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ABSTRACT 

Land based sources of nutrient loads impact the health and resilience of the Australian 

Great Barrier Reef, however, the current methods used to quantify and prioritise 

nutrient reduction to the reef need improvement to increase certainty in estimates of 

Dissolved Inorganic Nitrogen (DIN) from ungauged catchments. Catchment Scale 

Water Quality Models are currently the primary tools used to quantify the influence of 

landscapes towards receiving waters and are effective for communication of the 

influences of the landscape and its management towards the Great Barrier Reef. The 

design and development of these models rely on extensive observed water quality 

data for development and calibration of the models, however, the collection of the data 

are both expensive and not possible in all areas. This PhD project has developed new 

knowledge in simulating DIN from ungauged catchments, to overcome the challenge 

and knowledge gaps associated with data voids that afflict water quality modelling. 

Research herein has coupled catchment classification, a method demonstrated by 

existing the literature to effectively overcome data voids for flows, with Artificial 

Intelligence pattern matching and techniques to identify corroborating catchment 

matches for both DIN patterns and spatial data. Additionally, this research, for the first 

time, has used spatial datasets for Original Vegetation, as a proxy dataset to the 

drivers of DIN. This research has found that the Original Vegetation data represents 

the variability in biological response to the drivers of heterogeneity in DIN patterns 

across the landscape. Explainable artificial intelligence approaches were then 

developed to identify landscape features most influential in the classification results. 

Development of these methods ultimately facilitated satisfactory simulation of DIN for 

a pseudo ungauged catchment as well as identifying catchments that are unsuitable 

to share data and others that need prioritisation for future gauging programs. Together, 

these approaches have enabled the development of knowledge to classify ungauged 

catchments of the Great Barrier Reef using spatial data as a proxy for absence of 

observed DIN data.  The findings of this doctoral study have provided new insights 

into water quality modelling and the selection of catchments as well as classifying the 

catchments and performing DIN simulations.  
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CHAPTER 1: INTRODUCTION 

1.1. Research context 

Australia’s Great Barrier Reef (GBR) is the world’s largest coral reef system. It 

evolved in low nutrient waters off Northeast Queensland’s tropical coastline (Furnas, 

2003). During the late 1900s intensification of anthropogenic land use within 

catchments that drain to the GBR coincided with symptoms of elevated nutrients 

including algal and crown of thorns starfish (Acanthaster planci) blooms, (Kroon et al., 

2012). These symptoms of nutrient imbalances critically threaten the resilience of coral 

reefs to withstand and recover between major disturbances such as regular tropical 

cyclones, and bleaching events (Baker, 2003; Furnas, 2003; GBRMPA, 2001). In 

response, extensive action plans aiming to reduce anthropogenic impacts towards the 

health and resilience of the World Heritage Listed GBR, were committed to 

(Anonymous, 2003; State of Queensland, 2011, 2018).  

Despite the investments and efforts to reduce nutrients, as of March 2022 a 

report by United Nations Educational, Scientific and Cultural Organization (UNESCO) 

and International Union for Conservation of Nature (IUCN) recorded that the GBR met 

criteria for the “in-danger” list due in part to slow progress towards nominated water 

quality targets (Brassington et al., 2017; Carter & Thulstrup, 2022; Chen et al., 2011; 

State of Queensland, 2018; Steven et al., 2019).  Progress to water quality targets and 

prioritisation of actions are measured qualitatively by models and certainty in those 

models increases with observed data. Given the precarious state of the water quality 

balance, and impracticality to gain observed data for all ungauged areas, reliable and 

explainable State of the Art approaches for modelling the ungauged areas are an 

ethical necessity to justify decisions that impact both humans and the GBR (Baird et 

al., 2021, Creighton et al. 2021, Di Baldassarre et al., 2019).  

Hereafter, lands that contribute runoff to the waters surrounding the coral, 

lagoon, fore and back reefs of the GBR Marine Park are referred to collectively as the 

GBR Catchments. Areas that drain each of the 35 rivers whose surface hydrology are 

separated are referred to as gauged or ungauged catchments. For the purpose of this 
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thesis gauged means catchments which have continuous flow and sporadic water 

quality data monitored and systematically recorded by the Queensland State 

Government and sufficient, and ungauged don’t. These areas are shown, along with 

the gauging features, in Figure 1. 

1.2. Statement of the challenge and knowledge gaps 

Nutrient quantification is made possible by Catchment Scale Water Quality 

Simulation Models (CSWQM), which are the tools that quantify water quality 

constituents throughout those systems (Baker, 2003; Fu et al., 2019). Catchment 

Scale Water Quality Simulation Models are developed, calibrated, and verified using 

observed water flow and observed water quality data collected in the corresponding 

Figure 1.1: Location of Gauging Stations throughout the Great Barrier Reef Drainage 

Basin. Inserted close up shows the river networks in relation to the gauged and the 

ungauged catchments. 
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catchment (Dadson et al., 2019). While flow and water quality data suitable for 

CSWQM development are collected in gauged catchments, approximately 30% of all 

flows to the GBR source from ungauged catchments (Khan et al., 2019; Wells et al., 

2017). This substantial lack of observed data, limits calibration, validation, and training 

of catchment specific models in those ungauged/unmonitored circumstances and 

affects certainty regarding collective impacts of land-based sources of nutrients 

towards the health and resilience of the reef (Aerts et al. 2023, Bartley et al., 2017, 

McCloskey & Waters 2017). Such lack of data afflicts CSWQMs worldwide (Do et al. 

2018, Kratzert et al., 2019, Kreibich et al., 2023). An entire decade of research called 

Predictions in Ungauged Basins (PUB) was dedicated to a resolution. The overall 

conclusion of the PUB decade was that regionalisation, was the best method 

overcome data shortages in catchment scale hydrological modelling for ungauged 

areas (Hrachowitz et al., 2013). The recommendation to overcome data deficiencies 

resonates the seminal principles of catchment modelling also recommended by Nash 

& Sutcliffe (1970) whereby inclusion of data that quantifies drivers of the constituent 

being simulated generates the most reliable results. This widely validated approach 

for modelling ungauged areas underscores the necessity for underlying processes of 

the constituent being modelled to be understood and demonstrates the need to identify 

catchments that share similar process drivers.  

Catchment classification is the fundamental precursor to regionalisation which 

matches catchments by similar process drivers and is therefore the foundational topic 

for this thesis. While catchment classification methods such as nearest neighbour and 

physical similarity are effective to reflect the empirically linear drivers of flow and total 

suspended solids, heterogeneous performance results for Dissolved Inorganic 

Nitrogen (DIN) simulations highlight that process drivers of constituents differ 

(Hrachowitz et al., 2013; Merz & Blöschl, 2004; Narbondo et al., 2020). Although 

studies demonstrate DIN patterns are detectible in highly monitored areas (Ebeling et 

al., 2021, Zhang et al., 2022), the methods are not transferrable to ungauged 

catchments that drain to the GBR. Drivers of DIN are dynamic and fluctuate depending 

on a combination of cryptic and other biological influences (Lintern et al., 2018, Lintern 

et al., 2021, Liu et al., 2021).  Exploration of the influence of catchment scale drivers 

towards heterogeneous nitrogen to date have found that soil water depth, topography, 

climate as well as underlying geology are principal drivers (Zhi et al., 2020). While 
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some of the driving influences on DIN patterns are known, all studies agree that 

relationships appear non-linear, heterogeneous, and changeable over space and time 

(Rafiei et al. 2022). Methods that enable catchments to be matched based on the 

combination of heterogeneous response to the wide and varying combination of 

drivers of DIN are necessary to facilitate the increased certainty in existing water 

quality modelling methods and ensuing sound stakeholder decisions.  

Traditional statistical regression methods typically used for classifying the 

catchment similarity require prior knowledge of the influential drivers towards the 

constituent of interest (Liu et al., 2021).  Additionally, any method intended to classify 

all catchments that flow to the Great Barrier Reef necessitates for ubiquitous 

availability of that same data across all respective catchments. However, changeability 

in relationships between the drivers of DIN and the water quality response over space 

and time is undefined and inhibits the suitability of statistical regression methods to be 

transferred to new areas. For these situations, Harris (2012), Parrott (2010), Prinzio et 

al. (2011) and Toth (2013) all highlighted the need to consider new approaches to 

evaluate the complex and adaptive interrelationships of the biological and ecological 

aspects of catchments on the water quality responses. Improved computing power 

coupled with machine learning skills overcome existing paradigms and can provide 

new insights to inform classification (Goodwell et al, 2020; Kitchin, 2014). The Artificial 

Neural Network discipline of machine learning is characterised by automated forward 

and back propagation which overcomes operator knowledge bias associated with a 

priori selection of dominant catchment descriptors for classification and has track 

record in detecting the heterogeneous water quality patterns associated with DIN 

(Husic et al. 2023). Together these machine learning abilities can enhance the 

feasibility of interrogating larger datasets and uncover non-linear functions (Merz et 

al., 2020; Saadi et al., 2019, Tung & Yaseen, 2020).   

 For this doctoral research project, new methods to classify catchments using 

ubiquitously available data as a proxy for the similarity of patterns in DIN in ungauged 

areas are explored. Dissolved Inorganic Nitrogen has been selected due to the key 

influence it has on algal growth on the reef (Anonymous, 2003; Baker, 2003; Bartley 

et al., 2017; Kroon et al., 2012). Dissolved Inorganic Nitrogen has different drivers to 

the other key constituent of Total Suspended Solids, which has similar physical drivers 
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as flow and is heavily researched (Sivakumar et al.,2015, Moliere et al.  2009, Ali et 

al., 2012). Further, DIN is part of the dynamic nitrogen cycle, which undergoes 

constant transformation (Gao et al. 2023) and in its Nitrous Oxide form N2O form is a 

greenhouse gas with 273 times the equivalent temperature change impact of carbon 

(Jones et al., 2023). Therefore, this doctoral research thesis, for the first time, has 

focused on artificial intelligence (AI) and machine learning (ML) methods to classify 

the catchments for DIN as a priority to maximise the potential impact the research can 

influence to both water quality as well as climate change influences towards the 

resilience of the reef. 

1.3. Thesis outline 

This doctoral thesis contains 6 chapters in total, inclusive of this introduction 

chapter. The thesis chapters include: 

Chapter 2: provides an overview of the importance of Classification towards 

water quality modelling worldwide, but particularly for Great Barrier Reef Catchments 

In this chapter water quality model approaches are reviewed and evaluated in relation 

to their suitability for use on ungauged catchments. Gaps in knowledge as they relate 

to application of models to land use decision making are identified, and opportunities 

that exist to fill the gaps are introduced. 

Chapter 3:  investigates suitability of alternative spatially relevant data sources, 

that reflect the spatial drivers of DIN in catchments, as a proxy for missing water quality 

data, necessary to validate water quality models. In this chapter Original Vegetation 

data is coupled with Land Use data and Artificial Intelligence is used to determine 

whether catchments that share the same patterns in Original Vegetation and Land Use 

data also share the same patterns in water quality data such that the spatially relevant 

data could become a proxy for water quality classification, where the water quality data 

is lacking. 

Chapter 4: builds on the findings of Chapter 3 to explore whether spatial 

temporal variabilities influence the suitability of certain catchments for classification or 
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water quality datasets for data transfer in water quality models. Spatial data features 

are also identified to provide explanation for the results. 

Chapter 5: Applies the findings of chapter 3 and 4 to classify gauged 

catchments that flow to the Great Barrier Reef, to the catchments that are ungauged. 

The suitability of the classification as a proxy for water quality patterns under different 

dataset partitions is evaluated via a case study to confirm whether the classification 

method and dataset partitioning explored in Chapters 4 and 5 can be applied to 

Artificial Intelligence model frameworks to forecast Dissolved Inorganic Nitrogen 

flowing to the Great Barrier Reef.  

Chapter 6: discusses the overall results, potential application, and overall 

outcomes and conclusion of how this thesis contributes towards new knowledge that 

can be used to deliver practical outcomes to improve communication material and 

decision-making tools that influence anthropogenic impacts on the health of planet 

earth. Further research to address the identified limitations of this research are also 

recommended. 

Appendix A-C: Supplementary material as published for Chapters 3-5. 
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An Outline of the Doctoral Thesis 

Figure 1.2: Schematic flow chart of various organisational components of this 

doctoral research project. 

Chapter 1 
Introduction 

Chapter 2 
Literature Review 

Chapter 3 
Objective 1 

Can Artificial Neural Network Pattern Recognition and spatial data classify 
catchments for nitrogen? 

Chapter 4 
Objective 2 

Spatial data feature explanations for spatio-temporal drivers of catchment classification for water 
quality. 

 

Chapter 5 
Explainable AI approach and original vegetation data classifies spatio-temporal nitrogen in flows from 

ungauged catchments to the Great Barrier Reef 

Chapter 6 
Conclusion and 

Recommendations 
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CHAPTER 2: LITERATURE REVIEW 

2. Foreword
This chapter builds on the background introduced for this doctoral thesis, 

providing a critical evaluation of knowledge published outside this thesis, for simulating 

nutrients from ungauged catchments. In building the epistemology of this thesis, this 

chapter details the current state of knowledge and approaches, knowledge gaps and 

evaluates opportunities in the emerging paradigms of data evaluation.  

An overview of the importance of classification to water quality modelling 

worldwide is provided in this chapter. In particular, this chapter critically evaluates the 

current knowledge on water quality simulations in ungauged areas, modelling of 

Dissolved Inorganic Nitrogen in catchment runoff; the importance of classification for 

data transfer to ungauged basins flowing to the Great Barrier Reef and elsewhere. 

Gaps in knowledge as they relate to application of models to land use decision making 

are identified, and opportunities that exist to fill the gaps are introduced. 

2.1. Water quality modelling in ungauged areas: current knowledge 

Catchment Scale Water Quality Models are a series of empirical equations 

developed and extrapolated to the catchment scale to quantify water quality responses 

to catchment features (Trancoso et al., 2016; Wagener et al., 2007; Di Prinzio et al., 

2011).  While parsimonious model design refined to dominating drivers is 

recommended to reduce error propagation (Andréassian et al., 2012; Gazzaz et al., 

2015, Nash & Sutcliffe, 1970), the model complexity must be sufficient to answer 

questions that instigated the model development (Bell et al.,2007; Cole et al.,2006; 

Yaseen et al., 2018). Observed data is necessary to calibrate these models to 

overcome errors that can result via extrapolation of empirical principles to the 

catchment scale, however, suitable calibration data is not available in all areas such 

as ungauged or unmonitored catchments (Niroula et al. 2023; Sivapalan et al 2003). 

The International Association of Hydrological Sciences - Predictions in 

Ungauged Basins – “PUB Decade” final summary paper recommended 

regionalisation of model parameters as the most appropriate alternative method to 

overcome data shortages (Hrachowitz et al., 2013).
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Classification is a necessary precursor to regionalisation because it 

identifies the most similar catchments to transfer parameter data between 

(Hrachowitz et al., 2013; Merz & Blöschl, 2004; Goodarzi & Navardi, 2019). 

Catchments are classified based on dominant physical catchment processes, or 

nearest neighbour (Ayana et al., 2015; DeLancey et al., 2020; Hrachowitz et al., 

2013; Ebeling et al. 2021), and this facilitates data sharing between the most 

similar catchments in CSWQMs. Empirical relationships that exist between 

catchment drivers and water balance response is attributed to the success of 

classification underpinning regionalisation for simulating flow and suspended solids 

for ungauged catchments (Hrachowitz et al., 2013; Merz & Blöschl, 2004; 

Narbondo et al., 2020).  However, it becomes limited in overly parsimonious 

models.  Inductive and deductive classification approaches overcome limitations 

associated with parsimonious empirical model architecture by using deductive 

approaches of spatial data as a proxy to representing the full catchment 

response (Olden et al., 2012). While effective, these studies are focussed 

on catchment response to abiotic drivers of physical features relevant to flow.  

Variability in nutrient patterns is observed across different catchments of 

the Great Barrier Reef (Liu et al. 2021) and this is reflected in heterogeneity of 

nutrient simulation results where existing classification approaches are applied 

(Swain et al. 2019, Merz et al., 2020; Sivapalan, 2018). Notable amounts of DIN in 

receiving waters of the Great Barrier Reef catchments are consistent with water 

quality simulation results for gauged areas, however the drivers are not fully 

quantified to effectively inform classification of gauged to ungauged areas 

(Cheng et al., 2018; Soltani-Gerdefaramarzi et al., 2021; Kroon et al., 2012; 

Snelder et al., 2018; Khan et al., 2020). It is well established that modelling 

capabilities can be improved by inclusion of unique catchment characteristics within 

model architecture as well as classification that reflect the modelling purpose (Merz 

et al., 2020, Saadi et al., 2019).  Techniques to classify catchments based on the 

catchment response to the combination of nutrient processes drivers is limited, 

overlooks the fact nutrient cycle includes a biotic response component, and therefore 

an opportunity to explore for improving nutrient modelling of ungauged 

catchments, particularly for Dissolved Inorganic Nitrogen for the Great Barrier Reef 

catchments.  
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2.2. Classification for Dissolved Inorganic Nitrogen 

There is limited research regarding hydrological catchment classification 

for nutrient responses (Giesbrecht 2022), and inconsistent performance of 

simulations for nutrients is found where existing classification approaches 

designed for flow are applied (Buzacott et al, 2019, Liu et al., 2018). A key 

difference between the drivers of nutrients vs flows and their response is the non-

linearity as well as lack of empirical relationships for nutrient responses (Liu et al., 

2021). While parsimonious models are criticized for reducing system knowledge 

and catchment heterogeneity within the ungauged areas, it is the drivers of 

nutrients are that are also overlooked (Hallouin et al., 2020; Waterhouse et al., 

2017).  

Land use is reported to have the greatest influence on Dissolved 

Inorganic Nitrogen inputs towards the Great Barrier Reef, and land use 

adjustments are a primary target for management of anthropogenic impacts on 

water quality (Fu et al., 2019; Liu et al., 2023). Consequently, within architecture of 

water quality simulation models, nitrogen constituents are most influenced by 

land use (Alnahit et al., 2022; Liu et al. 2021; Li et al., 2023). Likewise, 

regardless of the benefit of using Land Use data as a proxy for DIN 

similarities across catchments, research continues to find heterogeneity 

across areas with identical land uses, despite each Land Use type 

parameterised with homogenous contribution (Park & Lee, 2020). Although 

both biological and physical catchment attributes influence nutrient 

processes, biological influences have not specifically been included in 

classification and influence towards and the driver of the observed inconsistencies 

is overlooked (Merz et al., 2020; Turak et al., 2017).  Inclusion of biotic drivers 

into classification approaches is not straightforward, however, because the 

spatial representation of the combined nutrient drivers across the Great Barrier Reef 

catchments are ambiguous, and not established (Liu et al., 2018).  

Classification methods that consider variable drivers of water quality 

separately, can overlook the combined influence of catchment features in the 

ungauged system that infield measurements, used for parameter calibration of 

models for gauged catchments, otherwise capture (Buzacott et al., 2019; Booker and
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Woods, 2014; Kuentz et al., 2017; Teutschbein et al., 2018; Oudin et al., 2010).  

Newall & Tiller (2002) introduced the concept of bio-regionalisation proposing 

that the biological response can indicate the productivity, and hence nutrient 

cycling in an area. While Zhang et al. (2022) has demonstrated that 

appropriate spatial data can be used to classify and explain the drivers of 

Nitrogen flowing to Chesapeake Bay this is limited to gauged catchments only and 

using datasets that are not applicable to the Great Barrier Reef catchment area. 

A spatial dataset suited as a proxy for classification of nitrogen and therefore 

transferrable to ungauged catchments in the Great Barrier Reef catchments is 

the fundamental gap in the literature to classify catchments more 

appropriately for the purpose of modelling nutrients flowing from ungauged 

areas.  

2.3. Data availability for inductive vs deductive classification of DIN 

Inductive classification is classification informed by observed data, 

regarding that data, while deductive classification is classification 

informed by an alternate data  source, to deduce the same conclusions.  

Where observed data is missing in some areas, deductive classification 

methods use spatial data patterns known to be a proxy to identify catchments 

that theoretically share corresponding catchment responses (Olden et al. 

