REVIEW

MOF-based nanocomposites in polymer matrix: progress and prospects

Rongjun Ma¹ · Yanan Hou^{2,3} · Wenchao Zhang¹ · Ye-Tang Pan^{1,4} · Sigi Huo⁵ · Congling Shi³

Received: 7 January 2025 / Revised: 8 August 2025 / Accepted: 18 August 2025 © The Author(s) 2025

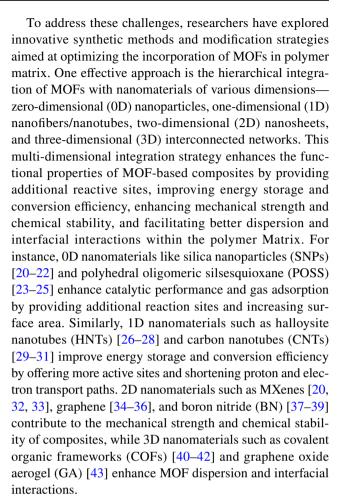
Abstract

Metal-organic frameworks (MOFs), an emerging class of crystalline microporous functional fillers, have garnered significant attention in materials science owing to their tunable pore architecture and abundant coordinatively unsaturated sites. However, MOF materials encounter substantial challenges in practical applications, including poor spatial dispersion, severe agglomeration, and insufficient interfacial compatibility with polymer matrix, which substantially impede their incorporation into polymer composite materials. Building upon the foundational research of our group in MOF surface modification and nanocomposite engineering, this work systematically investigates the hierarchical integration strategies of MOFs with dimensionally controlled nanomaterials (encompassing 0D nanoparticles, 1D nanofibers/nanotubes, 2D nanosheets, and 3D interconnected networks). Through precise modulation of interfacial chemistry and architectural design, we have successfully addressed the dispersion limitations of MOFs and significantly enhanced the synergistic effects within the composite matrix. Experimental results demonstrate that this novel integration approach effectively mitigates nanofiller aggregation and substantially enhances the flame retardancy, mechanical strength, and electrical conductivity of the resultant composites. A detailed examination has been conducted exploring how MOF-based nanocomposites integrate within the polymer matrix, encompassing fabrication approaches, physical and chemical properties, and prospective uses. Our investigation addresses existing obstacles while evaluating future directions within this expanding research domain. By offering both fundamental scientific understanding and concrete recommendations, this work aims to facilitate advances in developing advanced functional materials incorporating MOF-based nanomaterials. The findings presented serve as a foundation for researchers working toward innovative composite systems with enhanced capabilities and performance metrics.

 $\textbf{Keywords} \ \ Metal-organic \ framework \cdot Polymer \ composites \cdot Nanocomposites \cdot Flame \ retardancy \cdot Mechanical \ properties \cdot Electrical \ performance$

- ☐ Congling Shi shicl@chinasafety.ac.cn
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- College of Geological Engineering and Geomatics, Chang'an University, Xi'an, Shaanxi 710064, People's Republic of China

Published online: 11 September 2025


- ³ Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, People's Republic of China
- Tangshan Institute, Beijing Institute of Technology, Tangshan, Hebei 063000, People's Republic of China
- School of Engineering, Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia

1 Introduction

The development of functional polymer composites has garnered significant research attention to meet diverse industrial requirements and enhance product performance. Polymeric materials, known for their exceptional performance characteristics and versatility, have been widely applied in civil engineering, transportation, textiles, biomedical engineering, electronics, and aerospace industries [1-7]. The integration of metal-organic frameworks (MOFs) into these polymers offers innovative solutions for creating advanced composite materials. MOFs are innovative crystalline microporous fillers that enhance polymer composites through their adjustable pore structures and numerous coordinatively unsaturated sites (CUSs) [8–10]. By altering organic ligands and metal ions, their pore architecture can be finely tuned. UiO-66, a Zr-MOF, has two 5.0 Å "throughwindows," making it effective for gas separation and storage. Its pore size can be modified via functionalization: o-TBA-UiO reduces to 4.4 Å, and m-TBA-UiO to 3.0 Å, significantly affecting gas molecule transport [11]. CUSs in MOFs enable strong interactions with gases like CO2 and H₂, improving adsorption and separation. MIL-101's CUSs, when grafted with ethylenediamine, enhance gas adsorption and catalytic performance [12]. Moreover, HE-UiO-66's lattice distortion exposes metal nodes, creating abundant CUSs that boost catalytic transfer hydrogenation reactions [13]. Since the 1990s, many MOFs, such as ZIFs, MILs, and UiOs, have been developed and named after their institutions of origin [14–17]. Their high adaptability stems from their large surface area and porosity, enabling diverse applications. UiO-66, with a surface area of up to 1326.5 m2/g, is particularly effective for capturing pollutants.

Characterization of MOFs is essential for understanding their structural and functional properties within nanocomposites. Specifically, X-ray diffraction (XRD) is employed to confirm crystalline phase purity and framework integrity. Scanning/transmission electron microscopy (SEM/ TEM) serves as a valuable tool for observing morphology and dispersion, enabling assessment of agglomeration challenges in polymer matrix. Nitrogen adsorption-desorption testing analyzes specific surface area and pore size distribution. Fourier-transform infrared spectroscopy (FTIR) identifies functional groups and chemical bonds. Additionally, thermogravimetric analysis (TGA) investigates the thermal stability of MOFs, as well as structural changes and decomposition behavior during heating processes. These methods collectively validate MOF integrity before integration [18, 19], establishing a scientific foundation for the targeted design of MOF-based nanocomposites with integrated flame-retardant, mechanicalreinforcement, adsorption functionalities, and so on.

Traditional materials, such as carbon materials, layered double hydroxides (LDHs), and silicon-based nanomaterials, have been extensively studied due to their unique properties. Compared to MOFs, carbon materials (such as graphene and CNTs) exhibit excellent electrical and thermal conductivity. For instance, graphene's elastic modulus can reach up to 1 ± 0.1 TPa [44], with outstanding electrical conductivity of approximately 7000 cm²/V·s [45], whereas the conductivity of MOFs is generally poor, and their thermal conductivity is relatively low. Therefore, in applications requiring efficient energy transfer, carbon Materials often demonstrate superior advantages. Additionally, one-dimensional CNTs have a thermal conductivity of 6600 W/mk [46], significantly higher than that of Many MOF Materials. Two-dimensional carbon materials, such as MXene, have a tensile strength of around 15.4 GPa [47] and good electrical conductivity, effectively enhancing the electrical and thermal properties of composites. On the other hand, LDH and silicon-based nanomaterials have drawn attention for their good dispersibility and mechanical properties. LDH possesses high ionic conductivity and surface area, making it suitable for energy storage devices such as batteries and supercapacitors. Its layered structure provides good

dispersibility, which helps to enhance the mechanical properties of composites. Silicon-based nanomaterials, due to their excellent stability and biocompatibility, have extensive applications in biomedicine and electronics. In contrast, while MOFs exhibit unique porous structures and a wealth of coordinatively unsaturated sites, they inherently have certain flammability and thermal stability limitations that may restrict their performance in specific applications [48, 49]. However, the designability and multifunctionality of MOFs allow them to be combined with the aforementioned materials to leverage the advantages of both and produce synergistic effects. For example, combining MOFs with CNTs can significantly enhance the electrical and thermal conductivities of MOFs [50], thereby broadening their applications in energy storage and conversion fields. Through this approach, not only can the deficiencies of single materials be compensated for, but the strengths of each material can also be harnessed, providing new ideas for the development of highperformance composite materials. Comparative analysis through Table 1 indicates that MOF-based nanocomposites not only match but often exceed the performance of state-of-the-art materials in various applications. Their multifunctionality, tunability, and potential for cost-effective production make them highly competitive candidates for future material development.

The review delves into the integration of MOFs with various nanomaterials, examining the impact on composite performance in key areas such as flame retardancy, mechanical reinforcement, energy storage, and water treatment. We provide a detailed analysis of how structural design and functional integration can effectively enhance critical performance indicators, including flame retardant efficiency, mechanical properties, electrical performance, and so on. By summarizing research progress and successful case studies, and addressing challenges, the review offers valuable insights for researchers aiming to advance the field of MOF-polymer composites.

2 Nanomaterials integrated with MOFs

The integration of specific MOFs with nanomaterials leverages their unique pore architectures and coordinatively unsaturated sites to significantly enhance composite performance. Notably, different MOFs, such as UiO-66, MIL-101, and ZIF-8, exhibit distinct pore architectures and chemical compositions, which significantly influence their performance in polymer composites. The integration of ZIF-8, a Zn-based MOF with a sodalite (SOD) topology, with CNTs has been shown to improve the electrical conductivity and mechanical strength of composites [57]. In contrast, the use of MIL-101(Cr), with its larger pore size and higher surface area, in combination with graphene oxide (GO), leads to enhanced adsorption capacity and catalytic activity in water treatment applications [58].

2.1 0D nanomaterials

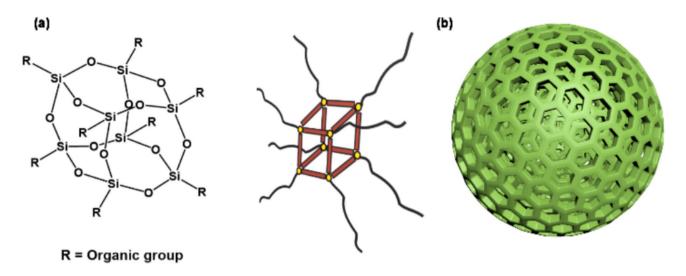
2.1.1 POSS

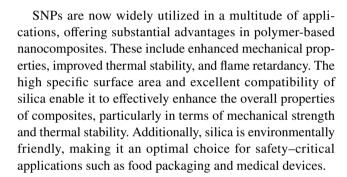
As shown in Fig. 1a, POSS particles represent a distinctive category of caged inorganic—organic hybrid nanomaterials. These particles are composed of an inorganic core comprising a silicon-oxygen skeleton with alternating Si–O linkages and an outer perimeter encased in organic groups (hydrogen atoms, alkyl groups, alkenyl groups, amino groups, hydroxyl groups, etc.).

One of the distinguishing features of POSS particles is their highly regular cage structure and tunable surface properties. This structure endows POSS particles with excellent thermal and chemical stability and mechanical strength. At the same time, the organic functional groups on its surface can participate in a variety of chemical reactions, which makes POSS particles show great potential for application in material modification, functionalization, and preparation of composite materials. In addition, POSS particles have excellent optical transparency, a low refractive index, and good biocompatibility. These characteristics make them have

Table 1 Comparisons with state-of-the-art materials

Application	MOF-based composites	State-of-the-art materials	Performance comparison
Flame retardancy	ZIF-67@PZS in EP composites [51]	LDH@PZE-Fe in EP composites [52]	Comparable or lower smoke production; higher limiting oxygen index (LOI)
Mechanical properties	P-MOF [53]	Multi-walled carbon nanotubes (MWCNTs) [54]	Competitive strength enhancements with additional multifunctionality
Electrical performance	Mn-MOFs/CNT composite electrode [50]	CNT electrodes in supercapacitors [55]	Comparable specific capacitance and cycling stability
Environmental and cost considerations	Fe ₃ O ₄ -FeBTC MOF in water treatment [56]	Activated carbon	Comparable adsorption efficiency at a lower cost




Fig. 1 a Schematic structure of POSS. Reproduced with permission from ref. [60]. b Schematic structure of SNPs

a wide range of applications in the fields of optical materials, biomedical materials, and advanced functional materials. For example, in optical materials, the introduction of POSS particles can improve the light transmittance and refractive index tunability of the materials; in biomedical materials, their good biocompatibility and degradability make POSS particles ideal for the preparation of bioactive materials and tissue engineering scaffolds.

It is noteworthy that POSS particles can be utilized not only as standalone materials but also as components in composite materials, where they can be combined with other materials, including polymers and inorganic nanoparticles, to create composites with exceptional properties. These composites have a wide range of applications in aerospace, automotive manufacturing, electronic packaging, and other fields. Similarly, the synthesis and preparation methods of POSS particles, surface functionalization strategies, and the design of nanoengineered structures provide a broad platform for their use in the preparation and application of advanced nanomaterials.

2.1.2 SNPs

As shown in Fig. 1b, silica nanoparticles (SNPs) are inorganic nanomaterials composed of the elements silicon and oxygen with a variety of crystals and nanostructures. The pioneering synthesis and study of SNPs were initiated by Werner Stöber in 1968, who developed the sol–gel chemistry method to produce solid, monodisperse SNPs with adjustable diameters ranging from 20 to 2000 nm [59]. Over the past 50 years, many different types of SNPs have been produced with different particle sizes and shapes, as well as a variety of pore structures, giving them multifunctional properties.

2.2 1D nanomaterials

2.2.1 CNTs

As shown in Fig. 2, CNTs are a significant one-dimensional carbon nanomaterial that have garnered considerable interest from the materials science community due to their distinctive physicochemical properties and extensive range of applications. CNTs exhibit a range of morphologies, including single-walled carbon nanotubes (SWCNTs) and MWC-NTs, which impart distinct properties and applications to the nanotubes. SWCNTs possess an atomic-scale wall structure comprising carbon atoms arranged in a hexagonal honeycomb configuration, which enables the formation of stable conjugated π -bonds [61]. This structural feature endows CNTs with exceptional mechanical strength, electron transport properties, and thermal conductivity. These properties have enabled CNTs to demonstrate considerable potential in a number of fields, including electronics, composites, energy storage, and biomedicine. MWCNTs are composite structures comprising multiple layers of nested concentric circular tubes, which exhibit enhanced mechanical stability and a broader range of potential applications [62].

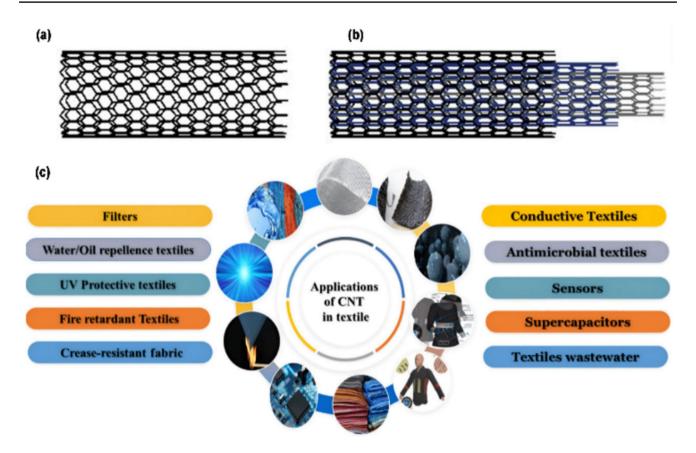
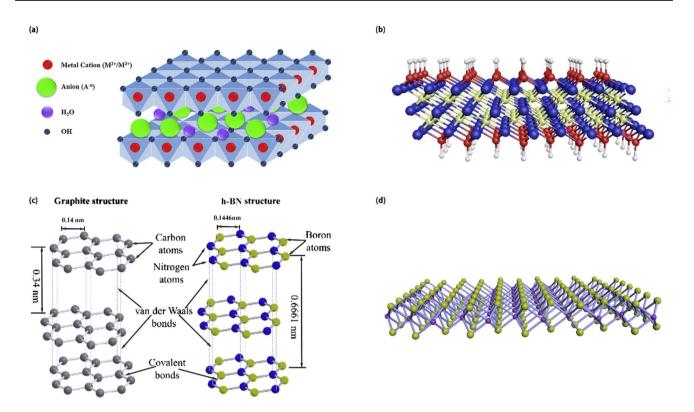


Fig. 2 a Schematic structure of SWCNT and b MWCNT. c Schematic illustration of multifunctional nanotubes in polymer textile applications. Reproduced with permission from ref. [63]

Additionally, CNTs possess favorable electrical properties and distinctive chemical functionalization capabilities, rendering them valuable in domains such as sensors, electrode materials, and electromagnetic shielding. In recent years, with the accelerated advancement of nanotechnology, functionalized CNTs, heteroatom-doped CNTs, and CNT composites have emerged as a prominent area of research in materials science, offering a vast frontier for the development of future advanced materials.

2.3 2D nanomaterials


In recent years, the strategic combination of MOFs with 2D Materials has emerged as an essential focus of research within Materials science. The layered structure of MOFs endows 2D Materials with a high specific surface area and relatively thin thickness, which gives rise to properties such as dramatically increased electron mobility, excellent electrical and thermal conductivity, and very strong mechanical UL 94 strength. At the same time, two-dimensional materials display outstanding optical characteristics, including adjustable band gaps and high light absorption, enabling a

multitude of possible uses in areas like optoelectronics and photocatalysis.

