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Abstract—Real-time semantic segmentation, which aims to
achieve high segmentation accuracy at real-time inference speed,
has received substantial attention over the past few years.
However, many state-of-the-art real-time semantic segmentation
methods tend to sacrifice some spatial details or contextual
information for fast inference, thus leading to degradation in
segmentation quality. In this paper, we propose a novel Deep
Multi-branch Aggregation Network (called DMA-Net) based on
the encoder-decoder structure to perform real-time semantic
segmentation in street scenes. Specifically, we first adopt ResNet-
18 as the encoder to efficiently generate various levels of feature
maps from different stages of convolutions. Then, we develop
a Multi-branch Aggregation Network (MAN) as the decoder to
effectively aggregate different levels of feature maps and capture
the multi-scale information. In MAN, a lattice enhanced residual
block is designed to enhance feature representations of the net-
work by taking advantage of the lattice structure. Meanwhile, a
feature transformation block is introduced to explicitly transform
the feature map from the neighboring branch before feature
aggregation. Moreover, a global context block is used to exploit
the global contextual information. These key components are
tightly combined and jointly optimized in a unified network.
Extensive experimental results on the challenging Cityscapes
and CamVid datasets demonstrate that our proposed DMA-Net
respectively obtains 77.0% and 73.6% mean Intersection over
Union (mIoU) at the inference speed of 46.7 FPS and 119.8 FPS
by only using a single NVIDIA GTX 1080Ti GPU. This shows
that DMA-Net provides a good tradeoff between segmentation
quality and speed for semantic segmentation in street scenes.

Index Terms—Deep learning, real-time semantic segmentation,
lightweight convolutional neural networks, multi-branch aggre-
gation.

I. INTRODUCTION

SEMANTIC segmentation, which predicts the semantic
label of each pixel in an image, is a fundamental and

challenging task in street scene understanding. During the past
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Fig. 1. Accuracy (mIoU) and inference speed (FPS) obtained by several state-
of-the-art semantic segmentation methods, including SwiftNet [2], PSPNet [7],
ENet [13], ERFNet [14], BiSeNet [15], ICNet [16], LEDNet [17], RTHP [18],
DFANet [19], ESPNet [20], FCN-8s [24], DeepLab [25], CRF-RNN [26],
SegNet [27], SQNet [28], FRRN [29], TwoColumn [30], and the proposed
DMA-Net on the Cityscapes test set.

few decades, semantic segmentation in street scenes has at-
tracted increasing attention, mainly due to its important role in
autonomous driving systems [1]–[4]. Generally, these systems
demand fast inference speed for interaction and response.

Street scene images are often captured by a surveillance
camera mounted behind the windshield of a driving car. Gener-
ally, images in street scene datasets (such as Cityscapes [5] and
CamVid [6]) contain different kinds of objects (e.g., road, car,
and building). Compared with the objects in natural scenes,
some objects in street scenes are visually similar (such as
building vs. wall, and truck vs. bus). How to distinguish similar
objects is of great importance for street scene understanding
and plays a critical role in achieving good segmentation
accuracy.

Benefiting from the outstanding performance of Deep Con-
volutional Neural Network (DCNN), a large number of se-
mantic segmentation methods [7]–[10] have been proposed
and shown significant performance improvements in terms of
segmentation accuracy, especially for distinguishing similar
objects in street scenes. The success of the above methods
relies largely on sophisticated DCNN models (such as Xcep-
tion [11] and ResNet-101 [12]) as the backbone networks
to capture low-level spatial details and high-level semantics.
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Unfortunately, these DCNN models usually involve heavy
computational operations and high memory consumption. As
a consequence, although remarkable progress has been made
by these methods, their high computational costs and memory
requirements inhibit the deployment of semantic segmentation
in many real-world applications with limited power resources
(such as self-driving cars and driver assistance systems).

