
MNRAS 461, 4215–4226 (2016) doi:10.1093/mnras/stw1622
Advance Access publication 2016 July 6

Finding binaries from phase modulation of pulsating stars
with Kepler – IV. Detection limits and radial velocity verification

Simon J. Murphy,1,2,3‹ Hiromoto Shibahashi3 and Timothy R. Bedding1,2

1Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia
2Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
3Department of Astronomy, The University of Tokyo, Tokyo 113-0033, Japan

Accepted 2016 July 4. Received 2016 July 1; in original form 2016 June 5

ABSTRACT
We explore the detection limits of the phase modulation (PM) method of finding binary
systems among multiperiodic pulsating stars. The method is an attractive way of finding
non-transiting planets in the habitable zones of intermediate-mass stars, whose rapid rotation
inhibits detections via the radial velocity (RV) method. While oscillation amplitudes of a few
mmag are required to find planets, many δ Scuti stars have these amplitudes. In suboptimal
cases where the signal to noise of the oscillations is lower, low-mass brown dwarfs (∼13MJup)
are detectable at orbital periods longer than about 1 yr, and the lowest mass main-sequence
stars (0.1–0.2 M�) are detectable at all orbital periods where the PM method can be applied.
We use purpose-written Markov chain Monte Carlo (MCMC) software for the calculation
of the PM orbits, which offers robust uncertainties for comparison with RV solutions. Using
Kepler data and ground-based RVs, we verify that these two methods are in agreement, even
at short orbital periods where the PM method undersamples the orbit. We develop new theory
to account for the undersampling of the time delays, which is also necessary for the inclusion
of RVs as observational data in the MCMC software. We show that combining RVs with
time delays substantially refines the orbits because of the complementarity of working in
both the spatial (PM) and velocity (RV) domains simultaneously. Software outputs were tested
through an extensive hare-and-hounds exercise, covering a wide range of orbital configurations
including binaries containing two pulsators.
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1 IN T RO D U C T I O N

Two methods are traditionally used to detect and characterize bi-
nary companions to stars: radial velocities (RVs) from spectroscopy
and eclipse measurements from photometry. The availability of 4 yr
of high-precision photometry from the Kepler Mission has facili-
tated a third method, namely measuring the effect of binary motion
on stellar pulsations. This can be done via the frequency modula-
tion (FM) method (Shibahashi & Kurtz 2012; Kurtz et al. 2015;
Shibahashi, Kurtz & Murphy 2015), or the phase modulation (PM)
method (Murphy et al. 2014; see also Balona 2014; Koen 2014).
Here we discuss the latter, which uses periodic phase shifts in stel-
lar pulsations to infer a binary companion. Orbits are characterized
using the time delays (sometimes called Rømer delays) in place of
RVs (Telting et al. 2012). Time delays have already been used to
detect planetary companions to pulsating subdwarf B stars (Silvotti

�E-mail: murphy@physics.usyd.edu.au.

et al. 2007), building upon the traditional O − C techniques that
have been particularly successful with pulsars (Wolszczan & Frail
1992). We have found the PM method to work well for δ Scuti
pulsating stars using Kepler photometry.

All the aforementioned methods have advantages and disadvan-
tages and are therefore complementary. RVs can reveal companions
down to planetary masses in stars that have sharp spectral lines, but
require a lot of observing time. Eclipses and transits push down to
small planetary companions, provided the inclination is favourable,
but geometry limits the number of systems observed to eclipse to
about 1 per cent. The PM method works best at longer orbital peri-
ods where the time delays are larger, but is restricted to stars with
stable pulsations.

This is the fourth in a series of papers dedicated to development
of the PM method. The first (Murphy et al. 2014) described the
principle of obtaining the time delays from observed phase shifts
of the stellar pulsations. The second (Murphy & Shibahashi 2015)
provided an analytical method for fully solving the orbit, even in
highly eccentric cases. The methodology contained within those
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papers is summarized in Section 2.2, along with a description of new
Markov chain Monte Carlo (MCMC) software used to determine
the orbital parameters. A third study was recently made by Compton
et al. (2016) to determine which kind of oscillating stars are suitable
for PM analyses. They found that δ Sct stars and white dwarfs
were most favourable (cf. Dalessio, Provencal & Shipman 2015).
However, we note that only around 20 white dwarfs were observed
by Kepler during the main mission, and 14 of those were non-
pulsators (Maoz, Mazeh & McQuillan 2015), while thousands of
δ Sct stars were observed (Murphy 2014).

In this paper, we use a hare-and-hounds exercise to investigate
the sensitivity of the PM method to various orbits. The individual
roles of the hare and the hound are described in Sections 2.1 and
2.2, respectively. Particular attention has been paid to recovering the
orbital parameters for undersampled orbits (Section 2.3). In addi-
tion, we conducted specific experiments to determine the detection
limits of the PM method, in terms of both companion mass and
maximum orbital period that can be analysed, and the influence
of the pulsation properties on these limits (Section 3). The use of
RVs as observational inputs alongside time delays is discussed in
Section 4 and applied to real Kepler data, including a binary system
in which both stars pulsate.

2 M E T H O D : A H A R E - A N D - H O U N D S
EXERCISE

2.1 Simulating binary systems (the hare)

2.1.1 Systems with one pulsator

One of us (HS) generated a series of synthetic light curves of δ Sct
variables. We adopted theoretically computed eigenfrequencies of
an evolutionary model of a 1.8-M� star at the mid-main-sequence
stage. We varied the pulsation content by including modes with
spherical degrees, �, up to �= 4. The star was treated as non-rotating,
so that the azimuthal orders of each mode have the same (degen-
erate) frequency. Mode amplitudes were scaled approximately to
their disc-integrated intensity, which decreases with increasing �.
The goal was to generate pulsation spectra that are broadly sim-
ilar to those observed by Kepler. Specific examples are given in
Section 3.

