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Abstract

Using mathematical modelling and computer simulation, nonlinear dynamics of rubber-based
polymers has been studied with due regard for the effect of thermal relaxation. Main results have
been obtained for the case of elongational oscillations of a ring-shaped body subjected to periodic
(“internal”) boundary conditions. In this case a nonlinear model describing a combined effect of
thermal relaxation and thermomechanical coupling has been derived, and the analysis of the be-
haviour of rubber-based polymers has been conducted numerically. Particular emphasis has been
placed on high-frequency and short spatial variations of temperature and displacement where the
role of nonlinearities in the dynamics of the material and their close connection with the effect of
thermal relaxation time can be best appreciated. It has been shown how the vanishing relaxation

time can lead to an attenuation of nonlinear effects in the thermomechanical system.
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1 Introduction

The effect of thermal relaxation in rubber-based polymers is one of characteristics that render
them different from “hard” solids. In idealised solids thermal energy is transported by quan-
tised electronic excitations (free electrons) and by the quanta of lattice vibrations (phonons).
A relaxation time appears naturally as the characteristic of thermal resistance in the solid
due to dissipative collisions of these quanta. Such thermal resistance is more markedly pro-
nounced in such materials as rubber-based polymers which are important in a wide range of
applications [1].

Thermal relaxation is responsible for finite speed of heat propagation. This effect is also
known as the “second sound” or the hyperbolic effect due to the type of the equation governing
heat propagation [2, 3, 4, 5].

Most contributions to the rigorous analysis of coupled thermomechanical fields in ther-
moelasticity theory have traditionally been devoted to linear models (see [6] and references
therein). Rubber-based polymers provide a classical example where nonlinear effects are es-
sential in the adequate description of the material dynamics. Using the phenomenology of
these materials [7, 8|, only few recent papers discuss numerical results obtained for these ma-
terials with a general nonlinear models of thermoelasticity (see [9, 10, 11, 12] and references
therein). Nonlinearities in the dynamics of rubber-based polymers are closely interwoven with
the effect of second sound.

So far there have been no attempts to employ the hyperbolic models to study nonlinear
thermoelasticity. In order to bridge this gap, our aim in this paper is to explore a combined
effect of nonlinearity and thermal relaxation time in rubber-based polymers.

To simplify mathematical analysis we consider elongational oscillations of a ring-shaped
body made of the rubber-based polymeric material. An experimental setup for the problem
can be thought in the following way. The elastic ring is put inside a circular tube with rigid
walls. It is assumed that the tube is lubricated from inside and friction between the polymeric
solid material and the tube walls is negligible. When the material is undisturbed, there is no
gap between the rubber-based polymer and the walls. Initial local heating will cause a (local)

expansion of the rubber-based polymer with its particles having the only freedom to move



along the tube. As a result, one-dimensional thermoelastic waves will start propagating, with
volume changes forced by the rigid walls.

This setup gives an example of the dynamics that is attractive from physical point of
view and is convenient to study numerically. Indeed, the isolated ring, regarded as a one-
dimensional structure, has no boundaries and therefore is not subjected to externally imposed
boundary conditions (the periodicity in space can be viewed as an “internal” boundary condi-
tion). This property makes the ring an ideal model object for studying intrinsic dynamics of
coupled thermomechanical systems. Furthermore, it is important that for systems with such a
topology we can effectively employ a relatively simple Fourier-decomposition approach which
automatically guarantees the periodicity of the unknown fields.

The paper is organised as follows. In Section 2 we formulate basic balance equations
governing the dynamics of the material. In Section 3 we complement them by constitutive
relations and in Section 4 we specify the free energy function allowing for the volumetric
contributions and coupled thermomechanical effects. Section 5 is devoted to a model of elon-
gational oscillations of a ring-shaped structure. The interactions between nonlinear oscillations
of the structure, induced by thermomechanical coupling, and the thermal relaxation time are

demonstrated by numerical examples in Section 6.

2 Balance equations

We assume that the motion of the rubber-based polymer material is governed by the kinematic

laws
y = x+u(x,t), (2.1)

where x = (x1, x2, x3) is the original and y = (y1, y2, y3) is the deformed configuration of the
body, and u = (u1(x), us(x), u3(x)) is the displacement vector. The motion at each point of

the body can be represented by the deformation gradient

F = [8%} =1+ a—u, (2.2)
2]



where I is the second order identity tensor.
According to the polar decomposition theorem, this motion can be split into two compo-

nents, pure deformation and rigid body rotation
F = QU = VQ, (2.3)

where Q is a unique orthogonal matrix (the rigid body rotation), while U and V are unique
positive definite symmetric matrices which define the right Cauchy-Green stretch tensor (the
Cauchy strain tensor) and the left Cauchy-Green stretch tensor (the Finger strain tensor),

respectively:
C:=U’=F'F, B:=V?=FF". (2.4)

During recent years attempts have been taken to develop Eulerian formulations of ther-
moelasticity which are exclusively based on the Finger tensor as a strain measure (see, for
example, [9]. This approach allows us to compute thermoelastic moduli directly in terms of
this tensor. In this paper we use a somewhat more classical approach by dealing with the

general nonlinear Green (Green-Lagrange-St.Venant) strain tensor given in the form
E = [€ij]; j—103 = %(D + D7 + D'D), (2.5)
where the displacement gradient D is defined by
D=Vu=F-1 (2.6)
The linearised form of (2.5) is

