, which was 

the native perennial grass Paspalidium distans, occurring in 76% of samples with a 

mean cover 11%. Hejda et al. (2009) found that impacts on community diversity 

were greatest where the cover of the invasive species was at least 47% higher than 

that of the next most dominant species. On this basis, the relative dominance of 

lippia in this study indicates its potential for significant impact on the floristic 

composition of the riparian woodland community at St Ruth Reserve. 

Hejda et al. (2009) also suggest that invasive species are more likely to attain 

dominance, in terms of the cover and homogeneity of the stand, where the native 

community comprises many competitively weak native species. Weak competitive 

interactions are potentially the case in dryland floodplain communities where species 

are adapted to both drought and flooding disturbance, and in moderately grazed 

native pastures favouring high species diversity (Olff and Ritchie 1998). In theory, 

many of these should be species which are better adapted to coping with disturbance 

and related abiotic stresses, including ruderal species capable of rapid establishment, 

growth and reproduction following disturbance, than species which are adapted for 

competition (Grime 1977, 2007). Hejda et al. (2009) also suggest that changes in 

species composition following invasion usually result in an increase in resistant 

ruderal species. It is not feasible to test this hypothesis in the study landscape, where 

few, if any, pristine remnants exist and lippia has been present (and possibly prolific) 

for up to 80 years (i.e. it is a universally disturbed, lippia-invaded landscape). 

However, in this study, of the 33 species recorded across 26 (of 72) quadrats with 

lippia cover of 25% or more, 21 species were still present in the ten quadrats with 

lippia cover of 80% or more, indicating a relatively large pool of resistant species, 

including the native grasses, Paspalidium distans and Elymus multiflorus. 
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There appears to be a 2-phase relationship between lippia cover and the cumulative 

cover of non-lippia species, with a more variable response where lippia cover is less 

than 20% and greatly reduced variability in the cover of non-lippia species where 

lippia cover exceeded 20%, indicating a possible threshold above which lippia exerts 

a significant impact on floristic composition and community structure. Gooden et al. 

(2009b) found a similar 2-phase response to lantana (Lantana camara) cover, with a 

sudden decline in native species richness at 75% lantana cover. Taylor and Ganf 

(2005) report a stepped response in lippia cover (i.e. interpreted as an invasion 

threshold for lippia in relation to the presence of existing plants), under experimental 

conditions, where the stand density of the native grass species Sporobolus mitchellii 

was 25% and above; although, stand densities tested in this study were 0, 25, 50, 75 

and 100% of 36 (4 x 4 cm) cells within planter boxes, and it is unclear how this 

relates to projected foliage cover under field conditions. 

6.4.4 Lippia-tree interactions and ecosystem condition/function 

Previous studies have found that lippia, a low-growing clonal species, is able to 

rapidly pre-empt space where taller growing native species cover is significantly 

reduced by grazing or flooding, but that repeated disturbance may be required for 

lippia to maintain this competitive advantage (Price et al. 2008, 2010a, 2011). While 

lippia abundance at the study site is a legacy of extensive infestation associated with 

the previous heavy grazing regime, localised high-abundance lippia „populations‟ 

remain, despite limited disturbance and significant recovery of non-lippia 

groundcover over much of the area in recent years. 

The results of this study, which indicate that lippia persists in the study area in the 

absence of ongoing disturbance, supports a new interpretation which incorporates the 

potentially dynamic relationship between tree canopy cover, lippia cover and the 

cover and diversity of non-lippia species in lippia-infested riparian woodlands. Key 

interactions suggested by this study are summarised in Figure 6.7. While 

mechanisms were not investigated, evidence of strong correlation with abiotic and 

community response variables is interpreted as significant influence within the 

context of this study. In summary, dappled light conditions under tree canopies drive 

a negative response in C4 perennial tussock grasses, the dominant „non-lippia‟ 

herbaceous species, resulting in reduced cover of tall groundcover species and higher 
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relative light availability at groundlevel under tree canopies in this landscape. This 

confers a competitive advantage to lippia, a light-dependent C3 species which may 

also benefit from differential under-canopy soil attributes, including higher levels of 

certain soil nutrients and soil moisture (Xu and Van Klinken 2008, Xu et al. 2010b), 

under trees. Consolidated (abundant densely rooted) lippia growth in response to 

differential resource availability may act to further exclude non-lippia species at this 

spatial scale. 

 

 

 

Figure 6.7 Conceptual diagram of interactions and potential feedbacks between canopy 

cover, and cover of lippia and non-lippia (predominantly C4) vegetation. Solid lines show 

the key relationships and directions of influence indicated by this study; dotted lines indicate 

relationships which are suggested but require further investigation. 
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Weaker associations and potential feedbacks which require further investigation are 

also indicated in Figure 6.7. Other studies report that established lippia populations 

can act as a base for rapid localised vegetative expansion of lippia under conditions 

of spatially and temporally variable resource availability (Price et al. 2011). Well-

resourced patches of lippia also support ramet growth and infiltration into more 

hostile areas (Xu et al. 2010b) in response to changes in the cover and density of 

neighbouring non-lippia vegetation with disturbances such as grazing, drought or 

flooding (Taylor and Ganf 2005, Berney et al. 2010, Price et al. 2010a, 2011). While 

such expansion may be only temporarily successful, it may have a long-term impact 

on the diversity of native species which historically establish under suitable 

conditions in inter-tussock spaces in this environment (Table 6.6). This study 

suggests that changes in the diversity and structure of groundcover vegetation may 

further constrain the capacity of non-lippia vegetation to resist lippia infiltration. The 

outcome of competitive interactions may also vary temporally in response to changes 

in tree canopy cover or tree health, while seasonal changes in shade distribution 

around trees may also be important at this scale (e.g. Belsky et al. 1989). In addition, 

the capacity for high lippia levels to alter soil and moisture conditions (Xu and Van 

Klinken 2008) also indicates the potential for competition and feedback influences 

on tree health under conditions of resource scarcity. These are discussed in more 

detail below. 

6.4.5 Significance and limitations 

This study is the first to investigate the role of canopy trees in facilitating the 

abundance and persistence of the invasive alien groundcover species lippia Phyla 

canescens in remnant floodplain riparian woodlands in the absence of grazing or 

flooding disturbance. It suggests that trees may play a significant role in mediating 

small-scale interactions between lippia and non-lippia vegetation through their 

impact on local levels of resource availability. In this study, while lippia prevalence 

at the study site was a legacy of historical over-grazing, a key correlate of current 

lippia abundance, hence its ability to remain dominant over non-lippia vegetation, 

was the availability of light at ground level, which was higher under E. 

camaldulensis/E. tereticornis canopies than in canopy gaps due to the impact of 

dappled shade on the cover of non-lippia species. Reduced cover of taller growing 
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non-lippia herbaceous vegetation (e.g. perennial tussock grasses) and increased light 

at ground level enable lippia to consolidate its growth and maintain a high level of 

abundance (up to 100% cover) in association with trees. This study also suggests that 

soil organic carbon and exchangeable cations may play an important role in lippia‟s 

success in this landscape. 

Strong association with trees in this landscape also has implications for the future 

spread of lippia. The prevalence of strongly rooted highly integrated consolidated 

lippia growth under tree canopies in this study indicates potential for rapid local 

expansion of lippia from these refugia with a return to suitable conditions. Rapid 

extension and rooting of new ramets in bare soil, supported by clonal integration 

with established plants (Xu et al. 2010b), gives lippia a temporal advantage over 

species which rely solely on recruitment from the soil seedbank, and an increased 

probability of successful establishment (Price et al. 2011). Lippia infestations can 

expand locally by this mechanism, particularly where disturbance has resulted in low 

cover and density of non-lippia species (Price et al. 2010a, 2011).  The ability to 

maintain healthy populations may also provide a significant advantage and future 

benefit to lippia‟s success, both locally and in the wider landscape. High lippia cover 

is correlated with high reproductive effort (flowering and seed production) in this 

study, indicating that trees may also facilitate ongoing contributions to the persistent 

soil seedbank in this environment, despite adverse climatic conditions. Propagule 

pressure is a primary driver of invasion success (Colautti et al. 2006), and a 

substantial soil seedbank in source populations represents a significant risk to 

downstream environments with subsequent dispersal in floodwaters (Stokes et al. 

2007, 2008, Macdonald 2008). A high level of sexual reproduction in Australian 

lippia populations has also been linked to a capacity for rapid micro-evolution, 

increasing lippia‟s ability to succeed under highly variable climatic conditions (Xu et 

al. 2010a). 

Heterogeneous cover of lippia in these woodlands, and indication of association with 

a small number of key resources, suggests the potential for strategic management of 

lippia through the manipulation of resource availability (e.g. light, levels of 

exchangeable cations such as potassium) on the relatively small tree-based scale. 

Manipulation of key resources has been used effectively in small-scale trials 

elsewhere (e.g. Prober et al. 2005). Xu et al. (2010b) have shown lippia‟s growth and 



218 

productivity dependence on high light availability, and capacity to manipulate this. 

However, while this current study indicates association between some resources and 

lippia abundance and reproduction, these results are correlative only and not 

indicative of causality. Further research is required to determine the potential and 

cost-effectiveness of manipulating resource availability or specific soil attributes to 

control lippia. 

Other studies have indicated that available soil moisture may also be important to 

lippia (Taylor and Ganf 2005, Price 2011), but this was not apparent in this study 

where limited variation in soil moisture levels in both surface and subsoils due to 

drought conditions may have masked the potential importance of water availability to 

lippia in this landscape. Hydraulic lift is undoubtedly an important process in the 

vegetation type, however broadscale changes occurring across the Upper Condamine 

floodplain indicate chronic groundwater decline in the general study area (Chapter 

2). Data from monitoring bores within 5 km of the St Ruth reserve indicate that mean 

groundwater levels were at 18.4 m in 2004–05 and declining at an average rate of  

1.8 m per decade (DNRMW 2008). As a result, it is likely that the roots of trees 

sampled in this study have limited connectivity with shallow groundwater resources 

and that hydraulic lift processes may not operate effectvely. This implies increasing 

reliance on stochastic rainfall events (e.g. Elmore et al. 2003, 2006a) and increased 

potential for hydraulic failure under extended drought conditions (Tyree and Sperry 

1988, McDowell et al. 2008). Lippia is reported to be capable of significantly 

depleting soil moisture (Lucy et al. 1995, Xu and Van Klinken 2008), and its close 

association with trees in this landscape indicates that intense competition for scare 

surface soil moisture may occur, exacerbating moisture stress and potentially 

contributing to reduced hydraulic function in „host‟ trees. 

In a study conducted by Ludwig et al. (2004a), increased competition between trees 

capable of hydraulic lift and neighbouring herbaceous vegetation for surface soil 

moisture resulted in no net benefit to trees. A similar effect between lippia and host 

Eucalyptus camaldulensis/E. tereticornis may represent additional pressure on tree 

health in this landscape, particularly under conditions of severe water deficit, 

compounding the impact of significant groundwater decline in the study landscape. 

However, further investigation is required to identify the water sources used by trees 

and lippia, and to determine whether, and under what conditions, the relationship 
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between these two species, in terms of water relations, is primarily facilitative or 

competitive. 

Lack of significant patterning between topographic position treatments, of lippia 

cover and all environmental variables except subsoil moisture, indicates that 

microtopographic refugia, if important, may work independently of tree-based 

refugia in this landscape. This is reinforced by the limited interaction found in this 

study between distance from tree and topographic position. Alternatively, the range 

of positions chosen in this study may not have captured the location of active 

microtopographic refugia still operating under the dry climatic conditions at the time 

of sampling; the role of these in supporting localised high density lippia populations 

may require further investigation. 

This study is also the first to investigate small-scale interactions between lippia and 

non-lippia species in invaded remnant native vegetation communities in Australia. 

Results indicated a potential threshold impact level of lippia infestation at around 

20% cover, up to which non-lippia vegetation exhibited a variable response to lippia 

invasion and beyond which the cover of non-lippia species declined rapidly. While 

this response requires further investigation, it indicates a direct (possibly non-linear) 

impact on floristic composition and community structure, and the potential of this 

invasive species to alter the functional diversity and dynamics (including resilience) 

of invaded communities where lippia cover is not maintained below this level. 

It is unclear whether the results of this study can be applied to other landscapes in 

which lippia is currently absent and in which grazing does not occur. Initial 

establishment of lippia in the study area was most probably associated with a 

combination of historical flooding and grazing disturbance regimes prevalent both 

within upstream riparian communities and locally within the St Ruth reserve. It is 

also possible that the previous history of the study area as a livestock camping and 

watering reserve, and more recently as a heavily stocked leased grazing area 

(Chapter 2), may have contributed to the observed patterning in some measured soil 

attributes (Marshall 1974, Taylor et al. 1985, Lunt 2005); for example, physical 

disturbance, compaction and resource accumulation in stock camps under trees may 

have contributed to the inital loss of native shade-tolerant C3 species (Allsopp et al. 

2007) and lippia establishment and consolidation in these locations. While grazing 
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exclusion, in combination with extended drought, has resulted in a significant decline 

in lippia cover and a corresponding increase in the cover of native species at St Ruth 

Reserve (QMDC 2005), lippia continues to be a dominant component of the 

groundcover vegetation, indicating that the legacy of past disturbance persists in the 

study area. However, persistent high cover of lippia under tree canopies appears to be 

less related to ongoing disturbance, such as grazing and flooding, than to pre-

emption and consolidation of occupied space under abiotic conditions which confer a 

competitive advantage to lippia over co-occurring native species. 

6.5 Conclusion 

This study investigated interactions between dominant canopy trees and lippia in 

remnant riparian E. camaldulensis/E. tereticornis woodlands, as suggested in the 

analysis of environmental drivers of community pattern reported in Chapter 5. It 

found a positive association between mature canopy trees and lippia cover, 

reproductive condition and growth habit, and indicated that trees influence small-

scale heterogeneity in floristic composition (community structure) and, in particular, 

the strength of interactions between lippia and non-lippia species. Scattered trees in 

this study appeared to confer a competitive advantage to lippia over neighbouring 

non-lippia groundcover species, mediating interactions between lippia and non-lippia 

species through their influence on resource availability and environmental 

conditions. Consolidated refugial populations, such as those persisting in a „halo‟ 

around the base of mature trees, continue to flower and contribute seed to the soil 

seedbank during drought, representing a significant risk to downstream areas with 

low groundcover with subsequent flooding. These persistent refugial populations 

also represent secure sites from which lippia can rapidly expand locally through 

vegetative growth with the return of favourable conditions such as above-average 

rainfall and the reintroduction of grazing. 

Environmental variables, influenced by the presence of trees and associated with 

high lippia cover and reproduction, included high levels of available light at ground 

level, and elevated levels of exchangeable cations, particularly potassium, and soil 

organic carbon which may contribute to higher drought tolerance in this mesic C3 

species. It is suggested that further research is required to establish mechanisms and 
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thresholds for lippia response to key abiotic gradients, as a foundation for strategic 

control in remnant ecosystems. 

The absence of any significant local soil moisture gradient in relation to the presence 

of trees was unexpected, but potentially influenced by drought conditions at the time 

of sampling and reduced access to declining shallow groundwater resources in this 

highly modified landscape. However, there is potential for strong competitive 

interactions for scarce water resources between abundant densely rooted lippia 

populations and their host trees which may compound localised soil water deficits, 

reinforce tree dieback responses and exacerbate woodland decline where 

groundwater levels are no longer accessible to deep tree roots. This may be the case 

in sections of the Upper Condamine where groundwater extraction has contributed to 

widespread chronic groundwater decline, as outlined in Chapter 2. 

The next chapter synthesises the results from this and previous chapters into a 

conceptual state and transition model of riparian woodland response on the highly 

modified Upper Condamine floodplain. Rather than a discrete ecological model, 

Chapter 7 also incorporates the socio-ecological context of these woodland 

ecosystems to develop a holistic model which explores the drivers/attributes 

operating in this complex highly modified production landscape. 
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Chapter 7 A conceptual state and transition model for Upper Condamine 

floodplain riparian woodlands 

7.1 Introduction 

A primary objective of sustainable management is to maintain the resilience of 

ecosystems and their ability to respond and adapt to future disturbances and change 

(UNEP 2009). This can only be realistically achieved on the basis of an 

understanding of the relationships between disturbance, ecosystem pattern and 

underlying ecological processes. The broader socio-ecological context of ecosystems 

in production landscapes, where sustainable land management encompasses 

biodiversity conservation and continued ecosystem service provision in systems 

subject to significant anthropogenic change, adds an additional level of complexity to 

this understanding (Walker et al. 2002). Native ecosystem remnants embedded in 

highly modified landscapes are subject to altered disturbance regimes and 

degradation pressures which potentially shape their composition, structure, 

ecological function and resilience to future disturbance (Walker and Meyers 2004, 

Walker et al. 2006). 

Conceptual models are valuable tools which aid in the definition and exploration of 

important relationships between key components of complex systems (Gentile et al. 

2001, Spooner and Allcock 2006). They provide an effective framework for 

summarising and communicating current knowledge based on empirical evidence 

and also a means of incorporating theoretical understanding of the function and 

behaviour of an ecosystem. They can effectively extend existing knowledge, which 

in many cases may be limited, and provide a framework within which critical gaps in 

knowledge and understanding of a system can be identified. In this way, they can 

contribute to the development of hypotheses regarding system responses to, and 

future outcomes of, environmental change including management actions (Yates and 

Hobbs 1997, Gentile et al. 2001, Spooner and Allcock 2006). They can also provide 

valuable links between both theoretical and empirical research (Herrick et al. 2006), 

and between research and ecosystem management (Spooner and Allcock 2006). 

