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Abstract: As it was shown earlier, a wide class of nonlinear 3-dimensional (3D) fluid flows of
incompressible viscous fluid can be described by only one scalar function dubbed the quasi-potential.
This class of fluid flows is characterized by a three-component velocity field having a two-component
vorticity field. Both these fields may, in general, depend on all three spatial variables and time. In this
paper, the governing equations for the quasi-potential are derived and simple illustrative examples
of 3D flows in the Cartesian coordinates are presented. The generalisation of the developed approach
to the fluid flows in the cylindrical and spherical coordinate frames represents a nontrivial problem
that has not been solved yet. In this paper, this gap is filled and the concept of a quasi-potential to
the cylindrical and spherical coordinate frames is further developed. A few illustrative examples are
presented which can be of interest for practical applications.
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1. Introduction

A great success in the solution of fluid dynamic problems is associated with the re-
duction of a primitive set of hydrodynamic equations to only one equation for some scalar
function, e.g., velocity potential or stream function [1–5]. It has been shown in [6,7] that
the class of exactly solvable hydrodynamic problems can be widened by introducing one
more scalar function dubbed the quasi-potential. The starting point for the introduction
of the quasi-potential is the condition of incompressibility of a fluid: div U = 0, where U
is the velocity field. This condition allows us to introduce a vector-potential A such that
U = curl A automatically satisfies this equation. However, there is a gauge invariance in
the choice of the vector-potential as it is defined up to the gradient of any scalar function
f (t, x, y, z) of spatial variables x, y and z because curl (∇ f ) ≡ 0. Therefore, the addition of
the gradient of an arbitrary function f (t, x, y, z) to the vector-potential, A +∇ f , does not
affect the velocity field U. Due to the freedom of choice of an arbitrary function f (t, x, y, z),
one of the components of the vector-potential can be eliminated. Therefore, without loss
of generality, the vector potential A can be chosen consisting of two components only. It
does not matter which component is eliminated in the Cartesian rectilinear coordinates
because vector differential operations are symmetrical with respect to all spatial variables.
However, it is not the case in curvilinear coordinates, in particular, in cylindrical or spheri-
cal coordinates. In any case, an arbitrary 3-dimensional velocity field can be described, in
general, by two-component vector-potential, i.e., by two scalar functions—the correspond-
ing components of the vector-potential. If there is any additional link between these two
components, then the description of a fluid flow can be done in terms of only one scalar
function. The governing equation for the corresponding scalar function can be derived
from the primitive Navier–Stokes equation. This approach has been exploited in [6,7] in
Cartesian coordinates and illustrated by nontrivial examples of fluid flows.
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In this paper, fluid flows in the cylindrical and spherical coordinates are considered
and it is shown how the quasi-potential can be introduced when one of the components of
the vector-potential A is eliminated and two other components are linked with each other.
Illustrative examples, which demonstrate three-dimensional velocity field with only two
components of vorticity, are provided.

2. Governing Equations and Quasi-Potential in Cylindrical Coordinates
2.1. Case 1—Vector-Potential Does Not Contain the Radial Component

Consider first the case when the vector-potential does not contain the radial component
Ar which is eliminated by the appropriate choice of function f (t, x, y, z). Then, it can be
presented as A = (F1/r)eϕ − F2ez, where F1 and F2 are functions of time and all spatial
variables. Here ϕ is the azimuthal angle, and eϕ and ez are the unit vectors. The velocity
and vorticity fields for such a vector-potential are:

U = F3 er +
∂F2

∂r
eϕ +

1
r

∂F1

∂r
ez, (1)

ω =

(
1
r2

∂2F1

∂r∂ϕ
− ∂2F2

∂r∂z

)
er +

[
∂F3

∂z
− ∂

∂r

(
1
r

∂F1

∂r

)]
eϕ +

1
r

[
∂

∂r

(
r

∂F2

∂r

)
− ∂F3

∂ϕ

]
ez, (2)

respectively, where F3 = −1
r

(
∂F2

∂ϕ
+

∂F1

∂z

)
.

Consider a particular class of fluid flows having only two components of the vorticity,
the ϕ- and z-components. For such a class of fluid motion, one has the following differential
link between the functions F1 and F2:

1
r2

∂2F1

∂r∂ϕ
=

∂2F2

∂r∂z
(3)

Substitute then the expressions for U and ω in the Navier–Stokes equation in the
Helmholtz form (4) [1]:

∂ ω

∂t
+ curl [ω×U] = ν∆ ω. (4)

Bearing in mind that thanks to the condition (3), the r-component of the vorticity is
zero, one obtains from Equation (4):

(curl [ω×U] · er) ≡
1
r

[
∂F3

∂ϕ

∂

∂r

(
1
r

∂F1

∂r

)
− ∂F3

∂z
∂

∂r

(
r

∂F2

∂r

)]
= 0. (5)

