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Multi‑step ahead forecasting 
of electrical conductivity in rivers 
by using a hybrid Convolutional 
Neural Network‑Long Short‑Term 
Memory (CNN‑LSTM) model 
enhanced by Boruta‑XGBoost 
feature selection algorithm
Masoud Karbasi 2*, Mumtaz Ali 3, Sayed M. Bateni 4, Changhyun Jun 5, Mehdi Jamei 6,9, 
Aitazaz Ahsan Farooque 1,7 & Zaher Mundher Yaseen 8

Electrical conductivity (EC) is widely recognized as one of the most essential water quality metrics for 
predicting salinity and mineralization. In the current research, the EC of two Australian rivers (Albert 
River and Barratta Creek) was forecasted for up to 10 days using a novel deep learning algorithm 
(Convolutional Neural Network combined with Long Short‑Term Memory Model, CNN‑LSTM). The 
Boruta‑XGBoost feature selection method was used to determine the significant inputs (time series 
lagged data) to the model. To compare the performance of Boruta‑XGB‑CNN‑LSTM models, three 
machine learning approaches—multi‑layer perceptron neural network (MLP), K‑nearest neighbour 
(KNN), and extreme gradient boosting (XGBoost) were used. Different statistical metrics, such as 
correlation coefficient (R), root mean square error (RMSE), and mean absolute percentage error, were 
used to assess the models’ performance. From 10 years of data in both rivers, 7 years (2012–2018) 
were used as a training set, and 3 years (2019–2021) were used for testing the models. Application of 
the Boruta‑XGB‑CNN‑LSTM model in forecasting one day ahead of EC showed that in both stations, 
Boruta‑XGB‑CNN‑LSTM can forecast the EC parameter better than other machine learning models 
for the test dataset (R = 0.9429, RMSE = 45.6896, MAPE = 5.9749 for Albert River, and R = 0.9215, 
RMSE = 43.8315, MAPE = 7.6029 for Barratta Creek). Considering the better performance of the 
Boruta‑XGB‑CNN‑LSTM model in both rivers, this model was used to forecast 3–10 days ahead of EC. 
The results showed that the Boruta‑XGB‑CNN‑LSTM model is very capable of forecasting the EC for 
the next 10 days. The results showed that by increasing the forecasting horizon from 3 to 10 days, the 
performance of the Boruta‑XGB‑CNN‑LSTM model slightly decreased. The results of this study show 
that the Boruta‑XGB‑CNN‑LSTM model can be used as a good soft computing method for accurately 
predicting how the EC will change in rivers.
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Rivers, as a notable source of freshwater, represent a valuable natural resource. However, the water quality and 
quantity have deteriorated owing to the dynamic nature of river bodies and human  activities1,2. The electrical 
conductivity (EC), which is a measure of water’s capacity to conduct electrical current, is a key indicator for 
assessing and identifying compositional  changes3. A high concentration of dissolved solids typically translates 
to high EC  values4. Hence, the EC can be used to identify high salinity levels in irrigation and drinking water 
when classifying the surface water quality (WQ). The WQ is typically classified based on the sodium content 
and  EC5. For seawater and freshwater, the EC is up to 50,000 μS/cm and 0–1500 μS/cm, respectively. The Wilcox 
EC-based categorization for irrigation water classifies water with EC levels of 0–750 μS/cm as fine, 750–2000 μS/
cm as allowable, and > 2000 μS/cm as unacceptable. EC levels higher than 10,000 S/cm are not acceptable for 
either human consumption or agricultural usage. According to the World Health Organization (WHO, 1993), 
the recommended maximum EC for drinking water is 1400 µS/cm. The WQ classification scheme presented  by6 
is frequently used. In general, the WQ parameters are highly nonlinear, complex, and nonstationary owing to 
various interconnections with point and nonpoint contamination  sources7,8 (Fig. 1A). Therefore, the WQ must 
be accurately predicted, detected, and quantified to ensure the sustainable use and effective management of water 
 resources9. In fact, ensuring access to safe water, sanitation, and hygiene (Fig. 1B,10 is one of the 17 sustainable 
development goals for  203011. Given the significance of this goal, environmental engineers must formulate 
scientific and practical strategies to accomplish the relevant tasks.

Although several approaches have been proposed to quantify WQ over the past three  decades12,13, it remains 
challenging to develop a reliable expert prediction system and quantify the WQ using mathematical  models14,15. 
The conventional methods for WQ modeling, such as multilinear regression, are linear models that only partially 
capture nonstationarities and nonlinearities in the environmental dataset because they presume the stationarity 
of   data9,16. Furthermore, the classical machine learning (ML) models typically require considerable data, 
frequent parameter adjustments, and significant reaction  time17,18. Therefore, such methods are not suitable 
for WQ prediction or quantification. To address these problems, several ML models for modeling surface WQ 
parameters have been developed, which do not necessitate complicated algorithms and  theory19–21, such as kernel 
models, fuzzy set logic, neural network models, ensemble models, hybrid ML models, decision tree models, and 
integrative ML data pre-processing models.

