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ABSTRACT

The generalized multilinear model with the matrix-T error distribution is intro-
duced in this paper. The sum of squares and products (SSP) matrix, as a counterpart
of the Wishart matrix for the multinormal model, and the regression matrix for the
errors and the observed as well as future responses are defined. The distributions of
the regression matrix as well as the SSP matrix, and the prediction distribution of the
future regression matrix and the future SSP matrix are derived.

Key Words: Generalized multilinear model, matrix-T distribution, sum of squares
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1. INTRODUCTION

The Wishart distribution plays a key role in multivariate statistical analysis. This
important distribution was first derived by Wishart (1928) as the generalized product
moment distribution in sampling from a multivariate normal model. Further derivations
include Hsu (1939), Sverdrup (1947), Janbunathan (1965) and Fraser (1968a). In some
sense the Wishart distribution is a generalization of the univariate gamma (or χ2)
distribution derived as a sum of squares of samples from a normal population. It has a
wide range of applications in statistical inference problems, e.g. testing hypotheses in
multivariate analysis, factor analysis, as a natural conjugate prior in Bayesian analysis
for the precision matrix, to mention a few.

Traditionally most of the work on statistical theory is based on the normal or
multinormal models. The Wishart distribution is also obtained for the multinormal
model. But, the normality assumption is under increasing criticism for being non-robust.
It fails to allow sufficient probability in the tail areas to make allowance for the outliers
or extreme values. Furthermore, it can not handle the dependent but uncorrelated
responses which are often common in time series and econometric studies. On the
other hand, the matrix-T distribution as a generalization of the multivariate Student-
t distribution can overcome both the problems of outliers as well as dependent but
uncorrelated data. More importantly, the multivariate normal distribution is a special
case of the multivariate Student-t distribution when the degrees of freedom parameter
approaches infinity. It also covers the multivariate Cauchy distribution as a special
case when there is only one degree of freedom available. For further justification of
preference for the multivariate-t distribution over the multivariate normal distribution,
readers may refer to Prucha and Kelejian (1984).

Dickey (1967) derived the Matrix-T distribution as a logical generalization of the
multivariate Student-t distribution to deal with matrix variate problems. It has wide
applications in multivariate inference, especially in Bayesian analysis, as has been ap-
preciated by many authors including Box and Tiao (1992, sec. 8.4) and Press (1986).

The prediction distribution is of pivotal importance for predictive inference. It
has many applications in real life inferential problems. Aitchison and Dunsmore (1975)
emphasized the suitability of predictive inference, as opposed to the parametric inference
in the form of estimation and tests of parameters. Recently, Geisser (1993) used the
prediction distribution in many predictive inference applications. Some of the most
common and popular usages of the prediction distribution is in the construction of
tolerance regions, calibration, classification, test of goodness of fit, selection of best
population, perturbation analysis, process control and optimization. Unlike the above
normal based studies, Khan and Haq (1994) investigated the predictive inference for
the future responses from a multilinear model with matrix-T errors.
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In this paper, we introduce the generalized multilinear model with matrix-T error
distribution. We define the sum of squares and products (SSP) matrix for the errors as
well as the responses for the matrix-T model as a counter part of the Wishart matrix for
multinormal models. The SSP matrix will have a Wishart distribution if the errors are
normally distributed. Obviously, for the matrix-T model the SSP matrix does not follow
a Wishart distribution. Since the matrix-T distribution approaches to matrix variate
normal distribution as the degrees of freedom parameter tends to infinity, the matrix-T
model under study in this paper encompases the matrix normal distribution as a special
case as the limit. Haq and Rinco (1976) considered a similar model with independent
normal errors to construct a β -expectation tolerance region for the future responses
of the model using the structural distribution method. Here, we are interested in the
distributions of the regression as well as the SSP matrices for the matrix-T model. The
prediction distributions of the future regression matrix and the future SSP matrix are
also of interest. In particular, the distributions of the regression and the SSP matrix are
derived for the generalised matrix-T multilinear model using the invariant differentials
as well as orthogonal and triangular factorisation. The prediction distributions of the
future regression and the SSP matrix are also obtained for the model.

In section 2, the matrix-T distribution and the generalized multilinear model are
introduced. Some preliminaries are given in section 3. Distributions of the SSP matrix
and the regression matrix are obtianed in section 4. Section 5 derives the prediction
distributions of the SSP matrix as well as the regression matrix of the future errors and
responses.