2.3.1 LDH

Figure 3a indicates that LDHs represent a noteworthy subset of inorganic materials, garnering substantial attention for their distinctive stratified architecture and impressive physicochemical attributes. Commonly formed by metallic cations and hydroxide ions, these layered compounds allow adjustments to both composition and framework, promoting a wide range of tunable properties. This structural design not only enhances performance but also improves durability, making it suitable for harsh operating conditions. LDH exhibits good ionic conductivity and a high specific surface area, both of which contribute to its significant potential in energy storage applications such as batteries and supercapacitors [64]. In addition, LDH has excellent catalytic properties, especially in photocatalytic and electrocatalytic reactions, which can effectively promote the reaction process. LDH is synthesized by various methods, including hydrothermal, sol-gel, and microwave synthesis [65–67], which can effectively control the morphology and properties of LDH. It is particularly

Fig. 3 a Schematic illustration of a typical LDH structure. Reproduced with permission from ref. [82]. **b** Schematic illustration of a typical MXene structure. **c** Comparison of graphene and boron car-

bide structures; reproduced with permission from ref. [83]. ${\bf d}$ Schematic illustration of the structure of ${\rm MoS}_2$

noteworthy that the spatial arrangement of MOFs and nanomaterials within the composite plays a critical role in determining the final properties of the material. For example, creating a core—shell structure where MOFs are encapsulated by LDHs can protect the MOFs from environmental degradation while maximizing the conductive pathways [68]. Notably, LDH can be used not only as a stand-alone material, but also with other materials to form LDH films, LDH nanocomposites, and LDH/polymer composites to further enhance its properties. These properties make LDH an important research direction in the development of new functional materials. This multilayer arrangement imparts notable advantages in catalysis, energy storage, and environmental remediation, making LDHs valuable in numerous scientific and technological pursuits [69, 70].

2.3.2 Mxene

As shown in Fig. 3b, MXene is a class of inorganic nanomaterials with a distinctive two-dimensional layered structure. It comprises multiple layers of transition metal carbides or nitrides, with the surface typically modified by terminal groups such as oxygen (–O), hydrogen (–H), and fluorine (–F) [71]. The unique layered framework imparts MXene

with superior electrical traits, enhanced conductivity, and distinctive surface chemistry, thereby enabling its diverse applications in energy storage systems, electronic devices, catalysis, and sensing technologies.

The composition and structure of MXene are highly tunable. Their physicochemical properties can be precisely tuned by changing the transition metal species, carbon/nitrogen atom ratio, and surface terminal groups. For example, Ti₃C₂T_x is the most common type of MXene with excellent electrical conductivity and ion transport capability. In energy storage, MXene excels in supercapacitors and battery electrode materials due to its unique interlayer structure and high specific surface area. In catalysis, MXene can be used as efficient electrocatalysts and photocatalysts, showing excellent catalytic performance in reactions such as hydrogen precipitation and oxygen reduction.

In recent years, with the rapid development of nanotechnology, significant progress has been made in the preparation and application of MXene. MXene materials with diverse structures and properties can be obtained through selective etching, chemical functionalization, and interlayer embedding. These materials demonstrate considerable potential for utilization in the domains of electronics, energy, the environment, and biomedicine, offering novel

avenues for scientific and technological advancement and industrial growth. Researchers are endeavoring to address the challenges associated with MXene, including stability and scale-up production, with the aim of further expanding its application scope.

2.3.3 Graphene

Graphene is a revolutionary class of two-dimensional carbon nanomaterials. Since its first successful preparation and characterization by the team of Geim and Novoselov at the University of Manchester in 2004 [72], it has attracted much attention from the global scientific community for its unique physicochemical properties and wide range of application potential. The material consists of a hexagonal honeycomb lattice of monolayers of carbon atoms with an ultrathin single-atom layer structure and an extremely unique two-dimensional morphology.

Outstanding electrical properties and mechanical strength are among the distinguishing features of graphene. This is due to its special conjugated π -electron structure and the strong covalent bonding of the carbon atoms [73]. This structure not only provides a fast transport channel for electrons and greatly improves electron mobility, but also gives graphene great potential for applications in electronic devices and conductive materials. In addition, graphene has a wide range of tunable optical properties, as well as excellent thermal conductivity and surface plasmonic effects. Its exceptional characteristics offer substantial promise across multiple domains, encompassing electronics, energy storage, sensor development, composite engineering, and biomedical research.

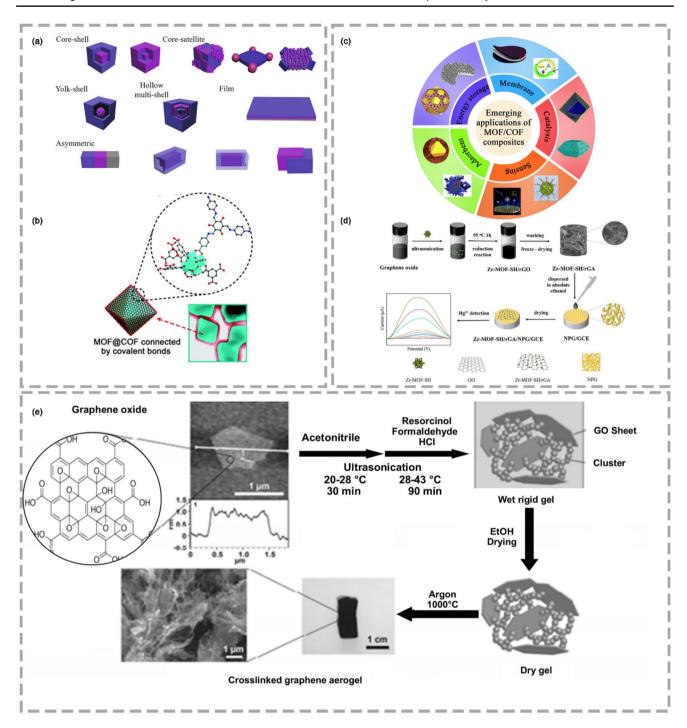
Moreover, rather than existing purely as an independent material, graphene can also be effectively incorporated into polymer-based nanocomposites, tailored hydrogels, and various graphene-derived structures [74], thereby taking full advantage of its versatile capabilities. Similarly, their functionalization strategies, chemical modifications, and nanoengineered structures provide graphene with an excellent platform for the development of advanced nanomaterials that drive cutting-edge innovations in materials science.

2.3.4 Other 2D materials

The applications of 2D nanohybrids go far beyond this. MoS₂ is characterized by its layered composition, formed by molybdenum and sulfur atoms held together through relatively weak van der Waals interactions (Fig. 3d). This stratified arrangement enables MoS₂ to display distinctive electrical, optical, and mechanical characteristics [75, 76]. As a two-dimensional transition metal sulfide, MoS₂ has an energy band gap of about 1.8 eV in the monolayer state, which provides excellent semiconductor properties [77].

These properties facilitate its deployment in various highperformance electronic devices, optoelectronic systems, and field-effect transistors [78]. In addition, the layered structure of MoS₂ endows it with excellent catalytic properties, especially in hydrogen evolution reactions [79], making it an effective catalyst. Its unique physical properties and wide range of applications provide abundant possibilities for the research and development of MoS₂.

Boron nitride (BN) is an inorganic compound with a layered structure similar to graphite (Fig. 3c). The layers are bound to each other by weak van der Waals forces, which makes them easy to delaminate and gives them excellent lubricity and mechanical strength [37, 80]. In addition to its excellent lubricating properties, BN is widely used as a high-temperature lubricant, insulating material and coating. Due to its excellent electrical insulation and thermal conductivity, BN also shows great potential in electronic devices and thermal management [81]. Especially on the nanoscale, the nanostructures of BN have good optical properties, making them promising for applications in optoelectronic devices, catalyst carriers, and environmental treatment.


2.4 Three-dimensional nanomaterials

2.4.1 MOF-on-MOF hybrids

The structural flexibility of a single MOF or nanomaterial is fundamentally constrained. In contrast to individual MOF materials, MOF-on-MOF composites demonstrate exceptional tunability and possess a multi-layered nanostructure. It is constructed from three-dimensional nano-metal—organic frameworks by precise interfacial growth methods, forming a composite system with a hierarchical structure (Fig. 4a). This structure enables precise tuning between different MOFs, giving the material unique functions and properties.

The composition and structure of MOF-on-MOF are highly tunable. By adjusting the crystallographic parameters, growth direction, and interface modification of the underlying MOF, the growth of the upper MOF can be precisely controlled. For example, Zn-MOF-on-Zr-MOF is a typical representative of a unique multi-layered nanostructure achieved by the epitaxial growth method, exhibiting excellent molecular recognition and selective adsorption properties [84]. Various synthesis approaches have been developed, including ordered and random epitaxial growth methods [85]. Factors influencing interfacial growth include inorganic metals, organic ligands, lattice matching, and nucleation kinetics [86]. A van der Waals integration method has been developed to overcome lattice matching limitations, enabling the creation of highly oriented Cu-TCPP-on-Cu-HHTP thin films with cascading functions. These hybrid architectures demonstrate improved performance in applications such as chemiresistive sensing,

Fig. 4 a Schematic illustration of different MOF-on-MOF hybrids. Reproduced with permission from ref. [90]. **b** Schematic illustration of a typical MOF-COF hybrid and **c** its application. Reproduced with permission from ref. [42]. **d** Schematic illustration of the preparation

of GA using graphene oxide. Reproduced with permission from ref. [91]. e Schematic illustration of crosslinked GA formed by graphene. Reproduced with permission from ref. [89]

showcasing excellent selectivity and responsiveness to specific compounds like benzene [87], and provide a new development path for cutting-edge research in materials science.

2.4.2 MOF-COF hybrids

MOF-COF is a recently developed porous crystalline substance that has garnered significant interest among

researchers in Materials science because of its distinctive spatial architecture and adjustable properties. COFs can form a 3D network structure with highly regulated, interconnected pores through precise molecular design, and the precise arrangement of different metal nodes and organic connecting groups endows the material with rich physicochemical properties [41]. The backbone of the 3D COFs is highly symmetric and predictable, and the heteroatoms of nitrogen, oxygen, and sulfur are arranged in the framework in an orderly and alternating manner to form a stable covalent bonding network, which makes the material present an extremely low density, a highly designable internal space, and unique functional groups (Fig. 4b) [88].

MOF-COF hybrid materials showcase exceptional adaptability due to their extraordinarily large specific surface areas, finely tunable pore structures, and distinctive abilities for molecular recognition. These features endow them with significant promise in advanced domains including catalysis, gas storage, separation technologies, sensing applications, and biomedical fields. By adjusting the metal centers and organic linkers, it is possible to fabricate materials tailored for particular functionalities, highlighting their strong potential in crucial sectors like renewable energy, environmental management, and cutting-edge technological innovations. As nanotechnology and supramolecular chemistry continue to advance, research into MOF-COFs is emerging as one of the most vibrant and pioneering areas within materials science (Fig. 4c).

2.5 Graphene oxide aerogel

Graphene oxide aerogel (GA) is an emerging three-dimensional porous material that has received high attention due to its unique physicochemical properties and wide range of application potentials. This material consists of multiple graphene oxide lamellae crosslinked to form a porous network structure (Fig. 4d) with very high specific surface area and good mechanical properties, enabling it to exhibit excellent performance in different fields.

The excellent electrical conductivity and good thermal conductivity of GA is one of its distinctive features, which is attributed to the unique π - π stacking and formation of electron migration channels in its layered structure. This special structure not only provides higher electrical conductivity and thermal conductivity for the movement of ions but also gives GA great potential for applications in electrode materials and thermal management devices [73]. Moreover, GAs exhibit notable porosity and plentiful surface functional moieties, giving rise to remarkable performance in catalysis, gas adsorption, and energy storage applications. Its adjustable pore structure and chemical properties give GA a wide range of applications in clean energy, environmental treatment, and biomedical fields [89]. It is worth mentioning that

GA can not only be used as a stand-alone material but can also be successfully combined with other materials, such as metals and polymers, to form composites to further enhance its performance. These properties and applications make GA occupy an important position in modern material science and provide unlimited possibilities for its research in the future.

3 Integration strategy of MOFs with nanomaterials and polymer matrix

3.1 Ectopic growth

Ectopic preparation methods include the integration of individually designed MXene and MOFs using methods such as self-assembly, direct mixing, and electrochemistry. These methods are independent of MOF synthesis conditions and therefore offer a high degree of maneuverability and flexibility.

3.1.1 Self-assembly method

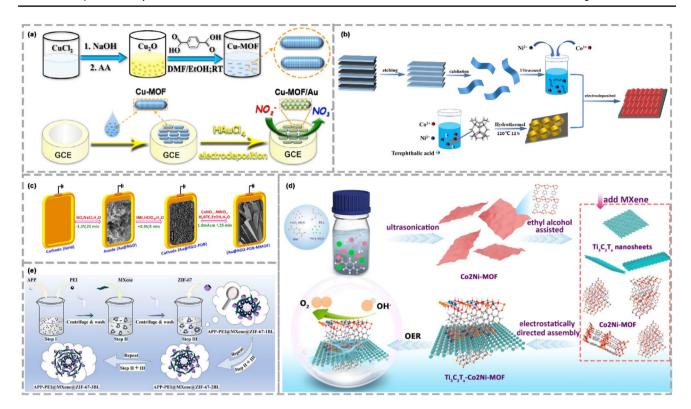
The simplest way to integrate MOFs with nanomaterials is generally to mix them directly and utilize their surface defects or functional groups as MOF growth centers to achieve the preparation of composites. The nanomaterial precursors and raw materials for MOFs are generally mixed first, and then a self-assembly process is performed to provide integration of MOFs with nanomaterials. During the formation of MOF materials, the defects or functional groups on the surface of nanomaterials provide nucleation sites thereby forming MOF crystals. Therefore, during the composite process, there are generally two ways of compositing different kinds of MOF materials and nanomaterials: MOFs embedded in the surface (or inner cavity) and MOFs become inclusions. MOF crystals with relatively large sizes will be formed on the surface of the nanomaterials by embedded nucleation growth, or a certain part of the nanomaterials will be directly half-encapsulated or completely encapsulated during the synthesis process. As shown in Fig. 5a, in the synthesis of ZIF-67@M(OH)(OCH₃) utilizing cobalt acetate tetrahydrate and 2-methylimidazole, the incorporation of pretreated M(OH)(OCH₃) resulted in the ZIF-67 crystals nucleated and grew on the surface of M(OH)(OCH₃), resulting in the formation of a uniform ZIF-67 dodecahedral morphology covered with M(OH)(OCH₃) [92]. A unique three-tier structure, UiO66-dopamine (PDA)-Prussian blue analog (PBA), was fabricated by first performing in situ polymerization of PDA onto the UiO-66 surface, which was then followed by a self-assembly process. The growth of a PBA layer was observed, in which the interfacial catalysts of the nickel species exhibited high activity in

351

Fig. 5 a The schematic illustration of the preparation of the functionally modified M(OH) (OCH₃). Reproduced with permission from ref. [92]. b Schematic representation of the synthesis of hierarchical UiO66-PDA-PBA hybrids. Reproduced with permission from ref. [93]

converting the residue into carbon residue with a polycyclic aromatic structure through C-C and C-N coupling reactions [93]. Due to the large crystal size of MOFs and some randomness in the coordination during complexation, the two forms of complexation generally occur simultaneously.

The prepared composites can undergo further carbonization to yield composite functional materials with diverse applications. Conventional high-temperature carbonization under inert gas conditions can yield nanomaterial-loaded MOF-derived materials. Alternatively, MOFs can be utilized as precursors for calcination in air to form uniformly loaded or encapsulated MOFs integrated with nanomaterials. For example, the prepared ZIF-8@CNTs can be calcined in air to obtain composites such as ZnO@MWCNTs with a uniform distribution of ZnO particles [94]. The same methodology can be employed to achieve uniform loading of other metal oxides.