The sinusoidal luminosity variations of each mode were added
together as a 1500-d time series, roughly coinciding with the dura-
tion of the Kepler mission. Gaussian random noise of ∼0.2 mmag
was added at each time cadence, corresponding to the typical noise
per measurement for a 13th-magnitude Kepler target. The sampling
time interval, δt, was set to 30 min, corresponding to Kepler’s long-
cadence mode. Barycentric corrections to the time stamps were
taken into account. See Murphy, Shibahashi & Kurtz (2013a) for
details on the corrections for Kepler’s orbit.

To simulate a binary system, we introduced the delay in ar-
rival time of the light due to the orbital motion by adding a time-
dependent term to the flux values:

L(t) =
∑

j

Aj cos(2πνj [t − τ (t)]), (1)

where Aj and ν j are the amplitude and the frequency of mode j. For
a given orbit, the time delay is expressed as a function of the true
anomaly, f, by

τ (t) = −a1 sin i

c

1 − e2

1 + e cos f
sin(f + � ). (2)

Here, a1sin i denotes the projected semimajor axis, e is the eccen-
tricity, � is the angle between the node and the periastron, and c
is the speed of light. The trigonometric functions of f are expressed
in terms of a series expansion of the trigonometric functions of the
mean anomaly, l, by

cos f = −e + 2
(
1 − e2

)
e

∞∑
n=1

Jn(ne) cos nl (3)

and

sin f = 2
√

1 − e2

∞∑
n=1

J ′
n(ne) sin nl, (4)

where Jn(x) denotes the nth Bessel function of the first and integer
kind, and J ′

n(x) = dJn(x)/dx. Here, the mean anomaly is given as
a function of time, t, by

l(t) := 2πνorb(t − tp), (5)

where νorb and tp denote the orbital frequency and the time of
periastron passage, respectively. In practice, the infinite sum in
equations (3) and (4) must be truncated; we used 100 orders when
injecting orbits into the data.

The light curves were delivered to the hound, but the orbital
parameters, a1sin i, e, � , tp, and νorb, and the pulsation mode prop-
erties were kept secret. Note that by definition the orbital period,
Porb and the orbital frequency νorb are directly related via

Porb := 1

νorb
(6)

and we use these interchangeably.

2.1.2 Systems with two pulsators

In some binary systems, both components are observed to pulsate.
The mass ratio of these systems can be obtained without dependence
on sin i, making them very attractive to study. We refer to these as
‘PB2’ systems in analogy to the SB2 spectroscopic binaries. Their
scientific promise motivated us to include PB2s in some of the
simulations, with both components being δ Sct stars.

2.2 Analysis of simulated binaries (the hound)

2.2.1 Obtaining the phased time-delay curve

The first task in determining the orbital parameters was to obtain a
series of time-delay observations. We used the method of Murphy
et al. (2014), which we summarize here. We began by taking a
Fourier transform of the stellar light curve, and selecting the peaks
of highest amplitude in the range 5–44 d−1. Peaks below 5 d−1

were not used for two main reasons: firstly, this frequency region
is more likely to contain peaks of non-pulsational origin (e.g. due
to noise, which could be the red noise of a low-mass companion
or instrumental noise), and secondly, peaks that are of pulsational
origin are likely to be g modes like those found in γ Dor stars,
which are not typically suitable for PM analysis (see Compton et al.
2016). Since such peaks none the less contribute to the variance
in the data, affecting the uncertainties in the pulsation phases, we
attenuated this low-frequency region, i.e. the data were high-pass
filtered. The corresponding frequency region of 5-d−1 width just
below the sampling frequency (∼49 d−1) was also ignored, giving
the upper limit of 44 d−1. Nyquist aliases were avoided by selecting
the peak of highest amplitude among a set of Nyquist ambiguities
(see Murphy et al. 2013a for a description).
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Figure 1. Observed time delays at slightly different sampling: at 10.00 d
(red squares) and at 9.92 d (blue circles). The orbital period is 40.00 d, so a
non-integer segment size provides much better phase coverage.

The frequencies of those highest peaks were determined with
the full 1500-d light curve using a non-linear least-squares routine.
The light curve was then subdivided into shorter segments, and
the phase of the peaks (at fixed frequency) was measured in each
segment using a linear least-squares routine. Phase changes were
converted into time delays by dividing by the angular frequency of
each peak. We calculated a series of weighted mean time delays,
weighting by the phase uncertainties for each of the extracted peaks
in each of the light-curve segments.

The Fourier transform of the weighted mean time delays has a
peak at the orbital frequency, from which the orbital period was
obtained. The time delays were then folded on this frequency. After
phase folding, it became evident that the default segment size (10 d)
was inappropriate for some of the simulated binaries because they
had orbital periods that were close to integer multiples of 10 d.
This leads to poor phase coverage in the time-delay curve and
poorly constrained orbital parameters (Fig. 1), so for those time-
delay curves the process was repeated with modified segment size.

2.2.2 Determining the orbital parameters

After producing a time-delay curve for each star, we applied the
PM2 method (Murphy & Shibahashi 2015) to obtain analytical
values of the other orbital parameters: the projected light travel
time across the orbit, a1sin i, eccentricity, e, argument of periastron,
� , and phase of periastron, φp. The analytical approach calculates
approximate values for these parameters, but does not constrain
their uncertainties unless the parameter space surrounding those
values is explored. We therefore implemented an MCMC routine.