2. THE MATRIX-T DISTRIBUTION AND GENERALIZED MULTILIN-

EAR MODEL

Let U be an m×n matrix of random variables. Then it is said to have a matrix-T
distribution if the joint density of the mn random elements of U is given by

p
(
U ; µ, A, Ω, ν

)
=

Γn

(
ν+m+n−1

2

)

(π)
mn
2 Γn

(
ν+n−1

2

) |Ω|n
2

|A|− ν+n−1
2

×
∣∣∣A +

(
U − µ

)′
Ω−1

(
U − µ

)∣∣∣
− ν+m+n−1

2

(2.1)

where E(U) = µ, an m × n matrix of location parameters; Ω is an m ×m scaled
covariance matrix of each column of U ; A is a positive definite matrix of order n×n;
ν > 0 is the shape parameter; and Γb( c

2 ) = (π)
b(b−1)

4
∏b

i=1 Γ( c−i+1
2 ) is the generalized

gamma function. The matrix-T density was first obtained by Dickey (1967) and it can
be equivalently written as the density of the transpose of U . From the above density it
is clear that the matrix-T distribution is a member of the elliptically symmetric family
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of distributions. In notation, we write U ∼ Tm×n

(
µ, A, Ω, ν

)
. Note that the covariance

of U is 1
ν−2A⊗Ω, an mn×mn matrix, where ⊗ is the Kronecker product between

two matrices. Thus, for the covariance matrix to be finite, we need a restriction on ν,

namely, ν > 2. Since ν is a positive real number, for different value of ν we get a dif-
ferent distribution, and hence the matrix-T model under study indeed represents a class
of elliptically symmetric distributions with varying shape. When the shape parameter
of the matrix-T distribution tends to infinity, the distribution of U approaches matric-
variate normal. Thus, limν→∞ Tm×n(µ, A, Ω, ν) → Nm×n(µ, A∗ ⊗ Ω) where A∗ = A

ν .

Moreover, for ν = 1, the matrix-T distribution becomes matrix Cauchy distribution.
It may also include a range of sub-Cauchy distributions when 0 < ν < 1.

The marginal and conditional distributions of any row (or column, if interested)
and one row, given another follow matrix-T distribution with appropriate parame-
ters. As a special case, if n = 1, the matrix U reduces to u, just a column vec-
tor of m components, and hence u ∼ tm(µ(m), a,Ω, ν) where E(u) = µ(m) and
Cov(u) = a

ν−2Ω, in which a is a scalar quantity. Let U , µ and A be parti-

tioned as follows: Um×n = [U1
m×n1

... U2
m×n2

], µm×n = [µ1
m×n1

... µ2
m×n2

] and

An×n =




A11
n1×n1

A12
n1×n2

A21
n2×n1

A22
n2×n2


 such that n = n1 + n2 and m = m1 + m2.

Then the marginal distribution of U1 is matrix-T with appropriate parame-
ters, that is, U1 ∼ Tm×n1

(
µ1, A11, Ω, ν

)
. Also, the conditional distribution of U2,

given U1 is matrix-T, that is, (U2|U1) ∼ Tm×n2

(
µ2, A22.1, Ω∗, ν + n1

)
where

µ2 = µ2 + (µ1 − U1)A11−1
A12, Ω∗ = Ω + (U1 − µ1)A11−1(U1 − µ1)′ and A22.1 =

A22 − A21A11−1
A12. The distribution of sub-blocks of U can also be obtained in a

similar fashion.
Now consider the following generalized multilinear model

Y = βX + ΓE (2.2)

where Y is a matrix of order m × n , each of its n columns may be viewed as the
response on m characteristics of an experiment; β is an m × p matrix of regression
parameters; X is the p × n matrix of regressors, usually known as design matrix;
Γ > 0 is the scale parameter matrix of order m×m ; and E is the m× n matrix of
errors associated with the response matrix Y .

Assume the errors in the model are dependent, but uncorrelated, and jointly follow
a matrix-T probability distribution. Also, assume that the expectation of E is 0 and
the covariance matrix of E is 1

ν−2Im ⊗ In , where 0 is an m × n matrix of 0 ’s and
⊗ denotes the Kronecker product. Thus the covariance matrix of each column of Y is
Σ = 1

ν−2ΓΓ ′ , and that of the Y matrix is 1
ν−2Σ ⊗ In .
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The joint density function of the mn random elements of E can be written as

p(E) =
Γm

(
r+m+n−1

2

)

π
mn
2 Γm

(
r+m−1

2

)
∣∣∣Im + EE′

∣∣∣
− r+m+n−1

2
(2.3)

where r is the number of degrees of freedom of the matrix-T distribution for the
errors. The above matrix-T density appears in many textbooks including Johnson and
Kotz (1972), and Press (1986). Fraser and Ng (1980) used such a density to analyse
multilinear model under a structural distribution set-up.

