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Abstract: This paper presents a radial-basis-function (RBF) collocation method

for the simulation of two-dimensional fluid-flow problems. To improve the stability

of a discrete solution and the quality of derivative approximations, the present RBF

networks (RBFNs) are constructed through integration instead of conventional dif-

ferentiation. Special attention is given to the following two topics: (i) the effective

use of integration constants in the solution of the Navier-Stokes equations and (ii)

the employment of “local” integrated RBFNs to handle flows with fine structures.

Different types of geometries and fluids are considered. The accuracy of the present

technique is demonstrated through the solution of several benchmark test problems.

Keywords: radial-basis-function networks, integral collocation formulation, Navier-

Stokes equations

1 Introduction

Radial-basis-function networks (RBFNs) are known as a powerful numerical tool

for the approximation of scattered data. Theoretical results [1] show that the RBF

interpolation matrix is nonsingular, whatever the number of the data sites. RBFNs

have the property of universal approximation; they can approximate arbitrarily-

well continuous functions. Moreover, a number of RBFs such as the multiquadric

and Gaussian basis functions exhibit an exponential rate of convergence. Over the

past 15 years, RBFNs have very successfully been used for the solution of partial

differential equations (PDEs) (e.g. [2,3]). Unlike low-order discretisation techniques

such as finite-difference and finite-element methods, RBF collocation methods are

capable of providing very accurate results using a relatively-small number of data

points. In contrast to pseudo spectral techniques, they can work with arbitrarily-

scattered data. On the other hand, the resultant RBF systems are dense and they
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are generally ill-conditioned, which can limit the use of RBFNs to discrete systems

with a few hundred points. In addition, theories for determining the optimal values

for the RBFN parameters, for example the RBF width and centre, are still lacking.

It is still difficult to achieve spectral accuracy in practice. Considerable effort has

been put into developing techniques to overcome these difficulties. A comprehensive

discussion on RBF-based methods can be found in [4].

As shown in [5] (Theorem 4.4), the accuracy for approximating a derivative by con-

ventional (differentiated) RBFNs (DRBFNs) is a decreasing function of derivative

order. It is expected that this deterioration of accuracy is avoided by constructing

the RBF approximations through integration. Mai-Duy and Tran-Cong [6,7] have

proposed the use of integrated RBFNs (IRBFNs) for the representation of a given

function and the solution of a PDE. The highest derivatives under consideration

are decomposed into RBFs; expressions for lower derivatives and the function it-

self are then obtained through integration. Numerical studies have shown that the

integral formulation is more accurate than the differential formulation. Recently,

theoretical studies [8] have confirmed superior accuracy of IRBFNs over DRBFNs.

Moreover, there are additional weights (integration constants) in the integral collo-

cation formulation, and they have been found to be extremely useful for handling

the multiple boundary conditions [9,10,11]. IRBFN solutions to various differential

problems have been reported (e.g. [12-15]).

To employ a larger number of collocation points, a numerical scheme based on one-

dimensional IRBFNs has been proposed recently [16,17]. A problem domain, which

can be regular or irregular, is embedded in a rectangular domain and it is then

discretised using a Cartesian grid, i.e. an array of straight lines that run parallel

to the x− and y−axes. The interior points are defined as grid points inside the

problem domain, while the boundary points are generated by the intersection of the

grid lines with boundaries. Grid nodes outside the problem domain are removed
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from the computations. It can be seen that the preprocessing of this numerical

scheme is economical. The governing equations can be of complicated forms such as

those involving high-order and cross derivatives. Let the domain be rectangular and

Nx and Ny be the numbers of grid lines in the x− and y−directions, respectively.

On a grid line, IRBFNs are employed to represent the field variable and its relevant

derivatives. The construction for the approximations at a point involves a number of

Nx or Ny points rather than the usual NxNy points. The 1D-IRBFN approach leads

to a considerable improvement in the matrix condition number and computational

effort over the 2D-IRBFN approach. It is expected that extension to 3D problems

can be carried out straightforwardly.

