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Abstract 
Human-dominated landscapes provide heterogeneous wildlife habitat. Conservation of habitat specialists, like red pandas Ailurus fulgens, inhab-
iting such landscapes is challenging. Therefore, information on resource use across spatial and temporal scales could enable informed-decision 
making with better conservation outcomes. We aimed to examine the effect of geo-physical, vegetation, and disturbance variables on fine-scale 
habitat selection of red pandas in one such landscape. We equipped 10 red pandas with GPS collars in eastern Nepal in 2019 and monitored 
them for 1 year. Our analysis was based on a generalized-linear-mixed model. We found the combined effect of geo-physical, vegetation, and 
disturbance variables resulted in differences in resource selection of red pandas and that the degree of response to these variables varied 
across seasons. Human disturbances, especially road and cattle herding activities, affected habitat utilization throughout the year whereas other 
variables were important only during restricted periods. For instance, geo-physical variables were influential in the premating and cub-rearing 
seasons while vegetation variables were important in all seasons other than premating. Red pandas selected steeper slopes with high solar 
insolation in the premating season while they occupied elevated areas and preferred specific aspects in the cub-rearing season. Furthermore, 
the utilized areas had tall bamboo in the birthing and cub-rearing seasons while they also preferred diverse tree species and high shrub cover 
in the latter. Our study demonstrates the significance of season-specific management, suggests the importance of specific types of vegetation 
during biologically crucial periods, and emphasizes the necessity to minimize disturbances throughout the year.
Keywords: Ailurus fulgens, anthropogenic disturbances, habitat specialists, habitat utilization, resource use, spatio-temporal variation, vegetation

Habitat selection is a multi-scale process (Johnson 1980) 
which is determined by many factors. For example, quality 
and quantity of forage, cover availability, access to water, 
resting and nesting sites, predator avoidance, and fulfillment 
of other life history needs (Manly et al. 2002; Bonnot et al. 
2015). Ecological theories suggest that species are guided by 
the cost and benefit of using available habitat. For that rea-
son, the resource selection patterns of an individual animal 
vary in response to seasonal changes in environmental con-
ditions, habitat characteristics, and biological requirements 
over the annual cycle (Pyke 1984; Bonnot et al. 2015; Michel 
et al. 2018).

Spatial and temporal variation in resource selection pat-
terns is more obvious in areas with high seasonality (Lowrey 
et al. 2017; Williams et al. 2017). For instance, the availability 
and quality of forage differ across seasons (Smolko et al. 2018; 
Zhang et al. 2018). Herbivores experience high predation risk 
(Lendrum et al. 2018; Peers et al. 2020), low forage availabil-
ity (DelGiudice et al. 2013; Seto et al. 2015), and high move-
ment cost (Pedersen et al. 2021; Sheppard et al. 2021) when 
the habitat is covered with snow. Furthermore, they require 
specific environments for different activities which influence 
their seasonal habitat selection (Krausman 1999; Michel et al. 

2018). For example, mothers with dependent young exhibit 
risk aversion as they are concerned with the safety of their 
offspring (Brown et al. 1999; Sergio et al. 2007), while they 
can be risk prone when they are alone, especially during the 
mating season (Edomwande and Barbosa 2020). The per-
ceived level of disturbances by wildlife also varies with the 
intensity of human activities (Eldegard et al. 2012).

Increasing human activities are transforming wildlife 
habitat and can increase the risk of extinction (Haddad et 
al. 2015). Availability of resources and the potential risk of 
obtaining them differ on spatial and temporal scales and this 
drives disproportionate use of habitat (Blecha et al. 2018; 
William et al. 2018). Nevertheless, some species inhabiting 
modified landscapes can adapt through behavioral plasticity 
and habitat selectivity (Crooks 2002; Tucker et al. 2021). To 
adapt in such landscapes, individuals partition their activity 
(Hebblewhite and Merrill 2007; Wevers et al. 2020), occupy 
high-quality patches (Martin et al. 2010) and avoid distur-
bances (Hebblewhite and Merrill 2007; Graham et al. 2009). 
These behaviors have direct implications for survival in 
human-modified habitat as the cost of searching and escape 
are inflated in heterogeneous habitat, ultimately affecting 
the fitness of the animal (Rosenzweig 1981). One concern is 
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that habitat specialists could be more vulnerable in these cir-
cumstances (Pfeifer et al. 2017; Tucker et al. 2018). Failure 
to adapt can affect fitness and population dynamics, which 
can ultimately result in local extirpation of a species (Crooks 
2002; Haddad et al. 2015). This raises the need to understand 
how a habitat specialist utilizes habitat at a fine scale and how 
they obtain sufficient resources in modified landscapes. We, 
therefore, report the seasonal resource selection patterns of 
the red panda Ailurus fulgens, an arboreal habitat specialist 
of the Eastern Himalaya.

