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a b s t r a c t

Background: Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia
and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment
can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG)
signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously.
Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the
predictions of machine learning or deep learning models.
Method: The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated
AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform,
which automatically adjusts to changes in EEGs. The optimum number of features needed for effective
system performance is also explored in this work, along with the discovery of the most discriminant
channel. The paper also presents the technique that can be used to explain both the individual and
overall predictions provided by the classifier model.
Results: We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-
validation strategy.
Conclusions: We have suggested a precise and explainable AZD detection technique. Researchers and
clinicians can investigate hidden information concerning changes in the brain during AZD using our
proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD,
as it is accurate and robust.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dementia is one of the most typical forms of Alzheimer’s dis-
ase (AZD), resulting in up to 80% of the cases [1]. AZD is chronic,
tarting with mild memory loss and potentially progressing to
he loss of communication and environmental awareness. The
rain regions responsible for thought, memory, and language are
ffected by AZD. It can significantly impair a person’s capacity to
arry out daily tasks. The estimated prevalence of dementia from
ll causes ranges from 8.7% in North Africa and the Middle East,
.7% in Central Europe, and 6.4% in North America. More than 46
illion people worldwide already suffer from dementia, and by
050, that number is expected to rise to 131.5 million [2]. Women
re about twice likely to develop AZD than men, however, men
ave a relatively shorter life span after the diagnosis [1]. AZD
evelops in a majority of people after the age of 65 and people
iving with the disease doubles every 5 years beyond the age
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of 65 [3]. Young individuals can also get AZD but it is uncom-
mon. The socio-economical conditions also play a key role in the
progression or development of AZD. Countries with low income
have a higher prevalence of developing AZD than the developed
economies. AZD is characterized by memory impairments, con-
fusion with location, poor judgment, frequent changes in mood
or personality, lack of concentration, unfounded suspicions about
family, friends and professional caregivers, difficulty in speaking,
swallowing and walking, etc [3]. Although AZD is incurable, early
detection and diagnosis of AZD may allow patients to carry out
their tasks normally and delay its progression. This demands an
urgent need for an accurate and automated AZD detection system.

Numerous methods have been developed to detect and diag-
nose AZD. The techniques to diagnose AZD involve manual as-
sessment, brain-imaging, and signaling. Manual assessment make
use of mental status testing, neuropsychological tests, and in-
terviews with friends and family [4]. Brain-imaging diagnosis
of AZD include computerized tomography, Positron emission to-
mography, functional magnetic resonance imaging (fMRI), and
magnetic resonance imaging [5,6]. Signaling-based AZD diagnosis
make use of electroencephalogram (EEG) signals and magneto-

encephalogram (MEG) signals [7]. However, manual assessment
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s susceptible to bias, depends on experience of the experts,
nd time-consuming. Brain-imaging techniques provide detailed
opology of the brain changes but are expensive, require extra
ecordings, and may be prone to radiations. Signaling techniques
re fast, portable, provide minute temporal resolution, and cost
ffective. MEG signaling require dedicated room for recording,
he equipments are costly, and bulky. The underlying limitations
f various techniques and modalities makes EEG a better choice
or AZD detection. Also, EEG signals are globally accepted and
xplored for the detection of numerous brain conditions [8–11].
ence, we used EEG signals in our analysis for the detection of
ZD. Various studies have used EEG signals for AZD detection and
re discussed in the next section.

. Related work

Over time, many EEG-based studies have been reported by
esearchers for automated recognition of AZD (and normal cog-
ition (NC)). In this section, a detailed description of the recently
eveloped AZD detection methods are explored. The description
ncludes EEG dataset, signal analysis methods, validation strategy,
nd decision-making techniques. Table 1 presents the summary
f the existing state-of-the-art (SOTA) techniques used for AZD
etection using EEG signals.

.1. Summary of the existing models

Authors have used relative band power (RBP), spectral anal-
sis, different entropies like approximate (ApEN), permutation
PEN), sample (SampEN), spectral (SpecEN), Shannon (SHEN),
uadratic sample entropy (QSE), fuzzy (FEN), multiscale entropy
MSE), nonlinear features including Lampel Ziv complexity (LZC),
orrelation dimension, Hjorth complexity (HC), auto mutual in-
ormation (AMI) and Lyapunov exponents combined to detect
ZD [12–19]. Authors have extracted linear and nonlinear fea-
ures, decomposition-based AZD detection which includes tun-
ble Q wavelet transform (TQWT), empirical mode decomposition
EMD), rational dyadic low-complexity orthogonal filter banks
ith vanishing moments (LCOWFBs-v), and wavelet packet analy-
is (WPA) with traditional machine learning (ML)-techniques like
ecision tree (DT), random forest (RF), support vector machine
SVM) including least square SVM (LSSVM), k-nearest neigh-
ors (KNN), artificial neural network (ANN), ensemble family
lassifiers (boost, bagged (EBT), and random undersampling) [20–
4]. In addition, time, frequency, and time–frequency analysis
ombined with ML-based techniques have been explored for the
etection of AZD using short-time Fourier transform (STFT), con-
inuous wavelet transforms (CWT), primate brain pattern (PBP),
iscrete wavelet transform (DWT), and spectral analysis [25–
2]. Authors have also explored deep learning (DL) techniques
or the automatic detection of AZD and its stages using con-
olutional neural networks (CNNs), variational auto-encoders,
ong-short term memory (LSTM) networks, recurrent neural net-
orks, deep dynamic residual networks, generative adversarial
etworks, deep pyramidal CNN (DPCNN), and variational auto
ncoder [33–45]. The EEG signals are transformed into images
o obtain the time–frequency representations using stationary
avelets, CWT, and STFT. In some cases, principal component
nalysis (PCA), spectral analysis (fast Fourier transform), and cor-
elation analysis have been explored for AZD detection [33–45].
2

2.2. Challenges with existing models

Choosing an appropriate scaling function for nonlinear fea-
tures is difficult. There is difficulty in the selection of window
type for STFT and its length. Appropriate choice of type of mother
wavelet for wavelet-based analysis are few limitations of the ex-
isting methods. Also, the filtering techniques suffer band overlap-
ping and fast Fourier transform lacks time–frequency localization.
The EEG signals are nonlinear which makes its analysis difficult.

