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Abstract 

The ability to identify schematic knowledge is an important goal for both assessment 

and instruction. In the current paper, schematic knowledge of statistical probability theory is 

explored from the declarative-procedural framework using multiple methods of assessment. 

A sample of 90 undergraduate introductory statistics students was required to classify 10 

pairs of probability problems as similar or different; to identify whether 15 problems 

contained sufficient, irrelevant, or missing information (text-edit); and to solve 10 additional 

problems. The complexity of the schema on which the problems were based was also 

manipulated. Detailed analyses compared text-editing and solution accuracy as a function of 

text-editing category and schema complexity. Results showed that text-editing tends to be 

easier than solution and differentially sensitive to schema complexity. While text-editing and 

classification were correlated with solution, only text-editing problems with missing 

information uniquely predicted success. In light of previous research these results suggest 

that text-editing is suitable for supplementing the assessment of schematic knowledge in 

development.  
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Assessing Schematic Knowledge of Introductory Probability Theory 

Knowledge is many things to many people. de Jong and Ferguson-Hessler (1996) 

have commented that knowledge has been conceptualised as domain-general and domain-

specific, concrete and abstract, implicit and explicit, formal and informal, elaborated and 

compiled, declarative and proceduralized, conceptual and procedural, unstructured and 

structured, tacit or inert, strategic, situated, schematic, as knowledge-acquisition knowledge, 

as metaknowledge – and the list goes on. It would seem that knowledge, like intelligence, is a 

rather nebulous construct. However, within this quagmire a small number of approaches to 

conceptualising knowledge have received almost consensual support. The declarative-

procedural framework is one such approach for which evidence has amassed across 

numerous domains (Anderson & Schunn, 2000; Benaroch, 2001; Cohen, Poldrack, & 

Eichenbaum, 1997; Kirasic, Allen, Dobson, & Binder, 1996; Low & Over, 1992; Rittle-

Johnson, Siegler, & Alibali, 2001). How we conceptualize knowledge not only determines 

the nature of our instructional strategies but also how we assess it. In the current study we 

adopt the general declarative-procedural framework to explore the assessment of schematic 

knowledge of probability theory. This element of statistics is particularly difficult for 

undergraduate students to master (Konold, 1995) and there are ongoing calls for more 

innovative ways to assess statistical knowledge (Garfield, 1994). Schematic knowledge is 

highly context specific (Quilici & Mayer, 2002). It contains declarative knowledge (also 

referred to as conceptual knowledge, de Jong & Ferguson-Hessler, 1996; Rittle-Johnson et 

al., 2001) and procedural knowledge, in addition to situational knowledge that provide cues 

to when knowledge should be used (Cheng & Holyoak, 1985; de Jong & Ferguson-Hessler, 

1996). A traditional method used to assess schematic knowledge is to have students classify 

pairs of problems in terms of structural relatedness. We compare this to a relatively new 
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method that has received little attention in the literature called text-editing. Before we 

describe the text-editing task, a brief overview of the declarative-procedural-schematic 

framework is presented.  

Declarative knowledge. 

Declarative knowledge is commonly considered as knowing-what, and procedural 

knowledge as knowing-how. The declarative-procedural framework has been at the heart of 

numerous information-processing theories of knowledge-acquisition (e.g., Anderson, 1982; 

Anderson & Milson, 1989; Anderson & Neves, 1981; Anderson & Schunn, 2000). During the 

early stages of skill acquisition, declarative information can be used with general problem-

solving procedures in an interpretative way (Anderson, 1990). For example, a student 

learning to solve area-of-rectangle problems in a mathematics course may initially encode 

declarative information relating the length of adjacent sides of a rectangle to the surface area. 

The student is likely to have had some experience solving other mathematics problems and 

will also have access to general problem-solving strategies used in everyday reasoning. These 

additional experiences can be brought to bear on the newly acquired declarative information 

about rectangles to facilitate success without the student necessarily possessing specific 

solution strategies or procedures (Anderson, 1982; Anderson & Neves, 1981; Rumelhart & 

Norman, 1981).  

Two examples of general problem-solving approaches that have received considerable 

attention in the literature are working forward and working backward strategies1. An example 

of a working forward reasoning strategy would be making a supposition that a particular 

formula for solution is appropriate from the start, and then following the ensuing inferences 

through to their logical end (Byrne & Handley, 1997; Rips, 1989). An example of a working 

backward strategy is the means-ends approach, which is essentially a goal directed, search-
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oriented process frequently used by novices (e.g., Gick, 1986). The idea behind this 

procedure is that differences between the goal-state specified by the problem and successive 

problem states obtained during the course of solution are analysed in order to choose the next 

best move or sub-goal (Sweller & Levine, 1982). While means-ends analysis is an efficient 

and flexible problem-solving strategy in novel situations where specific procedures or 

schemas are lacking, it is resource-demanding because a comprehensive search of memory is 

necessary at each sub-goal (Gick, 1986; Sweller, 1988, 1989). In fact, general problem-

solving procedures can make such high demands on working memory resources that they can 

actually interfere with learning (Van Gog, Paas, & Van Merriënboer, 2004). For instance, 

Sweller and Levine (1982) showed that maze learning was inhibited by means-ends 

approaches. Similar inhibitory effects on learning have been shown in algebraic word 

problems (e.g., Cooper & Sweller, 1987; Ward & Sweller, 1990; Zhu & Simon, 1987). The 

inference from these studies is that general problem-solving consumes working memory 

resources that would be better spent on learning the structure of the task at hand (Sweller, 

1988, 1989, 1993; Sweller, Chandler, Tierney, & Cooper, 1990; Sweller, Mawer, & Howe, 

1982; Woltz, 1988).  

Procedural knowledge and learning. 

A common theme in many cognitive learning theories is that people construct new 

knowledge by “assimilating” their current experience with what they already know or believe 

to be true about the world (Chen, 1999; Cook, 2001; Gick & Holyoak, 1983; Piaget, 1950). 