This paper is concerned with the use of IRBFNs for the simulation of 2D steady in-

compressible flow problems. The motion of a fluid can be described by the equations

of conservation of mass, momentum and energy. The continuity and momentum

equations may be formulated in terms of: (i) velocity and pressure, (ii) stream func-

tion and vorticity, and (iii) stream function. The last two formulations, which are

adopted here, are attractive because, first, the pressure does not have to be consid-

ered, which results in computational efficiency and ease of implementation; second,

the number of equations to be solved is reduced; and third, the continuity equation

is automatically satisfied. However, there is the need to derive boundary conditions

for the vorticity variable if one uses the stream function and vorticity formulation,

and to implement double boundary conditions if one chooses the stream-function

formulation. It will be shown that the integral collocation formulation provides an

effective way to handle these issues. Since the structure of a flow is usually complex,

a sufficiently large number of nodes is required for an accurate simulation. We prefer

to use 1D-IRBFNs (“local” approximations) to simulate fluid-flow problems in two

dimensions.

The remainder of the paper is organised as follows. Section 2 briefly outlines 1D-
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IRBFNs. In section 3, the 1D-IRBFN collocation technique is presented through the

simulation of lid-driven and thermally-driven viscous flows and non-rectilinear vis-

coelastic flows. Results are compared with benchmark solutions, where appropriate.

Section 4 concludes the paper.

2 One-dimensional integrated RBFNs

Consider a univariate function f(x). The basic idea of the integral RBF scheme [6]

is to decompose a pth-order derivative of the function f into RBFs

dpf(x)

dxp
=

Nx∑

i=1

wiϕi(x) =
Nx∑

i=1

wiI
(p)
i (x), (1)

where {wi}Nx

i=1 is the set of network weights, and {ϕi(x)}Nx

i=1 ≡
{
I

(p)
i (x)

}Nx

i=1
is the set

of RBFs. Lower-order derivatives and the function itself are then obtained through

integration

dp−1f(x)

dxp−1
=

Nx∑

i=1

wiI
(p−1)
i (x) + c1, (2)

dp−2f(x)

dxp−2
=

Nx∑

i=1

wiI
(p−2)
i (x) + c1x+ c2, (3)

· · · · · · · · · · · · · · ·

df(x)

dx
=

Nx∑

i=1

wiI
(1)
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · · + cp−2x+ cp−1, (4)

f(x) =
Nx∑

i=1

wiI
(0)
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · · + cp−1x+ cp, (5)

where I
(p−1)
i (x) =

∫
I

(p)
i (x)dx, I

(p−2)
i (x) =

∫
I

(p−1)
i (x)dx, · · · , I(0)

i (x) =
∫
I

(1)
i (x)dx,

and (c1, c2, · · · , cp) are the constants of integration.
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Unlike conventional differential schemes, the starting point of the integral scheme

can vary in use, depending on the particular application under consideration. The

scheme is said to be of order p, denoted by IRBFN-p, if the pth-order derivative is

taken as the starting point.

Evaluation of (1)-(5) at a set of collocation points {xi}Nx

i=1 leads to

d̂pf

dxp
= Î(p)

[p] α̂, (6)

̂dp−1f

dxp−1
= Î(p−1)

[p] α̂, (7)

· · · · · · · · ·

d̂f

dx
= Î(1)

[p] α̂, (8)

f̂ = Î(0)
[p] α̂, (9)

where the subscript [.] and superscript (.) are used to denote the order of an IRBFN

scheme and the order of a derivative function, respectively;

Î(p)
[p] =




I
(p)
1 (x1), I

(p)
2 (x1), · · · , I

(p)
Nx

(x1), 0, 0, · · · , 0, 0

I
(p)
1 (x2), I

(p)
2 (x2), · · · , I

(p)
Nx

(x2), 0, 0, · · · , 0, 0

...
...

...
...

...
...

. . .
...

...

I
(p)
1 (xNx

), I
(p)
2 (xNx

), · · · , I
(p)
Nx

(xNx
), 0, 0, · · · , 0, 0



,

Î(p−1)
[p] =




I
(p−1)
1 (x1), I

(p−1)
2 (x1), · · · , I

(p−1)
Nx

(x1), 1, 0, · · · , 0, 0

I
(p−1)
1 (x2), I

(p−1)
2 (x2), · · · , I

(p−1)
Nx

(x2), 1, 0, · · · , 0, 0

...
...