3.1.2 Electrochemical method

The electrochemical preparation process stands out as an efficient approach for integrating MOFs with nanomaterials, offering distinct advantages including mild reaction conditions, simple operation, and precisely controllable parameters [95]. This method can be broadly categorized into three main approaches: direct electrodeposition, sequential multistep integration, and charge-mediated assembly. Direct electrochemical deposition is the simplest approach, as demonstrated by Chen et al.'s work where Cu-MOF/Au composite films (200–300 nm thickness) were formed on a substrate in just 300 s through current-driven growth [96] (Fig. 6a). The reaction was performed at room temperature with a constant potential of $-0.2 \text{ V} (\pm 0.01 \text{ V})$ applied for 300 s in 2.0 mM HAuCl₄/PBS solution, using GCE electrodes polished to < 5 nm surface roughness with 0.05-µm alumina. Sequential multi-step integration enables more complex architectures, exemplified by the RGO-PDB-MMOF composite synthesis, which involves initial GO reduction on gold electrode to form a conductive film, electropolymerization of promethazine to create spongy polymers (PDB), and final electrodeposition of Ni-Co-BTC bimetallic MOFs (Fig. 6c) [97]. The electropolymerization of PDB was performed under ambient temperature through imipramine redox activation, while the Bi-MMOF electrodeposition occurred at 1.0 mA/ cm2 for 30 min on RGO-PDB substrates. The charge-mediated assembly utilizes electrostatic interactions and surface charge modification, including metal cation-functionalized MOFs combining with negatively charged nanomaterials (Fig. 6b) [98], direct binding of compatible MOFs with nanomaterials (e.g., Co2Ni-MOFs with MXene) (Fig. 6d) [99], and surface modification-assisted assembly (e.g., APP-PEI@MXene@ZIF-67 through electrostatic self-assembly) (Fig. 6e) [100]. The electrostatic self-assembly process was conducted under ambient temperature with a monolayer adsorption Duration of 5 min at neutral pH. The versatility of electrochemical methods is further demonstrated in hybrid systems like MXene-based composites, where hydrothermal pre-treatment can be combined with electrochemical deposition to achieve precise control over the final structure, enabling optimization of both the interface quality and the overall composite performance.

3.2 In situ growth techniques

The in situ technique entails incorporating MOF precursors with functionalized nanomaterials that have been dispersed in appropriate solvents. During this process, metal ions begin coordinating with polar groups present on the surface,

Fig. 6 a Schematic of the preparation of Cu-MOF/Au hybrids. Reproduced with permission from ref. [96]. b Schematic of the preparation of MXene-Ni-Co@NiCo-MOF/NF. Reproduced with permission from ref. [98]. c Schematic of the RGO-PDB-MMOF synthesis pro-

cess schematic reproduced with permission from ref. [97]. **d** Preparation of Co₂Ni-MOF@MXene complex reproduced with permission from ref. [99]. **e** Preparation of APP-PEI@MXene@ZIF-67 reproduced with permission from ref. [100]

subsequently interacting with organic linkers to facilitate MOF crystal growth. This synthetic approach closely mirrors traditional MOF preparation protocols, with the key distinction being the introduction of nanomaterials into the reaction medium [101]. In situ growth typically involves two key steps: chemically introducing active sites on the surface of the matrix material; then, using these sites to facilitate in situ growth and precise construction of the MOF. To optimize the metal-surface interactions, the procedure typically involves suspending nanomaterials in a metal salt solution for a predetermined period before introducing the organic ligand, thereby promoting efficient metal ion diffusion to the nanotube surface. The successful formation of these nanocomposites can be verified through spectroscopic analysis, where the emergence of distinctive peaks in the hybrid spectra indicates successful MOF integration. By employing the in situ synthesis approach, MOFs are integrated directly into the nanomaterials, creating composites that are both denser and more durable (Fig. 7d). This approach can significantly improve the interfacial interactions, thereby enhancing the overall performance of the composites. For example, Ma et al. [102] employed the interaction between the surface functional groups of attapulgite (ATP) and ZIF-67 organic ligands to modulate the surface properties of ATP and enhance its surface activity. The hybrid materials, designated as ATP@ZIF-67 (Fig. 7a), were prepared by introducing cobalt ions to enable in situ growth of ZIF-67 on the ATP surface. The interfacial bonding between ZIF-67 and ATP was found to be optimal, which effectively prevented the agglomeration of ZIF-67 nanoparticles and markedly enhanced the dispersion and interfacial interactions of the materials. Similarly, Guo et al. [103] developed CoAl-LDH@ZIF-67 hybrids by growing ZIF-67 microcrystals on CoAl-LDH nanoplates (Fig. 7b), which provided abundant nucleation sites. These hybrids were later incorporated into epoxy resins to enhance their thermal stability in high-temperature environments. Graphite oxide nanosheets (GONRs) were also used to create nucleation sites for HKUST-1 growth (Fig. 7c). Through electrodeposition, HKUST-1 nanocrystals were grown on GONRs, forming HKUST-1/ GONRs/GCE hybrids. This addressed the inherent electrical conductivity limitations of the HKUST-1 framework [104].

In situ growth avoids MOF particle agglomeration and enhances material stability and dispersion. By synthesizing MOFs directly within the nanospace of matrix materials, precise atomic and molecular bonding is achieved. Additionally, this technique allows for precise control of composite structures by regulating parameters such as precursor

351

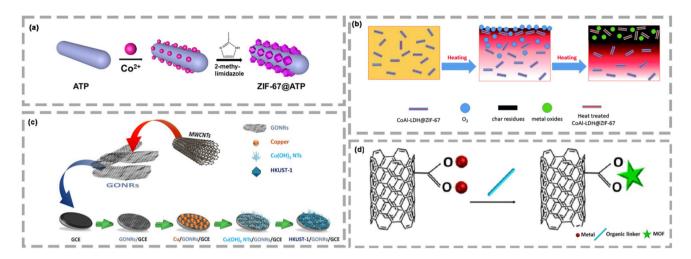


Fig. 7 a Schematic of the preparation of ZIF-67@ATP. Reproduced with permission from ref. [102]. b CoAl-LDH@ZIF-67 hybrid materials designed to improve the flame-retardant performance of epoxy resins. Reproduced with permission from ref. [103]. c Schematic

illustration of the fabrication of HKUST-1/GONRs/GCE. Reproduced with permission from ref. [104]. d Schematic illustration of the in situ growth method. Reproduced with permission from ref. [101]

concentration, reaction temperature, and potential of hydrogen (pH). This makes in situ growth a powerful tool for preparing high-performance MOF-based composites.

4 The integration of MOFs and nanomaterials in properties and applications of polymer matrix

Bibliometrics is employed in this study as a robust quantitative approach to assess and interpret the landscape of published research concerning the integration of MOFs with nanomaterials in polymeric materials. By systematically counting and analyzing relevant literature, bibliometrics provides valuable insights into production metrics, geographical distribution, and thematic trends within the field [32]. The research harnesses visual analysis software to delve into a comprehensive dataset comprising 992 validated articles sourced from 347 reputable journals. This methodological approach ensures that the analysis is both thorough and representative, eliminating duplicates and applying stringent filtering criteria to maintain the integrity of the data.

Key indicators such as the number of publications and citations per year are critical in gauging the vibrancy and trajectory of research activity. The study's findings, illustrated in Fig. 8a, demonstrate a consistent upward trend in publications related to polymers and MOFs integrated with nanomaterials from January 2019 to December 2024. This trend is further corroborated by the increasing number of citations, which reached 57,852, with the vast majority being external citations, underscoring the field's growing influence and recognition within the scientific community. Geographical analysis reveals that the People's Republic of China is at the forefront of this research area, contributing 45% of all international publications (Fig. 8b). This dominance is followed by India and the USA, accounting for approximately 14% and 10% of publications, respectively. China's leadership is not only reflected in its volume of publications but also in its collaborative efforts with countries like India, the USA, Iran, and Spain. Such international collaborations are pivotal in fostering innovation, knowledge exchange, and the advancement of complex interdisciplinary research.

The study utilizes keyword co-occurrence network mapping to visualize and interpret core themes and emerging trends within the field (Fig. 9a). In this visualization, keywords are displayed as circular nodes, with their size reflecting frequency of occurrence and connections indicating co-occurrence relationships. This analysis reveals that nanoparticles, nanotubes, and thin films are central to current research, underscoring their significance in advancing polymeric materials. The frontier knowledge map (Fig. 9b) highlights that these materials, alongside sensitive detection, drug delivery, and biomedical applications, are among the most prominent research areas. Moreover, coordination polymer mixed matrix membranes are emerging as a focal point of investigation. Core materials such as nanoparticles, nanotubes, and thin films are crucial for developing advanced polymeric materials. Their integration with MOFs offers promising possibilities, particularly in sensitive detection, drug delivery, and biomedical applications. Recent research is emphasizing coordinated polymer hybrid matrix films, showcasing the importance of MOFs and nanomaterials in composites. Additionally, innovative synthesis methods, including room-temperature and ultrasonic synthesis, are gaining attention as researchers seek more efficient and environmentally friendly techniques. The integration of

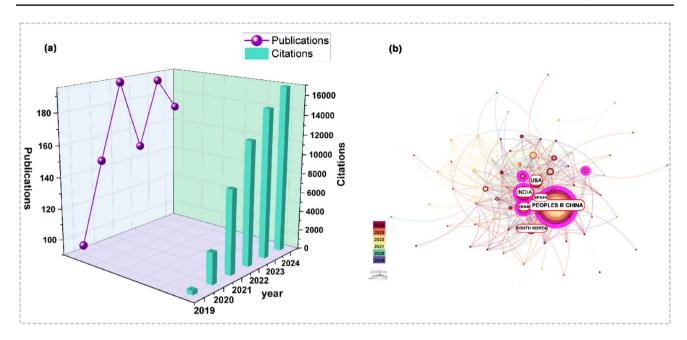


Fig. 8 a The dynamics of literature production and citations. b Network visualization of co-authorship country

nanomaterials across various dimensions (0D, 1D, 2D, and 3D) is also emerging as a new research direction, broadening applications, especially in biomedicine and water treatment. In summary, this field is experiencing rapid advancement, both in research hotspots and in application prospects.

4.1 Flame retardancy

Flame retardancy of polymer-based nanocomposites is an important area of research, and MOF-based nanocomposites have been incorporated into a variety of polymer matrices including polypropylene (PP) [105–109], polystyrene (PS) [110–113], polyethylene (PE) [114–116], epoxy resins (EP) [103, 117–119], polyurethane (PU) [120–123], and TPU [124]. These materials play a fire-safety and fire-prevention application. These materials play a vital role in fire safety and fire prevention applications. Since conventional polymers are flammable at high temperatures, enhancing their flame retardancy by adding various flame retardants has become a common treatment [51, 125]. The design and preparation of nanocomposites, especially the application of MOF and other nanomaterials, have significantly improved the flame retardancy of polymers by reducing the flame propagation rate and heat release.

Figure 10 presents a comparative analysis of the flame-retardant efficacy of ZIF@Arg-Co-PA, Co₃O₄@OZC, DE@ZIF@ILS, APP@SiO₂@UiO-66-NH₂(Zr), IRMOF-3-P, and ZIF-oV in polymer matrix. Researchers establish the optimal formulation through experimental trials that focus on assessing the flame-retardant characteristics of MOF-based nanocomposites in polymer matrix. By systematically

adjusting the proportions and evaluating data from LOI and cone calorimetry tests—such as heat release rate (HRR), total heat release (THR), total smoke production (TSP), and smoke production rate (SPR)—researchers can identify the blend that achieves the most effective balance between flame retardancy and mechanical strength.

Among the tested materials, APP@SiO₂@UiO-66-NH₂(Zr) demonstrated favorable outcomes in reducing THR and TSP, although its enhancement of LOI was relatively modest. In contrast, IRMOF-3-P exhibited the most pronounced improvement in LOI, reaching 32%, indicating its superior effectiveness in enhancing the oxygen index. ZIF@ Arg-Co-PA, Co₃O₄@OZC, and DE@ZIF@ILS displayed consistent performance across all metrics. This evaluation of flame-retardant performance highlights the distinct advantages of different MOF-based nanocomposites, with some excelling in reducing heat and smoke release, while others focus on improving the oxygen index. This underscores the importance of selecting appropriate MOFs and nanomaterials based on the specific requirements of the polymer matrix and application context. Table 2, Table 3, and Table 4 provide additional detailed information regarding the integration of MOFs and nanomaterials to enhance the flame retardancy of three polymers: EP, TPU, and PUA.

Significant progress has been made in multiple studies exploring the influence of MOF-based nanocomposites on the properties of polymer matrices. For instance, Xue et al. synthesized ZIF-oV nanorods based on Bio-based vanillin, significantly enhancing the flame retardancy and mechanical properties of epoxy resins. The introduction of ZIF-oV increased the LOI of EP from 22.3 to 30.8%, achieving a

351

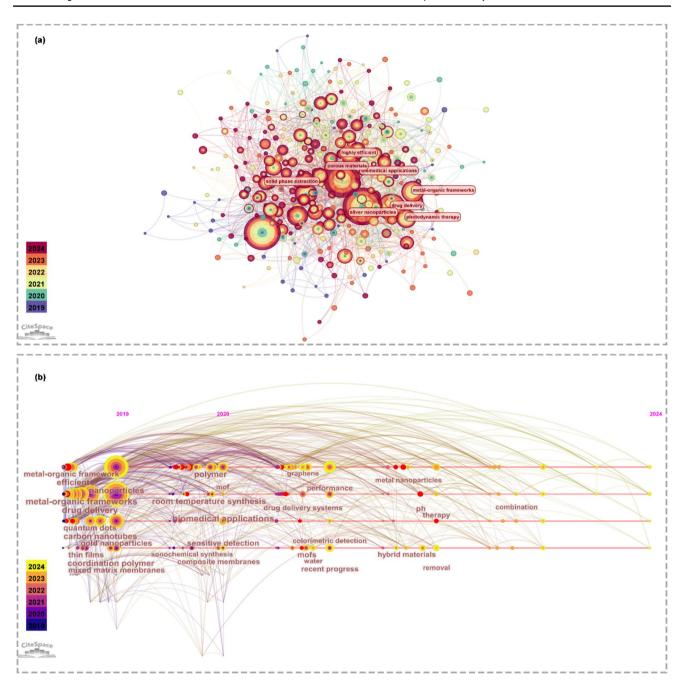


Fig. 9 a Network visualization of keyword co-occurrence. b Frontier knowledge Map from January 2019 to December 2024

vertical combustion test (UL-94) V0 rating [127]. Another study synthesized a P-ZCD hybrid flame retardant based on β-cyclodextrin and ZIF-67, which demonstrated excellent flame retardant effectiveness in epoxy resin, with the LOI value increasing from 22.1 to 25.1% [128]. Additionally, research has prepared the APHZ flame retardant by grafting phosphorus, nitrogen, and silicon onto ZIF-8, which significantly improves the flame retardant performance in epoxy resin, with the LOI value increasing from 23.5 to 30.7% [129]. At the same time, research on the absorption of phosphonate (DMMP) by ZIF-8 has also demonstrated its potential in enhancing the flame-retardant properties of epoxy resin, with the LOI value increasing by 19.8% [3]. Moreover, PANI@Co-P, as a new type of flame retardant, exhibits excellent performance in PUA, significantly enhancing both flame retardancy and impact strength. By judiciously designing and selecting MOF materials, the flame retardancy and mechanical properties of polymer matrices can be significantly improved, providing new insights for developing high-performance polymers.