2.3. Available scope for AZD detection

The scope available for the accurate detection of AZD are given
below:

• Adaptive signal analysis: The existing feature extraction
techniques use a predefined basis to analyze the sponta-
neously varying EEG signals which may not extract repre-
sentative information.

• Selection of optimal feature: There is no standard tech-
nique or tool that describes the requirement of minimal
number of features required for maximizing the system
performance.

• Computational cost: DL techniques enable automatic fea-
ture extraction and classification but demands higher mem-
ory requirements, computationally expensive, and timely.

• Explainability: It is introduced to aid in interpreting the de-
veloped models using SHapley Additive exPlanations (SHAP),
Local Interpretable Model-agnostic Explanations (LIME),
Gradient-weighted Class Activation Mapping (Grad-CAM),
Guided Grad-CAM, and Expected Gradients methods [46].

.4. Thesis of the paper

The proposed work explores the aforementioned issues to
arrow down the research gaps in the detection of AZD using EEG
ignals. Therefore, an adaptive flexible analytic wavelet transform
AFAWT) has been proposed for the automatic selection of tuning
arameters to decompose the EEG signals into subbands (SBs).
t is accomplished using an evolutionary artificial hummingbird
ptimization algorithm (AHOA) to minimize the root mean square
eviation (RMSD) of decomposition [47]. Feature engineering and
hannel play a crucial role in brain disorder detection. In this
tudy, we have performed the channel and feature analysis to find
he most significant channel and an optimal number of features
equired for accurate detection of AZD. The explainable boosting
achine (XBM) with three explainers are used to explain individ-
al and overall predictions [48]. The effectiveness of the proposed
dazd-Net (adaptive Alzheimer’s disease detection network) is
valuated by comparing performance matrices using holdout,
eave one subject out (LOSO), and 10-fold cross-validation (CV)
echniques. We have compared our results with the existing
tate-of-the-art (SOTA) models using the same AZD EEG dataset.
inally, we have evaluated five performance matrices: accuracy
ACCY), precision (PRCS), sensitivity (SNSY), specificity (SPCY),
nd F1-score to study the effectiveness of our developed Adazd-
et model. The main contributions of our developed model are
isted as follows:

• The EEG signals are highly varying and hence difficult to
analyze [49]. Therefore, we have developed an AFAWT to
automate the tuning parameters to obtain adaptive SBs.

• AZD destroy neurons and their connections in parts of the
brain involving memory [5,27]. Therefore, we have con-
ducted brain region analysis at different lobes to find sig-
nificant regions contributing to AZD.
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Table 1
Summary of previous studies conducted on automated AZD detection using EEG signals.
Author(s) & Year Method Technique Validation

strategy
Dataset (Subjects)

[12] & 2022 RBP, SpecEN, and HC SA LOSO AZD:12 NC:9

[13] & 2022 PEN, SampEN, and LZC SA – AZD1:17 AZD2:16
NC:16

[14] & 2006 MSE SA – AZD:12 NC:11

[18] & 2006 SpecEN and SHEN SA – AZD:12 NC:11

[15] & 2006 ApEN and Spectral analysis SA – AZD:10 NC:08

[16] & 2008 ApEN and AMI SA – AZD:11 NC:11

[19] & 2015 QSE SA – AZD:11 NC:11

[17] & 2018 FEN SA – AZD:12 NC:11

[26] & 2019 STFT, CWT, modulation
features, spectral features, and
amplitude modulation rate of
change

traditional ML LOSO AZD1:15 AZD2:19
NC:20

[25] & 2017 Spectral, coherence, and
amplitude modulation features

traditional ML 10-fold &
LOSO

AZD1:15 AZD2:19
NC:20

[27] & 2022 PBP and TQWT traditional ML 10-fold &
LOSO

AZD:12 NC:11

[20] & 2021 SpecEN and KMC traditional ML 10-fold AZD:12 NC:11

[21] & 2022 TQWT (TSEN, REN, KFD, and
KURT)

traditional ML 10-fold AZD:12 NC:11

[22] & 2022 EMD (Hjorth parameters) traditional ML 10-fold AZD:12 NC:11

[23] & 2022 WPA and statistical features traditional ML 10-fold AZD:12 NC:11

[24] & 2023 LCOWFBs-v (HFD and KFD
features)

traditional ML 10-fold AZD:12 NC:11

[28] & 2022 DWT and statistical features traditional ML 10-fold AZD1:22 AZD2:31
NC:35

[30] & 2022 Filtering traditional ML 10-fold AZD:20 NC:20

[29] & 2022 Band power ratio, complexity,
functional connectivity, and
CWT

traditional ML 5-fold AZD:72 MCI:116
NC:113

[31] & 2022 PSD with spectrogram and
filtering

traditional ML 10-fold AZD:49 MCI:37 NC:23

[32] & 2020 Filtering and brain connectivity traditional ML 5-fold AZD:30 NC:30

[33] & 2022 Robust PCA and multiscale PCA DL Holdout AZD:20 NC:15

[34] & 2022 Stationary wavelet transform DL Holdout AZD:49 MCI:39 NC:23

[35] & 2022 Correlation analysis (Granger
causality test, Pearson’s, and
Spearman’s correlation)

DL Holdout AZD:24 NC:24

[36] & 2022 Rhythm analysis using filtering DL 2-fold AZD:1 NC:8

[37] & 2022 Filtering DL 5-fold AZD:11 NC:16

[38] & 2021 CWT with statistical features DL Holdout AZD:64 MCI:64 NC:64

[39] & 2022 CWT (Mexican hat) DL 5-fold AZD:63 MCI:56 NC:61

[40] & 2022 Synchronous-domain analysis DL 5-fold AZD:30 NC:30

[41] & 2019 FFT with spectral dimension DL Holdout AZD:4 MCI:4 NC:4

[42] & 2021 CWT (Morse wavelet) DL 10-fold AZD:52 MCI:37 NC:52

[43] & 2023 FFT (Fourier coefficient) DL 5-fold AZD:49 MCI:37 NC:14

[44] & 2023 PSD and statistical features DL Holdout AZD:59 MCI:7 NC:102

[45] & 2023 FFT with PSD DL Holdout AZD:137 NAZD:594

TSEN — Tsallis entropy, REN — Renyi entropy, KFD — Katz’s fractal dimension, HFD — Higuchi fractal dimension
KURT — Kurtosis, SA — Statistical analysis, NAZD — Non AZD.
• Neurologists find it difficult to trust the decision made by
automated models due to lack of explainability. Therefore,
we have presented an explainable artificial (XAI) model to
explain individual and overall predictions of the developed
model using LIME, SHAP, and Morris Sensitivity (MS).