2012). For catchments draining to the Great Barrier Reef, spatial data of Land Use 

are available as static datasets across all areas of the Great Barrier Reef 

catchments (ABARES, 2016). The ubiquitous availability of this data makes it 

suitable for deductive classification where water quality observations are 

missing. However, due to the existing heterogeneity observed in DIN patterns 

from areas with similar Land Use patterns (Liu et al., 2021), an 

alternative parsimonious dataset is required to capture the heterogeneity and 

increase trust in the classification method that informs data transfer to 

ungauged areas. In addition to land use, soil water depth, topography, 

climate as well as underlying geology are other known drivers toward 

nitrogen releases in water across landscapes (Lintern et al., 2018; Zhi et al., 

2020). While these features are considered as input variables within the 

CSWQMs, classification methods were not found in the literature that represent 

the combined catchment response to those same nutrient drivers.  
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Mapping available for each nutrient driver exists at varying scales, is considered 

in isolation of each other, and multiple mapping layers reduce parsimony and increase 

complexity (Dadson et al., 2019; Fu et al., 2019). In contrast, the original evolutionary 

response of natural vegetation growth to the varied combination of landscape features, 

that are also the above-mentioned nitrogen drivers, are represented in the Queensland 

State Government open access Broad Vegetation Group Mapping. The heterogeneity 

in vegetation communities shown on these maps are informed by differing 

combinations of bioregion, geology, aspect topography etc, and therefore 

parsimoniously capture the required information ubiquitously across all gauged and 

ungauged catchments that flow to the Great Barrier Reef (Neldner et al., 2017). Jay & 

Neumann (2021) found the vegetation mapping reveals site quality that is influential 

towards vegetation productivity and therefore nutrient and water demands across 

large landscapes. This productivity is also influenced by biotic process drivers such as 

aspect, geology, natural water balances, radiation, elevation, soil biota etc even after 

the original vegetation has been removed. For this reason, the open access Broad 

Vegetation Group Mapping, referred to herein as Original Vegetation mapping, has 

been identified as an alternative dataset with merit to explore for its suitability as a 

proxy spatial dataset for deductive classification approaches for DIN. 

2.4. Data Driven vs. Process Based models 

Different model abilities suit different applications, yet the trade of parsimony 

vs parameter detail render current applications of CSWQMs unsuitable for predictions 

and forecasting of ungauged catchments (Dadson et al., 2019; Fu et al., 

2019). CSWQMs may be either processes based, or data driven. Process 

based models (PBMs) virtually represent key drivers of hydrological systems, so 

are the preferred simulation tool where data are scarce (Fatichi et al., 2016). They 

use generic catchment attributes coupled with fundamental mathematical 

formulae established from hydrological principles tested elsewhere, i.e. 

laboratories, to establish the models parameter inputs. Process Based Models then 

require a posterior calibration with field data (i.e., as initial and boundary conditions) 

to ensure parameterisation reflects the overall combination of system processes. In 

the presence of calibration data, this architecture facilitates 
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effective estimates of water quality constituents in runoff (Dadson et al., 2019; Salas 

et al., 2014). Where data is unavailable, parameters from the classified catchment can 

be transferred to facilitate refinement of the model from fundamental to empirical 

catchment responses (Merz and Blöschl, 2004; Narbondo et al., 2020; Pagliero et al., 

2019). However suitable catchment classification approaches that represent the 

drivers of the constituent are necessary for trust in the simulation outputs (Nash & 

Sutcliffe et al., 1970). 

Despite ability of PBMs to operate in data scarce situations, their computational 

requirements, fidelity, and uncertainty drawn from estimates of initial conditions 

increase as the number of processes increase. For these reasons, well trained 

parsimonious data driven models are better suited for large scale hydrological 

modelling, compared to process-based models (Dupas et al., 2013; Fatichi et al., 

2016). Data driven models require catchment specific data a priori to operate, so are 

not suited to modelling of ungauged catchments which lack observational flow and 

water quality data (Dadson et al., 2019). 

While some process-based models have achieved satisfactory simulations of 

DIN in receiving waters, these are established via calibration meaning that consistent 

relationships between water quality patterns and the catchment drivers are not 

empirical, reducing certainty in transfer of parameter data to inappropriately classified 

ungauged areas (McCloskey et al., 2021, Zhang et al., 2022). Previous statistical 

approaches to detect heterogeneous DIN patterns have been limited by linearity, need 

for prior knowledge of relationships in the data and inability to extend methods to 

unmonitored areas (Huang et al., 2019; Khan et al., 2020; Lintern et al., 2018; Liu et 

al., 2021; Snelder et al., 2018). The absence of linearity on the DIN datasets has also 

limited the ability to establish relationships between DIN in the receiving water quality 

and catchment drivers meaning that classification of ungauged to gauged areas using 

spatial data as a proxy for DIN patterns has not been possible.  
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2.5. Machine Learning for classification purposes 

Improved computing power and machine learning skills have been explored for 

their potential to enhance selection of system influences (Lu et al., 2023, Singh et al., 

2019) but these benefits have not previously been explored for informing classification 

for purpose of catchment drivers of DIN in the GBR. Machine learning enhances the 

feasibility of interrogating much larger datasets, uncovers non-linear functions for 

parameter calibration and can therefore overcome existing paradigms (Goodwell et 

al., 2020; Kitchin 2014). This is demonstrated for flow and suspended solids simulation 

in large ungauged catchments across France, Germany and Canada (Merz et al., 

2020; Saadi et al., 2019).  While machine learning requires a priori data to operate, it 

is not limited to static co-efficient weightings of traditional regression and other data 

driven model (DDM) methods. Forward and back propagation design of machine 

learning provides greater flexibility of data input sources compared to both DDMs and 

PBMs. Additionally, machine learning delivers superior pattern recognition abilities 

over traditional DDMs (Tyralis et al., 2019; Worland et al., 2018; Yaseen et al., 

2019). While pattern recognition abilities of machine learning is useful to 

identify catchments that share similar dataset patterns, the black box nature  

affects transparency and ability to scrutinise model results necessary for 

interrogability and trust in results (DeLancey et al., 2020).  

Dadson et al. (2019) found different process based, data driven and machine 

learning modelling strategies are complementary rather than mutually exclusive, i.e. 

they serve and help the other. Where machine learning can enhance relationship 

mining ability, process-based models maintain the ability to interrogate the system. A 

hybridised approach to couple CSWQM process-based principles with relationship 

mining abilities of machine learning can therefore offer a solution to overcome the data 

deficiencies, however, prior to commencement of this research, remained unexplored 

for nutrient simulations for ungauged catchments (Dupas et al., 2013; Merz et al., 

2020; Oehler & Elliott, 2011; Sharifi et al., 2017; Valizadeh et al., 2017). 
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2.5.1. Artificial Neural Network Models for classification purposes 

Artificial Neural Network (ANN) is a type of machine learning method 

that has demonstrated track record for classification based on shared patterns, 

as well as effectively simulating nitrogen patterns in monitored catchments 

throughout the world (Ighalo et al., 2021; Khalil et al., 2011; Tung & Yaseen, 

2020). Although ANN has demonstrated success in calculating instream nutrient 

concentrations using other instream water constituents as predictors, prior to the 

doctoral research, there was no demonstrated success in its application to 

calculating instream nutrients in areas lacking data, such as ungauged areas 

(DeLancey et al., 2020; Hameed et al., 2017; Jin et al., 2019; Khalil & Adamowski, 

2014; Khalil et al., 2019; Tabari & Talaee, 2015; Tao et al., 2019). The reason is 

consistent, long term, accessible instream data of any kind, which is necessary for 

the development of the ANN models, does not exist in the ungauged areas. Further, 

research demonstrates that the relationships between DIN and its drivers are not 

consistent in all catchments (Liu et al., 2018), which may explain the inability to 

transfer ANN models directly to any ungauged catchment. Process based 

CSWQM principles demonstrate that transfer of data from gauged catchments with 

most similar drivers of the constituents being measured can be effective, where the 

classified catchments share similar drivers. However, apart from Zhang et al. 

(2022) demonstrating the benefits of machine learning techniques to find 

relationships between catchment response and some catchment features and prior 

to this doctoral research, the application of spatial data proxies for simulating 

DIN, and impact on model performance has not been explored. Exploitation of 

the expanded pattern recognition and classification abilities of ANN is an 

unexplored opportunity to establish relationships between spatial data proxies 

expected to be an indicator of DIN patterns, and the observed catchment response.  

2.5.2. Explainable Artificial Intelligence-based classification models 

While the forward and back propagation of Artificial Neural Networks 

have potential to overcome limitations of existing classification methods, benefits 

have been met with caution due to lack of explainability of results (Nearing et al., 

2021; Tocchetti & Brambilla, 2022). The ability to explain the decisions influenced 

by water quality 
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modelling results is an ethical expectation of stakeholders and is the reason for the 

dominance of process based and traditional data driven approaches in CSWQMs 

(Arrieta et al., 2020). Since completion of the PUB decade, computing powers and 

further research on explaining the results of Artificial Intelligence are developing and 

therefore is prudent to explore for the benefit of simulating DIN in ungauged areas. 

Explainable Artificial Intelligence, known as XAI is a discipline of various 

approaches to evaluate and identify the likely drivers behind results generated from 

otherwise black box model architecture of AI (Vilone & Longo 2021). This XAI ability 

therefore can facilitate for the drivers of classification to be identified and support 

inclusion of AI within CSWQM architecture. Shapley game theory approaches provide 

explainability and transparency to human end users of artificial intelligence model 

outputs and further builds trust when used for decision-making (Lundberg et al., 2020) 

and referred to herein as XAI-SHAP. Unlike hydrological classification studies which 

consider each variable having equal weighting (Jehn et al., 2020), game theory 

recognises up front that each variable in datasets used for classification is influenced 

by the additive influence of all variables with each other (Cohen et al., 2007; Lundberg 

and Lee, 2017). Contributions of each feature are considered individually to overall 

system outcomes, and synonymous with biotic interactions, each feature variable is 

uniquely influenced by the presence of the other features in the dataset (Arrieta et al., 

2020; Lundberg and Lee, 2017; Wang et al., 2022). To date the driver’s influencing 

similarities in nutrient responses in Great Barrier Reef catchments remains 

unexplained (Liu et al. 2021), and therefore XAI-SHAP provides opportunity for insight 

to new understandings of data relationships exposed by the ANN classification 

method.   

2.6. Summary of knowledge gaps and opportunities for research 

In CSWQMs for ungauged areas, classification is an effective technique to 

identify the most suitable catchments to transfer data and overcome data shortages. 

While the method is effective for flow and total suspended solids which are driven by 

abiotic drivers only, the same catchment classifiers are ineffective for CSWQMs which 

are designed to simulate nutrients. Nutrients are driven by more dynamic abiotic 
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influences, however methods to classify catchments for response to these drivers 

using methods transferrable to ungauged areas is not yet established. 

Current classification approaches consider physical influences separately and 

in isolation, so do not account for the variability of influences towards nutrient 

responses observed across different catchments of the Great Barrier Reef. Nutrient 

processes are driven by a combination of biotic interactions that vary in response over 

space and time depending on the full combination of all environmental influences. 

Unlike physical drivers, the full suite of nutrient drivers, which include biotic drivers, 

are not additive, or specifically captured in one mapping dataset and therefore inhibits 

the ability for catchment feature response relationships to be established within 

parsimonious model architecture. Techniques to classify catchments based on the 

combination of nutrient processes drivers is a fundamental gap as well as opportunity 

to explore for improving nutrient modelling of ungauged catchments. Datasets that are 

available for all gauged and ungauged areas and reflect the combined influence 

towards nitrogen outputs are needed. Heterogeneity in original vegetation 

communities are informed by differing combinations of bioregion, geology, aspect 

topography etc, and therefore parsimoniously capture the required information 

ubiquitously across all gauged and ungauged catchments that flow to the Great Barrier 

Reef.  

Non-linearity of nutrient responses has previously inhibited the evaluation of 

relationships between inductive catchment responses and ability to deduce the 

contributing spatial data related to catchment drivers.  Forward and back propagation 

design of machine learning provides greater flexibility of data input sources and 

delivers superior pattern recognition to overcome non-linearity in datasets. 

Exploitation of the expanded pattern recognition and classification abilities of ANN 

provides opportunity to establish relationships between spatial data proxies expected 

to be an indicator of DIN patterns, and the observed catchment response. Although 

ANN establishes relationships within a black box architecture, XAI provides 

opportunity for insight to new understandings of data relationships exposed by the 

ANN classification method to better evaluate the suitability of catchments classified 

using ANN informed approaches.   
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2.7. Research Hypothesis 

The three hypothesises of this PhD thesis are based on prior knowledge that: 

a) Classification is fundamental to CSWQMs because it informs the most suitable

catchment to transfer data between where one is lacking, but current

classification methods result in inconsistent results for dissolved nutrient

simulations;

b) Consistent satisfactory performance is achieved for hydrological model

simulations where data transfer is from catchments classified based on process

drivers of the water constituent under investigation. The method is effective for

linear relationships, but drivers of dissolved nutrient responses are ill poised

and non-linear;

c) Forward and back propagation abilities of machine learning algorithms can

facilitate evaluation of non-linear relationships in datasets, are relatively under-

explored for classification of catchments for nutrients.

d) Exploiting the unique abilities of Artificial Intelligence to identify and classify

catchments with similar drivers has potential to enhance certainty in data

transfer for CSWQMs.

Based on this knowledge, the overarching hypotheses guiding this research are: 

1. Inductive classification of catchments for flow pattern similarities differs from

inductive classification for DIN pattern similarities, and spatially relevant data

can deductively classify the same catchments together for DIN patterns.

Spatially relevant data means data ubiquitously available across both gauged

and ungauged catchments in the study area, and contains knowledge of the

combined influence of all known drivers towards DIN.

2. Heterogeneity in DIN patterns in water quality discharges can be explained by

biological knowledge contained in the appropriate spatial data.

3. Spatially relevant data identified as a suitable proxy for DIN driver classification,

enables all ungauged catchments to be classified to gauged catchments, and

can inform improved DIN simulation performance in a pseudo-ungauged

environment.
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2.8. Research Aim, Objectives, and Outreach Actions 

The aim of this PhD project has been attained by a publication’s pathway. 

The purpose of this research is therefore to develop and share new and applied 

knowledge exposed by artificial intelligence and machine learning regarding 

classification of ungauged catchments for DIN. This overall aim of the doctoral 

research project, to develop and deliver stakeholder-relevant knowledge, is achieved 

by means of three high quality Q1-ranked publications, prefaced by a publication ready 

literature review section. Together, the resulting publications aim to develop the case 

that spatial data can be an appropriate a proxy for DIN water quality responses and 

can inform classification of ungauged catchments to gauged equivalents where water 

quality data is lacking.  

This aim is delivered by a presentation of the following research objectives as 

publishable papers. 

1. Develop a novel method to apply Artificial Neural Network Pattern Recognition

(ANN-PR) approach, to evaluate the suitability of nominated spatial data as a

proxy for drivers of DIN in flows to the Great Barrier Reef. The research article

has been published in Science of the Total Environment (Volume 809, Article

151139).

2. Uncover new knowledge regarding the interactions of patterns in the water

quality and spatial datasets for the study region by evaluating variability in DIN

patterns for different season and the flow regimes. Also adapt explainable

artificial intelligence-Shapley (XAI-SHAP) principle to add transparency by

adding physical understandings of the proposed artificial intelligence models to

explain the trends. The research article has been published in Science of the
Total Environment (Volume 861, Article 160240).

3. Provide a demonstration of the practical application of the newly developed

ANN-PR and XAI methods to classify all ungauged catchments that flow into

the Great Barrier Reef to the Gauged catchments and validate the novel method
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using a simulation case study in a pseudo-ungauged catchment. The research 

article has been published in Nature Portfolio’s journal Scientific Reports 

Volume 13, Article 18145 (2023). The article was lodged and accepted by the 

editors of special collection – “New Advances in Ecological Modelling”.  

In fulfilment of these research objectives under the doctoral research program, 

a copy of the three (Q1) papers will form the primary body of the PhD Thesis by 

Publications. The workflow for delivery of these objectives is shown in Figure 2.1 

below. 

Figure 2.1: Workflow for classification of ungauged catchments using spatial data as 

a proxy for DIN. 
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CHAPTER 3: JOURNAL PAPER 1 – What Drives DIN 
Patterns? 

3. Foreword

This chapter presents an exact copy of the published article in Science of the 
Total Environment (Volume 809, Article 151139 (2022)). This journal was selected 

due to the relevancy of the scope that integrates all elements of the natural and 

anthropogenic environment with the hydrosphere. The title of the published research 

paper is: 

Classification of catchments for nitrogen using Artificial Neural Network 

Pattern Recognition and spatial data 

This research piece establishes the foundations for the classification approach 

developed throughout this doctoral thesis, and specifically evaluates Hypothesis 1 of 

this doctoral thesis which is as follows: 

Catchments classified using spatially relevant data can classify the same 

catchments together for DIN patterns in water quality discharges. Spatially relevant 

data means data ubiquitously available across both gauged and ungauged 

catchments in the study area and contains knowledge of the combined influence of all 

known drivers towards DIN.  

A set of Artificial Neural Network pattern recognition (ANN-PR) techniques were 

developed and applied for the first time to explore the ability for spatial datasets to be 

a proxy classification tool for catchments that share matching DIN patterns. In 

particular, the spatial datasets evaluated were Original Vegetation (referred to in the 

paper as Original Ecosystem), Land Use, and then Ecounits, which combine the 

patterns in both Original Vegetation and Land Use. ANN-PR was used to match 

catchments together that share the most similar spatial patterns, then repeated to 

identify catchments that share the most similar DIN with flow patterns. A control 

dataset was established to match catchments that share the most flow records with 

no DIN data included. The number of DIN and flow, or flow only records ANN-PR 
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matched to each catchment was then recorded, and the catchment with most records 

for each dataset deemed inductively classified. This result was compared to the 

catchment ANN-PR matched together for spatial data, referred to as deductively 

classified. Results were then evaluated using Kruskal Wallis test for independence 

(p>0.05) and found that classification scores for Flow datasets are independent of the 

spatial data classification scores (p=0.09), whereas DIN datasets are not (p=0.01-

0.02). The lack of independence for spatial data classification from DIN dataset 

classification validated the merit of the spatial data used as a proxy for classification 

of catchments that share DIN drivers. New findings of this research are that 

classification using Original Vegetation spatial datasets classified additional 

catchments that Land Use data was unable to classify.  

3.1. Graphical abstract 

Figure 3.1 Graphical Abstract for Objective 1 – Classifying Catchments for DIN 

3.2. Published journal paper 

The paper published for this chapter is provided below. The supplementary 

material in support of the paper is provided in Appendix A. 

Type text here



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 
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3.3. Links and implications 

This paper forms the foundation of the doctoral thesis by demonstrating that the ANN-

PR model coupled with Land Use and Original Vegetation (referred to in the paper as 

Original Ecosystem) spatial data is an efficient tool to classify the catchments together 

for DIN. The published results affirm both parts of Hypothesis 1 that: 

a) Inductive classification of catchments for flow pattern similarities differ from

inductive classification for DIN pattern similarities; and

b) spatially relevant data can deductively classify the same catchments together

for DIN patterns.

The finding that inductive classification for DIN differs from inductive classification for 

flow demonstrates that classifying catchments based on similarities in drivers of flows 

are not appropriate for classifying catchments for similarities in the drivers of DIN. 

Overall, four general DIN pattern groups were observed for water quality data. 

Interestingly, the results also identified that while the majority of water quality records 

in each dataset were classified to one catchment, there were a notable number of 

records matched to the water quality patterns for an alternative catchment. This 

heterogeneity suggested that classification to only one other catchment at all times 

may not be appropriate and suggests drivers of DIN may vary.  

Notably for advancement of this thesis, the results affirmed that corroboration exists 

between inductive classification using observed water quality data, with deductive 

classification using Land use and Original Vegetation spatial datasets. The 

observations confirmed the hypothesis that ANN-PR approach coupled with spatial 

data has merit for classifying catchment for drivers of DIN. Nevertheless, application 

of the method for classifying ungauged catchments for purpose of data transfer in 

water quality simulation models requires understanding of the drivers of the 

heterogeneity that could affect model performance. Furthermore, identification of the 

spatial dataset variables common to the four groups identified for similar DIN patterns 

was not revealed by the ANN-PR method in isolation and is needed to explain the 

drivers of the four different DIN patterns. While this chapter identified that ANN-PR 
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Original Vegetation and Land Use data have merit for classifying catchments for the 

DIN pattern similarities, the drivers of the classification, and variability in DIN patterns 

are not known. The next chapter will investigate potential sources of variability 

observed in the DIN patterns and trial methods to find knowledge in the spatial data 

as it corroborates with classification, and variability on the DIN patterns. 
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CHAPTER 4: JOURNAL PAPER 2 – Why is there 
Heterogeneity in DIN patterns? 

4. Foreword

This chapter presents an exact copy of the published article in Science of the 
Total Environment journal (Volume 861, Article 160240 (2023)). As with paper 1 

reported in Chapter 3, and for consistency, this journal was selected due to the 

relevancy of the scopes integrated consideration of all elements of the natural and 

anthropogenic environment with the hydrosphere. The title of the published research 

paper is: 

Pattern recognition describing spatio-temporal drivers of catchment 

classification for water quality. 