E= %(FTF —1) = %(Vu + vu’). (2.7)

In the general case, the evolution of a thermoelastic body can be described by a coupled

system consisting of three balance equations, for linear momentum, mass, and energy. In the



Eulerian (spatial) setting, where all physical quantities are regarded as functions of y and ¢,

this system has the form (see [13], p.18, e.g.)

pv =divT + F;, p+ pdivv =0,
(2.8)
pé — T :D(v) +divg = F,

where p is the mass density of the material, e is the internal energy (per unit volume), T is
the Cauchy (true) stress tensor that measures the contact force per unit area in the deformed
configuration, v is the velocity vector, q is the heat flux, F; = pfy is the density of the
applied volumetric body force fy, and F, is the heat density (all measured in the body current

configuration). By a we denoted the material time derivative of the quantity a

Oa

a=—_—+v-Va 2.9

5 (2.9)
As usually, the time derivative on the left of this expression is computed at fixed x, while the
time derivative on the right is computed at fixed y. In what follows we use the dot notation for
both frameworks and the velocity function is always written as v = y. The dyadic operations

for “single” and “double-dot” products for Cartesian tensors are defined in the standard way
[14]:
3 3 3
a-b= Z €m [Zamibm] e’ a:b=|la-b|, |d= Zcmm. (2.10)
=1 m=1

m,n=1

Finally, the deformation rate tensor D(v) in (2.8) is defined as the symmetric part of the

velocity gradient
_ . 1
D(v) = sym(FF™!) = §(Vv + vv'). (2.11)

Note that the last part of this equality is written in the Lagrangian coordinates where we have

F = V,v. (2.12)



Since T measures force per unit area in the present (deformed) configuration of the body,
the use of T in the Eulerian setting is most natural [15]. In compressible applications of
thermoelasticity theory the assumption of isochoric (or volume preserving) deformations,
J = detF = 1, can be violated locally, and hence the system (2.8) is often transformed
to another form. Such transformations usually involve the multiplication of balance equations
for momentum and energy by J and the use of the Lagrangian form of the balance-of-mass
equation [9, 11]. The resulting equations are written then in terms of the weighted Cauchy
tensor (the Kirchhoff stress) T = JT.

Under constraints like those described in the Introduction the rubber-based polymers and
other complex solid polymers exhibit volume changes [16, 17, 18]. The equivalent Lagrangian

(referential) form of problem (2.8) is

poy =dive + pofo, p=J "po,
(2.13)

poé — o : (Vv) + podivg = Fy,

where o = JFTT is the nominal stress tensor that measures force per unit area in the reference
configuration (F = (FT)~" (e.g. [8], p. 153), and &” = JTF is the first Piola-Kirchhoff stress
tensor (see [19], p. 178). Of course, o is generally not symmetric (e.g. Renardy et al., 1987)
and the condition oF? = Fol is equivalent to the symmetry of T = J~!'Fo ([8], p-509). The

formulation (2.13) is used as the basis for our computational experiments.

3 Constitutive relations for rubber-based polymeric ma-

terials: stress-strain and strain-energy functions

It is well-known that the volume preserving part of the strain energy function can be approx-
imated in terms of the three principal semi-axes of the strain ellipsoid (or simply, extension
ratios \;,7 = 1,2,3 corresponding to principal stresses) by assuming that the initial state

(%0, Yo, 20) is deformed via the affine deformation

Tr = )\1.’1}0, Yy = )\Qy(), z = )\32(). (31)



Mathematically the squares of these extension ratios can be defined as the eigenvalues of C (or
B) [12]. If we further assume that there is no change of internal energy during deformation,
we can define the elastic property of rubber-based polymeric materials in the Gaussian region
by the strain-energy relation that follows from the standard thermodynamic analysis (e.g. [7],

p. 65)

Ye(E) = pAS = %G i(,\f - 1), (3.2)

i=1

where AS is the total entropy of deformation, 1), is the elastic part of the free energy function
per unit volume of the material, and 6, is the absolute temperature. The shear modulus, G,

in (3.2) is defined by

where k is the bulk modulus, R is the gas constant per mole, N is the number of chains per
unit volume, M, is the (number average) chain molecular weight. The above expression for
the elastic part of the free energy function has been derived under isothermal conditions [7, 12]
and strictly speaking can be applied to reversible isothermal processes only. In this case the

stress-strain relation is given by

e _ 0.
ac ~ PR’

where S is the second Piola-Kirchhoff stress connected with the Cauchy stress tensor by
the standard relationship S = JF~'TF (e.g. [20]) or, equivalently, T = J 'FSFT [12].
The relation (3.4), exact for the isothermal and isentropic processes, defines hyperelastic (or
Green elastic) materials as opposed to Cauchy elastic materials that have a non-conservative

structure (e.g. [8], p. 176). The Cauchy stress for hyperelastic materials is given by T =
e
—F
P oF
Taking into account that F

T where the derivative is taken for fixed temperature 6 (see [21], p. 266; [12], p. 64).

