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Abstract
Climate change, land degradation and inadequate soil nutrients pose significant 
threats to food security and agricultural sustainability. This study aims to exam-
ine the effects of planting basins with farmyard manure on soil total carbon (C), 
nitrogen (N), isotopic C (δ13C) and N (δ15N) compositions within smallholder-
managed farms in Makueni County, Kenya. The study involved two management 
practices: planting basins with manure (PM) and conventional farming practices 
(FP) in 12 experimental sites. Soil samples were taken at three depths (0–10, 
10–20 and 20–40 cm), with three replicates for each treatment. Significant inter-
actions were observed between land management practices and sites as well as 
land management practices and soil depth on soil total C and N. At each of the 12 
sites, soil total C was higher under PM (ranging from 0.44% to 1.86%, p < .05) than 
FP management (ranging from 0.35% to 1.37%), across all soil depths. Soil total 
N concentrations ranged from 0.027% to 0.100% under FP and (0.060% to 0.190%, 
p < .05) under PM management. Across soil depths, higher (less negative) soil 
δ13C values were observed under conventional farmer practice (range − 22.5‰ to 
−17.1‰) compared with PM management range (−24.3‰ to −18.1‰). Soil δ15N 
was significantly enriched under PM management (range: 7.4‰ to 12.6‰, p < .05) 
compared with the conventional farmer practices (range: 6.1‰ to 9.8‰, p < .05). 
The findings show that planting basins with farmyard manure offers both climate 
mitigation and adaptation benefits by increasing soil C contents and improving 
soil fertility. The study provides insights into the real-world implications of these 
practices, emphasizing the potential of planting basins with manure in enhanc-
ing soil quality and climate resilience.
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1   |   INTRODUCTION

Climate change, land degradation, and inadequate soil nu-
trients are significant threats to food security and the sus-
tainability of the agriculture sector (DeLong et al., 2015; 
Lal, 2015). Soils store around 80% of carbon (C) in terres-
trial ecosystems in the form of soil organic C (Ng'ang'a 
et al., 2019; Powlson et al., 2011). Soil organic C plays a 
crucial role in climate change mitigation as it regulates 
carbon dioxide concentration in the atmosphere and is an 
indicator of soil fertility (Smith et al., 2020). Soil organic C 
is influenced by agricultural management practices such 
as tillage, organic amendment, fertilizer addition and in-
herent soil properties, including texture, mineralogy and 
biological activity (Kichamu-Wachira et  al.,  2021; Liu 
et al., 2020; Mikha et al., 2017). Soil nitrogen (N) availabil-
ity is critical for plant growth and productivity (Omidvar 
et al., 2021, 2023). N is a vital component of the proteins 
required for photosynthesis; thus, soil N limitation can 
negatively influence the photosynthetic capacity of a plant 
(Du et  al.,  2020; Quemada & Gabriel,  2016). Therefore, 
sustainable management practices that increase N avail-
ability in the soil must be applied to ensure optimal plant 
growth and yield.

Soil C and N isotope compositions (δ13C and δ15N, re-
spectively) are useful indicators for C and N cycling in 
terrestrial ecosystems under long-term climate change 
and local management/disturbance (Fu et  al.,  2020; Rui 
et  al.,  2011; Sun et  al.,  2010; Xu et  al.,  2008, 2009). Soil 
δ13C and δ15N are also used to understand the pathways in 
which C and N leave the ecosystem (Ibell et al., 2010, 2013; 
Reverchon et  al.,  2012; Wang, Wang, et  al.,  2015; Wang, 
Xu, et al., 2015; McCorkle et al., 2016; Jeong et al., 2022). 
The 15N of N sources such as manure or fertilizer applied 
to the soil, N loss, and N cycling processes affects soil δ15N 
(Asadyar et  al.,  2021; Choi et  al.,  2017, 2020; Succarie 
et al., 2022; Zhang et al., 2018). The soil δ15N best indicates 
N availability or losses since it is enriched with increasing 
soil N losses because of leaching and denitrification (Ibell 
et  al.,  2013; Hosseini-Bai et  al.,  2015; Wang et  al.,  2014, 
Wang, Wang, et  al.,  2015; Wang, Xu, et  al.,  2015; Nessa 
et  al.,  2021). The discrimination against the heavier 15N 
isotope by microbial N transformations in the soil predom-
inantly affects soil δ15N (Asadyar et al., 2021; Hosseini-Bai 
et  al.,  2015; Nessa et  al.,  2021; Succarie et  al.,  2022; Xu 
et  al.,  2008). Thus, higher δ15N in terrestrial ecosystems 
indicates active N cycling or N availability because of in-
creased microbial activity (Asadyar et al., 2021; Hosseini-
Bai et al., 2015; Succarie et al., 2022; Wang et al., 2020). 
On the other hand, soil δ13C is a biological indicator of C 
cycling and could be used to interpret soil organic mat-
ter (SOM) mineralization processes and land uses (Wang 
et  al.,  2013; Saiz et  al.,  2016; Succarie et  al.,  2020; Sun 