This chapter develops a conceptual ecosystem response model for riparian woodland 

communities on the Upper Condamine floodplain, based on evidence derived from 
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this study and a review of the relevant literature. Research reported in this thesis 

indicates multiple drivers of composition, function and condition in remnant 

woodlands in this highly modified production landscape. The model proposed in this 

chapter incorporates those factors which drive critical transitions between alternative 

stable states in these woodlands. 

7.1.1 Conceptual models and ecosystem dynamics 

Native disturbance-driven ecosystems exhibit both equilibrium and non-equilibrium 

dynamics (Briske et al. 2003, Stringham et al. 2003). Continuous and reversible 

vegetation dynamics are evident within dynamic stable states controlled by a 

particular set of stabilising feedbacks (i.e. the governing stability regime) (Stringham 

et al. 2003, Briske et al. 2008). Disturbance within the historical range (i.e. the 

adaptive/evolutionary disturbance regime) essentially resets the position of a given 

vegetation patch along the successional trajectory, while spatial variability in the 

occurrence and intensity of disturbances contributes to beta diversity and a dynamic 

patch mosaic of ecosystem state phases, though not necessarily alternative stable 

states, within a landscape unit (Stringham et al. 2003, Briske et al. 2008). Transitions 

between state phases within a stability regime are linear and reversible (Fuhlendorf et 

al. 2001, Stringham et al. 2003). Such dynamics are captured in the traditional 

climax, equilibrium or „range‟ model of community development (Briske et al. 

2003). 

Non-equilibrial system dynamics are conceptualised in „state and transition‟ model 

frameworks (Westoby et al. 1989) which recognise the potential for alternative stable 

states and accommodate discontinuous (non-linear) and non-reversible vegetation 

change between these (i.e. polyclimax theory; Tansley 1935, Whittaker 1953). 

Alternative stable states operate under different stability regimes (i.e. sets of 

stabilising feedbacks), and transitions between these involve the crossing of critical 

biotic and/or abiotic thresholds (Stringham et al. 2003, Briske et al. 2003, 2008). 

Such critical transitions may be fast or slow, but transition back to a previous 

alternative state is improbable without active management and significant input 

(Friedel 1991, Prober et al. 2005, Stringham et al. 2003). 

Early use of the state and transition framework was confounded by lack of 

recognition that both equilibrium and non-equilibrium dynamics may occur in 



224 

ecosystems (Briske et al. 2003, 2005). In addition, disturbance history may 

significantly influence observed response dynamics. For example, reversible (linear) 

shifts in floristic composition are apparent in response to changes in grazing intensity 

in systems with a long evolutionary history of grazing and where resilience 

mechanisms to this type of disturbance have evolved; irreversible transitions and 

alternative stable states (i.e. non-equilibrial dynamics) are more likely in systems 

where grazing is a novel disturbance to which resilience mechanisms are not fully 

developed (Cingolani et al. 2005a). These issues have been resolved to some extent 

by clarification of terminology and better definition of model terms (Stringham et al. 

2003), and by increasing empirical evidence and understanding of the behaviours of 

complex ecosystems (e.g. Cingolani et al. 2005a, Colloff and Baldwin 2010). 

Concurrent development of resilience theory has led to greater recognition of the 

value of the state and transition approach in effectively conceptualising elements of 

ecosystem resilience and change (Briske et al. 2006, 2008). At the same time, 

research into the role of plant functional traits in vegetation community dynamics 

provides an important mechanistic link between vegetation change and ecosystem 

function, which can also be represented within the state and transition framework 

(McIntyre and Lavorel 2007). 

State and transition models 

The state and transition modelling framework (Westoby et al. 1989) is based on the 

theoretical concept of non-equilibrial ecosystem dynamics and resilience. This theory 

effectively proposes that different successional trajectories are possible within a 

landscape unit, and that ecosystems can be expressed as a number of alternative 

stable (resilient or resistant) states separated by transitions from one stability regime 

to another in response to environmental change (Holling 1973, Walker et al. 1999, 

Gunderson 2000, Chapter 1). Resilience theory proposes that a stable state is 

maintained by negative (stabilising) feedbacks which reinforce the current state 

(Peterson et al. 1998, Briske et al. 2006, 2008), while change between states involves 

a „switch‟ from these to positive feedbacks („feedforwards‟) which initiate, and 

frequently accelerate, change (Suding et al. 2004, Hagerthy et al. 2008). Transition 

between states may involve specific thresholds in biotic and/or abiotic conditions, 

with shifts across these (and between states) driven by natural events (e.g. 

succession, disturbances) and/or human activities (e.g. land use change, 
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management) (e.g. Scheffer et al. 2001, Scheffer and Carpenter 2003, Suding and 

Hobbs 2009). Such „critical‟ transitions may be triggered by climatic extremes 

(Parmesan et al. 2000, Scheffer et al. 2001, Walther et al. 2002) or large infrequent 

disturbances (Turner et al. 1998), acting independently or in combination (Briske et 

al. 2008, Raffa et al. 2008). Transitions are often non-linear, and potentially difficult 

to reverse, with unpredictable outcomes due to the complexity of factors involved 

(Scheffer and Carpenter 2003, Suding and Hobbs 2009). 

Initially developed as an alternative to the range succession model, which assumed 

linear reversible change, in grazing rangeland management systems (Westoby et al. 

1989), state and transition models (STMs) have gained wide acceptance as tools for 

representing non-linear ecosystem responses to change, particularly where this is 

management-induced (Stringham et al. 2003). STMs provide a framework for 

organizing current understanding of ecosystem dynamics; information about 

potential alternative states can be graphically arranged (as box and arrow diagrams, 

with boxes representing states and phases within states and arrows representing 

transitions) in order to clarify relationships between these. Originally based on states 

defined by dominant indicator pasture species (e.g. Stockwell et al. 1994, Phelps and 

Bosch 2002), STMs have since been developed to incorporate a comprehensive 

range of ecosystem components relating to ecosystem structure and ecological 

function (e.g. Stringham et al. 2003, Briske et al. 2008). STMs are now applied 

widely across a range of management contexts and ecosystem types subject to 

transition due to natural or anthropogenic disturbance, including: 

 the management and restoration of endangered eucalypt woodlands (Yates and 

Hobbs 1997, Prober et al. 2002b, Spooner and Allcock 2006); 

 threshold responses to secondary salinity in southern Australia (Cramer and 

Hobbs 2005); 

 post-mining rehabilitation to a self-sustaining jarrah forest ecosystem in Western 

Australia (Grant 2006); 

 impacts of grazing, fire and climate impacts on carbon dynamics in Australian 

savannas (Hill et al. 2005), and of natural disturbances and fire management in 

the upper Grande Ronde Sub-basin of northeast Oregon (Hemstrom et al. 2007); 
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 response in plant traits to changes in soil resource availability and disturbance 

regimes associated with changing grassland management in subalpine grasslands 

in the central French Alps (Quetier et al. 2007). 

A set of concise definitions for state-and-transition model components was 

developed by Stringham et al. (2003). This has contributed to greater clarity in the 

development of STMs, which increasingly encompass factors which govern the 

resilience and resistance of an ecosystem‟s primary ecological processes, hence 

ecosystem stability. These include abiotic factors relating to landscape function 

(Tongway and Hindley 2004), such as hydrology and soil characteristics (depth, 

organic matter, structure and fertility) (Briske et al. 2006, Lopez et al. 2011), which 

underpin key species recruitment and community assembly processes (Prober et al. 

2002b, Henkin et al. 2007, Lopez et al. 2011). 

Alternative stable states in state-and-transition models (STMs) are defined by 

community composition, structure and ecological function, within an ecological 

system or landscape unit (Westoby et al. 1989, Stringham et al. 2003, Briske et al. 

2008). A stable state can encompass a number of state phases between which the 

ecosystem may move in response to changes in the historical disturbance regime 

under which it has evolved and to which it is adapted (Scheffer and Carpenter 2003, 

Briske et al. 2008). This dynamism is inherent in healthy well-functioning 

ecosystems and falls within the stability regime of the ecosystem as long as rates of 

fundamental primary processes such as hydrology, energy capture, and nutrient 

cycling are not significantly altered (Stringham et al. 2003). For example, Colloff 

and Baldwin (2010) describe floodplain and wetland ecosystems in semi-arid 

environments such as occur in the Murray Darling Basin as a single state, despite 

significant transitions between wet and dry phases driven by episodic floods and 

droughts, as the species assemblages occurring in these systems are adapted to both 

drought and flooding. Alternatively, a similarly dynamic stable state, incorporating 

state phases within a stability domain, may develop in response to a new set of 

stabilising feedbacks under novel environmental conditions (Carpenter et al. 2001). 

Transitions between state phases are, by definition, reversible, whereas transitions 

between alternative states are effectively irreversible without active management. 

Such „critical‟ transitions involve thresholds, across which one or more primary 

ecological properties or processes change (Friedel 1991, Groffman et al. 2006). A 
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threshold may be defined by significant change in functions that determine and 

regulate the dynamics of an ecosystem, resulting in severely diminished resilience 

(Lopez et al. 2011) and a shift to alternative ecosystem states with different sets of 

stabilising feedbacks and different structural and functional characteristics 

(Bestelmeyer et al. 2009, Lopez et al. 2011). 

Resilience-based STMs 

Briske et al. (2008) have recently proposed modifications to the STM framework to 

incorporate factors relevant to current understandings of ecosystem resilience, such 

as feedbacks, community phases vulnerable to change, triggers and restoration 

pathways (listed and defined in Table 7.1) which better describe dynamics within, 

and changes between, states. This approach aims to provide a unified framework that 

links ecological theory and processes with management. The focus in such a model is 

to highlight understanding, and knowledge gaps in the understanding, of threshold 

mechanisms and potential trajectories in alternative post-threshold states, in 

recognition of the critical consequences for land management associated with 

ecosystem state changes on individual ecological sites. This provides the opportunity 

to identify at-risk community phases, potential environmental triggers and threshold 

categories as ecological benchmarks to describe the probability/risk of threshold 

progression and to increase insight into the feedback mechanisms that determine 

resilience in the preferred state and drive critical transitions across thresholds (Briske 

et al. 2006). 
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Table 7.1  Resilience-based concepts recommended for incorporation in the state-and-

transition modelling framework (after Briske et al. 2008) 

Concept Definition Reference 

Alternative states Temporally or spatially separated plant 

community states (incorporating phase-changes 

within states), with characteristic composition, 

structure and function associated with a regime 

of environmental variability (e.g. fertility, 

hydrology, management, disturbance), occurring 

on similar soils within a local area 

Holling 1973, Walker et al. 

1999, Gunderson 2000, 

Stringham et al. 2003 

At-risk community phase Plant community phase that is most vulnerable 

to exceeding the limits to resilience of the state, 

and most likely to undergo transition to an 

alternative state. 

Folke et al. 2004, Walker et al. 

2004 

Ecological resilience System capacity to maintain its fundamental 

structure and function through stabilising 

feedback mechansims when subject to 

disturbance or change. 

Holling 1973, Walker et al. 

1999, Gunderson 2000, 

Chatham et al. 2009 

Feedback mechanisms Ecological processes that enhance (i.e. 

stabilising negative feedbacks) or decrease (i.e. 

destabilising positive feedbacks) ecosystem 

resilience. 

Peterson et al. 1998, Briske et 

al. 2006, 2008 

Feedback switch Point at which system feedbacks shift from 

being dominated by stabilising negative 

feedbacks, that enhance ecosystem resilience 

and maintain a state in a particular stability 

domain, to being dominated by positive 

feedbacks that decrease ecosystem resilience and 

increase the probability of state change. 

Suding et al. 2004, Grigulis et 

al. 2005, Scheffer et al. 2005, 

Briske et al. 2006, Hagerthy et 

al. 2008 

Restoration pathway Re-establishment of a desirable pre-threshold 

state requiring active restoration of the 

stabilising (negative feedback) mechanisms 

required to maintain that state. 

Suding et al. 2004, Young et al. 

2005, Bestelmeyer 2006, 

Briske et al. 2006, 2008, King 

and Hobbs 2006 

Thresholds Levels of biotic (e.g. invasive species) and/or 

abiotic conditions which exceed the limits of 

ecological resilience and induce changes (often 

non-linear) in ecosystem structure and/or 

function, resulting in a shift to alternative states. 

Friedel 1991, Scheffer et al. 

2001, Scheffer and Carpenter 

2003, Chapin et al. 2006b, 

Groffman et al. 2006, Suding 

and Hobbs 2009 

Transitions Transitions are vectors of change. They may be 

either reversible (occurring between phases 

within a state) or irreversible/„critical‟ 

(occurring between alternative states when a 

threshold has been breached). 

Stringham et al. 2003, Briske et 

al. 2006 

Triggers Biotic or abiotic variables or events which act 

independently or in combination to initiate 

threshold-related processes (feedback switch, 

regime shift) by contributing to critical loss of 

ecosystem resilience in an ecosystem state. 

Rietkerk and van de Koppel 

1997, Scheffer et al. 2001, 

Mayer and Rietkerk 2004, 

Briske et al. 2006, 2008 
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7.1.2 Conceptual modelling of floodplain/riparian ecosystems 

While there have been many STMs developed for rangeland situations to represent 

and predict ecosystem responses to grazing disturbance, this approach is rarely 

applied to riparian ecosystems (Stringham  et al. 2001, Wondzell et al. 2006), despite 

widespread recognition that these systems are often significantly impacted by altered 

hydrological regimes and within-patch management regimes (Chapter 1). Baker and 

Walford (1995) tested the „state and transition‟ concept in riparian vegetation on a 

river reach in southwestern Colorado. They describe a mosaic of patches of different 

ages since flooding, but found no consistent pattern of post-flood succession in 

trends in species richness, mean percent cover, and species composition, suggesting 

differing successional trajectories (to alternative stable states) in response to 

exceptional flooding events which significantly altered the physical environment. 

Colloff and Baldwin (2010) used an STM approach to conceptualise ecosystem 

resilience in the semi-arid floodplain and wetland ecosystems of the Murray-Darling 

Basin. The model for these systems is based on a single state with transitions 

between wet and dry phases driven by episodic floods and droughts. Colloff and 

Baldwin (2010) conclude that floodplains and wetlands in semi-arid environments 

are subject to strong, periodic abiotic disturbances and that ecosystem functions and 

biogeochemical processes in such systems are driven by spatio-temporal variability 

and assemblages of species adapted to both drought and flooding. 

Colloff and Baldwin (2010) suggest that the primary mechanism through which 

resilience is lost, and the potential for a critical transition to an alternative state 

increased, in semi-arid floodplain and wetland ecosystems is extreme drying outside 

the range historically experienced in these systems (e.g. due to climatic change 

and/or over-allocation of water resources). This concurs with the findings of 

Stringham et al. (2001) who developed an STM for riparian ecosystems in a semi-

arid floodplain production landscape, subject to groundwater extraction for pasture 

irrigation purposes, in eastern Oregon, USA. Four distinct plant community states 

were identified, with critical transitions driven by differences in soil moisture content 

or depth to groundwater during the growing season (Stringham et al. 2001). The 

authors conclude that models of vegetation dynamics based on concepts of non-

equilibrium ecology are appropriate tools for conceptualising and predicting change 
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in the riparian ecosystems. They also suggest that vegetation change in response to 

soil water and groundwater gradients in these communities is likely to be step-wise, 

rather than linear, with community stability or resilience to change maintained up to 

a critical threshold, but sudden and potentially irreversible change once this threshold 

is crossed (Stringham et al. 2001). 

7.1.3 This study 

This research sought to identify key patterns and drivers of ecosystem condition and 

function in remnant floodplain riparian woodlands associated with agricultural 

production landscapes of the northern Murray-Darling Basin (MDB), eastern 

Australia, to better understand the role of altered disturbance in these systems. It 

investigated links between landscape pattern, hydrological flows, patch management, 

and the composition and condition of riparian woodlands in an intensively developed 

section of the Upper Condamine floodplain, southern Queensland. 

Eucalyptus camaldulensis/E. tereticornis woodlands on the Upper Condamine 

floodplain are significantly reduced in extent (Chapter 2), and, as confirmed in this 

study, generally in poor condition. This research indicates significant response in 

floristic composition, community structure and functional diversity, and potentially 

resilience (i.e. vulnerability) to future disturbance, to gradients in land use intensity, 

resource availability (including shallow groundwater) and the abundance of the 

dominant invasive species Phyla canescens (lippia) in these riparian woodland 

remnants. High levels of P. canescens are evident across all study sites (Chapter 3), 

associated with land use intensity (in this case, the proportion of irrigation cropping 

and grazing land uses; Chapter 5), and facilitated, under certain circumstances, by a 

close association with the presence of trees (Chapter 6). Moderate to severe dieback 

is prevalent in mature E. camaldulensis/E. tereticornis trees (Chapter 4), indicating 

significant environmental stress within this landscape associated with land use 

intensity, chronic groundwater decline, and within-patch grazing (Chapter 5). This is 

accompanied by limited recruitment in this dominant canopy species complex, but 

increasing abundance of the subdominant canopy species Acacia stenophylla, 

particularly where eucalypt decline/dieback severity is greatest and tree density is 

lowest (Chapter 5). Significant changes in floristic composition and functional group 
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transition ratios were also apparent in response to gradients in groundwater decline, 

tree condition and lippia cover in this landscape (Chapter 5). 

This chapter synthesises these findings into a conceptual resilience-based STM 

(Briske et al. 2008) or response model for riparian woodland communities on the 

Upper Condamine floodplain. The proposed model identifies key observed and 

potential ecological states and critical transitions between these, based on evidence 

of association derived from this study and from a review of the relevant literature. 