The reminder of this paper is structured as follows. A brief
escription about the EEG dataset and developed model are pre-
ented in Section 3. The results are given in Section 4. The results
3

are discussed and compared with the SOTA techniques are pre-
sented in Section 5. Finally, the conclusion and future directions
are provided in Section 6.

3. Methodology

The methodology of the proposed work is partitioned into four
subsections. First section highlight the EEG data used to evaluate
the proposed model, second subsection describes the developed
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Fig. 1. Graphical overview of the proposed Adazd-Net.
r
r
a
t
t
v
b
c
w
o
c

3

e
a
o
I
a
r

H

Table 2
Summary of the class-wise distribution of AZD and NC subjects.
Class NC AZD

Total subjects (23) 11 12
Males (12) 7 5
Females (11) 4 7
Age (mean±std) 72.8 ± 6.1 years 72.8 ± 8 years
MMSE score (mean±std) 30 ± 0 13.1 ± 5.9
Total signals (663) 263 400

adaptive wavelet i.e. AFAWT, third subsection provides the details
about featureset, and final subsection presents the explainable
ML model. The graphical implementation steps of the developed
adaptive and explainable AZD detection model is shown in Fig. 1.

3.1. Dataset

The EEG dataset used for the experimental analysis of the
roposed model composed of 23 subjects. The dataset comprised
f 11 subjects with NC and 12 subjects having AZD. The subjects
elonging to both the classes (NC and AZD) were recruited from
he Alzheimer’s Patients’ Relatives Association of Valladolid. The
6-channel (Fp1, Fp2, P3, P4, C3, C4,O1,O2, T3, T4, T5, T6, F3, F4, F7,
nd F8) EEG recorder (Study room 2.3.411 EEG system) built
n-accordance with international 10–20 system have been used
or the signal acquisition [50]. The severity of dementia in the
ZD patients has been determined using a Mini-Mental State
xamination (MMSE) method [51]. An EEG recording study has
een approved by the Hospital Clinico Universitario de Valladolid
Spain) Ethics Committee. All NC participants and all those who
re care-giving for AZD patients have given written approval to
articipate. The Folstein’s literature describes a maximum MMSE
core of 30 [51]. Additionally, dementia is classified as mild
etween the ages of 20 and 24, moderate between 13 and 20,
nd severe for score of 12 and below. Among 12 AZD patients, 5
ere reported severe dementia with a score of less than 12 while
he remaining had moderate dementia having a score of 13.1.
ll the NC subjects did not have or history of dementia or any
eurological disorders. The details about the AZD dataset created
y the Alzheimer’s Patients’ Relatives Association of Valladolid is
hown in Table 2. The dataset is publicly available and its details
an be found in [50,52].
The EEGs were captured at a sampling rate of 256 Hz for more

han 5 min. Subjects were awake, with their eyes closed in a
4

ested condition during recording. The specialized physician was
ecruited to choose the EEG epochs with least electromyography
ctivity, electrooculographic artifacts, and movements. Finally,
he EEG data was segmented into 5s epoch with 1280 samples. In
his paper, we have also performed the brain-region analysis in
arious lobes. We have constructed four lobes with different com-
ination of channels. The frontal region (FR) is comprised of six
hannels namely, Fp1, Fp2, F3, F4, F7, and F8, central region (CR)
ith C3, C4, T3 and T4 channels, parietal region (PR) comprised
f channels P3, P4, T5, and T6, and occipital region (OR) with two
hannels O1 and O2.

.2. Adaptive Flexible Analytic Wavelet Transform (AFAWT)

FAWT is an advanced form of DWT with time–frequency cov-
ring due to which it has gained a lot of attention in bio-signal
nalysis [53,54]. The FAWT incorporates Hilbert transform pairs
f atoms, making it useful for analyzing signals with oscillations.
t uses an iterative filter bank consisting of two highpass (HPF)
nd one lowpass (LPF) filter. The frequency response of HPF is
epresented by [55]

p(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
tp1 tp2 , |ω| < ωp,

√
tp1 tp2φ((ω − ωp)(ωs − ωp)−1), ωp ≤ ω ≤ ωs,

√
tp1 tp2φ((π − ω + ωp)(ωs − ωp)−1), −ωs ≤ ω ≤ −ωp,

0, |ω| ≥ ωs.

(1)

The frequency response of LPF is denoted by [55]

Lp(ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
tp3 tp4φ((π − (ω + ω0))(ω1 − ω0)−1), ω0 ≤ ω ≤ ω1,√
tp3 tp4 , ω1 ≤ ω ≤ ω2,√
tp3 tp4φ((ω − ω2)(ω3 − ω2)−1), ω2 ≤ ω ≤ ω3,

0, ω ∈ [0, ω0) ∩ (ω3, 2π ).

(2)

The boundary conditions for LPF and HPF frequency responses
are [55]

ωp =
(1 − β̂)π + ϵ

tp1
; ωs =

π

tp2
; ω0 =

(1 − β̂)π + ϵ

tp3
;

ω1 =
tp1π

; ω2 =
π − ϵ

; ω3 =
π + ϵ

.

(3)
tp2 tp3 tp3 tp3
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he condition required to perfect reconstruction is defined by
55]

φ(π − ω)|2 + |φ(ω)|2 = 1. (4)

For perfect reconstruction, the function φ(ω) must satisfy [55]

φ(ω) = 0.5 × [1 + cos(ω)][2 − cos(ω)]1/2, for ω ∈ [0, π]. (5)

The positive constraint β̂ and ϵ are represented by [55]

1 −
tp1
tp2

≤ β̂ ≤
tp3
tp4

;

ϵ ≤

( tp1 − tp2 + β̂tp2
tp1 + tp2

)
π;

β̂ =
2

QF + 1
.