e _ Do _ O

OFE IF 9K F” we get, the expression for the nominal stress




that we use in our computations with the model (2.13) (e.g. [8], p. 153)

e e
a% FT = poH(F), where H(F)= aﬁ (F). (3.5)

o = o

This gives an interpretation of the nominal stress as the elastic response function H(F) of
a material under consideration. Rubber-based polymeric materials provide a prime example
where such a response is essentially nonlinear. Due to the nonlinearity, in the general case
(3.2) has to be corrected to allow for the non-Gaussian chain statistics. Many authors use the

standard Mooney correction of the elastic part of the free energy

3 3

Ye=C1Y (N —D+Cy (N°-1), (3.6)

i=1 =1

where C; and C); are given constants. The main disadvantage of this approach is that, using
the representation (3.6) (as well as (3.2)) for the elastic part of the free energy function, it
is difficult to separate isochoric (deviatoric) and volumetric contributions. An alternative
representation of the volume preserving part of the strain energy function (¢,(E)) is given in
terms of the strain invariants of right or left modified Cauchy-Green tensor C = J 2/3C and

B = J~%/3B, respectively

3

3
=% L=SA% (3.7)
=1

=1

where \; = J~1/3);,i = 1,2,3 are the eigenvalues of C known as the modified principal
3
deviatoric stretches which satisfy the standard incompressibility condition H/_\i =1 [12].

i=1
Then the elastic part of the free energy function can be given in the Rivlin form

N
e =Y Cy(li —3)'(I,—3)), Coo=0, (3.8)
4,j=0

that describes the Mooney-Rivlin materials when N = 1 (as well as neo-Hookean materials
when, in addition, Cy; = 0). Unfortunately, in the general case the elastic part of the free

energy function represented in the form (3.8) cannot be decoupled in the principal directions,



and therefore fails to satisfy the Valanis-Landel hypothesis requiring separability of the strain-

energy function

Yo = Zw(Xi). (3.9)

A theoretical justification of this condition is provided by the Taylor expansion of 1, near the
isochoric pure dilatation \; = 1 in A; — 1. It can be shown (see [8], p. 494) that up to the 5th
order 9, can be represented in a separable form. In this paper we use the Ogden form of the

strain-energy function which automatically satisfies the Valanis-Landel hypothesis:

3 N

be = ZZ B —1), (3.10)

&

where N > 3, u;, o, 7 = 1,..., N are material-dependent constants. We note that the
expression (3.10) (and other approximations of the elastic part of the free energy function
discussed above) does not allow automatically for thermal effects. However, these effects are
critical for rubber-based polymeric materials, and the dependence of constitutive relation on

temperature will be a subject of our discussion in the next section.

4 Approximations of the free energy function

There are two important issues to be discussed in this section.

Firstly, for the rubber-based material under constraints, which we consider in this paper,
the volumetric contribution is essential. In this case, one of the typical assumptions imposed
on the free energy function is its decoupled structure which is usually exploited in the literature
in the context of numerical experiments conducted for rubber-like materials [22]. However, it
is known now that in the general case the free energy function cannot be split as a pure sum
of two components, one is due to shear (elastic part) and the other is due to volume change
[12]. Therefore, in the general case a proper inclusion of volumetric contributions into the free
energy function is a non-trivial task.

Secondly, as we mentioned before, the stress-strain relation discussed in the previous sec-



tion (see (3.4), (3.5), e.g.) remains, in essence, uncoupled with the temperature field of the
material. We emphasise, however, that the thermomechanical coupling is a key phenomena
for rubber-based polymeric materials and uncoupled models may lead to misleading results in

computing the dynamic behaviour of these materials.

4.1 Allowing for volumetric contributions

Formally, for an arbitrary dilatation parameter ¢ = J — 1 we can take into account the
volumetric part of the free energy function by splitting the free energy function into distortional

and dilatational components!

e

¢e(5\1,5\2,¢]) :we(j\l,j\Q,l)'f‘GW-Fkgg(J), (41)

where k, is the ground-state bulk modulus in pure dilatation (i.e. where A; = A, = 1), and
g(J) is a function chosen from the consistency conditions with the classical theory (see [8], p.
518). Since the dilatation parameter is typically small in the context of rubber-like polymeric
materials most widely used in applications (~ 107*), this function can often be chosen as
identical zero and the decomposition of the motion into a volume preserving distortional part
and a dilatational part can be simplified. Indeed, in this case the dilatation effect can be well

approximated by the following expansion (typically the first two terms will do the job)

o0

te(Ar, Mg, J Z

=0

A2, 1). (4.2)

Unfortunately, as we mentioned earlier, in the general case the free energy function cannot
be represented as a simple sum of its volumetric and isochoric components. Below we explain

how the coupling between these two components can be taken into account.

'Recall that in the decomposition of the strain E = E* 4+ 1/3(tr (E))I, E* is called the distortional part of
the strain and tr E is the dilatational part (e.g. [8], p. 348).