7.2 Methods 

Key findings from this research were organised into a state and transition model 

framework comprising key states and transitions between these in response to major 

changes apparent in the Upper Condamine floodplain landscape. Modifications to the 

base STM framework (comprising alternative states and transitions) which better 

describe dynamics within, and changes between, states in a resilience-based STM, 

proposed by Briske et al. (2008), were incorporated. This approach includes factors 

relevant to current understanding of ecosystem resilience (i.e. feedbacks, community 

phases vulnerable to change, triggers and restoration pathways etc., as defined in 

Table 7.1). 

7.3 Results and discussion 

7.3.1 A resilience-based STM for riparian woodlands on the Upper 

Condamine floodplain 

Components of a proposed state and transition model (STM) for riparian woodlands 

on the Upper Condamine floodplain are outlined in Table 7.2. This table, based on 

the resilience-based STM components suggested by Briske et al. (2008), lists: 

(i) proposed indicators for each of the proposed ecosystem states (S1-S4); 

(ii) negative or stabilising feedbacks potentially operating to maintain each state; 

(iii) the at-risk community phase which is most likely to undergo transition to the 

alternative state (Sx+1); 
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(iv) possible trigger events or tipping points which result in the proposed feedback 

switch (negative to positive); and 

(v) subsequent critical transitions across thresholds (T1-T3) to alternative states. 

Key states and critical transitions are presented graphically in Figure 7.1. 
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Table 7.2  Components of a proposed resilience-based state and transition model 

(STM) for riparian woodlands on the Upper Condamine floodplain (after Briske et al. 2008). 

Descriptions of alternative states (S1-S4) include indicators of vegetation states and within-

state phases (including the at-risk community phase), feedbacks and triggers; proposed 

transitions (T1-T3) describe possible thresholds. 

 Factor Description 

S1 Indicators Dominant canopy of Eucalyptus camaldulensis/E. tereticornis, with some evidence of 

dieback in response to grazing and/or drought intensity (Davidson et al. 2007), pulse 

recruitment in response to flood events, and a range of size/age classes where grazing 

is limited (Dorrough and Moxham 2005, George et al. 2005); with or without an 

Acacia sp. sub-canopy; diverse perennial groundcover species composition (C3 and 

C4 habitat generalists and species adapted to grazing, drought and flooding) (Mcintyre 

et al. 1999b, Colloff and Baldwin 2010); inter-tussock patches small and disconnected 

and occupied periodically by short-lived native species (Stromberg et al. 2009) 

Stabilising 

feedbacks 

Perennial groundcover minimises soil, nutrient and water movement from high 

intensity storms and flooding, and enhances infiltration (Yates et al. 2000); deep-

rooted canopy species with access to shallow groundwater maintain condition and 

facilitate persistence of groundcover species during drought periods (Elmore et al. 

2003, 2006a); persistent propagule/seedbanks facilitate recovery with flooding and/or 

return to normal conditions (Capon 2007). 

At risk 

community phase 

Native and perennial groundcover low and patchy, large interconnected patches of 

bare ground periodically occupied by short-lived and/or grazing-resistant species 

(Yates et al. 2000, McIvor et al. 2005, Truscott et al. 2008) 

Trigger Land use practices, including grazing within remnants +/- cropping in the surrounding 

matrix, +/- drought reduce resilience and increase susceptibility to invasive species 

(Truscott et al. 2008, Price et al. 2011, Chapter 5) 

T1 Threshold Introduction and flood dispersal of lippia in the landscape (Stokes et al. 2007, 2008) 

S2 Indicators Dominant canopy of Eucalyptus camaldulensis/E. tereticornis, with some evidence of 

dieback in response to grazing and/or drought intensity (Chapters 4 and 5), pulse 

recruitment, in response to flood events, and a range of size/age classes where grazing 

is limited (as above); with or without an Acacia sp. sub-canopy; diverse perennial 

groundcover species composition (habitat generalists and species adapted to grazing, 

drought and flooding) (Chapters 3 and 5). Bare patches occupied by lippia after 

flooding (MacDonald 2008, Price et al. 2011); lippia consolidation (phalanx growth 

habit) where groundcover is reduced due to grazing and/or flooding and soil moisture 

is retained (Price et al. 2008, 2011) 

Stabilising 

feedbacks 

Healthy (functional) deep-rooted canopy species access and redistribute subsoil 

moisture and/or groundwater through well-functioning surface roots, maintaining tree 

health and facilitating persistence (limiting loss) of groundcover species, including 

lippia, during drought periods (Chapter 5) 

At risk 

community phase 

Lippia dominant under tree canopies (Chapters 5 and 6) and potentially competitive 

with trees for scarce soil moisture resources during drought (e.g. Ludwig et al. 2004a); 

grazing livestock contribute to soil compaction, reduced moisture infiltration and 

constrain eucalypt surface root condition and function (Yates et al. 2000); reduced 

access to surface soil moisture contributes to drought stress responses in trees (tip 

death, cavitation, branch sacrifice, reduced productivity, increased susceptibility to 

infection etc (Alder et al. 1996, Rice et al. 2004) 

Trigger Drought and associated soil moisture stress, exacerbated by present of grazing 

livestock and/or increased competition (especially from lippia) for limited soil 

moisture resources (Chapters 5 and 6) 

T2 Threshold Water management (altered hydrological regime, water diversion, extraction) which 

contributes to groundwater decline in shallow alluvial aquifers (CSIRO 2008, Chapter 

2) below levels (e.g. 15 m) which support tree health (Chapter 5) and survival during 

periods of critical soil moisture deficit (Horner et al. 2009). 

S3 Indicators Mature Eucalyptus camaldulensis/E. tereticornis sparsely distributed and in poor 
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 Factor Description 

health (moderate-severe dieback), with significant numbers of stags and little 

successful recruitment (restricted age distribution) (Chapters 4 and 5); increasing 

levels of dieback in response to hydrological stress +/- grazing (Chapters 4 and 5). 

Increasing prevalence of Acacia spp. where grazing is excluded (Chapter 5). 

Groundcover floristics dominated by lippia (Chapter 3); non-lippia vegetation 

comprising resistant perennial groundcover species (species adapted to grazing, 

drought and/or flooding) (Mcintyre et al. 1999b, Colloff and Baldwin 2010, Chapter 

6). Lippia persistent in drought refugia under trees (Chapter 6) 

Stabilising 

feedbacks 

Some recovery of tree condition and groundcover composition with good rainfall 

and/or flooding which disperses propagules and replenishes surface and subsoil 

moisture reserves (Amlin and Rood 2003, Yurkonis and Meiners 2006) 

At risk 

community phase 

Tree condition fails to respond to improved soil moisture conditions, evident as 

ongoing incremental loss/mortality of mature eucalypts and recruitment failure despite 

adequate rainfall and/or flooding (Cox et al. 2005, Croft et al. 2007, Jensen et al. 

2007). Poor tree health and lippia infestation are also contributing factors in decisions 

to clear smaller unmapped remnants not covered by tree clearing legislation under the 

Vegetation Management Act 1999, contributing significantly to reduced extent and 

increasing fragmentation of this vegetation type (pers. obs.). 

Trigger Biotic failure of canopy tree species (loss of root function, hydraulic failure, increased 

susceptibility to infection/infestation, reproductive failure) +/- exacerbated by drought 

(Croft et al. 2007) 

T3 Threshold Low patch-scale cover of riparian eucalypts, poor propagule dispersal and recruitment 

resulting in a demographic failure in the Eucalyptus camaldulensis/E. tereticornis 

metapopulation (e.g. Aldrich and Hamrick 1998) 

S4 Indicators S4a: dominant canopy of Acacia stenophylla where flooding occurs and/or soil 

conditions are suitable (CSIRO 2004, Doody et al. 2009) and grazing is restricted 

(Chapter 5); groundcover of flood- and drought-resistant species (Chapter 5) and/or 

nitrogen-dependent (nitrophilic) species (Prober et al. 2002b, 2005), including lippia 

(Clech-Goods 2010); and/or  

S4b: limited woody species canopy where soil or moisture constraints/grazing occur 

(potentially another threshold, T4) (Scholes and Archer 1997, Mills et al. 2006); 

diverse perennial graminoid groundcover species composition (habitat generalists and 

species adapted to drought and flooding) under sustainable grazing/where grazing is 

excluded (i.e. conversion to floodplain grassland); grazing-resistant 

grassland/herbfield where overgrazing occurs (McIvor et al. 2005), with lippia 

potentially dominant under adequate soil moisture conditions (Price et al. 2010a, 

Berney et al. 2010). 

Stabilising 

feedbacks 

Perennial groundcover minimises soil, nutrient and water movement with high 

intensity rainfall and flooding, and enhances infiltration (Yates et al. 2000); persistent 

propagule-/seed-banks facilitate recovery with flooding and/or return to normal 

conditions (Capon 2007); limited availability and/or dispersal of Eucalyptus 

camaldulensis/E. tereticornis seed material within the landscape (Dorrough and 

Moxham 2005, George et al. 2005, Jensen et al. 2007, 2008a,b). Where Acacia species 

dominate, nitrification and nitrogen cycling maintain high levels of nitrophilic species 

(e.g. Prober et al. 2002b), potentially including lippia (Clech-Goods 2010).  
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Figure 7.1 A conceptual state and transition model for Upper Condamine floodplain 

riparian woodland. Only key phase changes within states are indicated. Transitions are 

indicated by solid arrows; restoration pathways are indicated by dashed arrows; and critical 

thresholds (biotic, management) are shown as broken lines. Detailed descriptions of states 

and feedbacks are provided in Table 7.2. 
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The proposed conceptual resilience-based state and transition model for riparian 

woodland ecosystems of the Upper Condamine floodplain (Table 7.2, Figure 7.1) 

comprises four key alternative ecological states (S1-S4) separated by three critical 

transitions and potential thresholds (T1-T3) between these. These include a pre-lippia 

landscape (S1), with riparian grassy eucalypt woodland composition exhibiting 

reversible transitions (not shown in Figure 7.1, but described in Table 7.2) between 

within-state phases in response to episodic flood and drought events (Colloff and 

Baldwin 2010). Livestock grazing, a novel disturbance in these ecosystems, is likely 

to have driven transitions to alternative states with significantly altered floristic 

composition and community structure, as has been found in other situations (e.g. 

Spooner and Allcock 2006, McIntyre and Lavorel 2007); however, this was not able 

to be tested in this study, which was conducted in a post-invasion lippia-dominated 

landscape (S2). 

Transition to a lippia-invaded landscape 

The critical transition (T1) between these two alternative states represents an 

irreversible change associated with the introduction and spread of lippia within the 

Upper Condamine floodplain landscape, creating a novel ecosystem type (sensu 

Hobbs et al. 2006, 2009) in which lippia plays a dominant ecological role, facilitated 

by flooding, grazing, the presence of scattered eucalypts and the intensification of 

land use (Chapters 5 and 6). Reversal of this transition is highly unlikely, given 

lippia‟s capacity to form a persistent soil seedbank (Macdonald 2008) and evidence 

of its potential for rapid micro-evolution and ongoing adaptation to future 

disturbances such as climate change (Xu et al. 2010a). 

Within lippia-invaded floodplain riparian woodlands (S2), lippia is a dominant and 

functionally important species influencing the composition, structure and function of 

these woodlands (Chapter 5); however, it is also responsive to a range of disturbance 

regimes and to the condition (density, height) of non-lippia groundcover vegetation 

(Chapter 6). Close association between the presence of trees and lippia is evident, 

with greater lippia cover and reproductive effort in close proximity to trees. This 

„halo effect‟ is in part linked to reduced cover of other (non-lippia) groundcover 

species close to trees and consequent higher light availability at ground level, but 

may also be influenced by the concentration of resources (soil nutrients, soil 
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moisture) and altered soil condition associated with the presence of trees in this 

landscape. Facilitation by trees may provide a critical refuge for this mesic C3 

species, enhancing its persistence in this landscape, particularly during periods of 

severe drought (Chapter 6). Flooding, and a return to „normal‟ rainfall conditions, in 

combination with grazing is likely to see lippia abundance increase across the 

landscape (Price et al. 2008, 2010a, Berney et al. 2010), with consequent shifts in the 

floristic composition and structure of these communities (Chapters 5 and 6). Thus 

phase changes and reversible transitions within S2 are likely to occur in response to 

climatic conditions (drought, rainfall, flooding), particularly where these occur in 

combination with levels of grazing which reduce the cover density and height of non-

lippia vegetation (Taylor and Ganf 2005, Price et al. 2008, 2011, Chapter 6). Critical 

transitions to alternative states are possible in response to high levels of grazing in 

combination with suitable soil moisture conditions, but increasing lippia abundance 

under these conditions generally leads to destocking (Lucy et al. 1995) and 

subsequent native vegetation recovery over time (e.g. QMDC 2005) with ecosystem 

responses buffered by persistent soil seedbanks and flood dispersal of species 

propagules from upslope sources. Loss of persistent soil seedbanks due to 

reproductive failure or extreme drought or flooding, in combination with loss of 

upstream remnants or flood dispersal limitation due to floodplain flow diversion 

structures may limit recruitment in these communities (Chapter 5), but this requires 

further investigation. 

Lippia may also exacerbate drought stress in riparian eucalypts, as suggested in 

Chapter 6. However, chronic decline (increasing dieback severity) in the dominant 

canopy species in these woodlands, Eucalyptus camaldulensis/E. tereticornis, 

appears to be driven by groundwater decline (Chapters 4 and 5). E. camaldulensis is 

a deep-rooted phreatic species (Thorburn et al. 1993, 1994, Mensforth et al. 1994) 

which is increasingly dependent on accessible groundwater resources during periods 

of surface soil moisture deficit (Thorburn et al. 1993, Doody et al. 2009). It is 

capable of accessing subsoil moisture and groundwater to depths of approximately 

15 m (Mensforth et al. 1994, Horner et al. 2009), and passively redistributing this 

water from deep sinker roots to shallow surface roots and surface soils (Burgess et al. 

1998). This process (hydraulic lift) has been shown elsewhere to contribute to the 

maintenance of the surface root systems of trees during periods of limited 
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precipitation and low soil moisture (Burgess et al. 1998, Scholz et al. 2002), and to 

enhance the abundance and diversity of neighbouring groundcover (Ludwig et al. 

2004b) and shrub (Zou et al. 2005) species. In this study, groundwater level is a 

strong predictor of groundcover composition; this is potentially mediated through the 

hydraulic function of mature eucalypts in the study landscape (Chapter 5), indicating 

that trees may well be critical (keystone) elements contributing to functional 

response and resilience in these communities. 

Transition to groundwater-independent riparian woodlands 

A second critical transition (T2), from a riparian landscape buffered by groundwater 

connectivity (S2) to one disconnected from groundwater (S3), is effectively a socio-

ecological threshold (Anderies et al. 2006, Chapin et al. 2006b, Folke 2006) 

associated with the development of irrigated agriculture on the Upper Condamine 

floodplain and currently supported by high levels of water resource use in this region 

(Chapter 2). Chronic groundwater decline/falling groundwater levels are evident in 

bore hydrographs since the commencement of irrigated agriculture in the 1960s, and, 

despite significant flood events in that period, there is no evidence of recovery. This 

has resulted in groundwater depths which now, in parts of the riparian landscape, 

potentially exceed levels accessible to deep-rooted phreatic species such as 

Eucalyptus camaldulensis/E. tereticornis, potentially leaving these more susceptible 

to drought stress and contributing to dieback responses (Chapter 5) and increased 

mortality (Horner et al. 2009). 

Increasing groundwater depth and poorer tree health in this study were associated 

with changes in groundcover composition and functional diversity under drought 

conditions at the time of sampling. In semi-arid ecosystems elsewhere, access to 

shallow groundwater provides a stabilising buffer to drought and is an important 

factor in the composition, structure, function and resilience of these ecosystems (e.g. 

Elmore et al. 2006a). Loss of deep-rooted woody vegetation due to groundwater 

decline may contribute not only to significant change in floristic composition in 

associated herbaceous vegetation, but also to increasing sensitivity and vulnerability 

to climatic events (e.g. Elmore et al. 2006a). 
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Transition to alternative riparian ecosystem types 

Increased drought susceptibility and declining condition of mature riparian eucalypts 

under drought conditions, in combination with poor recruitment in these species 

(Chapter 5), may be indicative of eventual population failure (Rice et al. 2004, 

George et al. 2005, Jensen et al. 2008a). This represents a third critical transition 

(T3) from an ecosystem state where these canopy eucalypts, despite declining 

condition and function, still dominate (S3) and an alternative state (S4) in which they 

are effectively absent due to population failure in these ecosystems. Disconnection 

from groundwater in similarly adapted phreatic riparian tree species is reported to 

cause significant canopy dieback and physiological failure (embolism, cavitation), 

contributing to increased mortality within local populations (e.g. Cooper et al. 2003b, 

Froend and Drake 2006) and shifts in dominance within ecosystems (e.g. Shafroth et 

al. 2000, Stromberg et al. 2007b). Although not tested in this system, accessible 

groundwater is likely to be the critical factor delimiting the extent of floodplain 

woodlands and grasslands on the floodplain. Bren (1992) reports invasion of a 

floodplain grassland ecosystem by Eucalyptus camaldulensis in response to rising 

groundwater levels on the Moira grass Pseudoraphis spinescens-dominated War 

Plains in the southern Murray Darling Basin, indicating that the converse (i.e. decline 

in E. camaldulensis) may also be true where groundwater levels are falling. On the 

Upper Condamine floodplain, it is likely that the declining extent of E. 

camaldulensis/E. tereticornis woodlands due to groundwater decline would result in 

replacement of current riparian woodland communities. 