ML model development involves several steps, such as data pre-processing, internal parameter tuning, and 
input feature optimization, and several advancements have been made in the relevant  domains9,22–24. Notably, 
the focus of this study is deep learning (DL) models, as a recently developed subset of ML  models25,26, and their 
integration with feature input optimization  algorithms27 to establish a hybrid ML model for river EC prediction. 
In general, hybrid models can be implemented at either the optimization or prediction stages, depending on their 
intended use. Hybrid models integrate different optimization strategies and methodologies, thereby resulting in 
superior modeling accuracies than those achieved using single models. Researchers have highlighted that the 
key challenge in WQ prediction is the dominant linear-correlation-pattern-based feature extraction. Nonlinear 
input features affect the prediction capability for nonlinear and nonstationary problems. Considering these 
aspects, the primary objective of this study is to evaluate the possibility of Boruta feature selection using the XGB 
technique for identifying the most sensitive related attributes of the target (i.e., EC) variables. A valuable tool 
for assessing variations in time series, feature selection frameworks can be integrated as a preliminary step in 
prediction based on ML models to clarify the key features for learning the prediction matrix and provide useful 
information regarding the physical form of the predictand–predictor relationship.

Previous water quality modeling efforts using conventional statistical and machine learning methods 
have shown limitations in fully capturing parameters’ nonlinear and nonstationary behavior over time. These 
approaches also require large datasets and frequent tuning, making them unsuitable for real-time predictive 
needs. There is a need to develop data-driven techniques that can reliably forecast water quality variables several 
days into the future to support informed decision-making across various sectors reliant on river resources. 
Accurate multi-step predictions are crucial for optimal water resource planning and management. This study aims 
to address existing gaps by developing a hybrid machine learning framework integrating Boruta-XGBoost feature 
selection with a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model. This ensemble 
methodology leverages the strengths of optimization algorithms and deep sequence learning architectures for 
water quality modeling.

The objectives of this study can be summarized as follows: (1) Forecast the EC using four ML approaches: 
convolutional neural network combined with long short-term memory model CNN-LSTM, multi-layer 
perceptron neural network (MLP), K-nearest neighbor (KNN), and extreme gradient boosting (XGBoost). (2) 
Optimize the input data using a novel feature selection technique (Boruta combined with XGBoost algorithm). 
(3) Compare the performances of different models using various statistical metrics and graphical approaches 
such as scatter plots and Taylor diagrams. (4) Forecast multi-step ahead EC using the model with the best 
statistical metrics.

Material and methods
Study area
Albert River
The Albert River is a perennial river located in Queensland in southeast Australia. With a catchment area of 782 
square kilometers, this river is located within the Gold Coast and Scenic Rim Region local government regions. 
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The EC data of Albert River were collected from Bromfleet station (145102B), located at − 27.91 °S and 153.11 °E 
(http:// www. bom. gov. au/ water data/).

Barratta Creek
Barratta Creek is located in North Queensland, Australia. The source is located beneath Bunkers Hill in the 
Leichhardt Range of the Great Dividing Range, and the creek runs north-eastward. The stream continues through 
largely uninhabited land beyond Woodhouse Mountain, flows virtually parallel to the Haughton River, crosses 

Figure 1.  (A) Point and nonpoint sources of river water contamination. (B) Expectations of sanitation, hygiene, 
and clean water in 2030.

http://www.bom.gov.au/waterdata/
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the Bruce Highway, enters Bowling Green Bay Conservation Park, and empties into Bowling Green Bay at Jerona 
before joining the Coral Sea. Along its 109-km length, the river drops 224 m. The EC data of Barratta Creek 
were collected from Barratta Creek at Northcote (119101A) located at − 19.69 °S and 147.17 °E (http:// www. 
bom. gov. au/ water data/).

Figure 2 shows the locations of stations at which the EC data were collected.
Table 1 summarizes the descriptive statistics of the EC data for both stations. The average observed EC values 

were 459 and 380 for Albert River and Barratta Creek, respectively. According to the coefficient of variation (C.V) 
values, the variation in the EC in Albert River (C.V = 34.8%) was larger than that in Barratta Creek (C.V = 31.1%). 
Figure 3 shows the time series and frequency distribution of the EC values in both stations.

Figure 2.  Locations of stations at which the EC was measured (The map was generated using ArcGIS software, 
version 10.8: https:// suppo rt. esri. com/ zh- cn/ produ cts/ deskt op/ arcgis- deskt op/ arcmap/ 10-8-1), Australia shape 
file is from (https:// www. abs. gov. au) and maps of River stations are from (http:// www. bom. gov. au/ water data/).

http://www.bom.gov.au/waterdata/
http://www.bom.gov.au/waterdata/
https://support.esri.com/zh-cn/products/desktop/arcgis-desktop/arcmap/10-8-1
https://www.abs.gov.au
http://www.bom.gov.au/waterdata/
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Boruta‑XGBoost feature selection
The Boruta technique is a random forest algorithm wrapper named after the forest god from Slavic  mythology28 
that computes the Z-scores of each predictor’s input for the shadow attribute. The major predictor variables 
are established by the distribution of Z-score  metrics29. In this study, instead of a random forest, the XGBoost 
ensemble algorithm was used to calculate the Z-score30. The process flow of the Boruta algorithm can be 
summarized as follows:

1. Random shadow characteristics are created. All data characteristics are shuffled at random, and their 
numerical order is altered.

2. The XGBoost technique calculates the relevance, expressed by the Z-score, of both the shadow characteristics 
and original features.

3. The essential characteristics are selected. An original feature with a Z-score greater than the largest Z-score in the 
set of shadow features is designated as “important”. An original feature with a Z-score considerably lower than that 
of the shadow features is tagged as “not important” and deleted permanently from the feature set.

4. Steps 1–3 are continued until the significance of all qualities has been marked or the set number of iterations 
is reached.

5. Details can be found in the work  of31.

Table 1.  Descriptive statistics of EC values in the stations of interest (2012–2021).