Let us introduce function S(r, t) such that

∂

∂r

(
1
r

∂F1

∂r

)
=

∂S
∂z

;
∂

∂r

(
r

∂F2

∂r

)
=

∂S
∂ϕ

. (6)

Then, the left-hand side of Equation (5) reduces to the Jacobian of two functions F3
and S with respect to the variables ϕ and z. As well known, if the Jacobian is zero then, the
functions are related by an arbitrary function. In our case this means that J(F3, S) = 0, so
that F3 = G(S, r, t), where G is an arbitrary function of S, r and time t. Using the definition
of function F3 (see after Equation (2)) and Equation (6), one obtains:

∆Φ = −1
r

∂

∂r
{

r
[
G(Φ′r)−Φ′r

]}
, (7)

where Φ =
∫

S dr is the quasi-potential, and prime stands for differentiation with respect to
the corresponding variable indicated by a subscript.
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In terms of the quasi-potential, the velocity and vorticity fields can be presented,
respectively, as:

U = ∇Φ + [G(Φ′r)−Φ′r] er , (8)

ω =
∂

∂z
[G(Φ′r)−Φ′r] eϕ −

1
r

∂

∂ϕ

[
G(Φ′r)−Φ′r

]
ez. (9)

By substitution of these expressions into two other components (the ϕ- and
z-components) of the Helmholtz Equation (4), after some manipulations (see Appendix A)
the equations reduce:

∂

∂t
[
G(Φ′r)−Φ′r

]
+∇Φ · ∇

[
G(Φ′r)−Φ′r

]
+

1
2

∂

∂r
[
G(Φ′r)−Φ′r

]2
− ν∆

[
G(Φ′r)−Φ′r

]
= Q(r, t), (10)

where Q(r, t) is an arbitrary function of the arguments.
In the particular case of G(Φr) ≡ Φr, the quasi-potential Φ becomes the conven-

tional hydrodynamic velocity potential. Equation (7) reduces to the Laplace equation,
Equation (10) disappears, and vorticity vanishes. In general, the main equations to be
solved simultaneously are Equations (7) and (10) with two arbitrary functions G(Φr) and
Q(r, t). As there is big freedom in the choice of these functions, one obtains a good per-
spective to construct exact solutions to hydrodynamic equations and accommodate them
to practical needs.

2.2. Case 2—Vector-Potential Does Not Contain the Azimuthal Component

Consider now the case when the vector potential has only r- and z-components:
A = −r F1 er + r F2 ez. In this case, the velocity and vorticity fields become:

U =
∂F2

∂ϕ
er +

F3

r
eϕ +

∂F1

∂ϕ
ez , (11)

ω =
1
r

(
∂2F1

∂ϕ2 −
∂F3

∂z

)
er +

∂

∂ϕ

(
∂F2

∂z
− ∂F1

∂r

)
eϕ +

1
r

(
∂F3

∂r
− ∂2F2

∂ϕ2

)
ez, (12)

respectively, where F3 = −r
[

r
∂F1

∂z
+

∂(r F2)

∂r

]
.

Let us consider such a class of fluid motion which does not contain the ϕ-component
of vorticity. In this case, there must be a relationship between functions F1 and F2 such that
∂F1/∂r = ∂F2/∂z. Then, the ϕ-component of the Helmholtz Equation (4) reduces to:(

∂

∂z
F3

r2

)
∂2F2

∂ϕ2 −
(

∂

∂r
F3

r2

)
∂2F1

∂ϕ2 = 0. (13)

The left-hand side of this equation reduces to the Jacobian on variables r and z as soon
as such function S(r, t) is introduced that

∂2F2

∂ϕ2 =
∂S
∂r

,
∂2F1

∂ϕ2 =
∂S
∂z

. (14)

Then, from Equation (13) one obtains: F3 = r2G(S, ϕ, t), where G is an arbitrary
function of S, ϕ and t. Recalling the definition of function F3 in terms of F1 and F2 and
introducing a quasi-potential Φ such that S = ∂Φ/∂ϕ, Equation (13) reduces to:

∆Φ = − 1
r2

∂

∂ϕ

[
r2G(Φ′ϕ)−Φ′ϕ

]
. (15)
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In terms of quasi-potential the velocity and vorticity fields read, respectively:

U = ∇Φ +
1
r

[
r2G(Φ′ϕ)−Φ′ϕ

]
eϕ , (16)

ω =
1
r

{
− ∂

∂z

[
r2G(Φ′ϕ)−Φ′ϕ

]
er +

∂

∂r

[
r2G(Φ′ϕ)−Φ′ϕ

]
ez

}
. (17)