The alternative non-eucalypt riparian ecosystem state (S4) is likely to comprise 

community phases of low woodlands or shrublands dominated by Acacia species 

(e.g. A. stenophylla), floodplain grasslands (where lippia cover is low) or herblands 

dominated by lippia (Table 7.2, Figure 7.1). This alternative state may not be realised 

for considerable time after a threshold for eucalypt persistence has been passed in 

this landscape due to significant lags in responses, as well as the capacity for short-

term adaptive recovery, in long-lived species such as Eucalyptus camaldulensis/E. 

tereticornis. However, chronic decline in this species complex is already apparent in 

this landscape in terms of the health of mature trees (Chapter 4). Coupled with poor 

recruitment and survival of recruits, it is likely that this decline will persist, and 

potentially increase, over time with declining tree health and increased frequency and 
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intensity of drought conditions associated with predicted climate change (Dorrough 

and Moxham 2005, George et al. 2005, Jensen et al. 2007, 2008a,b). A demographic 

study of canopy species in riparian woodlands of the Upper Condamine has not been 

conducted, but would provide valuable evidence of population trends. 

7.3.2 Significance and limitations 

The synthesis of results from this current research, in combination with evidence 

from previous studies in similar ecosystems elsewhere, into a resilience-based state 

and transition model provides insight into the potential for retention of riparian 

Eucalyptus camaldulensis/E. tereticornis woodland ecosystems on the Upper 

Condamine floodplain, a highly modified production landscape. It also identifies 

critical gaps in our current knowledge and understanding of these systems, and 

provides direction for future research to fill these. 

Briske et al. (2008) argue that the organisation of knowledge and understanding of 

an ecological system into a resilience-based STM is a means of focusing attention on 

management and policies which promote within-state resilience and reduce the 

potential for state transitions across critical thresholds (i.e. effectively, the limits of 

state resilience). However, this presumes an accurate knowledge of the mechanisms 

involved and the identification of valid indicators of change, as well as the capacity 

to influence the key drivers of change. On the Upper Condamine floodplain, it 

appears that thresholds have been crossed; however, critical transitions between 

alternative states may not yet be fully realised due to lag times in ecosystem response 

(Chapin et al. 1993, Scott et al. 1999). This is particularly the case with T2, the 

groundwater depth threshold in this model. Significant responses in long-lived 

adaptive species such as Eucalyptus camaldulensis/E. tereticornis may not be evident 

for some time after such a threshold is crossed, due to the species‟ capacity to access 

water from a variety of sources and adaptive responses such as canopy thinning to 

reduce evaporative demand (Chaves et al. 2003, Doody and Overton 2009) and 

epicormic regrowth following stress (Landsberg and Wylie 1983, 1988, Marsh and 

Adams 1995). It is likely that severe drought conditions contribute to a critical rate of 

change in trees already responding to chronic groundwater decline. Management 

intervention (if feasible) in these situations is likely to be inadequate in a system in 

which there is only limited capacity to redress the situation. For example, the volume 
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of stored water in the Upper Condamine river system is relatively small and the 

provision of environmental flows is unlikely to contribute significantly to 

groundwater rise in a system in which surface and ground waters are effectively 

disconnected along much of this section of the river (CSIRO 2008). 

Conversely, better definition of potential thresholds may contribute to the 

identification of sites at which groundwater is still within the accessible range, and 

may form the basis for strategic management of these sites and of groundwater levels 

in their vicinity.  While new developments such as the emerging coal seam gas 

industry in southern Queensland are fraught with potential environmental problems 

(Moran and Vink 2010), the quantity of water likely to be extracted and available for 

re-use may represent an opportunity, where appropriate water quality can be assured, 

to supplement groundwater at high priority sites. Similarly, in-stream weirs appear to 

ameliorate the impacts of groundwater decline on tree condition in areas immediately 

downstream; in-stream barriers (weirs and large woody debris) which act to slow 

flow and retain water within the system may contribute to locally enhanced 

groundwater conditions to support better tree health (Chapter 4 and 5). Both options 

appear worthy of further investigation to ascertain their feasibility and potential 

contribution to improved groundwater connectivity. 

This STM captures only the primary drivers of change in these woodlands. To 

accurately incorporate the range of disturbances which impact on riparian woodland 

systems in the Upper Condamine landscape (as indicated in Chapter 5) would lead to 

a potentially complex array of states, phases and transitions for which there is 

currently little empirical evidence. However, it does highlight critical transitions 

suggested by this research, and point to the value of the state and transition 

modelling framework as a tool for conceptualising ecosystem dynamics in such a 

highly disturbed system. It also highlights the need to better understand the 

mechanisms associated with vegetation change in this landscape, in particular the 

role of key dominant species in driving changes in floristic composition and 

community structure. 

Further development of this model is also required in order to quantify the 

probability of change (Bellamy and Brown 1994, Briske et al. 2006, Rumpff et al. 

2011), particularly where this is associated with delayed response. Such a 

quantitative predictive model would also incorporate probabilities associated with the 
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potential for reversal of critical transitions and restoration of preferred ecosystem 

states (Young et al. 2005, Briske et al. 2006), and would provide valuable support to 

sustainable resource management in this landscape. 

While developed for riparian woodland ecosystems on the Upper Condamine 

floodplain, this STM may also be applicable in similar ephemeral river systems and 

multi-use landscapes in the northern Murray Darling Basin, particularly where there 

is evidence of groundwater decline. This might include other irrigated cropping 

regions, but could also potentially apply where the emerging coal seam gas industry 

is predicted to place significant pressure on groundwater systems (Moran and Vink 

2010). Accurate monitoring of groundwater levels in shallow aquifers supporting 

water-dependent vegetation, and management to reduce the risk of groundwater 

decline below levels accessible to phreatic species, may be necessary to avoid risk 

associated with loss of resilience in these systems (Eamus et al. 2006) and transition 

to less-functional ecosystem states. 

7.4 Conclusions 

The resilience-based state and transition model developed in this chapter provides 

insight into the potential for retention of riparian Eucalyptus camaldulensis/E. 

tereticornis woodland ecosystems on the highly modified Upper Condamine 

floodplain. Significant transitions identified include the historical shift from a pre-

invasion lippia-free landscape to one in which lippia is a dominant component of 

native ecosystems on the floodplain, particularly in locations where flooding and 

grazing have occurred over time. A second critical transition, driven by chronic 

groundwater decline associated with the development of irrigated agriculture, is 

currently being realised in the decline of the dominant phreatic canopy species; this 

is likely to have been exacerbated by drought conditions, indicating a loss of 

resilience within these communities. The important functional role played by this 

species within these woodlands is indicative of a future critical transition from a 

savanna woodland landscape to one in which trees play a limited functional role. 

Likely outcomes of this transition are Acacia stenophylla-dominant shrubland and 

floodplain grassland or lippia-dominant herbland ecosystems; further research is 

required in order to determine the value of these systems in terms of ecosystem 

service provision. 
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The potential to redress chronic groundwater decline in this system is limited under 

current water resource allocation arrangements. However, there is an opportunity to 

identify parts of the landscape in which groundwater levels remain accessible to 

Eucalyptus camaldulensis/E. tereticornis. This study suggests that these sites should 

be prioritised in terms of management to maintain woodland function. While further 

research would be required to define strategies to achieve this, it is apparent that this 

should include management to stabilise, and possibly supplement, groundwater 

levels. 
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Chapter 8 General discussion and conclusions 

8.1 Introduction and summary 

Remnant ecosystems in agricultural landscapes are relatively poorly understood in 

terms of their diversity, function and dynamics (resilience) under altered disturbance 

regimes; yet these ecosystems can contribute significantly to our understanding of 

how ecological systems respond to change. Such knowledge is vital to our 

understanding of how major disturbances such as climate change may play out, and 

how management may most effectively respond to retain biodiversity (ecological 

diversity and function) and ecosystem services in these important landscapes. 

This thesis has reported research results from studies investigating patterns in the 

composition, structure and condition of Eucalyptus camaldulensis/E. tereticornis 

riparian woodlands on the highly modified Upper Condamine floodplain, southern 

Queensland. It has contributed new understanding of responses in riparian woodland 

ecosystems to natural and anthropogenic disturbance on the Upper Condamine 

floodplain, and also contributes to a more general understanding of the dynamics of 

ecosystem remnants in highly modified landscapes. While sampling at one point in 

time, in this case during significant drought, means that the full range of ecological 

response in these communities was not captured, this study provides an insight into 

the resilience and resistance to extreme drought of these riparian woodland 

communities; this may not have been possible if sampling had occurred under more 

benign conditions. The research was also essentially correlative and exploratory in 

nature, hence relationships between environmental and response variables cannot be 

interpreted as indicative of cause and effect without further investigation. In addition, 

the highly confounded nature of some drivers (Chapters 3, 4 and 5) means that the 

interpretations presented in this thesis are not exclusive of alternative explanation. 

However, despite these limitations, this study provides clear indication of significant 

change in these communities, which has been interpreted in the context of previous 

research findings and known ecological mechanisms. 

Chapters 3 and 4 tested a number of potential ecological hypotheses which are 

supported in other riparian and riverine systems. These included that patterns in 

floristic composition, functional diversity and dominant canopy tree species 
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condition are related to differences in in-stream flow or longitudinal connectivity, 

lateral connectivity across the floodplain (in terms of both overbank flooding and 

overland flow), and within-remnant land use (i.e. grazed or ungrazed). Key findings 

of these studies were that significantly lower floristic and functional diversity and 

poorer tree condition were potentially explained by reduced hydrological variability, 

concurring with studies elsewhere (e.g. Ward and Stanford 1995b, Stromberg et al. 

2007a); however, this was confounded by evidence of greater land and water use 

intensity in these sections of this landscape. Significant interaction between 

longitudinal connectivity and land use, and, in some cases, lateral connectivity and 

land use, indicated that a complexity of drivers influence ecosystem patterns in this 

modified production landscape. 

These studies also confirmed that floodplain riparian Eucalyptus camaldulensis/E. 

tereticornis woodlands on the Upper Condamine are in poor condition, exhibiting 

severe dieback and mortality in dominant canopy eucalypts, as well as significant 

levels of invasion by the alien clonal groundcover species Phyla canescens (lippia), 

as have been previously reported (Phillips and Moller 1995, McCosker 1996, Voller 

1998). 

Chapter 5 investigated woodland response to a range of hydrological, land use and 

land cover variables at a range of scales including within-remnant (patch-scale), peri-

remnant (adjacent landscape scale) and multi-remnant (local landscape scales). The 

majority of response variables (including floristic composition, functional group 

richness and abundance transitions, and canopy tree attributes and condition) were 

best explained by a combination of hydrological and land use/land cover 

environmental variables operating at a range of spatial scales. Key predictors of 

riparian woodland response in this study were land and water use intensity, including 

grazing at the within-remnant patch scale (within 500 m), land use intensity and land 

cover type in the adjacent landscape upslope of sites (within 2000 m), and the density 

of groundwater bores and extent of irrigated cropping in the „local‟ landscape (within 

5 km) surrounding sites. However, the primary abiotic driver of ecosystem response 

identified in this study was groundwater decline, with lower diversity and more 

severe dieback associated with increasing depth to groundwater, suggesting an over-

arching reliance on shallow groundwater resources for maintenance of ecosystem 

resilience. This concurs with findings from similar semi-arid dryland river systems 



246 

elsewhere, particularly during extended drought when access to groundwater 

provides a critical buffer to low soil moisture availability (e.g. Amlin and Rood 

2003, Elmore et al. 2003, 2006); however, this has not previously been reported for 

systems in the Murray-Darling Basin (MDB) and is counter to current understanding 

of riparian ecosystem response to water resource development in this river system. In 

the southern MDB, riparian ecosystem decline is generally driven by rising 

groundwater levels and associated salinisation. However, interrogation of the records 

for groundwater monitoring bores in the Upper Condamine confirmed chronic 

groundwater decline in this landscape over the 50 years of irrigated cropping, with 

limited recovery in response to wetter periods or extensive flooding (Chapter 2); this 

is in direct contrast to the prevailing conditions along the River Murray (CSIRO 

2008). 

Lippia abundance and dieback severity were also found to be important biotic drivers 

of ecosystem condition in these communities, and key predictors of floristic 

composition and functional group richness and abundance transitions. Poor tree 

condition was interpreted as loss of function in terms of hydraulic redistribution of 

deep soil moisture which acts to supplement shallow soil moisture levels (Burgess et 

al. 1998, Burgess and Bleby 2006) and support species which are less well adapted 

to the range of climatic variability experienced in this landscape (Colloff and 

Baldwin 2010). This may result from declining function in eucalypts associated with 

poor surface root condition due to the impact of grazing livestock on soil structure 

(Northup et al. 2005), inability to repair damaged surface roots due to carbon 

depletion associated with drought and declining condition (Snyder and Williams 

2007), disconnection between deep roots and declining groundwater levels (Williams 

et al. 2006), or a combination of these factors. Responses to lippia abundance were 

not readily interpreted in terms of possible mechanisms affecting tree decline from 

the study reported in Chapter 5. However, strong associations between lippia cover 

and the density and mortality of mature trees indicated that this relationship might be 

important in this landscape, and was investigated in Chapter 6. 

The study reported in Chapter 6 indicates that scattered trees play a significant role in 

facilitating the abundance and persistence of lippia in this landscape, and that lippia 

cover above approximately 20% may have a significant impact on the abundance and 

diversity of non-lippia species in these grassy woodlands. Lippia growing under the 



247 

canopy of mature trees exhibited high levels of abundance (cover), a consolidated 

matting growth form and high reproductive levels compared to areas in canopy gaps. 

There was a strong association between lippia cover and the availability of light at 

ground level, related to reduced cover of taller-growing non-lippia species under the 

dappled shade of scattered eucalypts. Lippia growth beyond the canopy edge was 

predominantly a loosely trailing exploratory „guerrilla‟ form, which other studies 

have shown is supported through clonal integration (Xu et al. 2010b) and provides 

lippia with a capacity for rapid expansion when soil moisture conditions improve 

(Price et al. 2011). Lippia cover was also significantly correlated with the higher 

levels of organic carbon, chloride and exchangeable cations apparent under tree 

canopies; however, the mechanism underpinning the apparent increased competitive 

advantage of lippia over non-lippia species once its cover reaches the potential 

threshold level of 20% requires further investigation, as does the potential impact of 

lippia on tree condition. 

Key relationships apparent from these studies were summarised in a conceptual 

resilience-based state and transition „riparian woodland response‟ model (Briske et 

al. 2008, Chapter 7), which identified three potential critical transitions for riparian 

ecosystem condition and function in this landscape. The first transition was lippia 

invasion of the Upper Condamine landscape, which effectively transformed the 

riparian woodland communities into novel ecosystems in which lippia was an 

increasingly dominant and functional component. The second transition was the 

development of an irrigated agricultural industry which has driven chronic 

groundwater decline to levels which are effectively beyond access by deep tree roots, 

contributing to greater vulnerability in these ecosystems to rainfall variability and 

soil moisture deficit. Increased dieback severity in trees no longer able to access 

shallow groundwater during drought periods, in combination with recruitment 

failure, suggest a reduced density of woodland trees in these ecosystems over time. 

These are likely to be replaced by the subdominant drought-hardy species Acacia 

stenophylla in parts of the landscape close to the river. In other areas, these woodland 

ecosysytems may be replaced by the alternative floodplain ecosystem on the soil 

type, Dichanthium sericeum grasslands, or lippia-dominant herblands where grazing 

and flooding disturbances prevail. This transition may occur slowly due to the 

adaptive capacity of Eucalyptus camaldulensis/E. tereticornis; however, at some 
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point it is likely that a threshold response may become apparent with population 

failure in E. camaldulensis/E. tereticornis due to increased mortality triggered by 

extended drought or recruitment failure due to lack of seed production and limited 

dispersal, germination and survival of seedlings with extended drought and/or 

reduced flooding. Such a transition may contribute to a decline in lippia populations 

in the region, given the apparent role of trees in the persistence of lippia in this 

landscape, particularly during adverse climatic conditions (Chapter 6). However, it is 

also probable that there would be significant changes in the level of ecosystem 

services (e.g. flood tolerance, streambank stability, aquatic ecosystem condition, 

koala habitat etc) delivered in such an altered landscape. 

8.1.1 Importance of surface flow (longitudinal and lateral) connectivity 

In contrast to many other studies (e.g. Lite et al. 2005, Renofalt et al. 2005a,b), 

differences in surface flow connectivity, while apparent, were not clearly identified 

as dominant drivers of ecosystem condition or heterogeneity in this study. This may 

have been, in part, a result of the prevailing drought conditions and the lack of any 

major rainfall or flood events in the years preceding sampling, and cannot be 

interpreted as indicative of low importance to these ecosystems. Evidence of low 

recruitment in riparian eucalypt species alone suggests that lack of periodic 

inundation by floodwaters is likely to have significant long-term impacts on the 

population dynamics of these important canopy species (George et al. 2005, Jensen 

et al. 2008a), and subsequent impacts on the long-term function and resilience of 

these communities (Chapter 7). However, this is also potentially linked to the strong 

influence of additional disturbances associated with land use intensity in this highly 

modified landscape. Evidence of reduced floristic and functional diversity and poorer 

tree condition in the Middle river section (Chapters 3 and 4) coincided with limited 

streamflow dynamics in the years preceding sampling; however, they were also 

associated with greater levels of land use change and higher land and water use 

intensity in this section of the study area (Chapter 2). Relatively better tree condition 

on the Lower river section suggests the potential for in-stream weirs to influence 

local shallow groundwater flows, as suggested by others studies (e.g. Lane and Zinn 

1980); however, this requires further investigation. 
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This study does indicate that overland flows which connect riparian remnants with 

the broader upslope landscape are likely to be important factors influencing the 

richness and diversity of species in riparian remnants. Evidence of significant 

functional group response to land use type and intensity and the presence of off-

stream water storage infrastructure in the adjacent area upslope of riparian 

woodlands indicates that diversion of overland flow might significantly influence the 

dynamics and resilience of these ecosystems remnants. This effect has not been 

empirically demonstrated, and requires further investigation to determine whether 

this response is due to constraints on the dispersal of species propagules (e.g. 