As experience in a domain increases, related declarative facts and specific solution strategies 

are linked – they become proceduralized. Instruction is often premised on this understanding. 

That is, while proceduralization means that the use of knowledge becomes less dependent on 

domain-general reasoning, proceduralization has also been shown to facilitate further 
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learning (e.g., Rittle-Johnson et al., 2001). Two aspects related to this are problem structure 

and context. We consider each briefly. 

Structure: One of the main objectives of instruction is to help students to focus on the 

structure of a domain and to draw their attention away from the more transient surface details 

of a particular problem. For instance, altering the format of instructions of learning tasks to 

be less goal oriented has been shown to facilitate learning because it encourages learners to 

be more sensitive to the structure of the task (Chandler & Sweller, 1991; Sweller, 1993; 

Sweller et al., 1990; Sweller & Levine, 1982; Van Gog et al., 2004) and less focused on 

surface details (Quilici & Mayer, 1996, 2002). Imagery has also been used to improve 

understanding of mathematical structure. An important feature of visual-spatial presentation 

on knowledge acquisition has to do with how elaborated learning can facilitate the recall of 

important structural features of problems. However not all types of visual-spatial 

representations have been shown to be equally effective in improving mathematical 

achievement (Novick, Hurley, & Francis, 1999). Hegarty and Kozhevnikov (1999) suggested 

that the use of schematic imagery (i.e., pure relationships depicted in a visual-spatial scheme 

devoid of concrete images) was positively correlated with mathematical performance, but 

that there was a negative correlation with use of pictorial imagery (i.e., concrete images in the 

mind). Pictorial imagery was associated with poorer performance because it takes the 

problem solver’s attention away from the problem structure. 

Context: Presenting problems in a familiar context has been shown to enhance 

knowledge acquisition and performance while at the same time reducing working memory 

demand (Quilici & Mayer, 1996, 2002). For example, Carraher, Carraher, and Schliemann 

(1985) studied Brazilian children who, for economic reasons, often worked as street vendors 

(see also, Nuñes, 1994). Mathematical problems were either embedded in real-life situations, 
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where appropriate procedures and strategies for using declarative knowledge were in place 

(i.e., vending), or in an academic context, where, for this population, procedures were less 

developed. The children’s performance was significantly better in the former problems. 

Schematic knowledge. 

 A more extended conceptualisation of the organisation of knowledge can be found in 

the concept of a schema. Schemas have been defined in many ways.  Within mathematics, 

Cooper and Sweller (1987, p. 348)  defined a schema as "...a construct that allows problem 

solvers to group problems into categories in which the problems in each category require 

similar solutions".  Similarly, Sweller (1989, p. 458) defined a schema as a "...cognitive 

construct that permits problem solvers to recognise problems as belonging to a particular 

category requiring particular moves for solution". Furthermore, schemas are useful because 

they serve to categorise knowledge according to the way in which it will be used (Sweller, 

Van Merriënboer, & Paas, 1998).  Although originating from slightly different lines of 

research (Chi, Fletovich, & Glaser, 1981; Sweller et al., 1998), schema theory fits closely 

with Anderson’s (1982; 1990) declarative-procedural framework. A common finding in the 

expert-novice literature has been that experts’ organization of knowledge is qualitatively 

different from that of novices and that this difference is a function of experts’ greater access 

to elaborated schemas (Chi et al., 1981; de Jong & Ferguson-Hessler, 1986) that develop with 

experience in the problem domain (Sweller et al., 1998).  

Contextualized schematic knowledge reflects a deep structural understanding of the 

domain, but this high contextualization can also come at a cost. It may place constraints on 

the availability of certain information and in some cases can produce near-transfer failure – 

the unexpected failure to transfer knowledge from one context to a similar one in the same 

domain (Woltz, Gardner, & Gyll, 2000). The fact that people can solve mathematics 
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problems presented in a familiar practical context but fail dismally when only the context is 

changed (Carraher et al., 1985), is a clear example of one of the disadvantages of 

contextualized knowledge. However, because schemas are highly contextualized, under most 

circumstances they can be accessed directly without the separate facts and procedures having 

to be retrieved, interpreted, and assessed for appropriateness piece by piece. The end result is 

generally a faster more efficient processing system (Anderson, 1982, 1990; Anderson & 

Neves, 1981). 

There is evidence to suggest that the development of knowledge and expertise in a 

domain does not necessarily move from declarative, to procedural, to schematic in a smooth 

monotonic fashion (e.g., Rittle-Johnson et al., 2001) and that declarative and procedural 

knowledge exists side-by-side with schematic knowledge (de Jong & Ferguson-Hessler, 

1986). For instance, Savelsbergh, de Jong, and Ferguson-Hessler (2002) suggest that even 

though concepts in many domains (especially mathematically based domains) can be ordered 

hierarchically from concrete to abstract, it is often unclear what is abstract and what is 

concrete, and how such a distinction might change from one individual to another. 

Nevertheless, there is evidence to suggest that depth of knowledge does improve as 

knowledge becomes proceduralized, and that expertise increases with the acquisition and 

development of schemas (Chi et al., 1981; Chi, Glaser, & Rees, 1982). Mayer (1987) argued 

that developing an understanding of problem structure should be the primary instructional 

goal in teaching mathematics. Schematized knowledge reduces cognitive load, freeing 

resources for the acquisition of problem structure, which in turn has been repeatedly shown 

to facilitate near and far transfer of skills (e.g., Sweller et al., 1998; Van Gog et al., 2004). 