This research piece builds of the findings of Chapter 3, by refining the 

classification method in a way to isolate the cause of heterogeneity in DIN patterns. In 

particular, this chapter is designed to specifically validate Hypothesis 2 of this Doctoral 

thesis which is: 

Heterogeneity in DIN patterns can be explained by biological knowledge 

contained in the appropriate spatial data. 

This research chapter contributed two additional novel approaches to the 

classification technique. Firstly, this research split the hydrograph by seasonality and 

flow regime to evaluate classification responses to these drivers. The classification 

approach developed in Objective 1 (Chapter 3) was then repeated on all split 

hydrograph datasets. Secondly, this research piece developed an eXplainable 

Artificial Intelligence technique using the Shapley approach. This XAI-SHAP approach 

identified variables with greatest deviation from all other variables in the spatial 

datasets, and therefore most likely influential in the ANN-PR classification results. Brief 

literature reviews were undertaken to provide a process-based explanation for results. 
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The research in this chapter that deviated variables in the Original Vegetation 

datasets corroborate with DIN classification for various aspects of the hydrograph, and 

validated Hypothesis 2 via provision of a biological explanation for the relationship.  In 

particular, the doctoral research in this chapter found that catchments classified based 

on DIN observed in the dry season or below average flows also corroborated with 

catchment classifications explained by Open Forest vegetation types. Catchments 

classified on DIN patterns in the Increasing Flows or Wet Season hydrograph 

corroborated with catchment classifications explained by Open Woodlands, or 

Woodlands respectively. Finally, catchments that consistently classified together for 

DIN patterns in all hydrograph combinations corroborated with spatial data catchment 

classifications explained by greatest deviation of vine forests. 

The novel findings of this piece of research are the first time, to our knowledge, 

that the drivers of heterogeneity in observed DIN for areas with the same Land Use 

have been explained.  

4.1. Graphical abstract 

Figure 4.1 Graphical Abstract for Objective 2 – Drivers of DIN pattern heterogeneity 



42 

4.2. Published journal paper 
The paper published for this chapter is provided below. The supplementary material 

in support of the paper is provided in Appendix B. 



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 
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4.3. Links and implications 

This chapter (Objective 2, Paper 2, Chapter 4) built on the findings published in 

Objective 1 (Paper 1, Chapter 3) to provide insight to the drivers of heterogeneity in 

DIN patterns, relate the drivers of heterogeneity to spatial data variables, and therefore 

justify why Original Vegetation spatial data can be a proxy for catchment classification 

for DIN. Observed datasets for DIN patterns were split based on spatio-temporal 

drivers that isolate DIN records to flow and season drivers, then XAI-SHAP identified 

spatial data variables that corroborate for inductively classified catchments. Together, 

results generated by the ANN-PR and XAI-SHAP methods affirmed hypothesis 2 that: 

Heterogeneity in DIN patterns in water quality discharges can be explained by 

biological knowledge contained in the appropriate spatial data.  

The results in this chapter provide an explanation for the heterogeneity 

observed in inductive classification results in Objective 1. This Objective 2 research 

found for some catchments, inductive classification only applied for DIN records 

collected on certain season or flow regime. These catchments are consistent with the 

four DIN pattern groups identified in Objective 1. The XAI-SHAP method developed 

for paper 2 enables deviated variables in the spatial datasets for each catchment to 

be identified as a proxy driver for inductive classification. Ecological knowledge of the 

variables as they relate to heterogeneity in classification patterns then facilitate 

communication of the spatial data as a proxy for the DIN classification. In summary, 

findings of Objective 2 suggest that data transfer in water quality simulation models 

may only be suitable during specific flow or seasons, and Original Vegetation spatial 

data can be a proxy indicator for the suitable flow or season data to transfer and 

catchments to classify. Such evaluation of the spatial datasets using XAI-SHAP allows 

for the ANN-PR inductive catchment classification using spatio-temporal datasets to 

be logically communicated. This chapter has identified the variables in the Original 

Vegetation dataset suitable as a proxy to classify catchments to the four differing DIN 

patterns flowing from the GBR catchments. The next chapter can now apply the 

findings of this research to classify ungauged catchments to gauged ones using 

Original Vegetation as a proxy for DIN patterns.  
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CHAPTER 5: JOURNAL PAPER 3 – Classifying Ungauged 
Catchments that flow to the GBR 

5. Foreword

This chapter presents an exact copy of the article in Scientific Reports 
journal. The journal was selected due to the relevancy of this research to the 

advertised special collection New Advances in Ecological Modelling. The title of the 

research paper in review is: 

Explainable AI approach and Original Vegetation data classifies spatio-

temporal nitrogen in flows from ungauged catchments to the Great Barrier Reef 

This penultimate research piece applies the findings of ANN-PR and XAI-SHAP 

techniques developed in journal paper 1 and journal paper 2 to classify, for the first 

time, ungauged catchments that drain to the Great Barrier Reef, to the gauged ones 

for the purpose of developing models for DIN simulations. Journal paper 3 forms 

objective 3 of this doctoral thesis research and is designed to specifically validate 

Hypothesis 3 which is: 

Spatially relevant data identified as a suitable proxy for DIN drivers of 

classification, enables all ungauged catchments to be classified to gauged 

catchments, and can inform improved DIN simulation performance in a pseudo-

ungauged environment. 

Spatial data is ubiquitously available across all Great Barrier Reef catchments 

and therefore can inform the classification method to classify all catchments to gauged 

ones.  As a continuation of the findings and methods developed in Journal paper 

2/Objective 2, the XAI-SHAP method matched ungauged to gauged catchments based 

on similarity of variable deviations of Original Vegetation datasets. The approach 

exposed catchments that did not share similar Original Vegetation data variable 

deviations with the gauged catchments. This was an important finding because the 

corroboration of classification deduced from spatial data with classification induced by 
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DIN data was limited to gauged catchments only, therefore classification for informing 

data transfer for DIN simulation purposes may only be limited to catchments that share 

the same spatial data deviations as the gauged catchments.  The ability of the XAI-

SHAP to identify those catchments that do and don’t share similar spatial data 

deviations, and therefore suitability of ungauged catchments as a data recipient, allow 

for the potential limitations of using ANN-PR classification to be identified.  

The suitability of using spatial data as a proxy for DIN classification was 

validated via development of an Artificial Neural Network Water Quality (ANN-WQ) 

Simulator. In addition to its validation role, the ANN-WQ simulator unexpectedly made 

a novel contribution to the knowledge of water quality patterns flowing to the Great 

Barrier Reef.  

Development of the ANN-WQ simulator found, for the first time, that the 

performance of algorithms, trained to simulate water quality, change depending on the 

combination of catchment data included in the training datasets. While journal paper 

2/Objective 2 identified three categories of DIN patterns in flows to the Great Barrier 

Reef, trial and error development of the ANN-WQ simulator in this journal paper 3 

discovered segregation of training data based on these same three categories affect 

the ANN-WQ simulation performance.   
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5.1. Workflow 

Figure 5.1 Workflow for Classifying Ungauged Catchments for DIN 

5.2. Published journal paper 
The paper accepted for publication for this chapter is provided below. The 

Supplementary material in support of the paper is provided in Appendix C. 
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Explainable AI approach 
with original vegetation data 
classifies spatio‑temporal 
nitrogen in flows from ungauged 
catchments to the Great Barrier 
Reef
Cherie M. O’Sullivan 1*, Ravinesh C. Deo 2,3 & Afshin Ghahramani 1,4

Transfer of processed data and parameters to ungauged catchments from the most similar gauged 
counterpart is a common technique in water quality modelling. But catchment similarities for 
Dissolved Inorganic Nitrogen (DIN) are ill posed, which affects the predictive capability of models 
reliant on such methods for simulating DIN. Spatial data proxies to classify catchments for most 
similar DIN responses are a demonstrated solution, yet their applicability to ungauged catchments 
is unexplored. We adopted a neural network pattern recognition model (ANN‑PR) and explainable 
artificial intelligence approach (SHAP‑XAI) to match all ungauged catchments that flow to the Great 
Barrier Reef to gauged ones based on proxy spatial data. Catchment match suitability was verified 
using a neural network water quality (ANN‑WQ) simulator trained on gauged catchment datasets, 
tested by simulating DIN for matched catchments in unsupervised learning scenarios. We show that 
discriminating training data to DIN regime benefits ANN‑WQ simulation performance in unsupervised 
scenarios ( p< 0.05). This phenomenon demonstrates that proxy spatial data is a useful tool to classify 
catchments with similar DIN regimes. Catchments lacking similarity with gauged ones are identified 
as priority monitoring areas to gain observed data for all DIN regimes in catchments that flow to the 
Great Barrier Reef, Australia.

Communicating catchment influences towards the ecology of the receiving environment is enhanced by water 
quality simulation tools. Customising water quality simulation models to the catchment they represent is essential 
for limiting uncertainty in results and maintaining trust in land use decisions they aim to  inform1,2. Model design 
and development, referred in here as customisation, is achieved by using observed water quality data from gaug-
ing stations for design and verification of  models3. However, many water catchments globally are ungauged, and 
a lesser proportion of those have corresponding water quality data to inform model customisation. Techniques 
to overcome such data voids in ungauged areas are  necessary4,5. Methods to simulate flows in ungauged areas 
are well  researched6,7, however, refinement of methods that simulate nutrients in ungauged areas remained unre-
solved. This knowledge gap in water quality modelling needs addressing to best inform anthropogenic nitrogen 
management, and to demonstrate progress to the 2030 UN Nations Sustainable Development Goals commitment 
to reduce land-based nutrients that enter the  oceans8. This has relevance for the Great Barrier Reef World Herit-
age Area where over ~ 20% of the terrestrial drainage area is ungauged, and nutrient balances are critical for the 
reef ’s  health9,10. Logical explainability in nutrient models for ungauged areas can support communications and 
enable more responsive water quality improvement  investments11,12.
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For both data-driven and process-based models that simulate water quality, observed water quality and 
quantity data, as well as a comprehensive understanding of catchment characteristics are  required13. Data driven 
water quality models are useful to forecast water quality output, but water flows and water quality must be known 
a priori to develop  covariates14,15. In contrast, process-based models use physical and empirical principles and 
can be established for catchments lacking observed water quality data. In ungauged areas, data is donated to 
ungauged catchments from the most similar gauged  ones16,17. Alongside these traditional water quality modelling 
approaches, deep learning, particularly in the revised forms of Artificial Neural Networks, has been relatively 
successful in simulating water quality, including nitrogen, without the need for prior established  principles18,19. 
As a subsector of Deep Learning, Artificial Neural Networks have demonstrated the ability to recognise pat-
terns in input datasets, classify them, and establish algorithms to match target data. The merits of ANN are 
demonstrated to forecast and extend non-linear water quality data within respective catchment  datasets20, but 
their application to inform scenario simulation, and hence land management decisions, which is the benefit of 
process-based models, is  lacking21.

To exploit the benefits and overcome the drawbacks of each data driven vs process based model approach, the 
coupling of machine learning models such as ANN with process-based approaches can be performed to provide 
benefits of transfer  learning22,23. However, machine learning models that incorporate process considerations for 
water quality modelling are disproportionally underrepresented in many research  articles22,23. Additionally, where 
applied to ungauged areas, low landscape heterogeneity between drivers for the constituent being simulated is 
 necessary21,24. While variations in patterns of nutrients are observed across gauged catchments that drain to the 
Great Barrier  Reef15,25,26, methods for classifying those catchments to the most similar ungauged catchments that 
drain to the Great Barrier Reef, based on similarity of nitrogen drivers, are unexplored.

In terrestrial landscapes, Dissolved Inorganic Nitrogen molecules are influenced by decomposers, vegetation 
uptake, nitrogen fixing bacteria etc., which change depending on a unique combination of physical and biological 
influences at each  location27,28. The fluxing nature of these biotic processes mean catchment similarities for drivers 
of DIN differ from the abiotic drivers of flow have therefore been complicated to  quantify22,29. Variability in driv-
ers of DIN affect the consistency of water quality modelling of ungauged  areas25. This disparity between biotic and 
abiotic influence on nitrogen drivers means classical classification approaches that only use physical similarities 
miss the influence of all biologically influenced differences that may exist between catchments. Spatio-temporal 
variability in nutrient drivers can be represented in catchment models by the natural physical drivers of geol-
ogy, aspect, topography, climate etc., as well as land use to represent anthropogenic impacts, including standard 
fertiliser application rates which affect  DIN25. Our earlier studies found Original Vegetation is a proxy dataset 
for the residual biotic responses to these, and any other unaccounted-for drivers that can parsimoniously classify 
catchments for DIN, and identify the classification drivers using explainable artificial intelligence, (XAI)30,31.

Explainable artificial intelligence, (XAI) has outstanding capabilities to highlight the influential variables 
in machine learning algorithms, however, performance criteria for the corresponding ANN models are likely 
to vary unpredictably with changes to model architecture and  scenarios32. Established process-based models 
instead can be customised to respective catchments using regionalised parameter data, enabling trials of dif-
ferent land management  scenarios18. This technique has been effective for water quality constituents driven by 
abiotic processes, which result in consistent  performance6, and so is pragmatic for the purpose of informing 
land management decisions. Despite the acceptable track record for process-based models, the suitability of 
parameter transfer for constituents with biotic process drivers is still lacking, and studies regarding the spatio-
temporal scales are  necessary33–35. We found earlier that original vegetation can be a proxy for matching gauged 
catchments with dynamic DIN  patterns26. However, no approach has yet been developed that matches ungauged 
to gauged catchments for DIN similarities, which would be beneficial for models that transfer data across catch-
ments with similar processes.

This study extends our previous XAI-SHAP30,36 approaches to match the currently ungauged to gauged 
catchments that flow to the Great Barrier Reef using mapped spatial data as a proxy for DIN. Mapped spatial 
data is useful because it provides data for all areas of the Great Barrier Reef catchments where water quality data 
is  lacking26. In this study we verify the classification results by building and applying an ANN-WQ simulator to 
compare changes in simulation performance criteria for a case study catchment, under various dataset arrange-
ment scenarios. Our earlier studies found dominant original vegetation data features may provide guidance to 
the part of the hydrograph that is relevant to consider for matched catchments and that it is a useful proxy to 
group gauged catchments that flow to the Great Barrier Reef to three DIN response  categories30. In this study we 
evaluate whether our previous method is extendable to all ungauged catchments that flow to the Great Barrier 
Reef, and undertake a case study to verify its suitability as a proxy for DIN classification. Our verification case 
study aims to confirm catchments classified together based on original landscape variables also have transferrable 
water quality responses that can be exploited to simulate DIN.

The hypotheses investigated here are: (1) Original vegetation spatial features found to be a proxy for DIN dis-
charge from gauged catchments in our previous  studies26,30 can be used to match gauged catchments to ungauged 
catchments that also flow to the Great Barrier Reef. (2) An ANN-WQ simulator trained using predictor variables 
of original vegetation, coupled with flow data characterised to match with DIN targets will achieve superior 
performance compared to an ANN-WQ simulator trained to simulate DIN using non-categorised flow data only.

(3) The trained ANN-WQ simulator can simulate DIN in an unsupervised scenario for a pseudo-ungauged
case study catchment matched based on the spatial proxy data and achieve satisfactory performance criteria 
to verify the suitability of the catchment match approach. For this study, pseudo-ungauged means a gauged 
catchment, with the same data collection method as the other gauged catchments, but intentionally omitted 
from previous research that informed this study. DIN data for the pseudo ungauged catchment is used here for 
hypothesis validation purposes only.
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The present study therefore aims to create an XAI approach for considering original vegetation data clas-
sification as the proxy for spatio-temporal nitrogen patterns in ungauged catchment flows for the specific case 
of the Great Barrier Reef in Australia.

Results
ANN‑PR matches
Apart from the Mary Catchment, the results show that ungauged portions of gauged catchments do not necessar-
ily classify together, and catchments do not necessarily classify with their nearest neighbours (Fig. 1). Catchment 
matches varied for each spatial dataset evaluated, and translation of those results to classify catchments based on 
corresponding DIN response Categories also varied (Table 1). While Category 2 matched catchments generally 
clustered together spatially, Category 3 matched catchments contrasted with distributions only north of Plane for 
the Original Vegetation (OV) dataset compared to further south where Land use (LU) variability was included 
independently or embedded within the Ecounit (EU) data. This indicates that the catchments in the different 
datasets show different spatial characteristics. For example, the catchments that matched Category 2 tended to be 
clustered together, while the catchments that matched Category 3 showed more variability when the LU dataset, 
which represents anthropogenic, in contrast to natural biotic response to environmental influences, was included.

Figure 1.  Catchment matches using ANN-PR and XAI-SHAP approach to identify ungauged catchment 
similarities to gauged catchments using spatial dataset (OV original vegetation, EU ecounit, LU land use). Top 
row shows the spatio-temporal category of the matched gauged catchment based on the gauged catchment 
allocation derived from our previous  works30, bottom row shows the matched catchment. Colours represent 
the gauged catchment as listed in the legend. Results show high variation between each dataset. Maps created 
by author using ArcMap 10.8.1, gauged  catchments10 supplied, Drainage  Basins37 licenced under a Creative 
Commons—Attribution 3.0 Australia licence (CC BY 3.0 AU). © State of Queensland (Department of 
Environment and Science) 2023. 61
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Variable feature independence
In this study, matching variable deviations using the XAI-SHAP approach  method30 revealed that every catch-
ment had a unique combination and weighting of deviated features. The same combinations of top XAI-SHAP 
10% floristic structure variables did however match the most similar gauged catchment and group them to 
Categories based on the combination of deviated variables. It also revealed catchments that did not share the 
same combinations of deviated variables. Grouping the deviated variables by landform and vegetation descrip-
tors in the Original Vegetation dataset allowed for 20 of the 37 pseudo/ungauged catchments to be matched to 
individual gauged ones, while 9 catchments were not matched to another ungauged or gauged catchment or 
spatio-temporal category. Of those, unable to match to gauged catchments XAI-SHAP results facilitated four 
closely matched groups to be identified.

Variable combinations only occurring in ungauged catchments and not in the gauged ones include: hilly 
alluvial with basalt, health land with sandplains and coast, or mangrove landform structures, as well as addi-
tional combinations of vineforest with woodland drainage, or open forests combined with grassland and open 
woodlands (Fig. 2).

ANN‑WQ simulator performance
The most notable observation was that the combination of catchments included in the training datasets influ-
enced the unsupervised performance of the ANN-WQ simulator (Table 1). When the ANN-WQ simulator was 
trained using data for individual catchments, simulations were only able to be generated in the unsupervised 
environment for the Wet Tropic catchments of Tully, and North and South Johnstone. Flatline simulations were 
observed in the unsupervised simulator environment for all other catchments, despite their adequate training 
performance (Supplementary Material Fig. SF1).

In contrast, training using data grouped from multiple catchments generated non flatline results for all sce-
narios. Satisfactory to very good performance for all metrics were achieved for all spatial dataset combinations 
grouped and discriminated in spatio-temporal Category 2 and 3. Except for their unsatisfactory Nash Sutcliffe 
Efficiency (NSE) performance, datasets grouped and discriminated to spatio-temporal Category 1 also achieved 

Table 1.  Performance evaluation of ANN-WQ simulator for the Gauged Catchment scenarios. Shading 
intensity represents performance over all scenarios tested for each criteria. Scores styled bold are the best 
performing metric for each category, scores styled italic fail to meet minimum satisfactory performance criteria. 
Training datasets discriminated by category influence DIN simulation results.
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Figure 2.  Top 10% XAI-SHAP deviations for landform and flora sub-descriptors of the Original Vegetation 
Datasets. Catchment = subject catchment, Match = Catchment the subject catchment is deemed a closest match 
with, Category = spatio-temporal category of the gauged catchment as established by previous  research30. 
Gauged catchments are shown in the top plates, the ungauged catchments are shown in the bottom 2 plates 
and arranged chronologically from north to south. Visualisation of this data shows that some catchments have 
combinations of similar feature deviations to gauged catchments, and others are unique.
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satisfactory to very good performance (Table 1). Meanwhile, training datasets that grouped all gauged catchments 
together only met satisfactory performance criteria for the scenario that included all spatial data variables (i.e., 
Ecounit, Land use and Original Vegetation (EULUOV)) (Table 1).

Performance criteria for the control (i.e., flow only) scenario also varied where the dataset was first dis-
criminated to spatio-temporal categories (Table 1). Simulation results for the control scenario trained on non-
discriminated datasets failed performance criteria (NSE = 0.130), while the opposite was the case for training 
datasets discriminated by spatio-temporal category (NSE = 0.846 and 0.947 for Category 2 and 3 respectively). 
The NSE for Category 1 catchment Control worsened after discrimination, however, the  R2 value improved to 
0.686 compared to 0.39 for the non-discriminated counterpart. Benefits of including spatial data in datasets were 
reduced after pre-discriminating to spatio-temporal regime (Table 1). Benefit losses include a lack of independ-
ence from the control scenario, as measured by Kruskal Wallis test for independence (p = 0.483–0.981), where 
spatial data was omitted (Supplementary Material Table ST1).