...
...

...
...

. . .
...

...

I
(p−1)
1 (xNx

), I
(p−1)
2 (xNx

), · · · , I
(p−1)
Nx

(xNx
), 1, 0, · · · , 0, 0



,
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· · · · · · ,

Î(0)
[p] =




I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
Nx

(x1),
xp−1

1

(p−1)!
,

xp−2

1

(p−2)!
, · · · , x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
Nx

(x2),
xp−1

2

(p−1)!
,

xp−2

2

(p−2)!
, · · · , x2, 1

...
...

...
...

...
...

. . .
...

...

I
(0)
1 (xNx

), I
(0)
2 (xNx

), · · · , I
(0)
Nx

(xNx
),

xp−1

Nx

(p−1)!
,

xp−2

Nx

(p−2)!
, · · · , xNx

, 1




;

α̂ = (w1, w2, · · · , wNx
, c1, c2, · · · , cp)T ;

and

d̂kf

dxk
=

(
dkf1

dxk
,
dkf2

dxk
, · · · , d

kfNx

dxk

)T

, k = (1, 2, · · · , p),

f̂ = (f1, f2, · · · , fNx
)T ,

in which dkfi/dx
k = dkf(xi)/dx

k and fi = f(xi) with i = (1, 2, · · · , Nx).

3 Present 1D-IRBFN collocation technique

1D-IRBFNs are implemented to simulate several benchmark problems. The first

problem is a lid-driven cavity viscous flow, where the moving lid introduces a singu-

larity. The discontinuous velocity and the boundless vorticity in the upper corners

present a great numerical challenge especially for high-order discretisation tech-

niques. We solve the set of equations written in the stream function and vorticity

variables. A new technique for deriving boundary conditions for the vorticity is pre-

sented. The second problem is a natural convection flow between confocal horizontal

elliptical cylinders, where the velocity and temperature fields are closely coupled.

The problem domain is multiply connected. There are more equations to be solved

simultaneously, making the numerical analysis more difficult. We take the stream
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function formulation as the governing equation and special emphasis is placed on

the implementation of double boundary conditions. The last problem is a fully-

developed flow of a viscoelastic fluid in a square duct. Further computational effort

is required to obtain viscoelastic stresses that involve high-order derivatives. All

simulations are performed with the multiquadric (MQ) basis function whose form is

ϕi(x) =
√

(x− ci)2 + a2
i , (10)

where ci and ai are the MQ centre and width, respectively. The present MQ width is

simply chosen to be the grid size, and the two sets of centres {ci}Nx

i=1 and collocation

points {xi}Nx

i=1 are identical. The simultaneous linear algebraic equations obtained

are simply solved using standard algorithms available in the literature such as those

provided in MATLAB.

3.1 Lid-driven cavity viscous flow

The governing equations employed here are the Navier-Stokes equations written in

the stream function ψ and vorticity ω as

∂ω

∂t
+

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (11)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (12)

where Re is the Reynolds number, t the time, and (x, y)T the position vector.

The x and y components of the velocity vector are defined in terms of stream function

as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (13)

The cavity is taken to be a unit square, with the lid sliding from left to right at a
8



unit velocity. The boundary conditions for u and v become

ψ = 0,
∂ψ

∂x
= 0, x = 0, x = 1, (14)

ψ = 0,
∂ψ

∂y
= 0, y = 0, (15)

ψ = 0,
∂ψ

∂y
= 1, y = 1. (16)

The domain is discretised using a uniform Cartesian grid. The stream function and

vorticity on a grid line are represented by 1D-IRBFN-2s. We will find ψ and ω

in terms of their nodal values. For a grid line, the relations between the network

weights including two integration constants (α̂) and the nodal variable values (f̂)

can be described by

f̂ = Î(0)
[2] α̂ = Ĉα̂, (17)

α̂ = Ĉ−1f̂ , (18)

where f̂ , α̂ and Î(0)
[2] are defined as before, Ĉ−1 is the pseudo inverse of the conversion

matrix Ĉ. It is noted that f represents ψ and ω.