The red panda is a medium-sized endangered mammal 
inhabiting temperate forests above 2,300 m (Glatston et al. 
2015). This species relies nearly exclusively on bamboo leaves 
and shoots (Yonzon and Hunter 1991; Zhang et al. 2009; 
Bista et al. 2022b). They are solitary and territorial except 
during the breeding season and when the mother is raising 
her cubs (Yonzon 1989; Bista et al. 2022a). This species is 
under threat due to habitat loss and fragmentation through-
out their range (Dalui et al. 2020; Hu et al. 2020). Nearly 
half of their population has been reported to have extirpated 
in the last 20 years (Glatston et al. 2015). Human activities, 
especially road construction, hydro-power projects, electric 
transmission lines, livestock herding, and habitat encroach-
ment for farming and settlement are the leading drivers of 
these losses (Acharya et al. 2018; Panthi et al. 2019; Dendup 
et al. 2020). Some of the remaining populations are surviv-
ing in fragmented habitat amidst increasing human pressure 
which leaves them even more vulnerable (Thapa et al. 2018; 
Dalui et al. 2020). This overall reduction in population indi-
cates the insufficiency and ineffectiveness of existing conser-
vation programs.

The majority of studies on resource selection of red pan-
das have reported vegetation factors, such as canopy cover 
(Pradhan et al. 2001; Williams 2006; Bista et al. 2019), bam-
boo cover (Pradhan et al. 2001; Zhang et al. 2004; Dorji et 
al. 2011), bamboo height (Pradhan et al. 2001; Zhang et al. 
2004; Dorji et al. 2011), tree size (Williams 2006; Dorji et al. 
2011; Bista et al. 2019), shrub cover (Wei et al. 2000), spe-
cies richness (Bista et al. 2019), and food resources (Zhang 
et al. 2009) as the major determinants of resource selection. 
Some studies have also documented the role of geo-physi-
cal variables, such as elevation (Yonzon and Hunter 1991; 
Thapa et al. 2020), distance to water sources (Yonzon and 
Hunter 1991; Pradhan et al. 2001; Dorji et al. 2011; Bista et 
al. 2019), aspect (Yonzon et al. 1991; Dorji et al. 2011; Bista 
et al. 2017), and slope (Wei et al. 2000; Dorji et al. 2011; Bista 
et al. 2017). Those studies have been instrumental in under-
standing the ecology of this species in natural habitat and this 
has contributed to their conservation to some extent. Yet we 
lack detailed information on how this species responds to dis-
turbances, and geo-physical, and vegetation-related factors 
on seasonal scales.

The major objective of this study was to evaluate the 
roles of geo-physical, vegetation, and disturbance covar-
iates on seasonal resource selection patterns of red pandas 
in a human-dominated landscape. Given their low ecologi-
cal plasticity, and seasonal variation in movement (Yonzon 
1989; Reid et al. 1991; Zhang et al. 2009; Bista et al. 2021b) 
and space use patterns (Yonzon 1989; Reid et al. 1991; Bista 
et al. 2022a), we hypothesized a different degree of response 
to geo-physical, vegetation, and disturbance variables across 
seasons. We predicted that vegetation-related variables would 
be more important determinants of habitat utilization than 

geo-physical variables (such as elevation, aspect, slope, top-
ographic position index [TPI], solar radiation, and water). 
Second, we predicted that red pandas avoid disturbances, 
such as roads (Qi et al. 2009), cattle herding stations (Fox et 
al. 1996; Williams 2006; Sharma et al. 2014; Dendup et al. 
2017; Acharya et al. 2018), and walking tracks (Acharya et 
al. 2018; Panthi et al. 2019). Moreover, as a male shares the 
home range of several females, and females provide parental 
care, and live with their dependents for 7–8 months (Yonzon 
1989; Bista et al. 2022a), we hypothesized that females are 
more selective in habitat utilization than males.

Material and Methods
Study site
Our study area was in Ilam and Panchthar districts, eastern 
Nepal (Figure 1). This area has a sub-tropical and temperate 
climate with a mean annual temperature of 13.1 °C (SD 6.78, 
range −1 to 28.9°C). Annual precipitation was 2,590  mm 
with nearly 80% in the monsoon from June to September 
(Subba et al. 2019). Elevation ranges from 2,000 to 3,636 m 
with higher elevations in the north. This area has sub-tropi-
cal and temperate broad-leaved mixed and deciduous forests 
with bamboo in the understorey. Most of the deciduous trees, 
such as Sorbus cuspidata, Lyonia ovalifolia, Hymenodictyon 
excelsum, Betula utilis, Acer campbellii, Magnolia spp., and 
Actinidia callosa shed their leaves during the winter. The 
study area supports grazing of livestock such as yaks, cows, 
and goats throughout the year. However, some herders fol-
low a transhumance herding regime whereby they move with 
their livestock to high elevations (3,128 ± 300 m) in the sum-
mer where they stay for 8–9 months (March–November) and 
move to lower elevation in the winter (2,811 ± 126 m). Most 
settlements are in lower elevations (∼2,600 m), where human
activities are relatively higher than in high elevation.