In this paper, we derive the distribution of the SSP matrix, and the prediction
distribution of the future regression as well as future SSP matrix for the generalized
multilinear model as specified in (2.2) and (2.3). To guarantee the positive definiteness
of the SSP matrix as well as the integrability on higher dimension we require that
n > m + p.

3. SOME PRELIMINARIES

Let us denote the regression matrix of E on X by B(E) and the error SSP
matrix by S(E) . Then we have

B(E) = EX ′(XX ′)−1 and

S(E) = [E −B(E)X][E −B(E)X]′.
(3.1)

Let C(E) be a nonsingular matrix such that the error SSP matrix S(E) can be written
as C(E)C ′(E) = S(E) , and D(E) = C−1(E)[E − B(E)X] is the ‘standardized’
residual matrix.

Now we can write the error matrix, E, in the following way:

E = B(E)X + C(E)D(E) (3.2)

and hence we get
EE′ = B(E)XX ′B′(E) + C(E)C ′(E) , (3.3)

since D(E)D′(E) = Im and XD′(E) = O.

From (3.2) and (2.2), the following relations can easily be established:

B(E) = Γ−1{B(Y )− β}
C(E) = Γ−1C(Y ), (3.4)

where
B(Y ) = Y X ′(XX ′)−1 and

S(Y ) = C(Y )C ′(Y )
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are the regression matrix of Y on X , and the SSP matrix for the observed responses
respectively.

It may be mentioned here that both C(E) and C(Y ) have the same structure
since the definitions of S(E) in (3.1) and that of S(Y ) in (3.4) ensure the same format
of the two SSP matrices of the error and response respectively. For the derivation of
some of the forthcoming results, it is required that the determinant of C(E) is positive
in the sense that S(E) = C(E)C ′(E) is positive definite (cf. Fraser and Ng, 1980).
It can be easily shown that D(E) = D(Y ). In the next section, the distributions of
S(E), S(Y ), B(E) and B(Y ) are obtained.

4. THE DISTRIBUTION OF THE SSP MATRIX

From the probability density of E in (2.3) and the relation (3.3) the joint proba-
bility density of B(E) and C(E), conditional on the D(E), is obtained by using the
invariant differentials (see Eaton, 1983, p.194-206) as follows

p
(
B(E), C(E)

∣∣∣D(E
)

= K1(D)
∣∣∣C(E)

∣∣∣
n−p−m

∣∣∣Im + B(E)XX ′B′(E) + C(E)C ′(E)
∣∣∣
− r+m+n−1

2
(4.1)

where K1(D) is the normalizing constant.

It is convenient to factorise C(E) into its orthogonal component O(E) and the
positive lower triangular component L(E) as follows:

C(E) = L(E)O(E). (4.2)

For detail on such factorisation see Fraser (1968b, Ch.3 Sec. 6). This kind of factorisa-
tion is essential to facilitate the multiple integrations. Now it can be shown that

dC(E)
|C(E)|m =

dL(E)dO(E)
|L(E)|∆ (4.3)

where d O(E) is interpreted as the volume orthogonal to the orbits of the positive
lower triangular scale group in <m2

, L(E) is a lower triangular matrix, |L(E)|∆ is
the increasing determinant of L(E) and is equal to the product of the diagonal elements
of L(E) each being raised to the power of its position. Now the relation (3.3) can be
written as

EE′ = B(E)XX ′B′(E) + L(E)O(E)O′(E)L′(E)

= B(E)XX ′B′(E) + L(E)L′(E) . (4.4)
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Therefore, from (4.1), (4.3) and (4.4), the joint probability element of B(E), L(E)
and O(E) becomes

p
(
B(E), L(E), O(E)

∣∣∣D(E)
)
dB(E)dL(E)dO(E) = K2(D)

|L(E)|n−p

|L(E)|∆
×

∣∣∣Im + B(E)XX ′B′(E) + L(E)L′(E)
∣∣∣
− r+m+n−1

2
dB(E)dL(E)dO(E)

(4.5)

where K2(D) is the appropriate normalizing constant. Then the marginal density of
B(E) and L(E) is obtained from (4.5) by integrating out O(E) :

p
(
B(E), L(E)

∣∣∣D(E)
)

= K3(D)
|L(E)|n−p

|L(E)|∆
×

∣∣∣Im + B(E)XX ′B′(E) + L(E)L′(E)
∣∣∣
− r+m+n−1

2
.