(6)

The redundancy rate of the transform is represented by [55]

r ≈ (tp3/tp4 )
tp2

tp2 − tp1
. (7)

Finally, the quality factor of the transform is defined as [55]

QF =
ω0

∆ω
. (8)

The FAWT matlab tool box for signal decomposition is avail-
able at (https://web.itu.edu.tr/ibayram/AnDWT/). The above
mathematical formulations show that tuning parameters, accord-
ing to the FAWT formulation, regulate the number of oscillations
in the wavelet. The produced wavelet for a particular quality
factor will have the same amount of oscillations for different
decomposition levels. The form of these wavelets will change
when the FAWT tuning parameters are changed. Thus, for decom-
posing an oscillatory EEG signal into SBs, require to define quality
factor, redundancy rate, and level of decomposition. The values
of redundancy rate and quality factor are controlled by the tun-
ing parameters (tp1 , tp2 , tp3 , tp4 ). Therefore, for efficient analysis
and synthesis these parameters are required to be set precisely.
Inaccurate selection of these tuning parameters may result in
improper synthesis and result in degraded system performance.
Manual tuning of these parameters is time-consuming and often
prone to human errors. To overcome the problem of empirical
and experimental parameter setting, we have designed AFAWT
method. AFAWT is a combination of FAWT and AHOA to automate
the tuning parameters by reducing the cost function of RMSD.
The AHOA is inspired by the flight skills and intelligent foraging
strategies of hummingbirds in nature. AHOA uses three skills of
hummingbirds: foraging strategies, including axial, diagonal, and
omnidirectional flights [47]. In our work, we have used a cost
function of RMSD to select the optimum tuning parameters. The
cost function is given by

RMSD =

√∑N
n=1(yn − yan)2

N
. (9)

where yn and yan are the original and approximated signals and N
are the number of samples in a SB. The optimization algorithm
involves four steps: (i) initialization phase, (ii) guided foraging,
(iii) territorial foraging, and (iii) migration foraging. The detailed
operations performed are presented in Appendix A. In our pro-
posed model, the tuning parameters required for decomposition
are the variables and the fitness or cost function is RMSD. Once
the optimum tuning parameters are obtained using AHOA, then
they are used for decomposing the EEGs to get representative SBs
for further analysis.
5

3.3. Features

Features play a crucial role in automated decision-making.
A user is available with a pool of features including time, fre-
quency, nonlinear, entropy, and time–frequency. But selecting
appropriate features for decision-making is a tedious task. Also,
the features must be selected such that it performs equally and
effectively for variations in system topology. Therefore, in our
proposed framework we have explored statistical, nonlinear, and
entropy features to test our model. A total of 85 features are
extracted from the SBs of NC and AZD signals using AFAWT.
There are 21 statistical, 22 entropy, and 42 nonlinear features. The
details about features used in our work is available in [49,56–60].
The complete list and abbreviation of these features are provided
in Appendix in Tables B.7, C.8, and D.9.

3.4. Decision making

The section investigates how the proposed framework is de-
veloped for predictions and explains the underlying result. The
XBM model is used to determine if the EEG is NC or AZD. The
explainers also give explanations for the ML model’s decisions for
individual and overall predictions.

3.4.1. Classifier
ML models make predictions using a variety of fitness func-

tions. These ML models provide a classification report of the
model’s overall performance in terms of performance parameters,
a confusion matrix, and receiver operating characteristics. The
overall performance of the model serves as a representation of
the corresponding mathematical behavior or approach. It does
not, however, convey any information about predictions or a
justification for how they are made. To overcome this, we used
an XBM model that provides information on interpretations spe-
cific to the model, a precise justification of gains or losses, and
model analysis following training. In addition of this, we have
also provided a comparative analysis of the XBM model with
benchmark classification techniques like SVM, KNN, decision tree
(DT), ANN, and RF [61]. Explainers (post hoc technique) are model
agnostic, which provide model analysis after training. Since it
relies on having access to the model’s inputs and outputs, it can
only offer approximations of explainability. The XBM model is
combined with three explainers i.e. LIME and SHAP for explaining
local prediction and MS for exploring global predictions. The
mathematical expression for generalized additive model of XBM
is denoted by [48]

h(E[x]) = β0 +

∑
fj(zj). (10)

he above equation is transformed into pairwise interactions
epresented by

(E[x]) = β0 +

∑
fj(zj) +

∑
fj,k(zj, zk), (11)

where the dependent variables are denoted by zj, zk, intercept is
denoted by β0, and x are the observations. XBM’s feature function
fj is trained using either boosted gradient or bagging algorithm.
The graphical illustration of traditional ML and explainable ML
model is shown in Fig. 2.

3.4.2. Explainers
• LIME: It modifies samples and original data to produce a

new data to explain local predictions of ML model [62].
The interpretable weighting on which LIME trains depends
on how close the sampled examples are to the instance
of interest. Although a strong global approximation is not
necessary, the learned model should locally be a reasonable
approximation of the ML model’s predictions.

https://web.itu.edu.tr/ibayram/AnDWT/
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Fig. 2. Difference between traditional ML and explainable ML models.
• SHAP: According to coalitional game theory, Shapley values
are computed using SHAP explanation method [63]. Players
in a coalition are the feature values of a data instance.
Utilizing Shapley values, may spread the prediction across
the attributes in an equitable manner. The Shapley values
presented as an additive feature attribution method using a
linear model.

• MS: It detects whether the input data is relevant for further
analysis using global sensitivity analysis [64,65]. It takes one
input at a time that modifies each level in every run.