Data collection and processing
We captured 10 red pandas (6 females and 4 males) using 
a cage trap and equipped them with GPS collars (LiteTrack 
Iridium 150 TRD) following a standard protocol (Bista et 
al. 2021c). We collared these animals from September to 
December 2019 and monitored them until March 2021. 
These collars ranged from 224 to 229 g which was just over 
6% of the body weight of a typical adult. Three animals were 
sub-adults when collared (2 females and 1 male). However, 
we included these sub-adults in analyses only when they 
started living independently in a new home range after dis-
persal (details in Bista et al. 2022a). Additionally, we excluded 
animals having less than 25 fixes to minimize bias due to sam-
ple size variation. This also allowed us to retain a minimal 
sample size of 5 required for running mixed models across 
seasons (Harrison 2015).

The GPS collars recorded one fix every 2  h. Our study 
area had dense forest canopy and rugged terrain which can 
reduce the chances of obtaining successful GPS (Robert et al. 
2002; Hebblewhite et al. 2007; Hansen and Riggs 2008). To 
minimize the telemetry error, we retained valid GPS fixes by 
omitting those with ≤2 satellites and dilution of precision >5 
(Lewis et al. 2007). Furthermore, we excluded the first week’s 
data from each animal to minimize the effect of behavioral 
disruption resulting from capturing and collaring them. We 
found empirically that our collars had telemetry errors up 
to 25 m.
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To collect data on habitat variables, we conducted surveys in 
4 seasons based on red panda biology: premating (November–
December), mating (January–March), gestation and birthing 
(April–July), and cub rearing (August–October; Supplementary 
Figure S1). Red pandas breed in the winter, and their birthing 
and cub-rearing seasons overlap with the monsoon.

We considered the resource selection pattern within the 
home range of each animal as our study scale (Johnson 

1980). Initially, we demarcated the seasonal home range of 
each individual as a weighted autocorrelated kernel density 
estimation at the 95% isopleth in the ctmm package (Fleming 
and Clalabrese 2021), see detail in Bista et al. (2022a). Then 
we overlaid grids (250 × 250 m) in those home ranges and 
covered over 80% of those total grid points within each ani-
mal’s home range. We could not access the remaining grids 
due the inaccessibility of the terrain. We collected vegetation 

Figure 1. Map of the study area in Ilam and Panchthar districts in eastern Nepal which borders with India in the east (as shown in inset with red 
rectangle) where elevation ranged from 1,500 to 3,636 m. Blue triangle shows the animal capture site.

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
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data (Table 1 and Supplementary Figure S2) from the cen-
troid of these grids where we set up a circular concentric plot 
of 10 m radius for trees, 3 m radius for shrubs, and 1 m radius 
for bamboo (Bista et al. 2017; Acharya et al. 2018). We also 
established 4 additional plots of 1 m radius at the outskirts 
of each 10 m plot, each 2 m away from the boundary in each 
of the 4 cardinal directions (east, south, west, and north) to 
optimize the bamboo data. The minimum distance between 2 
consecutive plots was 250 m to ensure spatial independence.

To evaluate the effect of vegetation productivity on resource 
selection, we included the Normalized Difference Vegetation 
Index (NDVI) as a measure of productivity and greenness 
of the sampling grids. We obtained the composite layers of 
NDVI at 250 m resolution (MOD13Q1-v006, 16-Day) of the 
study period for each season from the US Geological Survey 
(USGS) earth data.

We included 6 geo-physical variables which comprised 
elevation, slope, aspect, TPI, solar radiation, and distance to 
water (Table 1 and Supplementary Figure S2). We obtained 
the Global Digital Elevation Model (DEM, Shuttle Radar 
Topography Mission, 1 arc-second) from the USGS and 
extracted elevation, aspect, slope, and TPI of the sampling 

plots. To measure the use of landform types, we used TPI. 
Low TPI values represent valleys while high values indi-
cated elevated areas such as ridges (De Reu et al. 2013). We 
included solar radiation as a measure of the effect of tem-
perature on seasonal habitat use (Allen et al. 2015) and pre-
pared solar radiation maps of the study area from the DEM 
for each season. Using the DEM, we developed a watershed 
map of the study area for dry (November–April) and wet sea-
sons (May–October). Then we verified the watershed map 
through physical survey and consultation with local people 
and extracted the distance between each sampling plot and 
the nearest water source.