Metric Albert River Barratta Creek

Number of datapoints 3653 3653

Minimum 151 69

Maximum 924 726

Mean 459 380

Median 439 367

Standard deviation 160 118

Coefficient of variation (%) 34.8 31.1

Q1 345 299

Q2 439 367

Q3 563 453

Skewness 0.527 0.314

Kurtosis − 0.141 0.087
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Figure 3.  Time series and frequency distributions of EC data for (a) Albert River and (b) Barratta Creek.
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MLP
MLP, as an architecture of artificial neural networks (ANNs) has been widely employed in various  disciplines32–35. 
Similar to other ANN architectures, the MLP receives input signals and processes them before they are 
transmitted to the other neurons in the hidden layer(s). At least one hidden layer exists in the MLP structure. 
During the training phase, the neurons in each layer are linked to the neurons in the adjacent layer through a 
weight. Sigmoid and linear activation functions are typically used in the hidden and output layers to examine 
the input data  characteristics36. The MLP can be expressed mathematically as follows:

where q is the number of hidden neurons, xp(k) is the input signal, Sq(k) is the output of the q th hidden neuron, 
and f  is the tangent hyperbolic function. The activation function of the output neuron is linear (purelin). Two 
sets of weights must be updated: those of the input to hidden layer(s), denoted by vector WI(k) ), and those of 
the hidden to output layers, denoted by vector WO(k) . This study adopts MLP networks using a backpropagation 
algorithm, which can be considered the most prevalent and popular networks. Backpropagation is a supervised 
learning method that has been used in several prediction  tasks37,38. In this study, the Levenberg–Marquardt 
technique, as a backpropagation algorithm, was used to train the MLP network.

XGBoost
XGBoost is an improved variant of the gradient boosting  tree39. Based on the classification and regression 
tree theory, XGBoost is a successful solution for regression and classification  tasks40–43. The XGBoost method 
approximates an objective function (showing the goodness-of-fit) using the quadratic Taylor expansion, enabling 
more rapid  calculations44. The core of the algorithm is to optimize the value of the objective function, which 
typically has two components (training loss and regularization):

where L is the loss function of training, and � is the regularization term. The training loss is used to evaluate 
the performance of the model on training data. The regularization term seeks to limit the model complexity, 
such as  overfitting45. The complexity can be defined in several ways, with the following expression commonly 
used for each tree:

where T is the number of leaves, and ω represents the vector of leaf scores. The structural score is the following 
objective function:

where ωj are distinct values. The quadratic form Gjωj +
1
2

(

Hj + �
)

ω2
j  is the optimal ωj for a given structure q(x) . 

Figure 4 illustrates the structure of the XGBoost model.

KNN
KNN, developed  by46, is a well-known ML method for addressing regression and classification problems. 
The technique includes a variable parameter, k, which represents the number of nearest neighbors. The KNN 
algorithm operates by locating the data point(s) or neighbors from a training dataset that are the closest to a 
query point. After selecting the k closest data points, a majority voting rule is applied to determine which class 
is the most prevalent. The most frequent category is determined to be the final classification for the query. The 
KNN for regression involves four steps:

1. Determine the distance between the query sample and labeled samples.

where N is the number of input features; xtr,n and xt,n are the nth feature values of the training ( xtr ) and testing 
( xt ) points, respectively; and wn is the weight of the n th feature that ranges between 0 and 1.

2. Arrange the labeled instances in ascending order of the distance.
3. Define the ideal number of neighbors based on the root mean squared error (RMSE), e.g., through cross-

validation.
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CNN‑LSTM
In this study, modern DL techniques are used to develop a prediction model for forecasting the EC in rivers. 
The CNN-LSTM framework contains two key components: (1) convolutional and pooling layers that perform 
complicated mathematical operations to produce input data features, (2) LSTM and dense layers that process 
the obtained  features47.

CNN layer
The one-dimensional CNN (1D-CNN) is a deep feedforward neural network with local connections and weight 
sharing  properties48. CNNs can automatically extract high-level dependence characteristics from input data. 
The learning performance and training duration of the model are determined by its structure, particularly the 
number of layers. A shallow structure may have inadequate performance, whereas an excessively deep CNN may 
deteriorate the temporal sequential element of the data or be vulnerable to  overfitting49.

Typically, the CNN network architecture has convolutional and max-pooling  layers50. The CNN filter slides 
along the time axis, and its input is a three-dimensional tensor. The number of CNN convolution kernels 
is typically determined by the complexity of the objective. A batch normalization layer is added after the 
convolution layer to enhance the model  performance51. Overall, CNNs consist of several layers such as the input 

Dataset X

Tree 1{X,θ1} Tree 2{X,θ2} Tree m{X,θm}

f1(X, θ1) f2(X, θ2) fm(X, θm)

Residual
Residual

Residual

Node Splitting using 

objective function

fm-1(X, θm-1)

••••• 

••••• 

Σ fm(X, θm)

Figure 4.  Structure of the XGBoost model.

Figure 5.  Structure of the CNN deep learning approach.
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layer, convolutional layers, nonlinear activation layer, pooling layers, dropout layer, batch normalization layer, one 
or more completely connected layers, and loss activation layer. Figure 5 shows the structure of the CNN model.

LSTM layer
The LSTM is a version of the recurrent neural network: memory blocks composed of memory cells connected by 
layers, unlike the neurons in ANNs. The approach was proposed  by52 and improved  by53 to address the gradient 
disappearance problem. Each LSTM unit consists of a memory cell and three primary gates: input, output, and 
forget  gates54. By determining the information to be forgotten and remembered, the LSTM generates a regulated 
information flow and learns long-term dependencies. Specifically, the input gate it and a second gate c∗t  control 
the new information stored in the memory state ct at time t. The forget gate ft regulates the previous information 
that must be erased or retained on the memory cell at time t−1 , whereas the output gate ot determines which 
information may be used to generate the output of the memory cell. Equations (6–10) represent the processes 
performed by an LSTM  unit55:

xt represents the input, W∗ and U∗ are weight matrices, b∗ represent the bias term vectors, σ is the sigmoid 
function, and ⊙ represents component-wise multiplication. The output of the memory cell, which is the hidden 
state  ht, is computed as

Figure 6 shows the structure of the LSTM cell and CNN-LSTM model that is used to forecast the EC values 
in rivers.