In the case of a perfect fluid (ν = 0), two other components, the r- and z-components, of
the Helmholtz Equation (4) after simple but long manipulations similar to those presented
in Appendix A can be reduced to only one equation:

∂

∂t

[
r2G(Φ′ϕ)−Φ′ϕ

]
+∇Φ · ∇

[
r2G(Φ′ϕ)−Φ′ϕ

]
+

1
2r2

∂

∂ϕ

[
r2G(Φ′ϕ)−Φ′ϕ

]2
= Q(ϕ, t), (18)

where Q(ϕ, t) is an arbitrary function of the arguments.
In the particular case of G(Φ′ϕ) ≡ Φ′ϕ/r2, the quasi-potential Φ becomes a conven-

tional hydrodynamic velocity potential. Equation (15) reduces to the Laplace equation,
Equation (18) vanishes, the velocity field becomes potential, and the vorticity field vanishes.
In general, the main equations to be solved simultaneously for Φ are Equations (15) and (18)
with given functions Q(ϕ, t), and G(Φ′ϕ). Despite the more complex character of these
equations, the freedom of choice of arbitrary functions allows one to obtain again a good
perspective to construct exact solutions to hydrodynamic equations and accommodate
them to practical needs. Unfortunately, in the case of a viscous fluid (ν 6= 0) the introduction
of a quasi-potential does not help to simplify the basic Equation (4).

Example of a Vortical Flow Illustrating Case 2

To illustrate this case, let us assume that function G(Φ′ϕ) ≡ λ2Φ′ϕ/r2, where λ 6= ±1
is a constant. One can readily verify that the following quasi-potential,

Φ =

(√
r2 + z2 + z

r

)λ

sin ϕ, (19)

satisfies Equations (15) and (18). Then, the velocity and vorticity fields read, respectively:

U =

(√
r2 + z2 + z

r

)λ
λ

r
√

r2 + z2

[
−z sin ϕ er + λ

√
r2 + z2 cos ϕ eϕ + r sin ϕ ez

]
, (20)

ω =

(√
r2 + z2 + z

r

)λ
λ(1− λ2) cos ϕ

r2
√

r2 + z2
(r er + z ez). (21)

This solution describes stationary vortical flow periodic in azimuthal coordinate ϕ
and has two components of vorticity. When λ = 0, the velocity and vorticity fields vanish,
whereas when λ = 1, the flow becomes potential with the zero vorticity.

In Cartesian coordinates, both the velocity and vorticity fields have all three compo-
nents:

U = λ

(
R + z√
x2 + y2

)λ
−xy(λR + z) i +

(
λx2R− y2z

)
j + y

(
x2 + y2) k

R(x2 + y2)
3/2 , (22)
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where R =
√

x2 + y2 + z2;

ω =

(
R + z√
x2 + y2

)λ
λ
(
1− λ2)x

R(x2 + y2)
3/2 (x i + y j + z k). (23)

Figure 1 illustrates the velocity and vorticity fields as per Equations (22) and (23). The
modulus of the velocity field is:

|U| = λ

(
R + z√
x2 + y2

)λ√
λ2x2 + y2

(x2 + y2)
. (24)

Furthermore, the modulus of the vorticity field is:

|ω| = λ
(

1− λ2
)( R + z√

x2 + y2

)λ
x

(x2 + y2)
3/2 . (25)

(a) (b)

Figure 1. Fragments of (a) the velocity field as per Equation (22), and (b) the vorticity field as per Equation (23) for λ = 2.

2.3. Case 3—Vector-Potential Does Not Contain the Axial Component

Consider at last the case when the vector potential has only r- and ϕ-components and
can be presented through the function F1 and F2 in the following way: A = (F1/r) er− F2 eϕ.
In this case the velocity and vorticity fields become, respectively:

U =
∂F2

∂z
er +

1
r

∂F1

∂z
eϕ + F3 ez , (26)

ω =
1
r

(
∂F3

∂ϕ
− ∂2F1

∂z2

)
er +

(
∂2F2

∂z2 −
∂F3

∂r

)
eϕ +

1
r

∂

∂z

(
∂F1

∂r
− ∂F2

∂ϕ

)
ez , (27)
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where F3 = −1
r

(
∂(r F2)

∂r
+

1
r

∂F1

∂ϕ

)
.