et al., 2021; Liu et al., 2021; Fu et al., 2023). The C cycle is 
vital because it affects soil respiration and the process of 
plant photosynthesis (Farooq et al., 2021; Liu et al., 2021; 
Succarie et al., 2020; Fu et al., 2023). Soil δ13C reflects the 
source of organic matter (C3 or C4 vegetation), C turnover 
and C loss rates from an ecosystem (Han et al., 2020; Jeong 
et al., 2022). Thus, δ13C and δ15N are insightful indicators 
of land management practices' effect on soil C and N avail-
ability and its dynamics.

The agricultural sector should prioritize enhancing 
SOC for climate mitigation and improved soil fertility 
(Gura et  al.,  2022). This calls for adopting and imple-
menting sustainable farming practices that enhance soil 
C and N and improve C and N cycling. Climate-smart 
agriculture (CSA) practices are widely promoted sustain-
able farming practices to mitigate climate change risks. 
CSA may offer climate change mitigation and adaptation 
benefits as it improves productivity and enhances food 
security while sustaining the environment (Martinsen 
et al., 2017; Palombi & Sessa, 2013). CSA practices, such as 
soil nutrient management, tillage management and water-
harvesting techniques, enhance C and N pools and agri-
cultural productivity (Hati et al., 2006; Kichamu-Wachira 
et al., 2021; Kushwa et al., 2016). One such practice is the 
adoption of planting basins, a technical innovation origi-
nating from Burkina Faso in West Africa (Danso-Abbeam 
et al., 2019). Planting basins - also known as ‘Zai pits’ or 
‘Tumbukiza’ in Kenya – is a tillage management practice 
where holes measuring 60 cm wide by 60 cm long by 60 cm 
deep are dug into the soil, with or without the addition 
of organic matter, used for growing crops (Danso-Abbeam 
et  al.,  2019; Kathuli & Itabari,  2015; Kimaru-Muchai 
et al., 2020). This CSA technology has proven effective in 
semi-arid regions with moisture stress and low soil fertil-
ity (Kathuli & Itabari, 2015; Danso-Abbeam et al., 2019). 
Planting basins have contributed to the restoration of de-
graded lands and improved soil fertility while cushioning 
agriculture from the adverse effects of climate change 
(Marongwe et al., 2012; Marumbi et al., 2020). The plant-
ing basins are permanent and can be reused for up to 
5 years before major repairs are required. Most farmers 
add farmyard manure or crop residues in the planting ba-
sins before planting crops to enhance productivity. Adding 
farmyard manure to soil stimulates microbial processes, 
enhances C and N cycling, and improves soil physical and 
chemical properties (Du et  al.,  2020; Li et  al.,  2019; Ma 
et al., 2020; Sarker et al., 2018). It has also been reported 
that planting basins can increase SOC because of mini-
mal soil disturbance (Marumbi et al., 2020; Nyamangara 
et al., 2014). Therefore, adopting this tillage management 
practice is promoted as a significant step towards improv-
ing soil quality, moisture retention, climate resilience and 
C sequestration.

 14752743, 2024, 1, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/sum

.13008 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [08/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  3 of 14KICHAMU-WACHIRA et al.

Despite a growing body of research on the effects of 
planting basins with or without amendments on soil C 
levels (Martinsen et  al.,  2017; Mupangwa et  al.,  2013; 
Nyamangara et al., 2014; Thierfelder & Wall, 2012), a sig-
nificant gap remains. The majority of these studies have 
been confined to controlled experimental environments. 
While invaluable, such controlled conditions could miss 
capturing smallholder farmers' real-world complexities 
and challenges. It is particularly noteworthy that there 
is a dearth of studies investigating the impact of plant-
ing basins with manure on soil C and N under genuine 
on-farm conditions. Baudron et  al.  (2011) pointed out 
the inherent limitations of relying solely on controlled 
tests carried out on research stations. While these tests 
form the crux of scientific evidence underpinning best 
practices in agricultural production compared with tra-
ditional farming approaches, they frequently do not rep-
licate the exact challenges and limitations of smallholder 
farmers. In essence, outcomes derived from such con-
trolled environments often assume access to resources 
or conditions that might be unrealistic or infeasible for 
smallholder farmers (Baudron et al., 2011). Given these 
considerations, there is a pressing and unmet need for 
rigorous studies that assess the impacts of Climate-
Smart Agriculture (CSA) and other innovations on soil 