Disturbance covariates included distance to road, 
human-walking track, cattle station, and settlement (Table 1 
and Supplementary Figure S2). We recorded the GPS loca-
tions of each cattle station and settlements within the study 
area and accessed road and walking track data from Open 
Street Map and verified the data through physical survey. We 
estimated Euclidean distance between the centroid of each 
grid and these features. The total presence records of each 
red panda falling within all grids was computed using the 
join and relate tool in ArcGIS version 10.8 (ESRI 2020). We 

Table 1 Description of variables included in the study

Variables Description Range 

Sex Sex of study animals Male, female

Count Number of locations visited in a grid per individual 0–329

Geo-physical variables

Elev Elevation of sampling grid in m a.s.l. Source: Shuttle Radar Topography Mission (SRTM, 1 
arc-second) Global DEM—https://earthexplorer.usgs.gov/

2,404–3,225 m

Aspect Aspect of sampling grid categorized into 8 cardinal directions. Source: SRTM, 1 arc-second 
DEM—https://earthexplorer.usgs.gov/

East (E), North (N), Northeast (NE), 
Northwest (NW), South (S), Southeast 
(SE), Southwest (SW), West (W)

Slop Slope of sampling grid (°). Source: Shuttle Radar Topography Mission (SRTM, 1 arc-
second). Source: SRTM, 1 arc-second DEM—https://earthexplorer.usgs.gov/

2–52° 

Sola Solar radiation received in a sampling grid (KW/m2). We obtained the incoming solar 
radiation from the DEM (SRTM, 1 arc-second) using area solar radiation tool in ArcMap. 
Source: SRTM, 1 arc-second DEM—https://earthexplorer.usgs.gov/

3.3–908.4 KW/m2

TPI TPI of sampling grid. The high value and low value represent ridge and valley areas, 
respectively. Source: SRTM, 1 arc-second DEM—https://earthexplorer.usgs.gov/

–23.6 to 20.5

Wat_dis Euclidian distance between a sampling plot and the nearest water source (m). 0–303 m

Vegetation variables

NDVI NDVI of the sampling grid. MOD13Q1 v006 16-Day 250 m NDVI product. Source: 
https://earthexplorer.usgs.gov/

0.05–0.94

Tree_cov Average canopy of trees within a plot based on visual estimation (%). 0–92% 

Tre_dbh Diameter at breast height of tree. Threshold: 1.3 m tall to be a tree. 0.67–525.6 m

Tre_rich Tree richness in sampling grid. Species richness = S/(√N), where S = number of species and 
N = total number of individuals (Menhinick 1964).

0–2.2

Tre_fir Average height of first branch of trees above the ground within the plot (m). 0.16–33 m

Shu_cover Area covered by shrubs based on visual estimation within the plot (%). 0–8.5% 

Bam_cov Area covered by bamboo based on visual estimation within 5 plots (%). 0–100% 

Bam_hei Average height of bamboo culm in sampling grid (m) 0.1–11.4 m

Disturbance variables

Catt_dis Distance between the center of a sampling grid and the nearest cattle station (m). 30–2,547 m

Trac_dist Distance between the center of a sampling grid and the nearest human-walking track (m): 
Source: https://www.openstreetmap.org/

0–2,066 m

Road_dist Distance between the center of a sampling grid and the nearest road (m). Source: https://
www.openstreetmap.org/

0–2,477 m

Sett_dist Distance between the center of a sampling plot and outskirt of the nearest settlement (m). 30–3,153 m

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data


Bista et al. · Seasonal resource selection of red pandas 5

assigned the count value as 0 for grids having no presence 
records.

Data analyses
We checked multicollinearity (excluding sex, Table 1) using 
the generalized variation inflation factor and we retained 
variables with GVIF1/2xdf  ≤2 for further analyses (Fox and 
Monette 1992). Autocorrelation is quite common in satel-
lite telemetry data (Koper and Manseau 2012). Therefore, 
we employed a generalized linear mixed model for further 
analyses as this is one of the best approaches to compute 
resource selection in autocorrelated telemetry data if the 
response variable has count data (Bolker et al. 2009; Koper 
and Manseau 2012). We centered and scaled all the con-
tinuous variables to maintain consistency (Harrison et al. 
2018). We considered the total number of presence records 
within each grid as the response variable and included indi-
vidual identity of animals as a random factor and predic-
tors as fixed factors.