To achieve fast inference speed, a variety of real-time se-
mantic segmentation methods [13]–[20] have been developed
by leveraging lightweight networks (such as MobileNetV2
[21] and ShuffleNet [22]) as the backbone networks. However,
the feature extraction capability of lightweight networks is
often inferior, and thus these networks are difficult to extract
feature maps with rich spatial and contextual information
for pixel-level classification. Therefore, the accuracy of these
methods in segmenting similar objects in street scenes is
greatly affected. Fig. 1 shows the accuracy (mean Intersec-
tion over Union (mIoU)) and inference speed (Frames Per
Second (FPS)) obtained by several state-of-the-art semantic
segmentation methods on the Cityscapes test set. Obviously,
different from the rapid development of high-quality semantic
segmentation methods, research towards real-time semantic
segmentation in street scenes without reducing too much
accuracy is still left behind.

Recently, some methods, such as Bilateral Segmentation
Network (BiSeNet) [15] and Deep Feature Aggregation Net-
work (DFANet) [19], have been developed in pursuit of high
segmentation accuracy at real-time inference speed. BiSeNet
employs a two-branch DCNN model to combine the spatial
and semantic information. Nevertheless, the lack of com-
munication between two branches may weaken the learning
capacity of the model. DFANet makes use of deep feature
aggregation to address real-time semantic segmentation on
high-resolution images, where the feature maps are concate-
nated at both the network-level and the stage-level. However,
simple aggregation operations (such as the element-wise ad-
dition and the channel-wise concatenation) [18], [19] are not
optimal since the feature maps from the encoder have a gap.
These operations may cause feature interference, and thus the
decoder cannot faithfully pay attention to objects at different
scales, leading to a performance decrease. This issue is more
pronounced in street scenes, which usually cover different
scales of objects.

In the light of the above issues, we propose a novel Deep
Multi-branch Aggregation Network, called DMA-Net, based
on the encoder-decoder structure for real-time semantic seg-
mentation in street scenes. Specifically, we adopt a lightweight
network (i.e., ResNet-18 [12]) as the encoder and develop a
Multi-branch Aggregation Network (MAN) as the decoder. In
MAN, a Lattice Enhanced Residual Block (LERB) consisting
of two lattice structures is designed to combine the spatial
and contextual enhanced blocks in each branch of MAN. In
particular, we leverage two weight learning blocks to adjust
the weights of two lattice structures adaptively. Meanwhile, a
Feature Transformation Block (FTB), which emphasizes the
important information while ignoring the irrelevant informa-
tion in the feature maps, is introduced to explicitly transform
the feature map from the neighboring branch before feature

aggregation. Moreover, a Global Context Block (GCB) is
employed to capture the rich global contextual information,
which is critical for semantic segmentation.

In summary, our main contributions of this paper are sum-
marized as follows:
• We develop LERB to effectively enhance both spatial

details and contextual information of feature maps from
the encoder. In particular, the lattice structures in LERB
allow the potential of various combinations of enhanced
blocks, greatly enlarging the representation space of
LERB in an efficient manner. Therefore, the problem of
inferior feature extraction capability of the lightweight
backbone network is significantly solved, improving the
performance of segmenting similar objects.

• We propose FTB to generate the transformed feature
maps based on a transformation tensor at a relatively
small computational cost. In this way, the gap between
different levels of feature maps is largely mitigated. As a
result, the problem of feature interference between high-
level and low-level feature maps is alleviated, and these
feature maps can be appropriately aggregated.

• The key components (i.e., ResNet-18, LERB, FTB, and
GCB) are tightly combined and jointly optimized in
DMA-Net to achieve real-time semantic segmentation in
street scenes. Our proposed DMA-Net obtains 77.0% and
73.6% mIoU on the challenging Cityscapes and CamVid
test datasets at the speed of 46.7 FPS and 119.8 FPS,
respectively (only a single NVIDIA GTX 1080Ti GPU is
used). These results demonstrate that our proposed DMA-
Net is able to make a good tradeoff between accuracy and
speed for semantic segmentation in street scenes.

The rest of this paper is organized as follows. First, we
review the related work in Section II. Then, we describe
the proposed DMA-Net in detail in Section III. Next, we
give ablation studies and show experimental results on two
challenging street scene semantic segmentation datasets in
Section IV. Finally, we draw our conclusion in Section V.