Using (1)-(4) with p = 2 and (18), the values of derivatives of f at a grid point

(xi, yj) can be computed by

∂f(xi, yj)

∂x
=

[
I

(1)
1 (xi), I

(1)
2 (xi), · · · , I(1)

Nx
(xi), 1, 0

]
Ĉ−1f̂i, (19)

∂2f(xi, yj)

∂x2
=

[
I

(2)
1 (xi), I

(2)
2 (xi), · · · , I(2)

Nx
(xi), 0, 0

]
Ĉ−1f̂i, (20)

∂f(xi, yj)

∂y
=

[
I

(1)
1 (yj), I

(1)
2 (yj), · · · , I(1)

Ny
(yj), 1, 0

]
Ĉ−1f̂j, (21)

∂2f(xi, yj)

∂y2
=

[
I

(2)
1 (yj), I

(2)
2 (yj), · · · , I(2)

Ny
(yj), 0, 0

]
Ĉ−1f̂j, (22)

where f̂i and f̂j are the vectors whose entries are the nodal values of f on the grid

line y = yj and x = xi, respectively. We thus express derivatives of f in terms of
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its nodal values. Assume that the variable f is prescribed on the boundaries. To

find its interior values, a number of algebraic equations that is equal to a number of

unknowns needs to be generated. This can be achieved by collocating the governing

differential equation at the interior points. The assembly of 1D-IRBFNs to obtain

the equations of the entire domain is similar to those of conventional discretisation

techniques.

From (14)-(16), it can be seen that the boundary conditions are over-prescribed for

(12), but under-prescribed for (11). The Dirichlet boundary conditions, ψ, are used

for solving (12), while the Neumann boundary conditions, ∂ψ/∂n (i.e. ∂ψ/∂n =

∇ψ.n̂, where n̂ is the outward unit normal vector at a point on the boundary), are

used to derive computational boundary conditions for ω for solving (11). Making

use of (12), the values of ω on the boundaries are computed by

ω = −∂
2ψ

∂x2
= −

Nx∑

i=1

wiI
(2)
i (x), x = 0 and x = 1, (23)

ω = −∂
2ψ

∂y2
= −

Ny∑

j=1

wjI
(2)
j (y), y = 0 and y = 1. (24)

In computing (23) and (24), one needs to incorporate ∂ψ/∂x into ∂2ψ/∂x2 and

∂ψ/∂y into ∂2ψ/∂y2, respectively. We present a new technique to derive the bound-

ary values for ω. Since α̂ includes two integration constants (i.e. two extra coeffi-

cients), one can add two additional equations representing the Neumann boundary

conditions to the conversion system, for example for the one associated with a hor-

izontal line, as 


ψ̂

∂ψ1

∂x

∂ψNx

∂x




=




I(0)
[2]

K


 α̂ = Cα̂, (25)

where K is the matrix made up of the first and last rows of Î(1)
[2] , and the conversion

matrix C is of dimension (Nx+2)×(Nx+2). The computational boundary condition
10



(23) becomes

ω =
[
I

(2)
1 (x), I

(2)
2 (x), · · · , I(2)

Nx
(x), 0, 0

]
Ĉ−1




ψ̂

∂ψ1

∂x

∂ψNx

∂x




(26)

that contains derivative information on the walls. In this implementation, the

boundary approximations have the same order as the interior approximations, and

all nodal values of ψ are taken into account.

We are interested only in the final steady state of the flow. The resultant system of

nonlinear algebraic equations is solved using the following iterative procedure.

1. Guess the initial solution

2. Solve (12) for ψ

3. Compute the boundary values for ω and the convective terms

4. Solve (11) for ω, where the time derivative term is discretised using a first-order

Euler scheme and the diffusive terms are treated implicitly

5. Check convergence for ω

√
∑N

i=1

(
ω

(k)
i − ω

(k−1)
i

)2

√
∑N

i=1

(
ω

(k)
i

)2
< 10−9, (27)

where k is the time level. If not converged, advance time step and return to

step 2. Otherwise, stop.