The ability to identify schematic knowledge is therefore a worthwhile goal for both 

assessment and instruction (Ngu, Low, & Sweller, 2002; Quilici & Mayer, 2002). 
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Assessing Schematic Knowledge 

Various techniques have been used to assess schematic knowledge. Students have 

been asked to recall details of problems they have either seen or solved previously (Low & 

Over, 1989, 1990). Recall of only surface details of problems has been shown to indicate 

poor schematic knowledge, whereas recall for structural details indicates that schemas have 

been used (Low & Over, 1990; Ngu et al., 2002). Another method of assessing schematic 

knowledge is to have students categorise problems in terms of their perceived similarities. As 

with recall, it is assumed that persons with poor schematic knowledge of the domain will sort 

by surface similarities, whereas persons with better knowledge will consider deeper structural 

components (Littlefield & Rieser, 1993; Low & Over, 1989, 1990, 1992; Schoenfeld & 

Herrmann, 1982). The criterion often used to validate these techniques is the student's ability 

to actually solve problems.  

 The approach to assessing schematic knowledge that we used in this study is called 

text-editing (Low & Over, 1989, 1990, 1992, 1993; Low, Over, Doolan, & Michell, 1994; 

Ngu et al., 2002). The idea is that the ability to identify what information from the text of a 

problem should be used, in what sequence, and through what operations, reflects an 

understanding of the problem structure and is therefore evidence of appropriate schematic 

knowledge. Text-editing requires students to isolate the necessary and sufficient components 

needed to solve word problems. The problems are designed so that they fit into one of three 

mutually exclusive categories: (1) there is sufficient information given to solve the problem; 

(2) there is sufficient information plus irrelevant information; and (3) information required 

for problem solution is missing. In the last two cases, students are also required to identify 

the irrelevant or missing information. To illustrate the nature of text-editing, consider the 

following problem which was used by Low et al. (1994) to train students in text-editing area-
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of-rectangle problems. 

The length of a rectangular window pane is twice its width. The area of the pane is 

98 cm². What are the dimensions of the pane? 

If we are to consider the schema required to solve this problem, knowledge that the 

area is equal to the length multiplied by the width would be one necessary component (Low 

& Over, 1989). If the width = a and the length = 2a, as given in the problem, then retrieval of 

an appropriate area-of-rectangle schema that integrates potential solution procedures and 

necessary declarative facts would facilitate solution. It is not a requirement of text-editing to 

actually solve the problem, however in this case there is sufficient information provided to do 

so. If the student does not possess an appropriate schema to solve the problem, the 

probability of making an error in the text-editing task is increased.  

Low and Over (1989) were able to reinforce their claims for the value of text-editing 

as a direct measure of schematic knowledge by demonstrating that performance on text-

editing was strongly correlated with problem solution. They demonstrated this in two ways: 

Firstly by showing that text-editing predicted as much as 90 percent of the variance in 

subsequent problem solution; and secondly by showing that failure in the text-editing section 

of their experimental procedure was almost invariably followed by failure in the problem 

solution section. While text-editing seems to be a necessary condition for problem solution, it 

is not sufficient. Various studies have shown that a significant proportion of students were 

able to correctly text-edit problems but then failed solution (Low & Over, 1989, 1990, 1992) 

– we explored this finding further in the current study. Low and Over (1990) went on to show 

that text-editing is correlated with recall memory for algebraic word problems and 

discrimination of whether problems are similar or different. In this second study, text-editing 

scores were also correlated with tests of general mathematical ability, even after allowance 
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was made for contributions from verbal ability. The authors concluded that because the task 

requires an understanding of problem structure, text-editing can be taken as a measure of 

schematic knowledge. Previous research by Low and colleagues indicates that text-editing is 

easiest for problems where there is sufficient information and most difficult where the 

problems contain irrelevant information. The extent that this pattern of results generalizes to 

probability problems is an empirical question. 

The successful application of text-editing techniques in mathematics has paved the 

way for its application in other fields. Ngu et al. (2002) examined its usefulness as a training 

aid in the field of chemistry and concluded that its effectiveness depended on the learning 

materials. Our particular interest in this study was in the field of statistics. There are some 

obvious parallels between the fields of mathematics and statistics. The format in which 

statistics problems are encountered by students is typically similar to the format of algebraic 

word problems used in text-editing research (Low & Over, 1989, 1990; Mayer, 1982). 

Furthermore, statistical probability problems are based on a number of related but distinct 

classes that require different formulas and procedures for solution. As detailed in the Method 

section, the text-editing problems used in the current study are drawn from five problem 

classes (see Table 1). These classes can be differentiated on the sophistication of the schema 

involved. For instance, solving probability problems using the addition rule when events are 

not mutually exclusive (Class A-NM in Table 1) is a more complex instantiation of the basic 

addition rule with mutually exclusive events (Class A-M). Similarly, Class M-NI involved a 

more complex instantiation of the multiplication rule than Class M-I. These classifications 

also tend to coincide with typical teaching approaches in these areas – simpler, more specific 

problem classes are often taught first followed by instruction in the more complex, general 

form of the equation. The acquisition of appropriate schemas would therefore seem to be 
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particularly advantageous to learning in this domain because it would enable appropriate 

differentiation and application of formulae, a task that new students frequently find difficult. 

Consequently, we expect text-editing performance to reflect the different levels of schema 

complexity and establishing that these expected effects are present is an important 

preliminary step to the investigation of the main aims of the study.  

Table 1 

Rules and formulas used for text-editing and solution problems 

    Problem No. 

Class  Rule  Formula Sectio

n 

M S I 

TE 13 10 7 A-M Addition Rule - Mutually 

exclusive events. 

P(A ∪ B) = P(A) + P(B) 

Sol NA 5 6 

TE 8 12 2 A-NM Addition Rule - Not 

mutually exclusive events 

P(A ∪ B) =  

P(A) + P(B) - P(A∩ B) Sol NA 4 3 

TE 14 3 5 M-I Multiplication Rule - 

Independent events 

P(A ∩ B) = P(A) × P(B) 

Sol NA 10 9 

TE 4 11 15 M-NI Multiplication Rule - Not 

independent events. 