II. RELATED WORK

DCNN has made great success in various computer vision
tasks, since its outstanding achievement on the large-scale
image classification task [31]. In recent years, a series of
DCNN-based semantic segmentation methods have been de-
veloped and achieved excellent performance on the benchmark
datasets. In this section, we briefly review some state-of-
the-art semantic segmentation methods, including high-quality
methods and real-time ones.

A. High-Quality Semantic Segmentation Methods

Fully Convolutional Network (FCN) [24] is the pioneer-
ing semantic segmentation method. FCN replaces the fully-
connected layers of the classification networks with the convo-
lutional layers, and it forms the foundation of modern semantic
segmentation methods. To generate dense feature maps, FCN
makes use of skip connections to combine the coarse and fine
feature maps. Ronneberger et al. [32] propose a U-shape Net-
work (U-Net), which consists of an encoder and a decoder. The
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encoder gradually increases the receptive fields to capture the
contextual information, while the decoder recovers the spatial
information from the outputs of the encoder in a layer-by-
layer manner. DeepLab [25] introduces the atrous convolution
[33] to enlarge the receptive fields of the network without
increasing the number of parameters. DeepLabv3+ [10] also
adopts the encoder-decoder structure, where a network similar
to DeepLabv3 [34] is employed to encode the contextual
information while a simple decoder is leveraged to refine the
segmentation accuracy (especially near the object boundaries).
Multi-path Refinement Network (RefineNet) [8] refines high-
level feature maps by using fine-grained low-level feature
maps based on a generic multi-path framework.

The existence of objects at multiple scales in street scenes
raises a great challenge in semantic segmentation. To address
this challenge, a standard way is to perform segmentation
on multiple re-scaled versions of the same input image and
then aggregate the output feature maps. Although such a way
can boost the segmentation accuracy, it usually significantly
increases the computational burden [35]. DeepLabv2 [9] de-
velops an Atrous Spatial Pyramid Pooling (ASPP) module to
robustly segment multi-scale objects. ASPP extracts feature
maps in multiple parallel atrous convolution branches with dif-
ferent sampling rates, thus capturing objects and contextual in-
formation at different scales. Similarly, Pyramid Scene Parsing
Network (PSPNet) [7] aggregates the contextual information
from different regions based on a pyramid network structure.
Context Encoding Network (EncNet) [36] exploits the global
contextual information through a context encoding module to
enlarge the receptive fields and segment multi-scale objects.
To refine the outputs, some methods [25] [26] also employ
the probabilistic graphical model, such as Conditional Random
Fields (CRF) [37], as a post-processing step to improve the
segmentation accuracy of object boundaries.

Recently, the self-attention mechanism has been adopted
in several state-of-the-art methods. Dual Attention Network
(DANet) [38] develops a position and channel attention mod-
ule to improve the segmentation accuracy by adaptively captur-
ing and aggregating the contextual information. Expectation-
Maximization Attention Network (EMANet) [39] computes a
compact basis set to reduce the computational complexity of
semantic segmentation by using an expectation-maximization
iteration manner.

The aforementioned methods show high segmentation ac-
curacy on various benchmark datasets. Many methods (such
as RefineNet [8] and U-Net [32]) adopt the encoder-decoder
structure. Unfortunately, they generally suffer from heavy
computational costs and long inference time, due to the large
number of network parameters or the large-scale floating-point
operations, or both. In this paper, DMA-Net is also based
on the encoder-decoder structure. However, compared with
symmetric encoder-decoder structures used in U-Net and Re-
fineNet, DMA-Net is much more lightweight and specifically
designed for real-time semantic segmentation in street scenes.