The MCMC approach used a Metropolis–Hastings algorithm
(Metropolis et al. 1953; Hastings 1970) with symmetric proposal
distributions based on Gaussian-distributed random numbers. The
standard deviations of the proposal distributions were initially cho-
sen based on the analytical orbital parameters already determined.
Smaller proposal steps were made for more eccentric orbits, where
� and φp are better defined. The process is not adaptive in real-time,
but we made trial runs to ensure the proposal acceptance rate lay in
an appropriate range, taken to be between 0.15 and 0.50. Proposals
incorporated steps in all five orbital parameters (Porb, a1sin i, e, � ,
and φp) simultaneously. As is standard, we accepted the proposed
state if its likelihood (Lprop. = exp[χ2/2]) was greater than that of
the current state. If the current state had the greater likelihood, then
we evaluated the likelihood ratio (Lprop./Lcurrent) against a uniform

random number between 0 and 1, and accepted the proposed state
if the likelihood ratio exceeded this number. We manually checked
the posterior distributions to ensure the parameter space had been
explored and sampled appropriately.

The final values of the orbital parameters were determined as the
medians of the marginalized posteriors. An alternative option would
be to take the mean value in the chain for each parameter, or the mode
of the histograms of the marginalized posteriors. The decision of
which to take is arbitrary when the parameter space is well sampled,
the posterior distribution is Gaussian, and the number of proposals
is sufficiently high to avoid small-number statistics. In all cases, data
are discarded when collapsing the marginalized posteriors to single
values. The uncertainties on the orbital parameters were determined
as the points corresponding to 0.159 and 0.841 in the cumulative
distribution of the marginalized posteriors, which therefore bracket
the central 68.2 per cent of the data.

2.3 Sampling of the orbit

The segment size needs to be long enough to give adequate fre-
quency resolution in each segment, but that can mean that the orbit
is not well sampled, particularly near periastron. Severe smearing
of a1sin i/c and e occurs when the time delays are undersampled. In
this subsection, we derive the coefficients necessary to compensate
for undersampling, such that the true orbital elements can be recov-
ered. The results from the hare-and-hounds exercise are discussed
in Section 3.

2.3.1 Instantaneous sampling: a Fourier series expression
of the time delay

With the help of equations (2)–(5), the time delay is written as a
function of time

τ (t) = −a1 sin i

c

∞∑
n=1

ξn sin[2πnνorb(t − tp) + ϑn] − τ0, (7)

where

ξn(e, � ) := 2

n
J ′

n(ne)

√√√√√1 −
⎡
⎣1 −

(√
1 − e2

e

Jn(ne)

J ′
n(ne)

)2
⎤
⎦ cos2 �,

(8)

ϑn(e, � ) :

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

arctan

[
e√

1−e2

J ′
n(ne)

Jn(ne) tan �

]
if 0 ≤ � <

π

2

arctan

[
e√

1−e2

J ′
n(ne)

Jn(ne) tan �

]
+ π if

π

2
≤ � <

3π

2

arctan

[
e√

1−e2

J ′
n(ne)

Jn(ne) tan �

]
+ 2π if

3π

2
≤ � < 2π

(9)

and

τ0(e, � ) := −a1 sin i

c

∞∑
n=1

ξn sin(−2πnνorbtp + ϑn). (10)

Here, arctan(x) returns the principal value of the inverse tangent of
x. See Shibahashi et al. (2015) for further details. As seen in the top
panel of Fig. 2 for the case of n = 1, the � -dependence of ξ n(e, � )
is weak for e 	 1, but it becomes important with the increase of e.
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Figure 2. Top: the coefficient ξ1(e, � ) as a function of eccentricity e for
different values of � . The band shows the full range of � from 0 to 2π. For
e 	 1, ξ1(e, � ) ∼ 1, while its � -dependence grows with the increase of
e. Bottom: the phase ϑ1(e, � ) as a function of � for different values of e.
The e-dependence grows rapidly with e. Note that both functions are shown
for the case of n = 1.

Similarly, the e-dependence of ϑn(e, � ) is weak for e 	 1, but it
dramatically grows as e approaches unity, as shown in the bottom
panel of Fig. 2.

2.3.2 Discrete sampling: the dependence of smearing
on the segment size

Equation (7) indicates that the orbital elements can be determined
from the time delay in the case of instantaneous sampling. How-
ever, in the present method, we divide the observational time span
into non-overlapping segments of size 
t, and deal with the time
delay averaged over the segment.1 This causes the maxima and
minima of the time-delay curve to become less sharp, hence the
orbital elements deduced from it systematically deviate from the
true values.

The time delay averaged over the ith time segment [ti − 
t/2,
ti + 
t/2] is deduced as

τ̄ (ti) = −a1 sin i

c

∞∑
n=1

ξnsinc (nπη) sin[2πnνorb(ti − tp) + ϑn] − τ0,

(11)

1 The segment size 
t is of the order of 10 d and should not be confused
with the Kepler long-cadence sampling rate δt (=30 min).

where

η := νorb
t (12)

is the reciprocal of the number of segments per orbit and is not
usually an integer. The sinc terms in the right-hand side of equa-
tion (11) show the smearing effect due to undersampling. Of course,
in the limit of 
t = 0, equation (11) tends to equation (7).

2.3.3 Treatment of undersampled time delays in the MCMC
software

In order to correct for smearing due to undersampling, we fit the
functional form of equation (11) directly to the observed time de-
lays. The resulting orbital parameters are then equivalent to those
that would be determined if the sampling were instantaneous.