A wide range of Re, namely (100, 400, 1000, 3200), is considered. Convergence is

studied using 10 uniform grids: 11 × 11, 21 × 21, · · · , 101 × 101. In solving (11),
11



we use time steps varying from 0.1 to 0.0005. Smaller time steps are employed for

higher Res and denser grid densities.

The lid-driven cavity flow is usually used as a test problem for the assessment of

accuracy of numerical solvers in CFD. Results by Ghia, Ghia and Shin [18] using a

finite-difference discretisation with a dense grid are widely considered as a bench-

mark solution. Recently, Botella and Peyret [19] have decomposed the field variable

into the regular and singular parts. The former is determined using a pseudo spectral

technique, while the latter is treated analytically. A benchmark spectral solution

is provided for Re = 1000, where convergence is achieved up to seven digits. The

IRBFN results are compared with the benchmark finite-difference and spectral so-

lutions and some other solutions reported in the literature in Table 1 for velocity

and in Table 2 for stream function and vorticity. It can be seen that the present

results are in better agreement with the spectral solutions, even at relatively coarse

grids. Some contour plots for Re = 1000 and Re = 3200 are shown in Figure 1.

When compared with pseudo spectral techniques, attractive features of the present

global technique are that it does not require any special treatments for the corner

singularity and it can work with uniform grids.

3.2 Thermally-driven viscous flow

Natural convection between confocal horizontal elliptical cylinders with isothermal

surfaces is considered. The governing equations are taken to be in the temperature
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and stream function formulation as [21]

∂T

∂t
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (28)

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
+
∂T

∂x
=

√
Pr

Ra

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
, (29)

where T is the temperature, Pr the Prandtl number, and Ra the Rayleigh number.

The boundary conditions are prescribed as ψ = 0 and ∂ψ/∂n = 0 on all the bound-

aries, T = 0 on the outer surface, and T = 1 on the inner surface.

The dimensionless geometrical parameters of the problem can be defined as [22]

ai =
1

(rr − 1)(1 − e2i )
1/4
, bi =

(1 − e2i )
1/4

rr − 1
, (30)

ao =
rr

(rr − 1)(1 − e2o)
1/4
, bo =

rr(1 − e2i )
1/4

rr − 1
, (31)

where a and b represent the semimajor and semiminor axes; e denotes the eccentricity

(e =
√
a2 − b2/a); the subscripts o and i refer to the outer and inner ellipses; and

rr =
√
aobo/aibi.

For this flow, one important measurement is the average Nusselt number defined as

Nu = − 1

2π

∫ θ=+π

θ=−π

∂T

∂n
dθ (32)

where ∂T/∂n is the normal derivative of T on the inner surface.

In contrast to horizontal circular annuli, there are relatively few papers on elliptical

cylinders. Works reported include [23,24,25,22]. Zhu et al [22] studied this problem

for Ra = 104 and 68 different physical domains using the differential quadrature
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(DQ) method. The non-rectangular physical domain is transformed into the rect-

angular computational domain. They employed a Fourier series expansion with

uniform points to represent the derivatives in the circumferential direction, and an

algebraic polynomial with cosine-type points to discretise the derivatives in the ra-

dial direction. The governing equations are solved in the stream function, vorticity

and temperature formulation. Grid convergence study is reported for the case of

rr = 2.6, ei = 0.5 and eo = 0.5. Since spectral approximations are very accurate

(exponential convergence), Zhu et al’s results are used here to provide a useful basis

for the assessment of accuracy of the present method.

The problem domain is presently embedded in a Cartesian grid (Figure 2). On a

grid line, we employ 1D-IRBFN-2s and 1D-IRBFN-4s to represent the temperature

and stream function, respectively. Because of no underlying mesh required, 1D-

IRBFNs can work with regular and irregular boundary points in a similar fashion.