Assuming that the z-component of the vorticity is zero, one obtains the following
relationship between the function F1 and F2:

∂F1

∂r
=

∂F2

∂ϕ
. (28)

By substitution the expressions for the velocity and vorticity in the Helmholtz
Equation (4), one obtains:

(curl [ω×U] · ez) ≡
∂F3

∂r
∂2F1

∂z2 −
∂F3

∂ϕ

∂2F2

∂z2 = 0. (29)

Let us introduce function S(r, t) such that

∂2F1

∂z2 =
∂S
∂ϕ

;
∂2F2

∂z2 =
∂S
∂r

. (30)

Then, the left-hand side of Equation (5) reduces to the Jacobian of two functions
F3 and S with respect to the variables r and ϕ. Omitting the details which are similar
to those presented in two previous section, one finds: F3 = G(S, z, t), where G is an
arbitrary function of S, z and t. Using then the definition of function F3 (see Equation (27))
and Equation (30), one obtains:

∆Φ = − ∂

∂z
[
G(Φ′z)−Φ′z

]
, (31)

where the quasi-potential is Φ =
∫

S dz.
In terms of the quasi-potential, the velocity and vorticity fields can be presented,

respectively, as:
U = ∇Φ + [G(Φ′z)−Φ′z] ez , (32)

ω =
1
r

∂

∂ϕ
[G(Φ′z)−Φ′z] er −

∂

∂r
[
G(Φ′z)−Φ′z

]
eϕ. (33)

By substitution of these expressions into two other components (the r- and
ϕ-components) of the Helmholtz Equation (4) and neglecting viscosity (ν = 0), after
some manipulations, similar to those presented in the Appendix A, the equations reduce
to only one equation:

∂

∂t
[
G(Φ′z)−Φ′z

]
+∇Φ · ∇

[
G(Φ′z)−Φ′z

]
+

1
2

∂

∂z
[
G(Φ′z)−Φ′z

]2
= Q(z, t), (34)

where Q(z, t) is an arbitrary function of the arguments.
In the particular case of G(Φ′z) ≡ Φ′z, the quasi-potential Φ becomes the conven-

tional hydrodynamic velocity potential. Equation (31) reduces to the Laplace equation,
Equation (34) disappears, and vorticity vanishes. In general, the main equations to be
solved simultaneously are Equations (31) and (34) with two arbitrary functions G(Φ′z)
and Q(z, t). There is again a big freedom in the choice of these functions, so that one can
obtain a good perspective to construct exact solutions to hydrodynamic equations and
accommodate them to practical needs. Unfortunately, in the case of a viscous fluid (ν 6= 0),
the introduction of a quasi-potential does not help to simplify the basic Equation (4).

Example of a Vortical Flow Illustrating Case 3

Consider now an example of the vortical flow for the third case when the vector
potential has only r- and ϕ-components in cylindrical coordinates. Let us assume that
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G(Φz) ≡ −λ2Φz, where λ is a constant. One can readily verify that the following quasi-
potential,

Φ = cos (λr sin ϕ) cos z, (35)

satisfies Equations (31) and (34). Then, the velocity and vorticity fields read, respcetively:

U = −λ
[
cos z sin (rλ sin ϕ)

(
sin ϕ er + cos ϕ eϕ

)
− λ sin z cos (rλ sin ϕ) ez

]
, (36)

ω = λ
(

1 + λ2
)

sin z sin (rλ sin ϕ)
(
−cos ϕ er + sin ϕ eϕ

)
. (37)

This solution describes non-viscous stationary fluid flow. The vector fields U and ω are
periodic in ϕ and z. In Cartesian coordinates, the velocity field becomes two-component:

U = −λ(sin λy cos z j− λ cos λy sin z k), (38)

whereas the vorticity field has only one x-component:

ω = −λ
(

1 + λ2
)

sin (λy) sin z i. (39)

Both these fields do not depend on x and therefore can be described by the conven-
tional stream function ψ = sin λy sin z, so that the velocity components are:

Uy =
∂ψ

∂z
, Uz = −

∂ψ

∂y
.

For purely imaginary λ = i, the quasi-potential reduces to the conventional hydrody-
namic potential, and the fluid field becomes potential with zero vorticity:

U = sinh y cos z j− cosh λy sin z k, (40)

Thus, in general, this example describes a vortical flow double periodic in the (y, z)
plane. Figure 2 illustrates the velocity and vorticity fields for λ = 1 when y and z vary in
the range [−4, 4].

-4 -2 0 2 4

-4

-2

0

2

4

Y

Z

(a) (b)

Figure 2. Fragments of (a) the velocity field as per Equation (38), and (b) the density of vorticity field
as per Equation (39).

In this Section, only two simple examples have been presented to illustrate vortical
flows of inviscid fluid flows. As one can see already from these two examples, the in-
troduction of quasi-potentials allows us to construct exact solutions for fairly complex
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vortical flows in cylindrical coordinates. The transformation of a two-component vortic-
ity field aкщь cylindrical to Cartesian coordinates can lead to either one-component or
three-component vorticity fields. There is no regular method to construct three-component
vortical flows in Cartesian coordinates, whereas the developed theory allows us to find
some exact solutions for such flows in terms of the quasi-potential.