We verified this with numerical simulations analysed with differ-
ent sampling rates (Fig. 3). The simulated orbital elements were:
Porb = 200.0 d, a1sin i/c = 200.0 s, � = 5.0 rad, and three different
values of e were used: 0.05, 0.4, and 0.8.

The upper-left panel shows the projected semimajor axis,
a1sin i/c. The input value is clearly reproduced at the 1σ level,
with no dependence on the segment size used or the eccentricity.
This value of a1sin i/c is later used to calculate the mass function:

f (m1, m2, sin i) := (m2 sin i)3

(m1 + m2)2
(13)

= 4π2c3

G
ν2

orb

(
a1 sin i

c

)3

, (14)

where G is the gravitational constant and m2 denotes the mass of the
companion. Thus, with a suitable assumption of the primary mass
m1, the mass of the companion can be found.

The upper-right panel of Fig. 3 shows that the eccentricity, e,
is also well reproduced, even when the smearing effect is strong.
The argument of periastron, � , in the lower-left panel, has larger
uncertainties when the eccentricity is small and periastron becomes
hard to identify, but is recovered satisfactorily even for e = 0.05. The
projected semimajor axis is determined less precisely – although
still within 1σ – when the eccentricity is high.

2.3.4 Choice of the segment size

Given that the orbital parameters are well recovered even when the
number of segments per orbit is large, how large should segment
sizes be? The answer reflects a trade-off between the desire to de-
tect short-period orbits and the need to resolve modes with nearby
frequencies. If many low degree, high-order acoustic modes are ex-
cited in a target star, the frequencies of � = 0 modes with a certain
radial order and those of � = 2 modes with a radial order lower by
one are quite close.2 The situation worsens with higher �, as we will
demonstrate in Section 3.1.2, and further deteriorates if rotational
splittings are included. In order to resolve such small-frequency
separations in a dense frequency spectrum, the segment size should
be longer than the reciprocal of that frequency separation. Other
factors to consider are the increase in computation time for pro-
cessing more time-delay measurements versus the improvement in
precision of the orbital parameters when η is smaller.

2 This is the small separation, δν, in solar-like oscillators.
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Figure 3. The effect of undersampling on the MCMC outputs (filled circles), for orbits with eccentricities of e = 0.05, 0.4, and 0.8. The abscissa of each panel
is 1/η = (νorb
t)−1. Clockwise from top left, results are shown for the projected semimajor axis a1sin i/c, eccentricity e, the mass function and the argument
of periastron � . The true values are shown by the horizontal lines.

2.3.5 Binning the observations

The increase in computation time when η is small can be alleviated
by binning the observations after the time delays have been folded
on the orbital period. As long as the number of bins remains ade-
quate for determining the eccentricity, computation time is heavily
reduced by taking a weighted mean in each phase bin and scaling
the error bars accordingly, with no detriment to the uncertainties on
the orbital parameters. A contextualized example will be given in
Section 4.

3 R E S U LT S F RO M T H E H A R E - A N D - H O U N D
E XPERIMENTS

3.1 Detection limit of the PM method in finding companions

One of the goals of the hare-and-hounds exercise was to establish
the limit down to which the PM method can detect a companion.
Here, we give a breakdown of the factors that influence that limit
for a companion of a given mass, and predict the detection limits of
the method as applied to Kepler data.

3.1.1 Dependence on eccentricity

A Fourier transform of the time delays for an eccentric orbit features
a Fourier series at the orbital frequency (see Murphy & Shibahashi
2015, especially their fig. 21). The phases of the harmonics contain
information on the value of � , while their amplitudes depend on

the value of e: the higher the eccentricity, the more the amplitude is
concentrated into harmonics at the expense of the peak at the orbital
frequency. If all other parameters are held fixed, the drop in ampli-
tude of the peak at the orbital frequency gives it a lower significance
and makes highly eccentric orbits harder to detect (Fig. 4).

3.1.2 Dependence on pulsation properties

Compton et al. (2016) investigated the suitability of the PM method
for different classes of pulsating stars. The pulsation properties are
the biggest influence on the detectability of binarity: the frequencies
of the oscillations, their signal-to-noise ratios and their separation
in frequency all play a role.

The frequencies of the oscillations determine the accuracy of the
clock. When the ratio of a1sin i/c to the pulsation period (1/ν) is
large, the oscillations function as a better clock and there is greater
sensitivity to the orbital variation. This is illustrated in fig. 4 of
Compton et al. (2016), alongside the effect of the signal-to-noise
of the oscillation mode. Only monoperiodic stars were investigated
there; here, we present some examples for a multiperiodic oscillator,
which allows us to discuss the issue of mode crowding.

We investigated the influence of the signal to noise of the oscil-
lations by simulating three identical binary systems whose pulsa-
tion spectra were identical apart from different levels of Gaussian-
distributed random noise: (i) no noise, (ii) 0.2 mmag per point, and
(iii) 2.0 mmag per point. The oscillation frequencies were those of
the first, second and third radial overtone modes of a 1.8-M� star at
the mid-main-sequence stage. They were therefore well separated
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Figure 4. Top: fourier transform of observed time delays for an eccentric
orbit (e = 0.8), showing many harmonics of the orbital frequency. Middle:
schematic representation of the top panel, with a similar orbit but with zero
eccentricity shown for comparison. Bottom: schematic representation of a
simulation with a lower companion mass to assess detection limits. The
typical noise level of around 3 s is shown, which leads to the harmonics of
the eccentric orbit being hidden. The signal-to-noise ratio is higher for the
circular orbit, thus circular orbits are easier to detect.

in frequency, allowing us to assess the effect of mode signal to noise
without mode crowding being a factor. The Fourier transforms of
each case are shown in Fig. 5 for a 1500-d light curve, along with
the corresponding time delays. The addition of white noise to the
light curve leads to an increase in scatter in the time delays. Fig. 6
shows that the increased scatter has no frequency dependence (i.e.
the time-delay noise is also white). Importantly, the extra noise
has buried the orbital harmonics, which will lead to a very poorly
constrained orbital solution.