(4.6)

The SSP matrix of the error matrix E for the generalized multilinear model is
obtained from the positive lower triangular matrix L(E) as follows:

L(E)L′(E) = L(E)O(E)O′(E)L′(E) = C(E)C ′(E)

= C(E)D(E)D′(E)C ′(E)

= {E −B(E)X}{E −B(E)X}′ = S(E).

(4.7)

Substituting the relation (4.7) and utilizing the inverse Jacobian factor, J{S(E) →
L(E)} = |L(E)|∇ , where |L(E)|∇ is the decreasing determinant of L(E) , and the
relation |S(E)|m+1

2 = |L(E)|∆ × |L(E)|∇ in (4.6), the joint density of B(E) and
S(E) is obtained as

p
(
B(E), S(E)

∣∣∣D(·)
)

= K4(D)
∣∣∣S(E)

∣∣∣
n−p−m−1

2

∣∣∣Im + B(E)XX ′B′(E) + S(E)
∣∣∣
− r+m+n−1

2

(4.8)

where K4(D) is the appropriate normalizing constant.
Now the marginal density of the SSP matrix, S(E) is obtained from (4.8) by

integrating out B(E) using the matrix-T integral. Thus we obtain the probability
density function of S(E) as follows:

p
(
S(E)

∣∣∣D(E)
)

= K5(D)
∣∣∣Im + S(E)

∣∣∣
− r+m+n−1

2
∣∣∣S(E)

∣∣∣
n−p−m−1

2
(4.9)

where

K5(D) = B−1
m

(
n− p

2
,

r + m− 1
2

)
=

[
Γm(n−p

2 )Γm( r+m−1
2 )

Γm( r+m+n−p−1
2 )

]−1
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is the normalizing constant and is obtained by using the generalized beta integral of
the second kind. The notation Bm

−1(·) stands for the inverse of the generalized beta
function. The density of S(E) in (4.9) does not depend on D(E) and hence we can
re-write it as follows:

p
(
S(E)

)
= B−1

m

(
n− p

2
,

r + m− 1
2

) ∣∣∣S(E)
∣∣∣

n−p−m−1
2

∣∣∣Im + S(E)
∣∣∣
− r+m+n−1

2
. (4.10)

The density in (4.10) gives the distribution of the SSP matrix for the realized but
unobserved error matrix E for the generalized multilinear model with matrix-T error
distribution. The density obtained in (4.10) is known as the generalized beta density
(cf. Olkin, 1959). The degrees of freedom for the generalized beta density are (n − p)
and (r+m−1) . Khan (2000) provides an extension of the generalized beta distribution
with a matrix argument.

To derive the distribution of the SSP matrix of the responses, S(Y ) , consider the
transformation

C(E) = Γ−1C(Y ),

or equivalently S(E) = Γ−1S(Y )Γ ′−1

in (4.10), the Jacobian of the transformation being J{S(E) → S(Y )} = |Γ−1|m+1.

(See, for instance, Deemer and Olkin (1951)). Further detail on the matrix calculus can
be found in Magnus and Neudecker (1988).

The density function of S(Y ) is then obtained as

p
(
S(Y )

∣∣∣Y
)

= K6

∣∣∣S(Y )
∣∣∣

n−p−m−1
2

∣∣∣Im + Σ−1S(Y )
∣∣∣
− r+m+n−p−1

2
(4.11)

where K6 = |Σ|n−p
2 Bm

(
n−p

2 , r+m−1
2

)
in which Bm(·) is the generalized beta function.