Malanson and Armstrong 1996, Van Dorp et al. 1997) or changes in sedimentation, 

water inflows and/or water infiltration rates (Porter 2002, Bramley et al. 2003, 

Beauchamp and Stromberg 2008). 

8.1.2 Importance of vertical connectivity 

Vertical connectivity between surface and groundwater systems is increasingly 

acknowledged as an important component of riverine systems in Australia, with 

baseflow from shallow alluvial aquifers providing a critical buffer to in-stream flows 

during low rainfall runoff periods (e.g. Boulton and Hancock 2006, Evans and Neal 

2006). However, the importance of shallow groundwater systems to riparian 

vegetation condition has received little attention, despite evidence from other parts of 

the world that this can be a critical factor, particularly in riparian ecosystems 

associated with semi-arid dryland river systems (e.g. Stromberg et al. 1996, Brunke 

et al. 2003, Elmore et al. 2003, 2006a). In contrast, the focus in Australia has been 

on the degradation of riparian systems in response to rising groundwater and salinity 

levels in regions, such as the southern MDB, where widespread clearing of deep-

rooted vegetation across catchments has significantly altered landscape hydrology 

(e.g. Jolly et al. 1993, Slavich et al. 1999, Overton et al. 2006) and where water 

management regimes maintain high in-stream, and, by association, alluvial 

groundwater levels (Overton et al. 2006). Significant impact on riparian systems is 

reported where altered hydrological regimes contribute to prolonged periods of 

inundation or where shallow groundwaters carry high salt loads and contribute to 

raised soil salinity levels (Jolly et al. 1996). There are few cases in Australia where 

groundwater decline is considered detrimental to a native vegetation community. 
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These include the Gnangara Groundwater Mound in Western Australia, where 

phreatic Banskia species suffer significant impact from groundwater drawdown 

associated with mining activities in the local area, particularly through seasonal 

summer drought periods (Zencich et al. 2002, Froend and Drake 2006, Canham et al. 

2009). Horner et al. (2009) also report increased mortality in a densely planted 

maturing Eucalyptus camaldulensis plantation where groundwater levels exceeded 

12–15 m. 

Chronic groundwater decline is apparent in the Condamine Alluvium, the shallow 

alluvial aquifer associated with the Upper Condamine River. This has likely been 

driven by high levels of groundwater extraction to support irrigated agriculture over 

a period of 50 years, resulting in recorded declines of up to 20 m in some monitoring 

bores (Chapter 2). In this study, groundwater depth was a key predictor of floristic 

composition, functional diversity and mature tree condition. Other studies have 

reported the critical importance of vertical connectivity between shallow 

groundwater resources and ecosystem condition, particularly during periods of soil 

water deficit (e.g. Amlin and Rood 2003, Elmore et al. 2003, 2006a), suggesting that 

accessible groundwater provides a critical buffer against drought impacts in semi-

arid water-dependent riparian systems. 

8.1.3 Importance of landscape legacy 

Several studies have indicated the critical influence of past land use and disturbance 

on current composition, structure and function in ecosystems (Lunt and Spooner 

2005, Cousins 2009), although this legacy is often not readily taken into account in 

studies of ecosystem response (Dale et al. 2000). Increasing use of geographic 

information systems to record and interrogate spatially linked datasets provide a rich 

opportunity for tracking change through time (Elmore et al. 2006b). This may be 

particularly valuable for interpreting change in long-lived adaptive species such as 

canopy eucalypts, which may exhibit significant time-lags in response to 

environmental change (Kozlowski and Pallardy 2002, Vesk et al. 2008), and would 

facilitate predictive modeling of future change in these ecosystems (Chapter 7). Such 

temporal connectivity was not specifically measured in this study, which was 

effectively a snapshot in time. Despite this, greater dieback severity in dominant 

canopy eucalypts in response to groundwater depth may be interpreted as indicative 
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of future trends in the composition, function and resilience of these woodlands with 

continued groundwater extraction and climate change impacts on in-stream flows 

and groundwater recharge (Scott et al. 1999, Horton et al. 2001a, Chapter 5). 

Similarly, functional group transitions to higher relative richness and abundance of 

floodplain or wetland species, due to loss of generalist/terrestrial species with 

increasing groundwater depth and dieback severity, indicates reduced ecosystem 

diversity but potentially increased resistance to change (Colloff and Baldwin 2010, 

Chapter 5), at least in the short-term. 

In addition, persistent soil seedbanks, and propagule dispersal from upstream 

remnants, are likely to play a critical role in buffering ecosystems against major 

shifts in species composition in landscapes which are increasingly subject to 

modification with the intensification of land use and altered frequency, intensity and 

duration of drought and flooding disturbance events associated with predicted 

climate change (Capon and Brock 2006, Capon 2007, Stromberg et al. 2008). Such 

persistence through time is also a critical component of the success of alien species, 

such as lippia Phyla canescens, within an invaded landscape. Interactions between 

the autecology of lippia and flooding and grazing disturbance regimes have promoted 

its spread and establishment within floodplain landscapes (Macdonald 2008, 

Macdonald et al. 2006, Price et al. 2008, 2011); however, persistence of this mesic 

species through periods of extended soil moisture deficit is perhaps critical to its 

success in this semi-arid landscape. Previous studies have indicated lippia‟s ability to 

form a persistent soil seedbank, with evidence of adaptation to defer germination 

until conditions are likely to ensure successful establishment (Macdonald 2008, 

Macdonald et al. 2006). This current study indicates that lippia persistence is also 

facilitated by large trees (and also potentially micro-topographic variations) which 

provide significant drought refugia for lippia in this landscape, enhancing its 

survival, abundance and reproductive success through periods of soil moisture deficit 

and also its potential to respond rapidly to improved soil moisture conditions with 

return to normal rainfall conditions and flooding (Chapter 6). 

8.2 Management and policy implications 

Biodiversity investment decisions need to balance the probability of success against 

perceived value in terms of biodiversity conservation and landscape health outcomes 
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(e.g. protection of threatened species and ecosystems, maintenance of critical 

ecological processes/ecosystem services) (Chapin et al. 2000, Swift et al. 2004, 

Hobbs et al. 2006). This implies that we understand the critical drivers of change in 

modified ecosystems, and that we have the capacity to address these. Improved 

understanding of how individual systems respond to anthropogenic change is vital to 

ensure that investment and management are tailored to effectively address specific 

issues within local contexts, including critical thresholds which might constrain 

ecosystem recovery and restoration (Hobbs and Harris 2001, e.g. Prober et al. 2005). 

Determining the relative importance of different environmental drivers of ecosystem 

condition is a critical challenge to biodiversity conservation in complex highly 

modified landscapes (Folke et al. 2004, Heller and Zavaleta 2009). This is especially 

the case in socio-ecological systems (Carpenter et al. 1999, Kinzig et al. 2006), such 

as multi-use production landscapes (e.g. Shelton et al. 2001). Such systems are 

poorly studied (Kinzig et al. 2006), and may be particularly complex and prone to 

delayed responses, unintended and unforeseen feedbacks, cross-scale interactions 

and non-linearities (Magnuszewski et al. 2005, Kinzig et al. 2006). This complexity 

makes it difficult to plan and implement policies and management strategies which 

successfully deliver sustainable resource use in such systems. As a result, the 

outcomes of traditional environmental management approaches (e.g. control of 

invasive weeds, revegetation, potentially even provision of environmental flows) 

applied to these systems are generally poor because they (inevitably) fail to 

adequately incorporate the elements of system structure that underlie this inherent 

complexity (Magnuszewski et al. 2005). 

Decisions about the scale of intervention required to achieve acceptable levels of 

protection for biodiversity values in these landscapes are often guided by prevailing 

hypotheses regarding the role these factors play in influencing ecosystem processes 

and function. However, management approaches derived for systems in one area may 

not be equally effective in achieving predicted or desired outcomes in different 

ecological and environmental contexts (Jenkins et al. 2005).  Increasingly, 

management must take an adaptive (or experimental) approach with effective 

monitoring at relevant scales and critical evaluation of approaches to ensure 

successful return on investment (Folke 2006, Doak et al. 2008, Auld and Keith 

2009). 
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8.2.1 Management for ecosystem resilience on the Upper Condamine 

Floodplain 

Native floodplain ecosystems in the Murray-Darling Basin are under stress, 

particularly those closely associated with the hydrology of the river system (Bramley 

et al. 2003, Overton et al. 2006, Doody et al. 2009). Research investigating 

ecosystem response in these systems has centred on the southern MDB along the 

highly regulated River Murray and its key tributaries. Evidence of declining riverine, 

wetland and riparian health along these perennially flowing river systems, which are 

fed by winter-dominant rainfall and snow-melt (Chong and Ladson 2003), is 

associated with regulation and altered seasonality of flows, raised water tables, 

increased salinisation and reduced overland flooding (Jolly et al. 1993, 1996, 

Bramley et al. 2003, Overton et al. 2006). Current management approaches are 

centred on the restoration of environmental flows designed to mimic historical flow 

regimes and create overbank flooding to replenish wetlands (Wilson et al. 2009) and 

to reinvigorate riparian and floodplain woodlands by flushing accumulated salts from 

the system (Doody et al. 2009, Overton and Doody 2010). Provision of 

environmental flows is facilitated through federal government purchase („buy back‟) 

of irrigation entitlements, and managed through the release of water from large 

upstream storages and its distribution through a series of engineered locks and 

channels at various points within the system (Stewart and Harper 2002, Wen et al. 

2009). 

In many respects, the northern MDB is a different system (Thoms and Sheldon 

2002), with natural hydrological regimes governed by a highly variable summer-

dominant rainfall pattern characterised by episodic droughts and wet periods 

(Chapter 2). This results in ephemeral streamflow patterns, with extended no-flow 

periods and irregular, but occasionally widespread, flooding. There has been limited 

understanding of key drivers of ecosystem change, and little empirical evidence on 

which to base environmental flow management decisions, in these highly variable 

systems (Colloff et al. 2010). Water resources in the Upper Condamine are also 

effectively over-allocated, resulting in an increasingly hydrologically fragmented 

system (CSIRO 2008). Existing legal entitlements to water in the Upper Condamine 

are a significant impediment to the provision of water for environmental purposes, 

and there is currently little scope to address declining floodplain and riparian 
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woodland condition associated with altered hydrological regimes in the Upper 

Condamine. While water buy-back provides capacity to adjust the levels of water 

resource allocations and increase the level of environmental flows, the extent to 

which this will contribute to the protection of flow-dependent (and potentially 

groundwater-dependent) riverine and riparian environmental assets in a dryland 

system such as the Condamine-Balonne is unknown (Thoms and Sheldon 2002). 

Effective environmental flow regimes may be difficult to determine where there is a 

lack of detailed understanding of the water volumes and dynamics required to 

maintain ecological function, as is currently the case in the Upper Condamine. There 

is also limited ecological research from which to predict whether replacing water into 

riparian environments through environmental flow provisions can redress the 

already-entrenched, broader impacts of land use (including water use) change (as 

suggested by this study). 

Conversely, the identification of sites at which groundwater is still within the 

accessible range may form the basis for strategic management of these sites and of 

groundwater levels in their vicinity. New developments such as the emerging coal 

seam gas industry in southern Queensland (Moran and Vink 2010) may present 

opportunities to supplement groundwater levels at high priority sites where 

appropriate water quality can be assured. In-stream barriers (weirs and large woody 

debris) which act to slow flows and retain water within the system may offer an 

opportunity for management to ameliorate the impacts of groundwater decline on 

tree condition in areas immediately downstream (Chapter 4 and 5). 

Other management options to retain remnant riparian woodland condition on the 

Upper Condamine Floodplain are also not well-supported by current policy or 

legislative mechanisms. Legislation in Queensland (specifically the Queensland 

Vegetation Management Act 1999) limits (or at least regulates) the further clearing of 

mapped native ecosystem remnants; however, there is currently little effective 

control over the management of these, no guarantee regarding their ecological 

condition, and limited protection for smaller unmapped patches such as narrow 

riparian remnants. The Queensland Water Act 2000, to some extent, restricts the 

clearing of woody vegetation in watercourses. 

There is also little certainty that biodiversity or fundamental ecological values can be 

retained in remnants embedded in landscapes such as the Upper Condamine 
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floodplain which have already undergone major land use change. Biodiversity 

planning instruments such as the Queensland Department of Environment and 

Resource Management (DERM) Biodiversity Assessment Mapping Methodology 

(BAMM) facilitate the prioritisation of remnant ecosystem protection across 

landscapes (usually on a bioregional basis; e.g. the Southern Brigalow Belt) and 

evaluation of development applications. However, they largely fail to address the 

issue of management under current land uses, or of cumulative off-site impacts of 

incremental development over time. 

Future climate change also adds significant risk and uncertainty (Vervoort 2007), and 

will increase the complexity of resource management to support water-dependent 

ecosystems, agricultural production and rural communities in this region. Predictions 

are that the frequency and intensity of rainfall will change, with a high probability 

that patterns will become more variable (e.g. longer and more severe drought 

periods, more intense but less frequent rainfall events; Humphries and Baldwin 2003, 

Nicholls 2004, IPCC 2007). Catchment modelling indicates that rainfall runoff in the 

Condamine-Balonne is most likely (60% probability) to decrease by 7 to 20%, while 

groundwater recharge is predicted to decrease by 10% of recent (1922-1995) levels 

by 2030 (CSIRO 2008). Improved understanding of interactions and feedbacks in 

water-dependent ecosystems will enable better prediction of how these additional 

hydrological disturbances associated with climate change may play out across the 

Upper Condamine where these systems are close to tipping points, and will 

contribute to adaptive management approaches to address these new challenges. 

8.3 Conclusions and future research directions 

In conclusion, it is apparent from this research that riparian Eucalyptus 

camaldulensis/E. tereticornis woodlands on the Upper Condamine floodplain are 

significantly altered in both extent and condition. They are now effectively highly 

fragmented novel ecosystems, subject to a range of natural and anthropogenic 

disturbances including infestation by lippia, a dominant functional alien species, and 

chronic groundwater decline. It is highly likely that change will continue to occur in 

this landscape, particularly in conjunction with increasing impacts of climate change. 

More frequent, intense and longer-duration droughts will have increasing impact as 

trees lose contact with groundwater which provides a critical buffer during periods of 
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soil moisture deficit. This is likely to result in increasing levels of dieback and 

mortality in phreatic species such as Eucalyptus camaldulensis/E. tereticornis. 

Associated changes in groundcover composition and functional diversity, and 

possible expansion of Acacia stenophylla, may result in communities which are then 

much more responsive/susceptible to stochastic climatic events, including episodic 

flooding, contributing to spiralling degradation. The identification and management 

of refugia in which there is a higher probability of retaining woodland condition 

should be investigated as a matter of urgency, while innovative solutions are required 

to address the fundamental issue of groundwater decline in this landscape. 

Inevitably, this research has highlighted the need for further investigation to better 

understand the mechanisms of ecosystem response of remnant riparian woodlands in 

this highly modified environment, and a number of additional research questions 

have already been outlined in individual chapters in this thesis. However, key 

questions relating to these conclusions are: 

(i) How generalisable are these findings to other highly modified systems in the 

northern Murray Darling Basin and elsewhere? 

(ii) What are the potential impacts of climate change in ecosystems already 

subject to critical changes in disturbance regimes and resource availability 

due to land use change? 