Grouping datasets by respective catchment categories, identified in our previous spatio-temporal  study30, 
prior to loading to the DIN simulator resulted in improved performance criteria  (R2 = 0.984 for Category 3, 
RMSE = 0.02382 for Category 1). Interestingly, for Category 2 flow datasets the control scenarios, which did 
not contain spatial variables achieved superior performance for MSE,  R2, NSE and Wilmott’s d compared to the 
other Category 2 scenarios that did include information on spatial variables. In contrast, the Original Vegetation 
scenario discriminated to Category 3 records had the smallest pde score meaning that the inclusion of Original 
Vegetation variables improved the ability of the DIN simulator under extremes in the data for Category 3 catch-
ments (Table 1).

Classifying ungauged to gauged catchments: variable independence vs ANN‑PR
While the ANN-PR approach matched all ungauged catchments to a gauged counterpart, the XAI-SHAP vari-
able independence approach using relative variable distributions was unable to match 17 catchments. Catchment 
matches using OV dataset for XAI-SHAP landform and floristic structure, most closely aligned to the ANN-PR 
catchment matches using the EU dataset. Matching using only the top 10% of deviated features using XAI-SHAP 
variable independence approach changed the catchment matches compared to the EU dataset using ANN-PR, 
where all variables are considered, but retained matches generally within the same category (Fig. 1).

Verification of catchment classification for DIN similarities
Both XAI-SHAP Variable Independence and ANN-PR techniques for catchment classification matched pseudo-
ungauged Herbert to the Gauged Mary (Figs. 1 and 2) and identified it as a Category 1 catchment. Only Mary 
catchment training data scenarios achieved a satisfactory performance metric i.e. NSE > 0.5 (Supplementary 
Material Table ST2). The greatest performance criteria overall collectively clustered towards datasets discrimi-
nated to Mary and Category 1 flows only (Fig. 3 and Supplementary Material Table ST2).

Datasets first discriminated by the classified catchment resulted in the best overall performance, with further 
discrimination to flow regime improving results. Training datasets discriminated by spatio-temporal flows, also 
performed better where they were also discriminated to the flow regime. This is consistent with findings dur-
ing the development of the ANN-WQ simulator where a significant difference was noted for training datasets 
discriminated by the category flow regime. Where catchment specific or catchment category classification was 
not included, performance improved the most for training datasets that included Ecounit spatial data compared 
to the control which did not include spatial data. The worst performing scenario was the control grouped to 
Category 1 catchments only, followed by the control for all gauged catchments that included no spatial data, 
but was discriminated by flow regime. In comparison to control scenarios, differences in the performance cri-
teria for scenarios that include spatial data diminished for catchments trained only to Mary gauged data. This 

Figure 3.  Additive Performance Criteria for pseudo-ungauged catchment DIN simulations. Dimensionless 
graph shows the additive scores for the best MSE,  R2, NSE, d, RMSE for each data discrimination scenario 
evaluated in the case study. Zero is the centrally located white star and represents the target/observed data. 
Discrimination of data to spatio-temporal regime (i.e., shown as crosses) and to the matched catchment 
improves results the most. Inclusion of Ecounit data improves simulation performance where training datasets 
are not discriminated to classified catchment or category.
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suggests the benefit of adding spatial data reduced as the flow regime was refined to the catchment with the 
closest similarity to Herbert.

Training data discriminated to the individually matched catchment, Mary, and discriminated to wet season 
flows achieved the best performing DIN simulations  (R2 = 0.80, NSE = 0.62, d = 0.85 respectively). Visualisation 
of simulated vs true data demonstrates that these scenarios’ pre-discriminated spatio-temporal flows result in 
simulations that include all the peaks in the observed dataset. On the other hand, training data discriminated to 
include all catchments in the corresponding Category 1, but using all flow and season records, with no spatial 
data failed to simulate half the peaks (Supplementary Material Fig. SF2). While simulated peaks were under 
estimated in all cases, a review of the raw data identified that the maximum nitrogen concentration in the 
dataset for Herbert Catchment was 1.8105 mg/L, which is the highest historical record, plus two additional 
peaks ranging between 1.320 mg/L and 1.694 mg/L. Maximum concentration for Mary was a smaller with a 
once off observed peak of 1.243 mg/L during unusual weather conditions of end 2012 start  201338,39 with 
remaining peaks in the dataset not exceeding 0.605 mg/L.

Discussion
Overview
Our research uniquely evaluates the classification potential for all ungauged catchments flowing to the Great 
Barrier Reef, based on proxy data for spatio-temporal drivers of Dissolved Inorganic Nitrogen (DIN). We adopt 
an explainable AI approach referred to as XAI-SHAP to provide a deeper understanding of the modelled clas-
sification results. In accordance with earlier research works, our satisfactory performance metrics show classifi-
cation of the pseudo-ungauged area to the most similar gauged ones is validated and works well where data for 
proxy drivers of DIN are included because they facilitate grouping of catchments by the DIN regime. Evaluation 
of DIN simulation performances using transfer learning in an Artificial Neural network environment allowed 
us to demonstrate the variability in DIN patterns depending on the spatio-temporal regime of the ungauged 
catchments, as exposed by original vegetation data Additionally, the XAI-SHAP method allowed for ungauged 
catchments with insufficient similarity to the gauged ones to be identified, regardless of being classified by brute 
force using ANN-PR techniques.

Dataset complexity and consistency
Development and verification of the ANN-WQ simulator to establish DIN response similarities in datasets 
between pseudo-ungauged catchments with the gauged ones found dataset complexity and representative flow 
patterns were influential. This highlighted caution in direct application without prior understanding of the DIN 
to flow dynamics of the catchment. Flatline simulations that resulted in the unsupervised scenario are a known 
symptom of inadequate complexity in the  dataset40. Likely explanations include hidden neuron complexity was 
low in the development trials and relationships between flow, spatial data and DIN response was not adequately 
formed to facilitate simulations in the unsupervised scenario. The contrasting ability of Wet Tropics catchment 
datasets to overcome possible lack of dataset complexity in the training dataset is explained by the different DIN 
and flow dynamics in wet tropics catchments compared to the  others27. We previously demonstrated that DIN 
remains elevated in retreating flows for Wet Tropics catchments  only26. One explanation for the contrast with 
Wet Tropics catchments could be a more consistent relationship between flows and DIN releases throughout 
the hydrograph which the ANN-WQ simulator was trained to simulate  for41,42. This phenomenon demonstrates 
that consistency of DIN to flow relationships influence the performance of defined algorithm based models 
developed to use transferred data.

Training dataset influence
For catchments with inconsistent DIN to flow relationships, our results found training data arrangements that 
group catchments using prior knowledge of spatio-temporal similarities, i.e. either by prior discrimination (dis-
criminated to Category 1, Category 2 and Category 3 as informed by Original Vegetation deviation using XAI-
SHAP), or within the model training datasets (non-discriminated but including all EULUOV spatial variables 
which are identified as proxy drivers for DIN and used to inform XAI-SHAP) improved the performance. This 
approach to remove heteroskedasticity where seasonal differences for Nitrate are considered has already been 
shown to benefit model  development42,43. The significant differences in performance criteria of DIN simulations 
(p = 0.003–0.045) depending on the data discrimination for catchment categories suggests that DIN dynamics 
differ between those categories. This finding of significant variation in nitrogen regimes through the Great Barrier 
Reef catchments, as demonstrated by the ANN-WQ simulator training dataset predictive performance, regardless 
of anthropogenic influence is consistent with proceeding  research34,44,45. Our research shows variability in DIN 
regimes is an influential consideration for data transfer purposes in water quality models. The improved perfor-
mance criteria where information on proxy drivers of DIN was considered supports our application of original 
vegetation spatial datasets used in this study to discriminate differences in DIN regimes for each  catchment30.

Spatio-temporal category differences for DIN simulation performance may be explained via the wide body 
of literature that demonstrate nitrogen is either flow or production  limited44,46,47, and also influenced by con-
nectivity to stream  network48. The superior performance of the control scenario for Category 2, compared to 
Category 2 scenarios that included spatial data, indicate this category is flow limited and abundant in DIN. It is 
demonstrated that soils higher in total organic carbon, consistent with rainforest soils, have higher supplies of 
nitrogen created by the residual soil  biology30,49,50. The abundance of nitrogen generation in the soils, coupled 
with abundant flows, in the Wet Tropics catchments can result in consistent nitrogen to flow patterns and is a 
logical explanation for the ability of the ANN-WQ simulator to generate results in the development trials, where 
catchments from other categories flatlined. This supports our previous  suggestions30 that the timing of data 

Note:Adjustment to this page has been made as underlined toalign with a post production correction request.

65

u1121418
Line

u1121418
Line

u1121418
Line



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18145  | https://doi.org/10.1038/s41598-023-45259-0

www.nature.com/scientificreports/

collection is important in Category 1 and 3 catchments, while Category 2 catchments could classify regardless 
of the season or flow phase. While our research is not designed to interrogate reasons for drivers of DIN in each 
category per-se, this is one of many possible explanations for how categorising datasets by vegetation removes 
noise associated with different combinations of biotic responses in each  location34,41,51. The findings, therefore, 
support the second hypothesis that prior grouping of catchments by categories of Original Vegetation, as a proxy 
for the DIN to flow regime, is a necessary first step for identifying catchments that share similar DIN patterns.

Training dataset discrimination and variable combinations separately influenced the performance of the 
ANN-WQ simulations of DIN for the pseudo ungauged catchment. The ANN-WQ simulator achieved the best 
DIN simulation performance metrics for the pseudo-ungauged catchment when trained on data only from the 
classified catchment and therefore highlights that data transfer with the classified catchment achieved the best 
results. Concurrently, discriminating the dataset by the respective flow regime of wet season increasing flows 
had a greater influence on simulation performance than inclusion of spatial data variables. In contrast, training 
datasets using data from multiple catchments from the same flow regime, i.e. Category 1, achieved equivalent 
performance only where the training data was first discriminated to increasing above average flow regime, hence 
removing hetroskedacity of DIN in the retreating and below average flows. Both these findings are consistent 
with the ANN-WQ development phase and demonstrate that prior discrimination of the training dataset to flow 
regime reduces heteroscedasticity in DIN patterns to  flow41,52. Once heteroskedasticity in the training dataset 
was removed, the influence of spatial variables as drivers to the DIN patterns became less relevant. Separately, 
the research also found that training the ANN-WQ simulator using data from all catchments improved where all 
EULUOV variables were included. This could be attributed to the ANN-WQ simulator discriminating datasets 
within the algorithms, as opposed to prior discrimination provided by classification, and further demonstrates 
the benefit of the spatial datasets to expose the drivers of the DIN patterns.

ANN‑PR vs XAI‑SHAP classification
Catchments matched using ANN-PR were not always the same as the catchments recommended to be matched 
by the XAI-SHAP deviation approach for variable independence. One reason could be that only 10% of the 
most influential variables were considered in the XAI-SHAP approach, in contrast the less deviated variables 
contributed to the ANN-PR matches. Catchment classification informed by the match options in both ANN-
PR and XAI-SHAP approaches provide foundational guidance to rationalise catchments to evaluate in future 
data transfer investigations or models for DIN simulations to the Great Barrier  Reef53. Varied performance for 
each scenario trialled in the ANN-WQ simulator development phase demonstrated that training data from 
catchments with the most similar proxy drivers of DIN dynamics, was more suitable for data transfer compared 
to training data from all catchments lumped  together54. This demonstrates that rationalising training data to 
the most similar responding catchments reduces heteroskedasticity in the training dataset and benefits DIN 
simulation accuracy for the classified catchment. XAI-SHAP provided insight to identify catchments grouped 
by known DIN to flow proxy drivers. While classification using nearest neighbour catchments has historically 
been supported for their influence towards flow  similarities15,55, our finding demonstrates that catchments with 
the most similar drivers of DIN, in addition to flow, are not necessarily located as the neighbouring catchment, 
and are influential towards DIN simulation performance.

Practical application
This study established Original Vegetation as a suitable proxy for DIN dynamics for the benefit of water quality 
modelling. Therefore, the 20 ungauged catchments that matched to gauged ones, based off Original Vegeta-
tion similarity have justification to receive data from the corresponding gauged catchment. The remaining 21 
ungauged catchments had combinations of original vegetation unique from the gauged catchments and therefore 
did not support the hypothesis that they share similar DIN drivers with gauged catchments. Consequently, this 
study found that only 20 of the 41 ungauged catchments were suitable to consider for data transfer with existing 
gauged catchments for satisfactory water quality modelling purposes.

Of the ungauged catchments that failed to match to gauged ones, 4 groups shared unique combinations of 
deviated spatial variables. Deviated original vegetation floristic structure and landform descriptors shown by the 
XAI-SHAP deviations, were grassland, heathland and mangrove. These are all coastal ecosystems and differ from 
vineforest, open woodlands and forest shown to be proxy indicators of DIN dynamics for gauged  catchments30 
While data transfer from existing gauged catchments to the four coastal catchments is not supported by our study, 
our method can instead be used to inform where new water quality monitoring and gauging sites could have the 
greatest value to represent all DIN  regimes12,47,56–58. New monitoring and gauging sites are recommended in each 
of the four coastal catchment groups to collect data representative of all DIN regimes, which could facilitate data 
transfer for modelled DIN predictions across all ungauged Great Barrier Reef catchments.

It is well known that performance of neural networks deteriorates when the unsupervised scenario includes 
extremes outside the range of the training  dataset59 and in our evaluation, models trained using Mary data 
were never exposed to high concentration peaks observed in the Herbert catchment. Limitation for simulating 
extremes not included in the training data could be addressed with differing model techniques, the ANN-WQ 
simulator was intended only as a coarse method to verify whether similarity in DIN drivers exists between catch-
ments matched using the ANN-PR method, and this was demonstrated.

For the case study, the matched catchment was a Category 1 catchment. Collectively, Category 1 catchments 
showed the poorest performance in the ANN-WQ development phase. The fact the case study trial achieved 
satisfactory performance criteria for the poorest performing category in the development phase, it is expected 
that better results can be achieved for Category 2 and Category 3 catchments which have less heteroskedastic 
DIN to flow relationships. Further studies to refine the ANN-WQ simulator performance, along with a full 
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comparison of all training dataset options, i.e. discrimination of data to Category 2 and 3 flows to evaluate differ-
ence in performance and facilitate year round classification is recommended. Regardless of these limitations, we 
encourage results from this study to be applied in established models that will benefit from data transfer from the 
most similar catchments for purpose of DIN modelling, and intentionally developed for superior  performance43.

Conclusions
This study matched all ungauged catchments that drain to the Great Barrier Reef to the gauged ones using ANN-
PR coupled with Land use and Original Vegetation datasets. While ANN-PR enabled matching using proxy 
datasets for drivers of DIN, XAI-SHAP method explained similarities between catchments based on feature 
deviations as well as concurrently allowing grouping of catchments to known spatio-temporal categories. Prior 
knowledge of spatio-temporal DIN response categories within training datasets improved performance of the 
ANN-WQ simulator developed to verify catchment matches.

While all catchments matched to a gauged one using ANN-PR, consistent with hypothesis 1, the additional 
interrogation by XAI-SHAP deviations found 17 catchments did not share deviated feature similarity with 
a spatio-temporal category. The XAI-SHAP method instead provides justification to prioritise gauging and 
monitoring efforts in those unmatched catchments to better understand the spatial temporal dynamics of DIN 
in coastal areas that those unmatched catchments were located in. For the ungauged catchments that did match 
to gauged ones using the XAI-SHAP method, the subsequent ANN-WQ simulator development and case study 
to test the second hypothesis, found prior discrimination of data included in the training dataset, based on the 
spatio-temporal category of the ungauged catchment, improved performance of the ANN-WQ simulator in all 
scenarios tested. It was, however, an unexpected finding that, after the spatio-temporal discrimination by category 
was first applied, inclusion of Original Vegetation, Ecounit or Land Use variables had insignificant influence 
on results. Findings that emerged throughout this study therefore built nuance to our expected hypothesis 3 
whereby although a trained ANN-WQ simulator successfully simulated DIN in the unsupervised scenario, it 
was the knowledge provided by original vegetation data to pre-process the training datasets into categories that 
mattered. Implications of these findings are that XAI-SHAP coupled with Original Vegetation data has demon-
strated merit for customising catchment matching to the portion of water quality datasets most likely to share 
similar DIN to flow regimes between gauged and ungauged catchments.

Methods
Study area
This study includes all catchments that flow to the Great Barrier Reef, in north-eastern Australia. Each of those 
catchments is referred to herein as gauged, ungauged and pseudo-ungauged as shown in Fig. 4. Respective gaug-
ing allocation, sampling frequency for DIN, and flow data availability for each of the catchments are provided 
in Supplementary Material Table ST3.

Figure 4.  Study Area. G preceding catchment name infers a true gauged catchment. UG preceding catchment 
name infers ungauged catchment. Maps created by author using ArcMap 10.8.1, ungauged  catchments10 
supplied, Drainage  Basins37 licenced under a Creative Commons—Attribution 3.0 Australia licence (CC BY 3.0 
AU). © State of Queensland (Department of Environment and Science) 2023.
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Study concept
The objective of this study is to establish whether patterns in the flow and spatial variable datasets contain suf-
ficient information to simulate Dissolved Inorganic Nitrogen (DIN), and whether forecasting capabilities can 
extend to new catchments, referred to in this study as pseudo-ungauged. Because the influence of every variable 
input and their interrelationships to overall DIN response are unknown a priori, a dense fully connected Arti-
ficial Neural Network (ANN) algorithm was developed to trial the proof of concept approach. Algorithms were 
trained for a number of dataset arrangements and their performance metrics were compared to quantify the 
viability of the novel forecasting/data transfer concept within the Artificial Intelligence modelling environment. 
A workflow conceptualising the research approach is shown in Fig. 5 below.

Study dataset
Observed water quality data and flow records for those gauged and pseudo-ungauged catchments are from loca-
tions listed in Supplementary Material Table ST3. This data was sourced from Queensland State Government 
and was cleaned, transformed and flows arranged as detailed in our foundational  research26. The spatial extent of 
gauged areas for catchments evaluated in this study are consistent with Khan et al.13. DIN records were collected 
at irregular frequencies depending on flows for each gauged catchment as detailed in Supplementary Material 
Table ST3. To overcome a large number of NaN values within a time series arrangement for the dataset, daily 
average stream and baseflows for 90 days preceding each DIN record were allocated as 90 separate column vari-
ables each on the same dataset row position as the corresponding DIN record as 1 day prior, 2 day prior….90 day 
prior. 90 days prior flows capture a full temperate climate season preceding each DIN record and were shown 
by cross correlations to be sufficient to capture residual  information60. The water quality and flow datasets were 
duplicated then partitioned as outlined in O’Sullivan et al.30 for wet season/increasing flows, dry season/retreat-
ing flows, and all flows/seasons to capture spatio-temporal influences.

Spatial data for all gauged and ungauged portions of catchments in the study area, were extracted from 
Queensland Government Q-Spatial mapping platform, as per the methods described in O’Sullivan et. al.26. The 
three separate spatial datasets were created as the proxy drivers of DIN. These included: Land use to represent 

Figure 5.  Conceptual framework of research. This framework shows data preparation for classification, process 
for simulating DIN for pseudo ungauged catchments, and relationship to XAI evaluation of results. Data relating 
to gauged catchments is represented in purple, orange represents pseudo-ungauged catchments, and ungauged 
catchments are represented by grey. Dashed lines show source and destination of data transfer for pseudo-
ungauged catchment in the research. Vegetation images adapted from the Integration and Application Network 
licenced under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). 68
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human biotic influence which included 6  variables61, Original Vegetation consisting of 38  variables31 intended 
as a parsimonious biotic response proxy for natural DIN responses across the  catchment26,62, and Ecounit which 
was a created via a combination of Land use and Original Vegetation and resulted in 179 variables. The area of 
variables for each catchment was established via clipping the spatial datasets to the catchment boundaries and 
extracting corresponding data tables from ArcGIS. The area of the gauged catchments extended only to the 
gauged monitoring point, the ungauged portion was created as a sub-catchment polygon for all areas that drain 
to the catchment’s waterway downstream of the gauged monitoring point, or for fully ungauged catchments. 
For each catchment, the spatial dataset was duplicated to match the number of data rows to the same number of 
DIN records in each catchment dataset. For the pseudo-ungauged datasets, the number of spatial dataset rows 
were duplicated to match to the number of daily average flow records available.

A master dataset was created by joining the preceding flow and spatial dataset to create the training vari-
ables dataset, and the corresponding DIN data allocated as the target dataset. All data in each dataset was then 
normalised. Scenario datasets were then created by extracting subsets of data from the master dataset as detailed 
in Table 2.