10



4.2 Thermomechanical coupling via the free energy function

We effectively couple volumetric and isochoric parts of the free energy function by introducing

a coupling factor f(6) [12]

T/j(E, 0) = wvol(‘]’ 0) + f(e)wiso(Ea 0), (43)

where we use a new notation, v, for the free energy function (instead of the old one, 1) to
reflect its dependency on temperature. The volumetric part of the free energy function, 1y,

is determined via the penalty arguments

N
Yool = 3 Di(0 —1)%, N >1 (4.4)
i=1

with D; being interpreted as penalty for imposing the incompressibility constrain. By setting
6 = 6y (which leads to 1y, = 0) and f(f) = 1 representation (4.3) is reduced to the classical
incompressible case where i, = 1) = 1 is a function of )\;,7 = 1,2,3 only. In the general
case, however, function ;s is dependent on both strain E and temperature # and represented

as a sum of two parts, equilibrium, 1);, and non-equilibrium, s,

¢iso(E7 0) = wl + 1/)2- (45)

Following [11], we postulate the following form of these functions

6

wi = 61,77020 - ﬁjkejk(e - 00) + 6? (1 - 0_0) ) 1= ]-a 2a ja k= 172: 37 (46)

where €? is the internal (equilibrium) energy part at the reference temperature 6y, ¥? is the
free energy at the temperature 6y, €;; are components of the strain tensor E, and S;; are
elements of the thermoelastic pressure matrix (in the linear case, it is the matrix product

between the matrix of elastic moduli and the thermal expansion matrix). For functions €%

11



and Y in (4.6) we choose the following approximations

3 3
% 7] k
e? = koot log J, w?:E:ngX%VQ—D+~£UQ—2ng—1L (4.7)
i=1 ' j=1

where kg is the bulk modulus, and oy is the thermal expansion coefficient. Finally,

0 0
51:—+—g

5. T o] (G0=0)+(9(0) —9(tn)), (4.8)

9=09

where g(6) is the shear-moduli-related function determined by fitting experimental data. We

define this function as

QW)Zb(%>a+d, (4.9)

which, by choosing appropriate parameters a, b, and d, allows us to model a wide range of
material behaviour, ranging from stiffening to softening [11].

Using arguments of [9] (see also p. 366 in [11]), in our work we set 1, = 0. In this case
the resulting free energy function is an analogue of the Taylor expansion of the Helmholtz free
energy function in the vicinity of the natural state (¢;; = 0 and § = 6p) in the classical linear
theory of thermoelasticity [23]

&(6 — 6,)?

1
Y(E, 0) =(0,60) + o Cight€ij €kt — Bijeii (0 — 0o) — YR
0

(4.10)

where ¢ is the heat capacity, c;jx; is the elastic coefficients tensor.
For computational experiments reported in Section 6, the volumetric part of the free energy

function in (4.3) is chosen in the form
1/1v01=5(9—90—910g0/00), (411)

where ¢ is the rigid heat capacity [9]. Having the free energy function, the internal energy

12



(per unit reference volume) is determined via the entropy, 7, in the standard manner as

oy
e=1+06n, = ——. 4.12
Y+on, n=—og (4.12)
The general form of the free energy function brings appropriate corrections to the stress-
strain relation. Recall that since ), is just an isothermal part of the free energy function, the
stress-strain relation (3.4) or (3.5) can be “exact” only for isentropic (7 is kept constant) or

isothermal (@ is kept constant) processes. In the context of entropy elastic materials we have

to cover a more general case, hence we refine approximations (3.4), (3.5) as follows

o

o =0o(A,D), and as a special case, o = py==, or S= PR

o (4.13)

where A is a set of independent variables chosen for the adequate description of material
behaviour and such that the entropy inequality is satisfied (see Section 5.3 in [21] for details).
The free energy function (per unit reference volume), 1, in (3.13) is determined by (4.3).
Two final remarks of this section go to viscous and rheological effects. The viscous effects
become detectable in the rubber-like polymeric materials when impulse diffuses through the
material in the process of microscopic motion of particles. Clearly, these effects can easily
be incorporated by including the viscosity tensor into the set A, and, consequently, into the
equation of motion and the energy balance equation [24, 21], or by adding to the system
(2.13) ((2.8)) an additional equation for the “elastic” part of the Finger strain tensor [11]. We
will not pursue these ideas here, and the reader can consult the above cited papers on these
standard procedures. Instead, in what follows the main focus will be on the effect of thermal
relaxation and its influence on the nonlinear dynamics of the thermomechanical system. This

effect is introduced into our model by the Cattaneo-Vernotte (CV) equation

708 +q = —KV0, (4.14)

where q is the heat flux, K is the heat conduction coefficient, and 7 is the thermal relaxation

time. This equation evolves into the standard Fourier law, q = —KV#, in the limit of vanishing

13



relaxation time 75 — 0.
Finally, we note that the model described in this section may be enhanced to include

rheological effects. This can readily be handled with known procedures (e.g. [11]).

5 Elongational oscillations of a ring-shaped structure

The definition of the strain according to formula (2.2) (and ultimately, the definition of the
free energy function) requires the specification of kinematic laws (2.1). As soon as such
laws are specified for the rubber-based polymeric material, we can perform the analysis of
nonhomogeneous situations where the strains may vary from point to point in the deformed
body.

The ring-shaped structure described in the Introduction performs the one-dimensional

elongational motion defined by the kinematics

=21 +u(z,t), yo=a2, y3=21s. (5.1)

It must be emphasised that this motion can be exhibited in compressible materials only. The
law (5.1) is clearly different from that of the elongational motion under near-incomressibility
conditions [15], for example, y; = z1+u(z1,1), Yo = T2/\/1 + us (21, 1), y3 = 23//1 + uy(z1, ).