P(A ∩ B) = P(A) × 

P(B|A) Sol NA 8 7 

TE 6 1 9  

Comb. 

Combined rules: A-M or 

A-NM with M-I or M-NI 

  

Sol NA 1 2 

Notes: Solution problems (Sol) were constructed to be isomorphic to text-editing (TE) 

problems; M = missing; S = sufficient; I = irrelevant; NA = problems containing missing 

information were not presented for solution. 

 
The main aim was to extend the application of text-editing to the assessment of 

schematic knowledge of probability theory, an area of statistics that has traditionally proved a 

considerable hurdle for students from a variety of disciplines (Konold, 1995). A subsidiary 

aim was to test whether the high R² values (.80 - .90) reported in earlier studies by Low and 
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Over (1989, 1990) are robust to a change in methodology. Low and Over used the same 

irrelevant and sufficient problems in both the text-editing and solution sections of the studies. 

That is, participants were first asked to text-edit a set of problems containing irrelevant, 

sufficient, and missing information and then asked to solve a subset of those same problems 

(i.e., the ones containing sufficient and irrelevant information). Repeated presentation of the 

same problems could inflate the correlation between text-editing and solution. The second 

aim of the present study, therefore, was to determine the relationship between text-editing 

scores and solution scores when different (but isomorphic) problems were used in both 

sections. Observation of high R² values in this more stringent situation would certainly 

encourage serious consideration of text-editing as a way of assessing schematic knowledge in 

statistics. 

The third aim concerned the comparison between the text-editing approach to the 

assessment of schematic knowledge and the more traditional problem classification approach 

wherein participants are asked to classify problems in terms of problem-relatedness 

(Schoenfeld & Herrmann, 1982). In their first experiment, Low and Over (1990) did not find 

any relationship between problem solution and performance on a problem-classification task, 

nor was there any relationship between text-editing and problem-classification. In their 

second experiment, where it was more clear that the problems to be classified were “similar 

or different in terms of underlying structure and not surface detail” (Low & Over, 1990, p. 

68), a relationship between text-editing and problem-classification was found. However, the 

relationship between solution and classification was not investigated. Should text-editing 

provide incremental prediction of solution, it would constitute further evidence that text-

editing is a better technique for assessing schematic knowledge than some of these traditional 

techniques.  
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Finally, the population we have chosen to draw our sample from is very diverse. It 

consists of university students pursuing majors ranging from science and engineering, to 

business and arts and hence there may be strong individual differences in exposure to training 

in mathematics and statistics. Although sample diversity is desirable in demonstrating 

generalizability of the text-editing method, these varying rates of exposure may actually 

serve to qualify our comparison with the studies of Low and her colleagues who have used 

samples less heterogeneous in experience. Therefore, tests of the main aims will also be 

conducted on a homogenous sub-sample of the more quantitatively inclined science and 

engineering students. 

Method 

Participants 

 The participants were first and second year students enrolled in a compulsory 

introductory statistics unit at the University of Southern Queensland, Australia. Testing time 

was arranged so that students had just completed a training module on probability and were 

preparing for an assignment on the same topic. Of the 100 students who volunteered to 

participate, 10 either failed to complete any of the last section of the test or did not finish in 

the designated time, and were therefore omitted from the analysis. The remaining 65 males 

and 25 females completed the study in the one hour allocated. Students ranged in age from 18 

years to 44 years with a mean of 22.3 years (SD = 6.50). Approximately 31% of the students 

came from the Faculty of Engineering, 29% from Commerce, 24% from Science, and 16% 

from Arts. 

Instruments and Procedure 

 Each student completed a booklet containing three sections. In addition, students were 

asked to provide some biographical information regarding their student status and to note 
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some of their self-perceptions about statistical probability. The sections of the questionnaire 

were as follows: 
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  Section I - Text-editing. 

 Section I consisted of 15 problems presented in the text-editing format used by Low 

and Over (1990). Students had to classify whether problems contained (a) sufficient 

information for solution, (b) irrelevant information that was not necessary for solution, or (c) 

missing information required to solve the problem. These problems (five for each text-editing 

category) were drawn from the curriculum of the introductory statistics unit in which the 

students were enrolled (University of Southern Queensland, 1993). All problems were vetted 

by teaching staff to ensure the problems covered information students were required to know 

for assessment. An example of a problem used from each of these categories follows: 

Missing Information. You have just bought 5 tickets in a local raffle.  Your brother 

has bought 12 tickets. What is the probability that you or your brother will win? 

Sufficient Information. From an ordinary deck of 52 playing cards, one card is 

selected at random. What is the probability that it is a picture card (Jack, Queen, King) or a 

2? 

Irrelevant Information. Two cards are drawn randomly from an ordinary pack of 52 

playing cards. This is done with replacement. If 25% of the cards are diamonds, what is the 

probability of obtaining a 9 and a Queen in that order? 

 To ensure wide coverage of the domain, problems were selected from five classes 

based on either simple or complex conjunction (A ∪ B) and simple or complex disjunction 

(A ∩ B). These classes, shown in Table 1, can be considered to be determined by the formula 

that would be implemented by an appropriately cued schema2. Care was taken to ensure that 

each class consisted of a sufficient, irrelevant and missing problem although respondents 

were not made aware of this. The problems were presented in the same randomised sequence 

to all students. Again, we expect that problem classes are not of equal difficulty and we will 



Schematic Knowledge of Probability     17 
 

take this into consideration in the analyses.  

Section II - Classification of problem relatedness. 

 In this section, participants classified problems in terms of similarity (i.e., same or 

different). Twenty problems selected from the sufficient and irrelevant problems used in 

Section I and Section III (described below), were presented in ten pairs. Five of the ten pairs 

contained problems with different structural details (or formulae required to solve them), and 

five pairs contained similar structural details. Each member of a pair differed in terms of 

surface details so as to reduce the possibility of students making a comparison solely on this 

basis (Low & Over, 1990). Students were told at the beginning of the session that 

classification of relatedness should be made in terms of the strategies and procedures 

necessary to solve the two problems.  