3. Governing Equations and Quasi-Potential in Spherical Coordinates

The derivation of basic equations for the spherical case are similar but not the same
to that presented in Section 2. Therefore, the derivation of the corresponding equations is
described only briefly.

3.1. Case 1—Vector-Potential Does Not Contain the Radial Component

Consider the case when the vector-potential does not contain the component Ar and
reads: A = −(F2/r)eϕ + (F1/r)eθ where θ is the polar angle, and F1 and F2 are functions
of time and all spatial variables. The velocity and vorticity fields for such vector-potential
are:

U = F3er +
1
r

∂F1

∂r
eϕ +

1
r

∂F2

∂r
eθ , (41)

ω =
1

r2 sin θ

[
∂

∂θ

(
∂F1

∂r
sin θ

)
− ∂2F2

∂r∂ϕ

]
er

− 1
r sin θ

(
∂2F1

∂r2 sin θ − ∂F3

∂ϕ

)
eϕ +

1
r

(
∂2F2

∂r2 −
∂F3

∂θ

)
eθ , (42)

respectively, where F3 = − 1
r2 sin θ

[
∂F1

∂ϕ
+

∂(F2 sin θ)

∂θ

]
.

Consider again a particular class of fluid flows with the zero first component of the
vorticity. Then, the relationship between functions F1 and F2:

∂

∂θ
(F1 sin θ) =

∂F2

∂ϕ
. (43)

Furthermore, from the r-component of the Helmholtz Equation (4) one obtains:

(curl[ω×U] · er) ≡ sin θ
∂2F1

∂r2
∂F3

∂θ
− ∂2F2

∂r2
∂F3

∂θ
= 0. (44)

Let us introduce function S such that

sin θ
∂2F1

∂r2 =
∂S
∂ϕ

,
∂2F2

∂r2 =
∂S
∂θ

. (45)

Then Equation (44) takes a form of the Jacobian of two functions, J(F3, S) = 0 with
respect to the variables ϕ and θ. This gives F3 = G(S, r, t), where G is an arbitrary function
of the arguments. Using the definition of function F3 and Equation (45), one can reduce
this relationship to the equation:

∆
∫

Φ dr =
1
r2

∂

∂r

(
r2Φ′r

)
− G(Φ′r), (46)

where the quasi-potential is defined by the equation S = ∂Φ/∂r, and ∆ is the Laplacian in
spherical coordinates. This equation can be rewritten in the form:

∆Φ = − 1
r2

∂2

∂r2

{
r2[G(Φ′r)−Φ′r

]}
+

4
r

∂

∂r
[
G(Φ′r)−Φ′r

]
− 2

r

(
1
r
+ 1
)[

G(Φ′r)−Φ′r
]
+

4
r

∂

∂r
(
Φ′r −Φ

)
+

2
r2

(
Φ′r −Φ

)
. (47)
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The expressions for the velocity and vorticity fields in terms of the quasi-potential, are,
respectively:

U = ∇Φ +
[
G(Φ′r)−Φ′r

]
er, (48)

ω =
1
r

{
1

sin θ

∂

∂ϕ

[
G(Φ′r)−Φ′r

]
eϕ −

∂

∂θ

[
G(Φ′r)−Φ′r

]
eθ

}
. (49)

Then, from the other two components of the Helmholtz Equation (4) neglecting the
viscosity (ν = 0), one obtains:

∂

∂t
[
G(Φ′r)−Φ′r

]
+∇Φ · ∇ ∂

∂r
[
G(Φ′r)−Φ′r

]
+

1
2

∂

∂r
[
G(Φ′r)−Φ′r

]2
= Q(r, t), (50)

where Q(r, t) is an arbitrary function of the arguments. Choosing G(Φ′r) ≡ Φ′r, one obtains
the expressions for the potential fluid flow with the zero vorticity and U = ∇Φ.

The Illustrative Example

Let us construct the illustrative example of a stationary flow for this case with the
following choice of functions G(Φ′r) and Q(r, t):

Φ(r, ϕ, θ) = r3 sin ϕ sin θ, G(Φ′r) =
1
6

Φ′r, Q(r, t) = −5
2

r3. (51)

The velocity and vorticity fields with such choice of functions are, respectively:

U = r2
(

1
2

sin ϕ sin θ er + sin ϕ cos θ eϕ + cos ϕ eθ

)
, (52)

ω =
5
2

r
(
− cos ϕ eϕ + sin ϕ cos θ eθ

)
. (53)

These fields in the Cartesian coordinates look as follows:

U =
1
2

[
−xy ex +

(
2x2 + y2 + 2z2

)
ey − yz ez

]
; ω =

5
2
(−z ex + x ez). (54)

Figure 3 illustrates the velocity field in the planes y = −1 and y = 1.
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Figure 3. The velocity field in the planes y = −1 (a) and y = 1 (b) as per Equation (54).