For the kinematic law (4.1) the deformation gradient (1.2) is defined by the diagonal
matrix F = diag (1 + du/0x,1,1). Hence, the Finger strain tensor has the form B =
diag ((1 + ou/dx)* |1, 1) which provides us with A = A = 1, A3 = (1+9u/0z)?, . Therefore,
J as a function of du/0z, and modified principal deviatoric stretches can be represented in

the form

ou < - ou\’
J=1+ a_Z’ Mo=J13 X\ = (1 + %) J3, (5.2)

As rubber-based polymers may exhibit large deformations, in principle the energy and other
functions should be taken in the general forms suitable for both small and large deformations.

Since in this section we focus only on the case of small perturbations, these general forms can

14



be reduced to simpler ones by decomposing them into Taylor series in du/0x and (6 — 6).
Indeed, substituting (5.2) into 1? in (4.7) and retaining only linear and quadratic terms in

the Taylor series we get

3

1 ou 1
0—_ ¢ — —
Vi = 2;“263: + 8

3

D hi(30s = 2) + 4k (3—5)24“. (5.3)

Under the assumption of Section 3.2 the remaining terms in the free energy function (3.3)

turn into zero when 6 = 6. Referring to [25], we note that for u = 0 there should be no
internal stresses (o = 0). Hence, due to (3.13), we conclude that in the expansion of 1) linear
terms should be absent, and therefore 23: i = 0. Further, we note that for the available data
for many rubber-like polymers [26, 11] ilzklo is typically a dominant term in the square brackets

of (5.3). This immediately simplifies the relation (4.4) to

ko [Ou)?

0 0

~— =] - 5.4
wal (3 (5.4
Then we take the function g(6) from (4.9) in the simplest form corresponding to @ = 0. In

this case (4.9) gives dg/df = 0 and consequently (4.8) reads as
o= —. (5.5)

Substituting (5.5) and (5.4) into (4.6) for ¢ = 1 and replacing S;; by a scalar § we obtain

0 ou\? ou 0\ Ou
TS Eko (8_36) — 56— 00)8_:6 + koo <1 - 9—()) G (5.6)

In view of (4.5) and v, = 0, the formula (5.6) also represents the function . Inserting (5.6)

and (4.11) into (4.3) in which we assume for simplicity f(#) = 1 yields the function :

—c¢(6—-0,—01 9k3“2 kocts) (0 — ) 2" 5.7
¢—c< — 6y — Og_)+2—90 0(%) — (B + koap) (0 — 0)%. (5.7)

Expression (5.7) can be simplified further by decomposing log(#/6,) into Taylor series in small

15



value (6 — 6)/0o:

0 0—0,\ 60—0, 1/0—06)\"
log— =1 1 = - = . .
0g - og(+ G ) G 2( 5 ) (5.8)
Substituting (5.8) into (5.7) reduces the latter to the form
o c(0- 90) 6 Ou ou
where
v = B+ koa.

The stress is readily determined by differentiating (5.9) with respect to du/0x:

ou

O = pPo koa — p()’)/((g — (90) . (510)

6o

The energy e is determined from (4.12) with the help of (5.9):

¢ (0 — 00) ou
__° 11
e 90 00 (0 9())9 + ")/906 (5 )
from where
o
b= —— 2 —. 12
e oo (0 00)9 + 000( 0 — 0o) + 0o pe (5.12)

We note that the first term in the right-hand side of (5.12) contains the small multiplier

(0 — 6y)/6y. Disregarding this term we get

ou Bu
Using (5.10) we have
ko ,Ou 04 ou
T. — , MpTRIR —0.)—
o (Vv)=po 909(% 9 poy (0 00)(% : (5.14)

Now we are in a position to rewrite the momentum and energy balance equations (2.13) using

16



(5.10), (5.13) and (5.14). Together with the Cattaneo-Vernotte (CV) equation they have the

form

(i Ko, Pu  ko000u 06

Pt =0 022 " 0,00 00 ox’

. 0q kg Ouou ou

{ =ty Tp - — ) — 5.15
b=t 0 0 105 (5:15)
O . _ 9

L 09 79T e

The heat flux ¢ can be excluded from (5.15) in a straightforward manner by (a) differentiating

the CV equation with respect to x that leads to

9 (Oq dq 020
Togy <a )*a—x——’cw

and (b) substituting therein the derivative dq/0x extracted from the energy equation. Doing

so we obtain

(i by ko0ou o0
pou_é’ 0x2 0y 0z Ox T
. 920 ou\’>  Oudii Ou O
704 A0 — ov e guot (5.16)
T060+60 ICa D) +7’0k0 [(ax) =+ 637 63:] +k0a’bal‘
-0 ot ou
L —77'093— - 77093 79(%

Finally, we substitute the expression for i from the momentum equation (in (5.16)) into the

energy equation, replace 6 for 6y + 7 (T = 6 — 6,) and retain only linear and quadratic terms

in T and u:

( Fu T k0T Ou | ko 0u

i O ko OT Ou
ot =Fog 2 7895 90 Or 0r 0y O0x2’

. : 0*T vkoby u
T to 0bo
Tocl' 4+ I = (IC + 7o ) 9z To 00 Oz°

o o 2vkq 03
_7008 ~+ Toko (83?) — T p Tax3
27/608_T@_7_ 2’yk082T8u+ T82T+Tk_§%@
or 0z2 ° 912 Oz 022 ' °py O O3
Po OT OX Po Po OT Ox
01 Ou . Ou ot
T — AT
Mograr ~ ™ g = o