Classifying gauged catchments to ungauged and pseudo‑ungauged catchments
The novel aspect of this research is establishing whether pseudo-ungauged, and ungauged catchments share 
spatial data similarities suitable for classifying to gauged catchment classifiers, and for water quality classification 
data transfer purposes. Our previous studies used ANN-PR to classify only the gauged catchments together using 
the same spatial variables used in this  study26,30. XAI evaluations of those datasets provide explainability to the 

Table 2.  Summary of data included in scenario datasets. Variations in each dataset intended to evaluate the 
influence of spatial data or flow variable toward DIN response. G = Gauged, C Catchment, F Flows, A All, LU 
LandUse, OV Original Vegetation, EU Ecounits Ci1...in reference to individual catchments.

Dataset type Purpose
Catchments 
included Dataset reference

Variables (discriminated by:) Target data

LU spatial 
variables

OV spatial 
variables

EU spatial 
variables

90 day prior 
flows

Corresponding 
DIN

Corresponding 
catchment

1. Spatial 
Classifica-
tion Training 
Datasets

Training algo-
rithms to match 
spatial data to 
corresponding 
gauged catch-
ment

All gauged

1. GCAFALU ✓ – – – – ✓

1.GCAFAOV – ✓ – – – ✓

1.GCAFAEU – – ✓ – – ✓

1.GCAFAEULUOV ✓ ✓ ✓ – – ✓

2. Spatial Clas-
sification Test-
ing Datasets

Classify 
pseudo-
ungauged and 
ungauged 
Catchments to 
gauged catch-
ment

Individual 
ungauged/
pseudo-
ungauged

2.CAFALU ✓ – – – – Hidden

2.CAFAOV – ✓ – – – Hidden

2.CAFAEU – – ✓ – – Hidden

2.CAFAEULUOV ✓ ✓ ✓ – – Hidden

3. ANN-WQ 
simulator 
develop-
ment- training 
datasets

Establish 
whether 
recognisable 
patterns exist in 
the datasets to 
forecast DIN

All gauged 
together (non-
discriminated)

3.GCAFALU ✓ – – ✓ ✓ –

3.GCAFAOV – ✓ – ✓ ✓ –

3.GCAFAEU – – ✓ ✓ ✓ –

3.GCAFAEULUOV ✓ ✓ ✓ ✓ ✓ –

All gauged—
individual 
(Discriminated 
by catchment)

3.GCi1...inFALU ✓ – – ✓ ✓ –

3.GCi1...in FAOV – ✓ – ✓ ✓ –

3.GCi1...in FAEU – – ✓ ✓ ✓ –

3.GCi1...in FAEU-
LUOV ✓ ✓ ✓ ✓ ✓ –

Gauged Catch-
ments grouped 
by Spatio-Tem-
poral Category 
(Discriminated 
by Category 1, 
Category 2 or 
Category 3)

3.GC1…3F1…3LU ✓ – – ✓ ✓ –

3.GC1…3F1…3OV – ✓ – ✓ ✓ –

3.GC1…3F1…3EU – – ✓ ✓ ✓ –

3.GC1…3F1…3EU-
LUOV ✓ ✓ ✓ ✓ ✓ –

4. ANN-WQ 
Simulator-Trial 
Datasets

Evaluate 
suitability of 
matched dataset 
for data transfer 
to pseudo-
ungauged 
catchment for 
DIN simulation 
purposes

Individual 
gauged and 
pseudo-
ungauged 
catchment

4.Ci1...inFALU ✓ – – ✓ Hidden –

4.Ci1...in FAOV – ✓ – ✓ Hidden –

4.Ci1...in FAEU – – ✓ ✓ Hidden –

4.Ci1...in FAEULUOV ✓ ✓ ✓ ✓ Hidden –

Gauged and 
pseudo-
ungauged 
catchments 
grouped by 
categories

4.C1…3F1…3LU – ✓ – ✓ Hidden –

4.C1…3F1…3OV – ✓ – ✓ Hidden –

4.C1…3F1…3EU – ✓ – ✓ Hidden –

4.GC1…3F1…3EU-
LUOV ✓ ✓ ✓ ✓ Hidden
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corroborating ANN-PR results for both spatial data and water quality  classification30. Here, we explore, for the 
first time, extending that classification approach beyond the gauged portion of the study area to classify catch-
ments of the ungauged and pseudo-ungauged areas to gauged catchments. The method is therefore extending the 
ANN-PR approaches of our previous studies to now evaluate which gauged catchments the pseudo-ungauged 
and ungauged catchments classify to, and evaluate whether XAI explainability applies to the ANN-PR matches. 
To accomplish this, we apply a combination of the ANN-PR approach used in our previous studies and XAI 
explainability coupled with  SHAP36 (XAI-SHAP) to evaluate the similarities between the catchments. This allows 
classification of catchments that have not been gauged, based on the similarities between the gauged catchments, 
and provide a better understanding of the underlying similarities between the catchments. Importantly, inclusion 
of the XAI-SHAP method demonstrates whether the sufficient underlying similarity is likely to exist between the 
proxy drivers of DIN in the gauged and ungauged catchments for the purpose of data transfer.

Spatial classification using ANN‑PR
This step used a similar approach explained in detail in our previous studies, however this time we trained the 
ANN-PR tool on all 11 gauged catchments, and introduced the spatial variable data for the ungauged catchments 
in the unsupervised environment, to force a match to one of the 11 gauged catchments. A 100-fold duplicate of 
each spatial variable in each gauged catchment was used to estimate the percentage match between the ungauged 
catchments and the gauged catchments. We then trained the ANN-PR classification tool in a supervised envi-
ronment by applying the gauged catchment classification training datasets to standard codes extracted from 
“MATLAB 2020a (The MathWorks Inc., 2020) Deep Learning toolbox (Fig. 4). The code used is a two-layer feed-
forward network, with sigmoid transfer function in the hidden layer, and softmax transfer function in the output 
layer (The MathWorks Inc. 2020)”63. For the spatial datasets, heuristics and previous knowledge for the gauged 
data spatial dataset meant that an architecture of 3 hidden neurons were used to set the classification training 
architecture for this model. Data were split within the coding architecture to 70% for network training, 15% 
network validation and 15% network testing. In the training phase, the network is designed to match spatial data 
variables for each row in the dataset to one of the 11 the gauged catchment categories the spatial data is sourced 
from. The network architecture is set such that training continues towards minimisation of cross entropy and 
stops once mean square error elevates above its minimum pivot point at which point the ANN-PR algorithm 
achieves optimal  performance64. Optimal performance is for each of the 100 replicates of spatial data to allocate 
to the catchment category the data belonged to in the validation and testing phase.

Testing datasets were separately introduced in an unsupervised environment to the optimised classifica-
tion algorithm trained to match spatial data to only one of the 11 gauged catchments. Spatial variables for each 
ungauged or pseudo-ungauged catchment were duplicated 100 times so that the catchment the ungauged or 
gauged spatial dataset was classified to was based on 100 replicates. The algorithm forces each of the 100 rows 
of spatial data variables the ungauged or pseudo-ungauged catchment to match to one of the 11 classifiers in 
the trained environment. This approach was repeated for the Land use, Original Vegetation and Ecounit spatial 
datasets for all 41 ungauged and pseudo-ungauged catchments. The gauged catchment with allocations of more 
than half the records for each gauged or ungauged catchment was deemed classified for the respective dataset.

Identifying variable feature independence in both gauged and ungauged catchments
The purpose of XAI, is to deduce the combination of variables most likely to have resulted in the classification 
between two catchments. To verify that the forced matches between gauged and ungauged catchments using 
ANN-PR were explainable, we therefore extend the additive deviation approach from previous  work30 to spatial 
variables for all catchments, shown in Eq. (1), and graphed the top 10%30.

where: D: deviation of spatial dataset variable. A: proportional area of variable (A = area of variable /total 
catchment area),  S: subject variable, ∀: all dataset variables excluding S.

Variables in the top 10%deviated from the mean were then graphed and visually compared for similarities 
between the deviated variables for gauged and ungauged catchments sharing similar combinations of deviations 
were categorised together. Because the Original Vegetation dataset had previously been shown to explain the 
ANN-PR matches between the gauged  catchments30 it was used directly in this study. Geology and landform 
has also been demonstrated as a fundamental driver of nitrate in hydrological  processes48, therefore in this study 
we also further scrutinised influences of the original vegetation dataset by breaking each variable down into its 
separate landform type and floristic structure descriptor as described by the data  authority31 to better visualise 
hydrological drivers of results.

Training ANN to forecast DIN in a supervised environment
An Artificial Neural Network water quality (ANN-WQ) simulator was developed to facilitate a rapid assessment 
of the similarity of matched catchments for DIN. The ANN-WQ simulator was intended for rapid comparison 
purposes only, and therefore method optimisation was outside the catchment classification scope intended for 
this research. Similarity between catchments was evaluated by the comparative accuracy of DIN simulations 
generated for catchments depending on the dataset scenario included in the ANN-WQ simulator training phase.

For each gauged catchment dataset, a Dense Deep Learning feed forward network was created in Matlab. The 
dense fully connected learning approach was selected to facilitate for all data relationships to be considered, to 
maximise the pattern recognition ability within the dataset, timesteps of data are still captured in variables as the 
corresponding time-date number. This architecture was resource intensive and therefore a ReLU hidden layer 

(1)Ds = As − A∀
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activation was included due to its superior ability to deal with weights and bias over large intensity variations, 
as could be expected in the  dataset65,66.

Training datasets involved a data set split of 80% Training, 10% Verification and 10% Testing. Development 
of the Dense Deep Learning feed forward network began with a trial and error phase to scope for functionality at 
the default hidden neurons (< 10). To overcome inadequate complexity and dimensionality within datasets, trials 
of 1 to 1000 hidden layers were then undertaken for each dataset to identify the best performing hidden layer 
network suited to the training  dataset67. Trialling up to 1000 hidden layers on big data creates heavy computing 
demands, therefore, Adam optimiser was selected for its minimal memory usage benefits whilst also addressing 
sparse gradients and non-stationary  objectives68. The model performance metrics comprised of RMSE, MSE, 
Nash Sutcliffe Efficiency, Peak Deviation and Correlation as  R2 were recorded for each of the hidden layer trials, 
and the algorithm with the best performance metrics evaluated for the optimal hidden neuron and for pass or 
fail of satisfactory performance criteria. The performance metrics equations in Table 3 identify the correspond-
ing satisfactory performance criteria for each. For this research, the ANN-WQ simulator was used to validate 
whether DIN patterns were detectable. Therefore, performance criteria that identified whether the results were 
satisfactory or not as nominated in Table 3 were selected to remain consistent with satisfactory performance 
criteria for water models published  elsewhere69–73.

To compare model DIN forecasts against observed DIN forecasts, the algorithm was rerun with the optimal 
number of hidden layers for every dataset. We normalized all data for graphing so we could compare forecasting 
potential across the different datasets.

DIN forecasting potential for classified pseudo‑ungauged catchments
The trained algorithms that met minimum satisfactory performance criteria as well as demonstrating a simulation 
ability in the supervised environment were then used in an unsupervised environment to simulate DIN for their 
respective classified pseudo-ungauged catchment datasets based on flow inputs. For the data available, only the 
pseudo-ungauged Herbert was suitable for evaluation for the study and is evaluated as a case study within this 
article as proof of concept. For this study, scenario datasets evaluated included the ANN-WQ simulation results 
for the pseudo-ungauged catchment trained on the matched gauged catchment, ANN-WQ simulator trained 
using all gauged catchment data, and ANN-WQ simulator trained using data from the matching spatio-temporal 
category. Performance metrics for each scenario were then collated and visualised in a dart plot. To create the 
dart plot, performance metrics were adjusted using Eq. (8) to make zero the target score. This equation has not 
been scaled for the impact each performance metric has towards the accuracy of the model, but is developed 
here for rapid comparison of overall scenario performance.

where: PC = Performance Criteria, K = unsupervised portion of ANN-WQ simulation scenario, 1….n = a 
performance criteria adjusted to make zero target i.e.{R2

c,  NSEc,  dc, RMSE, MAE,Pdvc}.
Where:
R2

c = 1 −  R2.
NSEc = 1 − NSE.
pdec = 

(

pde if pde>0| − pde if Pdv<0
)

× 0.01

(8)∪PCk
=

∑∈PC1

∈PC1....n

k,

Table 3.  Performance Metrics and nominated criteria for ANN_WQ simulation scenarios. Where: 
N = number, i = iteration, Yi

obs = Observed data, Yi
sim = target data from model simulation, Ymean

sim = mean of the 
simulation, Ymean

obs = mean of observed, Ymax
obs = maximum of observed, Ymax

sim = maximum of simulation.
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> 0.5
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Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request, 
as well as in raw form from the following public sources: Observed water quality and flow  records37,74—Queens-
land Government Water Monitoring Information Portal: https:// water- monit oring. infor mation. qld. gov. au/. 
Original  Vegetation31—Pre-clearing broad vegetation groups—Queensland (v4): http:// qldsp atial. infor mation. 
qld. gov. au/ catal ogue/ custom/ search. page? q=% 22Pre- clear ing broad  veget ation  group s -  Queen sland% 22. Land 
 Use61—Land use mapping—1999 to 2017—Queensland http:// www. qld. gov. au/ envir onment/ land/ veget ation/ 
mappi ng/ qlump/.
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5.3. Links and implications 

This penultimate chapter applied the findings of the foundational proof of 

concept, and method refinement studies presented in paper 1 and 2, respectively, to 

classify ungauged catchments to gauged ones using only spatial data. Implications of 

this concluding study are that XAI-SHAP enhanced identifying the potential application 

and limitations for ANN-PR classification. The ANN-WQ simulator developed as a 

case study to identify data transferability between a pseudo ungauged catchment and 

its gauged classifier achieved satisfactory performance criteria and validated that 

transferring data between the classified catchments has merit.  

The most novel finding of the study was differences between results generated 

by the ANN-WQ simulator trained on data from all catchments, compared to results 

where the ANN-WQ simulator was trained on data from catchments that had the 

closest Spatial Data deviation similarity, i.e. the classified catchment or classified 

Category.  Variability between the performance of the ANN-WQ simulator under 

different combinations of training data suggests Original Vegetation has a useful 

purpose for identifying selection of training data to include in the ANN-WQ simulator.  

The results demonstrated that training the ANN-WQ simulator using all Land 

Use, Original Vegetation and Ecounit data variables and flow for all catchments 

achieve more accurate simulations for unsupervised classification scenarios 

compared to using only one spatial dataset. However, exploiting knowledge 

embedded within the Original Vegetation dataset facilitated pre-grouping of training 

datasets to include catchments only of the same spatio-temporal pattern category 

and achieve the best overall ANN-WQ simulator performance.  

In addition to classifying ungauged catchment to gauged ones, this final paper 

also demonstrates that any future endeavours to transfer data, particularly in an ANN-

WQ simulator context, will be improved where the Original Vegetation data is used to 

inform the training dataset in some form. Original Vegetation data benefits the ANN-

WQ simulator performance the most where it is first used as a proxy to identify the DIN 

regime category, and secondly it benefits the ANN-WQ simulator via inclusion as 

EULUOV variables where the DIN regime category is not first established. In 
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conclusion, this paper demonstrated Original Vegetation data is a proxy for DIN 

patterns, is useful for classifying ungauged catchments, and is also useful for 

improving ANN-WQ simulations for DIN. 



77 

CHAPTER 6: DISCUSSION AND CONCLUSIONS 

6. Foreword

This penultimate chapter synthesises the research findings by way of outlining 

the objectives delivered. It summarises the novel contributions of the study, and 

concludes with an evaluation of limitations and future opportunities associated with 

this doctoral thesis. 

6.1. Synthesis of research findings 

The findings of this doctoral thesis have contributed new knowledge in areas of 

water science and artificial intelligence methods that underpins water quality modelling 

for simulations of DIN in ungauged catchment areas. Catchment scale water quality 

modelling methods for simulating DIN in ungauged areas have been adapted from 

state-of-the-art methods designed to simulate flows and total suspended solids. These 

methods are reliant on catchment classification developed and designed from first 

principles for hydrological modelling of flows. While effective for simulating flows in 

ungauged areas, performance inconsistencies are reported where the methods are 

used for nutrient simulations in ungauged areas. This inconsistency in performance is 

also observed where land use, the identified driver of nutrients in CSWQMs, are 

homogenous. While flow and total suspended solids are driven by abiotic physical 

catchment attributes with linear relationships, the drivers of the Dissolved Inorganic 

Nitrogen cycle include a number of biotic drivers with non-linear relationships towards 

the catchment response for DIN and limits the suitability of existing classification and 

data transfer methods, for ungauged areas.  This doctoral thesis identified datasets 

and evaluation methods that can overcome the non-linearity constraint associated with 

existing classification methods. 

The methods and datasets explored include coupling Artificial Intelligence 

which has ability to overcome non-linearity, with datasets that represent biotic 

response to combinations of landscape drivers. In Queensland, Australia, Original 

Vegetation communities are mapped and are considered in this research as a 
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parsimonious indicator of differing combinations of catchment features such as aspect, 

geology, water variability etc., that affect productivity at the different locations across 

the landscape, even after the original vegetation is removed. Prior to this doctoral 

thesis, the non-linear relationships between the heterogeneity in the landscape as 

shown by Original Vegetation data, and the catchment response for DIN have not been 

explored. Artificial Intelligence methods of Artificial Neural Networks and eXplainable 

artificial intelligence approaches were successfully exploited in this research to expose 

nonlinear and inconsistent patterns in datasets that corroborate with knowledge 

contained in Original Vegetation mapping and the catchment response for DIN.  

6.1.1. Objective 1 – ANN-PR corroborates Inductive and Deductive 
Classification 

In Chapter 3 as part of Objective 1, a new classification approach to identify 

proxy drivers of DIN patterns throughout the study area was developed. Novel aspects 

of the new classification method included development of an Artificial Neural Network 

Pattern Recognition method (ANN-PR) for deductive catchment classification for DIN. 

The ANN-PR method coupled inductive classification of gauged catchments sharing 

water quality patterns, with deductive classification of spatial mapping that is 

ubiquitously available across the entire study. Together the inductive and deductive 

classification results were corroborated to demonstrate the suitability of each of the 

three spatial datasets as a proxy catchment classifier for situations water quality data 

was unavailable. Spatial data evaluated for classification included similarities across 

catchments using Land Use mapping data, and separately classify catchments using 

similarities in Original Vegetation datasets. The results from the inductive classification 

of catchments using observed DIN patterns was then used to deduce whether or not 

the classification of catchments using Land Use, Original Vegetation or the 

combination referred to as Ecounits had merit. The results demonstrated while Land 

Use and Original Vegetation were both a suitably proxy dataset, Ecounits, achieved 

classification in areas that were unable to be classified using Land Use data on its 

own.  
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6.1.2. Objective 2 - Original Vegetation indicator for Spatio Temporal patterns 

Development of the ANN-PR classification approach exposed a notable 

number of water quality records in each catchment that did not share water quality 

patterns with the classified catchment.  While this finding exposed a potential source 

for inconsistent performance observed in CSWQMs that transfer data between 

classified catchments, the ANN-PR approach in isolation did not provide explainability 

for the results.  To better understand the cause of inconsistency observed in the ANN-

PR classification results, Chapter 4, Objective 2 evaluated the training datasets in new 

ways. First, for inductive classification, DIN training datasets were separated into 

records for above vs below average flows, as well as wet vs dry season. This 

separation was based on prior knowledge of the influence of water availability and 

seasonality on biotic process drivers that affect productivity, as well as flows and time 

being the only other variables used in the ANN-PR inductive classification training 

datasets.  Applying separated datasets to the ANN-PR method demonstrated that DIN 

patterns observed in the gauged catchments of the Great Barrier Reef are not always 

consistent and instead allocate to 1 of 3 DIN regime category scenarios. Scenarios 

where inductively classified catchments share water quality record patterns matched 

by ANN-PR methods are: Category 1- increasing flows and wet season with no 

pattern similarity during other times, Category 2- DIN patterns detectable at all 

times, or Category 3- in retreating flows but the patterns were not shared other 

times. This finding confirms classification results were influenced by seasonal and 

flow drivers that affect biotic processes and demonstrates benefit of pre-applying 

process knowledge to training data composition in ANN-PR classification methods.   

Secondly, Chapter 4, Objective 2 applied knowledge that game theory can 

provide explainability to results generated by Artificial Neural Networks. Using an 

adaption of the XAI SHAP, deviation of catchment features were able to be evaluated 

and corroborated to the deductive classification results. Interrogation of the deviations 

found that the three distinct categories of DIN patterns identified for inductive 

classification also shared a distinctively deviated Original Vegetation data variables. 