B. Real-Time Semantic Segmentation Methods
Real-time semantic segmentation methods aim to generate

high-quality prediction at fast inference speed (e.g., more

than 30 FPS). Segmentation Neural Network (SegNet) [27]
is the early real-time semantic segmentation method, which
removes the fully-connected layers in the network to obtain
a small architecture and utilizes the max pooling indices to
upsample the feature maps. Efficient Neural Network (ENet)
[13] designs a compact encoder-decoder structure, where early
downsampling is employed to make it suitable for the low-
latency semantic segmentation task. However, ENet cannot ro-
bustly segment large objects due to the relatively small recep-
tive fields used in the compact architecture. Efficient Spatial
Pyramid Network (ESPNet) [20] proposes an efficient spatial
pyramid module, where the standard convolution is decom-
posed into point-wise convolutions and a spatial pyramid of
dilated convolutions. Hence, the computational complexity of
the model is reduced. Similarly, Efficient Residual Factorized
Network (ERFNet) [14] designs a novel convolutional layer,
which utilizes residual connections and factorized convolu-
tions to efficiently perform semantic segmentation. The above
methods usually compromise spatial details or contextual
information to achieve fast inference speed. Such a manner
leads to poor segmentation results. Therefore, compared with
high-quality semantic segmentation methods, the segmentation
accuracy of these methods is still far from being satisfactory.

Recently, the multi-branch framework has drawn much
interest. For example, Zhao et al. [16] propose an Image
Cascade Network (ICNet) based on the simplified version of
PSPNet and cascade networks. ICNet combines the seman-
tic information from low-resolution images and the detailed
spatial information from high-resolution images. BiSeNet [15]
adopts a two-branch DCNN structure to respectively encode
the spatial and semantic information, so as to improve both
the inference speed and segmentation accuracy. Note that
BiSeNet explores the spatial details and the semantic informa-
tion separately. The lack of communication between branches
may influence the learning ability of the DCNN model. To
address the above problem, DFANet [19] employs a feature
reuse strategy to make a balanced tradeoff between accuracy
and speed. However, DFANet aggregates feature maps at the
different levels by a simple network structure, thereby ignoring
the differences between them.

In this paper, the proposed DMA-Net also takes advantage
of the multi-branch framework. However, different from the
above methods, DMA-Net progressively aggregates the feature
maps from the high-level branch to the low-level branch based
on an elaborately-designed lightweight decoder MAN (mainly
consisting of LERB, FTB, and GCB). Therefore, DMA-Net is
able to effectively and efficiently segment objects in complex
street scenes. Moreover, DMA-Net makes use of different
levels of feature maps from different stages of ResNet-18 as
the inputs for multiple branches in MAN, where a principal
loss or an auxiliary loss is specifically employed to supervise
the output of each branch. As a result, each branch focuses
on capturing the semantic information at a certain scale.

III. THE PROPOSED METHOD

In this section, we present the proposed DMA-Net in detail.
We first give an overview of DMA-Net in Section III-A. Then,
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ResNet-18 to generate the final prediction. In the figure, CBR denotes the Conv-BN-ReLU module. “GAP” denotes the global average pooling operation. “Pri
loss” and “Aux loss” represent the principal loss and the auxiliary loss, respectively.

we introduce each component of DMA-Net from Section III-B
to Section III-C. Next, we give the joint loss in Section III-D.
Finally, we present some discussions about our DMA-Net in
Section III-E.

A. Overview

DMA-Net consists of two main parts: ResNet-18 and a
Multi-branch Aggregation Network (MAN). In particular, a
Lattice Enhanced Residual Block (LERB), a Feature Trans-
formation Block (FTB), and a Global Context Block (GCB)
are developed in MAN.

The overall framework of DMA-Net is illustrated in Fig.
2. An image I ∈ RH×W×C is taken as the input of ResNet-
18, where H , W , and C represent the height, the width, and
the number of channels of the image I, respectively. First,
ResNet-18 efficiently downsamples the input image by several
consecutive convolutional blocks to generate different levels of
feature maps. Then, as the core of DMA-Net, MAN takes the
feature maps from different stages of ResNet-18 as the inputs,
and progressively performs feature aggregation from the high-
level branch to the low-level branch. In MAN, LERB effec-
tively enhances feature representations of the network, while
FTB greatly reduces the semantic gap between feature maps
before feature aggregation. In addition, instead of relying on
multi-scale input images or a specifically-designed multi-scale
module, MAN not only exploits the multi-scale information
by recursively aggregating feature maps from the high-level
branch to the low-level branch, but also explicitly adopts both
the principal loss and the auxiliary losses.