(5.17)

-

17



It is easy to see that the linearised version of (5.17) coincides with the linear Lord-Shulman
model of hyperbolic thermoelasticity [27]. In this sense, the system (5.17) can be viewed as a
generalisation of the classical Lord-Schulman theory to nonlinear hyperbolic thermoelasticity
[5]. All quantities of the model (4.18) can be non-dimensionalized using appropriate com-
binations of the dimensional parameters with independent dimensionalities. We have seven

dimensional parameters in the model:

po(gem™), ko(gem™s7?), 6(K), K(gemsK™),
(5.18)
v(gem T'sTPKTY), m(s), c(gemTsTPKTY).

In (4.19) there are only four parameters with independent dimensionalities, and using (po, ko, 6o, K)

as those, we obtain the following dimensional scales:

po > Kb, pokfo
Lo ="3p be="—"5,
ko ko

Omitting algebraic rearrangements, we write the non-dimensional system where, for simplicity,

we use the same variables’ notations as above:

( "—@_ga_T_i_a_Ta_u_i_T@
v= 0x2 B Or Oz ox ox?’
. . 2 2 3 y y 2
aF+7 = (B+28) L 42t 0 4p (2
) B 0z? oz ox 0z (5.20)
P oT 9%u PTou  AC? T '
_ TU _gpc Y _ gu T
QACT(%*" 24C 0z 0x2 240 0z? 0z + B 0x?
Ou 0%u o0t Ou . O ou
guon  guot 4o _ o1
\ +45 oz 0x3 + 0x Ox ¢ ox ¢ ox’
and
2
= TOkO 3 = k_(l’ C = z‘
Pty Ooc c

In the ring-shaped body of the perimeter L, thermomechanical fields are spatially periodic
with the period L linked to the basis wave number k = 27/L. We introduce fields of velocity

and rate of temperature change, v = Ju/0t, ¢ = 9T /0t, and seek the solution to (4.21) in
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the form of Fourier series

u = i Un (t)einkw’ v = i Vn (t)einIm’
_ Z Tn (t) einlcz’ q= Z Qn (t) einkz‘

Substituting (5.21) into (5.20) and equating coefficients near exp(inkyz) leads to an infinite

system of coupled ordinary differential equations for the Fourier-amplitudes:

4
dU,/dt =V,
) C.
dv,/dt = —(nk)°U, — Eka"
—k* > mn—m)TUnom — k> > m’UpTom
dT, /dt = Q.,,
A02 2 . 3 .
) AdQy/dt = —Q, — | B+ B (nk)°T,, + ACi(nk) U, — CinkV, (5.22)
—ABE* ) m(n —m)VnVaom + 24CiE° Y m*UnTyom
+2ACk? Z m(n — m)*TUp_m + 2ACIK? Z m(n —m)?UpTp—m
—AC2 k? i (n —m)*Tp Ty + ABK* i m(n —m)3Up,U,
B S m+n—m e mYn—m
—BE* ) m(n —m)ViuUnm — ACik Y mVuQuom — Cik Y mViToop.
\ m=—0oQ m=—0oQ m=—0oQ
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6 Numerical analysis of a combined effect of thermal re-
laxation and thermomechanical coupling in nonlinear

dynamics

In all numerical experiments reported in this section we use the values of model parameters

typical for polyisoprene [26]:

po=0913gcem™, ko =227T0 MPa=2.27-10"gcm™*s™2?, 6, =293K,

K=0134Wm 'K '=134-10"gcm s K !,
(6.1)
v=11.8-10° Nm2K ' =1.18-10"gcm ~'s 2K,

¢=1905J kgT' K™ '-0913gcem™® =1.74-10"gem ™' s 2K~

Substituting these values into (5.19), we obtain
z,=11-10"cm, ¢, =6.9-10""s.

In studying nonlinear dynamics of rubber-based polymeric materials with due regards to the
effect of thermal relaxation, the fact that the time scale turns out to be very small is handy
for the analysis of this dynamics. Indeed, note that the thermal relaxation time is also small,
typically of the order 107!% — 1072 s depending on the material. Since the value of ¢, is less
then or comparable to typical relaxation times, this will ensure the sensitivity of the model
to fast processes where the role of thermal relaxation can not be ignored. The associated
small value of z, will allow us to resolve corresponding short spatial variations of thermal and
mechanical fields.

However, care must be taken when dealing with the short spatial scales. Indeed, for the
fast and spatially short-scale processes, such as the second sound, the physical system is not in
the state of local thermodynamic equilibrium and heat carriers should not obey any universal
velocity distribution (e.g, Maxwell distribution). As a consequence, a difficulty arises on

how to sensibly define the temperature as it cannot be related to the kinetic energy of heat
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carriers averaged over some elementary space volume. At atomic length scales such volume
may even contain just one carrier so that the averaging procedure loses sense. Traditionally,
the elementary volume is assumed to have comparable extensions in all three dimensions (e.g.,
[28, 29] and references therein).