To investigate the effect of mode crowding, we simulated four
additional light curves with no noise. Mode density was controlled
by including modes of progressively higher spherical degree, from
� = 1 in the simplest case to � = 4 in the densest case. Their
frequencies and amplitudes are shown in Fig. 7. Since the effect of
close mode frequencies is to produce spurious variations in the time
delays at their beat frequency (Murphy et al. 2014), we expect the
noise to be non-white. We therefore simulated these light curves
without any injected binarity, allowing the spurious frequencies to
be seen more clearly. The pulsation spectra and the spurious peaks
in the time delays are shown in Fig. 8. As more modes are included,
the number of spurious peaks grows. In particular, we note that in
the models the � = 2 modes tend to cluster around the radial modes,
which is also observed in real data (Breger, Lenz & Pamyatnykh
2009). The example shown here is simplistic, because the star is non-

rotating and all 2� + 1 azimuthal orders have the same frequency.
Spurious peaks can be more burdensome in practice.

The amplitudes of the spurious peaks can easily exceed the am-
plitudes of the orbital frequency, even when the weighted average is
taken, so their treatment is important. One option is to set the weight
of each affected mode to zero when calculating the weighted aver-
age, but then the binary signal belonging to that mode is also lost.
This option is particularly undesirable if the mode has a high am-
plitude, because it provides the smallest phase uncertainties for the
time-delay analysis. Another option is to pre-whiten the spurious
frequencies from the time delays. This is more time-consuming and
not easily automated, but results in a better determination of the
orbital parameters and is the preferred option. That is not to say that
the influence of spurious peaks can be entirely mitigated in practice.
At some amplitude these cannot be easily distinguished from white
noise, and so the general effect is an addition to the overall noise
level.

3.1.3 Detection limits and discussion

Photon noise in the light curve causes white noise in the time delays,
and therefore affects the minimum detectable companion mass. If
we assume photon noise to be the dominant noise source in real
light curves, then detection thresholds will lie at lower companion
masses for brighter stars. However, the important quantity is the
signal-to-noise ratio of the oscillations, so faint stars with large os-
cillation amplitudes may still have lower detection thresholds than
brighter pulsators with weaker oscillations. The number and the
frequencies of the oscillation modes also matter. The white noise
decreases approximately as

√
N , where N is the number of oscilla-

tions used in the weighted average, but adding more modes of lower
amplitudes leads to diminished returns because they contribute less
to the weighted average. The oscillations differ from star to star,
so the detection thresholds for real data must be examined on an
individual basis. None the less, we give some approximate limits
based on simulations (see also Compton et al. 2016).

The detection limits are based on a simulation containing � = 0
to 4 modes (shown in bottom panel of Fig. 8), with the addition of
Gaussian-distributed white noise of σ = 0.13 mmag per point. This
corresponds to the photometric precision achieved for a Kepler
target with Kp = 13.0 mag. The signal-to-noise ratios of the 10
strongest oscillation modes lie between 150 and 270 before pre-
whitening, or 260–430 after pre-whitening their spectral windows
from the light curve. Once this is done, the highest noise peaks in
the Fourier transform of the time delays are at about 2–3 s, from
which we conclude that a binary system with a1 sin i/c > 5 s would
be detectable.

When the noise is white, the detection limit (in terms of the
minimum detectable value of a1 sin i/c) is the same at all periods.
However, as seen in equation (14), the minimum mass correspond-
ing to that a1 sin i/c limit does depend on the orbital period because
longer periods correspond to larger orbits (larger a1 sin i/c) for a
companion of a given mass. Fig. 9 provides the minimum detectable
companion mass for a given a1 sin i/c limit at different orbital
periods.

From Fig. 9, we conclude that the lowest mass M dwarfs at
0.07 M� (75 MJup) are detectable around δ Sct stars even in un-
favourable cases, if the orbital period exceeds 300 d. M0 stars,
with masses around 0.6 M�, are generally detectable at periods
above 20 d. These limits extend to lower mass (or shorter period)
in more optimal cases. In the best conditions (high pulsation signal
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Figure 5. Pulsation spectra with oscillation signal-to-noise ratios decreasing downwards, and their corresponding time-delay curves. The labels fi on the
time-delay curves (right) correspond to the pulsations (left) in order of decreasing amplitude (1 = highest). The dashed blue line in the left-hand panels is the
Nyquist frequency; the peaks above the Nyquist frequency are all aliases in this case.

Figure 6. Fourier transforms of the time delays of individual modes (left) and the weighted average time delays (right) for the simulations in Fig. 5. White
noise in the light curve leads to white noise in the time delays. Notice that, in the bottom panels, the orbital harmonics due to the eccentricity are no longer
obvious.

to noise), Jupiter-mass companions can be found at orbital periods
comparable to the data set length. The sensitivity would have been
sufficient to detect Jupiter and Saturn in their orbits, had Kepler
continued observing for a full orbit (i.e. 12 yr for Jupiter). The mis-
sion actually lasted 1470 d, which gives a practical limit of about
2–10 MJup, depending on the pulsation properties. Importantly, the
periods at which planets are detectable includes the habitable zone.