The discretisation process for T is the same as that for ψ and ω in the previous

problem. Emphasis is placed on the IRBFN solution of (29) (fourth-order PDE)

that is subject to double boundary conditions. From the prescribed values ψ and

∂ψ/∂n, one can easily derive the values of ∂ψ/∂x and ∂ψ/∂y on the surfaces. The

derivative boundary conditions are implemented through the process of converting

the RBF weight spaces into the physical space. On a grid line, e.g. a horizontal one,

one can construct the following system




ψ̂

∂ψ1

∂x

∂ψNx

∂x




=




I(0)
[4]

K


 α̂ = Cα̂, (33)

where K is the matrix made up of the first and last rows of Î(1)
[4] . The mixed
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derivatives in (29) are computed according to

∂3ψ

∂x2∂y
=

∂2

∂x2

(
∂ψ

∂y

)
, (34)

∂3ψ

∂x∂y2
=

∂2

∂y2

(
∂ψ

∂x

)
, (35)

∂4ψ

∂x2∂y2
=

1

2

[
∂2

∂x2

(
∂2ψ

∂y2

)
+

∂2

∂y2

(
∂2ψ

∂x2

)]
, (36)

where the computation of the cross derivative is replaced with that of pure lower-

order derivatives. It is noted that the differential operators ∂2()/∂x2 and ∂2()/∂y2 in

(34)-(36) are approximated using 1D-IRBFN-2s. After the conversion processes are

carried out, the 1D-IRBFN approximations include information about the boundary

conditions. One thus need to force those approximations to satisfy the governing

equations only. This can be achieved by collocating (28) and (29) at the interior

points.

To obtain the structure of a steady flow with the working fluid being air (Pr =

0.71), we compute the solution of a transient flow problem until a steady state is

established. The solution procedure is thus similar to that in the previous problem.

At each time step, the temperature and stream function problems are solved as

separate systems in order to minimise the matrix size. We employ several Cartesian

grids, varying from 37 × 37 to 57 × 57 and a time step of 0.1. Grid independent

study is conducted through the average Nusselt number and the obtained results are

shown in Table 3. It can be seen that the computed Nu remains unchanged when

the grid is above 41 × 41. The difference of the grid independent value between

the 1D-IRBFN and DQ methods is less than 1%. Streamlines and isotherms for

two typical domains are presented in Figure 3. They look feasible when compared

to those in [22]. The corresponding values of Nu are 3.48 and 3.29 using a grid of

57× 57, which are in good agreement with the DQ method’s results (3.50 and 3.30,

respectively). For the former, where the orientation of the major axis of the outer
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ellipse is placed horizontally, there are two additional vortices.

The present technique has several advantages over the finite-difference and pseudo

spectral methods: (i) the governing equations are solved in Cartesian coordinates

(no coordinate transformations are required), and (ii) the boundary conditions are

imposed in an exact manner (no assumption of uniform vorticity is made here, which

is in contrast to [25], and all nodal variable values are taken into account for the

implementation of boundary conditions).

3.3 Fully developed viscoelastic flow in a square duct

The flow behaviour of viscoelastic fluid in straight pipes of arbitrary cross-sectional

shape has received much attention. In contrast to Newtonian flows, viscoelastic

flows may contain some weak secondary circulations. The pathlines of a fluid are

thus not straight. Such non-rectilinear motions arise from the fact that viscoelastic

fluids exhibit normal stress differences in a simple shearing flow. The present work

is concerned with the case of square cross section. The working fluid is modelled by

the CEF equation [26]

τ = η(γ̇)γ̇ +

(
1

2
Ψ1 + Ψ2

)
(γ̇.γ̇) − 1

2
Ψ1

Dγ̇

Dt , (37)

where τ is the extra stress tensor; η(γ̇) the viscosity; γ̇ the rate of deformation

tensor; γ̇ the scalar magnitude of γ̇; Ψ1 and Ψ2 the first and second normal stress

coefficients, respectively; and Dγ̇/Dt the corotational derivative.