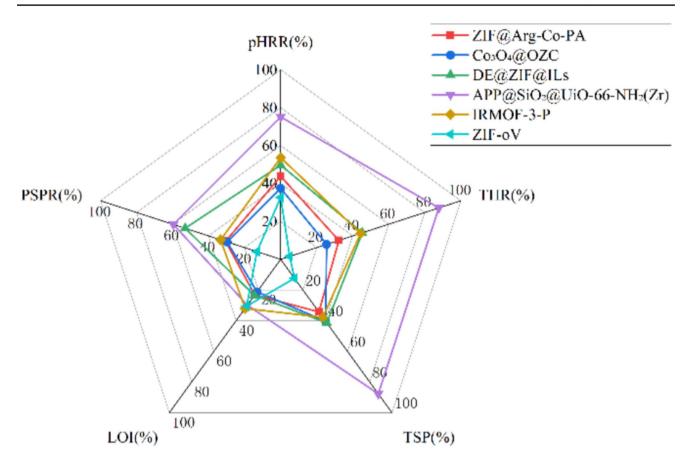


Fig. 10 ZIF@Arg-Co-PA, Co_3O_4 @OZC, DE@ZIF@ILS, APP@ SiO_2 @UiO-66-NH₂(Zr), IRMOF-3-P, and ZIF-oV hybrids were compared with their initial materials in terms of percentage decrease in pHRR, THR, TSP, and PSPR, and percentage enhancement in LOI,

respectively (pHRR, peak heat release rate; THR, total heat release; TSP, total smoking production; LOI, limiting oxygen index; PSPR, peak smoke production rate)

Table 2 Combustion behavior of MOF-based flame retardants in EP composites in recent studies

Sample	Loading (wt%)	Main flame retardant results	References
G@Cu-MOF	6	55%, 14%, 59%, and 55% reduction in pHRR, THR, CO production, and CO ₂ production	[36]
IRMOF-3-P	3I-P+6H	Reductions of 53.6% in pHRR, 44.4% in THR, and 56.68% in CO ₂ emissions were achieved; the material obtained a UL-94 V-0 certification and demonstrated an LOI value of 32.0%	[126]
ZIF-oV	7	The pHRR decreased by 32.6%, and the THR was reduced by 7.0%. The material achieved a UL-94 V-0 classification and exhibited an LOI of 29.1%	[127]
ZIF-67@PZS	2	34.0%, 30.0%, and 40.5% reduction in pHRR, THR, and TSP	[51]
P-ZCD	2	The pHRR decreased by 54.8%, while the TSP saw a 46.9% decline	[128]
APHZ	3	23.3%, 14.0%, and 21.1% reduction in av-HRR, TSP, and CO production; char residue climbed by 60.6%; a UL-94 V-0 classification was successfully achieved, and the LOI reached 30.7%	[129]
ZIF-8@DMMP	20	46.0%, 19.15%, and 23.0% reduction in pHRR, THR, and TSP; 19.8% of LOI; passed UL-94 V-1 rating	[3]
APP@UiO	10	61.34% and $37.5%$ reduction in pHRR and the peak smoke production rate (PSPR); $31.2%$ of LOI	[130]
APTES@ZIF- 67@M(OH) (OCH ₃)	3	20.0% reduction in pHRR; passed UL-94 V-1 rating; 27.6% of LOI	[92]
MPOFs-P	2	46.6% and 25.2% reduction in pHRR and in TSP; passed UL-94 V-0 rating; 27.0% of LOI	[131]

Sample Main flame retardant results Load-References ing (wt%) APP-PEI@MXene@ZIF-67-2BL 20 72.75%, 87.25%, 59.58%, and 85.97% reduction in pHRR, THR, PSPR, and TSP [100] APP@MOFs 20 75.76%, 86.19%, and 69.74% reduction in pHRR, THR, and SPR; 32.3% increase in [132] char residue ZIF-67 H 2 45.4% and 50.2% reduction in pHRR and TSP [133] ZIF-8@PA@NH2-HBPS 2 A reduction of 35.2%, 25.2%, and 65.5% was observed in pHRR, THR, and TSP, [134] respectively APP@SiO₂@UiO-66-NH₂(Zr) 20 THR and TSP experienced decreases of 87.8% and 87.7%, respectively, while LOI was [135] reduced by 29.9%

Table 4 Combustion behavior of MOF-based flame retardants in PUA composites in recent studies

Sample	Load- ing (wt%)	Main flame retardant results	References
ZIF@Arg-Co-PA	5	A reduction of 43.8%, 32.3%, and 34.3% was observed in pHRR, THR, and TSP, respectively, while the LOI reached 23.2%	[136]
C03O4@OZC	2	A decrease of 37.5%, 25.5%, and 40.4% was observed in pHRR, THR, and TSP, respectively, along with an LOI value of 21.2%	[137]
d-LDH@ZIF	3	A reduction of 28.8%, 8.3%, and 8.9% was observed in pHRR, THR, and TSP, respectively, achieving a UL-94 V-0 rating	[138]
FePP@MoS ₂ @Ni-MOF	3	39.76%, 29.33%, 17.86%, and 21.30% reduction in pHRR, THR, PSPR, and TSP	[139]
DE@ZIF@ILs	5	A reduction of 49.7%, 45.3%, 53.0%, and 41.4% was observed in pHRR, THR, PSPR, and TSP, respectively, alongside a 30.7% enhancement in char residue	[140]
2D RP@ZIF	5	A decrease of 48.7%, 10.0%, 20.4%, and 22.2% was observed in pHRR, THR, PSPR, and TSP, respectively, alongside a 31.0% rise in char residue	[141]
PANI@Co-P	2	54.9% and 59.9% reduction in pHRR and PSPR; 70.3% increase in char residue	[142]

The flame-retardant properties of MOF-based nanocomposites vary significantly depending on the specific MOFs used and their integration with nanomaterials. For instance, ZIF-67, when integrated with POSS and phosphorus-containing compounds, forms a highly effective flame retardant system in epoxy resins, enhancing both LOI and peak heat release rate (pHRR) [131]. In epoxy composites containing 2 wt% MPOFs-P, the LOI increases to 27.0% (UL-94 V-0 rating), and pHRR decreases by 46.6%, attributed to co-catalyzed char formation and P/Si/Co multi-elemental effects. In contrast, Ni-MOF, when combined with FePP and MoS2, shows improved thermal stability and flame retardancy in PUA composites [139]. These conclusions are supported by comprehensive performance data demonstrating measurable improvements in key metrics like LOI, THR, and TSP.

The success of these materials can be traced to their fundamental working mechanisms. MOF-based nanocomposites create an integrated defense system within the polymer matrix, addressing multiple aspects of fire protection: they form protective barriers that slow flame spread [128, 143], reduce heat release during combustion

[144–146], and minimize smoke production [147, 148]. This multi-modal protection strategy explains why different MOF-based nanocomposites, such as IRMOF-3-P and APP@SiO₂@UiO-66-NH₂(Zr), can excel in different performance aspects while contributing to overall fire safety. The versatility of MOF-based nanocomposite solutions is particularly noteworthy, as evidenced by their successful integration into diverse polymer systems ranging from common thermoplastics like PP and PS to more specialized materials like EP and polyurethanes. This broad applicability stems from MOFs' adaptable chemistry and their ability to form stable, well-dispersed nanocomposites within different polymer matrix. The development of these materials represents a strategic response to the inherent flammability challenges of conventional polymers, offering a sophisticated solution that addresses both immediate fire safety needs and long-term material performance requirements. This approach has effectively bridged the gap between material functionality and safety requirements in modern polymer applications.

4.2 Mechanical properties

The integration of MOFs with nanomaterials as a novel additive can markedly enhance the mechanical attributes of polymers through meticulous design and surface modification. Diverse MOF-based nanocomposites exhibit distinctive nanoscale, high porosity, and optimal nano-material interfaces, interacting with nanomaterials through diverse interfacial engineering mechanisms. This not only markedly elevates the comprehensive performance of polymers but also paves the way for the design of high-performance composites.

To significantly enhance the mechanical properties of glass fiber-polyamide 6 (PA6), Unnikrishnan et al. [149] incorporated Al-MOF, graphene, and glass fiber (GF) composite into the PA6 Matrix. The incorporation of conventional flame retardants into polymers often leads to a reduction in mechanical properties. In this study, the incorporation of a 10% blend of fillers (comprising 5% graphene nanoplatelets and 5% aluminum-based MOF) and 20% glass fiber led to a significant enhancement in the tensile strength and Young's modulus of the composites, exhibiting an increase of 94% and 39%, respectively (Fig. 11a, b). Similarly, the

flexural strength and modulus increased 92.3% and 175.7%, respectively. This notable enhancement in performance can be attributed to the formation of hydrogen bonds between the carboxyl functional groups of Al-MOF and the molecular chains of PA6, which facilitates improved interfacial interactions. Additionally, Al-MOF is a "bridge" between the GNPs and PA6, enhancing the compatibility between the filler and the matrix, thereby creating a synergistic enhancement effect.

Conventional additives typically lead to a deterioration in mechanical properties due to weakened interfacial adhesion and a reduction in molecular weight. In the study of EP/ZHS@NCH composites [150], the flexural strength of pure EP was found to be 87.5 ± 4.3 MPa. This value decreased to 70.0 ± 2.7 and 73.2 ± 4.1 MPa with the addition of one-component ZHS and NCH additives, respectively. However, the addition of the ZHS@NCH composite additive resulted in only a slight reduction in flexural strength to 81.3 ± 3.8 MPa. Similarly, the additives affected the tensile strength of the materials. However, as shown in Fig. 11d, ZHS@NCH demonstrated superior performance relative to the other additives, exhibiting a tensile strength of 48.6 ± 2.2 MPa. This can be attributed to its distinctive multicore shell

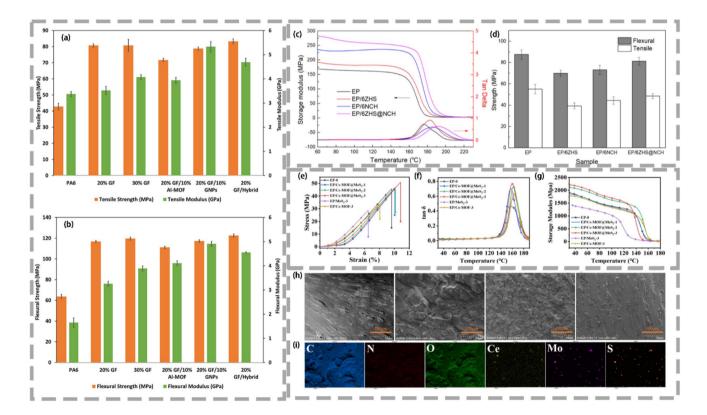


Fig. 11 Tensile (a); and flexural (b) properties of reinforced composites. Reproduced with permission from ref. [149]. c Storage modulus and tan δ curves and d flexural and tensile strength of EP and its nanocomposites. Reproduced with permission from ref. [150]. e Stress–strain curves of EP and its nanocomposites. f Tan δ and g

storage modulus curves of DMA test from EP/Ce-MOF@MoS $_2$ nanocomposites. **h** Cross-sectional SEM picture of EP-0, EP/Ce-MOF@ MoS $_2$ -3, EP/MoS $_2$ -3, and EP/Ce-MOF-3. Elemental mapping images for **i** EP/Ce-MOF@MoS $_2$ -3. Reproduced with permission from ref. [151]

layer nanostructure and robust interaction with the polymers. Dynamic mechanical analysis (DMA) demonstrated that the energy storage modulus of pure EP was 168 MPa at the initial temperature, which was increased to 281 MPa with the addition of ZHS@NCH. Furthermore, the glass transition temperatures (T_{o}) of the composites exhibited an increase with the addition of the flame retardants, with EP/6ZHS@ NCH exhibiting the highest $T_{\rm g}$ values. This change can be attributed to the barrier effect of the nanofillers, which impede the movement of molecular chains within the matrix. The width of the tan δ peak is indicative of the relaxation phenomenon exhibited by molecular chains (Fig. 11c). Due to the robust interfacial interactions between ZHS@NCH and the polymers, which restrict the mobility of neighboring epoxy chains, the molecular chains display disparate relaxation behaviors, resulting in the broadening of the tan δ peaks.

Yu et al. [151] prepared a layered Ce-MOF@MoS₂ hybrid structure with the objective of enhancing the thermal management capability of epoxy resin (EP). The hybrid structure has been demonstrated to significantly enhance the mechanical properties of the EP. At low contents of Ce-MOF@ MoS₂ (1% and 2%), the composite Materials demonstrate exceptional Ductility, with most tests indicating an elongation rate exceeding 1500%. As the content of Ce-MOF@ MoS₂ increases to 3%, although there is a slight decrease in elongation, it still retains good performance. The typical fracture elongation rate of the 3% Ce-MOF@MoS₂/EP composites is 146%, with a toughness of 16.7 J/cm3, effectively able to absorb energy per unit volume (Fig. 11e). The yield strength of the 3% MOF composite ranged from 6.8 to 9.5

MPa, indicating that the EP composite can withstand significant stress without deformation (Fig. 11e, g).

The mechanism of MOF-based nanocomposites to improve the mechanical properties of polymers is mainly reflected in two aspects: interfacial engineering and microstructure modulation. Firstly, the interaction between MOF-based nanocomposites and polymer can be enhanced through surface functionalization to improve the interfacial bonding strength; secondly, the unique morphology and size of MOF-based nanocomposites can effectively hinder dislocation motion and crack extension, thus improving the strength and toughness of the materials. Different types of MOF-based nanocomposites can achieve precise regulation of the mechanical properties of polymers by adjusting the surface modification and addition amount.

4.3 Electrical performance

The synergistic interaction of polymer matrix MOFs with nanomaterials offers an innovative way to improve electrical performance. Conventional MOFs typically exhibit very low electrical conductivity due to their crystalline structure, in which the metal nodes and organic linkers lack continuous conduction pathways. However, when MOFs are integrated with conductive materials, such as CNTs, their electrical conductivity can be significantly enhanced. For example, in Mn-MOFs/CNT composite materials [50], the CNTs provide an additional conductive network, promoting charge transport and effectively resolving the issue of low electrical conductivity in conventional MOFs. As shown in Fig. 12a–1, the composite structure of Mn-MOFs with

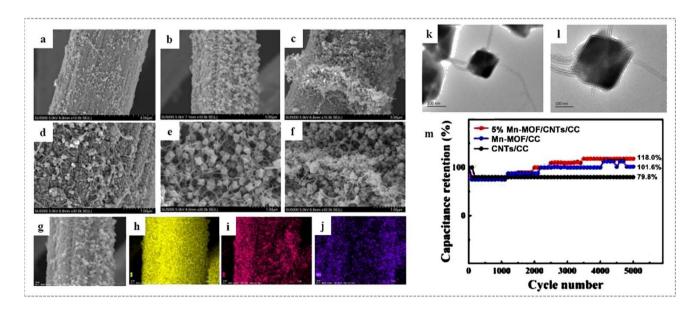
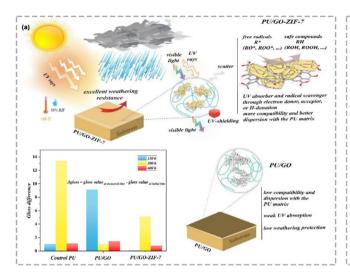
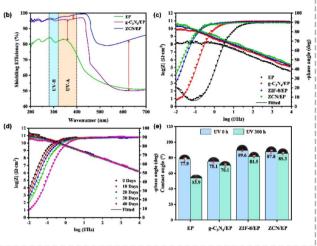


Fig. 12 \mathbf{a} - \mathbf{j} MOF/CNT morphology with different CNT doping ratios; \mathbf{k} , \mathbf{l} TEM images of CNT-penetrated and bonded MOFs; \mathbf{m} long-term cycling stability curves. Reproduced with permission from ref. [104]

CNTs was grown directly on carbon cloth (CC) by a one-step hydrothermal method. The carboxyl groups of CNTs provide uniform nucleation sites to support the growth of Mn-MOFs. By growing CNTs on the surface of MOFs, a three-dimensional conductive network is formed. This structure not only improves the electrical conductivity of MOFs but also enhances the overall performance of the composite material. Finally, the Mn-MOFs/CNTs/CC electrode exhibited a specific capacitance of 385.5 mF⋅cm⁻2 and excellent cycling stability in electrochemical tests (Fig. 12m). This composite shows good electrical performance in supercapacitor applications and is particularly suitable for energy storage devices that require high electrical conductivity and good electrochemical performance.

Composite electrode materials based on NiCo-BTC MOFs/N-GONRs/GCE were prepared by Jalal et al. and showed excellent improvement in electrochemical performance [104]. The peak current of the prepared Material was increased by 1.0 mg mL⁻¹ N-GONRs, or about 11.5-fold, to 46.6 μA compared to that of the bare GCE (4.0 μA). The unsaturated active sites of the N-GONRs can be attached to the electrode surface through synergistic interactions with the NiCo-BTC MOFs, resulting in the formation of highly conductive three-dimensional network structures, which enhance the electrochemical activity of the electrodes, reduce the charge transport resistance, and improve the electrocatalytic performance. This hypothesis was supported by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). EIS testing indicates that the doublelayer capacitance of HKUST-1/GONRs/GCE is 1.4 times and 1.3 times that of GONRs/GCE and HKUST-1/GCE, respectively. Through cyclic voltammetry test, it was shown that the multisite bonding network could effectively trap the charge and improve the electrochemical performance of the electrode. The limit of detection (LOD) of the prepared composites was $0.006 \mu \text{mol L}^{-1}$, which was significantly lower than that of the conventional electrodes, and the Linear range of detection covered 0.04–80.0 μmol·L⁻¹, with a detection sensitivity of 45.33 μA·L·μmol⁻¹. Compared with the monometallic MOFs, the NiCo-BTC MOFs/N-GONRs/ GCE exhibited better electrochemical performance with electrode stability of up to 95%.