We define the temperature in a non-traditional way, which is specifically designed for
extremely short quasi-one-dimensional waves like the second sound in elastic rings. The defi-
nition is similar to that of originally proposed in [28] (see also [30]) where temperature waves—
waves of second sound—were studied. The authors of that paper simulated the behaviour of
individual atoms in a three-dimensional lattice exposed to an initial heat pulse applied at
lattice end. The results were compared to available experimental data on NaF (e.g., [31])
and satisfactory correlation was revealed at qualitative level (see also a more recent paper
[29] and references therein). Note that in these experiments the lattice was supposed to be in
thermal equilibrium initially but the equilibrium was destroyed by the propagating heat wave.
Under these conditions the kinetic temperature was introduced as the kinetic energy of atoms
averaged over cross-sectional lattice plane. Thus, the elementary volume was designed to have
microscopic extension (comparable to atomic size) in the direction along the wave propagation
but extended over many atomic sizes in the transverse direction. Due to the latter property
the elementary volume embraced many atoms; this allowed to use the averaging over them
when defining the temperature.

In the similar way we define the temperature as the average kinetic energy of heat carriers
over elementary volume with extension of the order z, in the x direction (along the elastic ring)
and of much greater extension in transverse direction (across the ring). Having adopted this
temperature definition we view the CV equation as the model that well reproduces (although
phenomenologically) main properties of the second sound, namely finite propagation velocity
and its wavy character.

The first group of experiments was set to demonstrate the influence of thermal relaxation
on nonlinear dynamics of the polymeric body. We excited the ring thermally by introducing

the initial temperature shown in Fig. 1. Initial displacements and initial time derivatives of
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displacements and temperature are kept zero, so that we have

T(w,0)=R<1+gsin(kx))4, w(z,0) = 0, (%—f)tzo 0, <%>t:ozo' (6.2)

The factor R in (6.2) is chosen so that the temperature at the maximum of the peak is
equal to the melting temperature 7, of the polymeric material. For polyisoprene 7T,, = 35C,
consequently the corresponding non-dimensional temperature equals 0.05 which is provided
by R = 1073/3. Strictly speaking, once the initial conditions are specified, we are left with the
only free parameter in our model, namely the wave number k. However, since the relaxation
time is a parameter that is difficult to measure in practice and for most applications its value
can be given within a specified range only, it is very instructive to conduct an experiment where
the influence of variations in this parameter on the nonlinear dynamics can be investigated.
In what follows, we assume that the typical value of 73 for the materials under consideration
is of the order 7y ~ 107 %s.

We truncate the system (5.22) to a finite number of modes and integrate it in time using
the fourth order Runge-Kutta method. In our experiments we used typically 10 Fourier modes
which was sufficient to provide an accurate representation of the solution. Due to negligibly
small contributions of higher modes to the solution of the problem, we observed practically
the same profiles of computed thermomechanical fields when larger numbers of modes were
used (up to 30).

In Fig. 2 the dynamics of elongational oscillations is shown for £ = 1 and 79 = 10~ !%s. For
convenience, all figures display two periods of temperature and displacement profiles (figures
(a) and (c)). Next to each 3-D plot we place the last recorded profile (b) and (d), respectively).
Thus, the initial profile (Fig. 1) and the profile computed at the last moment of time, ¢, are
presented separately, while intermediate-time profiles can be judged upon the presented 3-D
plots. The dynamics considered in this example is very irregular. Indeed, our computations
beyond the chosen limiting moment ¢; showed that, eventually, nonlinear effects started to
drive the profiles towards the formation of shock-type waves. The moment of the shock wave
formation manifests itself by a typical rippling of displacement and temperature profiles, and

therefore, can be estimated computationally. In all our experiments we chose the limiting
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time ¢; small enough to avoid this phenomenon. The shock wave formation in nonlinear
thermoelasticity is a well-known phenomenon (especially in the context of classical models)
which has been studied theoretically by a number of researchers (see, for example, [32]).

For smaller values of k£ representing a “stretched-out” initial temperature peak, a longer
period is needed for the nonlinear terms to produce a noticeable effect. For example, Fig. 3
(k = 0.01) shows the profiles (of temperature [Fig. 3a] and of displacements [Fig. 3b]) formed
by the moment ¢; = 500 when the peak changed substantially in height as compared to the
initial profile. We found that even after such a relatively long evolution, the nonlinearities
still have a negligible effect. This was confirmed by comparing the presented profiles with
the profiles obtained with the linearised system (4.21). Another important observation that
follows from Fig. 3 is that the profiles corresponding to the relaxation times smaller than
10~'2s practically coincide with each other. This is not surprising because, for sufficiently
small values of 7y, the terms with the relaxation time (see (5.20)) practically vanish. We
observe that the profile for a relatively large relaxation time corresponding to 7o = 10 !!s
is clearly different from the other profiles, while the profile for 7y = 107'2s is just slightly
different from the profiles corresponding to smaller values of 7. Therefore, for given wave
number k£ = 0.01 the relaxation time 7, = 107*%s can be viewed as “critical” in a sense
that one may expect an increasing influence of the effect of thermal relaxation for polymeric
materials with larger values of 75. For larger wave numbers £, the nonlinear terms in the
energy balance equation play a significant role at earlier stages of the dynamics. Fig. 4 shows
profiles of the thermal (Fig. 4a) and mechanical (Fig. 4b) fields for £ = 1 at the moment
t;1 = 100. Two curves presented in this figure demonstrate distinctive difference between the
results of computations with the full and linearised system (4.21).