The results found catchments with the largest deviations of Original Vegetation 

variables for Woodlands and Open Woodlands corroborated with Category 1 inductive 

classification, where DIN patterns consistently match to the inductively classified 
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catchment during the wet season, increasing flows respectively. Catchments allocated 

to Category 3 for DIN patterns matching to the inductively classified catchment only 

during dry season and retreating flows instead shared Original Vegetation dataset 

deviations for Open Forest variables.  In contrast catchments deductively classified 

and sharing deviations in vineforest variables were allocated as Category 2 

catchments, whereby water quality patterns were always shared with inductively 

classified catchments. This finding for Objective 2 is the first time that proxy drivers for 

catchments with varying water quality patterns throughout the spatio-temporal scale 

has been identified for Great Barrier Reef Catchments. 

6.1.3. Objective 3 - Simulation of DIN in pseudo-ungauged areas is informed 
by spatial data classification  

Finally, Chapter 5, Objective 3 applied the method developed in Objective 2 to 

deductively classify all ungauged to the gauged catchments that flow to the Great 

Barrier Reef. While ANN-PR was able to match all ungauged catchments to gauged 

counterparts, only approximately half of the ungauged catchments demonstrated 

Original Vegetation variable deviations consistent with Category 1, 2 or 3 catchments 

evaluated in Objective 2. This finding demonstrated that only catchments with spatial 

dataset deviations consistent with the Category 1, 2 or 3 DIN regime have an 

explanation for consideration as a proxy dataset for the driver of DIN.  

The suitability of the classification approach towards informing data transfer from 

gauged to classified ungauged catchments was validated via a case study trial on a 

nominated pseudo-ungauged catchment. The pseudo-ungauged catchment water 

quality and spatial data was omitted from method development, however had sufficient 

data to validate the research and establish that that Original Vegetation variable 

deviations were consistent with a Category 1 catchment. The case study trial involved 

development of an ANN-WQ simulator trained using spatial data for the gauged 

catchments to predict DIN, and then tested in the unsupervised environment to predict 

DIN for the pseudo ungauged catchment, using corresponding spatial data only. 

Performance of the ANN-simulator improved where the training datasets were first 

segregated to only include water quality records from increasing flow consistent with 

the Category 1 allocation for the catchment. This finding demonstrates that while 
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catchment classification for DIN in ungauged areas is possible, the shared data 

patterns are not consistent across all temporal or flow scales. The research 

demonstrates that the performance of water quality simulation models improve where 

the model is designed to recognise the temporal scale relevant for the classified 

catchment data, and therefore overcome heterogeneity in dataset patterns. This 

finding is consistent with other research that found neural network performance 

improves where training data is refined (Alshemali et al., 2020; Kavzoglu, 2009), and 

demonstrates the importance of the methods developed within this research to 

overcome non-linearity and heterogeneity in dataset patterns to improve simulation 

capacity for DIN. 

Despite all catchments being matched to a gauged catchment using ANN-PR, 

coupling the classification results with the XAI-SHAP approach demonstrated only 

approximately half the ungauged catchments had Original Vegetation variable 

deviations consistent with gauged catchments. The other 20 catchments instead 

displayed deviations of coastal Original Vegetation variables that were not present in 

the gauged catchments. Because the gauged catchments do not contain notable 

deviations of coastal Original Vegetation variables, the relevant temporal scale of DIN 

patterns for catchments with dominant deviations of coastal original vegetation were 

unable to be established in this PhD doctoral thesis. For the purpose of informing 

investment prioritisation, the findings of Objective 3 therefore support for provision of 

new water quality modelling and gauging station investments in catchments that do 

not share deviated Original Vegetation variables with any gauged catchments. 

Investment to build knowledge on DIN patterns in the ungauged catchments 

dominated by coastal Original Vegetation variable types can then establish the 

relevant temporal scale of water quality records to use in any data transfer studies for 

water quality simulations in those areas. 

6.2. Novel contributions of the study 

In summary the novel contributions to knowledge from this PhD research are: 

1. The first contribution is the finding that catchments suitable to classify for flow

pattern similarities do not necessarily also share DIN pattern similarities. ANN-
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PR using a Leave One Out method demonstrated a significant difference 

between catchment records matched together for flow vs DIN patterns and 

vindicated the hypothesis that the suitability of catchment classification differs 

for flow compared to DIN (Hypothesis 1, Objective 1); 

2. The second contribution was that ANN-PR (Artificial Neural Network Pattern 

Recognition) methods facilitated for comparison of classification results using 

continuous water quality data used for inductive classification with the static 

spatial datasets used for deductive classification. This approach found that 

Original Vegetation spatial datasets coupled with Land Use datasets were a 

suitable proxy for deductively classifying catchments together for sharing 

Dissolved Inorganic Nitrogen patterns, and provides an approach to classify 

ungauged catchments to gauged counterparts (Hypothesis 1, Objective 1);

3. the third novel contribution of this doctoral thesis research was that splitting 

ANN-PR training datasets based on knowledge of biological changes over 

differing temporal scale or flows informs the most suitable catchments to 

classify together in response to those changes (Hypothesis 2, Objective 2).

4. Fourth novel contribution was that SHAP-XAI evaluation of Original Vegetation 

data revealed vegetation types that are a proxy indicator for the spatio-temporal 

period of DIN data most suitable for classification (Hypothesis 2, Objective 2).

5. Fifth novel contribution was that catchments with similar XAI-SHAP deviations 

in vineforest share consistent water quality patterns, catchments sharing 

deviations in Open Forest vegetation type share water quality patterns during 

dry season and retreating flows only, catchments sharing deviations in 

woodlands or open woodlands share data during wet season and increasing 

flows only (Hypothesis 2, Objective 2).

6. The sixth novel contribution is that development of an ANN-WQ simulator 

trained on spatial and flow data to predict DIN for classified catchments found 

that the predictive performance of the ANN-WQ simulator improved where the 

training datasets were first separated to include data records from the temporal
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scale that matched to the deviated Original Vegetation variable category for the 

catchment (Objective 3). 

7. The penultimate novel contribution of this research is that the 11 gauged

catchments evaluated in this research and flowing to the Great Barrier Reef

contain sufficient data to justify catchment classification with over 50% of the

ungauged catchments that also share similar deviations in Original Vegetation

variables (Hypothesis 3, Objective 3).

Overall, this research demonstrated that Original Vegetation datasets contain 

knowledge that can be a proxy dataset for classification in CSWQMs. Additionally, 

the knowledge within the Original Vegetation dataset provides insight to the spatio 

temporal suitability of the data transfer where observed water quality data is 

unavailable. Use of the Original Vegetation dataset coupled with XAI-SHAP 

exposes deviations of vegetation composition in the catchment to confirm whether 

classification recommended by ANN-PR is justified.  

6.3. Limitations and corresponding future opportunities 

Overall, this PhD doctoral research developed methods that inform 

classification of ungauged areas to inform data transfer for DIN simulations in 

CSWQMs. However, it is prudent that limitations of the approach are duly considered 

prior to direct application of these findings to CSWQMs that inform land management 

decisions. Opportunities to use limitations of this research, as a foundation for further 

knowledge development are: 

1. While the method evaluated in this study was specifically designed for the

influence of biotic drivers in the landscape towards nutrient patterns, the

relationships was only explored for DIN. Further opportunity remains to repeat

methodology established herein to explore whether the classification approach

is also applicable to other forms of nitrogen and phosphorous to more

completely inform CSWQMs.
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2. This research applied Artificial Neural Network (ANN) methods to identify

whether spatial datasets are a suitable proxy for classifying catchments that

also shared DIN patterns and simulate those patterns. While the method

achieved the objective of this doctoral research, methods that overcome

inconsistencies of water quality patterns over all temporal scales are needed to

increase the certainty of classification at all times. The research found water

quality patterns in catchments with Original Vegetation variables deviated for

woodlands and open forest were not established outside the relevant DIN

regime.  For these catchments, alternative deep learning methods may have

potential to further optimise pattern detection for the temporal scales that the

ANN-PR and ANN-WQ simulator didn’t.

3. While this research found that splitting ANN-PR training datasets based on

knowledge of biological changes over differing temporal scale or flows informs

the most suitable catchments to classify, those results have only been verified

using the ANN-WQ simulator for Category 1 catchments with dominant

deviations in Woodland and Open Woodland original vegetation types.

Additional case studies are recommended to a) apply the classification results

to inform parameters transfer in established process based or data driven

CSWQMs and evaluate and performance differences; and b) further explore

the applicability of the method for Category 2 and 3 catchments.

4. XAI-SHAP method was applied manually to facilitate timely interrogation of

each spatial dataset variable and corroborate with the water quality records. A

number of integrated XAI approaches are now emerging for simultaneous XAI

evaluations of Artificial Intelligence and integration of those approaches into the

application of this work to other areas could facilitate for the drivers of the ANN-

PR classification to be identified automatically, and simultaneously expose any

hyperparameter influence towards the ANN-PR result (Hedström et al., 2023;

Pahde et al., 2023).

5. By virtue of historical data availability, the methodology was limited to exploring

relationships between non-continuous samples of DIN and spatial mapping in

the gauged catchments only. Inclusion of XAI to the classification method
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demonstrated that the explainability for classification results was not 

extendable to all of the ungauged areas. The reason was approximately half 

the ungauged areas had original vegetation deviations that were not detected 

in the gauged catchments.  Opportunities therefore exist to prioritise investment 

for new gauging stations and monitoring points at locations where the temporal 

patterns for DIN as well as other water quality constituents can be established 

for the ungauged areas with original vegetation types dominated by Coastal 

ecosystems. 
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Fig. S2. ROC curves for ANN-PR training performance of classification of deductive  (left column) 
and inductive (right column) datasets for each catchment, as stated. Each panel includes top left to 
right, then bottom left to right: ROC curves for initial training (70% of data), Validation (15% of data), 
Testing (15% of data) and the overall performance in All ROC. True positive is shown on a scale of 
0-1 on the y axis, and false -positive is shown as 0-1 on the x-axis. Lines show the ability of ANN-PR
to train the dataset for each respective catchment.
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Fig. S3. Confusion matrix for application of the trained ANN-PR networks to deductive (left) and 
inductive (right) datasets for Normanby. The classification scores are the number of times the trained 
network allocated each variable record for Normanby to the catchment the trained ANN-PR network 
deemed had the most similar data pattern. Catchments with the highest score are the catchments 
classified for the dataset. 
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Table S1: Catchment characteristics and data summary 

Catchment Name Normanby Barron North 
Johnstone South Johnstone Tully Haughton O'Connell Pioneer Plane Burnett Mary 

Gauging station ID for observed data 105107A 110001D 112004A 112101B 113006A 119003A 124001B 125013A 126001A 136007A 138014A 

Gauged catchment area (km2) 12,828 1,950 926 399 1,386 1,807 336 1,464 327 30,724 6,863 

Natural Resource Management Region Cape York Wet tropics Wet tropics Wet tropics Wet tropics Burdekin Mackay 
Whitsunday 

Mackay 
Whitsunday 

Mackay 
Whitsunday Burnett Mary Burnett Mary 

Gauged Catchment Centroid Latitude (decimal °) -15.46 -17.05 -17.5 -17.66 -17.87 -19.72 -20.77 -21.23 -21.24 -25.73 -26.19

Gauged Catchment Centroid Longitude (decimal °) 144.56 145.51 145.69 145.77 145.72 146.81 148.56 148.74 148.94 151.28 152.49 

DIN Record Period(range of years) 3/10/2006- 
25/08/2017 

19/01/06- 
15/09/17 

30/01/2006-
15/09/2017 

24/02/2006- 
15/09/2017 

13/01/2006- 
19/04/2018 

20/12/2012- 
25/09/2017 

25/01/2007- 
24/08/2017 

18/10/2006- 
13/09/2017 

4/09/2009- 
26/08/2017 

23/10/20006-
15/09/2017 

25/09/2013- 
29/06/2018 

DIN sampling frequency Frequently^ 
Jan-March 

Regular^ 
monthly, 

Frequently^ 
Jan-March 

Infrequent^ 
half yearly, 
Frequently^ 
Jan-March 

Regular^ 
monthly, 

Frequently^ 
Jan-March 

Frequent^ 
monthly, 

Frequently^ 
Jan-March 

Regular^ 
monthly, 

Frequently^ 
Jan-March 

Irregularly^, 
Frequently^ 
 Jan-March 

Frequent^ 
monthly, 

Frequently^ 
Jan-March 

Regular^ 
monthly, 

Frequently^ 
Jan-March 

Frequent^ 
monthly, 

Frequently^  
Jan-March 

Frequent^ 
monthly, 

Frequently^ 
Jan-March 

Number of records in DIN record period 244 318 94 414 723 80 87 402 302 400 176 

Max DIN (mg/L) 1.704 0.634 0.372 0.365 1.876 0.331 0.831 3.557 3.865 4.659 1.293 

Min DIN (mg/L) 1.50E-03 0.0015 0.002 0.004 0.006 0.004 0.004 0.0015 0.0015 0.0015 0.0015 

Mean DIN (mg/L) 5.50E-02 1.17E-01 1.47E-01 1.26E-01 2.37E-01 6.64E-02 1.09E-01 2.31E-01 4.24E-01 1.61E-01 2.01E-01 

Median  DIN (mg/L) 3.30E-02 1.01E-01 1.38E-01 1.28E-01 2.06E-01 2.55E-02 6.20E-02 1.70E-01 2.08E-01 1.02E-01 0.1615 

Standard Deviation DIN (mg/L) 0.12821 0.090790697 0.072591 0.064849 0.153683 0.088368 0.139678 0.27511 0.533129 0.317718 0.203688 

Max Corresponding Streamflow (m3/s) 1873.7 2148.7 1680.3 1049.9 1030.8 482.97 489.21 3447.7 1494.9 16422 2494.4 

Min Corresponding Streamflow (m3/s) 1.00E-99 0.54 7.132 3.56 10.638 0.009 1E-99 1E-99 0.021 0.0168 1E-99 

Mean  Corresponding Streamflow (m3/s) 2.85E+02 1.24E+02 2.10E+02 8.11E+01 2.64E+02 3.20E+01 3.07E+01 2.20E+02 5.48E+01 4.74E+02 1.68E+02 

Median  Corresponding Streamflow (m3/s) 1.48E+02 2.48E+01 1.54E+02 4.83E+01 1.97E+02 2.46E+00 6.25E+00 7.15E+01 6.66E+00 3.33E+01 26.652 

Standard Deviation  Corresponding Streamflow 
(m3/s) 375.3701 264.2324438 252.8503 123.8116 217.0935 86.8781 63.60238 426.8036 138.3731 1575.409 333.1158 

Max Corresponding Baseflow (m3/s) 390.4533 102.7543327 127.7338 57.96873 275.6916 5.703567 15.07863 95.88294 17.34001 616.5559 34.94684227 

Min Corresponding Baseflow (m3/s) 1.00E-99 0.409397922 6.120425 3.17202 7.79123 0.013372 1E-99 1E-99 0.014856 0.002498 1.66992E-05 

Mean  Corresponding Baseflow (m3/s) 5.74E+01 1.28E+01 4.48E+01 2.08E+01 8.17E+01 1.00E+00 2.85E+00 2.00E+01 2.31E+00 5.28E+01 7.93E+00 

Median  Corresponding Baseflow (m3/s) 3.71E+01 5.30E+00 3.98E+01 1.91E+01 7.62E+01 5.60E-01 1.25E+00 9.92E+00 6.98E-01 8.28E+00 4.733613293 

Standard Deviation  Corresponding Baseflow 
(m3/s) 64.61651 19.36324239 30.21545 13.47825 48.82631 1.188735 3.925653 23.88492 3.532949 123.627 8.573484165 

*Publically available data from the State Government of Queensland, sourced from Kahn et al. (2020)

^Frequent means mostly  >1, regular = mostly  1, infrequent mostly <1 
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Table S2: Datasets input to ANN-PR to identify classified catchments. Note that the data for the catchment to be classified 
is the only data included in the testing dataset, and the only data omitted from the training datasets. Inductive and 
deductive datasets are input separately. Inductive datasets are the empirical water quality and flow data, deductive 
datasets are open-source spatial datasets sourced from publicly available government mapping.  

Catchment to 
be classified 

Catchment data 
for classifiers 

Classifiers included in Training datasets  Records in 
Training dataset 

Records in Testing dataset 
Inductive datasets Deductive datasets Inductive datasets Deductive datasets 

N
or

m
an

by
 

Normanby - - 

2996 

244 244 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 

Ba
rr

on
 

Normanby   

2922 

- - 
Barron - - 318 318 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 

N
or

th
 Jo

hn
st

on
e 

Normanby   

3146 

- - 
Barron   - - 

North Johnstone - - 94 94 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 

So
ut

h 
Jo

hn
st

on
e 

Normanby   

2826 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone - - 414 414 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 

Tu
lly

 

Normanby   

2517 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully - - 723 723 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 
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Catchment to 
be classified 

Catchment data 
for classifiers 

Classifiers included in Training datasets  Records in 
Training dataset 

Records in Testing dataset 
Inductive datasets Deductive datasets Inductive datasets Deductive datasets 

H
au

gh
to

n 
Normanby   

3160 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton - - 80 80 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 

O
'C

on
ne

ll 

Normanby   

3153 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell - - 87 87 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary   - - 

Pi
on

ee
r 

Normanby   

2838 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer - - 402 402 

Plane   - - 
Burnett   - - 

Mary   - - 

Pl
an

e 

Normanby   

2938 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane - - 302 302 
Burnett   - - 

Mary   - - 

Bu
rn

et
t 

Normanby   

2840 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett - - 400 400 

Mary   - - 

M
ar

y 

Normanby   

3064 

- - 
Barron   - - 

North Johnstone   - - 
South Johnstone   - - 

Tully   - - 
Haughton   - - 
O’Connell   - - 
Pioneer   - - 

Plane   - - 
Burnett   - - 

Mary - - 176 176 
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Table S3: ROC training performance and best hidden neuron summary. Well trained algorithm indicated by () and 
defined as more than 7 classifiers (lines) closest to the top right corner of the ROC graph, and exceeding 0.8 on both 
axes for both true and false positive. Those without a () are weakly trained. Unacceptable classifiers in each training 
environment are identified by name.  Numerals are the optimal number of hidden neurons applied to the training 
dataset. 

Training 
Dataset 

Deductive Datasets  
(Spatial data as a proxy for DIN) 

Inductive Datasets  
(Observed gauging station data) 

Original ecosystem land use Ecounit BF SF BFSF Flow 
Normanby  

ROC 
performance 

  
N.Johnston
Haughton

N.Johnston


best hn 4 2 4 943 271 859 56 
Barron 

ROC 
performance 

 
Burnett 

Normanby 

  

best hn 2 4 4 983 812 569 35 
North 

Johnstone 
ROC 

performance 
  

O’Connell 

best hn 2 3 4 334 673 978 348 
South 

Johnstone 
ROC 

performance 
  

Haughton O’Connell 
Pioneer 

best hn 3 3 4 776 476 938 309 
Tully 
ROC 

performance 
    

Haughton 


best hn 2 3 3 562 477 809 63 
Haughton 

ROC 
performance 

  
Mary 

  Burnett 

best hn 4 6 3 645 149 645 81 
O’Connell 

ROC 
performance 

 
Normanby 

  

best hn 2 3 3 510 389 525 44 
Pioneer 

ROC 
performance 

 
Plane 


Plane 

 
Plane 



best hn 6 4 7 490 847 94 45 
Plane 
ROC 

performance 


N.Johnstone
S.Johnstone

 

best hn 2 3 5 377 180 566 85 
Burnett 

ROC 
performance 

   
Haughton 

 
Haughton 

best hn 2 3 3 559 525 216 53 
Mary 
ROC 

performance  
N.Johnstone
S.Johnstone

  

best hn 2 4 4 478 326 669 53 
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Table S4: Kruskal-Wallis Test for Independent analysis. Results here show that classification scores for Flow 
datasets are independent of the deductive dataset classification scores, whereas DIN datasets are not. 

Null Hypothesis Statistical 
Significance 

Decision 

The distribution of classification scores for “Flows” is the same 
across deductive classification categories of original ecosystem, 
Land-use, Ecounit and others for the 11 catchments 

0.09 Retain the null hypothesis 

The distribution of classification scores for “BF” is the same 
across deductive classification categories of original ecosystem, 
Land-use, Ecounit and others for the 11 catchments 

0.01 Reject the null hypothesis 

The distribution of classification scores for “SF” is the same 
across deductive classification categories of original ecosystem, 
Land-use, Ecounit and others for the 11 catchments 

0.02 Reject the null hypothesis 

The distribution of classification scores for “SFBF” is the same 
across deductive classification categories of original ecosystem, 
Land-use, Ecounit and Others for the 11 catchments 

0.02 Reject the null hypothesis 
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Table S5: Classification rates for different classification categories. Classification Category 1=majority (>50%) of 
records from input catchment paired to the same classifier as a deductive dataset, Category 2=highest number 
of records from input catchment paired to the same classifier as a deductive dataset, 3=Deductive dataset 
classifiers paired with any amount of records regardless of highest or lowest in the dataset.  