Section III - Solution. 

 Section III required participants to solve ten problems based on those from Section I 

that contained sufficient and irrelevant information. Problems missing information were not 

used in this section because they do not contain sufficient information for solution. These 

problems were altered so that while they used the same structural formats as those from 

Section I, the surface details were different (i.e., they were developed to be isomorphic). 

Table 1 indicates the text-editing problem from which each solution problem was derived. 

Students were asked to show their working.  

General Procedure 

 Testing was conducted in group sessions. The instructions for each section were read 

to the students at the start of the session so that on completion of one section students did not 

need to wait for others to finish. The limited testing time necessitated this procedure. Written 

instructions to the same effect were also provided. In addition, students were asked not to go 
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back to a previous section once they had completed it. They were encouraged to work as 

quickly and accurately as possible and to ask for assistance if they had any queries.  

Results 

Preliminary Analysis  

      Scoring  

 Two types of text-editing scores were derived from Section I: (1) a text-editing score 

for each category aggregating across problem class and (2) a total text-editing score. For a 

problem to be scored as correct, students had to classify the problem as belonging to the 

correct text-editing category and also to identify the missing or irrelevant information where 

appropriate. The classification score in Section II was the number of correct classifications 

made over the ten pairs of problems. Partial-credit scoring was used for solution in Section 

III. A correct answer was scored "2", a partially correct answer was scored "1" (e.g., where 

students applied a correct formula but made minor calculation errors), and an incorrect 

answer was scored "0". Each score was converted to a proportion of the maximum possible 

for that task (text-editing; classification; solution) to facilitate comparisons across tasks. 

Means, standard deviations, and pairwise correlation for these measures are shown in Table 

2.  
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Table 2  

Descriptive statistics and correlations for ( a) text-editing, classification, and 

solution, and (b) text-editing based on problems class and solution. 

(a)          

Variable Mean      (sd) (1)  (2)  (3)  (4)  (5)  

TE-missing   (1) 0.35 (0.25)                 

TE-irrelevant   (2) 0.24 (0.23) .67***              

TE-sufficient   (3) 0.84 (0.22) .30** .24*          

TE-total   (4) 0.48 (0.18) .86*** .83*** .64***      

Classification   (5) 0.51 (0.18) .41*** .26* .18  .37** 

Solution   (6) 0.34 (0.26) .61*** .51*** .31** .62*** .25* 

                          
(b)                         

Variable Mean      (sd) (1)  (2)  (3)  (4)  (5)  

TE-class A-M   (1) 0.53 (0.26) -                 

TE-class A-NM (2) 0.47 (0.21) .44*** -              

TE-class M-I  (3) 0.58 (0.36) .46*** .37*** -          

TE-class M-NI (4) 0.47 (0.16) .21* .10  .16** -      

TE-class Comb. (5) 0.64 (0.33) .54*** .32** .55*** .27*  -  

Solution   (6) 0.34 (0.26) .52*** .26** .51*** .19** .57***

 
p < .05, ** p < .01, *** p < .001; N = 90; A-M = addition-mutually exclusive; 

A-NM = addition-not mutually exclusive; M-I = multiplication-independent; M-

NI = multiplication-not independent; Comb = Combination of rules 
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By way of preliminary analyses, we checked for patterns among the Table 2 means to 

determine whether performance was in accordance with expectations of text-editing category 

effects and differences in problem class complexity. As expected, the main-effects for both 

text-editing category and problem class were significant: Pillai’s Trace = .57, F(2, 86) = 

28.25, p < .001; and Pillai’s Trace = .83, F(4, 88) = 219.44, p < .001, respectively3. 

Univariate analyses confirmed the ordering of the text-editing categories with irrelevant 

problems significantly more difficult than missing problems, F(1,178) = 29.87, p < .001, and 

both of these more difficult than sufficient problems, F(1,178) = 279.45, p < .001. Regarding 

the problem classes, problems based on Class A-M (addition rule - mutually exclusive 

events) were significantly easier than problems based on Class A-NM (addition rule - events 

not mutually exclusive), F(1, 356) = 102.47, p < .001; and problems based on Class M-I 

(multiplication rule - independent events) were significantly easier than problems based on 

Class M-NI (multiplication rule - non-independent events), F(1, 356) = 20.64, p < .001. This 

is consistent with expectations because both A-NM and M-NI entail more complex 

instantiations of the basic underlying rule. Interestingly, there were no significant differences 

between A-M and M-I (simple addition and simple multiplication), F(1, 356) = 2.26, p = .13, 

nor between A-NM and M-NI (complex addition and complex multiplication), F(1, 356) < 1.  

Continuing these preliminary analyses, we then examined performance on the 10 

problems (5 containing sufficient information and 5 containing irrelevant information) that 

participants were asked to solve in Section III. Results indicated that there was no difference 

overall in the difficulty of solving problems containing sufficient or irrelevant information 

(Pillai’s Trace = .03, F(1, 89) = 2.28, p = .135). There was however a significant main effect 

for problem class (Pillai’s Trace = .20, F(4, 86) = 5.26, p = .001) where problems based on 

addition rules (A-M and A-NM) were significantly easier to solve than the other problem 
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classes (M-I, M-NI, and Comb.).  