Figure 4 illustrates the velocity field in the planes x = 0 and x = ±5, and Figure 5
illustrates the vorticity field in the (x, z)-plane.
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Figure 4. The velocity field in the planes x = 0 (a) and x = ±5 (b) as per Equation (54).
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Figure 5. The vorticity field in the (x, z)-plane as per Equation (54).

3.2. Case 2—Vector-Potential Does Not Contain the Azimuthal Component

Consider now the case when the vector-potential does not contain the azimuthal
component Aϕ and reads: A = F1 sin θ er − F2r sin θ eθ , where F1 and F2 are functions of
time and all spatial variables. The velocity and vorticity fields for such vector-potential read:

U =
∂F2

∂ϕ
er +

F3

r sin θ
eϕ +

1
r

∂F1

∂ϕ
eθ , (55)

ω =
1

r2 sin θ

(
∂F3

∂θ
− ∂2F1

∂ϕ2

)
er +

1
r

∂

∂ϕ

(
∂F1

∂r
− ∂F2

∂θ

)
eϕ −

1
r sin θ

(
∂F3

∂r
− ∂2F2

∂ϕ2

)
eθ , (56)

respectively, where F3 = − sin θ

[
∂

∂r

(
F2r2 sin θ

)
+

∂

∂θ
(F1 sin θ)

]
.

Considering such a class of fluid flows which do not contain the ϕ-component of the
vorticity, one obtains a relationship between the functions F1 and F2:

∂F1

∂r
=

∂F2

∂θ
. (57)
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Then, from the ϕ-component of the Helmholtz Equation (4) one obtains:

(curl[ω×U] · eϕ)

=
∂

∂r

(
F3

r2 sin2 θ

)(
∂2F1

∂ϕ2 −
∂F3

∂θ

)
− ∂

∂θ

(
F3

r2 sin2 θ

)(
∂2F2

∂ϕ2 −
∂F3

∂r

)

=
∂

∂r

(
F3

r2 sin2 θ

)
∂2F1

∂ϕ2 −
∂

∂θ

(
F3

r2 sin2 θ

)
∂2F2

∂ϕ2 = 0. (58)

Introducing function S(r, t) such that

∂2F1

∂ϕ2 =
∂S
∂θ

,
∂2F2

∂ϕ2 =
∂S
∂r

, (59)

Equation (58) can be presented in the Jacobian form:

Jr,θ

(
F3

r2 sin2 θ
, S
)
≡ ∂

∂r

(
F3

r2 sin2 θ

)
∂S
∂θ
− ∂

∂θ

(
F3

r2 sin2 θ

)
∂S
∂r

= 0. (60)

This implies that F3 = G(S, ϕ, t)r2 sin2 θ, where G is an arbitrary function of the
arguments. Using the definition of function F3 (see Equation (56)) and the relationship (57)
between functions F1 and F2, one finally derives the static equation for the quasi-potential
Φ =

∫
S dϕ:

∆Φ = − ∂

∂ϕ

[
G(Φ′ϕ)−

Φ′ϕ
r2 sin2 θ

]
. (61)

Another equation, describing the time dependence of Φ, can be obtained from two
other components (r- and θ-components) of the Helmholtz Equation (4). Omitting the
details, which are similar to those shown in Appendix A, for the perfect fluid (ν = 0), this
equation reads:

∂

∂t

[
r2 sin2 θ G(Φ′ϕ)−Φ′ϕ

]
+∇Φ · ∇

[
r2 sin2 θ G(Φ′ϕ)−Φ′ϕ

]
+

1
2r2 sin2 θ

∂

∂ϕ

[
r2 sin2 θ G(Φ′ϕ)−Φ′ϕ

]2
= Q(ϕ, t), (62)

where Q(ϕ, t) is an arbitrary function of the arguments.
In terms of quasi-potential the velocity and vorticity fields are, respectively:

U = ∇Φ +
1

r sin θ

[
r2 sin2 θ G(Φ′ϕ)−Φ′ϕ

]
, (63)

ω =
1

r2 sin θ

∂

∂θ

[
r2 sin2 θ G(Φ′ϕ)−Φ′ϕ

]
er −

1
r sin θ

∂

∂r

[
r2 sin2 θ G(Φ′ϕ)−Φ′ϕ

]
eθ . (64)

Choosing G(Φ′r) ≡ Φ′r/r2 sin2 θ, one obtains the expressions for the potential fluid
flow with the zero vorticity and U = ∇Φ.