To enhance numerical stability, the extra stress tensor is decomposed into

τ = η0τ + S (38)
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where S = (τ − η0τ ). It is obvious that η0 can be chosen arbitrarily. The governing

equations are taken in the following form

0 =
∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω, (39)

ρ

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
− ∂2Sxy

∂x2
+
∂2(Sxx − Syy)

∂x∂y
+
∂2Sxy
∂y2

= η0

(
∂2ω

∂x2
+
∂2ω

∂y2

)
,

(40)

∂p

∂z
+ ρ

(
∂ψ

∂y

∂vz
∂x

− ∂ψ

∂x

∂vz
∂y

)
− ∂Szx

∂x
− ∂Szy

∂y
= η0

(
∂2vz
∂x2

+
∂2vz
∂y2

)
, (41)

with homogeneous boundary conditions for ψ, ∂ψ/∂n and vz. The present work

employs the same geometry (the size of the cross section) and rheological model

as in [27]. The flows in the pipe are generated by a pressure drop ∂p/∂z. 1D-

IRBFN-2s are implemented to obtain the primary and secondary flows. We take

ψ = 0 and vz = 0 as the boundary conditions for (39) and (41), respectively. For

(40), boundary conditions for ω are derived from (39) and derivative information

on the walls (∂ψ/∂n = 0), which takes the same procedure as in the lid-driven

cavity flow problem. The computations are carried out using a grid of 41 × 41.

The stress components are straightforwardly computed from the velocity field as

their forms are given explicitly in (37). It is noted that pseudo body forces in

(40) involve pure and cross derivatives of orders up to four. We solve the resultant

system of nonlinear algebraic equations with a Picard iterative scheme, where a

relaxation factor of 0.005 is used. The value of η0 is taken to be the average of the

viscosity field from the previous iteration. Numerical experiments showed that such

a choice produces a faster and stabler iterative procedure than the usual choice of a

fixed value (e.g. the Newtonian-like viscosity). Figure 4 shows the patterns of the

primary and secondary flows together with the second normal stress difference. It

clearly indicates the existence of two counter-rotating vortices in each quadrant of

the pipe, which looks feasible when compared with existing results from different
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methods reported in the literature (e.g. [27,28]).

3.4 Discussion

3.4.1 Comparison with conventional RBF techniques

The present RBF approximations are constructed ”locally”. They only involve nodal

points on relevant grid lines rather than a whole set of points. As a result, the

obtained system matrix becomes sparse. Numerical experiments indicate a very

significant improvement in the matrix condition number.

3.4.2 Comparison with principal discretisation techniques

Unlike pseudo-spectral and finite-difference methods, the present Cartesian-grid

technique can handle irregular domains well. In contrast to finite elements and

finite volumes, the pre-processing here is much more economical. The problem do-

main is discretised using a set of grid lines that are parallel to the x− and y−axes

instead of a set of small elements. When compared with low order techniques, the

present technique can produce accurate results on a relatively coarse mesh, therefore

has the ability to reduce a computational effort for a given accuracy. On the other

hand, with more points (i.e. all nodes on a grid line) used, the cost to construct the

approximations here is much higher. In addition, the present system matrix is not as

sparse as those obtained with finite differences, finite elements and finite volumes.

However, the system matrix would be block-banded when domain decomposition

is employed. The IRBFN-based methods have been shown in [29] to have definite

advantage in terms of accuracy and stability owing to its ability to ensure Cp solu-

tions, where p is the order of the governing PDEs, across subdomain interfaces. In
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order to achieve highly-stable numerical schemes for the simulation of viscous flows

at high Reynolds numbers such as those reported by Bathe and co-workers [30-32],

further studies are needed.

4 Concluding remarks

This paper presents a numerical collocation technique based on 1D-IRBFNs and

Cartesian grids for the simulation of Newtonian and non-Newtonian flows in rectan-

gular and non-rectangular domains. The technique is extremely easy to implement

and capable of yielding a high level of accuracy using a relatively coarse grid. The

latter is achieved owing to the facts that (i) RBFNs with the multiquadric basis

function have spectral approximation power and do not require an underlying mesh

(boundary points may not coincide with regular grid nodes), (ii) the problem of

reduced convergence rates associated with conventional differentiation approaches

is overcome, and (iii) the boundary conditions are presently implemented in an

exact manner. The obtained numerical results are very encouraging, showing the

great potential of the RBF collocation method in the field of computational fluid

dynamics.
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Table 1: Lid-driven cavity flow, Re = 1000: Extrema of the vertical and horizontal velocity profiles through the centre of the cavity.
The results obtained by the pseudo spectral method and FDM are also included for comparison.