The density in (4.11) can also be obtained directly from (4.8) by using the following
transformations

B(E) = Γ−1{B(Y )− β}
S(E) = Γ−1S(Y )Γ ′−1

(4.12)

with the Jacobian J{(B(E), S(E)) → (B(Y ), S(Y ))} = |Γ−1|m+p+1 , and then
integrating out B(Y ) from the joint p.d.f. of B(Y ) and S(Y ) . For detail about
the Jacobian of symmetric matrices see Henderson and Searle (1979). Fraser (1979,
p.290) used a similar transformation to analyse a multilinear model with normal errors
by using the structural method. The density function of S(Y ) , as given in (4.11), is
the p.d.f. of the SSP matrix, S(Y ) for the responses from a generalized multilinear
model with matrix-T error distribution.
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4.1 Distribution of the Regression Matrix

The distribution of the error regression matrix, B(E), can be derived from (4.8)
by integrating out S(E) by using the generalised beta integral of the second kind as
follows:

p
(
B(E)

∣∣∣D
)

= K7(D)
∣∣∣Im + B(E)XX ′B′(E)

∣∣∣
− r+m+p−1

2 (4.13)

where the normalizing constant

K7(D) =
|XX ′|m

2 Γm( r+m+p−1
2 )

(π)
mp
2 Γm( r+m−1

2 )

is obtained by the matrix-T integration. Note that the normalizing constant does not
depend on D, and hence the conditional distribution is the same as the unconditional
distribution.

Now the distribution of B(Y ) is found by applying the transformation

B(E) = Γ−1{B(Y )− β}

as follows:

p
(
B(Y )|D

)
= K7(D) |Σ|− p

2

∣∣∣Im + {B(Y )− β}Σ−1XX ′{B(Y )− β}′
∣∣∣
− r+m+p−1

2
.

(4.14)
Both the distributions of S(Y ) and B(Y ) depend on the original degrees of freedom
parameter, r of the matrix-T distribution.

5. THE PREDICTION DISTRIBUTIONS

Consider n′ ≥ 1 future responses from the generalized multilinear model as defined
in (2.2) and (2.3):

Yf = βXf + ΓEf (5.1)

where Xf is a p×n′ dimensional design matrix of the future values of the p regressors;
Ef is an m×n′ dimensional matrix of future errors associated with the future response
matrix Yf of the same order; and β and Γ are the regression and scale parameter
matrices as defined in (2.2).

Assuming that Ef has the same distribution as E, the joint density function of
the realized and the future errors can be written as

p
(
E, Ef

)
=

Γm( r+m+n+n′−1
2 )

π
m(n+n′)

2 Γm( r+m−1
2 )

∣∣∣Im + EE′ + EfE′
f

∣∣∣
− r+m+n+n′−1

2
(5.2)

where r is the number of degrees of freedom.
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Following the arguments used in the previous section, we define the following statis-
tics in terms of the future error and design matrices

Bf (Ef ) = EfX ′
f

(
XfX ′

f

)−1

and Cf (Ef ) = [Ef − {Bf (Ef )Xf ][D(Ef )]−1,

which gives,
Ef = Bf (Ef )Xf + Cf (Ef )D(Ef ). (5.3)

Therefore, we can write,

EfE′
f = Bf (Ef )XfX ′

fB′
f (Ef ) + Cf (Ef )C ′

f (Ef ) (5.4)

and
Sf (Ef ) = Cf (Ef )C ′

f (Ef ),

as the SSP matrix for the future error variables associated with the unobserved future
response matrix Yf .

5.1 Distribution of the Future Regression Matrix

In this sub-section we derive the prediction distribution of the future regression
matrix, conditional on the observed responses. The joint density function of the error
statistics B(E) , S(E) , Bf (Ef ) and Sf (Ef ), for given D, is derived from (5.2) by
applying the properties of invariant differentials, as follows:

p
(
B(E), S(E), Bf (Ef ),Sf (Ef )

∣∣∣D
)

= Ψ1 ×
∣∣∣S(E)

∣∣∣
n−m−p−1

2
∣∣∣Sf (Ef )

∣∣∣
n′−m−p−1

2

×
∣∣∣Im + g1

(
B, X

)
+ S(E) + g2

(
Bf , Xf

)
+ Sf (Ef )

∣∣∣
− r+m+n+n′−1

2

(5.5)

where g1

(
B,X

)
= B(E)XX ′B′(E) and g2

(
Bf ,Xf

)
= Bf (Ef )XfX ′

fB′
f (Ef ) and

Ψ1 is the normalizing constant.
The structural relation of the model yields

B(E) = Σ− 1
2 [B(Y )− β] and S(E) = Σ−1S(Y )

where
B(Y ) = Y X ′(XX ′)−1,

S(Y ) = [Y −B(Y )X][Y −B(Y )X]′ and

ΓΓ ′ = Σ.