Similar detection limits can be obtained for different classes
of pulsating stars by scaling these results according to the os-

cillation frequencies and their signal-to-noise ratios (see Comp-
ton et al. 2016), and accounting for the difference in mass of the
pulsators.

3.2 Phase drift over time

Small inaccuracies in the oscillation frequencies can cause a lin-
ear phase drift to accumulate over time (Sterken 2005). This can
be the case even if the oscillation frequencies are determined
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Figure 7. Schematic diagram showing the constituents of the ‘typical’
pulsation spectrum. The bottom panel shows the input frequencies and
their angular degrees, while the top panel also includes the Nyquist aliases
for 30-min sampling, with the Nyquist frequency drawn and labelled. The
quadrupole (� = 2) modes cluster tightly around the radial (� = 0) modes,
and are not resolved in 10-d segments.

as accurately as possible within a given data set. If the fre-
quency errors were random, the use of multiple pulsation modes
would generally cancel out any such phase drift. However, we
found that the oscillation frequencies could be systematically

Figure 9. Companion masses (in Jovian masses) corresponding to the de-
tection limits in a1 sin i/c for objects orbiting a typical non-radially pulsating
δ Sct star. The black line represents the detection limit of a1 sin i/c = 5 s
established from simulations; limits of 1 and 20 s, for the best case and
common case in Kepler δ Sct stars, are also shown. The canonical mass
range of brown dwarfs is indicated by the shaded region. The primary is
assumed to be 1.8 M�, and sin i = 1.

incorrect, and that this effect was strongly correlated with orbital
period.

The cause is the time-averaged Doppler shift of the oscillation
frequency, νosc, over the orbit. For an integer number of orbits, the
observed oscillation frequency is equal to the input value. However,
when the number of orbits is a small non-integer, the mean observed
frequency is no longer equal to the input value, but is shifted by an
amount


νosc = (T mod Porb)

T

νosc

c

∫ T

0
vrad(t) dt, (15)

Figure 8. Simulations showing that the inclusion of extra modes leads to some closely spaced peaks that are unresolved in short (∼10-d) segments, causing
strong and non-white noise at the beat frequencies of the unresolved modes.
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Figure 10. Top: a linear drift in time delays, τ (t), caused by using a slightly
incorrect oscillation frequency. The dashed blue line is a linear fit to all the
data points, whereas the red line is a fit from peak-to-peak (see the text).
Bottom: the same time delays after a correction is applied.

where the coefficient (T mod Porb)/T denotes the remainder of the
division of the time span of the data T by the orbital period Porb,
and vrad(t) is the instantaneous RV of the star in its orbit. This
produces a linear trend in the time delays as shown in Fig. 10. This
is almost certainly the cause of the linear trend in the O-C residuals
for KIC 11754974 found by Murphy et al. (2013b), rather than the
difference in the Kepler and WASP passbands suggested in that
paper.

Attempts to phase-wrap time delays without correcting for a lin-
ear drift can result in large errors in the inferred orbital parameters.
One cannot simply find and subtract a linear fit by least squares
(dashed blue line, Fig. 10) because the data do not cover an integer
number of orbits. Instead, a correction can be applied by finding the
gradient of a line connecting the maxima or minima in the time de-
lays. The orbital parameters extracted after the correction is applied
match the input values satisfactorily.

Phase drift of this kind is greater for longer orbital periods but
the top-right panel of Fig. 5 shows it can be significant for periods
of ∼300 d. One cannot know, a priori, the value of the shift without
an ephemeris for the orbit.

If two maxima or two minima are available then the time delays
are easily detrended (Fig. 10, bottom). If those maxima or minima
have substantial scatter, then choosing the ‘correct’ gradient can be
arbitrary and can have significant consequences for the determined
orbital parameters that is not reflected in the numerical uncertain-
ties. For this reason, we included the gradient of the correction as an
additional parameter in the MCMC analysis. We simulated several
binary orbits with periods longer than 1000 d and we were able to
reproduce the input parameters more accurately when the detrend-
ing was incorporated within the MCMC framework than when it
was applied manually.

We also simulated binary orbits longer than the 1500-d data set
length. We were able to recover the input parameters for periods up
to around Porb = 2000 d, with the agreement becoming poorer at

Table 1. Comparison between the simulated and inferred parameters for
a long-period binary system, where the orbital period twice as long as the
1500-d data set and a significant trend is seen in the time delays. The
final column shows that the input values are reproduced at the 1σ–2σ

level (calculated as inferred minus input). Importantly the mass function is
accurately reproduced.

Parameter Units Input Inferred Difference (σ )

Porb d 3017.1 3364+119
−322 +1.08

a1 sin i/c s 589.01 630+14
−37 +1.07

e 0.75 0.768+0.010
−0.023 +0.78

φp [0–1] 0.1699 0.1539+0.0155
−0.0049 −1.03

� rad 1.6179 1.653+0.030
−0.015 +2.34

f(m1, m2, sin i) M� 0.0241 0.0238+0.0048
−0.0046 −0.06

longer periods. Degeneracies between the orbital period, the eccen-
tricity and the gradient applied to the time delays generally prevent
unique solutions from being found at longer periods, but some or-
bital configurations are still solvable. An example for a 3000-d
binary is given in Table 1. Importantly, since inaccuracies in Porb

and a1 sin i/c are correlated (larger orbits have longer periods), the
mass function is still accurately recovered. The consequence is that
we may still identify low-mass companions such as brown dwarfs
and planets when the orbital period is longer than the data set, where
our sensitivity to such low-mass companions is highest.