Model development
A novel hybrid expert system composed of Boruta-XGBoost as the feature extractor and the CNN-LSTM model 
was developed to forecast the EC in rivers. Boruta-XGBoost, which is a tree-based feature selection method was 
used because classical statistical methods such as cross-correlation may introduce lagged time input components 
with errors owing to the assumption of linearity. Moreover, three other ML models: MLP, XGBoost, and KNN 
were coupled with the Boruta-XGBoost to validate the main hybrid framework for forecasting the daily EC 
values in 1-, 3-, 5-, 7-, and 10-month-ahead scenarios for the Barratta Creek and Albert River over the period 
of 2012 to 2021.

All the schemes were implemented in Python 3.60, based on the Keras, Scikit-learn, XGBoost, and Boruta-
SHAP libraries. Figure 9 shows the process flow of the multi-step forecasting of the EC parameters. As discussed, 
the Boruta-XGBoost feature selection technique specifies an importance factor for each predictor, i.e., the 
Z-score56. If the Z-score is greater than the max-shadow (a benchmark criterion), the considered predictor is 
input to the ML models, and the predictors with Z-scores lower than the criterion are  ignored57. Input pools 
including 20 lags of EC signals associated with both study areas in four horizons (i.e., 1-day, 3-day, 5-day, 7-day, 
and 10-day ahead) were assessed using the Boruta-XGBoost approach. Figures 7 and 8 show the results of the 
Boruta-XGBoost feature selection for the Albert River and Barratta Creek River, respectively. The green predictors 
are the significant components that pass the max-shadow condition, the red predictors are the rejected entities, 
and the yellow predictors are tentative entities. Table 2 lists the optimal lagged-time components to be fed to the 
ML models in the four horizons for each river.

It is necessary to use an appropriate strategy for splitting the time-series dataset for forecasting. Generally, 
approximately 60–80% of the dataset is used for training the models, and the rest is used for validation. To this 
end, cross-validation strategies such as k-fold cross-validation58, holdout, and walking-forward59 approaches 
are promising to avoid overfitting. In this study, the holdout strategy was used, with 70% and 30% of the dataset 
used for training and testing, respectively.

Four powerful ML models were used to forecast the daily EC: Boruta-XGB-MLP, Boruta-XGB-XGBoost, 
Boruta-XGB-KNN, and Boruta-XGB-CNN-LSTM (proposed). Notably, the hyperparameters in hybrid models 
must be appropriately tuned to avoid overfitting while obtaining the optimal modeling results. To this end, 
various free-source strategies such as grid search, random search, and Bayesian optimization can be applied 
and implemented in various programming languages such as MATLAB and  Python60,61. In this research, the 
ML model is optimized using the grid search technique. Table 3 summarizes the optimal settings, network 
architecture, and hyperparameters associated with the four ML models. The key hyperparameters of the Boruta-
XGB-CNN-LSTM approach, as the model of interest, were the number of LSTM layers number, number of CNN 
layers, number of neurons, training algorithm, and learning  rate62.

(6)it = σ(Uixt +Wiht−1 + bi)

(7)ft = σ
(

Ugxt +Wght−1 + bg
)

(8)c∗t = tanh(Ucxt +Wcht−1 + bc)

(9)ct = gt ⊙ ct−1 + it ⊙ c∗t

(10)ot = σ(Uoxt +Woht−1 + bo)

(11)ht = ot ⊙ tanh(ct)
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A pre-processing step, classical normalization, was applied to mitigate the negative effects of the data scale: 
All the inputs and targets were limited between zero and one. This operation is typically applied to increase the 
rate of convergence and modeling  accuracy63.

Statistical metrics
Six statistical indices were used evaluate the robustness of the ML models: RMSE, correlation coefficient (R), 
uncertainty with a confidence level of 95% ( U95% ), mean absolute percentage error (MAPE), T-statistic test ( Tstat ), 
and Nash–Sutcliffe model efficiency coefficient (NSE)60,61, expressed as follows:
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Figure 6.  Structures of the (a) LSTM cell and (b) CNN-LSTM model.
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(16)Tstat =

√

(N − 1)MBE2

RMSE2 −MBE2

(17)U95% = 1.96

√

SD2
e + RMSE2

Figure 7.  Boruta-XGBoost feature selection results for Albert River EC forecasting.
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where ECo,i and ECp,i are the measured and forecasted values of EC, respectively; ECo and ECp are the mean 
measured and forecasted values of EC, respectively; MBE is the mean bias error; and N is the length of the time 
series. The best and worst fitting between the measured and forecasted values of the EC occurs correspond to the 
following values: (R = 1, E = 1, MAPE = 0, RMSE = 0, and U95% = 0) and (R = 1, E = −∞ , MAPE = ∞ , RMSE = ∞ , 
and U95% = ∞ ),  respectively64,65.

Figure 8.  Boruta-XGBoost feature selection results for Barratta Creek EC forecasting.
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Results and discussion
The forecasting ability of the Boruta-XGB-CNN-LSTM, Boruta-XGB-MLP, Boruta-XGB-KNN, and Boruta-
XGB-XGBoost models for multi-step ahead EC for the two Australian rivers was evaluated using the evaluation 
metrics (R, RMSE, MAPE, E, Tstat, and  U95%) for the training and testing stages and diagnostic plots.