Researchers are generally focused on the designability of MOFs' microstructures, aiming to achieve effective control over electron or ion transport pathways. Additionally, the integration of highly dispersed nanomaterials with MOFs helps overcome the inherent insulating nature of MOFs, transforming them into functional materials applicable in sensing, energy storage, and electrocatalysis. However, existing studies also present aspects that warrant critical reflection. Firstly, the combination of MOFs with conductive nanomaterials still faces challenges in practical processing and large-scale production, as achieving high


dispersion often requires complex chemical modifications or precise fabrication techniques, raising concerns about cost and stability. Secondly, the enhancement of electrical performance can sometimes conflict with other properties, such as mechanical strength or flame retardancy, necessitating a holistic optimization approach in material design. Furthermore, the mechanisms underlying the improvement in electrical performance are currently limited to simple descriptions of charge transport pathways, lacking in-depth investigations into the evolution of conductive networks within the microstructure. Expanding theoretical models or employing multi-scale characterization techniques, such as in situ analysis, could further elucidate and enhance the application potential of MOF-based nnanocomposites in the realm of electrical performance.

4.4 Others

In addition to the properties, the integration of nanomaterials and MOFs through hybridization can impart further properties to polymers. The versatility of such MOF-based nanocomposites has led to their widespread use in polymer matrices for a variety of applications. Polymers are susceptible to environmental influences, such as ultraviolet radiation and temperature. There is an inherent trade-off between their flame retardancy and anti-weathering performance, which has prompted a focus on enhancing the anti-weathering performance of polymers in academic research [152, 153]. Majidi et al. [154] successfully prepared PU coatings by synthesizing GO-modified ZIF-7 nanoparticles to improve their weathering and mechanical properties (Fig. 13a). The introduction of GO-ZIF-7 nanohybrids significantly improved the photostability of the PU coatings, and after 600 h of accelerated aging tests, the gloss loss of the PU/ GO-ZIF-7 coatings was only 0.76 GU, and they maintained a high degree of transparency. Compared with the control PU, the elongation at break and toughness of PU/GO-ZIF-7 were increased by more than 70% and 85%, respectively. The RMS roughness value of the ZIF-7 coating before weathering was 9.44 nm, which decreased to 8.04 nm after 600 h of weathering, representing a change of about 14%. After 600 h of UV-A exposure (340 nm) at 25 °C with 50% Humidity, the change in contact angle was minimal, decreasing from 81.87° to 77.11°, a change of approximately 5.8%, indicating excellent retention of surface hydrophobicity and moisture resistance. The GO-ZIF-7 nanohybrid can enhance the light stability of the PU coating through a mixed mechanism of UV absorption and free radical scavenging, thereby improving weathering resistance. Similarly, Li et al. [155] successfully designed ZIF-8@g-C₃N₄ (ZCN) smart nanoparticles, which were loaded onto g-C₃N₄ nanosheets by an in situ loading method to significantly enhance the performance of epoxy coatings (Fig. 13b-d). Using the Tafel extrapolation

Fig. 13 a Schematic diagram of the mechanism of GO-ZIF-7 to improve the UV protection of PU coatings through the dual mechanism of UV absorption and radical scavenging, and the change in gloss of PU-GO-ZIF-7 coatings at different time points. Reproduced with permission from ref. [154]. **b** Evaluation of the effect of ZCN nanoparticles on the UV shielding properties of epoxy resin coatings

using UV–vis spectroscopy. $\bf c$ EIS was performed to obtain the Bode plot. $\bf d$ ZCN/EP coatings after immersion in 3.5 wt% NaCl solution for 0, 10, 20, 30, and 40 days. $\bf e$ Water contact angle of EP, g-C₃N₄/EP, and ZCN/EP coatings. Reproduced with permission from ref. [155]

method to analyze the electrochemical corrosion parameters of the coating, ZCN-MS exhibited the lowest corrosion current density $(6.25 \pm 0.04 \,\mu\text{A} \cdot \text{cm}^2)$ and the highest polarization resistance (4123 \pm 5 Ω •cm2), indicating its excellent corrosion resistance performance. Meanwhile, dynamic mechanical thermal analysis (DMTA) tests showed that the crosslinking density of the ZCN/EP coating increased to 2.61×10^{-3} mol/m3 after 300 h of ultraviolet exposure, demonstrating its good thermomechanical properties. Furthermore, UV-Vis spectroscopy revealed that g-C3N4 displayed significant UV absorption capability, while ZIF-8 reflected and scattered ultraviolet light within a shorter wavelength range. When combined, the absorption edge of ZCN experienced a noticeable red Shift, further enhancing its UV protective effect, with ZCN significantly improving optical Shielding capability across the entire range from 280 to 700 nm. The nanohybrid material not only possesses acidic pH-responsiveness but also provides UV-reflective and scattering functions, achieving multiple improvements in the barrier, activity inhibition and UV resistance of the coatings.

Another potential application of integrating MOFs with nanomaterials in polymers is the removal of water pollutants. An illustrative example is the report by Bagherzadeh et al. on the synthesis of innovative desalination materials based on thin-film nanocomposite membranes modified with WS₂–Cys–UiO-66-(CO₂H)₂ nanocomposites [156]. The authors initially synthesized WS₂-Cys-MOF nanosheets and incorporated them into a polyamide selective layer, thereby enhancing the water flux and contamination resistance of

the membrane. The resulting nanocomposite membranes exhibited excellent stability and demonstrated a significant enhancement in water flux, reaching 38.91 LMH during desalination. It was demonstrated that the nanocomposite membranes also demonstrated enhanced anti-pollution characteristics, exhibiting diminished flux decline rates. Furthermore, the authors discovered that the performance of the membranes could be enhanced by optimizing the addition of WS₂-Cys-MOF. This study presents a novel approach to the design and development of thin-film desalination membranes based on WS2-Cys-MOF nanocomposites, showcasing their potential for water treatment and ion separation applications. In a separate study, Mahmoud et al. [157] constructed a composite comprising titanium-based metal-organic frameworks (Ti-MOF) decorated with TiO₂ nanoparticles, embedded with watermelon peels biochar (WMPB) and functionalized with chitosan hydrogel (CTH). The composites exhibited excellent multifunctionality and efficient decontamination performance, with the removal rates of hexavalent chromium (Cr(VI)) and doxorubicin (DOX) reaching 95.28% and 97.96%, respectively. The composites exhibited remarkable surface porosity, a high specific surface area (366.04 m²/g), and good water stability, and demonstrated excellent recycling performance. This novel bio-nanocomposite represents an efficient, environmentally friendly and sustainable solution for the treatment of water pollution, offering an innovative approach to the remediation of hazardous pollutants in aqueous environments.

Among diverse MOFs, ZIFs (e.g., ZIF-8, ZIF-67) emerge as the most versatile for multifunctional polymer composites.

Their unique sodality topology and tunable organic ligands enable exceptional flame retardancy (e.g., LOI↑ to 29.1% in epoxy; Table 2) and mechanical reinforcement (e.g., 94%↑ tensile strength in PA6; Fig. 11a-b). For energy storage, Mn-MOFs/CNT hybrids (Fig. 12) achieve superior specific capacitance (385.5 mF·cm⁻2), while MIL-101 derivatives dominate water treatment due to ultrahigh adsorption capacity (Sect. 2.3.1). UiO-66's robustness suits high-temperature processing but requires nanomaterial integration for conductivity. Future work should prioritize ZIF-nanomaterial hybrids for all-in-one performance and expand Mn-MOF/MIL studies into flame-retardant designs.

Although nanomaterials possess multifunctionality and tunability, enabling applications in areas such as sound insulation, antibacterial treatments, and sensing, current research primarily focuses on flame retardancy and mechanical reinforcement. There remains ample opportunity to explore the synergistic effects of developing novel composite materials in other domains. Additionally, large-scale production and cost control are pressing demands. Most studies are still at the laboratory stage; achieving industrial-scale production requires consideration of synthesis efficiency and environmental friendliness, including the treatment of reaction byproducts, solvent recovery, and energy consumption. Balancing performance, economic viability, and sustainability continues to be the greatest challenge between materials design and engineering.

5 Industrial applications and manufacturing challenges of MOF-based nanocomposites in polymer matrix

MOF-based nanocomposites demonstrate excellent application potential in several engineering fields. Their versatility and outstanding properties provide innovative solutions for the advancement of materials science. In the field of architectural fire coatings, our research group has provided valuable insights into the integration of MOFs with nanomaterials for flame retardants in polymer matrix. For the first time, we report a novel hybrid flame retardant (MPOFs-P) that combines POSS, phosphorus-containing compounds, and transition metals [131]. Impressively, with only 2 wt% of MPOFs-P, the LOI of the composite could be enhanced to 27.0% and successfully passed the UL-94 V-0 rating. Subsequently, we have also proposed a stepwise etching strategy to prepare hollow nanocages (ZNs-B/CP) carrying ZIFs nanodots, which showed good inhibition of heat and smoke release from epoxy composites [143]. To the best of our knowledge, this is the first report on the application of MOF nanodots in the field of flame retardancy. The synthesis process produced nanodots of ZIF-67 smaller than 10 nm, which are crucial for better performance Due to their high surface area and reactivity. A 43.1% reduction in the pHRR to 648 kW/m2 was observed, compared to pure epoxy. In the field of energy storage, MOF-based nanocomposites are widely used in lithium-ion batteries, supercapacitors, and fuel cells [158-160]. It was shown that by directly growing cobalt phosphide (CoP) nanosheet arrays in Lithium-ion batteries, their electrodes were able to achieve a high discharge capacity of 919.6 mAh/g after 200 cycles and exhibited excellent flexibility and safety, even under mechanical damage. This approach effectively solves the problems of traditional cobalt-based electrodes, which are prone to aggregation and low conductivity [161]. In addition, MOF-based nanocomposites have proven their effectiveness in the efficient adsorption and catalytic degradation of organic pollutants and heavy metals. Jia et al. assembled MOF-derived hollow CoSe₂@N-doped carbon materials via one-dimensional CNTs to innovatively optimize electromagnetic wave absorption properties. The unique three-dimensional conductive network structure of the materials, through the uniformly distributed CNTs and hollow CoSe₂@N-doped carbon materials, resulted in the lowest reflection loss of –41.68 dB at a thickness of 3.0 mm, which significantly enhanced the electron transport paths, the interfacial polarization, and the multiple reflection losses, and effectively optimized the impedance matching properties [162]. These findings highlight the critical role of MOF-based nanocomposites in and emphasize their role in various industries.

5.1 Critical challenges

Despite the extensive application prospects of MOF-based composites, there are also several challenges remain in practical applications (Fig. 14), including long-term stability, cost-effectiveness, and environmental concerns:

- (1) One of the foremost challenges is the thermal stability of MOFs when incorporated into polymer matrix [92]. Many MOFs exhibit reduced thermal stability, which can significantly impact the thermal properties of the resulting composite materials. The degradation of MOFs under processing conditions or during end-use applications can limit their functionality and lifespan, necessitating the development of strategies to enhance their thermal resilience.
- (2) Highly loaded MOFs may result in poor dispersion, disrupting the mechanical integrity of polymers and leading to reduced tensile strength, flexibility, and overall structural stability [145]. Understanding the interplay between MOF loading and polymer matrix characteristics is essential to optimizing the mechanical performance of these composites.

351

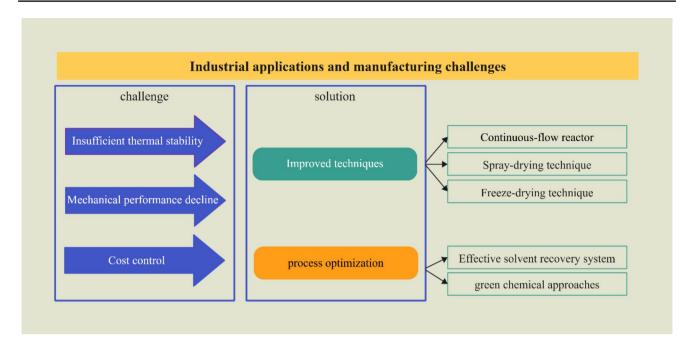


Fig. 14 Application and manufacturing challenges of industrial scalability of MOF-based nanocomposites

Surface functionalization is a powerful approach to improve the compatibility and dispersion of MOFs in polymer matrix. By modifying the surface of MOFs with organic ligands, polymers, or other functional groups, we can significantly enhance their interfacial interactions with polymers. For example, compared with UiO-66 (Zr), NH₂-UiO-66 (Zr) shows more significant improvement [163]. Similarly, surface modification of UiO-66-NH₂ with additional polymers (such as phenylacetyl chloride) can enhance compatibility with Matrimid (a polyimide), thereby making it more suitable for applications in polymer fiber composites [164].

- (3) MOF-based composites face significant challenges in terms of long-term stability. In practical applications, these materials may encounter various environmental factors such as water, oxygen, and temperature fluctuations, which can lead to degradation over time. For instance, hydrolysis and oxidation are common issues that can compromise the structural integrity of MOFs in polymer matrix. This degradation can result in a decline in mechanical properties, electrical performance, and flame retardancy. Ensuring the long-term stability of MOF-based nanocomposites requires the development of protective coatings, hybrid matrices, and stabilization techniques that can mitigate environmental degradation.
- (4) The cost-effectiveness of MOF-based nanocomposites is a critical factor limiting their widespread industrial adoption [38]. The synthesis of MOFs often requires specific conditions such as controlled temperature, pressure, and reaction time, which can be resourceintensive. Additionally, the use of expensive raw materials and the complexity of fabrication processes contribute to higher production costs. For example, the synthesis of some MOFs involves rare metal ions or complex organic linkers, which significantly increase the overall cost. To address this challenge, researchers are exploring alternative synthesis methods, such as microwave-assisted synthesis and solvent-free approaches, which can reduce energy consumption and material waste. Furthermore, optimizing the loading of MOFs in composites to achieve a balance between performance and cost is essential for commercial viability.
- (5) The environmental impact of MOF production and application is another important consideration [165]. The synthesis of MOFs may involve the use of toxic solvents and hazardous chemicals, which can pose risks to both the environment and human health if not properly managed. Additionally, some MOFs contain toxic metal ions and organic linkers that could leach into the environment during their lifecycle. To mitigate these concerns, green chemistry principles are being applied to develop more environmentally friendly synthesis routes. For example, using water-based solvents,

renewable resources, and biodegradable materials can reduce the ecological footprint of MOF production [136]. Additionally, implementing efficient solvent recovery systems and waste management practices can help minimize environmental pollution [166].

5.2 The scalability of large-scale industrial use

To meet industrial demands, the synthesis and application of MOF-based nanocomposites need to be scaled up. Despite challenges in large-scale synthesis of MOF-based nanocomposites, recent advances have facilitated their industrial production. Continuous flow reactors are a common strategy, allowing for efficient synthesis by continuously feeding reactants and enabling controlled mixing and reactions. This method offers advantages such as precise adjustment of reaction parameters, rapid mixing, effective heat transfer, and continuous output [8, 167]. Another effective approach involves spray and freeze-drying techniques [168]. Spray drying atomizes liquid MOF precursors into droplets and dries them with hot air, efficiently producing solid particles suitable for large-scale production. Freeze drying removes solvent from frozen MOF precursors under vacuum, preserving crystal integrity but requiring more time. Both methods produce MOFs with high surface areas, porosity, and thermal stability, making them suitable for various applications and easy to manage and store.

Overall, future research should prioritize improving the scalability of MOFs\-based nanocomposites through process optimization and technological innovation. This includes developing more efficient synthesis methods to reduce production costs while maintaining high quality and performance standards. In addition, exploring green chemistry methods to minimize environmental impacts during the production process is also an important direction for future research. Designing modular production equipment that can flexibly respond to changes in market demand and facilitate the integration of sustainable practices throughout the manufacturing process is another key area for future research.

6 Conclusions and prospects

This review explores the combination of MOF-based nanocomposites with polymers and their applications in the fields of flame retardancy, mechanical reinforcement, energy storage, and water treatment, etc. MOFs have become an important ingredient for enhancing the properties of polymers due to their unique structural properties and functionalities. Through different synthesis methods and modification strategies, the thermal stability, flame retardant efficiency, and mechanical and electrical properties of composites can be effectively improved.