Initially, we ran the global model with the Poisson fam-
ily, but all resulting models suffered from overdispersion and 
zero inflation. Therefore, we ran models with the negative-bi-
nomial family using zero-inflation in the glmmTMB package 
(Brooks et al. 2017). Then we fitted the resource selection 
function with maximum-likelihood estimation and Laplace 
approximation. We followed the backward stepwise proce-
dure to obtain the best set of candidate models and selected 
the final model based on the corrected Akaike’s Information 
Criterion (AICc). Then we averaged models if >1 model was 
within ΔAICc < 2 (Burnham et al. 2011).

We categorized grids into either selected or available, 
based on the presence records. The former having presence 
records while the latter had zero presence. Using 1-sample 
t-tests, we examined the differences between solar radiation,
bamboo height, and bamboo cover in selected and available
aspects. We also examined the variation represented by the
fixed and random effects with marginal and conditional R2

values (Nakagawa and Schielzeth 2013). The former repre-
sents variation represented by the fixed effects while the latter
accounts for the variation represented by both fixed and ran-
dom effects. We evaluated the intra-seasonal difference in ele-
vation use using Kruskal–Wallis rank-sum test and performed
post-hoc Dunn test to compare pair-wise differences.

We used k-fold cross validation for evaluating model per-
formance. First, we split the data into 5 folds and generated 
10 equal-size bins for each fold (Roberts et al. 2017). Then we 
summed the presence counts in each bin, estimated area-ad-
justed frequency, and ranked bins from low to high probabil-
ity of resource selection. Finally, we computed the correlation 
between area-adjusted frequency and the bin rank using 
Spearman’s rank correlation (Boyce et al. 2002). A strong 
correlation was regarded as evidence of good predictive per-
formance of a model (Boyce et al. 2002). We repeated this 
process for all seasons.

Results
We recorded 14,111 GPS fixes from 10 red pandas over 
490 days. After omitting erroneous fixes, we retained 7,245 
relocations. On average we recorded a median of 212 fixes 
(range 27–730) from each animal per season (details in 
Supplementary Table S1). We surveyed 522 grids through-
out the year with an average of 130 grids per season (range 

84–195). Nearly 70% of these grids (n = 362) had presence 
records which clearly shows disproportional habitat use 
(Figure 2 and Supplementary Figure S3A–D). Each presence 
grid had a median of 9 fixes (interquartile range 2–25, max-
imum 329).

There was variation in red panda resource selection 
across seasons. The averaged model for the premating sea-
son included elevation, slope, solar radiation, distance to 
water source, roads, and cattle stations (Table 2). Red pandas 
strongly avoided areas close to roads (β = 1.34, P < 0.003, 
Figure 3A) and marginally stayed away from cattle stations 
(β = 0.8, P = 0.07, Figure 3C). The intensity of habitat use 
appeared to be high in low elevation (β = −0.7, P < 0.03, 
Figure 3J) in areas with steeper slopes (β = 0.3, P = 0.05, 
Figure 3K) and where the solar insolation was high (β = 1.03, 
P < 0.001, Figure 3L).

The selected model for the mating season included sex, 
NDVI, tree cover, shrub cover, bamboo cover, and distance to 
cattle stations and human-walking tracks (Table 2). Red pan-
das showed negative responses to NDVI (β = −0.44, P < 0.04, 
Figure 3D) and shrub cover (β = −0.45, P < 0.006, Figure 3H) 
while they exhibited affinity for bamboo cover although this 
was not significant (Supplementary Table S2). They avoided 
cattle stations (β = 0.39, P < 0.04, Figure 3C) but showed 
affinity to areas close to human-walking tracks (β = −0.52, P 
< 0.004, Figure 3B).

The averaged model for the birthing season included 
TPI, NDVI, tree cover, bamboo height, and distance to cat-
tle stations and human-walking tracks (Table 2). Red pan-
das avoided cattle stations (β = 0.67, P < 0.001, Figure 3C) 
and lived in areas with tall bamboo culms (β = 0.56, P < 
0.001, Figure 3I), however, they appeared to be insensitive 
to human-walking tracks (β = −0.31, P < 0.005, Figure 3B).

The averaged model for the cub-rearing season included 
most of the covariates (Table 2). Collared animals moved 
to high elevations (β = 0.66, P < 0.03, Figure 3J) and were 
attracted to the mountain ridges (β = 0.38, P < 0.03, Figure 
3M) in this season. Aspect appeared to be influential only 
for the cub-rearing season (Figure 3N and Supplementary 
Table S2). Red pandas showed affinity for south (β = 3.51, 
P < 0.001), southwest (β = 3.30, P < 0.001), west (β = 2.59, 
P < 0.004), and north (β = 2.37, P < 0.02) aspects. They 
selected areas that had high tree richness (β = 0.36, P < 
0.001, Figure 3F) with tall bamboo (β = 1.02, P < 0.001, 
Figure 3I) and high shrub cover (β = 0.58, P < 0.006, Figure 
3H) in the understorey. However, they avoided large trees 
(β = −0.37, P < 0.05, Figure 3E) and lived farther from 
roads (β = 0.5, P < 0.005, Figure 3A) and human-walking 
tracks (β = 0.54, P < 0.005, Figure 3B). They showed nega-
tive, but not significant, responses to the NDVI (β = −0.26, 
P = 0.08, Figure 3D).