Table 4 presents the one-step ahead forecasting results of the four models for the Albert River at Bromfleet. The 
Boruta-XGB-CNN-LSTM model outperformed the other models in the training (R = 0.9515, RMSE = 51.2558, 
MAPE = 5.9893, E = 0.9032, Tstat = 7.5962,  U95% = 141.2955) and testing (R = 0.9429, RMSE = 45.6896, 
MAPE = 5.9749, E = 0.8878, Tstat = 3.3426,  U95% = 126.3533) periods in the one-step-ahead EC forecasting for 
the Albert River. Boruta-XGB-XGBoost exhibited the second-best performance, followed by Boruta-XGB-MLP 
and Boruta-XGB-KNN based on the goodness-of-fit metrics.

Figure 10 shows the scatter plots for the Boruta-XGB-CNN-LSTM and comparative models, incorporating 
the upper and lower bounds, in terms of the R and RMSE metrics between the measured and forecasted one-
step-ahead EC (Albert River) in the testing period. The Boruta-XGB-CNN-LSTM model exhibited the highest 
accuracy with R = 0.9429 and RMSE = 45.68, followed by XGBoost (R = 0.9323 and RMSE = 52.444), MLP 
(R = 0.9261 and RMSE = 52.777), and Boruta-XGB-KNN (R = 0.8302 and RMSE = 82.499). Furthermore, the 
forecast generated by the Boruta-XGB-CNN-LSTM model lay within the 25% upper and lower bound thresholds, 
indicating a strong relationship between the forecasted and measured EC.

Figure 11 shows the ridge plots, which indicate the relative deviation percent (RD, %) to assess the one-step-
ahead EC forecasts for the Albert River obtained by the Boruta-XGB-CNN-LSTM and comparative models. In 
addition, the interquartile range (IQR) values are presented. The Boruta-XGB-CNN-LSTM model produced the 
most accurate RD distribution with the lowest IQR = 5.333. The benchmark Boruta-XGB-XGBoost model was 
superior to the Boruta-XGB-MLP and Boruta-XGB-KNN model.

Table 5 presents the one-step ahead forecasting results of the four models for Barratta Creek. The proposed 
Boruta-XGB-CNN-LSTM model was slightly more accurate than the comparative models in the training 
period (R = 0.9316, RMSE = 43.2172, MAPE = 7.6428, E = 0.8673, Tstat = 2.7861,  U95% = 119.7122) and testing 
period (R = 0.9215, RMSE = 43.8315, MAPE = 7.6029, E = 0.8488, Tstat = 1.1701,  U95% = 121.4845). Although the 
performance of the comparative models was satisfactory, it was lower than that of the proposed approach in 
forecasting the one-step ahead EC for Barratta Creek.

Figure 12 shows the scatter plots for the Boruta-XGB-CNN-LSTM and comparative models, incorporating 
the upper and lower bounds, in terms of the R and RMSE metrics between the measured and forecasted one-
step-ahead EC (Barratta Creek). The Boruta-XGB-CNN-LSTM model achieved the highest accuracy (R = 0.9215 
and RMSE = 43.831), and the forecast lay within the 25% range between the upper and lower bound thresholds. 
The models ranking second, third, and fourth in terms of the accuracy were Boruta-XGB-MLP (R = 0.9184 and 
RMSE = 44.717), Boruta-XGB-XGBoost (R = 0.9128 and RMSE = 46.064), and Boruta-XGB-KNN (R = 0.9042 and 
RMSE = 48.315), respectively. Although the 25% upper and lower bounds were reasonable for the comparative 
models, the Boruta-XGB-CNN-LSTM was the best model in this forecasting task.

Figure 13 shows the ridge plots for Barratta Creek to indicate the RD (%) errors and IQR values. Although 
all models exhibit reasonable RD (%) errors, the forecasts based on the Boruta-XGB-CNN-LSTM model are 
slightly more accurate with IQR = 10.30, followed by Boruta-XGB-MLP (IQR = 10.157), Boruta-XGB-KNN 
(IQR = 11.363), and Boruta-XGB-XGBoost (IQR = 11.873). Therefore, the proposed model yields the most 
accurate one-step-ahead EC forecasts for Barratta Creek.

Table 2.  Significant lags for different time steps.

River Forecasting (Steps Ahead) Significant lags

Albert River

1 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-8  ECt-12,  ECt-14,  ECt-15

3 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-9,  ECt-11,  ECt-12,  ECt-13,  ECt-14,  ECt-18

5 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-7,  ECt-8,  ECt-9,  ECt-11,  ECt-12,  ECt-13,  ECt-14,  ECt-18,  ECt-20

7 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-7,  ECt-8,  ECt-9,  ECt-10,  ECt-11,  ECt-12,  ECt-13,  ECt-14,  ECt-17,  ECt-18,  ECt-19,  ECt-20

10 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-7,  ECt-8,  ECt-9,  ECt-10,  ECt-11,  ECt-13,  ECt-14,  ECt-17,  ECt-18,  ECt-19,  ECt-20

Barratta River

1 ECt-1,  ECt-2,  ECt-4

3 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-7,  ECt-8
ECt-10,  ECt-11,  ECt-12,  ECt-13,  ECt-16,  ECt-18,  ECt-19,  ECt-20

5 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-7,  ECt-8,  ECt-9,  ECt-10,  ECt-11,  ECt-12,  ECt-13,  ECt-14,  ECt-15,  ECt-17,  ECt-18,  ECt-19,  ECt-20