4. Results

The paper investigates adaptable and explainable methods
or detecting AZD in EEG data. It is extremely challenging to
odel the behavior of EEG signals that change spontaneously.
s a result, we designed AFAWT to minimize the RMSE and
xtract the meaningful information from the AZD and NC EEGs.
sing AHOA, the AFAWT generates recognizable SBs from the EEG
ignals. The cost function of RMSD is minimized for the optimal
alue of tuning parameters in each EEG epoch of NC and AZD.
he experimental setup is maintained uniformly for both classes
NC and AZD). The number of iterations and search agents are
mpirically selected as 50 and 80. The tuning parameters for
ach EEG signal is labeled as optimum if the RMSD is minimum.
he optimal tuning parameters obtained for each EEG epoch of
oth the classes are used to decompose the respective EEGs into
heir corresponding SBs. Table 3 provides the summary of average
MSD obtained using AFAWT for NC and AZD classes. To evaluate
he effectiveness of the developed AFAWT, we have compared
he errors obtained for AFAWT with traditional FAWT. The tuning
arameters of FAWT are selected empirically for NC and AZD
EG signals and maintain uniformly. We have selected the value
f p = 3, q = 5, r = 2, s = 3, and J = 5 empirically
or FAWT. The table demonstrates that the developed AFAWT
ffers the least value of cost function, demonstrating its superior
ynthesis property. The results of Table 3 motivate us to use the
ptimal tuning parameters for further analysis. The generated SBs
f AFAWT are used to extract numerous features. The features
re categorized into three categories i.e. statistical features (21
os.), entropy features (22 nos.), and nonlinear features (42 nos.).
e have fused the features (85) of all 16 channels (85 × 16 =
360). The total signals for both classes are combined to get an
nput feature matrix of dimension 663 × 1360. As stated earlier,
00 instances belong to AZD category while 263 are the instances
epresenting NC.
6

Table 3
Mean value of RMSD obtained using AFAWT.
Method NC AZD

FAWT 0.532 0.374
AFAWT 2.47×10−6 1.95×10−6

The classification report obtained for each SB using the XBM
classifier is presented in Fig. 3. To evaluate the effectiveness of
the XBM classifier we have compared the ACCY performance
for each SB with five distinct benchmark classifiers. It is impor-
tant to mention that the classifier parameters are fixed for each
SB. The maximum number of splits for DT is taken as 10 with
Gini’s diversity index split criteria. A medium-sized ANN model
is used with a layer size of 10, ReLU activation function, and
1000 maximum iterations. The Gaussian kernel with size of 36
is used for SVM while a number of neighbors are chosen as 5 for
the weighted KNN model. The classification is performed using a
k-fold CV technique with k = 10. As different classification algo-
rithms work on different fitness functions, there is a possibility
of bias in the decision given by the classifiers. To eliminate the
possibility of bias, we have scaled down the feature values to
a finite range using z-score normalization. The results shown in
Fig. 3 demonstrate that XBM is the best performing classifier. The
highest ACCY of 99.85% is obtained in SB-7 while the least ACCY of
83.71% in SB-3 using the DT classifier. DT classifier produces the
least performance due to its poor ability to draw distinguishable
decision boundaries for NC and AZD classes. The ACCY in SB-7
and SB-5 is more concentrated depicting their effectiveness in
the detection of AZD. SB-7 generates more representative and dis-
tinguishable characteristics of AZD and NC EEGs which are more
accurately classified than other SBs. Except DT, SB-1 turns out to
be the least effective classifier. As a result, the features (of NC
and AZD) generated in SB-1 overlap, which reduces classification
accuracy. The XBM classifier is used for further investigations of
the developed model because the ACCY report demonstrates that
it outperformed other classifiers.

The EEG acquisition system consists of several channels placed
throughout the scalp. The human brain is split into several areas,
including the prefrontal, frontal, parietal, occipital, and central.
These brain regions are responsible for distinguishing and per-
forming various tasks [66]. The abnormal changes captured by
these lobes during the AZD may provide detailed insight into the
brain topology. Therefore, we have performed the brain region
analysis for frontal, central, occipital, and parietal region. The
ACCY score obtained for FR, PR, CR, and OR is 99.25%, 96.23%,
97.24%, and 93.85%, respectively. Thus, the electrodes in FR region
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Fig. 3. Subband-wise accuracy variation for the benchmark classification
echniques.

responsible for personality and emotions, thinking skills, and
ontrolling movement) captures detailed changes during AZD
nabling higher possibilities of detecting AZD. In contrast, OR
esponsible for recognition of shapes and colors is least affected
ue to which it has resulted in the least accuracy. To get more
nsight into our developed model, we have evaluated five perfor-
ance matrices for combined features using ten-fold CV, LOSO,
oldout, and FR. The summary of performance report obtained
or different combination is shown in Table 4. It is evident from
he Table 4 that holdout validation (90% data for training and 10%
ata for testing) has provided an ACCY of 98.51%, while SNSY
f 100%. The SNSY, SPCY, PRCS, and F1-score for 10-fold CV is
9.75%, 100%, 100%, and 99.88%, respectively. The LOSO validation
as yielded the least performance with an ACCY, SNSY, SPCY,
RCS, and F1-score of 91.3%, 85.71%, 100%, 100%, and 93.21%,
espectively. The performance report generated by Adazd-Net
odel shows that our developed model is effective and accurate

n different scenarios. The analysis performed till this point has
sed all the features. According to the brain region assessment,
he FR is the most informative lobe in the identification of AZD.
owever, it remains unclear which channel and feature generates
istinguishable information for AZD detection. As a result, we
onducted the statistical and ACCY analysis for each channel
tilizing all features. Fig. 4 illustrates the channel rank obtained
sing univariate analysis and Table 5 shows the ACCY for each
hannel. It is seen from Fig. 4 that F3 indicates the most discrimi-
ant properties followed by P3, O2, C4, and Fp2. On the other hand,
hannels F7 and T4 indicates the overlapping characteristics of
AZD and NC EEGs. The channel-wise analysis show that the F3 has
btained 98.94% surpassing the performance of all other channels.
he other channels in FR i.e. Fp1 and Fp2 are second and third
est with the ACCY score of 98.64%. T4 channel has generated the
inimum ACCY score of 91.25% indicating least contribution in

he detection of AZD. The channel-wise analysis proves that in
he frontal lobes, the most contributing features channels are F3,
Fp1, and Fp2.