As a final step in the preliminary analyses, we then compared the relative difficulty of 

text-editing and solution as a function of problem class. The solution task is based on only 

irrelevant and sufficient items and therefore to allow comparison the text-editing score was 

recalculated without the items that had missing information. The interpretation of the effect 

of problem class on this new text-editing score remained unchanged. Overall, it was easier to 

text-edit problems than to solve them (Pillai's Trace = .445, F(1, 89) = 71.25, p < .001). We 

have already considered the effects of problem class on text-editing and solution separately, 

so interpretation of these results will not be repeated. Of interest here is the difference 

between text-editing performance and solution as a function of problem class. The results 

indicate that although on the whole text editing was easier than solution, this effect was more 

pronounced for the multiplication and combined problems (M-I, M-NI, Comb: Pillai's Trace 

= .497, F(1, 89) = 87.91, p < .001) than for the addition problems (A-M, A-NM: Pillai's 

Trace = .056, F(1, 89) = 5.29, p = .024). In combination with the separate analyses reported 

above, these findings suggest that text-editing ability is not equally aligned with solution 

performance across problem classes.  

Examining the relationship between text-editing and problem solution 

The main aim of the present study was to test whether the Low and Over (1989, 1990) 

findings in the field of mathematics regarding the robustness of text-editing as a predictor of 

solution could be replicated in the field of statistics. Following their method, we used a two-

step approach, focusing initially on correlations and regression analysis before moving to a 

detailed analysis of performance on individual text-editing items containing sufficient and 

irrelevant information and subsequent performance on the solution of parallel versions 

(isomorphs) of those same items. The correlations and regression analyses are presented first. 
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Pairwise correlations among the performance measures are reported in Table 2. The 

first three variables in Table 2A represent the three text-editing categories. The fourth 

variable is the total text-editing score, formed by averaging across all items. The fifth 

variable is the classification task that has been used in past research as a measure of 

schematic knowledge and was included here as a comparative measure. Table 2B contains 

text-editing scores based on problem class aggregated across text-editing category. It can be 

seen from Table 2A that whilst the three text-editing measures had moderate to strong 

correlations with solution, the relationship between the classification task and solution was 

much weaker (r = .25, p < .05). To explore the links between this set of predictor variables 

and solution scores, two multiple regression analyses were conducted. The first analysis 

explored the relationship between solution and text-editing scores based on sufficient, 

missing, and irrelevant problems, and the problem-classification task. Together, these 

variables accounted for 40.5% (37.7% adjusted) of the variability in solution scores (R² = 

.405, F(4,85) = 14.489, p < .001). Text-editing problems with missing information was the 

only measure that contributed uniquely to the prediction of solution score and accounted for 

nearly one quarter of the total explained variance (sr²  = .097; β = .447, t(85) = 3.72, p 

<.001). The second regression analysis was for problem class (Table 2B) and therefore 

focused on a slightly different way to partition the text-editing variance. Together the five 

variables accounted for 42.2% (38.8% adjusted) of the variation in solutions scores, R2 = 

.422, F(5, 84) = 12.28, p < .001. Text-editing of simple addition rule problems (class A-M) 

uniquely accounted for 4.0% (sr2 = .04, β = .26, t(83) = 2.40, p =.018), text-editing problems 

based on simple multiplication rules (class M-I) accounted for 3.5% (sr2 = .035, β = .23, t(83) 

= 2.24, p =.027), and text-editing problems based on a combination of simple addition and 

simple multiplication rules (class Comb) uniquely accounted for 5.6% of the variation in 
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solution (sr2 = .056, β = .31, t(83) = 2.84, p = .005). There were no other unique predictors. 

This tends to indicate that all else being equal, solution is best predicted by variability in text-

editing problems that entail better-mastered schemas. This is an interesting result particularly 

when one considers the fact that the simpler rules are typically taught first, followed by 

instruction in the more complex forms. Hence, schemas for these simple problems are more 

likely to be better developed than for the more complex forms. The results suggest that the 

text-editing task was sensitive to variation in these simple types of problems – where 

knowledge is more likely to be schematic rather than declarative or procedural.  

To summarise findings regarding text-editing and solution performance at the 

individual item level, we used the same technique reported by Low and Over (1989, 1990). 

Table 3 shows the number of students who correctly classified appropriate problems as 

containing sufficient or irrelevant information (TE+) and who were incorrect in this 

classification (TE–) relative to their success (+) or failure (–) on solution of the isomorphic 

problem in Section III. This table considers all events over the ten problems and 90 students. 

There were many instances where a student was able to correctly text-edit a problem but then 

failed to solve the structurally equivalent problem. Of the 485 instances where a student was 

successful in text-editing a problem, there were 334 (68.9%) incorrect attempts at solving a 

formally identical problem. This is consistent with previous findings of Low and her 

colleagues showing that text-editing is a necessary but not sufficient condition for solution. 
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Table 3 

Frequency of correct (TE+) and incorrect (TE–) responses for (a) sufficient and (b) 

irrelevant text-editing problems by solution success (+) and failure (–) on isomorphic 

problems. 

(a)           
  Sufficient 

 A-M A-NM M-I M-NI Comb. 

 SOL05 SOL04 SOL10 SOL08 SOL01 

  + – + – + – + – + – 

TE+ 26 55 35 43 18 43 21 59 6 73

TE– 0 9 1 11 3 26 0 10 0 11

           

(b)           
  Irrelevant 

 A-M A-NM M-I M-NI Comb. 

 SOL06 SOL03 SOL09 SOL07 SOL02 

  + – + – + – + – + – 

TE+ 11 4 4 2 17 27 0 4 13 24

TE– 34 41 22 62 6 40 27 59 5 48

 

Note: A-M, A-NM, M-I, M-NI, and Comb. represent problem class (see Table 1). For these 

comparisons a success on solution was defined as use of a correct formula and therefore a 

score of 1 or 2 was considered a success. 
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Further examination of Table 3 shows that of the 415 occurrences where students 

were unable to text-edit a problem (TE-), 98 were able to pass the relevant solution problem 

(+). In 94 of the 344 (27.3%) possible instances where a student failed to correctly text-edit 

an irrelevant problem (Table 3A), students were able to solve the parallel problem. 