C and N under real on-farm scenarios. Addressing this 
gap not only provides more representative findings but 
could also guide agricultural policy and practice in a 
direction that is more attuned to the realities of small-
holder farming. This study, therefore, aimed to contrib-
ute to this underexplored area by examining the effects 
of planting basins with farmyard manure on soil total 
C, N, δ13C and δ15N compositions within smallholder-
managed farms in Makueni county, Kenya. Our guiding 
hypotheses for this investigation were: (i) the planting 
basins with manure (PM) practice has no significant in-
fluence on soil total C, N, δ13C and δ15N and (ii) there is 
no observed effect on the levels of C, N, δ13C, and δ15N 
across varying soil depths.

2   |   MATERIALS AND METHODS

2.1  |  Study area

The study was conducted on smallholder farms in 
Makueni County, Kenya (Figure  1). Makueni County is 
a semi-arid region of Kenya and lies at an altitude of be-
tween 600 and 1280 m above sea level (Saiz et al., 2016). 
The area receives an annual rainfall of between 300 mm 

F I G U R E  1   Map of Kenya showing the study.
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and 800 mm with annual mean minimum temperatures 
of 20.2 degrees Celsius and annual mean maximum tem-
peratures of 35.80 degrees Celsius. Makueni County cov-
ers 8034.7 km2, with a population of 922,183 (Muema 
et al., 2018). The poverty index is ca. 64%, higher than the 
national index, which is 47%. The major livelihood source 
is agriculture, which employs ca. 78% of the rural popula-
tion directly and indirectly. The area is characterized by 
smallholder mixed farming, with the farmers engaging 
in livestock and crop farming. The major crops cultivated 
include maize, pigeon peas, sorghum, cowpeas, millet, 
beans, green grams (mung bean) and mangoes (Muema 
et al., 2018).

Soil sampling was conducted in Makueni County, 
across 12 farmer fields — six from Mbooni East and six 
from Kibwezi East sub-county. These fields are hereafter 
referred to as ‘sites’. These sites were farmer-managed, 
and treatments were under on-farm conditions. The 
sampled farms had implemented the CSA practices (i.e. 
planting basins with annual addition of farmyard ma-
nure) from 2018–2021. Prior to adopting these CSA prac-
tices, land use on these farms primarily involved crop 
farming, with maize as the principal crop grown in the 
plots. Crop rotation was also a part of the farming sys-
tem, and the sequence included maize followed by pi-
geon peas or green grams in some of the plots. 
Additionally, other crops grown in these plots included 
cowpeas and green grams, further diversifying the agri-
cultural activities. On all sampled sites, farmers used 
both planting basins with farmyard manure (treatment) 
and conventional farmer practices (control); thus, we 
sampled treatments and control sites from each farm. 
Eleven of the sampled farms had permanent basins 
measuring 60 cm × 60 cm × 45 cm, except for farm F10, 
where planting basins were 300 cm × 100 cm × 45 cm. 
The inter-basin spacing was 60 cm. The farmyard ma-
nure used was composted on the farms or bought from 
neighbours. Ca. 4–6 kg of manure per planting basin is 
added yearly. Conventional farmer practices comprised 
the overall digging of flatlands using oxen or hand hoes. 
No manure was added to the FP plots (all sites). Soils 
were classified according to the USDA1 soil textural tri-
angle with most sites being clay loam and sandy loam 
except for site F10 which was sandy, and sites F3 and F8 
were clay (Moreno-Maroto & Alonso-Azcarate,  2022; 
Soil Survey Division, 2017). Details of the selected farms 
are provided in Table  1. In the treatment plots, maize 
was grown inside the planting basins, while legumes 
(pigeon peas, sorghum, cowpeas, millet, beans and 
green grams) were outside. The control plots had a mix-
ture of both maize and legumes.

 1United States Department of AgricultureT
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The study employed a randomized complete block 
design (RCBD) at each of the 12 sites. Within each site, 
we established two treatments: (i) planting basins with 
farmyard manure (PM) and (ii) conventional farmer 
practice (FP). Each treatment was replicated three 
times, resulting in a total of six plots per site. The plots, 
5 m × 5 m each, were carefully selected to ensure that the 
soil types in the control (FP) plots closely matched with 
those in the treatment (PM) plots. For the PM treatment, 
soil samples were collected explicitly from inside the 
planting basins.