Red pandas exhibited inter-season variation in elevation 
use (Kruskal–Wallis rank-sum test = 347.9, df = 3, P < 0.001) 
and the post-hoc test (Dunn test) showed that they used 
higher elevation in the mating season than other seasons (P < 
0.01, Supplementary Figure S2A).

The selected models revealed individual variation in habitat 
selection in premating (marginal/conditional R2 0.13/0.69) 
and mating seasons (0.3/0.37), while such variation was neg-
ligible in the birthing (0.34/0.34) and cub-rearing seasons 
(0.37/0.37). The k-fold model validation showed good pre-
dictive performance of all seasonal models (rs = 0.79–0.96, 
Supplementary Table S3).

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
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Discussion
Our study provides the first fine-scale empirical evidence of 
the role of geo-physical, vegetation, and disturbance variables 
in seasonal resource selection of red pandas. The combina-
tion of geo-physical, vegetation, and disturbance variables 
influenced resource selection although their effect varied 
across seasons. However, as a group, disturbance variables 
were influential in all seasons. While our data did not dis-
criminate the role of geo-physical and vegetation variables, 
other unmeasured factors, such as forage availability, pre-
dation risk, disturbances, and thermoregulation appeared 
to have influenced their response to geo-physical variables. 
Red pandas appear to be highly selective in habitat selection 
while rearing their cubs as the selected model of this season 
included more variables than other seasons. Variables of all 
3 groups (geo-physical, vegetation, and disturbance catego-
ries) equally contributed to the selected model of this season. 
These findings provide further support for the hypothesis that 
red panda’s habitat selection changes seasonally in response 
to geo-physical attributes, vegetation-specific habitat features, 
and disturbances. We did not observe remarkable variation in 
habitat selection between males and females.

The influence of geo-physical variables appeared to be 
high in the cub-rearing and premating seasons which may 
be explained by forage quality and risk avoidance behavior. 
Red pandas inhabited steeper slopes (>28°) in the premating 
season. Living on steeper slopes provides better refuge from 
predators (Sarmento and Berger 2020) which can help in 
minimizing the energetic cost of vigilance and escaping from 
predators and avoiding human encounters (Salandre et al. 
2017). Red pandas preferred to stay in elevated areas with 

low human activities which could also have aided predator 
detection in the cub-rearing season (Crowell et al. 2016; 
Lowrey et al. 2017). Their movement across the elevation 
gradient was restricted within a narrow range of 817 m 
(2,468‒3,285 m) throughout the year which corroborates a 
previous report from the adjoining Singalila National Park 
(Pradhan et al. 2001) and central Nepal (Yonzon and Hunter 
1991). Such a narrow range supports red panda’s specialist 
nature and perhaps indicates potential vulnerability to climate 
change. Despite they occupied higher elevation in the mating 
season than other seasons, their within-season movement 
across the elevation gradient was more obvious in cub-rear-
ing and premating seasons. Furthermore, they covered wider 
range in the birthing and cub-rearing seasons. Such a varia-
tion could be attributed as their response to environmental 
conditions (Tablado et al. 2014), food quality (Smolko et al. 
2018), human disturbances (Gill et al. 2001), and predation 
risk (Lendrum et al. 2018; Peers et al. 2020). However, these 
observations warrant further research using a larger sample 
size of red panda in habitat with a larger elevation gradient, 
preferably up to the tree line.

The selected model for the cub-rearing season included 
aspect even though red pandas mostly selected south, south-
west, and west aspects throughout the year. This observa-
tion contradicts previous findings that red pandas use north, 
northeast, and northwest aspects (Yonzon et al. 1991; Bista 
et al. 2017; Shrestha et al. 2021). We attribute this contrast 
to underlying variation in micro-habitat in the different areas. 
We found that the selected aspect had linear relationship with 
solar insolation (r = 0.38, P = 0.03) and bamboo height (r = 
0.39, P = 0.02) where bamboo cover was significantly higher 
(>16%) than the unselected ones (t = −4.3, df = 6, P < 0.002). 