Corroborated classification rates 
Flows BFSF SF BF Land use Original 

ecosystem 
Ecounit 

Cl
as

sif
ica

tio
n 

ca
te

go
ry

 

1 
By dataset 0.27 0.45 0.55 0.36 

DIN dataset 0.64 0.45 0.27 0.18 
Flow dataset 0.27 0.00 0.09 0.27 

2 
By dataset 0.36 0.73 0.64 0.64 

DIN dataset 0.82 0.63 0.18 0.45 
Flow dataset 0.36 0.18 0.18 0.27 

3 
By dataset 1.0 1.0 1.0 1.0 

DIN dataset 1.0 0.81 0.81 1.0 
Flow dataset 1.0 0.90 0.81 0.9 
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Supplementary Material Figure SF1: Corroboration of Spatial and DIN Data Catchment Matching 
Results. (a) Catchment matches for partitioned DIN and spatial data pairing using different 
evaluation approaches. Legend describing elements of (a). (b) Corroboration rate (Eq 5) for matching 
DIN dataset pairing with spatial dataset pairing for DIN dataset partitioning, spatial dataset, and 
evaluation technique indices. NP: Non-Partitioned, WS: Wet Season, DS: Dry Season, IF: Increasing 
Flows, RF: Retreating Flows,) dataset type (LU: Land Use, OV: Original Vegetation, EU: Ecounits), and 
evaluation techniques (ANN-PR: Artificial Neural Network Pattern Recognition, DE: XAI Deviation 
Evaluations from SHAP-AD principles, FM: XAI Feature Matching. Results show rate of corroboration 
for the DIN dataset pairing with spatial data pairing is the best for seasonal partitioning across all 
datasets and evaluation techniques combined because it achieved the highest rate of corroboration 
with lowest variability. 
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Supplementary Material Figure SF3: SHAP-AD results, i.e. the Top 10% of the additive deviation from 
the for all spatial data X-axis is a unitless ratio of additive deviation of spatial variables from all other 
variables in the dataset. Catchments are arranged north to south along the Y-axis. Number 
references for each colour are the spatial data reference and are listed in the spatial data index. All 
three graphs show catchments North of Tully have different dominating spatial features compared 
to catchments from Haughton south. 
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Supplementary Material S1: Inductive Classification Method 

S.1.1. Inductive Classification Datasets

Dataset records suitable for inductive classification for stream flow and Dissolved Inorganic Nitrogen 

are open source and collected by the State Government of Queensland using standardised methods 

(State of Queensland Department of Environment and Resource Management, 2012; State of 

Queensland Department of Natural Resources, Mines and Energy, 2018). These data include all 

available streamflow and dissolved inorganic nitrogen records over the time period from 2006 until 

2018. The frequency and period of collection for each record are outlined in Table 1 of the main 

manuscript. Quality assurance checks were performed on observed data as described by Khan et al., 

(2020). For this study, baseflow was derived using the approach described in Nathan and McMahon 

(1990).  This involved subtracting the recursive digital filter at the sampling instant as the index of 

baseflow from the original streamflow (Nathan and McMahon, 1990). Consistent with the methods 

in O’Sullivan et al., (2022), the dataset was then expanded by transformations detailed in Table S1 to 

standardise and sharpen integration of the data.  

Records from the DIN and flow observations dataset were then partitioned as detailed in Table 2 of 

the manuscript to represent repeating flow events as well as temporal periods. There was a variation 

in the time water quality records were collected in each catchment, therefore, the number of 

records for each partitioned dataset varied as detailed in Table 1 of the main manuscript. 

S.1.2. Partitioned Inductive Classification

Partitioned inductive classification refers to catchments that have the most closely matched water 

quality patterns within the dataset partition zones used for this study. The ANN-PR method for 

inductive classification (O’Sullivan et al., 2022) was used to establish classification scores for each 

respective dataset. The ANN-PR method facilitates catchments being matched together based on 

patterns in their datasets. This is achieved by nominating the data in the catchment seeking to be 

matched to another in a pseudo ungauged scenario as the classifier catchment, and all other 
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catchments with data as classifee catchments. The ANN-PR trains algorithms using sigmoid transfer 

function and scaled conjugate gradient backpropagation to identify signals in the data in a 

supervised scenario to correctly match the patterns in variable datasets to their respective classifier 

catchments. Untrained variable data from classifier catchments is then introduced as the only 

variable data and forced to match each record in the variable dataset to the trained signal patterns 

for the classifee catchments in the output layer. Because the amount of data included within each 

partitioned dataset varied, classification scores were normalised using Eq S1 to represent the ratio of 

pattern matches for each classifee catchment to the number of input records for the classifier 

catchment dataset.  

S𝑖𝑖,𝐹𝐹,𝑃𝑃  =�
𝑘𝑘𝑖𝑖,𝐹𝐹,𝑃𝑃
𝐾𝐾𝐼𝐼,𝐹𝐹,𝑃𝑃

� Eq S1 

where: 

S= Classifee ratio score for i,F,P 

𝑖𝑖 : Classifee catchment name 

𝐹𝐹: Datasetfor Flow state (BFSF, SF, or BF) with associated DIN  

P: Dataset partition for F (Wet Season, Dry Season, Increasing flows, Retreating flows) 

𝑘𝑘 =  number of records matched between classifee (i)and Classifier (I) 

𝐾𝐾=Total Number of input records in dataset for classifier catchment (I) (See Table S1) 

I: Classifier catchment name 

Catchments were classified together where the majority of records in the variable input dataset for 

the classifier catchment were allocated via the ANN-PR trained algorithms to one classifee 

catchment(ki).  Criteria for majority records included 50% of records for the classifier (K) dataset, 

consistent with O’Sullivan et al., (2022), plus the upper 95% confidence interval to overcome any 

bias in this study for different dataset sizes (ki,F,P) resulting from partitioning of the dataset results. 
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The Confidence Interval was calculated for the Poisson distribution of the number of records for the 

classifier catchment (KI), relative to the fixed number of 10 classifee catchments. Addition of the 

upper confidence interval increases the precision needed for a particular classifee being pattern 

matched with the majority of the classifier dataset records (KI,F,P) (Schoenberg, 1983). The majority 

dataset is hence established using Eq S2.  

𝑀𝑀𝐼𝐼𝐹𝐹𝑃𝑃 = �0.5𝐾𝐾𝐼𝐼,𝐹𝐹,𝑃𝑃+ �P(0.5𝐾𝐾𝐼𝐼,𝐹𝐹,𝑃𝑃
𝑘𝑘ℕ exp�−0.5𝐾𝐾𝐼𝐼,𝐹𝐹,𝑃𝑃�/𝑘𝑘ℕ!)�

𝐾𝐾𝐼𝐼,𝐹𝐹,𝑃𝑃
� Eq S2 

where: 

𝑀𝑀: proportional majority of the classifier dataset 

𝐾𝐾 : total number of records in the classifier dataset in ANN-PR input layer 

𝑖𝑖 : Classifee catchment name 

𝐹𝐹: Dataset for flow state (BFSF, SF, or BF) with associated DIN  

P: Dataset partition for F (Wet Season, Dry Season, Increasing flows, Retreating flows). 

𝑘𝑘ℕ  : total number of classifee groups in ANN-PR output layer (i.e., number of groups for data to 

match to) 

P : upper 95% confidence interval calculated for equal distribution of scores across all classifier 

categories and calculated from a fitted Poisson distribution 

In this study P(0.5𝐾𝐾𝐼𝐼,𝐹𝐹,𝑃𝑃
𝑘𝑘ℕ exp�−0.5𝐾𝐾𝐼𝐼 ,𝐹𝐹,𝑃𝑃� /𝑘𝑘ℕ! is the upper confidence interval for the Poisson 

Probability function and was established using the Poisson distribution function in Matlab (Evans et 

al., 1993). 

Classification scores (S𝑖𝑖,𝐹𝐹,𝑃𝑃) that exceeded the proportional majority for the classifier dataset (𝑀𝑀𝐼𝐼𝐹𝐹𝑃𝑃) 

were then considered a pattern match for further evaluation. Eq S3.  

ICCI,F,P  if  S𝑖𝑖,𝐹𝐹,𝑃𝑃 > 𝑀𝑀𝐼𝐼𝐹𝐹𝑃𝑃  Eq S3 
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where:  

ICC: Inductively Classified Catchment 

S𝑖𝑖,𝐹𝐹,𝑃𝑃  : Classifee ratio score as described in Eq S1; and  

𝑀𝑀𝐼𝐼𝐹𝐹𝑃𝑃: Proportional majority of the dataset as described in Eq S2.  

Matched catchments for each dataset partition were graphed to visualise whether partitioning the 

dataset changed the classifee catchment matched to each classifier and group catchments with 

similar responses to dataset partitioning into categories.  

Table S1. Transformation of a dataset to increase variables that logically relate to water quality 
dynamics. 

Transformation Equation  Relationship to water quality 
Daily mean X=∑𝑥𝑥1+𝑥𝑥2+𝑥𝑥3…𝑥𝑥24

24
 

Where: 
X=daily mean of variable 
𝑥𝑥 n=hourly record of variable 

Standardise flow data to DIN 
concentration 

Average daily flow rate 
for days 1-96 preceding 
each DIN record 

Daily flow rate records transposed to become 
“x1….x96” prior day flow variables for each record 

Capture flow dynamics, and therefore any 
nutrient exhaustion, during periods 
between DIN data collection. 

Loads  Loads(mgDIN/s) = WQcs x F 
Where: 
WQcs = constituent concentrations, (i.e. DIN mg/L),  
F= corresponding flow rate (L/s) 

Quantify the amount of DIN discharging 
from catchments. 

Relative water 
availability 

Geometric mean 𝑥𝑥 =𝑥𝑥 − √П𝑥𝑥𝑛𝑛  
Where: 
П 𝑥𝑥 =product of the rate of change between each 
baseflow or streamflow record; 
 𝑛𝑛=number of records in the dataset 

Capture the influence of Increasing or 
Retreating flows (Bardgett et al., 2014, 
Carillo et al., 2011, Carfora et al., 2021, Li 
et al., 2021, Peng & Chen 2021) 

Box-Cox 𝑦𝑦𝑖𝑖(𝜆𝜆) = {𝜆𝜆
−1(𝑦𝑦𝑖𝑖𝜆𝜆 − 1) 𝑖𝑖𝑖𝑖 𝜆𝜆 ≠ 0
𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖) 𝑖𝑖 𝜆𝜆 = 0

 

such that, for unknown λ, 
y(λ)=Xβ+ϵ    (2)y(λ)=Xβ+ϵ    
where:  
 y(λ) =  λ-transformed data;  
X =covariates;  
β =parameters;  
ϵ = error term (ϵ1, ϵ2, …, ϵn). 

Overcome skew of datasets with frequent 
zeros (Box-Cox 1964, McInerney et al., 
2017, Shen et al., 2020, Sudheer et al., 
2003) 

Log y=log (x) 
where:  
y is the transformed data;  
x is the raw data. 

Overcome influences caused by right 
skewed data. 
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Supplementary Material S2: Evaluation of spatial features, and corroborated classification 

Normanby.  

Pioneer is the classifier to Norman using the non-partitioned dataset. While partitioning the dataset 

into hydrograph/flow and season retains Pioneer as the classifier for the Wet Season, the partitioned 

dataset for Dry Season instead identifies Burnett as a classifier, as well as Barron with Haughton and 

then Mary for increasing and Retreating flows datasets respectively. Interrogation of the Land Use 

features heatmap showed in comparison to Normanby, Pioneer had most similar spread of data 

away from the mean for production on natural environments. Meanwhile, Pioneer did not share any 

Ecounit or original vegetation feature data spread from the mean with Normanby. Rather, Burnett 

shared the greatest number of similar mapped Original Vegetation variable types with Normanby, 

these are all open forest structure on varying geologies. Of the Ecounit features, Burnett and 

Normanby shared deviation from the mean for production on natural environments on open 

woodlands (12.2 and 17.2) and dryland agriculture and irrigation on open woodlands (9.3 and 11.4) 

plus waterbodies on woodland drainage (16.6) for Barron. Notable spatial feature similarities with 

Normanby were not identified for Mary or Haughton, however similar features were observed for 

Barron in the Ecounit datasets in both ANN-PR and feature matching. In feature matching the 

similarities in deviation from the mean were for dryland agriculture on open forests on coastal 

lowlands and ranges. 

Barron. 

Partitioning the datasets show for Increasing flows, Burnett, South Johnstone and Pioneer classify 

for SFBF, SF and BF respectively. The Land Use heatmap showed that South Johnstone and Tully had 

the most similar combination of deviation from the mean as Barron for conservation on natural 

environments, irrigated ag, and intensive uses, however Barron additionally deviated from the mean 
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for production on natural environments.  Barron and Tully share the same deviations from the mean 

for Original Vegetation features. For Ecounits, Barron shares the most  Ecounit features with Tully, 

then with Burnett, which are all production from natural environment on lands originally vegetated 

with open forest types. While conservation on natural environments in vine forests in the wet 

tropics or semideciduous are shared with South Johnstone. Burnett and Barron shared production 

on natural environments and waterbody on open woodlands, and Production on natural 

environments on open forest along drainage lines was shared for Pioneer.  

North Johnstone, 

South Johnstone was always classified in all datasets, however, splitting reveals similarities with 

Pioneer in Increasing SFBF dataset. North Johnstone shares Land Use data features with South 

Johnstone and Tully for conservation on natural environments. Both South Johnstone and Tully also 

include deviations for irrigated agriculture not shared by North Johnstone. South Johnstone was the 

only catchment that shared similar deviation from the mean for mapped Original Vegetation 

features. South Johnstone shared mostly the same deviation from mean for Ecounit features with 

the exceptions of conservation in originally vine forest environments shared by North Johnstone and 

Tully. Unlike SouthJohnstone, North Johnstone and Tully also shared intensive uses in the wet 

tropics. North Johnstone and Pioneer doesn’t share any deviations from the mean for any deductive 

features. 

For North Johnstone, suitable catchments to classify share the deviation from the mean for 

conservation on natural environments for notophyll vine and microphyll fern forest on high peaks, as 

well as conservation, production on natural and dryland agriculture on wet tropics areas.  
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South Johnstone

South Johnstone was always matched to Barron. Below the 50% plus confidence interval there was 

tendency towards Tully for SFBF in Dry Season only, and North Johnstone in Wet Season and 

increasing flows dataset partitions. 

Tully is the only catchment that shared the standard deviation spread for Land Use data  with South 

Johnstone. This was for conservation in natural environments. South Johnstone had most similar 

deviations from mean for mapped Original Vegetation with North Johnstone for wet tropics 

vegetation and vine forest on high peaks and plateaus. South Johnstone shared these similarities 

with Tully, however Tully also had deviations from the mean for more coastal type vegetation on 

depositional or sandy areas. While Ecounits deviation spread was shared with North Johnstone for 

all SHAP-AD Land Uses spatial variables in the wet tropics catchments, and Tully except for intensive 

uses in the wet tropics.  Barron and Marry also shared production on Natural Environments, on semi 

deciduous vine forests. 

For South Johnstone, catchments that share production in natural environments on semi deciduous 

vine forest are a classifier, with catchments that also share costal environs for Dry Season records, 

and wet tropics for Wet Season and increasing flow records. Understanding of the dynamics that 

makes Pioneer’s surface flows suitable match in the Dry Season, but its baseflows suitable in 

increasing flows could benefit further understanding the dynamics that drive the pattern similarities 

with South Johnstone.  

Tully 

This catchment was matched to North Johnstone for all data, and Pioneer in Wet Season and 

Increasing flows.  The deviation spread was most similar with South Johnstone in Land Use for 

conservation of natural areas, Barron for Original Vegetation, and for Ecounits. Similarity was shared 
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with conservation in natural environments in wet tropics for all mapped land uses except intensive 

uses. Tully also had a combination of other Ecounit variables not shared with any other catchment. 

For Tully, Barron spatial data cooborated with the inductive classifiers. The fact that SF for Tully 

matched with Pioneer in both Wet Season and increasing Baseflows, but didn’t match patterns in 

the Dry Season or Retreating baseflows suggests that the drivers of surface flows are important to 

consider during the Wet Season and increasing baseflows, and catchment similarities between Tully 

and  Pioneer may not involve baseflow dynamics. While the relationship to North Johnstone 

throughout all seasons and flow events may show relationship to baseflow dynamics.  

Haughton 

Always classified to O’Connell, however splitting revealed pattern matches also with Burnett during 

dry and below flow events for SF data.  Land Use SHAP-AD was most similar with Haugton for 

Pioneer and Normanby. These catchments shared similar deviations for production on natural 

environments, water bodies and unknown. For Original Vegetation datasets, Pioneer shared most 

similar combination of deviation for tall woodlands, and open woodlands on hilly metamorphic and 

acid igneous rocks as well as open forest on drainage lines and alluvial planes. Differences were 

Pioneer had semievergreen vine forest, while Haughton had greater spread of deviation of complex 

vine forest. Pioneer and Haughton share the same deviations for unknown and production on 

natural environments on areas mapped with the same Original Vegetation that is . O’Connell shared 

irrigated agriculture on microphyll vine forest. 

For Haughton, the only co-oborated deductive classifiers are the similarities for irrigated agriculture 

on microphyll vine forest. No clear similarities were shared for Burnett. The variation between 

suitable classifiers in Wet Season/increasing flows, and Dry Season/Retreating flows shows that for 

Haughton, different catchments are relevant to classify under the differing flow regimes. With no 
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relationship to the spatial data evaluated, the dynamics driving Haughton’s differing suitability for 

classification under different flow regimes and seasons need to be further evaluated. 

O’Connell 

Matched to Plane for Wet Season and Increasing flows. However, as with Haughton, it also shows 

match to Burnett during Retreating flows and dry seasonss. Deviation from means on the heatmap 

matched with Plane for dryland agriculture. O’Connell also had deviations for conservation on 

natural environments not shared with Plane. For Original Vegetation spatial variables, Burnett 

shared the most similar deviation from the mean for open forests on coastal lowlands, while 

Normanby and Mary had larger devations for the same Original Vegetation type. For Ecounit data, 

Plane showed the most features with similar deviations from the mean. These are conservation and 

production on natural environments and irrigation on areas originally vegetated with notophyll or 

microphyll vine forests. 

For O’Connell deductive classifiers show low deviation from the mean for open forest on coastal 

lowland and production on natural environments for dry periods, with larger deviations for the 

combination of both production and irrigation on natural environments for Wet Season and 

increasing flow times periods on areas originally vegetated with notophyll or microphyll vine forests. 

Pioneer 

No patterns matches were stronger than the 50% plus confidence interval line. While the tendency 

was towards Burnett in the non-partitioned, Wet Season and increasing flow dataset, the matches 

also tended toward Plane in the Dry Season  and Retreating flow periods.  Pioneer feature matched 

with Haughton and Normanby for waterbodies and production on natural environments. Original 

Vegetation was shared with Haughton, Normanby and Burnett. Feature matching was most similar 
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with Haughton for open woodlands on hilly terrain of metamorphic and igneous rock geology and 

open forest along alluvial drainage lines. With both Normanby and Burnett  for semi evergreen 

microphyll vine thickets. Similarities for deviations from the mean were closest to Burnett for 

notophyll to microphyll vine forest original vegetation, and most similar with Normanby for 

notophyll and mesophyll vine forests with palms along alluvia and streamlines or sandmasses. For 

the Ecounit data heat map similaritites were shared with Plane, O’Connell and Haughton for 

irrigated agriculture on previous notophyll to microphyll vine forests, and with Plane for intensive 

uses on the same original vegetation type. SHAP-AD evaluation found Burnett was mmost siilar for 

conservation on corymbia dominated open woodlands on undulating terrain. Similarities were 

shown for Mary, Burnett and Barron for production on open forest drainage lines on alluvial areas. 

Haughton had the most similar deviation for this feature followed by Mary, then Burnett then 

Barron. 

For Pioneer, semi evergreen microphyll vine thickets, notophyll to microphyll vine, conservation on 

corymbia dominated open woodlands on undulating terrain production on open forest drainage 

lines on alluvial areas are evident for classifiers during Wet Season or increasing flows. During Dry 

Season and Retreating flows the deductive classifiers match to irrigated agriculture and intensive 

uses on previous notophyll to microphyll vine forests. 