Alternatively, in only 4 of the 71 occurrences (5.6%) where a student failed to correctly text-

edit a sufficient problem (Table 3B), did he or she correctly solve the parallel problem in 

Section III. In general, these results are not predicted by the theory. However it seems clear 

from Table 3 that most of the students who failed text-editing and passed solution did so 

because they misclassified the irrelevant problem as sufficient. From the perspective of a 

novice, these errors may have been made on somewhat “permissible” grounds. Irrelevant 

problems do indeed have sufficient information to be solved. If these cases are removed then 

in only 3.8% of the total number of cases where a student failed to text-edit a problem, did a 

pass in Section III occur.  

Group differences: A supplementary analysis. 

Students were classified on the basis of whether they were pursuing a predominately 

quantitative degree (Science: engineering and science majors, n = 50) or not (Non-science: 

commerce and arts majors, n = 40).  
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Table 4 

Performance of Science and Non-science students: Means (SD’s in parentheses) and test of 

group differences. 

 Science  Non-science   Test of Difference 
Variable n=50 n = 40  t df p-value 
TE-missing 0.43 (0.25) 0.25 (0.22)  3.54 88 0.001 

TE-sufficient 0.84 (0.23) 0.84 (0.20)  0.09 88 0.931 

TE-irrelevant 0.30 (0.23) 0.16 (0.21)  2.94 88 0.004 

TE-class A-M 0.64 (0.25) 0.55 (0.23)  1.75 88 0.084 

TE-class A-NM 0.36 (0.23) 0.33 (0.13)  0.65 88 0.518 

TE-class M-I 0.65 (0.37) 0.43 (0.31)  3.05 88 0.003 

TE-class M-NI 0.37 (0.17) 0.38 (0.17)  -0.23 88 0.818 

TE-class Comb. 0.60 (0.32) 0.40 (0.23)  3.36 88 0.001 

Classification 0.53 (0.17) 0.47 (0.18)  1.60 88 0.112 

Solution 0.43 (0.28) 0.23 (0.19)  3.80 88 0.000 

 

Table 4 reports the group mean scores for the measures from Table 2 and indicates, as 

might be expected, that Science students tended to perform significantly better than Non-

science students on most measures. The focus of these supplementary analyses is on members 

of the Science group who are likely to be more homogenous in mathematics and statistics 

experience, and hence, the regression analyses were repeated for only these students. In this 

sub-sample, 50% of the total variation in solution scores was accounted for by text-editing 

category measures and problem classification (R2 = .50, adjusted R2 = .46; F(4, 45) = 11.41, p 

< .001). Although when text-editing performance was partitioned into the five problem 

classes (R2
 = .53, adjusted R2 = .476; F(5, 44) = 9.89, p < .001). The general pattern of results 

was unchanged (TE A-M, p = .011; TE M-I, p = .007; TE Comb., p = .071).  

[insert Table 4 about here]this is a slight increase in R2 when compared to the combined 
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sample, the pattern of results did not change. The TE-missing measure remained the only 

unique predictor of solution (p = .001). Similarly, a slight increase in the total amount of 

variance in solution score was accounted for  

Discussion 

The text-editing task rests on the assumption that if a student can specify the 

necessary and sufficient information in the text of a problem required to solve it, then he or 

she possesses domain appropriate schematic knowledge (Low & Over, 1989, 1990, 1992, 

1993; Low et al., 1994; Ngu et al., 2002). Using problem solution as the benchmark for the 

attainment of schematic knowledge, we found support for this proposition but the strength of 

the association was less robust than that reported by Low and Over (1989, 1990). The 

literature also suggests that tasks such as the classification of problem relatedness are also 

effective measures of schematic knowledge. We did not find overwhelming support for this 

proposition and will begin by discussing possible reasons why the Section II classification 

task did not function as expected.  

Some studies (Low & Over, 1989, 1990; Schoenfeld & Herrmann, 1982; Sweller, 

1989) have found classification of problem relatedness to be a useful predictor of schematic 

knowledge. The present study found only a relatively weak relationship (r = .25, p < .05) that 

did not translate into a significant beta weight (i.e., incremental validity) when classification 

was used along with text-editing as a predictor of problem solution. In our view, these 

findings can be reconciled if the degree of complexity involved in the task and the level of 

expertise of the participants are taken into consideration. There is evidence to suggest that the 

development of knowledge and expertise in a domain does not necessarily move from 

declarative, to procedural, to schematic in a smooth monotonic fashion (e.g., Rittle-Johnson 

et al., 2001). There is also evidence to suggest that depth of knowledge does improve as 
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knowledge becomes proceduralized, and that expertise increases with the acquisition of 

schemas (Chi et al., 1982). Quite involved and precise use of schematic knowledge is 

required to perform well in the classification task (Cooper & Sweller, 1987; Sweller, 1989). 

It is likely that students in this sample had not yet acquired a mature understanding across all 

aspects of the problem domain and that the relative level of knowledge acquisition in this 

sample was not as well developed as samples from other studies. The probability domain 

itself is known to be particularly difficult for students to master (Konold, 1995). Discovering 

the conditions that determine the association between classification of problem relatedness 

and problem solution is an area for further research. 

Although the present study found a strong general association between text-editing 

and problem solution, the magnitude of the relationship was somewhat lower than that 

reported previously. Low and Over (1990) reported that detecting missing, irrelevant and 

sufficient information in the text-editing task accounted for up to 80 percent of the variation 

in ability to solve algebraic word problems. In the current study, text-editing accounted for 

approximately forty percent of the variation in the students' ability to solve probability 

problems. This is still an impressive outcome as far as the viability of text-editing is 

concerned but the discrepancies between the findings require some explanation. Two reasons 

are proposed for this. First, as previously suggested, it is possible that the high figures in the 

Low and Over studies were a result of an inherent association between solving and text-

editing identical problems. Our study avoided this confounding by having the surface details 

of repeated presentations altered while the structural or schematic details were kept the same. 

Second, differences between algebra and probability domains in the availability of alternative 

solution strategies may have contributed to the lower proportion of unexplained variability. 