3.3. Case 3—Vector-Potential Does Not Contain the Polar Component

Consider, at last, the case when the vector-potential does not contain the polar com-
ponent Aθ and reads: A = −F1 er + F2/r sin θ eϕ, where F1 and F2 are functions of time
and all spatial variables. The velocity and vorticity fields for such vector-potential are,
respectively:

U =
1
r

(
1

r sin θ

∂F2

∂θ
er +

∂F1

∂θ
eϕ + F3 eθ

)
, (65)

ω =
1

r sin θ

{
1
r

[
∂

∂θ

(
sin θ

∂F1

∂θ

)
− ∂F3

∂ϕ

]
er + sin θ

[
∂F3

∂r
− ∂

∂θ

(
1

r2 sin θ

∂F2

∂θ

)]
eϕ
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+

[
∂

∂ϕ

(
1

r2 sin θ

∂F2

∂θ

)
− ∂

∂r

(
sin θ

∂F1

∂θ

)]
eθ

}
. (66)

where F3 = − 1
sin θ

(
∂F2

∂r
+

∂F1

∂ϕ

)
.

Consider now a particular class of fluid flows with the zero polar component of the
vorticity. Then, one obtains the relationship between functions F1 and F2:

1
r2 sin θ

∂2F2

∂θ∂ϕ
= sin θ

∂2F1

∂θ∂r
. (67)

Then, from the θ-component of the Helmholtz Equation (4) one obtains:(
∂

∂ϕ

F3

r2

)[
∂

∂θ

(
1

r2 sin θ

∂F2

∂θ

)
− ∂F3

∂r

]
−
(

∂

∂r
F3

r2

)[
∂

∂θ

(
sin θ

∂F1

∂θ

)
− ∂F3

∂ϕ

]
= 0. (68)

Introducing function S such that

∂

∂θ

(
1

r2 sin θ

∂F2

∂θ

)
− ∂F3

∂r
=

∂S
∂r

,
∂

∂θ

(
sin θ

∂F1

∂θ

)
− ∂F3

∂ϕ
=

∂S
∂ϕ

, (69)

Equation (68) transforms to the form of Jacobian:

Jϕ,r

(
F3

r2 , S
)
≡ ∂

∂ϕ

(
F3

r2

)
∂S
∂r
− ∂

∂r

(
F3

r2

)
∂S
∂ϕ

= 0. (70)

This implies that F3 = r2G(S, θ, t), where G is an arbitrary function of the arguments.
Using the definition of function F3 (see Equation (66) and the relationship between functions
F1 and F2 (67), one finally obtains the static equation for the function S:

∆Φ =
1

r2 sin θ

∂(S sin θ)

∂θ
, (71)

where quasi-potential is Φ =
∫ [

S + r2G(S)
]
dθ, and ∆ is the Laplacian in spherical coordi-

nates.
Another equation, describing time dependence of S, can be obtained from two other

components (r- and ϕ-components) of the Helmholtz Equation (4) with ν = 0. Omitting
the details, which are similar to those presented in Appendix A, the final expression is:

∂S
∂t

+∇Φ · ∇S− 1
2r2

∂S2

∂θ
= Q(θ, t). (72)

Then, the formulae for the velocity and vorticity fields are, respectively:

U = ∇Φ− S
r

eθ , (73)

ω =
1

r2 sin θ

∂S
∂ϕ

er −
1
r

∂S
∂r

eϕ. (74)

These formulae exhaust all possible versions of introduction of a quasi-potential in
spherical coordinates. No an illustrative example is found for this case but let believe that
this may be possible and, hopefully, an example will be found in the future, moreover, it
can be of a practical interest.

4. Conclusions

Thus, in this paper it has been demonstrated that the introduction of a proper quasi-
potential is possible in the cylindrical and spherical geometry albeit it is not a trivial
generalisation of the quasi-potential theory developed in Refs. [6,7]. The quasi-potential
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approach helps one to construct exact solutions describing fairly complex class of three-
dimensional velocity fields with two-component vorticity fields. After transformation from
the curvilinear coordinates to the Cartesian coordinates, the velocity and vorticity fields
can become fairly complex containing all three components of velocity and vorticity. In the
particular cases, the quasi-potential theory reduces to the conventional potential theory or
to the theory of a vortex flow based on the introduction of a stream-function. Our prelimi-
nary study shows that the quasi-potential approach can be used also in other curvilinear
coordinates however, the basic equations and formulae for the velocity and vorticity fields
become fairly complex and not so illustrative. Summarising the results obtained in this pa-
per and in Refs. [6,7], one can see that the traditional potential theory describes fluid flows
with zero vorticity; the stream-function approach allows us to describe flows with only
one component of vorticity; and the introduction of a quasi-potential allows us to describe
flows with two components of vorticity. It can be noted in conclusion that, unfortunately,
new ideas in the description of classical hydrodynamics appear seldom. Three relatively
recent publications [8–10] can be mentioned to illustrate that the development of such ideas
leads to the discovery of new non-trivial exact solutions in classical fluid mechanics.