(iii) How can ecological knowledge and understanding of ecosystem change be 

effectively and efficiently incorporated into adaptive management programs? 
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Appendix A Survey site details 

Sites Site code Northing Easting Riversection Riverbank
1
 Landuse

2
 

1 TY1 6916714 364376 Upper R G 

2 TY2 6915422 364354 Upper L G 

3 TY4 6913161 367678 Upper R G 

4 TY5 6912960 367513 Upper R G 

5 TY6 6910137 370979 Upper R G 

6 TY7 6918018 360501 Upper R U 

7 TY8 6914561 362364 Upper L U 

8 TY9 6916180 354168 Upper L G 

9 YL1 6926808 336447 Middle R U 

10 YL2 6928226 334443 Middle R U 

11 YL3 6923042 338454 Middle L U 

12 YL4 6925730 336847 Middle R G 

13 YL5 6925130 337517 Middle R G 

14 YL6 6924934 337264 Middle L G 

15 YL8 6922154 339436 Middle L U 

16 YL9 6920424 341771 Middle L U 

17 YL10 6920925 341039 Middle R U 

18 LC1 6929625 332214 Lower R U 

19 LC3 6931932 329910 Lower L U 

20 LC4 6932937 328811 Lower L U 

21 LC5 6930635 331179 Lower R U 

22 LC6 6952213 322236 Lower L G 

23 LC7 6949730 321029 Lower R U 

24 LC8 6932132 330179 Lower R U 

REF1 OT1 6899162 379985 - L U 

REF2 TL1 6975430 325667 - R U 

REF3 TL2 6975310 326271 - R U 

1 Riverbanks (L: left, R: right); 2 Landuse (G: grazed, U: ungrazed)  
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Appendix B Functional group classifications for species recorded on the Upper Condamine floodplain (27 sites) 

Species Family Metabolism Lifecycle Life-form di/monocot clonal native Habitat Reference 

Acacia stenophylla Fabaceae C3 perennial tree Dicot no native wetland & floodplain http://www.anbg.gov.au/angio/legumino.htm  

Alternanthera denticulata Amaranthaceae C3 annual forb Dicot clonal native floodplain http://www.anbg.gov.au/angio/amaranth.htm  

Alternanthera nodiflora Amaranthaceae C3 annual forb Dicot clonal native floodplain http://www.anbg.gov.au/angio/amaranth.htm  

Ammi majus Apiaceae C3 short-lived forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/umbellif.htm  

Angophora floribunda Myrtaceae C3 perennial tree Dicot no native terrestrial http://www.anbg.gov.au/angio/myrtacea.htm  

Aristida leptopoda Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Aristida ramosa  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Asparagus virgatus  Asparagaceae C3 perennial vine Monocot no alien terrestrial http://www.anbg.gov.au/angio/asparaga.htm 

Asperula conferta  Rubiaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/rubiacea.htm  

Austrostipa scabra  Poaceae C3 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Austrostipa setacea  Poaceae C3 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Austrostipa verticillata Poaceae C3 perennial tussock grass Monocot clonal native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Avena barbata  Poaceae C3 annual grass Monocot no alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Bidens pilosa. Asteraceae C3 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/composit.htm  

Boerhavia dominii  Nyctaginaceae C4 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/nyctagin.htm 

Bothriochloa biloba  Poaceae C4 perennial tussock grass Monocot no native floodplain Sharp & Simon 2001 

Bothriochloa decipiens  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Bothriochloa ewartiana. Poaceae C4 perennial tussock grass Monocot no native terrestrial Sharp & Simon 2002 

Brassicaceae spp. Brassicaceae C3 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/crucifer.htm 

Bromus catharticus  Poaceae C3 short-lived tussock grass Monocot no alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Bromus inermis  Poaceae C3 perennial grass Monocot clonal alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Brunoniella australis. Acanthaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/acanthac.htm  

Bulbine bulbosa  Asphodelaceae C3 perennial forb Monocot no native terrestrial http://www.anbg.gov.au/angio/asphodel.htm  

Calotis cuneata var. cuneata Asteraceae - perennial forb Dicot clonal native terrestrial http://www.anbg.gov.au/angio/composit.htm  

Carex inversa Cyperaceae C3 perennial forb Monocot clonal native terrestrial Liu & Wang 2006; Bruhl & Wilson 2007 

Chamaesyce drummondii Euphorbiaceae C4 perennial forb Dicot clonal native terrestrial http://www.anbg.gov.au/angio/euphorbi.htm  

http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/amaranth.htm
http://www.anbg.gov.au/angio/amaranth.htm
http://www.anbg.gov.au/angio/umbellif.htm
http://www.anbg.gov.au/angio/myrtacea.htm
http://www.anbg.gov.au/angio/asparaga.htm
http://www.anbg.gov.au/angio/rubiacea.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/nyctagin.htm
http://www.anbg.gov.au/angio/crucifer.htm
http://www.anbg.gov.au/angio/acanthac.htm
http://www.anbg.gov.au/angio/asphodel.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/euphorbi.htm
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Species Family Metabolism Lifecycle Life-form di/monocot clonal native Habitat Reference 

Chenopodium auricomiforme Chenopodiaceae C3 short-lived chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Chenopodium auricomum Chenopodiaceae C3 perennial chenopod shrub Dicot no native wetland & floodplain http://www.anbg.gov.au/angio/chenopod.htm  

Chloris divaricata Poaceae C4 perennial tussock grass Monocot clonal native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

Chloris gayana  Poaceae C4 perennial grass Monocot clonal alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Chloris truncata Poaceae C4 perennial grass Monocot clonal native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Chloris ventricosa Poaceae C4 perennial grass Monocot clonal native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Cichorium intybus Asteraceae C3 perennial forb Dicot no alien terrestrial Fitter & Peat 1994 

Cirsium vulgare Asteraceae C3 short-lived forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/composit.htm  

Commelina cyanea  Commelinaceae C3 perennial forb Monocot no native terrestrial http://www.anbg.gov.au/angio/commelin.htm  

Conyza bonariensis Asteraceae C3 annual forb Dicot no alien terrestrial http://www.rcia.puc.cl/English/pdf/34-1/SFeldman1.pdf 

Corymbia tessellaris  Myrtaceae C3 perennial tree Dicot no native terrestrial http://www.anbg.gov.au/angio/myrtacea.htm 

Cyclospermum leptophyllum  Apiaceae C3 annual forb Dicot no alien riparian & floodplain McIntyre et al. 2005 

Cymbopogon refractus  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Cynodon dactylon  Poaceae C4 perennial grass Monocot clonal native terrestrial Watson & Dallwitz 1980 

Cynoglossum suaveolens  Boraginaceae C3 short-lived forb Dicot no native terrestrial Watson & Dallwitz 1992 

Cyperus gracilis. Cyperaceae C3 perennial sedge Monocot no native terrestrial Bruhl & Wilson (in press) 

Cyperus gunnii  Cyperaceae C4 perennial sedge Monocot clonal native wetland & floodplain Bruhl & Wilson (in press) 

Cyperus vaginatus  Cyperaceae C3 perennial sedge Monocot clonal native riparian Bruhl & Wilson (in press) 

Dianella sp. Phormiaceae - perennial forb Monocot no native terrestrial http://www.anbg.gov.au/angio/phormiac.htm  

Dichanthium sericeum  Poaceae C4 perennial grass Monocot no native terrestrial Sharp & Simon 2002 

Digitaria brownii  Poaceae C4 perennial grass Monocot clonal native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Digitaria divaricatissima  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Einadia hastata  Chenopodiaceae C3 perennial chenopod shrub Dicot no native floodplain http://www.anbg.gov.au/angio/chenopod.htm 

Einadia nutans  Chenopodiaceae C3 perennial chenopod shrub Dicot no native floodplain http://www.anbg.gov.au/angio/chenopod.htm  

Einadia polygonoides  Chenopodiaceae C3 short-lived chenopod shrub Dicot no native floodplain http://www.anbg.gov.au/angio/chenopod.htm  

Einadia trigonos  Chenopodiaceae C3 perennial chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm 

Eleocharis acuta  Cyperaceae C3 perennial sedge Monocot clonal native wetland & floodplain Takeda et al. 1985 

Elymus multiflorus   Poaceae C3 perennial tussock grass Monocot no native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/commelin.htm
http://www.rcia.puc.cl/English/pdf/34-1/SFeldman1.pdf
http://www.anbg.gov.au/angio/myrtacea.htm
http://www.anbg.gov.au/angio/phormiac.htm
http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/chenopod.htm
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Elymus scaber  Poaceae C3 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Enneapogon nigricans Poaceae C4 short-lived tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Eragrostis leptostachya Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Eriochloa procera Poaceae C4 perennial tussock grass Monocot no native floodplain Sharp & Simon 2001 

Eriochloa pseudoacrotricha  Poaceae C4 short-lived tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Eucalyptus camaldulensis  Myrtaceae C3 perennial tree Dicot no native riparian & floodplain http://www.anbg.gov.au/angio/myrtacea.htm  

Eucalyptus populnea Myrtaceae C3 perennial tree Dicot no native terrestrial http://www.anbg.gov.au/angio/myrtacea.htm  

Eucalyptus tereticornis  Myrtaceae C3 perennial tree Dicot no native terrestrial http://www.anbg.gov.au/angio/myrtacea.htm  

Eulalia aurea  Poaceae C4 perennial grass Monocot clonal native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

Eustrephus latifolius. Philesiaceae - perennial vine Monocot no native terrestrial http://www.anbg.gov.au/angio/luzuriag.htm  

Glandularia aristigera. Verbenaceae C3 perennial forb Dicot clonal alien terrestrial http://www.anbg.gov.au/angio/verbenac.htm  

Gleditsia triacanthos  Caesalpiniaceae C3 perennial tree Dicot no alien terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Glycine latifolia  Fabaceae C3 perennial forb Dicot clonal native terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Glycine tabacina  Fabaceae C3 perennial forb Dicot clonal native terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Glycine tomentella  Fabaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Gnaphalium sphaericum  Asteraceae C3 annual forb Dicot no native terrestrial Liu & Wang 2006 

Gomphocarpus physocarpus  Asclepiadaceae C3 perennial forb Dicot no alien terrestrial McIntyre et al. 2005 

Haloragis stricta  Haloragidaceae C3 perennial forb Dicot no native wetland & floodplain http://delta-intkey.com/angio/www/haloragi.htm 

Hibiscus trionum Malvaceae C3 short-lived shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Jasminum simplicifolium  Oleaceae C3 perennial vine Dicot no native terrestrial http://www.anbg.gov.au/angio/juncacea.htm  

Juncus sp. Juncaceae C3 perennial rush Monocot clonal native - http://www.anbg.gov.au/angio/juncacea.htm  

Lactuca serriola  Asteraceae C3 short-lived forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/composit.htm  

Lepidium africanum  Brassicaceae C3 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/crucifer.htm  

Lepidium bonariense  Brassicaceae C3 short-lived forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/crucifer.htm  

Lepidium pseudohyssopifolium  Brassicaceae C3 short-lived forb Dicot no native floodplain http://www.anbg.gov.au/angio/crucifer.htm  

Leptochloa divaricatissima  Poaceae C4 perennial tussock grass Monocot no native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

Leptochloa fusca  Poaceae C4 short-lived tussock grass Monocot no native terrestrial Sharp & Simon 2002 

Lomandra longifolia  Lomandraceae - perennial rush Monocot no native terrestrial - 

http://www.anbg.gov.au/angio/myrtacea.htm
http://www.anbg.gov.au/angio/myrtacea.htm
http://www.anbg.gov.au/angio/myrtacea.htm
http://www.anbg.gov.au/angio/luzuriag.htm
http://www.anbg.gov.au/angio/verbenac.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/juncacea.htm
http://www.anbg.gov.au/angio/juncacea.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/crucifer.htm
http://www.anbg.gov.au/angio/crucifer.htm
http://www.anbg.gov.au/angio/crucifer.htm


307 

Species Family Metabolism Lifecycle Life-form di/monocot clonal native Habitat Reference 

Lomandra multiflora Lomandraceae - perennial rush Monocot no native terrestrial - 

Maireana microphylla  Chenopodiaceae C3 perennial chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Malvastrum americanum  Malvaceae C3 short-lived forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/malvacea.htm 

Malvastrum coromandelianum  Malvaceae C3 short-lived forb Dicot no native terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Marsilea sp. Marsileaceae - perennial fern Fern Ally clonal native wetland & floodplain - 

Megathyrsus maximus  Poaceae C4 perennial tussock grass Monocot clonal alien terrestrial McIntyre et al. 2005 

Mentha satureioides  Lamiaceae C3 perennial forb Dicot clonal native terrestrial Liu & Wang 2006 

Modiola caroliniana  Malvaceae C3 short-lived forb Dicot clonal alien terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Neptunia gracilis  Mimosaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Notodanthonia longifolia  Poaceae C3 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Opuntia aurantiaca  Cactaceae CAM perennial cactus Dicot no alien terrestrial http://www.anbg.gov.au/angio/cactacea.htm  

Opuntia stricta  Cactaceae CAM perennial cactus Dicot no alien terrestrial http://www.anbg.gov.au/angio/cactacea.htm  

Opuntia tomentosa  Cactaceae CAM perennial cactus Dicot no alien terrestrial http://www.anbg.gov.au/angio/cactacea.htm  

Oxalis perennans Oxalidaceae C3 or CAM perennial forb Dicot clonal native terrestrial http://www.anbg.gov.au/angio/oxalidac.htm  

Panicum antidotale  Poaceae C3/C4 (variable) perennial tussock grass Monocot clonal alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Panicum buncei Poaceae C3/C4 (variable) perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Panicum decompositum  Poaceae C3/C4 (variable) perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Panicum effusum  Poaceae C3/C4 (variable) perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Panicum larcomianum  Poaceae C3/C4 (variable) perennial grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Panicum queenslandicum  Poaceae C3/C4 (variable) perennial tussock grass Monocot no native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

Paspalidium aversum  Poaceae C4 perennial tussock grass Monocot no native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

Paspalidium globoideum  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Paspalum dilatatum  Poaceae C4 perennial tussock grass Monocot no alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Pavonia hastata  Malvaceae C3 perennial shrub Dicot no alien terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Pennisetum clandestinum  Poaceae C4 perennial grass Monocot clonal alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Phalaris minor  Poaceae C3 annual tussock grass Monocot no alien terrestrial Sharp & Simon 2002 

Phyla canescens  Verbenaceae C3 perennial forb Dicot clonal alien floodplain http://www.anbg.gov.au/angio/verbenac.htm  

Phyllanthus virgatus  Euphorbiaceae C3 perennial forb Dicot no native riparian & floodplain http://www.anbg.gov.au/angio/euphorbi.htm  

http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/cactacea.htm
http://www.anbg.gov.au/angio/cactacea.htm
http://www.anbg.gov.au/angio/cactacea.htm
http://www.anbg.gov.au/angio/oxalidac.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/verbenac.htm
http://www.anbg.gov.au/angio/euphorbi.htm


308 

Species Family Metabolism Lifecycle Life-form di/monocot clonal native Habitat Reference 

Pimelea neo-anglica  Thymelaceae C3 perennial shrub Dicot no native terrestrial http://delta-intkey.com/angio/www/thymelae.htm 

Plantago debilis  Plantaginaceae C3 short-lived forb Dicot no native riparian & floodplain http://www.anbg.gov.au/angio/plantagi.htm  

Portulaca oleracea Portulacaceae C4 or CAM short-lived forb Dicot no native terrestrial http://www.anbg.gov.au/angio/portulac.htm  

Rhynchosia minima  Fabaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/legumino.htm 

Rostellularia adscendens  Acanthaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/acanthac.htm  

Rumex brownii  Polygonaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/polygona.htm  

Rumex crispus  Polygonaceae C3 perennial forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/polygona.htm  

Salsola tragus  Chenopodiaceae C3 or C4 short-lived chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Salvia reflexa  Lamiaceae C3 annual forb Dicot no alien floodplain Leonardos & Grodzinski 2000 

Salvia verbenaca  Lamiaceae C3 perennial forb Dicot no alien terrestrial Leonardos & Grodzinski 2000 

Scleria sp.  Cyperaceae C3 perennial forb Monocot clonal - wetland & floodplain http://www.springerlink.com/content/d863771751168284/fulltext.pdf  

Sclerolaena birchii  Chenopodiaceae C3 perennial chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Sclerolaena muricata var. muricata Chenopodiaceae C3 perennial chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Sclerolaena muricata var. semiglabra Chenopodiaceae C3 perennial chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Sclerolaena muricata var. villosa  Chenopodiaceae C3 perennial chenopod shrub Dicot no native terrestrial http://www.anbg.gov.au/angio/chenopod.htm  

Senecio quadridentatus  Asteraceae CAM or C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/composit.htm  

Senna barclayana  Caesalpiniaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Setaria distans  Poaceae C4 perennial tussock grass Monocot no native terrestrial Sharp & Simon 2002 

Setaria jubiflora  Poaceae C4 perennial tussock grass Monocot no native riparian & floodplain Sharp & Simon 2002 

Setaria pumila Poaceae C4 annual tussock grass Monocot no alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Sida filiformis  Malvaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Sida rhombifolia  Malvaceae C3 perennial forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Sida subspicata  Malvaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/malvacea.htm  

Solanum americanum  Solanaceae C3 short-lived forb Dicot no native terrestrial http://www.anbg.gov.au/angio/solanace.htm  

Sonchus oleraceus Asteraceae C3 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/composit.htm  

Sorghum halepense  Poaceae C4 perennial grass Monocot clonal alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Sporobolus creber  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Sporobolus elongatus Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

http://www.anbg.gov.au/angio/plantagi.htm
http://www.anbg.gov.au/angio/portulac.htm
http://www.anbg.gov.au/angio/acanthac.htm
http://www.anbg.gov.au/angio/polygona.htm
http://www.anbg.gov.au/angio/polygona.htm
http://www.anbg.gov.au/angio/chenopod.htm
http://www.springerlink.com/content/d863771751168284/fulltext.pdf
http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/chenopod.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/malvacea.htm
http://www.anbg.gov.au/angio/solanace.htm
http://www.anbg.gov.au/angio/composit.htm
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Species Family Metabolism Lifecycle Life-form di/monocot clonal native Habitat Reference 

Swainsona sp. Fabaceae C3 short-lived forb Dicot no native riparian & floodplain http://www.anbg.gov.au/angio/legumino.htm  

Tagetes minuta  Asteraceae C3 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/composit.htm  

Taraxacum officinale  Asteraceae C3 perennial forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/composit.htm  

Themeda avenacea  Poaceae C4 perennial grass Monocot no native floodplain Watson & Dallwitz 1980; Sharp & Simon 2002 

Themeda triandra  Poaceae C4 perennial tussock grass Monocot no native terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Tribulus terrestris  Zygophyllaceae C4 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/zygophyl.htm  

Urochloa panicoides  Poaceae C4 annual grass Monocot clonal alien terrestrial Watson & Dallwitz 1980; Sharp & Simon 2002 

Vachellia farnesiana  Mimosaceae C3 perennial shrub Dicot no native floodplain http://www.anbg.gov.au/angio/legumino.htm 

Verbena officinalis  Verbenaceae C3 perennial forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/verbenac.htm  

Vicia sp. Fabaceae C3 annual forb Dicot no alien terrestrial http://www.anbg.gov.au/angio/legumino.htm  