The high R² values (> .80) reported by Low and Over (1989; 1990) may suggest that there 
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were only minor between-student variations in problem-solving strategies. Not only did our 

assessment span a more heterogeneous content, the students in this study were relative 

novices on at least some problem classes. Therefore the use of general problem-solving 

procedures (rather than schemas) is likely to have been more prominent and varied (Chi et 

al., 1982; Gick, 1986; Sweller et al., 1998) in our study. If a substantial proportion of students 

were using general problem-solving strategies to differentiate between appropriate formulas, 

it is not surprising that the variance in solution ability explained by text-editing was 

somewhat lower than in the case of the mathematics studies.  

Furthermore, we argued that it is likely that there were strong individual differences 

in exposure to training in mathematics and statistics and that these varying rates of exposure 

may have acted as moderating influences. The size of the sample dictates some caution when 

analysing subgroups. This considered, although the amount of variance accounted for 

increased slightly when the more homogenous sub-sample of Science students was compared 

to the full sample, the R2 values (around .50) did not approach the high values reported in 

previous work (Low & Over, 1989, 1990) and the pattern of variables predicting solution did 

not change.  

In their work using algebraic word problems, Low and her associates found that 

virtually no-one was able to solve a problem having failed text-editing (Low & Over, 1989, 

1990). This finding was replicated in the current study, although only after a response of 

“sufficient” was accepted as correct when irrelevant information was included. Low and Over 

interpreted this finding as indicating that the task of text-editing assesses a level of 

knowledge that is schematic in structure and nature. Such an interpretation is within the 

bounds of the declarative-procedural knowledge theory (Anderson, 1990; Anderson & 

Schunn, 2000) and the broader conceptualisation of schemas (Sweller et al., 1998). It has 
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been repeatedly demonstrated that schematic knowledge is a sufficient but not a necessary 

condition for solution and that general problem solving procedures can be used to supplement 

domain appropriate performance (Low & Over, 1990; Rumelhart & Norman, 1981). Our 

findings support this earlier research and show that the text-editing technique can be applied 

to the field of basic probability theory in statistics.  

 Finally, some comment on the validity of measurement is warranted. It seems clear 

that that the classification of problem relatedness may not be a suitable measure for these 

particiapnts. The preliminary analyses showed that differences in solution rate as a function 

of problem class provide evidence that students’ schemas for problems based on 

multiplication rules (M-I and M-NI) and problems based on multiple formulas (Comb.) may 

be less developed than are their schemas for addition-rule problems. Although text-editing 

performance reflected differences in simple versus complex instantiations of the addition and 

multiplication formula, it does not seem to be sensitive to the actual difficulties in solution. 

One possible reason for this divergence is that the recalculated text-editing score did not 

include items with missing information. It may be the case that identifying missing 

information is crucial to the sensitivity of the text-editing task to differences in knowledge.  

The regression analyses indicate that text-editing problems based on simple addition 

and multiplication rules were most predictive of solution. It seems that students are yet to 

acquire sufficiently elaborated schemas for the more complex classes of probability 

problems. We have evidence to suggest that text-editing is an appropriate tool to use with 

introductory statistics students and, rather than replacing solution as an assessment technique, 

can be used to supplement both instruction (e.g., Ngu et al., 2002) and assessment.  
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Conclusions 

It is impressive that text-editing, a technique designed to assess schematic knowledge 

without requiring students to actually solve problems, can explain up to forty percent of the 

variance in problem solution in such a diverse sample. From an educational point of view, it 

is equally impressive that students who were unable to text-edit a problem were almost 

certainly unable to then go on and solve it. The demonstration of this “necessary but not 

sufficient” link is a powerful reminder to students that mathematics is not purely about 

computational skills and that schematic knowledge is an essential prerequisite for skilled 

performance. Finally, the findings offer some support for the conceptualization of schematic 

knowledge as being a more advanced stage of knowledge-acquisition within the familiar 

declarative-procedural framework.  

We close with some comments about the limitations of our study. Firstly, we did not 

collect any qualitative data so we cannot tell just how novel the text-editing experience was 

for these students or how that novelty may have affected their responses. Further studies 

could devote more effort to familiarising students with text-editing procedures before 

commencing the collection of data. Secondly, we learned for ourselves that constructing 

problems that fit neatly into the various categories is not an easy task. Like any other form of 

assessment, it is important to validate items to ensure that they perform as expected. This 

may have been an issue for the classification of problem-relatedness tasks where boundaries 

between probability problem classes can be indistinct. Thirdly, and we have already alluded 

to this limitation, studies of knowledge acquisition depend on sampling a range of levels of 

expertise. Our choice of relatively naïve students may limit the generalisability of our 

findings. These limitations, however, were all likely to attenuate the strength of the 

association between text-editing and actual problem solving rather than to suggest a 
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connection that does not exist. Thus we conclude that the need for more innovative ways to 

assess statistical knowledge (Garfield, 1994) can be answered in part by using text-editing as 

an aid in learning and assessment. 
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Footnotes 

1. The generality of these strategies is evident in that competing theories of human reasoning 

typically do not dispute their importance. They are present in rule-based theories of reasoning 

(Braine, 1990; Rips, 1983, 1994), in theories based on mental models or representations 

(Halford, 1993; Johnson-Laird & Byrne, 1991), and have also been conceptualized in tasks 

that entail both rules and mental models (e.g., Birney & Halford, 2002).   

 

2. We acknowledge that there are often multiple ways to solve probability problems. The 

categories chosen reflect the framework in which probability was taught to the participants. 

 

3. Pillai’s Trace is a multivariate test of mean differences between repeated-measures of the 

same individual. Multivariate tests do not require the sphericity assumption of univariate 

tests. Hence, we use multivariate analyses to test the omnibus effects and univariate analyses 

for follow-up multiple-comparisons. 

 

 

  