2.2  |  Soil sample collection and analysis

Soil samples were collected mid-season during the 
October–November–December 2020 rain season. The soil 
samples were taken from adjacent treatment (planting 
basins with farmyard manure) and control (conventional 
farming) plots. Soil samples were collected at three depths: 
0–10 cm, 10–20 cm and 20–40 cm. This was done by col-
lecting 5 soil cores from each plot for each depth interval, 
which were combined to form a single composite sample 
for that specific depth. This process was repeated for each 
of the depth intervals. Compositing samples within each 
depth stratum ensures a representative sample by aver-
aging out small-scale spatial variability, a standard ap-
proach in soil science to capture average plot conditions 
for the specified depth (Hofman & Brus, 2021). For the PM 
plots, soil samples were collected inside the planting ba-
sins. The soil samples were kept in separate labelled bags 
and transferred to the CIFOR-ICRAF Soil–Plant Spectral 
Diagnostics Laboratory in Nairobi, Kenya. All the col-
lected soil samples (n = 216) were air-dried at 60°C, passed 
through a 2 mm sieve, and shipped to Griffith University, 
Australia, for further analysis. The samples were then 
ground to a fine powder using a Rocklabs™ ring grinder, 

then weighed and transferred into tin capsules for soil 
total C, total N, δ 15N and δ13C analyses. These analyses 
were conducted to offer insights into how different prac-
tices impact soil health and quality. All the analyses, soil 
total C, total N, δ 15N and δ13C, were conducted using 
an Isotopic Ratio Mass Spectrometer connected to a CN 
Eurovector Elemental Analyser at Griffith University's 
Australia Isotopes Laboratory (Ibell et  al.,  2013; Xu 
et al., 2008).

2.3  |  Statistical analysis

The data were checked for normality using the Shapiro–
Wilk test in SPSS v. 27.0 and log-transformed where neces-
sary to satisfy the normality condition. Three-way analysis 
of variance (ANOVA) tests were conducted to explore the 
interactions between the treatments, sites and soil depths. 
This was followed by a series of one-way ANOVAs for 
each of the 12 sites. The Tukey HSD post hoc test was then 
conducted at a 5% probability level (p < .05).

3   |   RESULTS

3.1  |  Soil total C and total N

Significant interactions were observed between land man-
agement practices and sites as well as land management 
practices and soil depth (three-way ANOVA, p < .001) on 
soil total C and N (Table 2). Generally, at each of the 12 
sites, soil total C was higher under planting basins with 
manure (PM) (range 0.44% to 1.86%) than conventional 
farmer practice (FP) management (0.35% to 1.37%) across 
all soil depth categories (Figure 2). The highest soil total 
C concentrations were observed in soils collected at the 
0–10 cm depth and the lowest at the 20–40 cm depth. Soil 

T A B L E  2   Three-way analysis of variation (ANOVA) on the impacts of site, treatment (land management practice) and soil depth on TC, 
TN, δ13C and δ15N in all 12 sites combined.

Treatments

TC TN δ13C δ15N

Df F p Df F p Df F p Df F p

Treatment 1 311.35 ** 1 359.76 ** 1 187.69 ** 1 322.32 **

Site 11 29.05 ** 11 26.32 ** 11 39.75 ** 11 34.99 **

Soil depth 2 69.11 ** 2 54.26 ** 2 102.88 ** 2 3.844 *

Treatment × Site 11 9.77 ** 11 8.77 ** 11 9.63 ** 11 6.50 **

Treatment × Soil depth 2 20.59 ** 2 24.73 ** 2 2.19 ns 2 4.53 *

Site × Soil depth 22 1.01 ns 22 1.13 ns 22 1.57 ns 22 1.15 ns

Treatment × Site × Soil depth 22 1.39 ns 22 1.16 ns 22 1.03 ns 22 1.01 ns

Note: Not significant (p > .05), *p < .05; **p < .001.
Abbreviation: ns, not significant.
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total C was significantly higher under PM than FP at nine 
sites at the 0–10 cm soil layer (Figure 2A). In the subsoil 
layer (10–20 cm), eight of the 12 sites showed signifi-
cantly higher mean soil TC under PM (Figure 2B). This 
significant increase in total C concentrations could be at-
tributed to the addition of organic matter from manure in 
the planting basins and the minimum tillage promoted by 
these basins. However, there was no significant difference 
in total C under PM at depths of 20–40 cm (Figure  2C) 
in 11 sites, with sites F4 the exception. F4 also had the 
highest values of total C across the three depths under PM 
compared with the other 11 sites. This relatively high total 
C concentration in site F4 could be attributed to adding 

charcoal dust to the planting basins alongside farmyard 
manure.