Method Density umin Error % y vmax Error % x vmin Error % x

Present 21 × 21 -0.25784 33.643 0.200 0.26633 29.345 0.190 -0.36691 30.387 0.858
31 × 31 -0.34791 10.464 0.187 0.33580 10.913 0.168 -0.46765 11.274 0.898
41 × 41 -0.37122 4.466 0.177 0.35910 4.733 0.162 -0.50168 4.818 0.906
51 × 51 -0.37985 2.245 0.174 0.36781 2.421 0.160 -0.51469 2.350 0.908
61 × 61 -0.38366 1.263 0.173 0.37173 1.382 0.159 -0.52029 1.288 0.909
71 × 71 -0.38560 0.764 0.172 0.37375 0.846 0.159 -0.52306 0.762 0.909
81 × 81 -0.38669 0.484 0.172 0.37490 0.541 0.158 -0.52458 0.475 0.909
91 × 91 -0.38733 0.320 0.172 0.37558 0.360 0.158 -0.52545 0.309 0.909

101 × 101 -0.38772 0.218 0.172 0.37601 0.247 0.158 -0.52598 0.208 0.909

FDM(ψ − ω) 129 × 129 -0.38289 1.462 0.172 0.37095 1.589 0.156 -0.51550 2.197 0.906
[18]

FDM(u − p) 256 × 256 -0.3764 3.132 0.160 0.3665 2.770 0.152 -0.5208 1.192 0.910
[20]

Benchmark -0.38857 0.172 0.37694 0.158 -0.52708 0.909
[19]
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Table 2: Lid-driven cavity flow, Re = 1000, Primary vortex: Intensities. The results obtained by the pseudo spectral method and
FDM are also included for comparison.

Method Density ψmin Error % ω Error % x1 x2

Present 21 × 21 -0.08886 25.286 -1.75452 15.148 0.531 0.600
31 × 31 -0.10780 9.363 -1.92140 7.077 0.533 0.570
41 × 41 -0.11419 3.996 -2.00322 3.120 0.532 0.567
51 × 51 -0.11653 2.029 -2.03463 1.601 0.532 0.566
61 × 61 -0.11756 1.156 -2.04886 0.913 0.531 0.566
71 × 71 -0.11810 0.707 -2.05623 0.557 0.531 0.565
81 × 81 -0.11840 0.451 -2.06062 0.344 0.531 0.565
91 × 91 -0.11858 0.300 -2.06308 0.225 0.531 0.565

101 × 101 -0.11869 0.206 -2.06461 0.151 0.530 0.565

FDM(ψ − ω) 129 × 129 -0.11793 0.849 -2.04968 0.874 0.531 0.563
[18]

FDM(u − p) 256 × 256 -0.1163 2.220 — — 0.531 0.559
[20]

Benchmark — -0.11894 -2.06775 0.531 0.565
[19]
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Table 3: Natural convection, Ra = 104, Pr = 0.71, rr = 2.6, ei = 0.5, eo = 0.5:
Average Nusselt number. The grid independent value of Nu obtained by the DQ
method is also included for comparison.

Grid 37 × 37 41 × 41 47 × 47 51 × 51 57 × 57 Zhu et al [22]

Nu 3.21 3.21 3.22 3.22 3.22 3.25
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Re = 1000, 51 × 51
ψ ω

Re = 3200, 91 × 91
ψ ω

Figure 1: Lid-driven cavity flow: stream and iso-vorticity lines. The contour values
used here are taken to be the same as those in [19].
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Figure 2: Natural convection flow: discretisation.
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Horizontal outer cylinder
ψ T

Vertical outer cylinder
ψ T

Figure 3: Natural convection flow, Ra = 104, ei = 0, eo = 0.75, 57 × 57: stream-
lines and isotherms. Each plot contains 21 contour lines whose values vary linearly
between the extremes.
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Secondary flow: ψ Secondary flow: ω

Primary flow: vz Second normal stress difference: τxx − τyy

Figure 4: Viscoelastic flow in a straight pipe of square cross section, 41× 41, relax-
ation factor of 0.005: contour plots for some primary quantities. Each plot contains
21 contour lines whose values vary linearly between the extremes.
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