In the second group of experiments we investigated a combined effect of thermal relaxation
and nonlinear oscillatory dynamics of the thermomechanical body. The main result is illus-
trated by Fig. 5 (k = 5). First, note that the majority of the nonlinear terms in our system
(5.20) contain the relaxation time parameter A. By switching from the case 7o = 107'%s to the
case 79 = 107!%s we decrease the value 7y and, consequently, suppress the nonlinearities. The

first term in the right hand side of the energy balance equation (see (4.21)) becomes dominant,
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and we observe a damping of temperature, which eventually leads to its almost uniform spatial
distribution (Fig. 5b). Thereafter, displacements continue to oscillate obeying, in essence, the
usual wave equation of motion.

This phenomenon should be viewed not only as a result of different roles of nonlinearities
in the system, but as a combined effect of nonlinearities and thermal relaxation. Although
we only demonstrated the significance of this effect for short spatial and temporal scales, it
can be foreseen that the role of thermal relaxation can be far from negligible for larger scales.
Indeed, the term containing the relaxation time, AC?/B, makes a substantial contribution to
the effective coefficient of temperature dissipation, (B + AC?/B). For the data (5.1) it can be
easily found that AC?/B = 0.0026 and B = 0.00076. Although this estimate is pretty rough,
it clearly points out to the possibility for the ratio AC?/B to become appreciable compared

to the value of B, even though the value of 75 remains small.

7 Conclusions

Using computer simulation we studied thermomechanical behaviour of rubber-based poly-
meric material with special attention given to the role of the thermal relaxation phenomenon
in nonlinear dynamics. We considered elongational oscillations of a ring-shaped body that
provided us with an instructive example for studying important features of a combined effect
of thermal relaxation and thermomechanical coupling. We derived a nonlinear thermomechan-
ical model based on conventional forms of free energy functions for these polymeric materials
and the Cattaneo-Vernotte equation allowing for the effect of thermal relaxation. The model
comprising of the equations of motion and energy balance represents a generalisation of the
classical Lord-Schulman model, and in the linear case both models are identical. A distinctive
feature of our model is its ability to allow for a combined effect of thermal relaxation and non-
linear character of oscillatory dynamics of the thermomechanical system. This effect is most
pronounced for high time frequency and short spatial variations of temperature and displace-
ments. This case was analysed numerically with a computational scheme based on the Fourier
decomposition of thermomechanical fields. Since most of nonlinear terms in our model con-

tain the thermal relaxation time parameter, we conducted a series of numerical experiments
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to reveal a close connection between nonlinear dynamics of the system and the phenomenon
of thermal relaxation. In particular, we demonstrated that the vanishing relaxation time can
lead to a remarkable damping of nonlinear effects in the dynamics of the thermomechanical

system.
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List of figure captions

e Figure 1: Initial temperature has the form of a peak.
e Figure 2: The dynamics of temperature and displacement (¢; = 50).

e Figure 3: Temperature and displacement for different relaxation times. 7o = 107! s (1),

107125 (2), 107 s (3), 107 s (4).

e Figure 4: Temperature and displacement obtained with the linear (1) and nonlinear (2)

system. 7o = 107 !2s.

e Figure 5: Dynamics of temperature and displacement for 7y = 10712 s (left column) and

70 = 1071 s (right column).
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List of notation

Latin small characters

® c;jx is the elastic coefficients tensor;

¢ is the heat capacity;

e is the internal energy (per unit volume);

¢V is the internal (equilibrium) energy part at the reference temperature;

fy is the applied volumetric body force;
e g(J) is a given function;

e ¢g(f) is the shear-moduli-related function;

k is the bulk modulus;

k4 is the ground-state bulk modulus in pure dilatation;

q is the heat flux;

u is the displacement vector.

v is the velocity vector;

x is the original (undeformed) configuration of the body;

y is the deformed configuration of the bodys;

Latin capital characters

e B is the Finger strain tensor;

C is the Cauchy strain tensor;

D is the displacement gradient;

D; is a penalty for imposing the incompressibility constrain;

F is the density of the applied volumetric body force;

F, is the heat density;
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G is the shear modulus;

I is the second order identity tensor;

K is the heat conduction coefficient;

e NN is a constant;

M., is the (number average) chain molecular weight;

Q is the rigid body rotation (an orthogonal matrix);

R is the gas constant per mole;

S is the second Piola-Kirchhoff stress;

T is the Cauchy (true) stress tensor;
e U is a positive definite symmetric matrix;

e V is a positive definite symmetric matrix;

Greek small characters

e ( is the thermal expansion coefficient;

e o are material-dependent constants;

e ;i are elements of the thermoelastic pressure matrix;
e ¢;; are components of the strain tensor;

e @, is the absolute temperature;

e 4; are material-dependent constants;

e pis the mass density of the material;

e o is the nominal stress tensor that measures force per unit area in the reference config-

uration;
e o' is the first Piola-Kirchhoff stress tensor;

e 7y is the thermal relaxation time;

¥ is the free energy function;
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® . is the elastic part of the free energy function;
® 1)y is the volumetric part of the free energy function;

e ¥ is the free energy at the temperature 6y;

Greek capital characters

e AS is the total entropy of deformation;

e A is a set of independent variables.
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