By employing bibliometric analysis and reviewing the existing body of research, it becomes evident that integrating MOF-based nanocomposites with polymers not only boosts the materials' flame resistance but also enhances their mechanical integrity and adaptability to environmental conditions. However, the stability of the fusion of MOF-based nanocomposites and the compatibility with polymers are still the main challenges limiting their wide application. Future research should focus on the following aspects:

- Developing novel synthesis techniques to improve the dispersion and compatibility of MOF-based nanocomposites in polymer matrix and to ensure the stability of composites under different environmental conditions.
- 2 Enhancing the interactions between MOF-based nanocomposites and polymer matrix through surface functionalization and interfacial engineering to endow the composites with more functional properties, such as self-repairing, UV, and antibacterial properties.
- 3 Explore potential applications of the integration of MOFs and nanomaterials in other fields, such as environmental governance and biomedicine, and promote their use in clean energy and sustainable development.
- 4 To study the scale-up synthesis and application of MOFs-based nanocomposites to meet industrial demands and promote their transformation in practical applications.

In conclusion, the MOF-based nanocomposites in polymer matrix opens a new direction for the design and application of functional polymer materials. With in-depth research and technological advances, it is expected that more innovative composites will emerge in the future to meet the demand for high-performance polymer materials in various industries.

Author Contribution Rongjun Ma: Conceptualization, Formal analysis, Data curation, Investigation, Methodology, Visualization, Writing-original draft, Writing-review & editing. Yanan Hou and Wenchao Zhang: Conceptualization, Supervision. Ye-Tang Pan: Supervision, Validation, Funding acquisition, Resources, Writing-review & editing. Siqi Huo and Congling Shi: Supervision, Validation.

Funding This work is supported by the National Natural Science Foundation of China under (Grant No. 22375023 and Grant No. 52074247), Natural Science Foundation of Chongqing (CSTB2024N-SCQ-MSX0452), Hebei Natural Science Foundation (E2024105006), Shandong Province Natural Science Foundation (ZR2024ME040).

Data Availability No datasets were generated or analysed during the current study.

Declarations

351

Competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- 1. Bi X, Cheng X, Zhang Z, Huang Y, Pan Y-T, Guan J, Ardanuy M, Yang R (2024) A durable coating constructed by metal-organic framework and polyphosphazene for flame retardant cotton fabric with enhanced mechanical properties. Next Materials 3:100143. https://doi.org/10.1016/j.nxmate.2024.100143
- 2. Cao J, Xu G, Wang X, Liu K, Zhang J, Wang H, Wang X, Wu Z (2022) Engineering network entanglement of functionalized graphene oxide/poly(acrylamide) nanocomposites for enhanced oil recovery. J Mol Liq 360:119501. https://doi.org/10.1016/j. molliq.2022.119501
- 3. Guan H, Liu T, Shi L, Ma L, Kirillov AM, Liu W, Yang L, Dou W (2024) Synergic improvements in flame retardant and dielectric properties of hybrid epoxy resin composites bearing a dimethyl methylphosphonate-loaded zeolitic imidazole framework. New J Chem 48:5745–5759. https://doi.org/10.1039/D3NJ0 4806C
- 4. Koniuszewska AG, Kaczmar JW (2016) Application of polymer based composite materials in transportation. Prog Rubber Plast Recycl Technol 32:1-24. https://doi.org/10.1177/1477760616 03200101
- 5. Lu X, Lee AF, Gu X (2022) Improving the flame retardancy of sustainable lignin-based epoxy resins using phosphorus/nitrogen treated cobalt metal-organic frameworks. Mater Today Chem 26:101184. https://doi.org/10.1016/j.mtchem.2022.101184
- 6. Sun X, Miao W, Pan Y-T, Song P, Gaan S, Ibarra LH, Yang R (2024) Metal-organic frameworks: a solution for greener polymeric materials with low fire hazards. Adv Sustain Syst 9:2400768. https://doi.org/10.1002/adsu.202400768
- 7. Wang L, Hu X, Mao Z, Wang J, Wang X (2022) Phosphorylated metal-organic framework for reducing fire hazards of poly(methyl methacrylate). Polymers. https://doi.org/10.3390/ polym14224871
- 8. Hou B, Pan Y-T, Song P (2023) Metal-organic frameworks as promising flame retardants for polymeric materials. Microstructures. https://doi.org/10.20517/microstructures.2023.37
- Song X, Hou B, Han Z, Pan Y-T, Geng Z, Haurie Ibarra L, Yang R (2023) Dual nucleation sites induced by ZIF-67 towards mismatch of polyphosphazene hollow sub-micron polyhedrons

- and nanospheres in flame retardant epoxy matrix. Chem Eng J 470:144278. https://doi.org/10.1016/j.cej.2023.144278
- 10. Sun X, Pan Y-T, Wang W, Yang R (2025) Surface modification of MOFs towards flame retardant polymer composites. RSC Applied Interfaces 9:14-24. https://doi.org/10.1039/d4lf0
- 11. Geng C, Chen A, Sun Y, Zhang C, Qin Z, Zhang Z, Gu Z, Qiao Z (2024) Spacial regulation of precise aperture in metal-organic frameworks towards ultrahigh-selective mixed matrix membranes for low-energy-consumption C3H6/C3H8 separation. Chem Eng J 489:151451. https://doi.org/10.1016/j.cej.2024.151451
- 12. Tang P, Xie X-X, Huang Z-Y, Cai X-T, Zhang W-G, Cai S-L, Fan J, Zheng S-R (2022) Ethylenediamine grafted MIL-101 for iodine vapor capture with high capacity. J Solid State Chem 315:123453. https://doi.org/10.1016/j.jssc.2022.123453
- 13. Ma M, Chen E, Yue H, Tian G, Feng S (2025) Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation. Nat Commun 16:367. https://doi.org/10.1038/ s41467-024-52225-5
- 14. Han Z, Song X, Chen Z, Pan Y-T, Lai X, Wang D-Y, Yang R (2024) Half etching of ZIF-67 towards open hollow nanostructure with boosted absorption ability for toxic smoke and fume in epoxy composites. Sustain Mater Technol 41:e01024. https:// doi.org/10.1016/j.susmat.2024.e01024
- 15. Li Q, Song X, Pan Y-T, Sun J, Bifulco A, Yang R (2024) Dual function of carboxymethyl cellulose scaffold: a one-stone-twobirds strategy to prepare double-layer hollow ZIF-67 derivates for flame retardant epoxy composites. J Colloid Interface Sci 674:445–458. https://doi.org/10.1016/j.jcis.2024.06.189
- 16. Song KP, Pan YT, Zhang J, Song PA, He JY, Wang DY, Yang RJ (2023) Metal-organic frameworks-based flame-retardant system for epoxy resin: a review and prospect. Chem Eng J 468:15. https://doi.org/10.1016/j.cej.2023.143653
- 17. Zhao M, Qu Q, Guo N, Sun Z, Wang K, Guo X (2023) Stepwise assembling manganese dioxide nanosheets and metal-organic frameworks on carbon fiber for deriving desirable mechanical properties and flame retardancy of epoxy composites. Adv Compos Hybrid Mater 6:150. https://doi.org/10.1007/ s42114-023-00727-z
- 18. Amirilargani M, Merlet RB, Hedayati P, Nijmeijer A, Winnubst L, de Smet LCPM, Sudhölter EJR (2019) MIL-53(Al) and NH2-MIL-53(Al) modified α-alumina membranes for efficient adsorption of dyes from organic solvents. Chem Commun 55:4119-4122. https://doi.org/10.1039/C9CC01624D
- 19. Taima-Mancera I, Rocío-Bautista P, Pasán J, Ayala JH, Ruiz-Pérez C, Afonso AM, Lago AB, Pino V (2018) Influence of ligand functionalization of UiO-66-based metal-organic frameworks when used as sorbents in dispersive solid-phase analytical microextraction for different aqueous organic pollutants. Molecules. https://doi.org/10.3390/molecules23112869
- 20. Cao J, Pan Y-T, Vahabi H, Song J-i, Song P, Wang D-Y, Yang R (2024) Zeolitic imidazolate frameworks-based flame retardants for polymeric materials. Mater Today Chem. https://doi.org/10. 1016/j.mtchem.2024.102015
- 21. Guo W, Nie S, Kalali EN, Wang X, Wang W, Cai W, Song L, Hu Y (2019) Construction of SiO2@UiO-66 core-shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins. Compos Part B Eng. https://doi.org/ 10.1016/j.compositesb.2019.107261
- 22. Ma M, Lu L, Li H, Xiong Y, Dong F (2019) Functional metal organic framework/SiO2 nanocomposites: from versatile synthesis to advanced applications. Polymers. https://doi.org/10.3390/ polym11111823
- Han Z, Zhang W, Song X, Vahabi H, Pan Y-T, Zhang W, Yang R (2023) Fast char formation induced by POSS confining Co-MOF hollow prisms in epoxy composites with mitigated heat

- and smoke hazards. Chem Eng J 474:145682. https://doi.org/10.1016/j.cej.2023.145682
- Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696. https://doi.org/10.1016/j. progpolymsci.2011.05.002
- Lee TH, Lee BK, Yoo SY, Lee H, Wu W-N, Smith ZP, Park HB (2023) Polymof nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO2 separation. Nat Commun 14:8330. https://doi. org/10.1038/s41467-023-44027-y
- Deng J, Zhao H, Zhang TT, Kang FR, Zhou TB (2023) Effect of Al-based metal-organic frameworks/halloysite nanotubes on the flame retardancy of silicone rubber foam. J Appl Polym Sci. https://doi.org/10.1002/app.54517
- Jiang J, Huo S, Zheng Y, Yang C, Yan H, Ran S, Fang Z (2021) A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin. Polymers. https://doi.org/10.3390/polym 13213648
- 28. Lian R, Guan H, Zhang Y, Ou M, Jiang Y, Liu L, Jiao C, Chen X (2023) A green organic-inorganic PAbz@ZIF hybrid towards efficient flame-retardant and smoke-suppressive epoxy coatings with enhanced mechanical properties. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2023.110534
- Cao X, Chen D, Tiwari SK, Wei F, Chen Y, Thummavichai K, Wang N, Yan C, Zhu Y (2024) Implanting MOF co-doped carbon nanotubes into PVP as flame-retardant to fabricate high performance PVA/SA aerogel nanocomposites. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2024.111977
- Chen S, Zeng Y, Bi W, Zhuo H, Zhong H (2024) Development of a UiO-66 based waterborne flame-retardant coating for PC/ABS material. Polymers. https://doi.org/10.3390/polym16020275
- Hu J, Pan Y-T, Zhou K, Song P, Yang R (2024) A new way to improve the fire safety of polyurethane composites with the assistance of metal-organic frameworks. RSC Appl Polym. https:// doi.org/10.1039/d4lp00257a
- Song K, Pan Y-T, Zhang J, Song P, He J, Wang D-Y, Yang R (2023) Metal–organic frameworks–based flame-retardant system for epoxy resin: a review and prospect. Chem Eng J. https://doi. org/10.1016/j.cej.2023.143653
- Yu S, Cheng C, Li K, Wang J, Wang Z, Zhou H, Wang W, Zhang Y, Quan Y (2023) Fire-safe epoxy composite realized by MXenes based nanostructure with vertically arrayed MOFs derived from interfacial assembly strategy. Chem Eng J. https://doi.org/10.1016/j.cej.2023.143039
- Li Y-R, Li Y-M, Chen B-B, Hu W-J, Wang D-Y (2022) Highly efficient electromagnetic wave absorption Fe-MOF-rGO based composites with enhanced flame retardancy. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.165516
- Nabipour H, Wang X, Song L, Hu Y (2020) Graphene oxide/ zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances. Mater Chem Phys. https://doi.org/10.1016/j. matchemphys.2020.123656
- Zhang G, Wu W, Yao M, Cui Y, Jiao Y, Qu H, Xu J (2024) A graphene@Cu-MOF hybrid synthesized by mechanical ball milling method and its flame retardancy and smoke suppression effect on EP. Chemosphere 346:140521. https://doi.org/10.1016/j.chemosphere.2023.140521
- Chen J, Chen J, Wang S, Sun Q, Cheng J, Yu Y, Yang J (2020) Tribological properties of h-BN matrix solid-lubricating composites under elevated temperatures. Tribol Int. https://doi.org/10.1016/j.triboint.2020.106333
- Pan Y-T, Zhang Z, Yang R (2020) The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review. Compos Part B Eng. https://doi.org/10.1016/j.compo sitesb.2020.108265

- Wang J, Ai K, Lu L (2019) Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. J Mater Chem A 7:16850–16858. https://doi.org/10.1039/c9ta0 4489b
- Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, Christopher MP, Long S, Wang Y, Zhao D (2019) Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J Membr Sci 573:97–106. https://doi.org/10.1016/j. memsci.2018.11.060
- Lu G, Huang X, Li Y, Zhao G, Pang G, Wang G (2020) Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. J Energy Chem 43:8–15. https://doi.org/10.1016/j.jechem. 2019.07.014
- 42. Ma M, Lu X, Guo Y, Wang L, Liang X (2022) Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): recent advances in synthesis and analytical applications of MOF/COF composites. TrAC Trends Anal Chem 157:116741. https://doi.org/10.1016/j.trac.2022.116741
- Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen S-W, Wang J (2019) Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91:888–895. https://doi.org/10.1021/acs.analchem.8b03764
- 44. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996
- 45. Williams JR, DiCarlo L, Marcus CM (2007) Quantum hall effect in a gate-controlled *p-n* junction of graphene. Science 317:638–641. https://doi.org/10.1126/science.1144657
- Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616. https://doi.org/10.1103/PhysRevLett.84.4613
- Rong C, Su T, Li Z, Chu T, Zhu M, Yan Y, Zhang B, Xuan F-Z (2024) Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nat Commun 15:1566. https://doi.org/10.1038/s41467-024-45657-6
- Li H, Xu Y, Zhang Z, Han F, Pan Y-T, Yang R (2025) Advancements and challenges in enhancing thermal stability of lithiumion battery separators: review on coating materials, high-temperature resistant materials and future trends. J Polym Mater 42:33–55. https://doi.org/10.32604/jpm.2025.062352
- Yuan J, Pan Y-T, Lin Y, Zhang W, Du R, Liu Y, Yang R (2025).
 Introduction of phosphorous to metal-organic frameworks for fire-safe polymers: from synthesis to application. Polym. Sci. Technol. https://doi.org/10.1021/polymscitech.5c00003
- Lu S, Xie F, Liu H, Liu Y, Zhang Z, Shang W, Jiang J, Wen Y (2023) Construction and electrochemical properties of carbon nanotube composite Mn-MOFs materials electrode for high-performance flexible supercapacitors. Electrochim Acta. https://doi.org/10.1016/j.electacta.2023.143063
- Song X, Li Q, Han Z, Hou B, Pan Y-T, Geng Z, Zhang J, Haurie Ibarra L, Yang R (2024) Synchronous modification of ZIF-67 with cyclomatrix polyphosphazene coating for efficient flame retardancy and mechanical reinforcement of epoxy resin. J Colloid Interface Sci 667:223–236. https://doi.org/10.1016/j.jcis. 2024.04.088
- 52. Shi X-H, Wu S-J, Xie W-M, Li X-L, Liu Q-Y, De La Vega J, Wang D-Y (2023) Fabrication of layered double hydroxide@ferric decorated polyphosphazene hybrid architecture towards simultaneously improved fire safety, smoke suppression and mechanical strength of epoxy resin. Compos Part A Appl Sci Manuf 172:107602. https://doi.org/10.1016/j.compositesa.2023.107602
- Unnikrishnan V, Zabihi O, Li Q, Ahmadi M, Yadav R, Kalali EN, Tanwar K, Kiziltas A, Blanchard P, Wang D-Y, Naebe M (2021)