Figure 2. Visualization of habitat utilization of red pandas on annual scale. The utilization intensity increases from green to blue. Orange and gray lines 
represent roads and human-walking tracks while red dots show human habitat sites. Highly utilized areas were close to water sources having bamboo 
abundance.
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This indicates that the selection of aspect helps in securing 
food with minimal effort (Salandre et al. 2017) and aids in 
thermoregulation (Hull et al. 2016), which is consistent with 
the optimal foraging hypothesis. Surprisingly, none of our sea-
sonal models included water as a significant predictor which 
contradicts with the previous reports (Yonzon and Hunter 
1991; Pradhan et al. 2001; Dorji et al. 2011; Bista et al. 2017, 
2019). This lack of influence may be due to regular snowfalls 
in the winter that provided water and ensured water availa-
bility throughout the year. However, we recorded 79.6% of 
the GPS fixes within 100 m of water across all seasons which 
is consistent with previous reports (Yonzon and Hunter 1991; 
Pradhan et al. 2001; Bista et al. 2017). This observation sug-
gests that free water is so ubiquitous in our study area that it 
did not show up as a significant explanatory variable, and it 
may remain that water is a crucial covariate in determining 
red panda habitat use.

The selected models of all seasons except the premating 
season comprised vegetation variables but the micro-habi-
tat of selected areas varied across these seasons. Selection of 
high shrub cover in the cub-rearing season can provide better 
concealment while feeding on bamboo shoots on the ground 
(Crowell et al. 2016) while tree rich areas can offer supple-
mentary diets (Acharya et al. 2018). The climatic parameters 
of the study area further explain this variation. The red panda 
birthing season overlaps with the onset of the monsoon which 
stimulates bamboo growth and improves the habitat quality 
across most of their range. Animals living in high-quality hab-
itat have the option of selecting the best habitat patches while 
they become less selective in a mixture of high and poor-qual-
ity habitat (Pyke 1984; William et al. 2018). For this reason, 
red pandas may have selected the best available patches with 
tall bamboo amidst rich environmental conditions in the 

birthing season. In contrast, low shrub cover, tree cover, and 
NDVI were associated with low temperatures and snowfall 
in the mating season. The study animals primarily inhabited 
broad-leaf mixed forest where most of the trees shed their 
leaves in winter which affected the tree cover and NDVI. Red 
pandas visited some of these deciduous trees, such as Sorbus 
spp. and A. callosa to supplement their diet. We assume that 
low winter nutritional value of bamboo and other diet spe-
cies also contribute to the resource selection of red pandas. 
Further research needs to be carried out in order to validate 
this hypothesis.

Consistent with our a priori hypothesis, red pandas avoided 
disturbances throughout the year which corroborates previ-
ous reports (Yonzon et al. 1991; Acharya et al. 2018; Panthi et 
al. 2019). They avoided cattle stations in all seasons, except in 
the cub-rearing season. However, the median distance (1,399 
m) to cattle stations was the farthest in this season than any
other season (P < 0.001) although the selected model did not
include this covariate. Red pandas also avoided roads in the
premating and cub-rearing seasons while the selected models
for the other 2 seasons did not include this variable. While
this is true, the median distance between the area used by red
panda and roads was the farthest (554 m, IQR 217‒1,378 m)
in the birthing season. Surprisingly, red pandas were flexible
in selecting and avoiding areas close to human-walking tracks
across different seasons. The motive behind using habitat
close to human-walking tracks, by red panda, in the mating
season may be different than in the birthing season.

We observed males being less selective in habitat use in 
this season which suggests that the mating instinct drives 
males to find receptive females. Similarly, females live 
alone without any dependents in this season. Therefore, 
both males and females are likely to become less risk 

Table 2 Candidate models describing habitat utilization as a function of geo-physical, vegetation, and disturbance variables for each season

Models df AICc ΔAICc Weight 

Premating season

 Sola + Slop + Road_dist + Catt_dist + Elev 9 390.95 – 0.63

 Sola + Slop + Road_dist + Catt_dist + Elev + Wat_dis 10 392.05 1.09 0.37

 Tre_rich + Sola + Shu_cov + Bam_hei + Tre_dbh + NDVI + Elev + Trac_dist + Road_dist + Aspect + 
TPI + Wat_dis

22 837.90 4.53 0.06

Mating season

 Catt_dist + Trac_dist + Sex + Shu_cov + NDVI + Tre_cov 10 1,150.82 – 0.69

 Catt_dist + Trac_dist + Sex + Shu_cov + NDVI + Tre_cov + Bam_cov 11 1,152.38 1.56 0.31

 Catt_dist + Trac_dist + Sex + Shu_cov + NDVI + Tre_cov + Bam_cov + Road_dist 12 1,153.80 3.00 0.12