7 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-7,  ECt-8,  ECt-9,  ECt-10,  ECt-11,  ECt-12,  ECt-13,  ECt-15,  ECt-16,  ECt-17,  ECt-18,  ECt-19,  ECt-20

10 ECt-1,  ECt-2,  ECt-3,  ECt-4,  ECt-5,  ECt-6,  ECt-8,  ECt-9,  ECt-10,  ECt-11,  ECt-12,  ECt-13,  ECt-14,  ECt-15,  ECt-16,  ECt-17,  ECt-18,  ECt-19,  ECt-20  ECt-19, 
 ECt-20



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15051  | https://doi.org/10.1038/s41598-024-65837-0

www.nature.com/scientificreports/

Figure 14 shows the Taylor diagram of the one-step-ahead EC forecasted by the Boruta-XGB-CNN-LSTM, 
MLP, KNN, and XGBoost models for (A) Albert River and (B) Barratta Creek. The Taylor diagram is a valuable 
tool for comprehensively assessing the model’s comparability against the observed EC using the standard 
deviation and correlation coefficient. For Albert River, the Boruta-XGB-CNN-LSTM (blue solid circle) forecast 
was close to the measured EC, with a correlation coefficient of more than 0.95 and standard deviation ranging 
between 125 and 150. The Boruta-XGB-MLP, Boruta-XGB-KNN, and Boruta-XGB-XGBoost predictions were 
slightly far from the measured EC with a correlation coefficient lower than 0.95 and standard deviation ranging 
between 100 and 150. For Barratta Creek, the Boruta-XGB-CNN-LSTM (red solid circle) model exhibited the 
highest precision with a correlation coefficient of 0.90–0.95, followed by the Boruta-XGB-MLP, Boruta-XGB-
XGBoost, and Boruta-XGB-KNN models. In other words, the Boruta-XGB-CNN-LSTM model was superior in 
forecasting the one-step ahead EC for both Albert River and Barratta Creek.

Multi‑step ahead forecasting
Table 6 presents the metrics for the Boruta-XGB-CNN-LSTM multi-step ahead forecasts (i.e., 3-, 5-, 7-, and 
10-day-ahead) EC for Albert River. The forecasting accuracy in the 3-day-ahead scenario was higher than 
that for the 7- and 10-day-ahead cases in both the training and testing periods, as indicated by the superior 

Figure 9.  Modeling flowchart of the adopted research.
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goodness-of-fit metrics for the 3-day-ahead forecasts: (R = 0.8947, RMSE = 73.6800, MAPE = 10.4113, E = 0.7998, 
Tstat = 2.3851,  U95% = 204.1362) for the training period and (R = 0.8764, RMSE = 66.3651, MAPE = 12.0275, 
E = 0.7633, Tstat = 4.7504,  U95% = 183.0642) for the testing period. Similarly, the 5-day-ahead was superior to 
that of the 7- and 10-day-ahead forecasts but inferior to that of the 3-day-ahead horizon. In other words, the 
proposed model attained a higher precision in short-term forecasting (i.e., 1-, 3-, and 5-day) compared with that 
for long-term forecasting (i.e., 7- and 10-day) of the EC for Albert River.

Figure 15 shows the scatterplots along with the R and RMSE metrics of the Boruta-XGB-CNN-LSTM model 
for multi-step ahead (i.e., 3-, 5-, 7-, and 10-day) EC forecasts for the Albert River. In addition, the 25% upper 
and lower bound confidence intervals are presented. The strongest correlation is observed for the 3-day-ahead 
EC forecasts, given the highest R (0.8764) and lowest RMSE (66.365), although the forecasts for the 5-, 7-, 
and 10-day-ahead EC forecasts are also satisfactory. Overall, the proposed model is better at short-term EC 
forecasting (1-, 3-, and 5-day), and the performance decreases over long-term forecast horizons (i.e., 7- and 
10-day) for the Albert River.

Table 7 and Fig. 16 present the multi-step ahead (i.e., 3-, 5-, 7-, and 10-day) EC forecasts for Barratta Creek 
obtained using the proposed Boruta-XGB-CNN-LSTM model. Table 7 shows that the model yields more accurate 
forecasts in the 3- and 5-day-ahead horizon compared with the 7- and 10-day-ahead horizons in the training 
and testing periods. This finding is supported by the scatter plots in Fig. 16. The short-term forecasts (3- and 
5-day-ahead) are more accurate (R of 0.7677 and 0.7108, respectively) with lower RMSEs (72.466 and 79.445, 

Table 3.  Model adjustment for EC forecasting.

Study site Models Parameters

Albert

Boruta-XGB-MLP Layers: 1, Number of Neurons: 7, Training Algorithm: Levenberg–Marquardt

Boruta-XGB-XGBoost N_Estimators: 80, Max-Depth: 4, Learning Rate: 0.1

Boruta-XGB-KNN N_Neighbors: 4, Weights: (’uniform’)

Boruta-XGB-CNN-LSTM CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size:1, LSTM Layer: 1; Number of Neurons: 90, Dense Layer: 1, Number of Neurons: 
70, Learning Rate: 0.0017, Training Algorithm: Adam, Batch Size: 64, Epochs: 34

Barratta

Boruta-XGB-MLP Layers: 1, Number of Neurons: 5, Training Algorithm: Levenberg–Marquardt

Boruta-XGB-XGBoost N_Estimators: 100, Max-Depth: 6, Learning rate: 0.15

Boruta-XGB-KNN N_Neighbors: 5, Weights = (’uniform’)