In Appendix B one of the authors of this paper (Y.S.) presents his brief reminiscent
about contacts with M. Tribelsky to whose honour this issue is dedicated.
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Appendix A

The ϕ-component of the Helmholtz Equation (4) after substitution the expressions for
the velocity (8) and vorticity (9) fields gives:

∂2

∂t∂z
[
G(Φ′r, r)−Φ′r

]
− ∂

∂r

{
G(Φ′r, r)

∂

∂z
[
G(Φ′r, r)−Φ′r

]}
− ν∆

∂

∂z
[
G(Φ′r, r)−Φ′r

]
− ∂

∂z

{
∂Φ′r, r)

∂z
∂

∂z
[
G(Φ′r, r)−Φ′r

]
+

1
r2

∂Φ′r, r)
∂ϕ

∂

∂ϕ

[
G(Φ′r, r)−Φ′r

]}
= 0.

This equation can be rewritten in the form:

∂2

∂t∂z
[
G(Φ′r, r)−Φ′r

]
+

∂

∂z
{
∇Φ · ∇

[
G(Φ′r, r)−Φ′r

]}
+

1
2

∂2

∂z∂r
[
G(Φ′r, r)−Φ′r

]2
− ν∆

∂

∂z
[
G(Φ′r, r)−Φ′r

]
= 0.

After integration over z this equation reduces to:

∂

∂t
[
G(Φ′r, r)−Φ′r

]
+∇Φ · ∇

[
G(Φ′r, r)−Φ′r

]
+

1
2

∂

∂r
[
G(Φ′r, r)−Φ′r

]2
− ν∆

[
G(Φ′r, r)−Φ′r

]
= Q1(r, ϕ, t), (A1)

where Q1(r, ϕ, t) is an arbitrary function of the arguments.
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Then, the similar manipulations with the z-component of the Helmholtz Equation (4)
lead to the equation:

∂

∂t
[
G(Φ′r, r)−Φ′r

]
+∇Φ · ∇

[
G(Φ′r, r)−Φ′r

]
+

1
2

∂

∂r
[
G(Φ′r, r)−Φ′r

]2
− ν∆

[
G(Φ′r, r)−Φ′r

]
= Q2(r, z, t), (A2)

The left-hand side of Equations (A1) and (A2) are identical; therefore, one can conclude
that functions Q1(r, z, t) and Q2(r, z, t) can depend only on r and t and must be equal.
Denoting them by Q(r, t), one obtains Equation (10).

Appendix B

Here, one of the authors, Y.S., presents his reminiscent about friendship contacts with
Michael Tribelsky (Misha). We met relatively late, in 2007, when we both worked as Visiting
Professors at the Max Planck Institute for the Physics of Complex Systems, Dresden, Ger-
many. We quickly found many commons between us, including age, education, interests,
attitude to science and life. One of the attractive Misha’s features is a great sense of humour
and an optimistic attitude to life even when it was hard to him. We spent much time in
discussions of physical and mathematical problems, as well as stories of science history.

Figure A1. Yury Stepanyants (left) and Mikhail Tribelsky (right) at the Circular Quay, Sydney,
in 2008.

Our contacts continued when Misha visited me in Sydney the next year. I was attracted
to them by persistence and perseverance in achieving goals (this is clearly seen from his
autobiographical notes presented in this Special Issue). This pertains not only to physical
problems but to all aspects of life. I observed how carefully Misha chose the best spots for
photography of exotic trees, beautiful buildings, and other objects, taking photos in Sydney
when we walked continuously discussing something or disputing on different subjects.

Misha obtained an excellent education in one of the world’s most prestigious physical
faculties, namely the one at Lomonosov Moscow State University. He had an opportunity
to communicate and jointly work with brilliant world-renowned scientists such as his
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supervisor Prof. S. Anisimov and then, Profs. Ya. Zeldovich, I. Lifshits, V. Zakharov. He
boldly tackled difficult physical problems and found their own, often unconventional
solutions to them. I was delighted with his story about solving an important industrial
problem for one of the Japanese companies. The problem was related to the calculation of
the extinction coefficient in complicated multi-component media. At first, it was not even
clear how to approach the task. Still, after persistent reflections, Misha found the key in a
relatively short time which caused the admiration of company bosses.

I should also mention Misha’s deep knowledge of computer design and the internal
devices of a computer. I had a chance to be convinced that Misha’s level in this field is the
same as that (or even higher than that) of professional IT (information technology) experts.
Misha generously shared his knowledge with me. More than once, he helped me resolve
the difficult issues related to installing and fine-tuning computer programs. It is a pleasure
to have such a kind and reliable friend as Misha Tribelsky. I wish him good health and
many years of creative work in science.
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