4 IN C O R P O R ATI O N O F RV s

RV curves for faint targets require many hours of time on large tele-
scopes. In addition, it can be logistically difficult to obtain adequate
orbital phase coverage for a sample of binary stars with a wide
range of orbital periods. This makes the PM method, as applied
to Kepler data, a much more efficient survey for binary systems,
where thousands of stars can be studied with little dependence on
their visual magnitudes.

RV measurements can be imprecise for B/A/F-type stars due to
their rapid rotation (Abt & Morrell 1995; Royer, Zorec & Gómez
2007), while the PM method is well suited to pulsators at these
spectral types (Compton et al. 2016). If the RV precision is poor,
the small RV amplitudes of long-period binaries may go undetected,
whereas the PM method is more efficient at longer periods. On
the other hand, the near-instantaneous nature of RV measurements
(compared to time-delay integrations of several days) make RVs
better suited to parametrizing compact orbits with small separations
at periastron. Those include short-period systems as well as some
with longer periods but high eccentricities, where the time delay
changes rapidly at periastron.

Given that the PM method is relatively new, while RVs have been
used for solving binary orbits for over a century, we produce RV
curves for familiarity. We computed these from the orbital parame-
ters determined by the MCMC method. An example PB2 time-delay
curve with a solved orbit is shown in Fig. 11, along with the RV
curve corresponding to the same orbit. Thus, the semi-amplitude of
the RV, K1:= (vrad,1,max − vrad,1,min)/2, which is a key output of RV
analyses, can be obtained analytically from PM orbits

K1 = (2πG)1/3
√

1 − e2

{
f (m1, m2, sin i)

Porb

}1/3

, (16)

even when no RV observations are available.
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Figure 11. A simulated PB2 system with input values of Porb = 100 d, e =
0.8 and m1/m2 = 0.9. The RV curve for each component (bottom) can be
computed from the best-fitting theoretical orbit to the observed time delays
(top) after correction for undersampling.

4.1 Inclusion of RV data

For many systems, both the RV and PM methods can be useful. The
criterion is that the measurement uncertainties are a small fraction
of the total variation across the orbit.

We have developed a way to use both RVs and time delays in
the MCMC framework for calculating the orbital parameters. The
χ2 of a given orbit becomes the sum of the contributions from the
fit to the time-delay data and the fit to the RV data. This requires
real-time correction for undersampling by the time delays of each
proposed orbit in the Markov chain (see Section 2.3).

The two methods are highly complementary, and the result is a
substantial refinement of the orbital parameters. RV observations
made now (in the year 2016) will nearly double the baseline of
observations for each binary system, given that the 4 yr of Kepler
observations ended in 2013 May.

4.2 Application to real data: PB1–SB1 systems

The precision of the orbital parameters can sometimes be improved
greatly with the inclusion of only a small number of RV measure-
ments. Examples combining RVs and time delays are shown in
Figs 12 and 13 for two Kepler SX Phe binaries (Nemec et al. 2015).
For KIC 5705575, the long orbital period of 537.7 ± 0.9 d leads to
large RV error bars relative to the RV semi-amplitude, so the few
RV data do not add to the quality of the solution. For KIC 6780873,
which has a much shorter orbital period of just 9.1547 ± 0.0003 d,
the physical size of the orbit is small and the uncertainty on the
time delays almost equals the peak-to-peak variation, but the time-
delay measurements are numerous. For this system, the combining
time delays and RVs leads to substantial improvement in the orbital
solution (Table 2). The eccentricity is improved by a factor of 50
compared to the solution from RVs alone. The period uncertainty of
just 25 s and the uncertainty in a1 sin i/c of just 44 ms is remarkable
for a non-eclipsing and non-exotic binary (i.e. where neither star is
a pulsar).

4.3 Application to real data: a PB2–SB2 system

The ability to derive the mass ratio of stars in a binary system
independently of the inclination is a great advantage of studying
double-lined systems, but it comes at the expense of disentangling

Figure 12. Time delays (left vertical axis), and RVs (right vertical axis),
as a function of time (top panel) and orbital phase (bottom panel) for the
537.7-d binary KIC 5705575. Solid lines show the orbital solution. The
seven pulsation modes used in the PM analysis are those with frequencies
at 20.54, 26.67, 20.28, 25.28, 21.36, 24.78, and 25.83 d−1.

Figure 13. Data coverage and phased orbital solution for KIC 6780873,
whose orbital period is 9.15 d. Time delays from the only two strong modes,
at 14.19 and 13.44 d−1, were used. Symbols and colours are the same as
those in Fig. 12.

the spectral or pulsational contributions from the two stars. When
combining time delays and RVs, an additional complication can
arise in associating the correct RV curve with the corresponding
time-delay curve. Fig. 14 shows a PB2–SB2 system where time
delays and RVs could be derived for both components. The system
is KIC 10080943, in which both stars are δ Sct–γ Dor hybrids (Keen
et al. 2015; Schmid et al. 2015; Schmid & Aerts 2016). We used
the RVs from Schmid et al. (2015) in our analysis here.

The short orbital period of 15.33 d is much more favourable to
RVs than to time delays for deriving the orbital parameters. Addi-
tionally, the number of RV measurements and their phase coverage
produce a good solution on their own, as Schmid et al. (2015)
showed with their analysis using the FDBINARY code (Ilijic et al.
2004). None the less, the time-delay data do improve the solution,
as shown in Table 3. The time delays provide a longer observational
timespan, which improves the precision on the orbital parameters
by a factor of 10. For this double-lined system, we have determined
the orbital period to a precision of 3 s.
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Table 2. Comparison of the precision on the orbital parameters for
KIC 5705575 and KIC 6780873 when using different data sets. PM analyses
used seven and two pulsation modes, respectively. The values of φp and �

are not shown because they are undefined for the small eccentricities. Porb

and e values for the RV solution of KIC 5705575 were fixed to the bracketed
values because they could not be determined independently.