Similarly, soil total N was higher under PM than FP 
at the three soil depths across the 12 sites (Figure 3). Soil 
total N values ranged from 0.027% to 0.10% under FP and 
(0.06% to 0.19%) under PM management across the 12 
sites and the three soil depths. The highest total N under 
PM was observed at site F4, possibly due again to the ad-
dition of charcoal dust in the planting basins. Soil total 
C and total N across the sites decreased with increas-
ing soil depth (Figures 2 and 3). Soil total N was signifi-
cantly higher under PM than FP in the 0–10 cm soil layer 
(Figure 2A) at all the sites except F5. In the 10–20 cm soil 

F I G U R E  2   Effects of conventional 
farmer practice (FP) and planting basins 
with manure (PM) on soil total carbon 
(TC) at depths (A) 0–10 cm (B) 10–20 cm 
and (C) 20–40 cm at sites F1 to F12 in 
Makueni (p < .05). Lowercase letters 
indicate significant differences among 
different treatments. No letters = not 
significant (ns). Errors bars indicate 
Standard Error (SE).
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layer, there was no significant difference between PM and 
FP at F5,11 and 12; however, the rest of the sites showed 
a significant difference in total N under PM compared 
with FP (Figure 2B). There was no significant difference 
(Figure 3C) in total N between FP and PM at the deep soil 
layer (20–40 cm) for all 12 sites.

3.2  |  Soil δ13C and δ15N

Generally, across the three soil depths, less negative soil 
δ13C values were observed under the conventional farmer 
practice compared with the PM management (Table  3). 
Soil δ13C was significantly higher (less negative) under 

FP (range − 22.5‰ to −17.1‰) across the three depths 
(0–10, 10–20 and 20–40 cm) at sites F1, F4, F7, F9 and F10 
compared with PM (range − 24.3‰ to −18.1‰). The less 
negative δ13C values under conventional farmer practice 
(FP) across several sites (F1, F4, F7, F9, and F10) hint at a 
mixed history of C3 and C4 plant residues, or potentially 
a more significant influence of C4 residues like maize. 
This could imply that conventional farming practices at 
these sites historically leaned towards the cultivation of 
C4 crops or a mix of C3 and C4 crops. No significant dif-
ference was observed in soil δ13C between PM and FP 
at sites F5, F6, F8, F11 and F12 across the three depths. 
The lack of significant differences in δ13C values between 
PM and FP at sites F5, F6, F8, F11, and F12 may indicate 

F I G U R E  3   Effects of conventional 
farmer practice (FP) and planting basin 
with farmyard manure (PM) on total 
nitrogen (TN) across at depths (A) 
0–10 cm (B) 10–20 cm and (C) 20–40 cm 
at sites F1 to F12 in Makueni (p < .05). 
Lowercase letters indicate significant 
differences among different treatments. 
No letters = ns. Errors bars indicate SE.
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similar historical management practices or vegetation 
cover across these sites, or the influence of other factors 
that have homogenized the isotopic signatures, such as 
similar residue return or mineralization rates.

Soil δ15N was significantly higher under PM management 
(range: 7.4‰ to 12.6‰) compared with the conventional 
farmer practices (range: 6.1‰ to 9.8‰). The lowest values 

in soil δ15N were observed at the 0–10 cm depth, with the 
highest values recorded at the 20–40 cm soil depth (Table 2). 
The observed depth variations in δ15N values could be be-
cause of the stratification of nitrogen in the soil profile, as 
organic matter, and consequently nitrogen, predominantly 
accumulates on the surface, causing increased isotopic frac-
tionation in the upper layers. Over time, with the downward 

Site Soil depth

δ13C δ15N

PM FP PM FP

F1 0–10 cm −23.4(0.3) −22.5(0.3) 11.9(0.7) 9.1(0.7)

10–20 cm −23.7(0.4) −21.9(0.4) 12.1(0.5) 9.3(0.5)

20–40 cm −22.9(0.9) −20.3(0.9) 12.6(0.6) 9.8(0.6)

F2 0–10 cm −22.2(0.4) −22.1(0.4) 11.3(0.8) 7.9(0.8)

10–20 cm −22.3(0.3) −21.1(0.3) 11.5(0.9) 7.6(0.9)

20–40 cm −21.4(0.4) −19.4(0.4) 10.7(0.5) 7.9(0.5)

F3 0–10 cm −23.7(0.5) −22.4(0.5) 10.4(1.8) 6.4(1.8)

10–20 cm −23.2(0.2) −20.4(0.2) 10.5(0.6) 8.3(0.6)

20–40 cm −21.7(0.6) −18.3(0.6) 10.0(0.4) 8.7(0.4)

F4 0–10 cm −24.3(0.6) −21.4(0.6) 8.7(0.9) 7.7(0.9)

10–20 cm −23.9(0.5) −20.3(0.5) 9.0(0.7) 8.0(0.7)