Till now our model shown that frontal lobe with F3 channel
contributes the most to detect the changes in the AZD and NC
EEGs. However, it is still unclear the number of features needed
to obtain the highest system performance. Therefore, to scale
down the feature matrix from 85 to optimum number, we have
7

performed univariate analysis on the features of F3 channel. With
the SA shown in Fig. 5, we have found the rank of each feature in-
dicating the highest discrimination ability. Using the combination
of the feature rank matrix, we have fused one feature at a time
(based on the rank) to the most significant feature (MVTSR). Using
this fused feature matrix of channel F3 we have evaluated the
ACCY score for each combination. Fig. 6 indicates the variation in
ACCY score with different feature combination. It is evident from
the figure that as the number of feature increases the ACCY score
is also rises. The ACCY obtained using the most discriminant nine
features is maximum i.e. 96.98% and decreases thereafter. Hence,
our developed model produces maximum detection rate with
only nine features of F3 channel. The topographic maps developed
hown in Fig. 7 indicate the accuracy and feature scores of various
hannels. The figures show that frontal region particularly chan-
els F3, Fp2, and Fp1 have generated discriminable characteristics
ave yielded the highest performance. Similarly, the channels
4, P3, and O1 in central, parietal, and occipital regions have
enerated discriminable characteristics.
Finally, we have used a black-box approach to explain the

redictions made by our employed ML model. LIME and SHAP
echniques are used to explain the individual predictions made
y our developed model and Morris sensitivity to explain the
verall decisions of the developed model. The explanations for
ndividual classification with channel and features provided by
IME are shown in Fig. 8 and Fig. 9, respectively. It is evident from
ig. 8 that the MVTSR feature has the highest contribution to the
uccessful prediction of AZD and NC EEG epochs. EWL feature is
laced in second position for the predictions of EEG epochs. In ad-
ition to this, other features like LTKEO, NZR SpecEN, SurEN, etc.,
ave also shown significant contribution in the decision-making.
imilarly, Fig. 9 presents the summary of channel contributions
n individual predictions using LIME explainability. The graphi-
al representations provided by LIME show that channel frontal
hannel especially F3 has been the crucial characteristic for the
ecision-making of the classifier model.
We have also employed SHAP explainability to our ML model

or further explaining the decisions. Figs. 10 and 11 provide
he explanations given by SHAP for features and channels. It
s again confirmed from these figures that the MVTSR, ACCSR,
WL, LTKEO, SpecEN, and SurEN are the most consistent features
hat have contributed for accurate classifications. Similarly, it
s seen from the channel-level SHAP explanations that the F3
hannel is most significant and consistent in making individual
redictions. In addition, the channels in FR i.e. Fp1, Fp2, F7, and
8 also contribute to making predictions. The SHAP analysis also
onfirms that channels in the parietal lobe i.e. P3 and P4 along
ith central lobe channels are also significant for predicting AZD.
inally, Morris sensitivity is used to explain the global prediction
ade by the ML model. Fig. 12(a) and (b) provides the explain-
bility provided by Morris sensitivity analysis for channels and
eatures. Convergence indices of 0.096 and 0.122 have been ob-
ained for channels and features. The global explainability shows
hat channels F3 and Fp1 contribute most to overall predictions,
hereas for features MVTSR and EWL are the most significant
lobal predictors. The analysis performed on channel and feature
sing SA, performance analysis, and explainability confirms the
mportance of highly contributing channels and features. Thus our
odel is robust, consistent, accurate, and explainable for making

ndividual and global predictions.

. Performance comparison

Table 6 shows the summary of the performance comparison
ith existing SOTA techniques using the same dataset. The com-
arison report includes the signal analysis techniques, classifiers,
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Table 4
Performance measures(%) obtained for different combinations.
Validation strategy ACCY (%) SNSY (%) SPCY (%) PRCS (%) F1-score (%)

10-fold 99.85 99.75 100 100 99.88
Frontal Region 99.25 98.86 99.24 99.25 99.37
Holdout 98.51 100 96.88 97.29 98.63
LOSO 91.30 85.71 100 100 92.31
Fig. 4. Channel rank obtained using univariate analysis.
Table 5
Channel-wise accuracy score in SB-7 using XBM classifier with all features.
Channel C3 C4 F3 F4
ACCY (%) 93.06 95.32 98.94 97.36

Channel F7 F8 Fp1 Fp2
ACCY (%) 94.72 93.67 98.64 98.64

Channel O1 O2 P3 P4
ACCY (%) 95.48 94.87 96.38 93.21

Channel T3 T4 T5 T6
ACCY (%) 94.12 91.25 93.97 93.82

performance matrices, and validation techniques employed. The
methods in [14–20] have used extraction of features directly from
EEG epochs. EEG being highly non-stationary, analysis of features
extracted from EEG limits the system’s performance. Therefore,
accurate analysis is required to find the hidden and representa-
tive characteristics to obtain desired performance using decom-
position techniques. The research groups Puri et al. [20–24] and
Dogan et al. [27] explored signal decomposition analysis using
DWT, EMD, LCOWFBs-v, and TQWT. Decomposing techniques like
DWT, LCOWFBs-v, and TQWT splits the signal into components
to extract hidden information. But wavelet-based decomposition
is required to provide the type of wavelet and define tuning
parameters which are difficult to decide for rapidly varying EEG.
EMD is data-driven and does not require any basis function, but
its performance is limited due to mode mixing and generation
of numerous intrinsic mode functions. Also, existing methods
report a very high classification rate, but it fails to explain the
classifier’s decision. In addition, the existing models do not pro-
vide information about the number required for maximizing the
system performance. In our proposed model we have tried to
8

narrow down the above-mentioned research gaps using adaptive
and explainable decision-making for the detection of AZD using
EEG signals. The performance of our developed explainable model
has surpassed the performance of the existing models with an
ACCY, SNSY, SPCY, PRCS, and F1-score of 99.85%, 99.75%, 100%,
100%, and 99.88%. Our developed Adazd-Net model successfully
targeted the following characteristics which were lacking in the
SOTA models. It is noteworthy to mention that the authors used
fewer subjects to develop the methods reported in [15,16,19].

• Brain lobes analysis: The human brain performs a variety
of functions that come from different regions of the brain.
The most impacted lobe or region of the brain during AZD
can be identified by analyzing these brain regions. The most
important lobe may be identified using our suggested model
depending on classification rate and system performance.

• Adaptive analysis: The acquisition of EEG from NC subjects
and AZD patients has varying patterns. The changes in the
brain during AZD may slow down or increase the variations
in electrical activities. Tracking these changes in the EEG
with a predefined basis function may not yield desired sys-
tem performance. Our adaptive and data-driven model has
provided accurate analysis (higher accuracy) and synthesis
(perfect reconstruction) with the help of an optimization
algorithm.