DMA-Net is a lightweight encoder-decoder network. On the
one hand, we employ ResNet-18, which is much simpler than

complex DCNN models (such as ResNet-101 and Xception)
used in high-quality semantic segmentation methods, as the
encoder to ensure high inference speed. On the other hand, we
develop MAN as the decoder with a small amount of network
parameters to efficiently and effectively combine spatial details
and contextual information. Therefore, DMA-Net can achieve
a good balance between accuracy and inference speed.

B. ResNet-18

An encoder plays a critical role in basic feature extraction
of the input images. In this paper, we adopt ResNet-18 (pre-
trained with ImageNet [40]) as our encoder. The input images
are downsampled by using a max-pooling layer at the earlier
layer of ResNet-18. Moreover, ResNet-18 is composed of a
small number of layers in the network. Therefore, ResNet-18
has the distinct advantage of high efficiency with fast speed
and small memory consumption.

Specifically, we remove all the network layers (including the
pooling layers and the fully-connected layers, etc.) after the
last residual building block of ResNet-18 to obtain a simplified
version of ResNet-18. Hence, the network architecture of the
simplified version of ResNet-18 consists of a standard 7 × 7
convolutional layer, a 3×3 max-pooling layer, and eight 3×3
residual building blocks. The eight residual building blocks
can be divided into four sub-networks (i.e., sub-network 1 to
sub-network 4), according to the size of the output feature
maps, as shown in Fig. 2. Generally, the size of the output
feature maps is reduced to one half after passing through each
sub-network. Therefore, we can obtain four different levels of
feature maps (whose sizes correspond to 1/4, 1/8, 1/16, and
1/32 of the original image size) from four sub-networks.
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C. Multi-branch Aggregation Network (MAN)

Compared with complex DCNN models, the feature ex-
traction capability of ResNet-18 is inferior. To achieve a
good balance between segmentation accuracy and inference
speed, we resort to an elaborately-designed decoder MAN
to aggregate different levels of feature maps for semantic
segmentation in street scenes. Thus, the spatial and contextual
information can be effectively combined in the decoder. In
particular, multiple Conv-BN-ReLU modules (each Conv-BN-
ReLU module includes a 3 × 3 convolutional layer followed
by a Batch Normalization (BN) layer and a ReLU activation
function) are used in MAN to reduce the number of feature
channels. Such a way ensures the small computational cost of
MAN.

The network architecture of MAN is shown in Fig. 2. We
can see that, the four different levels of feature maps from four
sub-networks of ResNet-18 are used as the inputs of MAN.
To be specific, the feature maps, whose sizes are 1/8, 1/16,
and 1/32 of the original input image size, are respectively
fed into three branches, including a Low-level Branch (LB),
a Mid-level Branch (MB), and a High-level Branch (HB). For
each branch, we first employ two Conv-BN-ReLU modules
to reduce the dimension of the feature map. Then, LERB
is designed to improve the feature representations, given the
feature maps from the Conv-BN-ReLU module and the first
sub-network of ResNet-18. Finally, the output feature map of
LERB is combined with the transformed feature map based
on FTB from the neighboring branch. Note that, in HB, the
last downsampled feature maps obtained from ResNet-18 are
also fed into GCB to model the global contextual dependency,
which can provide the rich high-level contextual information
for MAN. The outputs of these branches are progressively
aggregated to obtain the final predicted results.

It is worth pointing out that our proposed MAN is able to
effectively and efficiently capture the multi-scale information.
As it is well known [18], [34], [35], one problem in the
application of DCNN to semantic segmentation is the difficulty
of using a single scale to perform pixel-level dense prediction,
because of the existence of objects at multiple scales. Hence,
how to accurately capture the multi-scale object information
while maintaining fast inference speed of the network is a
great challenge. Traditional methods either rely on multiple re-
scaled versions of the input images [35] or use an additional
multi-scale module (such as ASPP [34] or DASPP [18]) to
tackle the multi-scale problem. However, such manners [18],
[34] usually bring additional consumption in terms of both
computational complexity and memory requirement.