Vittadinia cuneata var. hirsuta Asteraceae - short-lived forb Dicot no native terrestrial http://www.anbg.gov.au/angio/composit.htm 

Vittadinia pterochaeta Asteraceae - annual forb Dicot no native terrestrial http://www.anbg.gov.au/angio/composit.htm  

Wahlenbergia communis  Campanulaceae C3 perennial forb Dicot no native terrestrial http://www.anbg.gov.au/angio/campanul.htm  

Walwhalleya subxerophila  Poaceae C3 perennial tussock grass Monocot no native floodplain Sharp & Simon 2002 

 

http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/zygophyl.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/verbenac.htm
http://www.anbg.gov.au/angio/legumino.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/composit.htm
http://www.anbg.gov.au/angio/campanul.htm
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Appendix C Species frequency data, Upper Condamine floodplain (27 sites) 

River Section 
 

 Upper  Middle  Lower  
  

Sites R1  1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17  18 19 20 21 22 23 24  R2 R3 

Species 
 

 
        

 
         

 
       

 
  

Acacia stenophylla 0  0 0 0 0 0 2 0 0  1 0 0 0 1 0 0 0 1  3 1 2 2 1 0 2  1 1 

Alternanthera denticulata 0  0 0 0 0 0 1 0 0  0 0 0 0 0 1 0 0 0  0 0 0 0 0 0 0  0 0 

Alternanthera nodiflora 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  2 0 

Ammi majus 2  0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 0 0  0 0 0 1 0 0 0  0 0 

Angophora floribunda 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 1 0 0 0 0 0  0 0 

Aristida leptopoda 0  0 0 1 0 0 0 6 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Aristida ramosa 5  0 0 1 3 0 0 0 0  0 0 0 0 0 0 0 2 0  0 0 1 0 7 3 0  1 6 

Asparagus virgatus 2  0 0 0 0 0 0 0 3  0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0  0 0 

Asperula conferta 2  2 5 1 2 0 2 7 0  0 7 0 4 1 2 0 0 0  3 0 0 0 0 0 0  0 0 

Austrostipa scabra 0  0 2 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Austrostipa setacea 7  2 0 1 2 7 1 2 0  0 0 0 0 1 0 0 5 0  0 0 2 1 0 0 0  0 0 

Austrostipa verticillata 1  0 0 0 0 0 2 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Avena barbata 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  1 1 0 0 0 0 0  0 0 

Bidens pilosa 5  0 0 2 1 0 2 2 3  0 0 0 0 0 0 0 0 0  0 0 0 0 3 0 0  1 0 

Boerhavia dominii 0  0 0 0 2 0 5 0 0  0 0 0 0 2 0 0 0 0  0 0 1 1 0 0 0  0 0 

Bothriochloa biloba  0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 2 0  0 0 0 0 0 0 0  0 0 

Bothriochloa decipiens 0  0 0 1 0 0 1 0 0  0 0 0 1 6 0 0 0 0  0 0 7 0 2 0 0  0 0 

Bothriochloa ewartiana 1  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Brassica sp. 0  4 0 0 0 3 1 0 4  2 2 1 2 3 1 4 3 3  3 6 2 6 0 0 4  0 0 

Bromus catharticus 2  0 0 0 0 0 2 0 4  0 3 0 0 0 0 6 2 0  0 6 0 1 0 0 0  0 0 

Bromus inermis 0  0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0  0 0 

Brunoniella australis 0  1 0 0 0 0 0 0 0  0 0 0 0 5 0 0 0 0  0 0 5 2 0 0 3  0 2 

Bulbine sp. 0  4 0 0 0 0 0 0 0  0 0 0 0 0 0 0 3 0  0 4 0 2 0 0 0  0 0 

Calotis cuneata var. cuneata 0  0 0 0 0 0 0 0 0  0 0 0 0 1 0 0 0 0  0 0 0 0 0 0 0  0 0 

Carex inversa 7  7 0 0 0 0 3 5 0  2 1 5 1 1 0 0 2 0  2 5 2 2 0 6 0  2 6 

Chamaesyce drummondii 0  4 0 3 4 0 0 3 0  0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Chenopodium auricomiforme 1  0 0 0 0 0 2 0 0  0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0  0 0 

Chenopodium auricomum 1  2 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0 0  0 0 0 0 0 0 0  0 0 

Chloris divaricata 0  0 0 2 6 0 2 1 0  0 0 0 2 0 0 2 3 0  1 0 0 3 5 0 0  3 1 

Chloris gayana 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 1 0 0  0 1 

Chloris truncata/ventricosa 0  5 0 1 0 1 1 0 0  0 0 0 2 6 0 0 0 0  0 0 1 0 0 4 0  2 3 
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River Section 
 

 Upper  Middle  Lower  
  

Sites R1  1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17  18 19 20 21 22 23 24  R2 R3 

Cichorium intybus 3  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Cirsium vulgare 2  0 1 0 0 0 1 1 0  0 0 0 0 0 0 0 0 0  0 0 0 1 0 0 0  0 0 

Commelina cyanea  5  5 2 1 1 0 5 3 0  0 1 0 0 1 0 0 2 0  3 2 1 6 0 1 3  0 0 

Conyza bonariensis 0  0 0 0 0 0 0 0 0  0 0 0 0 2 0 0 5 0  0 0 0 3 0 0 1  0 0 

Corymbia tessellaris 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 1 

Cyclospermum leptophyllum 0  0 0 0 0 0 1 1 0  0 0 0 0 1 0 0 2 0  1 1 0 3 0 0 0  1 0 

Cymbopogon refractus 0  0 0 0 0 0 0 3 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 1 

Cynodon dactylon 3  2 0 4 0 2 7 0 5  0 0 0 1 7 0 3 0 1  7 7 2 7 7 0 4  0 0 

Cynoglossum suaveolens 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0  0 0 

Cyperus gracilis 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 1 0 0 1 0  2 0 

Cyperus gunnii 2  1 7 1 7 2 3 5 1  7 6 7 7 5 7 1 7 3  7 7 0 3 4 1 1  4 2 

Cyperus vaginatus 0  0 0 0 0 0 2 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Dianella sp. 2  2 0 0 0 0 0 3 0  0 0 0 1 1 0 0 0 0  0 0 0 0 0 1 1  1 2 

Dichanthium sericeum 6  7 4 7 7 1 2 7 2  1 0 4 7 7 2 3 5 3  3 2 2 2 7 1 3  3 7 

Digitaria brownii 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 0  0 0 0 0 0 0 0  0 0 

Digitaria divaricatissima 0  0 0 0 0 0 0 6 0  0 0 0 0 0 0 0 3 0  0 0 0 0 0 0 0  0 0 

Einadia hastata/trigonos 7  1 1 0 0 0 0 0 3  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 2 

Einadia nutans/polygonoides 2  7 5 3 1 2 7 9 1  3 1 3 5 4 0 8 7 11  7 5 9 7 4 2 6  7 5 

Eleocharis acuta 0  0 0 1 0 0 0 0 0  0 0 0 0 0 7 0 0 0  0 0 0 0 0 0 0  0 0 

Elymus multiflorus 2  5 3 3 0 1 2 2 3  6 3 3 1 3 1 1 6 6  5 7 5 3 5 1 3  1 0 

Elymus scaber 0  0 4 0 2 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1  0 0 

Enneapogon nigricans 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0 0  0 0 0 0 0 0 0  0 0 

epiphytic orchid 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  2 0 

Eragrostis leptostachya 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 1 

Eriochloa pseudoacrotricha/procera 0  5 0 3 5 0 3 3 0  3 0 4 7 6 3 7 7 3  0 0 7 3 3 3 5  2 6 

Eucalyptus camaldulensis/tereticornis 2  1 2 2 2 1 2 1 3  1 2 2 2 3 1 1 3 2  2 2 1 0 2 3 2  3 2 

Eucalyptus populnea 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 2 0 0 0  0 0 

Eulalia aurea 1  5 7 7 3 2 0 2 0  1 2 0 1 4 3 0 3 0  3 3 2 0 3 2 2  0 0 

Eustrephus latifolius 3  0 0 0 0 0 1 3 1  0 2 0 0 0 0 0 0 0  0 2 0 0 0 1 0  0 1 

Glandularia aristigera 1  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 2 0 0  1 3 

Gleditsia triacanthos 0  0 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Glycine latifolia 0  0 0 0 4 0 0 2 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Glycine tabacina 3  0 1 3 0 0 0 0 0  0 0 0 1 0 0 0 0 0  1 2 4 2 0 1 0  1 0 

Glycine tomentella 0  0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 
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River Section 
 

 Upper  Middle  Lower  
  

Sites R1  1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17  18 19 20 21 22 23 24  R2 R3 

Gnaphalium sphaericum 0  0 0 0 1 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Gomphocarpus physocarpus 0  0 0 1 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 1 

Haloragis stricta 1  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Hibiscus trionum 0  1 0 0 0 0 0 0 0  0 0 0 0 0 1 0 0 0  0 0 0 1 0 0 0  0 0 

Jasminum simplicifolium 7  4 3 0 1 0 0 3 1  0 0 0 2 0 0 0 0 0  0 2 0 0 0 2 0  0 0 

Juncus sp. 0  0 7 0 0 0 0 0 0  0 1 0 0 0 1 0 0 0  0 0 0 0 0 0 0  0 0 

Lactuca serriola 1  0 0 0 0 0 1 0 0  0 0 0 0 0 0 0 0 0  0 0 0 3 0 0 0  0 0 

Lepidium africanum/bonariense 0  1 0 1 0 0 3 1 0  1 0 0 4 2 1 0 1 4  1 3 0 5 0 1 0  2 0 

Lepidium pseudohyssopifolium 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 4 0 0  0 0 1 0 1 0 6  0 0 

Leptochloa divaricatissima 0  0 0 2 0 0 7 0 0  1 0 0 5 0 0 7 3 0  7 7 7 7 0 2 7  3 1 

Leptochloa fusca 2  0 1 0 0 1 5 0 0  1 7 2 0 0 1 0 2 2  1 5 1 0 0 0 3  0 0 

Lomandra longifolia 0  0 3 0 0 0 0 3 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0  0 1 

Lomandra multiflora 0  1 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 2 1 0 0 0 0  0 0 

Maireana microphylla 0  0 0 0 1 0 2 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Malvastrum americanum 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  1 0 

Malvastrum coromandelianum 0  0 0 0 0 0 0 0 2  0 0 0 2 1 0 3 0 0  0 0 0 0 1 0 0  3 0 

Marsilea sp. 3  0 6 3 0 3 6 7 7  3 4 2 3 0 6 1 2 4  4 1 0 0 5 3 0  1 3 

Megathyrsus maximus 0  0 0 0 0 0 0 0 2  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0  0 0 

Mentha satureioides 2  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Modiola caroliniana 1  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Neptunia gracilis 0  4 0 2 1 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0  0 0 

Notodanthonia longifolia 0  5 2 3 5 1 1 2 0  0 0 0 2 2 0 1 5 0  0 0 0 0 0 3 0  1 0 

Opuntia aurantiaca 0  0 0 0 0 2 0 0 1  0 0 0 0 3 0 0 6 0  2 0 2 6 0 0 1  1 2 

Opuntia stricta 0  0 0 0 0 2 1 3 0  1 0 0 1 0 0 0 2 0  0 0 3 2 0 0 2  1 3 

Opuntia tomentosa 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 1 

Oxalis perennans 3  2 1 0 1 0 0 0 1  0 0 2 1 2 0 0 0 0  1 3 0 1 0 0 0  2 0 

Panicum antidotale 0  0 0 0 0 0 0 0 1  0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Panicum buncei 0  0 0 0 0 0 0 0 0  0 0 0 0 3 0 0 0 0  0 0 0 0 0 0 0  0 0 

Panicum decompositum 0  0 0 3 7 1 2 0 0  4 0 4 0 0 7 0 7 0  0 3 0 3 0 0 0  0 0 

Panicum effusum 0  0 0 6 2 0 0 0 0  0 0 3 0 5 2 0 5 0  0 0 0 0 2 0 0  0 0 

Panicum larcomianum 0  0 0 0 0 0 0 0 0  0 0 0 0 4 0 0 0 0  0 0 0 0 2 0 0  0 2 

Panicum queenslandicum 0  6 6 0 2 0 0 7 0  0 0 0 4 0 0 0 0 0  0 0 0 0 0 0 0  7 6 

Paspalidium aversum 3  4 0 7 7 0 0 4 0  0 3 0 0 5 0 0 4 1  6 2 0 7 6 0 0  3 4 

Paspalidium globoideum 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0  0 0 



313 

River Section 
 

 Upper  Middle  Lower  
  

Sites R1  1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17  18 19 20 21 22 23 24  R2 R3 

Paspalum dilatatum 7  0 3 3 1 0 1 0 3  0 0 0 0 0 0 0 0 0  0 0 0 0 0 3 0  0 0 

Pavonia hastata 2  0 0 0 0 0 0 5 0  0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0  0 0 

Pennisetum clandestinum 0  0 0 0 0 0 0 0 3  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Phalaris minor 2  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Phyla canescens 7  7 7 7 7 7 7 7 7  7 7 7 7 7 7 7 7 7  7 7 7 4 7 7 7  4 7 

Phyllanthus virgatus 0  1 0 0 0 0 0 2 0  0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0  0 0 

Pimelea neoanglica 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0  0 0 

Plantago debilis 0  0 0 2 0 0 0 5 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Portulaca oleracea 0  0 0 0 0 0 0 0 0  0 0 1 3 0 0 3 1 0  0 0 0 0 0 0 0  3 2 

Rhynchosia minima 0  2 0 3 5 0 0 4 1  0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0  0 0 

Rostellularia adscendens 0  0 0 0 2 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Rumex brownii 3  0 0 0 0 0 2 2 0  0 0 0 0 0 0 0 0 0  0 0 0 0 1 3 0  0 0 

Rumex crispus 0  0 0 0 0 0 2 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Salsola tragus 0  2 2 3 0 0 2 0 2  0 0 0 1 1 0 2 2 1  0 0 0 3 0 0 0  5 2 

Salvia reflexa 0  1 0 0 0 3 4 0 0  0 0 0 2 2 0 3 1 7  0 0 0 6 0 0 0  2 1 

Salvia verbenaca 0  0 0 0 3 2 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Scleria sp. 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 1 

Sclerolaena birchii 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 4 0 0  0 0 

Sclerolaena muricata var. muricata 0  6 0 1 0 0 1 0 0  1 0 0 3 7 0 4 3 2  0 1 2 7 2 2 4  0 0 

Sclerolaena muricata var. semiglabra 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 2 0 1  3 0 

Sclerolaena muricata var. villosa 0  0 0 0 0 0 0 2 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Senecio quadridentatus 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  1 0 

Senna barclayana 0  0 0 4 2 0 2 2 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Setaria distans 0  0 0 0 0 1 0 0 0  0 1 0 0 0 0 0 0 0  0 5 0 0 5 5 1  0 0 

Setaria jubiflora 0  0 0 0 0 0 5 0 4  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0  6 0 

Setaria pumila 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0  0 0 

Sida filiformis 0  1 0 0 0 2 0 1 0  0 0 0 2 0 0 1 0 0  0 1 0 0 0 0 1  0 0 

Sida rhombifolia 7  0 0 0 0 0 1 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 2 0  0 0 

Sida subspicata 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  1 0 

Solanum americanum 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 2 0 0 0  0 0 

Sonchus oleraceus 0  0 1 0 0 1 2 0 0  1 0 0 1 1 0 0 0 0  3 3 0 4 0 0 0  0 0 

Sorghum halepense 3  0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Sporobolus creber  0  0 0 0 1 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0  0 1 

Sporobolus elongatus 0  0 0 0 0 0 0 0 3  0 0 0 1 5 0 0 0 0  0 0 0 1 0 0 0  0 0 
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River Section 
 

 Upper  Middle  Lower  
  

Sites R1  1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17  18 19 20 21 22 23 24  R2 R3 

Swainsona sp. 1 1  0 0 3 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 1 0 0 1 0  0 2 

Tagetes minuta 1  0 0 0 0 1 0 0 0  0 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Taraxacum officinale 1  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Themeda avenacea 0  4 4 5 3 0 1 1 0  0 0 0 7 5 1 0 7 0  2 2 4 0 0 0 2  0 0 

Themeda triandra  0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 0  0 0 0 0 0 0 0  0 0 

Tribulus terrestris 0  0 0 1 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 4 0 0 0  0 0 

Urochloa panicoides 1  0 1 3 3 3 2 0 2  0 0 0 1 1 0 3 5 2  0 0 0 2 2 0 0  0 0 

Vachellia farnesiana 1  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 1 0 0 0 0 2  0 1 

Verbena officinalis 3  0 0 0 0 0 1 2 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Vicia sp. 1  0  0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Vittadinia cuneata var. hirsuta  0  0 0 0 0 0 0 5 0  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 

Vittadinia pterochaeta  0  1 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0 1  0 0 0 0 0 0 0  0 0 

Wahlenbergia communis 0  0 0 0 0 0 0 0 0  0 0 0 1 0 0 0 0 0  0 2 0 0 0 0 0  0 0 

Walwhalleya subxerophila 0  0 0 0 0 0 3 0 0  4 2 0 0 0 0 5 0 7  3 0 0 0 0 0 0  0 0 
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Appendix D Environmental variables assessed for use in community composition and condition response modelling. Detailed explanations are provided for 

variable terms, and means, standard errors and minimum and maximum values for each variable (27 sites) are presented.  