In dry and Retreating flow situation, catchments that share the deviation from the  mean for moist 

to dry open forest on basalt areas, production on natural environments for notophyll to microphyll 

vine forests, or irrigation and intensive uses on the same original vegetation type may be suited to 

classify to Plane. 
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Plane

Non partitioned  dataset displayed no pattern matches stronger than the 50% plus CI, however 

partitioning emphasised the similarity of the patters towards Burnett and Pioneer for the Dry Season 

and Retreating flow records. Feature matches were shared with O’Connell for production on natural 

environments, while Pioneer, Haughton, Normanby and Burnett shared the absence conservation 

dominance. Normanby and Burnett shared similar deviations from the mean only for moist to dry 

open forest on basalt areas, with the similarity strongest for  Burnett. In regards to devations from 

the mean for Ecounit spatial variables Burnett only shared production on natural environments for 

notophyll to microphyll vine forests, while Pioneer shared the similarity for irrigation and intensive 

uses on the same original vegetation type.  O’Connell also shared four similar deviations for Ecounit 

features being conservation, production and irrigation on notophyll to microphyll vine forests, and 

conservation of moist to dry open forest on coastal lowlands. 

Burnett 

Did not pattern match stronger than the 50% CI. Splitting revealed the strongest and only  match 

beyond the 50% CI for BF with Pioneer. Tendency also towards Barron in Dry Season and Retreating 

flow and dry periods the deviation from the mean is for Land Use features of production on natural 

environments with Pioneer having the closest similarity in deviation. For Original Vegetation 

datasets, Burnett had the widest spread of deviation from the mean for the majority of original 

vegetation types.  They were most similar to Pioneer for notophyll and microphyll vineforests  and 

weakly for woodland on metamorphic and igneous rocks, while open forest on a range of coastal 

lowland, hills, basalt  and shallow soil on weathered rocks,   and drainage lines on alluvial planes 

were shared for Burnett and Normanby. No deviations from the mean were shared for Barron. For 

Ecounits however Barron shared deviations from the mean  for production on natural environments 

for open forest on coastal lowlands, basalt areas, metamorphic and igneous rocks, drainage lines 

and alluvial planes and sand or depositional plains. While Normanby shared the deviation for the 

same landuse of production instead on open woodland on hilly weathered rocks, and sandplain or 
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depositional areas, with conservation of corymbia open woodland on hilly areas. Pioneer only 

shared standard deviations for conservation on corymbia open forests on undulating terrain.  

For Burnett,  in Retreating flow events inductive classification results may align partially to 

catchments with with the spread away from the mean areas for production on natural environments 

on notophyll and microphyll vineforests  and weakly for woodland on metamorphic and igneous 

rocks, and conservation on corymbia open forests on undulating terrain. Catchments with 

production on natural environments for open forest on coastal lowlands, basalt areas, metamorphic 

and igneous rocks, drainage lines and alluvial planes and sand or depositional plains may also be 

suitable to classify to Burnett for these Retreating and dry events. In increasing and wet events open 

forest on a range of coastal lowland, hills, basalt and shallow soil on weathered rocks,  and drainage 

lines on alluvial planes and production instead on open woodland on hilly weathered rocks, and 

sandplain or depositional areas, with conservation of corymbia open woodland on hilly areas. 

 Mary 

Only Pioneer had pattern matches with Mary that exceeded 50% plus the confidence interval. These 

only occurred in the non-partitioned dataset, Wet Season and increasing flow scenarios. While 

below the 50% confidence interval, Burnett had roughly equal pattern matches with Mary and 

Pioneer during Dry Season and Retreating flow events. Mary had the most similar deviations from 

the mean  with Burnett for production on natural environment landuse. These similarities in Original 

Vegetation features with Burnett also occurred  for open woodland on coastal lowlands, and weakly 

for wetlands. Mary only shared similar deviations for Original Vegetation data with Pioneer for 

notophyll and mesophyll vine forest with palms on alluvia streamlines and swamps. For Ecounit 

features, Mary shares standard deviation similarities with  Burnet for production on natural 

environments for open woodland on coastal lowlands, corymbia open woodland on hilly areas, open 

woodland on weathered rocks, and hilly metamorphic and acid igneous rocks as well as tall forest 
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along drainage lines and alluvial planes. Mary also shared standard deviation spread for the variety 

of landuses across semi deciduous mesophyll to notophyll vineforests in the wet tropics catchments, 

i,e, Barron, Tully, North and South Johnstone. 

These results show catchments may be suitable to classify to Mary in increasing flows and the Wet 

Season for notophyll and mesophyll vine forest with palms on alluvia streamlines and swamps. 

Meanwhile during Dry Season and Retreating flow events the classification could also include 

catchments that share deviations from the mean with Mary for production on natural environments 

for open woodland on coastal lowlands, corymbia open woodland on hilly areas, open woodland on 

weathered rocks, and hilly metamorphic and acid igneous rocks as well as tall forest along drainage 

lines and alluvial planes and weakly for wetlands. 
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Supplementary Material S1: Abbreviations 

A=All 

ANN = Artificial Neural Network 

C=Catchment 

Category 1=Catchments with similar DIN patterns during increasing flows and rainy season. 

Category 2=Catchments with year round similar DIN patterns. 

Category 3= Catchments with similar DIN patterns during retreating flows and dry season. 

CM=Mary Catchment 

d=Willmotts Index  

DIN = Dissolved Inorganic Nitrogen 

EU=Ecounits 

F=Flows 

F1=Category 1 flows (Wet season/increasing flows) 

G=Gauged 

LU=Land use 

Match=Catchments paired together for their similarities 

MSE=Mean Square Error 

NSE=Nash Sutcliffe Efficiency 

obs=observed data 

OV=Original Vegetation 

OW=Open Woodlands 

pde=Peak Percentage Deviation 

PR=Pattern Recognition 

ReLU=Rectified Linear Units 

R2=regression coefficient 

RMSE=Root Mean Square Error 

SHAP= Shapley Additive exPlanations 

sim=simulation 

WQ=Water Quality 

WT=Wet Tropics 

XAI=eXplainable Artificial Intelligence 
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Supplementary Material Figure SF1: 

ANN_WQ simulator development. Example simulation results during code development for DIN for 
individual catchments identified as a Category 1 spatio temporal catchment vs Category 2 spatio 
temporal catchment. Simulations flatlined for testing of Category 1 catchments trained on their own 
data, while simulations were possible for Category 2 catchments. 

a) Category 1 spatio temporal catchment

b) Category 2 spatio temporal catchment
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Supplementary Material Figure SF2: Visualisation of best and worst performing scenarios for DIN simulation of Herbert. Blackline represents observed 
(true) data, purple lines are the simulated data for scenario that matched the best/worst performance criteria, as identified by the heading for each graph. 
C= catchment data included in ANN_WQ simulator training scenario, F= flow data included in ANN_WQ simulator training scenario, M = Mary Catchment 
Data, A=All catchment data, 1 = increasing flows and wet season data, EU= Ecounit, OV= Original Vegetation, LU= Land use,. MSE = Mean Square Error, 
RMSE= Root Mean Square Error, R2= Correlation Coefficient, NSE= Nash-Sutcliffe coefficient, d= Willmotts Index.  
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Supplementary Material Table ST1: Kruskal Wallis Test for independence of performance criteria 
distribution outputs from the ANN_WQ simulator. Independence exists where datasets are first 
discriminated to only include catchments and flow data representative of the spatio temporal regime. 
Inclusion of spatial data have insignificant influence where included in the training dataset.   

Hypothesis X Sig.a,b Decision 

Category Groups (i.e. 
All, Cat 1, Cat 2, Cat 3 
and Herbert Trial) have 
same distribution of 
performance criteria X 

MSE 0.025 Reject the null 
hypothesis. 

R2 0.003 Reject the null 
hypothesis. 

NSE 0.003 Reject the null 
hypothesis. 

d 0.003 Reject the null 
hypothesis. 

RMSE 0.025 Reject the null 
hypothesis. 

pde 0.045 Reject the null 
hypothesis. 

Spatial Data Scenarios 
(i.e. Control, EU, LU, 
OV, All) have same 
distribution of 
performance criteria X 

MSE 0.725 Retain the null 
hypothesis. 

R2 0.951 Retain the null 
hypothesis. 

NSE 0.981 Retain the null 
hypothesis. 

d 0.967 Retain the null 
hypothesis. 

RMSE 0.725 Retain the null 
hypothesis. 

pde 0.453 Retain the null 
hypothesis. 

a. Significance level is 0.05

b. Asymptotic significance is displayed
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Supplementary Material Table ST2: Performance metrics for simulations of DIN for the pseudo ungauged 
catchment (Herbert) generated from an ANN_WQ simulator developed using the differing training dataset 
scenarios. Scenario abbreviation: CAll= data from all catchments, CM=data from Mary only, FAll = all flow 
data included, F1= flows discriminated to Category 1 spatio temporal regime of Wet Season Increasing Flows, 
Ctl = no spatial data included, EU= Ecounit, LU= Land Use, OV= Original Vegetation spatial data included. 
Performance metrics and corresponding scenario styled in: red bold italic = best performing scenario; black 
bold = poorest performing scenario; grey= failed to meet minimum standard  for the corresponding 
performance metric. Results show scenarios trained on the single catchment matched using ANN_PR for 
Ecounits (Mary) and flow variables discriminated to the Category 1 spatio temporal regime of Wet Season 
Increasing Flows collectively achieved the best performing performance for R2 (EU), NSE (OV) and Willmots d 
efficiency and pde (LU). With the exception of C1F1LU and C1F1OV, and CAllFAllOV, training datasets only 
including data from the individual matched catchment achieved satisfactory NSE scores.  

Scenario Category Flows 
Spatial 

Scenario 

Best score from the 1000hn trial for : 

MSE R2 NSE d RMSE pde 

C1F1Ctl 1 1 Ctl 0.00126 0.67389 0.44019 0.69366 0.03556 -1.282 

C1F1EU 1 1 EU 0.00127 0.69564 0.43751 0.69752 0.03565 45.8329 

C1F1LU 1 1 LU 0.00099 0.78699 0.5601 0.78032 0.03153 21.198 

C1F1OV 1 1 OV 0.00108 0.77024 0.52022 0.74909 0.03292 -2.5231 

C1FAllCtl 1 All Ctl 0.00147 0.59903 0.29789 0.51612 0.03831 58.1074 

C1FAllEU 1 All EU 0.00128 0.65115 0.38713 0.6672 0.0358 -32.352 

C1FAllLU 1 All LU 0.00112 0.71513 0.46336 0.70666 0.0335 48.6003 

C1FAllOV 1 All OV 0.00117 0.68981 0.44003 0.70817 0.03422 49.7629 

CAllF1Ctl All 1 Ctrl 0.00155 0.62667 0.31176 0.55666 0.03943 44.3145 

CAllF1EU All 1 EU 0.00163 0.58198 0.277661 0.51364 0.04040 4.47167 

CAllF1LU All 1 LU 0.00149 0.6381 0.33853 0.59382 0.03866 40.5623 

CAllF1OV All 1 OV 0.00155 0.61461 0.31426 0.55621 0.03936 9.97363 

CAllFAllCtl All All Ctl 0.00116 0.70186 0.44447 0.70299 0.03408 40.0596 

CAllFAllEU All All EU 0.00109 0.72895 0.47703 0.7417 0.03307 0.83082 

CAllFAllLU All All LU 0.00106 0.75433 0.49383 0.73251 0.03253 30.7716 

CAllFAllOV All All OV 0.00102 0.74994 0.50971 0.74708 0.03201 13.9193 

CMF1Ctl Mary 1 Ctl 0.00607 0.77443 0.59629 0.84445 0.07791 -0.0109 

CMF1EU Mary 1 EU 0.00586 0.79875 0.61034 0.83047 0.07654 -0.389 

CMF1LU Mary 1 LU 0.00574 0.78762 0.61823 0.84946 0.07576 -0.012 

CMF1OV Mary 1 OV 0.00571 0.79165 0.62034 0.84499 0.07555 0.11908 

CMFACtl Mary All Ctl 0.00673 0.72241 0.51473 0.78144 0.08201 0.08782 

CMFAEU Mary All EU 0.00679 0.74263 0.51034 0.77184 0.08238 -2.1616 

CMFALU Mary All LU 0.00642 0.7459 0.53679 0.78972 0.08012 -10.167 

CMFAOv Mary All OV 0.0065 0.73849 0.53101 0.78007 0.08062 16.3765 
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Supplementary Table ST3: Gauging allocation, DIN, and flow data availability for each of the catchments75,76. 

Catchment 
flowing to Great 

Barrier Reef 

Original 
Vegetation Data  

Landuse 
Data  

Gauging allocation 
Gauging station ID 
for observed data 

Gauging station 
Latitude (decimal °) 

Gauged station 
Longitude (decimal °) 

Catchment 
area (km2) 

Natural Resource 
Management Region 

DIN (mg/L) at daily streamflows 
(averaged from hourly)for: 

Mean DIN Standard Deviation 
of DIN (mg/L) 

DIN Record Period 
DIN 

sampling 
frequency 

Number of 
records in DIN 
record period 

Min  Max  Mode 

CurtisIsland   Ungauged - - -  564 Fitzroy - - - - - - - 

Jardine   Ungauged - - - Cape York - - - - - - - 

JackyJacky   Ungauged - - -  3,102 Cape York - - - - - - - 

GOlivePascoe   Psudo-Ungauged 102102A -12.657785 143.050145 132 Cape York - - - 

UGOlivePascoe   Ungauged - - - Cape York - - - - - - - 

Gstewart   Psudo-Ungauged 104001A -14.167489 143.394002 471 Cape York - - - 

UGStewart   Ungauged - - -  2,342 Cape York - - - - - - - 

GNormanby   Gauged 105107A -15.46 144.56 12,828 Cape York 

0.012 
0.011 
0.069 
0.017 
0.006 
0.016 
0.005 

0.013 148.24 0.055 0.128 
3/10/2006-
25/08/2017 

Events  
Jan-March 

244 

UGNormanby   Ungauged - - -  11,992 Cape York - - - - - - - 

Jeannie   Ungauged - - - 3,711  Cape York - - - - - - - 

Endeavour   Ungauged - - - 2,214  Cape York - - - - - - - 

Gdaintree   Psudo-Ungauged 1080025A -16.1796 145.2819 911 Wet tropics - - - 

UGDaintree   Ungauged - - -  1,217 Wet tropics - - - - - - - 

Mossman   Ungauged - - - 475  Wet tropics - - - - - - - 

GBarron   Gauged 110001D -17.05 145.51 1,950 Wet tropics 0.0045 0.154 
0.004 
0.235 

0.117 0.091 
19/01/06-
15/09/17 

Regular 
(1) 

monthly, 
Events  

Jan-March 

318 

UGBarron   Ungauged - - -  250 Wet tropics - - - - - - - 

GMulgraveRussell   Psudo-Ungauged 111007A -17.133361 145.764556 523.19 Wet tropics - - - - - - - 

MulgraveRussell   Ungauged - - - Wet tropics - - - - - - - 

G North 
Johnstone 

  Gauged 112004A -17.5 145.69 926 Wet tropics 0.0035 0.157 0.147 0.073 
30/01/2006-
15/09/2017 

Infrequent 
half 

yearly,  
Events  

Jan-March 

94 

GSouth Johnstine   Gauged 112101B -17.66 145.77 399 Wet tropics 0.009 0.044 
0.103 
0.050 

0.126 0.065 

Regular 
(1) 

monthly, 
Events  

Jan-March 

414 

UGJohnstone   Ungauged - - -  875 Wet tropics - - - - - - - 

GTully   Gauged 113006A -17.87 145.72 1,386 Wet tropics 
0.008 
0.090 

0.062 
0.270 
0.225 

0.237 0.154 
13/01/2006-
19/04/2018 

Frequent 
(>1) 

monthly, 

723 
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Catchment 
flowing to Great 

Barrier Reef 

Original 
Vegetation Data  

Landuse 
Data  

Gauging allocation 
Gauging station ID 
for observed data 

Gauging station 
Latitude (decimal °) 

Gauged station 
Longitude (decimal °) 

Catchment 
area (km2) 

Natural Resource 
Management Region 

DIN (mg/L) at daily streamflows 
(averaged from hourly)for: 

Mean DIN Standard Deviation 
of DIN (mg/L) 

DIN Record Period 
DIN 

sampling 
frequency 

Number of 
records in DIN 
record period 

Min  Max  Mode 

Events  
Jan-March 

UGTully   Ungauged - - -  298 Wet tropics - - - - - - - 

Murray   Ungauged - - - 1,107  Wet tropics - - - - - - - 

Gherbert   Psudo-Ungauged 116006B -18.488994 145.936037 7,490 Wet tropics 0.084 0.186002571 0.213 - - - 

UGHerbert   Ungauged - - -  2,348 Wet tropics - - - - - - - 

Black   Ungauged - - - 1,053  NQ Dry Tropics - - - - - - - 

Ross    Ungauged - - -  1,696 NQ Dry Tropics - - - - - - - 

GHaughton   Gauged 119003A -19.72 146.81 1,807 Burdekin 0.008 0.252 0.008 0.066 0.088 
20/12/2012-
25/09/2017 

Regular 
monthly, 

Events  
Jan-March 

80 

UGHaughton   Ungauged - - -  2,211 Burdekin - - - - - - - 

UGBurdekin   Ungauged - - - 128445**  Burdekin - - - - - - - 

Don   Ungauged - - - 3,698  Mackay Whitsunday - - - - - - - 

Proserpine    Ungauged - - - 2,466  Mackay Whitsunday - - - - - - - 

GOConnell   Gauged 124001B -20.77
0.008 
0.090 

336 Mackay Whitsunday 
0.008 
0.090 

0.062 
0.008 
0.090 

0.109 0.14 
25/01/2007-
24/08/2017 

Irregularly 
One off 
Events 
 Jan-

March 

87 

UGOConnell   Ungauged - - -  2,021 Mackay Whitsunday - - - - - - - 

GPioneer   Gauged 125013A -21.23 148.74 1,464 Mackay Whitsunday 

0.021 
0.071 
0.823 
0.914 
0.624 
0.012 
0.011 

0.061 

0.021 
0.071 
0.823 
0.914 
0.624 
0.012 
0.011 

0.231 0.275 
18/10/2006-
13/09/2017 

Frequent 
(>1) 

monthly, 
Events  

Jan-March 

402 

UGPioneer   Ungauged - - -  87 Mackay Whitsunday - - - - - - - 

GPlane   Gauged 126001A -21.24 148.94 327 Mackay Whitsunday 
0.009 
0.013 

0.046 
0.961 
1.287 
1.265 

0.424 0.533 
4/09/2009-
26/08/2017 

Regular 
(1) 

monthly, 
Events  

Jan-March 

302 

UGPlane   Ungauged - - - 2,173  Mackay Whitsunday - - - - - - - 

Styx   Ungauged - - -  2,959 Fitzroy - - - - - - - 

Shoalwater   Ungauged - - -  3,535 Fitzroy - - - - - - - 

Waterpark   Ungauged - - -  1,797 Fitzroy - - - - - - - 

UGFitzroy   Ungauged - - -  139544* Fitzroy - - - - - - - 

Calliope   Ungauged - - - 2,193  Fitzroy - - - - - - - 

Boyne    Ungauged - - -  2,441 Fitzroy - - - - - - - 

Baffle   Ungauged - - - 3,992  Burnett Mary - - - - - - - 
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Catchment 
flowing to Great 

Barrier Reef 

Original 
Vegetation Data  

Landuse 
Data  

Gauging allocation 
Gauging station ID 
for observed data 

Gauging station 
Latitude (decimal °) 

Gauged station 
Longitude (decimal °) 

Catchment 
area (km2) 

Natural Resource 
Management Region 

DIN (mg/L) at daily streamflows 
(averaged from hourly)for: 

Mean DIN Standard Deviation 
of DIN (mg/L) 

DIN Record Period 
DIN 

sampling 
frequency 

Number of 
records in DIN 
record period 

Min  Max  Mode 

Kolan   Ungauged - - -  2,838 Burnett Mary - - - - - - - 

GBurnett   Gauged 136007A -25.73 151.28 30,724 Burnett Mary 0.004 0.281 
0.004 
0.119 

0.161 0.318 
23/10/20006-
15/09/2017 

Frequent 
(>1) 

monthly, 
Events  

Jan-March 

400 

UGBurnett   Ungauged - - -  1,675 Burnett Mary - - - - - - - 

Burrum   Ungauged - - -  3,293 Burnett Mary - - - - - - - 

GMary   Gauged 138014A -26.19 152.49 6,863 Burnett Mary 
0.017 
0.061 

0.236 
0.017 
0.061 

0.201 0.204 
25/09/2013-
29/06/2018 

Frequent 
(>1) 

monthly, 
Events  

Jan-March 

176 

UGMary   Ungauged - - -  2,372 Burnett Mary - - - - - - - 

Citation: 
75. State of Queensland Department of Environment and Resource Management (2012) State Surface water Ambient Water Quality Network WMP014 version 2.
76. State of Queensland Department of Natural Resources, Mines and Energy (2018) Surface Water Ambient Network (Water Quality) 2018-19, WMP014 version 6, June 2018.
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