Different from the above methods, our proposed MAN
recursively aggregates the multi-level information from the
different branches to obtain the segmentation results. In MAN,
each branch tackles the feature map at a certain size from the
sub-networks of ResNet-18 and is trained by using a principal
loss or an auxiliary loss. This enables MAN to successfully
deal with the multi-scale problem of semantic segmentation.

In the following, we respectively introduce three key com-
ponents of MAN (i.e., LERB, FTB, and GCB) in detail.

1) Lattice Enhanced Residual Block (LERB): In this paper,
inspired by the residual building blocks [12] and the lattice
filter [41], we develop LERB to enhance feature representa-
tions in each branch. The structure of the lattice filter, also
called as X-section, is the physical topology of an all-pass
filter with the butterfly structure, which decomposes the input
signal to multi-order representations [41]. Fig. 3 shows the
network architecture of a standard lattice filter and the lattice
structure used in our method.

The network architecture of LERB is shown in Fig. 4.
LERB mainly consists of a contextual module and a spatial
module to enhance the contextual information and spatial
details, respectively. Specifically, the input feature map X ∈
RHl×W l×Cl

is fed into the contextual module consisting of
a contextual enhanced block, a weight learning block, and a
lattice structure. The contextual enhanced block contains two
3× 3 convolutional layers followed by a BN layer. Here, the
atrous rates of two convolutional layers are respectively set to 2
and 4 to capture sufficient contextual information. Meanwhile,
the weight learning block (consisting of a 1× 1 convolutional
layer and a Sigmoid activation function) is adopted to adap-
tively learn two weight tensors (i.e., Ac ∈ RHl×W l×1 and
Bc ∈ RHl×W l×1), which are used for the lattice structure.
The nonlinear function induced by the contextual enhanced
block is denoted as C(·). Therefore, the two output feature
maps in the lattice structure are formulated as

Pc = σ(X + η(Bc)⊗ C(X)),

Qc = σ(η(Ac)⊗ X +C(X)),
(1)

where Pc ∈ RHl×W l×Cl

and Qc ∈ RHl×W l×Cl

represent the
intermediate feature maps. σ(·) denotes the ReLU activation
function. ‘⊗’ means the element-wise multiplication operation.
η(·) indicates the broadcast operation, where the weights are
broadcast (copied) along the channel dimension.

The output feature map Fc ∈ RHl×W l×Cl

from the lattice
structure can be obtained as

Fc = Pc ⊕Qc, (2)

where ‘⊕’ represents the element-wise addition operation.
Then, Fc is passed through a spatial module consisting of a

spatial enhanced block, a weight learning block, and a lattice
structure. Meanwhile, the downsampled feature map M from
the first sub-network of ResNet-18, which has the same size
as Fc, is also used as the input of the spatial enhanced block.
In the spatial enhanced block, Fc and M are first concatenated
along the channel dimension. By concatenating the feature
maps from the first lattice structure and the downsampled
ones from the first sub-network of ResNet-18, we are able
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Fig. 5. Various ways of combining the contextual module and the spatial
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LERB), (b) the contextual module after the spatial module in serial, and
(c) the spatial module and the contextual module in parallel. In the figure,
“Contextual” and “Spatial” respectively represent the contextual module and
the spatial module, respectively.

to enhance spatial details in the spatial module. Based on
the concatenated feature map, a 3 × 3 convolutional layer
followed by a BN layer is used to enhance feature spatial
representations. The nonlinear function induced by the spatial
enhanced block is denoted as S(·). Meanwhile, Fc is also
used to learn two weight tensors (i.e., As ∈ RHl×W l×1 and
Bs ∈ RHl×W l×1) by a weight learning block. Therefore, the
two output feature maps in the lattice structure are formulated
as

Ps = σ(η(Bs)⊗ Fc + S(concat(Fc,M))),

Qs = σ(Fc + η(As)⊗ S(concat(Fc,M))),
(3)

where Ps ∈ RHl×W l×Cl

and Qs ∈ RHl×W l×Cl

represent the
intermediate feature maps. concat(·, ·) represents the channel-
wise concatenation operation.