• Identification of channels and number of features: EEG
acquisition provides minute temporal information because
of excellent temporal resolution. However, the spatial res-
olution of EEG signals is poor. To overcome this, acquisi-
tion of signals from multiple electrodes is performed. Also,
researchers have used many features including statistical,
nonlinear, time–frequency, and spectral features. The cost
and time of computation rise when all available channels
and features are used for analysis. We have presented a
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Fig. 5. Feature rank obtained using Univariate analysis.
9

method for determining the most important channel and
the optimal number of features necessary to optimize sys-
tem performance. It is important to highlight that when
compared to a study of all channels and features at once,
the performance of a single channel with optimal features
reduced slightly.

• Explainability: Medical signal and image analysis has un-
dergone tremendous change because of ML and DL. For
image and signal-based AZD detection with the best sys-
tem performance, several models have been devised. The
lack of explainability in the decisions made by ML and
DL models causes clinicians to express their unease with
them, even after they have been successful in automating
decision-making. Individuals can make local and global pre-
dictions using XAI when ML or DL models are developed.
In our framework, we examined at the XBM model, which
provides information about the prediction made through-
out the model’s training and testing. It educates users to
obtain maximum performance, enhanced troubleshooting,
higher trust, and strategies for overcoming bias and other
bottlenecks.

The benefits and shortcomings of the proposed model are listed
below:

• Our model is data-driven as do not require pre-defined basis
function.

• The model offers limited computational complexity due to
reduction in feature size from 1360 to 9.

• The model is accurate and robust as it is validated using
holdout, LOSO, and 10-fold CV techniques.

• The developed model provides explanation of each/overall
predictions which can be easily understood and debugged
by clinicians.

• The developed Adazd-Net model is robust, adaptive, and
simple as it is data-driven. It also yielded maximum perfor-
mance, and explores channel/feature analysis.

The main limitation of this work is that we have used only
single dataset comprising of 663 epochs belonging to 23
subjects.

6. Conclusion

We devised an automated, adaptable, accurate, and explain-
able model for detecting AZD with EEG signals. Our designed
Adazd-Net model is ready to aid medical specialists in the detec-
tion and explanation of decisions. Our model adjusts automati-
cally to the spontaneous fluctuations in the EEG signals of AZD
and NC subjects. Our developed analysis tool not only provides
accurate analysis by generating informative subbands but also
yielded perfect reconstruction. Our model demonstrates that the
frontal area, which is responsible for emotions, personality, motor
movement, intelligence, and speech, is critical in the identifi-
cation of AZD. Using 10-fold CV, holdout, and LOSO validation
approaches, the proposed explainable model can detect the AZD
with an ACCY of 99.85%, 98.51%, and 91.30%, respectively. The
main limitation of this work is that we have used only 23 sub-
jects to develop the adaptive XAI-based AZD detection model.
In the future, we plan validate our model with huge database
obtained from diverse races. Researchers may employ the com-
bination of adaptive signal analysis, effective feature selection,
and explainable predictions to detect various brain disorders and
physiological changes.
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Fig. 6. Variation in accuracy (%) with number of features for F3 channel.

Fig. 7. Topographic maps obtained for our proposed Adazd-Net; (a) Accuracy, and (b) Feature score.

Fig. 8. Local explainability of individual predictions using LIME for features.

10
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Fig. 9. Local explainability of individual predictions using LIME for channels.

Fig. 10. Local explainability of individual predictions using SHAP for features.

11
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Fig. 11. Local explainability of individual predictions using SHAP for channels.
Fig. 12. Global explainability of model using MS (a) Channels and (b) Features.
Table 6
Performance comparison with existing SOTA using the same EEG dataset.
Authors (Year) Feature Extraction Classifier Performance matrices

ACCY SNSY SPCY PRCS F1-score

Escudero et al. [14] (2006) MSE – 90.91 90.91 90.91 – –
Abasolo et al. [18] (2006) SpecEN and SHEN – 77.27 63.64 90.91 – –
Abasolo et al. [15] (2005) ApEN – – 80 75 – –
Abasolo et al. [16] (2008) ApEN and AMI – 90.91 100 81.82 – –
Simons et al. [19] (2015) QSE – 77.27 – – – –
Simons et al. [17] (2018) FEN – 86.36 90.91 81.82 – –
Puri et al. [21] (2022) TQWT and non-linear features EBT (10-fold) 96.2 90.49 97.5 93.48 95.09
Puri et al. [22] (2022) EMD and Hjorth parameter LSSVM (10-fold) 92.9 94.32 94.34 94.33 94.32
Puri et al. [20] (2022) SpecEN and KMC SVM (10-fold) 95.6 95.2 – 95.2 95.1
Puri et al. [23] (2022) WPA SVM (10-fold) 97.5 97.08 97.45 – –
Puri et al. [24] (2023) LCOWFBs-v and non-linear features SVM (10-fold) 98.6 97.34 99.8 – –
Dogan et al. [27] (2022) PBP and TQWT KNN (10-fold) 100 100 100 – –

Adazd-Net AFAWT

XBM (10-fold) 99.85 99.75 100 100 99.88
XBM (LOSO) 91.30 85.71 100 100 92.31
XBM (Holdout) 98.51 100 96.88 97.29 98.63
XBM (Brain Region) 99.25 98.86 99.24 99.25 99.37
12
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ppendix A. Artificial hummingbird optimization algorithm

The AHOA works in following steps to get the optimal pa-
ameters for a cost function. The steps are initialization, guided
oraging, territorial foraging, and migration foraging.

.1. Initialization

During the initialization phase number of variables to be op-
imized, search agents, defining lower and upper bounds, and
aximum number of iterations are defined. The AHOA is initial-

zed to explore a search space within lower and upper bounds.
he random initialization of hummingbirds with m population
laced on k food sources are given by [47]

i = LB + ρ(UB − lB) (A.1)

here the position of ith food source that is the solution of a
iven problem is represented by si, lower and upper bounds are LB
nd UB and random vector ρ in range [0,1]. Further, the visit table
f food sources is initialized using the following relation [47]

Vi,j =

{
0, if i ̸= j
null, i = j

(A.2)

he TVi,j = null indicates hummingbird is consuming food at
pecific food source and TVi,j = 0 denotes the ith hummingbird
as just visited the jth food source.