Birthing season

 Catt_dist + Bam_hei + Trac_dist + Tre_cov 8 903.79 – 0.33

 Catt_dist + Bam_hei + Trac_dist + Tre_cov + NDVI 9 904.2 0.44 0.27

 Catt_dist + Bam_hei + Trac_dist + Tre_cov + TPI + NDVI 10 904.9 1.07 0.19

 Catt_dist + Bam_hei + Trac_dist + Tre_cov + TPI + NDVI + Elev 11 906.00 2.25 0.11

Cub-rearing season

 Tre_rich + Shu_cov + Bam_hei + NDVI + Tre_dbh + Trac_dist + TPI + Elev + Aspect + Road_dist 20 832.10 – 0.55

 Tre_rich + Sola + Shu_cov + Bam_hei + NDVI + Tre_dbh + Trac_dist + TPI + Elev + Aspect + 
Road_dist

21 833.20 1.13 0.31

 Tre_rich + Sola + Shu_cov + Bam_hei + Slop + NDVI + Tre_dbh + Trac_dist + TPI + Elev + Aspect + 
Road_dist

22 835.4 3.28 0.11

Model selection was based on averaged model from the set of top models with ΔAICc < 2.

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
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averse. In the birthing season in our study period, the low 
traffic along the human-walking tracks (0.06 individuals/
day during a COVID-19 pandemic) perhaps means red 
pandas did not need to avoid these features (Bista et al. 
2021a). Despite this contrasting response toward the walk-
ing tracks, females appeared to have lived farther from 
walking tracks in the birthing season. Such a response is 
expected in females while they are with their dependents 
(Brown et al. 1999), and 3 females had dependent cubs 
in our study. Such a pattern demonstrates that red pan-
das perceive walking tracks as a risk albeit the degree 
of perceived risk varies across seasons. This may be due 
to differences in biological requirements which is further 
aggravated by traffic volume (Bista et al. 2021a). However, 
this observation warrants further study on the use of such 
features across the diel cycle.

Individual variation in resource selection was detected in 
only 2 seasons. High individual variation can be expected 
in poor-quality habitat when disturbances are high, as 
individual animals are likely to adopt different behavioral 

tactics to adapt in individual situations (Bonnot et al. 2015). 
It was evident in our study as among-individual variation 
was high in premating and mating seasons when the habi-
tat quality was relatively poor in comparison to the habitat 
status in birthing and cub-rearing seasons. However other 
factors, such as its age, sex, biological requirements, and 
the physiological state of an individual can also contribute 
to individual variation in behavior (Leclerc et al. 2016; 
Hertel et al. 2020). The variation in energy requirements 
and perceived risk was high for mothers who were living 
with dependent cubs in the premating season, while cubs 
dispersed and started to live independently in the mating 
season. The limited experience of dispersers and increased 
mating behaviors of adult males and females would have 
further contributed to high individual variation in the mat-
ing season. Despite the contrasting variation in habitat 
selection at an individual level this is, to some extent, evi-
dence of red pandas’ flexibility to adapt in heterogeneous 
habitat. Yet it may lead to local extirpation unless they 
succeed in doing so. Therefore, information on the fitness 

Figure 3. Predicted relative probability of selection of variables across seasons. Only the significant (P < 0.05) and marginally significant variables 
(highlighted with asterisks, P > 0.05 < 0.09) of the selected models of each season (Supplementary Table S2) are presented in this plot. In panels 
A–M, solid lines represent predicted probability of selection of the respective covariates while the colored ribbons connote 95% CI. In panel N, the 
square box and error bars represent the predicted probability of resource selection of aspects and 95% CI, respectively. Panel O shows the predicted 
probability of resource selection by males and females. Predicted and confidence intervals are scaled to have values ranging between 0 and 1.

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoac014#supplementary-data
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levels of animals living in such habitat would help estab-
lish more evidence on this matter.

Notwithstanding the relatively small sample size, this study 
demonstrates the importance of minimizing disturbances 
throughout the year and highlights the role of micro-habitat 
during their biologically crucial phases. We suggest restricting 
human activities, especially, during the mating and cub-rear-
ing seasons and avoiding road construction within the core 
area. Findings further bolstered the need for livestock-herd-
ing management within the red panda range. However, the 
presence of contradictory patterns for some of the variables 
across seasons reinforces the challenges of making simple red 
panda-informed land management conservation decisions. 
What might be beneficial in 1 season, could be detrimental 
in another. Therefore, we suggest considering geo-physical, 
vegetation, and disturbance variables bearing in mind the 
background context of season while formulating conserva-
tion plans. Additionally, this study was limited within the 
home range scale which warrants further study on multi-scale 
approach to delve deeper into the understanding of resource 
selection patterns.
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