351

- Organophosphorus-functionalized zirconium-based metalorganic framework nanostructures for improved mechanical and flame retardant polymer nanocomposites. ACS Appl Nano Mater 4:13027–13040. https://doi.org/10.1021/acsanm.1c02503
- Wang L, Tong L, Zhu S, Liang J, Zhang H (2020) Enhancing the mechanical performance of glass fiber-reinforced polymer composites using multi-walled carbon nanotubes. Adv Eng Mater 22:2000318. https://doi.org/10.1002/adem.202000318
- Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF (2002) Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40:1193–1197. https://doi.org/10.1016/S0008-6223(01)00266-4
- Castañeda Ramírez AA, Rojas García E, López Medina R, Contreras Larios JL, Suárez Parra R, Maubert Franco AM (2021) Selective adsorption of aqueous diclofenac sodium, naproxen sodium, and ibuprofen using a stable Fe3O4–FeBTC metalorganic framework. Materials. https://doi.org/10.3390/ma140 92293
- 57. Sun X, Man J, Liu K, Liu W, Sun J, Zhang N, Zhou Y, Geng Z, Li S, Sun J (2023) Uniform lithium deposition enabled by a carbon nanotubes framework modified with nanosized ZIF-8 particles for dendrite-free lithium metal anode. Appl Surf Sci 616:156474. https://doi.org/10.1016/j.apsusc.2023.156474
- 58. Yan J, Yu Y, Ma C, Xiao J, Xia Q, Li Y, Li Z (2015) Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl Therm Eng 84:118–125. https://doi.org/10.1016/j.applthermaleng.2015.03.
- Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5
- Loman-Cortes P, Binte Huq T, Vivero-Escoto J L (2021). Use of polyhedral oligomeric silsesquioxane (POSS) in drug delivery, photodynamic therapy and bioimaging. Molecules 26. https:// doi.org/10.3390/molecules26216453
- Demir S, Fellah MF (2020) A DFT study on Pt doped (4,0) SWCNT: CO adsorption and sensing. Appl Surf Sci 504:144141. https://doi.org/10.1016/j.apsusc.2019.144141
- Eun JH, Sung SM, Kim MS, Choi BK, Lee JS (2021) Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers. Mater Des 206:109785. https://doi.org/10. 1016/j.matdes.2021.109785
- Alhashmi Alamer F, Almalki GA (2022) Fabrication of conductive fabrics based on SWCNTs, MWCNTs and graphene and their applications: a review. Polymers 14:5376. https://doi.org/10.3390/polym14245376
- 64. Wang X, Wu F, Fan J, Tian A, Cheng Y, Yang S (2021) High specific surface area NiTiAl layered double hydroxide derived via alkali etching for high performance supercapacitor electrode. J Alloys Compd 888:161502. https://doi.org/10.1016/j.jallcom. 2021.161502
- Barahuie F, Hussein MZ, Gani SA, Fakurazi S, Zainal Z (2015) Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system. J Solid State Chem 221:21–31. https://doi.org/10.1016/j.jssc. 2014.09.001
- Rahman F, Yang X, Motswaiso F, Takanashi I, Kameda T, Rahman MT, Saito Y, Kumagai S, Yoshioka T (2024) Effective synthesis of ethylene urea from CO2 adsorbed cerium doped Mg–Al layered double hydroxide. J Clean Prod 434:140191. https://doi.org/10.1016/j.jclepro.2023.140191
- 67. Song K, Li X, Pan Y-T, Hou B, Rehman ZU, He J, Yang R (2023) The influence on flame retardant epoxy composites by a bird's nest-like structure of Co-based isomers evolved from zeolitic imidazolate framework-67. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2023.110318

- 68. Hou B, Song K, Ur Rehman Z, Song T, Lin T, Zhang W, Pan YT, Yang R (2022) Precise control of a yolk-double shell metalorganic framework-based nanostructure provides enhanced fire safety for epoxy nanocomposites. ACS Appl Mater Interfaces 14:14805–14816. https://doi.org/10.1021/acsami.2c01334
- Hou B, Song X, Song K, Geng Z, Pan YT, Song P, Yang R (2024) Synchronous preparation and modification of LDH hollow polyhedra by polydopamine: synthesis and application. J Colloid Interface Sci 654:235–245. https://doi.org/10.1016/j.jcis. 2023.10.004
- Song K, Zhang H, Pan Y-T, Ur Rehman Z, He J, Wang D-Y, Yang R (2023) Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites. J Colloid Interface Sci 643:489–501. https://doi.org/10.1016/j.jcis.2023.04.047
- Bi X, Song K, Zhang Z, Lin T, Pan Y-T, Fu W, Song P, He J, Yang R (2024) Joint exfoliation of MXene by dimensional mismatched SiC/ZIF-67 toward multifunctional flame retardant thermoplastic polyurethane. Small 20:2403375. https://doi.org/ 10.1002/smll.202403375
- Novoselov KS, Geim AK, Morozov SV, Jiang D-e, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896
- Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction.
 J Am Chem Soc 134:6707–6713. https://doi.org/10.1021/ja211433h
- 74. Li Z, Yu S, Gong Z, Yao X, Zhang J, Wang G, Pan Y-T, Gao H, Wang N (2025) A natural glue paste aminated graphene oxide onto ammonium polyphosphate towards "multiphase integrated" polymer composites: synthesis and application. Sustain Mater Technol 44:e01336. https://doi.org/10.1016/j.susmat.2025.e01336
- 75. Dourandish Z, Sheikhshoaie I, Maghsoudi S (2023) Molybdenum disulfide/nickel-metal organic framework hybrid nanosheets based disposable electrochemical sensor for determination of 4-aminophenol in presence of acetaminophen. Biosensors 13(5):524
- Yang S, Li D, Chen L, Zhou X, Fu L, You Y, You Z, Kang L, Li M, He C (2021) Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomater Sci 9:3306–3318. https://doi.org/10.1039/D0BM0 2012E
- Samy O, Zeng S, Birowosuto MD, El Moutaouakil A (2021) A review on MoS2 properties, synthesis, sensing applications and challenges. Crystals 11:355. https://doi.org/10.3390/cryst11040 355
- Anum A, Nazir MA, Ibrahim SM, Shah SS, Tahir AA, Malik M, Wattoo MA, Rehman AU (2023) Synthesis of bi-metallicsulphides/MOF-5@graphene oxide nanocomposites for the removal of hazardous moxifloxacin. Catalysts. https://doi.org/ 10.3390/catal13060984
- Zhu M, Ma Q, Ding S-Y, Zhao Y-Z, Song W-Q, Ren H-P, Song X-Z, Miao Z-C (2019) A molybdenum disulfide and 2D metalorganic framework nanocomposite for improved electrocatalytic hydrogen evolution reaction. Mater Lett 239:155–158. https:// doi.org/10.1016/j.matlet.2018.12.108
- Zhou Y, Qiu S, Chu F, Yang W, Qiu Y, Qian L, Hu W, Song L (2022) High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: enhanced adsorption, mechanical and fire safety properties. J Colloid Interface Sci 609:794–806. https://doi.org/10.1016/j.jcis.2021.11.089
- Verma C, Dubey S, Barsoum I, Alfantazi A, Ebenso EE, Quraishi MA (2023) Hexagonal boron nitride as a cutting-edge 2D material for additive application in anticorrosive coatings: recent

- progress, challenges and opportunities. Mater Today Commun 35:106367. https://doi.org/10.1016/j.mtcomm.2023.106367
- Karami Z, Jouyandeh M, Ali JA, Ganjali MR, Aghazadeh M, Paran SMR, Naderi G, Puglia D, Saeb MR (2019) Epoxy/layered double hydroxide (LDH) nanocomposites: synthesis, characterization, and excellent cure feature of nitrate anion intercalated Zn-Al LDH. Prog Org Coat. https://doi.org/10.1016/j.porgcoat. 2019.105218
- Kuang P, Low J, Cheng B, Yu J, Fan J (2020) MXene-based photocatalysts. J Mater Sci Technol 56:18–44. https://doi.org/ 10.1016/j.jmst.2020.02.037
- 84. Li J, Bao T, Zhang C, Song H, Zou Y, Yuan L, Xi Y, Yu C, Liu C (2023) A general strategy for direct growth of yolk-shell MOF-on-MOF hybrids. Chem Eng J 472:144926. https://doi.org/10.1016/j.cej.2023.144926
- Chai L, Pan J, Hu Y, Qian J, Hong M (2021) Rational design and growth of MOF-on-MOF heterostructures. Small 17:2100607. https://doi.org/10.1002/smll.202100607
- Mao L, Qian J (2024) Interfacial engineering of heterogeneous reactions for MOF-on-MOF heterostructures. Small 20:2308732. https://doi.org/10.1002/smll.202308732
- 87. Yao MS, Xiu JW, Huang QQ, Li WH, Wu WW, Wu AQ, Cao LA, Deng WH, Wang GE, Xu G (2019) Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew Chem Int Ed Engl 58:14915–14919. https://doi.org/10.1002/anie.201907772
- Sun W, Tang X, Yang Q, Xu Y, Wu F, Guo S, Zhang Y, Wu M, Wang Y (2019) Coordination-induced interlinked covalent- and metal-organic-framework hybrids for enhanced lithium storage. Adv Mater 31:1903176. https://doi.org/10.1002/adma.20190 3176
- 89. Berrio ME, Oñate A, Salas A, Fernández K, Meléndrez MF (2021) Synthesis and applications of graphene oxide aerogels in bone tissue regeneration: a review. Mater Today Chem 20:100422. https://doi.org/10.1016/j.mtchem.2021.100422
- Liu C, Wang J, Wan J, Yu C (2021) MOF-on-MOF hybrids: synthesis and applications. Coord Chem Rev. https://doi.org/10. 1016/j.ccr.2020.213743
- 91. Wu X, Geng C, Cheng W, Wang Z, Zhang Y, Wu D, Tang X (2024) An ultrasensitive electrochemical method for rapid detection of mercury based on nanoporous gold capped with a novel Zr-MOF-SH/reduced graphene oxide aerogel composites. J Food Sci 89:6016–6030. https://doi.org/10.1111/1750-3841.17268
- Dong X, Li D-l, Xie L, Fan X, Feng Y-x (2024) APTES modification of ZIF-67@M(OH)(OCH3) for enhanced flame retardancy and mechanical properties of epoxy resins. J Polym Res. https://doi.org/10.1007/s10965-024-03879-8
- Zhang J, Li Z, Shao Z-B, Zhang L, Wang D-Y (2020) Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125942
- 94. Abisha P, C.G J, Sonia S (2024). Hierarchical synthesis of binary ZnO@MWCNTs heterogeneous photocatalyst derived from porous Zn metal organic framework (MOF) template: Study on the effective photodegradation of Congo red (CR) dye. Current Applied Physics 60: 79–91. https://doi.org/10.1016/j.cap.2024. 02.003
- 95. Xu Y, Xie M, Li X, Shao F, Li S, Li S, Xu Y, Chen J, Zeng F, Jiao Y (2022) Regulating the electronic structure of Fe-based metal organic frameworks by electrodeposition of Au nanoparticles for electrochemical overall water splitting. J Colloid Interface Sci 626:426–434. https://doi.org/10.1016/j.jcis.2022.06.163
- Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the

- electrochemical detection of nitrite. Sens Actuators B Chem 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036
- Souri Z, Mazloum-Ardakani M, Alizadeh S, Nematollahi D (2022) Template-free electrodeposition of sponge-like porous polymer interwoven with the bi-metallic metal-organic framework and reduced graphene oxide and application in energy storage device. J Energy Storage 55:105381. https://doi.org/10.1016/j.est.2022.105381
- Wang J, Gong J, Zhang H, Lv L, Liu Y, Dai Y (2021) Construction of hexagonal nickel-cobalt oxide nanosheets on metalorganic frameworks based on MXene interlayer ion effect for hybrid supercapacitors. J Alloys Compd 870:159466. https://doi.org/10.1016/j.jallcom.2021.159466
- Tan P, Gao R, Zhang Y, Han N, Jiang Y, Xu M, Bao S-J, Zhang X (2023) Electrostatically directed assembly of two-dimensional ultrathin Co2Ni-MOF/Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. J Colloid Interface Sci 630:363–371. https://doi.org/10.1016/j.jcis.2022.10.109
- 100. Wan M, Shi C, Chen L, Deng L, Qin Y, Che H, Jing J, Li J, Qian X (2024) Core-shell flame retardant/APP-PEI@MXene@ZIF-67: a nanomaterials self-assembly strategy towards reducing fire hazard of thermoplastic polyurethane. Polym Degrad Stabil. https://doi.org/10.1016/j.polymdegradstab.2024.110821
- Majeed SA (2023) Recent advances in metal–organic framework/ carbon nanotube nanocomposites for developing analytical applications. Nanoscale 15:11457–11465. https://doi.org/10.1039/ d3nr01074k
- 102. Ma DX, Yang Y, Yin GZ, Vazquez-Lopez A, Jiang Y, Wang N, Wang DY (2022) ZIF-67 in situ grown on attapulgite: a flame retardant synergist for ethylene vinyl acetate/magnesium hydroxide composites. Polymers. https://doi.org/10.3390/polym14204408
- 103. Guo H, Wang Y, Li C, Zhou K (2018) Construction of sandwich-structured CoAl-layered double hydroxide@zeolitic imidazolate framework-67 (CoAl-LDH@ZIF-67) hybrids: towards enhancing the fire safety of epoxy resins. RSC Adv 8:36114–36122. https://doi.org/10.1039/c8ra06355a
- 104. Rezvani Jalal N, Madrakian T, Afkhami A, Ghoorchian A (2020) In situ growth of metal—organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing performance in imatinib determination. ACS Appl Mater Interfaces 12:4859–4869. https://doi.org/10.1021/acsami.9b18097
- 105. Quan Y, Shen R, Schweizer C, Parajuli P, Zhang Z, Kulatilaka W, Wang Q (2023) Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on intumescent flame-retarded polypropylene composites: a comparative study. J Mater Sci Technol 155:102–110. https://doi.org/10.1016/j.jmst. 2023.01.015
- 106. Shen R, Quan Y, Zhang Z, Ma R, Wang Q (2022) Metal–organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene. Ind Eng Chem Res 61:7292–7302. https://doi.org/10.1021/acs.iecr.2c00715
- Xie J, Shi X, Zhang M, Dai X, Wang X (2019) Improving the flame retardancy of polypropylene by nano metal—organic frameworks and bioethanol coproduct. Fire Mater 43:373–380. https:// doi.org/10.1002/fam.2709
- 108. Xu Y, Zhou R, Ma G, Deng L, Liu H, Ding Y, Jiang J (2022) Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame retardant by compounding with melamine polyphosphate. Polym Test. https://doi.org/ 10.1016/j.polymertesting.2022.107765
- 109. Yang X, Jiang S, Zhang Z, Li B, Xu M (2023) The preparation of ZIF-67 and its synergistic effect on fire performance of intumescent flame retardant polypropylene. J Therm Anal Calorim 148:9547–9560. https://doi.org/10.1007/s10973-023-12316-9

- 110. Hou Y, Hu W, Gui Z, Hu Y (2017) Preparation of metal-organic frameworks and their application as flame retardants for polystyrene. Ind Eng Chem Res 56:2036–2045. https://doi.org/10.1021/ acs.iecr.6b04920
- 111. Hou Y, Hu W, Zhou X, Gui Z, Hu Y (2017) Vertically aligned nickel 2-methylimidazole metal-organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene. Ind Eng Chem Res 56:8778–8786. https://doi.org/10.1021/acs. jecr 7b01906
- 112. Jin X, Wu X, Liu Q, Sun S, Cui S, Zhang S, Chen C (2023) Preparation of a novel Fe-MOF as the flame retardant synergist and its application in polystyrene. Polym Adv Technol. https:// doi.org/10.1002/pat.6221
- 113. Yuan B, Wu S, Zhao H, Niu Y, Gao Z, Zhu Y, Kong Y, Jin H, Wang P (2024) Controlled release of phosphorus-containing free radical from the porous channels of metal-organic frame to reduce the combustion heat and smoke releases of polystyrene. J Therm Anal Calorim 149:8027–8039. https://doi.org/10.1007/ s10973-024-13244-y
- 114. Liu H, Deng L, Zhao Z, Sun X, Zhou R, Shu C-M, Jiang J (2024) Effects of iron-based metal-organic framework-MIL-53(Fe) and phosphorus-based flame retardants on the flame retardancy of high-density polyethylene. J Therm Anal Calorim 149:4505-4516. https://doi.org/10.1007/s10973-024-13062-2
- 115. Ma T, Gu W, Wang Y, Wang W, Wang R (2022) Thermal degradation and flame retardancy prediction of Fe, Al, and Cu-based metal-organic framework and polyethylene terephthalate nanocomposites using DFT calculation. Polymer. https://doi.org/10. 1016/i.polymer.2022.125496
- 116. Ma T, Wang W, Wang R (2023) Thermal degradation and carbonization mechanism of Fe-based metal-organic frameworks onto flame-retardant polyethylene terephthalate. Polymers. https://doi. org/10.3390/polym15010224
- 117. Li A, Xu W, Chen R, Liu Y, Li W (2018) Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos Part A Appl Sci Manuf 112:558–571. https://doi.org/10.1016/j.compositesa. 2018.07.001
- 118. Lv X, Zeng W, Yang Z, Yang Y, Wang Y, Lei Z, Liu J, Chen D (2020) Fabrication of ZIF-8@polyphosphazene core-shell structure and its efficient synergism with ammonium polyphosphate in flame-retarding epoxy resin. Polym Adv Technol 31:997–1006. https://doi.org/10.1002/pat.4834
- 119. Xu W, Wang X, Wu Y, Li W, Chen C (2019) Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J Hazard Mater 363:138–151. https://doi.org/10.1016/j.jhazmat.2018.09.
- 120. Cheng J, Ma D, Li S, Qu W, Wang D (2020) Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams. Polymers. https://doi.org/10.3390/polym12020347
- 121. Hou Y, Xu Z, Yuan Y, Liu L, Ma S, Wang W, Hu Y, Hu W, Gui Z (2019) Nanosized bimetal-organic frameworks as robust coating for multi-functional flexible polyurethane foam: rapid oil-absorption and excellent fire safety. Compos Sci Technol 177:66–72. https://doi.org/10.1016/j.compscitech.2019.04.018
- 122. Tu B, Zhou K, Zhou Q, Gong K, Hu D (2021) Waste to resource: preparation of an efficient adsorbent and its sustainable utilization in flame retardant polyurethane composites. RSC Adv 11:9942-9954. https://doi.org/10.1039/d0ra10873a
- 123. Xu B, Xu W, Liu Y, Chen R, Li W, Wu Y, Yang Z (2018) Surface modification of α-zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer. Polym Adv Technol 29:2816-2826. https:// doi.org/10.1002/pat.4404