Boruta-XGB-CNN-LSTM CNN Layers: 2, Filters: 64,64, kernel size: 2,2, Pool_Size:1, LSTM Layer: 1, Number of Neurons: 60, Dense Layer: 1, Number of Neurons: 
100, Learning Rate: 0.0005, Training Algorithm: Adam, Batch Size: 64, Epochs: 45

Multi-step Ahead

Albert

3 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 1, LSTM Layer: 1, Number of Neurons: 90, Dense Layer: 1, Number of Neurons: 
70, Learning Rate: 0.001, Training Algorithm: Adam, Batch Size: 64, Epochs: 29

5 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 1, LSTM Layer: 1, Number of Neurons: 80, Dense Layer: 1, Number of Neurons: 
80, Learning Rate: 0.0015, Training Algorithm: Adam, Batch Size: 32, Epochs: 30

7 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size:1, LSTM Layer: 1, Number of Neurons: 90, Dense Layer: 1, Number of Neurons: 
12, Learning Rate: 0.0012, Training Algorithm: Adam, Batch Size: 64, Epochs: 47

10 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 1, LSTM Layer: 1, Number of Neurons: 100, Dense Layer: 1, Number of Neurons: 
100, Learning Rate: 0.00125, Training Algorithm: Adam, Batch Size: 64, Epochs: 33

Barratta

3 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 2, LSTM Layer: 1 Number of Neurons: 100, Dense Layer:1, Number of Neurons: 
100, Learning Rate: 0.025, Training Algorithm: Adam, Batch Size: 64, Epochs: 37

5 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 2, LSTM Layer: 1, Number of Neurons: 100, Dense Layer:1, Number of Neurons: 
100, Learning Rate: 0.01, Training Algorithm: Adam, Batch Size: 64, Epochs: 50

7 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 2, LSTM Layer: 1, Number of Neurons: 100, Dense Layer: 1, Number of Neurons: 
100, Learning Rate: 0.006, Training Algorithm: Adam, Batch Size: 64, Epochs: 40

10 CNN Layers: 2, Filters: 32,32, Kernel Size: 3,3, Pool_Size: 1, LSTM Layer: 1, Number of Neurons: 100, Dense Layer: 1, Number of Neurons: 
100, Learning Rate: 0.004, Training Algorithm: Adam, Batch Size: 64, Epochs: 29

Table 4.  Results of one-step ahead EC forecasting for the Albert River.

Model Data R RMSE MAPE E Tstat U95%

Boruta-XGB-CNN-LSTM
Train 0.9515 51.2558 5.9893 0.9032 7.5962 141.2955

Test 0.9429 45.6896 5.9749 0.8878 3.3426 126.3533

Boruta-XGB-MLP
Train 0.9508 51.1386 6.1955 0.9037 1.0253 141.7482

Test 0.9261 52.7775 9.2756 0.8503 0.4877 146.3171

Boruta-XGB-KNN
Train 0.9631 44.5649 5.7544 0.9268 4.8466 123.2562

Test 0.8302 82.4990 19.1113 0.6342 0.3056 228.7228

Boruta-XGB-XGBoost
Train 0.9635 44.1885 5.5588 0.9281 0.1263 122.4963

Test 0.9323 52.4448 9.5378 0.8522 1.8652 145.2876
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respectively) compared with those of the 7- and 10-day-ahead horizons. Therefore, the Boruta-XGB-CNN-LSTM 
model is more effective for short-term EC forecasting in Barratta Creek station.
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Figure 10.  Scatter plots of forecasted versus measured EC for the Albert River.

Figure 11.  Ridge plots of relative deviation percent (RD %) for the Albert River EC forecasted by different 
models.
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Discussion
The results demonstrate the effectiveness of the proposed Boruta-XGB-CNN-LSTM model in accurately 
forecasting EC for the Albert River and Barratta Creek across different time horizons. For predictions from one 
day ahead, the hybrid model outperformed other ML approaches according to multiple statistical evaluation 
metrics. This indicates the benefits of optimizing input features and leveraging CNN-LSTM architectures for 
water quality prediction. Notably, short-term forecasts up to 5 days achieved higher accuracy than longer 7–10-
day horizons. This is understandable, given the increasing uncertainty for more distant predictions. However, 
the model still produced reasonably good accuracy even 10 days ahead, suggesting usefulness for supporting 
various planning functions. While performance decreased with lead time as expected, the slight deterioration 
demonstrates the model’s ability to learn dependencies beyond immediate observations. This capacity to capture 
rich temporal patterns should aid in addressing non-stationarities in environmental systems. Comparing 
performance across stations reveals the approach is transferable despite rivers’ differing characteristics. Tests on 
independent sites within Australia indicate potential for applicability in diverse settings pending location-specific 
tuning. The study’s findings have several potential applications and implications for improving water resource 
management and environmental monitoring. The accurate multi-step electrical conductivity forecasts produced 
by the Boruta-XGB-CNN-LSTM model allow river authorities to optimize water allocation and reservoir 
operations over different timescales. This helps balance the needs of water users. The model’s predictions also 
help pollution control agencies identify at-risk areas and implement targeted mitigation strategies. Meanwhile, 

Table 5.  Results of one-step ahead EC forecasting for Barratta Creek.