The joint distribution of β, Σ, Bf (Ef ), and Sf (Ef ) is then obtained by using the
Jacobian of the transformation,

J
{

[B(E), S(E)] → [β,Σ]
}

=
∣∣∣S(Y )

∣∣∣
m+1

2
∣∣∣Σ−1

∣∣∣
p+2m+2

2
,
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as follows:

p
(
β,Σ,Bf (Ef ), Sf (Ef )

∣∣∣D
)

= Ψ2 ×
∣∣∣S

∣∣∣
n−p

2

∣∣∣Sf (Yf )
∣∣∣

n′−m−p−1
2

∣∣∣Σ
∣∣∣
−n+m+1

2

×
∣∣∣Im + Σ−1

{
(B − β)XX ′(B − β)′ + S

}

+ Bf (Ef )XfX ′
fB′

f (Ef ) + Sf (Ef )
∣∣∣
− r+m+n+n′−1

2

(5.6)

where B = B(Y ) and S = S(Y ) .

Now, since

Bf (Ef ) = Σ− 1
2 [Bf (Yf )− β] and Sf (Ef ) = Σ−1Sf (Yf )

where
Bf (Yf ) = YfX ′

f (XfX ′
f )−1, and

Sf (Yf ) = [Yf −Bf (Yf )Xf ][Yf −Bf (Yf )Xf ]′,

the joint density of β , Σ , Bf (Yf ) and Sf (Yf ) is obtained as

p
(
β,Σ, Bf ,Sf

∣∣∣D
)

= Ψ3(·)×
∣∣∣S

∣∣∣
n−p

2

×
∣∣∣Sf (Yf )

∣∣∣
n′−m−p−1

2
∣∣∣Σ

∣∣∣
−n+n′+m+1

2

×
∣∣∣Im + Σ−1

{(
B − β

)
XX ′

(
B − β

)′

+ S +
(
Bf − β

)
XfX ′

f

(
Bf − β

)′
+ Sf

}∣∣∣
− r+m+n+n′−1

2

(5.7)

where Bf = Bf (Yf ) and Sf = Sf (Yf ) .

Note that the Jacobian of the transformation is

J
{

[Bf (Ef ), Sf (Ef )] → [Bf (Yf ), Sf (Yf )]
}

=
∣∣∣Σ−1

∣∣∣
p+m+1

2
.

To evaluate the normalizing constant Ψ3(·) , note the following.

Let

IΣ =
∫

Σ

p
(
β, Σ,Bf , bSf |D

)
dΣ

=
∣∣∣Sf

∣∣∣
n′−m−p−1

2
∫

Σ

∣∣∣Σ−1
∣∣∣
−n+n′+m+1

2

∣∣∣Im + Σ−1Q
∣∣∣
− r+m+n+n′−1

2
dΣ

(5.8)
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where

Q =
(
B − β

)
XX ′

(
B − β

)′
+ S +

(
Bf − β

)
XfX ′

f

(
Bf − β

)′
+ Sf .

Putting Σ−1 = Λ , we have

dΣ =
∣∣∣Λ−1

∣∣∣
m+1

dΛ.

Therefore,

IΣ =
∣∣∣Sf

∣∣∣
n′−m−p−1

2
∫

Λ

∣∣∣Λ−1
∣∣∣
−n+n′−m−1

2

×
∣∣∣Im + ΛQ

∣∣∣
− r+m+n+n′−1

2
dΛ

= Bm

(n + n′

2
,
r + m− 1

2

)∣∣∣Sf

∣∣∣
n′−m−p−1

2
∣∣∣Q

∣∣∣
n′−m−p−1

2
.

(5.9)

Now, the terms involving β in Q can be expressed as follows:

(
B − β

)
XX ′

(
B − β

)′
+

(
Bf − β

)
XfX ′

f

(
Bf − β

)′
=

(
β − FA−1

)
A

(
β − FA−1

)′
+

(
Bf −B

)
F−1

(
Bf −B

)′

where

F = BXX ′ + BfXfX ′
f , A = XX ′ + XfX ′

f , and H = [XX ′]−1 + [XfX ′
f ]−1.