- 124. Bi X, Song K, Li Q, Lin T, Pan Y-T, Wang W, He J, Yang R (2024) Restriction of Ce-MOF growth within ZSM zeolite for robust three-proofing thermoplastic polyurethane. J Mater Chem A 12:32030-32044. https://doi.org/10.1039/D4TA05441E
- 125. Song K, Li Q, Yuan Y, Hu S, Liu J, Zhang Y, Pan Y-T, Zhao W, He J (2022) Hollow nanospheres of red phosphorus for fireproof flexible sensors fabricated via 3D printing. ACS Appl Nano Mater 5:18080-18092. https://doi.org/10.1021/acsanm.2c04019
- 126. Yan H-O, Jiang J-W, Zhu T, Guo Z-H, Ran S-Y, Li J, Sai T, Fang Z-P (2024) Hybridization of the zinc-based organic framework with diphenylfenosundinyl chloride and its combination with hexaphenoxycyclotriphosphazene for flame retardancy of epoxy resin. ACS Appl Polym Mater 6:4256-4266. https://doi.org/10. 1021/acsapm.4c00351
- 127. Xue M, Qin R, Peng C, Xia L, Xu Y, Luo W, Chen G, Zeng B, Liu X, Dai L (2024) O-vanillin based MOFs as phosphorus-free flame retardant for reinforced epoxy resin. Compos Commun. https://doi.org/10.1016/j.coco.2024.101821
- 128. Li Q, Han Z, Song X, Pan YT, Geng Z, Vahabi H, Realinho V, Yang R (2024) Enhancing char formation of flame retardant epoxy composites: Onigiri-like ZIF-67 modification with carboxymethyl β-cyclodextrin crosslinking. Carbohydr Polym 333:121980. https://doi.org/10.1016/j.carbpol.2024.121980
- 129. Li F, Huang Z, Liu C, Yang M, Wu J, Rao W, Yu C (2024) A novel P/N/Si/Zn-containing hybrid flame retardant for enhancing flame retardancy and smoke suppression of epoxy resins. RSC Adv 14:8204-8213. https://doi.org/10.1039/d4ra00166d
- 130. Du J, Fan X, Xin F, Chen Y, Feng K, Hu J (2024) Novel coating flame retardant APP@UiO for preparation of flame retardant unsaturated polyester resin composites. Eur Polym J. https://doi. org/10.1016/j.eurpolymj.2024.112820
- 131. Hou B, Zhang W, Lu H, Song K, Geng Z, Ye X, Pan Y-T, Zhang W, Yang R (2022) Multielement flame-retardant system constructed with metal POSS-organic frameworks for epoxy resin. ACS Appl Mater Interfaces 14:49326–49337. https://doi.org/10. 1021/acsami.2c14740
- 132. Shi C, Wan M, Qian X, Che H, Li J (2024) Synthesis of APP@ MOFs integrated hybrids flame retardants for reducing flammability of thermoplastic polyurethanes. J Therm Anal Calorim 149:2777–2787. https://doi.org/10.1007/s10973-024-12881-7
- 133. Geng Y, Zhao Z, Li R, Liu X, Li G, Wan M, Liu L, Chen X, Jiao C (2024) Facile-controllable synthesis of 3D cross-shaped ZIF-67 to achieve highly efficient flame retardancy and smoke suppression for TPU composites. Polym Degrad Stab. https://doi. org/10.1016/j.polymdegradstab.2024.110845
- 134. Wu W, Huang W, Tong Y, Huang J, Wu J, Cao X, Zhang Q, Yu B, Li RKY (2023) Self-assembled double core-shell structured zeolitic imidazole framework-8 as an effective flame retardant and smoke suppression agent for thermoplastic polyurethane. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.155540
- 135. Wan M, Shi C, Qian X, Qin Y, Jing J, Che H, Ren F, Li J, Yu B, Zhou K (2023) Design of novel double-layer coated ammonium polyphosphate and its application in flame retardant thermoplastic polyurethanes. Chem Eng J. https://doi.org/10.1016/j. cej.2023.141448
- 136. Song K, Bi X, Yu C, Pan YT, Xiao P, Wang J, Song JI, He J, Yang R (2024) Structure of metal-organic frameworks ecomodulated by acid-base balance toward biobased flame retardant in polyurea composites. ACS Appl Mater Interfaces 16:15227-15241. https://doi.org/10.1021/acsami.4c02187
- 137. Song K, Bi X, Yu C, Pan YT, Vahabi H, Realinho V, He J, Yang R (2024) A gas-steamed route to mesoporous open metal-organic framework cages enhancing flame retardancy and smoke suppression of polyurea. ACS Appl Mater Interfaces 16:7617–7630. https://doi.org/10.1021/acsami.3c17625

- 138. Song K, Bi X, Wang D, Pan Y-T, Xie M, He J, Wang D-Y, Yang R (2024) Porous liquids assisted in-situ generated Co-LDH@ MOF heterostructure with abundant defects for flame retardant and mechanical enhancement in polyurea composites. Chem Eng J. https://doi.org/10.1016/j.cej.2024.153850
- 139. Lin J, Hou Y, Ding L, Wang Y, Hu J, Dong P, Wang Q, Ma M (2024) Synthesis of FePP@MoS2@Ni-MOF composites for improving thermal and flame retardant safety properties of polyurea. J Appl Polym Sci. https://doi.org/10.1002/app.55295
- 140. Bi X, Zhang Z, Song K, Zhang X, Pan Y-T, Qu H, Vahabi H, He J, Yang R (2024) Packaging of ZIF-8 into diatomite sealed by ionic liquid and its application in flame retardant polyurea composites. Compos Part A Appl Sci Manuf. https://doi.org/ 10.1016/j.compositesa.2024.108283
- 141. Bi X, Song K, Zhang H, Pan Y-T, He J, Wang D-Y, Yang R (2024) Dimensional change of red phosphorus into nanosheets by metal–organic frameworks with enhanced dispersion in flame retardant polyurea composites. Chem Eng J. https://doi.org/10.1016/j.cej.2024.148997
- 142. Bi X, Song K, Pan YT, Barreneche C, Vahabi H, He J, Yang R (2024) Hollow superstructure in situ assembled by single-layer janus nanospheres toward electromagnetic shielding flame-retardant polyurea composites. Small 20:e2307492. https://doi.org/10.1002/smll.202307492
- 143. Song K, Hou B, Ur Rehman Z, Pan Y-T, He J, Wang D-Y, Yang R (2022) "Sloughing" of metal-organic framework retaining nanodots via step-by-step carving and its flame-retardant effect in epoxy resin. Chem Eng J 448:137666. https://doi.org/10.1016/j.cej.2022.137666
- 144. Huang G, Pan Y-T, Liu L, Song P, Yang R (2025) Metalorganic frameworks and their derivatives for sustainable flameretardant polymeric materials. Advanced Nanocomposites 2:1–14. https://doi.org/10.1016/j.adna.2024.10.001
- 145. Shi C, Wan M, Hou Z, Qian X, Che H, Qin Y, Jing J, Li J, Ren F, Yu B, Hong N (2022) Co-MOF@MXene hybrids flame retardants for enhancing the fire safety of thermoplastic polyurethanes. Polym Degrad Stabil. https://doi.org/10.1016/j.polym degradstab.2022.110119
- 146. Xu W, Cheng C, Qin Z, Zhong D, Cheng Z, Zhang Q (2020) Improvement of thermoplastic polyurethane's flame retardancy and thermal conductivity by leaf-shaped cobalt-zeolitic imidazolate framework–modified graphene and intumescent flame retardant. Polym Adv Technol 32:228–240. https://doi.org/10. 1002/pat.5078
- 147. Song K, Bi X, Yu C, Pan Y-T, Vahabi H, Realinho V, He J, Yang R (2024) A gas-steamed route to mesoporous open metal-organic framework cages enhancing flame retardancy and smoke suppression of polyurea. ACS Appl Mater Interfaces 16:7617–7630. https://doi.org/10.1021/acsami.3c17625
- 148. Song K, Pan Y-T, He J, Yang R (2024) Coordination bond cleavage of metal-organic frameworks and application to flame-retardant polymeric materials. Industrial Chemistry & Materials. https://doi.org/10.1039/d3im00110e
- 149. Unnikrishnan V, Zabihi O, Li Q, Ahmadi M, Ferdowsi MRG, Kannangara T, Blanchard P, Kiziltas A, Joseph P, Naebe M (2022) Multifunctional PA6 composites using waste glass fiber and green metal organic framework/graphene hybrids. Polym Compos 43:5877–5893. https://doi.org/10.1002/pc.27002
- 150. Zhang Z, Li X, Yuan Y, Pan Y-T, Wang D-Y, Yang R (2019) Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl Mater Interfaces 11:40951–40960. https://doi.org/10.1021/acsami. 9b15393
- 151. Yu X, Sun P, Jia P, Wang W, Dai K, Wang B, Song L (2025) Unlocking epoxy thermal management capability via hierarchical

- Ce-MOF@MoS2 hybrid constructed by in-situ growth method. J Colloid Interface Sci 678:959–967. https://doi.org/10.1016/j.icis.2024.09.176
- 152. Cao J, Chen S, Han Z, Pan Y-T, Lin Y, Wang W, Yang R (2024) Covalent metal—organic porous polymer on ZIF-67 realize anti-UV and highly stressed flame retardant epoxy composites. Chem Eng J 501:157758. https://doi.org/10.1016/j.cej.2024.157758
- 153. Jin X, Zhang J, Zhu Y, Zhang A, Wang R, Cui M, Wang DY, Zhang X (2023) Highly efficient metal-organic framework based intumescent poly(L-lactic acid) towards fire safety, ignition delay and UV resistance. Int J Biol Macromol 250:126127. https://doi.org/10.1016/j.ijbiomac.2023.126127
- 154. Majidi R, Keramatinia M, Ramezanzadeh B, Ramezanzadeh M (2023) Weathering resistance (UV-shielding) improvement of a polyurethane automotive clear-coating applying metal-organic framework (MOF) modified GO nano-flakes (GO-ZIF-7). Polym Degrad Stab 207:110211. https://doi.org/10.1016/j.polymdegra dstab.2022.110211
- 155. Li X, Liu H, Meng S, Wang L (2025) Three birds with one stone: ZIF-8@g-C3N4 nanosheets simultaneously enhance barrier property, active protection and UV aging resistance of epoxy coatings. Sep Purif Technol 355:129722. https://doi.org/10. 1016/j.seppur.2024.129722
- 156. Bagherzadeh M, Nikkhoo M, Ahadian MM, Bayrami A, Amini M (2023) Polyethersulfone/polyamide thin-film nanocomposite membrane decorated by WS2-Cys-UiO-66-(CO2H)2 nanocomposites for forward osmosis. J Environ Chem Eng 11:109959. https://doi.org/10.1016/j.jece.2023.109959
- 157. Mahmoud ME, Ibrahim GAA (2023) Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@ TiO2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol 253:126489. https://doi.org/10.1016/j.ijbiomac.2023.126489
- 158. Chen B, Chen L, Zu L, Feng Y, Su Q, Zhang C, Yang J (2022) Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries. Adv Mater 34:e2200894. https://doi.org/ 10.1002/adma.202200894
- 159. Du W, Liu J, Zeb A, Lin X (2022) Regulating the electronic configuration of spinel zinc manganate derived from metal-organic frameworks: controlled synthesis and application in anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 14:37652–37666. https://doi.org/10.1021/acsami.2c06897
- 160. Jiao H, Wang C, Zhang ZY, Song YF, Feng BQ, Na P, Wang ZL (2023) Ultrafine NiFe-based (oxy)hydroxide nanosheet arrays with rich edge planes and superhydrophilic-superaerophobic characteristics for oxygen evolution reaction. Small. https://doi.org/10.1002/smll.202301609
- Pang Y, Yang Z, Yang Y, Ren TL (2019) Wearable electronics based on 2D materials for human physiological information detection. Small. https://doi.org/10.1002/smll.201901124
- 162. Jia HX, Duan YP, Wang M, Chen W, Dou CX, Di JR (2023) 1D CNTs assembled MOF-derived hollow CoSe2@N-doped carbon constructed high-efficiency electromagnetic wave absorbers. Carbon. https://doi.org/10.1016/j.carbon.2023.118400
- Yao Q, Li S, Ban J, Yang B, Xu T, Ren H, Huang Y (2024) Functionalized Zr-MOFs for enhancing flame retardancy and smoke suppression performance on TPU. ChemistrySelect. https://doi.org/10.1002/slct.202401227
- 164. Venna SR, Lartey M, Li T, Spore A, Kumar S, Nulwala HB, Luebke DR, Rosi NL, Albenze E (2015) Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J Mater Chem A 3:5014–5022. https:// doi.org/10.1039/C4TA05225K
- 165. Song K, Bi X, Yu C, Pan Y-T, Xiao P, Wang J, Song J-I, He J, Yang R (2024) Structure of metal-organic frameworks

- eco-modulated by acid-base balance toward biobased flame retardant in polyurea composites. ACS Appl Mater Interfaces 16:15227–15241. https://doi.org/10.1021/acsami.4c02187
- 166. Wang H, Wang Y, Li T, Yu C, Lin P, Liu J, Lan Y, Pan Y-T Nature-inspired, heat & noise-insulation, highly robust MOFsbased hybrid fire-retardant coatings with easy-recycling feature. Advanced Functional Materials n/a: 2500800. https://doi.org/10. 1002/adfm.202500800
- 167. Han J, Zhang H, Fan Y, Zhou L, Zhang Z, Li P, Li Z, Du Y, Meng Q (2024) Progressive insights into metal-organic frameworks and metal-organic framework-membrane composite systems for wastewater management. Molecules. https://doi.org/10.3390/molecules29071615
- Pobłocki K, Drzeżdżon J, Gawdzik B, Jacewicz D (2022) Latest trends in the large-scale production of MOFs in accordance with the principles of green chemistry. Green Chem 24:9402–9427. https://doi.org/10.1039/d2gc03264c

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Miss Rongjun Ma is currently a graduate student at the Beijing Institute of Technology. She has been working in Professor Ye-Tang Pan's group since 2024. Her interests mainly involve the design and preparation of functional MOF-based flame retardants.

Prof. Ye-Tang Pan received his Ph.D. degree from Polytechnic University of Madrid in 2018. Then, he joined the National Engineering Research Center of Flame Retardant Materials, Beijing Institute of Technology, as an Assistant Professor and was promoted to an Associate Professor in 2022. His research interests comprise the controllable preparation of nanomaterials, the design and synthesis of new flame retardants, and multifunctional flame-retardant polymer nanocomposites.

Mr. Congling Shi received his Ph.D. from the University of Science and Technology of China. He is a professor-level senior engineer, vice president of the China Academy of Safety Science and Technology, and deputy director of the Beijing Key Laboratory of Subway Fire and Passenger Evacuation Safety. He is mainly engaged in the research and development of theories, technologies, equipment and materials related to subway and underground space engineering safety, traffic safety and fire safety. received his Ph.D. from the University of Science and Technology of China. He is a professor-level senior engineer, vice president of the China Academy of Safety Science and Technology, and deputy director of the Beijing Key Laboratory of Subway Fire and Passenger Evacuation Safety. He is mainly engaged in the research and development of theories, technologies, equipment and materials related to subway and underground space engineering safety, traffic safety and fire safety.