.2. Guided foraging

The hummingbirds have a natural tendency to explore food
ource with highest nectar level indicating that a target food
ource must have a long unvisited time by that hummingbird and
high nectar-refilling rate. During foraging, three flying abilities
re sufficiently utilized and modeled in the AHOA by providing
direction switch vector: omnidirectional, diagonal, and axial
lights. The axial (hummingbird movement along any coordinate s

13
xis), diagonal (movement along diagonal from one corner to
nother corner of a rectangle), and omnidirectional (any flight
irection can be projected to each of the three coordinate axes)
lights for d − D is defined as follows [47]

(i)
axial =

{
1, i = randi([1, d])
0, elsewhere

D(i)
diagonal =

{
1, i = P(j),
0, elsewhere

D(i)
omnidirectional = 1
i = 1, 2, . . . ., d

j ∈ [1, k], P = randperm(k)
k ∈ [2, [r1.(d − 2)] + 1]

(A.3)

here random number r1 is (0,1), the function randi([1, d]) and
andperm(k) generates random integer between 1 to d and from
to k. It is noteworthy to mention that only master humming-
irds use axial and diagonal flights while other hummingbirds
se omnidirectional flights. The hummingbird (search agents)
btain candidate food source i.e. possible solution and updation
s performed from older food source to current food source (local
est solution). The formulation of guided foraging behavior and a
andidate food source is given by [47]

i(t + 1) = si,tar (t) + α · D · (si(t) − si,tar (t))
α ∼ N(0, 1)

(A.4)

here si,tar indicates the target food source that ith hummingbird
ish to visit, guided factor α is subjected to normal distribution
(0, 1) having mean 0. The updation in position of ith food source
s modeled using [47]

i(t + 1) =

{
si(t), g(si(t)) < g(ui(t + 1))
ui(t + 1), g(si(t)) > g(ui(t + 1))

(A.5)

here g(·) is a fitness function value denoting RMSD.

.3. Territorial foraging

Once the nectar of current food source is consumed by hum-
ingbird, it search for new source in its neighboring region of
wn territory for a better food source than current one (new local
est). The formulation of local search of hummingbirds in the
erritorial foraging strategy and a candidate food source is given
y [47]

i(t + 1) = si(t) + b · D · si(t)
b ∼ N(0, 1)

(A.6)

here the territorial factor b subjecting to normal distribution
ith zero mean.

.4. Migration foraging

Typically, repeated visits to food sources result in a scarcity
f food, causing the hummingbird to migrate to a distant food
ource to feed. This is known as migratory foraging, and it is
erformed through the use of the migration coefficient in AHOA.
f the number of iterations exceeds the migrating coefficient, the
ummingbird will migrate to a new search space generated at
andom from the whole search space. The migrating foraging of
ummingbird is given by [47]
wor (t + 1) = LB + ρ(UB − lB) (A.7)
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Table B.7
List of nonlinear features and their abbreviations.
Features Abbreviations

Higuchi fractal dimension HFD
Hurst exponent HE
Absolute value of the summation of exponential root ACSER
Absolute value of the summation of square root ACSSR
Average amplitude change AAC
Lyapunov exponent LE
Cardinality CAR
Coefficient of variation CV
Difference absolute mean value DAMV
Difference absolute standard deviation value DASDV
Difference variance value DVV
Enhanced mean absolute value EMAV
Enhanced wavelength EWL
First difference FD
Hjorth mobility HM
Hjorth complexity HC
Katz fractal dimension KFD
Kurtosis KURT
Log coefficient of variation LCV
Log detector LD
Log difference absolute mean value LDAMV
Log difference absolute standard deviation value LMASDV
Log root sum of sequential variation LRSSV
Log teager kaiser energy operator LKTEO
Maximum fractal length MFL
Mean curve length MCL
Mean energy ME
Mean teager energy MTE
Mean value of the square root MVTSR
Encephalopulse percentage rate MEPR
New zero crossing rate NZR
Normalized first difference NFD
Normalized second difference NFD2
Second difference SD
Simple square integral SSI
Skewness SKEW
Slope sign change SSC
V Order VO
Waveform length WL
Willison Amplitude WA
Zero crossing rate ZCR
Spectral flatness SPEC

where swor is the food source with the worst nectar-refilling rate
n the population. The Matlab toolbox for AHOA is publicly avail-
ble at https://seyedalimirjalili.com/aha. Thus, the optimization
rovides local solution in each iteration using search agents. After
ach iteration, the local best is compared with the previous local
est. If it is better than the previous one it is updated, if it is not,
he previous solution is retained which is continued till the final
teration to get the global best solution.

ppendix B. Nonlinear features

See Table B.7.

ppendix C. Entropy features

See Table C.8.

ppendix D. Statistical features

See Table D.9.
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Table C.8
List of entropy features and their abbreviations.
Features Abbreviations

Log energy entropy LEE
Approximate entropy ApEN
Bubble entropy BubbEN
Conditional entropy CondEN
Cosine similarity entropy CoSiEN
Display entropy DispEN
Distance entropy DistEN
Entropy of entropy EOEN
Fuzzy entropy FEN
Gridded distribution entropy GridEN
Incremental entropy IncrEN
Kolmogorov entropy KEN
Permutation entropy PEN
Phase entropy PhaseEN
Renyi entropy REN
Sample entropy SampEN
Shannon entropy SHEN
Slope entropy SlpEN
Spectral entropy SpecEN
SURE entropy SurEN
symbolic dynamic entropy SyDyEN
Tsallis entropy TSEN

Table D.9
List of statistical features and their abbreviations.
Features Abbreviations

Variance VAR
Maxima MAX
Median MED
Maximum deviation from mean MDM
Mean absolute deviation MAD
Mean absolute value MAV
Minimum deviation from mean MiDM
Minima MIN
Modified mean absolute value MMAV
Modified mean absolute value 2 MMAV2
Peak value PEAK
First quantile Q1
Second quantile Q2
Third quantile Q3
Standard deviation STD
Third temporal moment TM3
Fourth temporal moment TM4
Integral EEG IEEG
Interquartile range IQR
Root mean square value RMS
Arithmetic mean AM
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