Then, let

IΣβ =
∫

β

IΣ dβ

= Bm

(n + n′

2
,
r + m− 1

2

)∣∣∣Sf

∣∣∣
n′−m−p−1

2

×
∫

β

∣∣∣
(
Bf −B

)
H−1

(
B′

f −B
)

+ S + Sf + g
(
β, A

)∣∣∣
−n+n′

2
dβ

=
(π)

mp
2 Γm( r+m−1

2 )Γm(n+n′−p
2 )

∣∣∣A
∣∣∣

m
2
Γm( r+mn+n′−1

2 )

∣∣∣Sf

∣∣∣
n′−m−p−1

2

×
∣∣∣
(
Bf −B

)
H−1

(
B′

f −B
)

+ S + Sf + g
(
β, A

)∣∣∣
−n+n′−p

2
dβ

(5.10)

where

g
(
β,A

)
=

(
β − FA−1

)
A

(
β − FA−1

)′
.
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In the same way, let

IΣβBf
=

∫

Bf

IΣβ dBf

=
(π)

mp
2 Γm( r+m−1

2 )Γm(n+n′−p
2 )

∣∣∣A
∣∣∣

m
2
Γm( r+mn+n′−1

2 )

∣∣∣Sf

∣∣∣
n′−m−p−1

2

×
∫

Bf

∣∣∣
(
Bf −B

)
H−1

(
B′

f −B
)

+ S + Sf + g
(
β,A

)∣∣∣
−n+n′−p

2
dBf

=
(π)mpΓm( r+m−1

2 )Γm(n+n′−2p
2 )

∣∣∣A
∣∣∣

m
2
∣∣∣H

∣∣∣
−m

2
Γm( r+mn+n′−1

2 )

∣∣∣Sf

∣∣∣
n′−m−p−1

2
∣∣∣S + Sf

∣∣∣
−n+n′−2p

2
.

(5.11)

Finally, let

IΣβBf Sf
=

∫

Sf

IΣβBf
dSf

=
(π)mpΓm( r+m−1

2 )Γm(n+n′−2p
2 )

∣∣∣A
∣∣∣

m
2
∣∣∣H

∣∣∣
−m

2
Γm( r+mn+n′−1

2 )

×
∫

Sf

∣∣∣Sf

∣∣∣
n′−m−p−1

2
∣∣∣S + Sf

∣∣∣
−n+n′−2p

2
dSf

=
(π)mpΓm( r+m−1

2 )Γm(n−p
2 )Γm(n′−p

2 )
∣∣∣S

∣∣∣
−n−p

2

∣∣∣A
∣∣∣

m
2
∣∣∣H

∣∣∣
−m

2
Γm( r+mn+n′−1

2 )
.

(5.12)

Thus, the normalizing constant becomes,

Ψ3(·) =

∣∣∣A
∣∣∣

m
2
∣∣∣H

∣∣∣
−m

2
Γm( r+mn+n′−1

2 )

(π)mpΓm( r+m−1
2 )Γm(n−p

2 )Γm(n′−p
2 )

∣∣∣S
∣∣∣
−n−p

2
. (5.13)

The marginal density of β , Bf and Sf is derived by integrating out Σ from
(5.7). Thus, we have,

p
(
β, Bf , Sf

)
= Ψ4 ×

∣∣∣S
∣∣∣

n−p
2

∣∣∣Sf

∣∣∣
n′−m−p−1

2
∣∣∣S +

(
β − FA−1

)
A

×
(
β − FA−1

)′
+

(
Bf −B

)
H−1

(
Bf −B

)
+ Sf

∣∣∣
−n+n′

2

(5.14)

where Ψ4 is the normalizing constant.
Similarly, the marginal density of Bf and Sf is obtained by integrating out β

over <mp from (5.14). This gives

p
(
Bf ,Sf

)
= Ψ5 ×

∣∣∣S
∣∣∣

n−p
2

∣∣∣Sf

∣∣∣
n′−m−p−1

2

×
∣∣∣S + Sf +

(
Bf −B

)
H−1

(
Bf −B

)∣∣∣
−n+n′−p

2

(5.15)
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where

Ψ5 =
Γm(n+n′−p

2 )

(π)
mp
2 Γm(n−p

2 )Γm(n′−p
2 )

∣∣∣H
∣∣∣
−m

2

is the normalizing constant.
The prediction distribution of the future regression matrix, Bf = Bf (Yf ), can

now be obtained by integrating out Sf from (5.15). The integration yields

p
(
Bf

∣∣∣Y
)

= Ψ6 ×
∣∣∣S +

(
Bf −B

)
H−1

(
Bf −B

)′∣∣∣
−n

2
(5.16)

where Ψ6 = Ψ4 ×Bm

(
n′−p

2 , n
2

)∣∣∣S
∣∣∣

n−p
2

. On simplification we get

Ψ6 =
Γm(n

2 )

(π)
mp
2 Γm(n−p

2 )
∣∣∣H

∣∣∣
m
2

.