Parameter Units PM only RV only PM + RV

KIC 5705575

Porb d 537.5+0.9
−1.1 (537.5) 537.7+0.8

−0.9

a1 sin i/c s 165.4+1.4
−1.3 162 ± 20 165.2+1.2

−1.3

e 0.032+0.015
−0.016 (0.0) 0.017+0.015

−0.010

f(m1, m2, sin i) M� 0.0168+0.0004
−0.0004 0.016 ± 0.006 0.0168+0.0003

−0.0004

K1 km s−1 6.71+0.04
−0.04 6.55 ± 0.83 6.70+0.04

−0.03

KIC 6780873

Porb d 9.131+0.025
−0.013 9.161 ± 0.001 9.1547+0.0003

−0.0003

a1 sin i/c s 16.6+2.0
−2.6 16.5 ± 0.5 16.278+0.042

−0.045

e 0.034+0.024
−0.023 0.04 ± 0.02 0.0004+0.0006

−0.0002

f(m1, m2, sin i) M� 0.059+0.021
−0.028 0.055 ± 0.002 0.0553+0.0004

−0.0004

K1 km s−1 39.6+5.6
−5.6 38.7 ± 0.9 38.77+0.06

−0.06

Figure 14. Combined time-delay (top) and RV (bottom) analysis of the
double-lined system KIC 10080943. The star of origin could be established
for five pulsation modes with the PM analysis (see Schmid et al. 2015),
with frequencies of 13.95, 15.68, 12.89, 14.20 and 19.64 d−1. Theoretical
orbits used for the RVs and time delays of a given star are the same. The
time-delay analysis used 80 bins but for clarity only 20 bins are shown.

5 C O N C L U S I O N S

We have developed MCMC software to solve binary orbits based on
a series of time-delay observations, and to provide robust uncertain-
ties. We simulated orbits covering a range of parameters to explore
the sensitivity limits of the method, the factors governing those lim-
its, and to predict the lowest mass companions detectable by the
method. We confirmed that the method is much more sensitive to
stars oscillating with high signal to noise, and in such cases the de-
tection limit approaches 1–2 MJup at long orbital periods (>1000 d),
where the habitable zones of intermediate-mass stars are located.

We also showed that orbital solutions can be obtained when the
orbital period is longer than the data timespan, with the upper limit
on orbital period depending on the orientation and eccentricity of
the orbit, and whether or not the periastron phase is observed. The
uncertainties on such orbits tend to be large and perhaps underesti-

Table 3. Improvement in the orbital parameters for KIC 10080943, based
on the combination of time-delay and RV data. Five oscillation modes could
be used for the PM analysis. Column 3 refers to the parameters published
by Schmid et al. (2015). The value of tp (in units of BJD−2400000) is
given instead of φp, but was forward-calculated to the epoch of the Schmid
et al. (2015) value, resulting in uncertainties that are larger than the smallest
achievable uncertainties of 0.0003 d for this system.

Parameter Units RV only PM + RV

Porb d 15.3364 ± 0.0003 15.336 19+0.000 04
−0.000 04

tp d 55 782.23 ± 0.02 55 782.242+0.018
−0.018

a1 sin i/c s 43.0 ± 0.3 43.22+0.02
−0.02

a2 sin i/c s 44.7 ± 0.3 45.02+0.02
−0.02

e 0.449 ± 0.005 0.4539+0.0003
−0.0003

� rad 6.016 ± 0.012 6.0187+0.0010
−0.0008

f(m1, m2, sin i) M� 0.3628 ± 0.0076 0.3687+0.0006
−0.0006

q 0.96 ± 0.01 0.960 ± 0.001

mated. However, since any overestimates of the orbital period will
be correlated with overestimates of a1 sin i/c, and vice-versa, the
mass function is well recovered. This is because the rate of change
of the time delays, which is governed by the mass function, can be
established without observing a full orbit.

One drawback to the PM method is that we must divide the light
curve into segments of several days to make adequate measure-
ments of the pulsation phases. For short-period binaries, this leads
to significant undersampling and if the orbits are eccentric, the time-
delay curve is heavily smeared. We have overcome this drawback
by developing correction factors to the time-delay fitting function,
and we verified the validity and implementation of that function in
the MCMC algorithm via a hare-and-hounds exercise. The under-
sampling correction can help in understanding our completeness in
surveys for binary stars with short periods, but a full completeness
analysis remains as future work.

Another development is the simultaneous use of RVs and time
delays as input data for solving the orbits in the MCMC frame-
work. This requires implementation of an undersampling correc-
tion the time-delay fitting function, but allows the orbital pa-
rameters to be determined much more precisely. This is partly
because of the complementarity of the PM and RV methods: the
latter is the time derivative of the former and measurement of both
provides a clear improvement in constraints on the orbit. Addition-
ally, any RV measurements made now will double the time span of
the observations, constraining the orbital period much more tightly,
and thereby reducing the uncertainties on the other orbital param-
eters. For a real Kepler binary system, we showed that the combi-
nation of RVs and time delays can constrain the eccentricity to a
factor 50 better than either the time delays or RVs alone, and orbital
periods can be measured with a precision of seconds, even without
eclipses.
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