Environmental variable Details units n Mean SE Minimum Maximum 

allcropppn500 proportion of cropping land use1 (all cropping categories; by area) within 500 m buffer - 27 0.42 0.04 0.02 0.80 

allcropppn2000 proportion of cropping land use1 (all cropping categories; by area) within 2000 m buffer - 27 0.69 0.03 0.26 0.91 

allcropppn5000 proportion of cropping land use1 (all cropping categories; by area) within 5000 m buffer - 27 0.72 0.03 0.34 0.87 

allcropppnUQ500 
proportion of cropping land use1 (all cropping categories; by area) within upslope quadrant to 

500 m 
- 27 0.49 0.06 0.00 0.92 

allcropppnUQ2000 
proportion of cropping land use1 (all cropping categories; by area) within upslope quadrant to 
2000 m 

- 27 0.69 0.04 0.07 0.92 

allcropppnUQ5000 
proportion of cropping land use1 (all cropping categories; by area) within upslope quadrant to 
5000 m 

- 27 0.72 0.04 0.01 0.95 

bareground mean percent cover of bare ground per site (1m x 1m quadrats; Ch.3) % 27 5.41 1.38 0.00 22.50 

cropnatratio500 dominant land use1 (ratio all cropping :„natural‟ land use categories) within 500 m buffer - 27 1.11 0.19 0.02 3.90 

cropnatratio2000 dominant land use1 (ratio all cropping :„natural‟ land use categories) within 2000 m buffer - 27 3.49 0.46 0.36 10.69 

cropnatratio5000 dominant land use1 (ratio all cropping :„natural‟ land use categories) within 5000 m buffer - 27 4.09 0.46 0.55 8.19 

cropnatratioUQ500 
dominant land use1 (ratio all cropping :„natural‟ land use categories) within upslope quadrant to 
500 m 

- 27 2.22 0.52 0.00 11.96 

cropnatratioUQ2000 
dominant land use1 (ratio all cropping :„natural‟ land use categories) within upslope quadrant to 

2000 m 
- 27 4.34 0.73 0.08 12.87 

cropnatratioUQ5000 
dominant land use1 (ratio all cropping :„natural‟ land use categories) within upslope quadrant to 

5000 m 
- 27 7.54 1.59 0.02 31.41 

distupweir distance from the nearest in-stream weir upstream of a site km 27 12.90 1.45 1.69 26.64 

distdownweir distance from the nearest in-stream weir downstream of a site km 27 10.62 1.42 0.17 24.82 

distedgeRE distance from the mapped edge of ecosystem remnant2 m 27 70.96 27.87 -221.02 501.56 

distGWprodbore distance from the nearest existing registered groundwater irrigation/production bore3 m 27 1706.70 228.22 176.00 5000.00 

disthardedge distance from the nearest natural vegetation edge adjacent to cropping land use1  m 27 155.96 26.82 12.66 562.20 

distringtankUQ distance from the nearest upslope ring tank4 m 27 3065.56 437.04 104.00 7791.00 
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Environmental variable Details units n Mean SE Minimum Maximum 

distriv distance to main river channel or mapped tributary5 m 27 119.30 16.97 5.00 373.00 

drainage500 length of river channel/mapped drainage lines5 within 500 m buffer km 27 1.52 0.09 0.73 2.42 

drainage2000 length of river channel/mapped drainage lines5 within 2000 m buffer km 27 9.43 0.72 5.02 17.18 

drainage5000 length of river channel/mapped drainage lines5 within 5000 m buffer km 27 41.66 4.18 14.63 77.57 

east easting6 - 27 343801.19 3291.44 321029.00 379985.00 

elev elevation6 masl 27 390.33 3.29 360.00 422.00 

grazppn500 proportion of grazing land use1 (by area) within 500 m buffer - 27 0.22 0.06 0.00 0.87 

grazppn2000 proportion of grazing land use1 (by area) within 2000 m buffer - 27 0.16 0.03 0.00 0.70 

grazppn5000 proportion of grazing land use1 (by area) within 5000 m buffer - 27 0.18 0.03 0.03 0.60 

grazppnUQ500 proportion of grazing land use1 (by area) within upslope quadrant to 500 m - 27 0.20 0.06 0.00 1.00 

grazppnUQ2000 proportion of grazing land use1 (by area) within upslope quadrant to 2000 m - 27 0.15 0.04 0.00 0.92 

grazppnUQ5000 proportion of grazing land use1 (by area) within upslope quadrant to 5000 m - 27 0.19 0.05 0.00 0.94 

GW2000 number of existing registered groundwater bores3 within 2000 m buffer - 27 6.26 0.91 1.00 18.00 

GW5000 number of existing registered groundwater bores3 within 5000 m buffer - 27 55.81 2.49 17.00 78.00 

GWalloc2000 total groundwater allocation of licensed bores3 within 2000 m buffer ML 27 624.12 131.66 0.00 2850.00 

GWalloc5000 total groundwater allocation of licensed bores3 within 5000 m buffer ML 27 7539.70 895.98 674.00 18426.00 

GWdepth5000 
mean depth to water table (averaged over 2004-5 records) for groundwater monitoring bores3 
within 5000 m buffer 

m 27 15.46 0.67 9.08 19.63 

GWirrig5000 number of existing registered groundwater irrigation bores3 within 5000 m buffer - 27 17.48 1.47 3.00 37.00 

GWprod2000 number of existing registered & licensed groundwater bores3 within 2000 m buffer - 27 2.37 0.55 0.00 13.00 

GWprod5000 number of existing registered & licensed groundwater bores3 within 5000 m buffer - 27 19.41 1.47 5.00 39.00 

GWstk5000 
number of existing registered & unlicensed (stock & domestic) groundwater bores3 within 5000 

m buffer 
- 27 2.44 0.44 0.00 8.00 

GWtrend5000 mean trend in water level of groundwater monitoring bores3 within 5000 m buffer m/decade 27 -0.79 0.09 -0.02 -1.81 

irrigcropppn500 proportion of irrigated cropping land use1 (by area) within 500 m buffer - 27 0.07 0.03 0.00 0.41 

irrigcropppn2000 proportion of irrigated cropping land use1 (by area) within 2000 m buffer - 27 0.20 0.03 0.02 0.65 
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Environmental variable Details units n Mean SE Minimum Maximum 

irrigcropppn5000 proportion of irrigated cropping land use1 (by area) within 5000 m buffer - 27 0.25 0.01 0.14 0.38 

irrigcropppnUQ500 proportion of irrigated cropping land use1 (by area) within upslope quadrant to 500 m - 27 0.15 0.06 0.00 0.82 

irrigcropppnUQ2000 proportion of irrigated cropping land use1 (by area) within upslope quadrant to 2000 m - 27 0.23 0.05 0.00 0.79 

irrigcropppnUQ5000 proportion of irrigated cropping land use1 (by area) within upslope quadrant to 5000 m - 27 0.25 0.05 0.00 0.68 

lippiacov mean percent cover of lippia per site (1m x 1m quadrats; Ch.3) % 27 16.46 2.99 0.63 74.00 

meanGWalloc5000 mean groundwater allocation of licensed bores3 within 5000 m buffer - 27 387.22 34.62 134.80 707.67 

north northing6 - 27 6927541.93 3396.88 6899162.00 6975430.00 

REarea500 area of mapped RE 11.3.25 or 11.3.42 within 500 m buffer ha 27 23.20 3.33 1.81 62.54 

REarea2000 area of mapped RE 11.3.25 or 11.3.42 within 2000 m buffer ha 27 94.84 11.52 10.23 186.30 

REarea5000 area of mapped RE 11.3.25 or 11.3.42 within 5000 m buffer ha 27 254.75 21.94 49.98 385.26 

REremppn500 
proportion of mapped RE 11.3.25 or 11.3.42 remaining (proportion of preclear extent) within 500 
m buffer 

- 27 0.53 0.09 0.15 2.28 

REremppn2000 
proportion of mapped RE 11.3.25 or 11.3.42 remaining (proportion of preclear extent) within 

2000 m buffer 
- 27 0.22 0.03 0.07 0.58 

REremppn5000 
proportion of mapped RE 11.3.25 or 11.3.42 remaining (proportion of preclear extent) within 

5000 m buffer 
- 27 0.18 0.02 0.07 0.41 

REremppnUQ500 
proportion of mapped RE 11.3.25 or 11.3.42 remaining (proportion of preclear extent) within 
upslope quadrant to 500 m 

- 27 0.22 0.05 0.00 0.95 

REremppnUQ2000 
proportion of mapped RE 11.3.25 or 11.3.42 remaining (proportion of preclear extent) within 

upslope quadrant to 2000 m 
- 27 0.09 0.01 0.01 0.25 

REremppnUQ5000 
proportion of mapped RE 11.3.25 or 11.3.42 remaining (proportion of preclear extent) within 

upslope quadrant to 5000 m 
- 27 0.03 0.00 0.00 0.08 

remvegarea500 area of mapped remnant vegetation2 within 500 m buffer ha 27 29.48 3.48 7.60 76.10 

remvegarea2000 area of mapped remnant vegetation2 within 2000 m buffer ha 27 142.59 14.18 50.78 327.43 

remvegarea5000 area of mapped remnant vegetation2 within 5000 m buffer ha 27 575.54 55.24 256.19 1425.05 

remvegppn500 proportion of mapped remnant vegetation2 (by area) within 500 m buffer - 27 0.375 0.044 0.097 0.969 

remvegppn2000 proportion of mapped remnant vegetation2 (by area) within 2000 m buffer - 27 0.113 0.011 0.040 0.261 

remvegppn5000 proportion of mapped remnant vegetation2 (by area) within 5000 m buffer - 27 0.073 0.007 0.033 0.181 
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Environmental variable Details units n Mean SE Minimum Maximum 

ringtankarea500 area of ring tank storages4 within 500 m buffer ha 27 2.24 0.92 0.00 17.96 

ringtankarea2000 area of ring tank storages4 within 2000 m buffer ha 27 30.33 6.65 0.00 99.07 

ringtankarea5000 area of ring tank storages4 within 5000 m buffer ha 27 132.27 20.16 0.00 321.81 

ringtankareaUQ500 area of ring tank storage4 within upslope quadrant to 500 m ha 27 0.90 0.53 0.00 11.40 

ringtankareaUQ2000 area of ring tank storage4 within upslope quadrant to 2000 m ha 27 6.66 2.94 0.00 66.45 

ringtankareaUQ5000 area of ring tank storage4 within upslope quadrant to 5000 m ha 27 28.30 7.96 0.00 114.25 

ringtanknumUQ500 number of ring tank storages4 within upslope quadrant to 500 m - 27 0.11 0.06 0.00 1.00 

ringtanknumUQ2000 number of ring tank storages4 within upslope quadrant to 2000 m - 27 0.30 0.10 0.00 2.00 

ringtanknumUQ5000 number of ring tank storages4 within upslope quadrant to 5000 m - 27 1.63 0.39 0.00 6.00 

ripwidthcurrent riparian width (RE 11.3.25 or 11.3.4)2 m 27 355.00 51.23 77.38 975.59 

ripwidthpreclear riparian width (RE 11.3.25 or 11.3.4) preclearing2 m 27 1974.26 224.85 305.01 6630.76 

waterbodyarea500 area of mapped water bodies4 within 500 m buffer ha 27 2.04 0.83 0.00 14.71 

waterbodyarea2000 area of mapped water bodies4 within 2000 m buffer ha 27 26.77 5.35 0.00 88.79 

waterbodyarea5000 area of mapped water bodies4 within 5000 m buffer ha 27 105.97 12.65 7.12 247.50 

WWI dieback severity index (Ch.4) - 27 327.78 16.79 175.00 475.00 
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Appendix E Mean cover data and functional classifications for species recorded at St 

Ruth Reserve 

Species Life history Life form Clonality Frequency Mean cover (SE) 

Asperula conferta perennial forb nonclonal 18 0.62 (0.22) 

Boerhavia dominii perennial forb nonclonal 3 0.02 (0.01) 

Bothriochloa ewartiana perennial tussock grass nonclonal 3 0.11 (0.08) 

Bulbine bulbosa perennial forb nonclonal 2 0.00 (0.00) 

Carex inversa perennial sedge clonal 13 0.85 (0.57) 

Chenopodium sp. perennial chenopod shrub nonclonal 1 0.00 (0.00) 

Chloris divaricata perennial tussock grass clonal 7 0.36 (0.17) 

Chloris truncata perennial grass clonal 2 0.00 (0.00) 

Conyza bonariensis* annual forb nonclonal 17 0.30 (0.07) 

Cullen tenax perennial forb nonclonal 3 0.00 (0.00) 

Cyclospermum leptophyllum* annual forb nonclonal 2 0.03 (0.03) 

Cynodon dactylon perennial grass clonal 47 5.51 (1.30) 

Cyperus gracilis perennial sedge nonclonal 6 0.09 (0.04) 

Cyperus gunnii perennial sedge clonal 45 0.45 (0.08) 

Dichanthium sericeum  perennial tussock grass nonclonal 17 0.94 (0.57) 

Dichelchne micrantha perennial tussock grass nonclonal 1 0.00 (0.00) 

Digitaria divaricatissima perennial tussock grass nonclonal 3 0.03 (0.02) 

Einadia nutans/polygonoides perennial chenopod shrub nonclonal 49 8.23 (1.70) 

Elymus multiflorus/scaber  perennial tussock grass nonclonal 32 2.44 (0.63) 

Eragrostis tenellula annual grass nonclonal 1 0.01 (0.01) 

Eriochloa pseudoacrotricha short-lived tussock grass nonclonal 12 0.95 (0.44) 

Euchiton involucratus perennial forb clonal 3 0.03 (0.02) 

Eulalia aurea perennial grass clonal 10 0.96 (0.49) 

Eustrephus latifolius perennial vine nonclonal 1 0.00 (0.00) 

Glandularia aristigera* perennial forb clonal 22 2.20 (0.82) 

Glycine tabacina perennial forb clonal 7 0.05 (0.02) 

Lepidium africanum/bonariense* annual forb nonclonal 10 0.49 (0.19) 

Lomandra multiflora perennial rush nonclonal 1 0.03 (0.03) 

Marsilea sp. perennial fern clonal 46 0.58 (0.09) 

Opuntia aurantiaca* perennial cactus nonclonal 2 0.06 (0.04) 

Opuntia stricta* perennial cactus nonclonal 1 0.01 (0.01) 

Oxalis perennans perennial forb clonal 44 0.50 (0.10) 

Panicum decompositum perennial tussock grass nonclonal 2 0.15 (0.13) 

Panicum gilvum* annual grass nonclonal 1 0.04 (0.04) 

Panicum laevinode annual tussock grass nonclonal 1 0.35 (0.35) 

Panicum queenslandicum perennial tussock grass nonclonal 16 0.74 (0.32) 

Paspalidium distans perennial tussock grass nonclonal 51 11.37 (2.29) 

Paspalidium gracile perennial tussock grass nonclonal 2 0.15 (0.12) 

Phyla canescens* perennial forb clonal 69 27.93 (3.43) 

Portulaca oleracea short-lived forb nonclonal 4 0.03 (0.02) 

Rumex brownii perennial forb nonclonal 1 0.00 (0.00) 

Salsola tragus short-lived chenopod shrub nonclonal 25 3.53 (0.86) 

Sonchus oleraceus* annual forb nonclonal 2 0.06 (0.04) 

Urochloa panicoides* annual grass clonal 2 0.06 (0.04) 

Vittadinia pterochaeta/sulcata annual forb nonclonal 5 0.03 (0.02) 

*  alien species 
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Appendix F Soil analysis results for shallow and deep soil samples from St Ruth Reserve 

 

Measure units n Mean SE Minimum Maximum 

Shallow soils       

Calcium mg/kg 24 6237.50 260.21 4100.00 9400.00 

Calcium: Magnesium - 24 1.82 0.08 1.40 3.20 

Cation Exchange meq/100g 24 51.20 1.74 34.61 71.07 

Chloride mg/kg 24 49.17 3.39 27.00 93.00 

Electrical conductivity  dS/m 24 0.16 0.01 0.08 0.27 

Exchange Calcium % 24 60.71 0.77 54.40 72.40 

Exchange Magnesium % 24 33.83 0.72 22.70 38.40 

Exchange Potassium % 24 4.83 0.11 3.90 5.70 

Exchange Sodium % 24 0.66 0.09 0.40 2.70 

Exchangeable Calcium meq/100g 24 31.19 1.29 20.43 47.06 

Exchangeable Magnesium meq/100g 24 17.22 0.59 12.41 24.17 

Exchangeable Potassium meq/100g 24 2.46 0.08 1.53 3.34 

Exchangeable Sodium meq/100g 24 0.33 0.05 0.16 1.41 

Magnesium mg/kg 24 2062.50 72.44 1500.00 2900.00 

Moisture % 23 6.79 0.20 4.40 8.10 

Nitrate Nitrogen mg/kg 24 9.46 1.07 2.00 24.00 

Organic Carbon % 24 3.58 0.18 2.30 5.70 

pH - 24 7.32 0.04 6.99 7.90 

Phosphorus - Colwell mg/kg 24 164.58 8.64 104.00 258.00 

Potassium mg/kg 24 957.50 32.82 600.00 1300.00 

Sodium mg/kg 24 76.33 11.02 36.00 320.00 

Sulphur - KCl mg/kg 24 12.90 0.89 6.10 20.60 

Deep soils       

Moisture % 8 5.99 0.35 4.40 7.00 

Electrical Conductivity dS/m 8 0.11 0.02 0.05 0.18 

Nitrate Nitrogen mg/kg 8 1.81 0.76 0.50 7.00 

Organic Carbon % 8 1.19 0.10 0.80 1.50 

pH - 8 7.71 0.13 7.23 8.34 

Phosphorus - Colwell mg/kg 8 86.38 14.85 31.00 137.00 

 