The prediction distribution of Bf can be written in the usual matrix-T form as follows:

p
(
Bf

∣∣∣Y
)

= Ψ6 ×
∣∣∣S

∣∣∣
−n

2

×
∣∣∣Im +

(
Bf −B

)[
SH

]−1(
Bf −B

)′∣∣∣
−n

2
(5.17)

in which n > p + m − 1 . The density in (5.17) is a matrix-T density. Therefore, the
prediction distribution of the future regression matrix, Bf , conditional on the observed
responses, is a matrix-T distribution of dimension m×p , and (n−p−m+1) degrees of
freedom. It is observed that unlike the distribution of B(Y ) the prediction distribution
of Bf does not depend on the number of degrees of freedom, r of the model.

5.2 Distribution of the Future SSP Matrix

The prediction distribution of the future SSP matrix, Sf (Yf ) , based on the future
responses, Yf , conditional on the observed responses, Y , is obtained by integrating
out Bf from (5.15) as follows:

p
(
Sf (Yf )

∣∣∣Y
)

= Ψ7 ×
∣∣∣Sf (Yf )

∣∣∣
n′−p−m−1

2
∣∣∣S + Sf (Yf )

∣∣∣
−n+n′−2p

2
. (5.18)

The density in (5.18) can be written in the usual matrix-T form as follows:

p
(
Sf

∣∣∣Y
)

= Ψ7 ×
∣∣∣S

∣∣∣
n′−p

2
∣∣∣Sf

∣∣∣
n′−p−m−1

2
∣∣∣Im + S−1Sf

∣∣∣
−n+n′−2p

2 (5.19)

where Ψ7 = Γm( n
2 )|S|−n

2

(π)
mp
2 Γm( n−p

2 )|H|m
2

.
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This is the prediction distribution of the SSP matrix based on the future response
Yf , conditional on the observed responses, from a generalized multilinear model with
matrix-T error variable. The density in (5.19) is a modified form of generalized beta
density with (n′ − p) and (n − p) degrees of freedom. Once again note that unlike
the distribution of S(Y ) the prediction distribution of the future SSP matrix does not
depend on the degrees of freedom, r of the model.
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Proof of Equation (4.1)

The error matrix E in Rmn can be viewed as a sequence of m vectors,
e1, e2, · · · , em in Rn . Let L+(X, E) be a (p + m) -dimensional subspace spanned by
the row vectors of X and E . Project an arbitrary but fixed sequence of m linearly
independent vectors onto L+(X, E) together with the same order as the positive ori-
entation. Then orthogonalise the m vectors in that sequence to obtain orthogonalised
vectors, d1, d2, · · · , dm that are also orthogonal to x1,x2, · · · , xp . These provide a
basis x1, x2, · · · , xp,d1,d2, · · · , dm for L+(X, E) except for a set of measure zero for
which the projections are linearly dependent. Note that D(E) can be written as the
collection of the sequence of orthonormal vectors, d1, d2, · · · , dm .

Using the same notations as in the paper, we can write the error matrix, E, in the
following way:

E = B(E)X + C(E)D(E) (1)

and hence
EE′ = B(E)XX ′B′(E) + C(E)C ′(E). (2)

For the matrix-T model, the joint density function of the mn random elements of E
is given by

p(E) =
Γm

(
r+m+n−1

2

)

π
mn
2 Γm

(
r+m−1

2

)
∣∣∣Im + EE′

∣∣∣
− r+m+n−1

2
. (3)

To derive the joint distribution of B(E) and C(E), conditional on D(E), we note
the following argument regarding invariant differentials (cf. Fraser and Ng, 1980). As
E varies in Rmn , D(E) traces out smoothly the set of all m dimensional subspaces of
Rn−p , which is a copy of Grassman manifold Gm,n−p . Let dD(E) denote the volume
element of Gm,n−p orthogonal to the subspace L+(X, E) . Hence the relationship
between the volume elements of the error matrix, E and that of the B(E) and C(E),
conditional on D(E), is

dE = |XX ′|m
2 |C(E)|n−m−pdB(E)dC(E)dD(E). (4)

For further details, please refer to Fraser (1978, p.283-285). Now using the results in
(2) and (4), the density in (3) becomes

p
(
B(E), C(E)

∣∣∣D(E
)

= K1(D)
∣∣∣C(E)

∣∣∣
n−p−m

∣∣∣Im + B(E)XX ′B′(E) + C(E)C ′(E)
∣∣∣
− r+m+n−1

2
.

(5)

Hence the proof.
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