20–40 cm −22.6(0.7) −19.3(0.7) 9.0(0.5) 8.3(0.5)

F5 0–10 cm −19.2(0.9) −18.9(0.9) 8.1(0.5) 6.3(0.5)

10–20 cm −18.8(0.6) −17.6(0.6) 7.9(0.5) 7.1(0.5)

20–40 cm −18.1(0.7) −16.8(0.7) 7.7(0.4) 7.6(0.4)

F6 0–10 cm −20.5(0.6) −21.6(0.6) 8.9(0.5) 7.3(0.5)

10–20 cm −20.1(0.7) −21.1(0.7) 8.6(0.5) 7.2(0.5)

20–40 cm −19.0(0.8) −21.0(0.8) 8.2(0.9) 6.9(0.9)

F7 0–10 cm −21.7(0.6) −19.4(0.6) 7.4(0.5) 6.4(0.5)

10–20 cm −21.2(0.6) −17.6(0.6) 7.6(0.5) 7.7(0.5)

20–40 cm −18.2(0.8) −17.0(0.8) 8.2(0.4) 8.1(0.4)

F8 0–10 cm −22.6(0.6) −21.2(0.6) 8.8(0.5) 7.0(0.5)

10–20 cm −21.7(0.6) −19.1(0.6) 8.3(0.5) 7.1(0.5)

20–40 cm −19.0(0.8) −17.9(0.8) 7.4(0.2) 7.3(0.2)

F9 0–10 cm −22.5(0.3) −19.54(0.3) 9.0(0.6) 7.4(0.6)

10–20 cm −21.8(0.3) −19.0(0.3) 9.3(0.6) 6.3(0.6)

20–40 cm −20.8(0.5) −18.1(0.5) 9.2(0.7) 7.4(0.7)

F10 0–10 cm −22.1(0.3) −19.5(0.3) 8.9(0.6) 6.9(0.6)

10–20 cm −21.3(0.3) −19.1(0.3) 8.8(0.6) 6.7(0.6)

20–40 cm −21.4(0.5) −18.5(0.3) 9.4(0.7) 7.2(0.7)

F11 0–10 cm −21.1(0.3) −21.8(0.3) 8.5(0.6) 6.1(0.6)

10–20 cm −20.6(0.3) −20.4(0.3) 8.3(0.6) 6.5(0.6)

20–40 cm −19.0(0.5) −17.6(0.3) 8.1(0.7) 7.2(0.7)

F12 0–10 cm −20.9(0.3) −18.2(0.3) 8.7(0.6) 6.5(0.6)

10–20 cm −20.1(0.3) −18.0(0.3) 9.2(0.6) 6.5(0.6)

20–40 cm −18.4(0.5) −17.1(0.7) 8.1(0.7) 6.9(0.7)

Note: Values in bold indicate significant differences among the different treatments at each depth 
(p < .05). Values in brackets indicate ±SE.

T A B L E  3   Effects of conventional 
farmer practice (FP) and planting basins 
with farmyard manure (PM) on soil 
δ13C and δ15N at 12 sites across the three 
different depths in Makueni.
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movement of nitrogen through the soil, such as through 
leaching, deeper layers may exhibit elevated δ15N values. 
Soil δ15N was significantly higher at sites F5, F7 and F8 at 
the 0–10 cm soil layer only under PM (8.1‰, 7.4‰, 8.8‰, 
respectively) than FP (6.3‰, 6.4‰, 7.0‰, respectively) man-
agement (Table 3). The significantly higher δ15N values at 
sites F5, F7 and F8 at the 0–10 cm depth under PM could be 
influenced by site-specific conditions, such as microclimate, 
soil type, or historical management practices. For instance, 
differences in soil type across sites might impact nitrogen 
dynamics and the resultant isotopic composition. Sites with 
clayey soils (e.g. F3, F8) might have different microbial activ-
ities and nitrogen transformations than those with loamy or 
sandy soils. For the other nine sites (F1, F2, F3, F4, F6, F9, 
F10, F11 and F12), mean soil δ15N was significantly higher 
under PM than FP across all three soil depths (0–10, 10–20 
and 20–40 cm).