Model Data R RMSE MAPE E Tstat U95%

Boruta-XGB-CNN-LSTM
Train 0.9316 43.2172 7.6428 0.8673 2.7861 119.7122

Test 0.9215 43.8315 7.6029 0.8488 1.1701 121.4845

Boruta-XGB-MLP
Train 0.9288 44.1936 7.9495 0.8616 3.8830 122.3293

Test 0.9184 44.7175 7.7053 0.8426 2.5231 123.7993

Boruta-XGB-KNN
Train 0.9443 39.0323 7.4576 0.8918 0.1975 108.2023

Test 0.9042 48.3154 8.7854 0.8162 1.4046 133.8936

Boruta-XGB-XGBoost
Train 0.9546 35.4029 6.8040 0.9110 0.0785 98.1415

Test 0.9128 46.0644 8.5283 0.8330 0.9702 127.6856
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Figure 12.  Scatter plots of forecasted versus measured EC values for Barratta Creek.
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Figure 13.  Ridge plots of RD (%) for the Barratta Creek EC forecasted by different models.

Figure 14.  Taylor diagram for one-step-ahead EC forecasting for (a) Albert River and (b) Barratta River.

Table 6.  Results of multi-step ahead EC forecasting for the Albert River.

Horizon Data R RMSE MAPE E Tstat U95%

3-steps-ahead
Train 0.8947 73.6800 10.4113 0.7998 2.3851 204.1362

Test 0.8764 66.3651 12.0275 0.7633 4.7504 183.0642

5-steps-ahead
Train 0.8674 81.9761 12.8438 0.7521 1.8250 227.1739

Test 0.8326 75.6831 14.0573 0.6922 1.4061 209.7361

7-steps-ahead
Train 0.8404 90.1850 15.0560 0.6994 6.1947 249.0694

Test 0.7934 83.1531 16.8054 0.6284 0.1597 230.5399

10-steps-ahead
Train 0.8004 98.5680 17.4178 0.6402 0.2013 273.2424

Test 0.7367 92.7799 20.2669 0.5374 3.5644 256.4918
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drinking water facilities and industries can better treat incoming supplies if alerted in advance about changing 
EC levels via the forecasts. Agricultural producers and fish farmers could also utilize the projections to schedule 
irrigation and select suitable crops/species. Furthermore, the predictions may aid emergency responders 
during flood and contamination events. Overall, systematically incorporating data-driven insights enables the 
development of long-term, sustainable river basin management strategies while considering both current and 
future water quality conditions. The reliable, AI-powered monitoring and forecasting capabilities also support 
compliance with environmental regulations over time.

Conclusion
A hybrid CNN-LSTM model was used to forecast multi-step ahead EC for the Albert River and Barratta Creek 
in Australia. The proposed model was optimized using the Boruta-XGBoost algorithm to rank and select the 
best input features. Forecasting was performed over the 1-, 3-, 5-, 7-, and 10-day horizons to demonstrate the 
applicability of the Boruta-XGB-CNN-LSTM model. Moreover, the forecasting performance of the proposed 
method was compared with those of the state-of-the-art models: Boruta-XGB-MLP, Boruta-XGB-XGBoost, and 
Boruta-XGB-KNN. The goodness-of-fit metrics demonstrated that the hybrid Boruta-XGB-CNN-LSTM could 
effectively forecast the multi-step ahead EC for both rivers. In particular, the proposed model attained the highest 
precision in the testing period for the Albert River (R = 0.9429, RMSE = 45.6896, MAPE = 5.9749, E = 0.8878, 
Tstat = 3.3426,  U95% = 126.3533) and Barratta Creek (R = 0.9215, RMSE = 43.8315, MAPE = 7.6029, E = 0.8488, 
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Figure 15.  Scatter plots of multi-step ahead forecasted EC versus measured EC for the Albert River.

Table 7.  Results of multi-step ahead EC forecasting for Barratta Creek.

Horizon Data R RMSE MAPE E Tstat U95

3-steps-ahead
Train 0.8339 65.6887 14.9481 0.6929 2.2169 182.0097

Test 0.7663 72.4667 14.7316 0.5866 0.8251 200.8821

5-steps-ahead
Train 0.7878 72.9874 16.5071 0.6195 2.7618 202.1789

Test 0.7108 79.4455 16.5628 0.5032 1.7305 220.1116

7-steps-ahead
Train 0.7651 76.1118 16.7717 0.5852 1.0503 210.9690

Test 0.6690 84.2257 16.7168 0.4416 2.6831 233.1329

10-steps-ahead
Train 0.7314 81.0510 17.3607 0.5284 5.6692 223.9778

Test 0.6190 88.6057 18.0405 0.3820 1.4281 245.5441
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Tstat = 1.1701,  U95% = 121.4845) in forecasting one-step ahead EC. Moreover, the Boruta-XGB-CNN-LSTM was 
more accurate in short-term (i.e., 1-, 3-, and 5-day) forecasting, and its performance slightly deteriorated in 
the 7- and 10-day-ahead forecast horizons. The proposed model can be extended to other applications such as 
agriculture, environmental, and atmospheric modeling.

While the proposed Boruta-XGB-CNN-LSTM model achieved good performance, some limitations still 
exist. The study utilized daily water quality and meteorological data from only two rivers within Australia, so 
expanding data collection from more diverse locations globally would help validate the generalizability and 
robustness of models. Additionally, additional real-time data sources like satellite imagery could help capture 
spatial influences and improve forecasts. The study focused on predicting a single water quality parameter 
but developing multi-parameter models that simultaneously forecast other important indices would increase 
practical relevance. Moreover, while measures were taken to prevent overfitting, more rigorous validation 
techniques like uncertainty quantification on out-of-sample data could provide a realistic assessment of long-term 
forecast accuracy. Addressing these limitations through multidisciplinary collaborations in future work would 
help advance the development of widely applicable AI solutions for integrated water resource and ecosystem 
management globally.

Data availability
Data sets generated during the current study are available from the corresponding author on reasonable request.
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