3.3  |  Impact of geographical location and 
other environmental factors

Soil total C, N and δ15N varied across the sites. These vari-
ations in observed soil C, N and δ15N could be because of 
various factors, including elevation, soil type or rainfall. The 
two sub-counties, Kibwezi East (Mtito Andei) and Mbooni 
East (Kalawa), have different average rainfalls, with Mbooni 
East receiving more rainfall (Table 1; Table S2). Soil TC and 
TN in site F4 were significantly different from all other sites 
(Table S1). This could be attributed to the rainfall amount 
and the addition of charcoal dust in the planting basins. Soil 
total C and N in sites F6, F7, F9 and F12 were not signifi-
cantly different from each other but were different from the 
rest of the sites. Soil total C values at Sites F2 and F3, which 
are at relatively low altitudes and receive the lowest amount 
of rainfall compared with other sites, had low total C values. 
Site F10 observed the lowest total C and N values, which 
could be attributed to the soil texture, as this is the only site 
with sandy soils (Table S2; Table 1). High soil δ15N values 
were observed in low rainfall sites F1, F2 and F3 (590 mm 
mean annual rainfall) than in sites with higher rainfall 
(765 mm mean annual rainfall) such as sites F11 and F12 
(Table 3; Table S2). The high δ15N values observed in the 
drier areas could be attributed to elevated N volatilization 
during pronounced temperatures in these areas.

4   |   DISCUSSION

4.1  |  Soil total C and total N

This study indicates that planting basins with farmyard 
manure significantly enhances soil total C and total N 

concentrations, underscoring the potential climate miti-
gation and adaptation benefits of this practice. It is of 
paramount importance to acknowledge that the legacy of 
previous crops—particularly the C4 plant maize and as-
sociated crop residues—coupled with manure, could have 
set a foundational stage for the soil's response to different 
management practices. The role of mineralization, espe-
cially from the decomposition of C4 residues like maize, 
has a profound impact on the soil C:N ratio, driving its 
fertility and productivity (Kan et al., 2022; Wang, Wang, 
et al., 2015; Wang, Xu, et al., 2015). The addition of ma-
nure, a rich source of organic matter, amplifies this effect 
by introducing additional C and N into the soil, further 
modifying its mineralization dynamics.

The variability in soil C, N and isotopic compositions 
across sites, as highlighted in this study, underscores the 
importance of real-world conditions where farmers may 
not follow all the recommended guidelines. This implies 
that results on planting basins with manure on farmer-
managed farms may differ for different sites, farmer 
management, soil types and climatic conditions. Several 
studies that have conducted controlled experiments have 
reported significantly higher soil C under planting ba-
sins with manure management (Mupangwa et al., 2013; 
Thierfelder & Wall,  2012). While some studies suggest 
that planting basins under on-farm conditions may not 
significantly increase soil C (Martinsen et  al.,  2017; 
Nyamangara et al., 2014), this study presents divergent 
findings. The key distinction between this study and 
previous research is the choice of amendments; in the 
study conducted by Martinsen et al. (2017), only fertiliz-
ers were incorporated into the planting basins, whereas 
Nyamangara et al. (2014) solely incorporated crop resi-
dues. The findings from this study therefore suggest that 
the addition of manure in planting basins has a more 
profound influence on soil C and N than the use of fer-
tilizer or crop residues. Comparable to the observation 
in our study, Marumbi et al. (2020) found that planting 
basins with organic amendments significantly increase 
soil C under on-farm conditions in Zimbabwe because 
of the localized manure application and minimized soil 
disturbance in the planting basins. Planting basins are 
considered a no-tillage management practice; hence, the 
minimal soil disturbance ensures minimal disruption 
of soil C and protection from microbial mineralization 
(Marumbi et al., 2020; Nyamangara et al., 2014). Tillage 
in conventional farmer practices causes soil distur-
bance and exposes organic material to microbial min-
eralization leading to soil organic matter loss (Mikha & 
Rice, 2004). Therefore, the differences in total soil C and 
N between planting basins with farmyard manure and 
conventional farmer practices likely resulted from mini-
mal soil disturbance, reduced microbial mineralization, 
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reduced water loss and organic (manure) amendments. 
Given this, our study indicates that farmers' adoption 
and continuing use of PM can be expected to build up C 
and N content in soils gradually.

Significant effects of planting basins with manure 
on soil C were limited to the top and subsoil layers (i.e. 
0–20 cm depths). The decrease in soil total C and total 
N with increasing soil depth could be attributed to the 
reduced effect of organic (manure) inputs with increas-
ing soil depth (Marumbi et al., 2020). This could be as 
a result of the increased organic matter in the topsoil 
brought about by the localized manure application 
and the poor mixing of the manure with soil in these 
minimum-till systems. The significantly higher soil total 
C and N at site F4, where charcoal dust was also used 
in the planting basins, indicates that the combined use 
of planting basins, farmyard manure and biochar could 
result in even greater soil C content. This is supported by 
controlled field experiments that have documented the 
ability of biochar in combination with poultry manure to 
improve soil chemical properties (Adekiya et al., 2019; 
Farrar et  al.,  2019, 2021; Hosseini-Bai et  al.,  2015; 
Sandhu et al., 2019). However, there is a need for further 
research to investigate the effects of the combined use of 
planting basins, biochar and manure on soil carbon and 
nitrogen pools.

4.2  |  Soil δ13C and δ15N

Soil δ15N provides insights into differences in the contri-
bution of various land management practices to soil C and 
N stocks. The δ15N value is a measure of the ratio of sta-
ble isotopes of N (15N and 14N) and can provide insights 
into various processes, including microbial N transforma-
tions. Our results showed that soil δ15N was enriched by 
planting basins with farmyard manure management. The 
soil δ15N enrichment may result from leaching, nitrifica-
tion, denitrification or volatilization (Busari et  al.,  2016; 
Hosseini-Bai et  al.,  2015). The higher soil δ15N in PM 
management could be explained by the addition of ma-
nure, which has been found in previous studies (Busari 
et al., 2016; Chalk et al., 2014) to lead to higher δ15N than 
the control (without manure). Increased N availability 
and N mineralization processes from organic amend-
ments lead to the enriched δ15N in the soils (Mani, 2021). 
Improved δ15N values in PM indicate that planting basins 
with farmyard manure enhances N-cycling. The high δ15N 
values observed under PM also indicate high N availabil-
ity for plant uptake, which means higher crop production 
in PM than in FP practices. Studies have also observed 
higher δ15N values in water-limited soils, consistent with 
our study, where sites with less rainfall exhibited higher 

soil δ15N values indicating a more open N cycling than 
high rainfall areas (Shan et al., 2019; Wu et al., 2019).

Our study indicated that soil δ13C was significantly 
lower (more negative) under PM management than in 
conventional farmer practices. This implies that soil or-
ganic matter turnover and C-cycling vary with manage-
ment practice. The difference in δ13C values between 
FP and PM could be attributed to organic matter inputs 
and the different rates of C mineralization, as reported 
by Bayer et al. (2001) and Fuentes et al. (2010). Previous 
studies also show that adding organic amendments such 
as manure leads to more negative δ13C values (Busari 
et al., 2016; Li et al., 2010; Sainju et al., 2008). Our study 
further showed that the deeper soil layers had higher δ13C 
values (less negative) than the topsoil (0–10 cm), which 
could be explained by the long exposures to decomposi-
tion in the deeper soils (Fuentes et  al.,  2010). The most 
pronounced δ13C values at the 20–40 cm depth suggest 
prolonged organic matter inputs, potentially indicating 
historical shifts in crop types or land management prac-
tices (Kan et al., 2022). In essence, the observed δ13C val-
ues, varying with soil depth and management practice, 
underscore the intricate interplay of historical vegetation, 
land-use decisions, and carbon cycling dynamics in these 
soils.

5   |   CONCLUSION

This study, conducted under on-farm conditions in 
Makueni County, Kenya, reinforces the potential of 
planting basins with farmyard manure (PM) in enhanc-
ing soil C and N levels, offering a promising pathway 
for climate change mitigation and improved soil fertil-
ity. The study's findings resonate beyond the bounda-
ries of our experimental site, carrying implications for 
global challenges related to climate change mitigation 
and sustainable agriculture. Specifically, this real world 
study confirms previously reported results from con-
trolled trials of significant enhancements in total soil C 
and N concentrations, with the most pronounced effects 
observed within the top 20 cm of soil. These findings sig-
nal a viable pathway towards climate change mitigation 
and improved soil fertility on a global scale. Notably, the 
study findings unveil a noteworthy increase in δ15N lev-
els in soils under PM management, indicating height-
ened N-cycling. This dual benefit—carbon sequestration 
and increased nutrient availability—carries significant 
implications for global food security and agricultural 
sustainability. These findings underscore the potential 
of the study to inform and shape international strategies 
for addressing the challenges posed by a changing cli-
mate. Furthermore, the observed variations in soil C, N, 
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and isotopic values across different sites emphasize the 
role of site-specific factors, such as rainfall, altitude, and 
soil type. This understanding highlights the necessity 
for context-specific agricultural practices, thereby en-
hancing the relevance of our findings for diverse global 
agricultural landscapes. Interestingly, our study has also 
highlighted the potential synergistic benefits of combin-
ing biochar with farmyard manure in planting basins, as 
seen in site F4, suggesting avenues for further research. 
In conclusion, this study not only extends the current 
understanding of the efficacy of planting basins com-
bined with manure in real-world settings but also po-
sitions these findings within the broader historical and 
scientific narrative of soil carbon and nitrogen dynam-
ics. Therefore, this research contributes to the global 
discourse on sustainable agriculture and soil health, 
providing practical solutions for a more sustainable and 
resilient agricultural future worldwide.
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