The output feature map Fs ∈ RHl×W l×Cl

from the lattice
structure can be obtained as

Fs = Ps ⊕Qs. (4)

Finally, the output feature map Y ∈ RHl×W l×2Cl

from
LERB is represented as

Y = concat(Fc,Fs). (5)

We should point out that there are various ways of combin-
ing the contextual module and the spatial module, as shown
in Fig. 5. In general, the receptive fields of the input feature
map are enlarged in the contextual module, while those do
not change in the spatial module. As a consequence, when
the contextual module and the spatial module are combined
as given in Figs. 5(b) and 5(c), the feature maps used for
concatenation have different receptive fields. Such a manner is
not only detrimental for feature aggregation, but also increases
the learning difficulty of the network. In contrast, the feature
maps used for concatenation have the same receptive fields
for LERB (i.e., Fig. 5(a)). Obviously, this benefits feature
aggregation in the decoder.

Note that the contextual enhanced block and the spatial
enhanced block developed in LERB are different from the
basic block that was firstly proposed in [12] to address
the degradation problem in deep networks. In particular, the
contextual enhanced block takes advantage of two atrous
convolutions (instead of standard convolutions used in the
basic block) to enlarge the receptive fields and thus encodes the
contextual information. The spatial enhanced block makes use
of the downsampled feature map from the first sub-network of
ResNet-18 to exploit spatial details. By integrating the contex-
tual enhanced block and the spatial enhanced block into the
lattice structures, LERB effectively enhances both the spatial
and contextual information. Moreover, we leverage two weight
learning blocks to adaptively adjust the weights of two lattice
structures. Such a way generates various combinations of
enhanced blocks, which can enlarge the feature representation
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space very efficiently. Hence, compared with the basic block,
LERB provides much better feature extraction capability.

2) Feature Transformation Block (FTB): For semantic seg-
mentation, it is of great importance to encode both the spatial
and contextual information for predicting score maps. On
the one hand, with the increase of network depth, the high-
level feature maps mainly encode the sufficient contextual
information while lacking spatial details. On the other hand,
the low-level feature maps capture the rich spatial information.
To exploit multi-level feature maps, many modern methods use
element-wise addition [8], [24], [42] or channel-wise concate-
nation [10], [19], [32] to aggregate the semantic and spatial
feature maps. However, such ways might not be beneficial
for semantic segmentation, due to the gap between different
levels of feature maps. Therefore, simply aggregating feature
maps without taking the differences between feature maps into
consideration may not only cause feature interference, but also
decrease the segmentation accuracy.

To address the above problem, motivated by the Spatial and
Channel Squeeze Excitation (scSE) block [43], we develop
FTB to transform the feature map before aggregation. In
particular, a transformation tensor is generated to indicate the
importance of a feature map, and then is used to weigh each
channel and spatial location of a feature map. Therefore, it can
be used to emphasize the important information while ignoring
the irrelevant information in the input feature map, so that an
effective transformed feature map is obtained. In this way, the
differences between multi-level feature maps can be greatly
alleviated.

The network architecture of FTB is shown in Fig. 6. FTB is
comprised of two main sub-branches to perform attention op-
erations along the channel and spatial dimensions. Meanwhile,
a weight learning sub-branch is used to adaptively learn the
weights for the channel sub-branch and the spatial sub-branch.
Roughly, FTB only consists of several convolutional layers and
linear operations. Furthermore, the intermediate feature maps
in the spatial sub-branch have a small number of channels (i.e.,
1) and those in the channel sub-branch have a small resolution
(i.e., 1× 1). Hence, FTB is a lightweight module.

More specifically, FTB first employs a Conv-BN-ReLU
module to generate a feature map Xf ∈ RH′×W ′×C′

. For
the spatial sub-branch, the feature map Xf is fed into a 1× 1
convolutional layer and a Leaky ReLU activation function to
obtain the attention tensor Xs ∈ RH′×W ′×1. Meanwhile, the
feature map Xf is also fed into a Global Average Pooling
(GAP) layer to obtain the tensor Xg ∈ R1×1×C′

encoding the
global information, which can be used in both the channel sub-
branch and weight learning sub-branch. Then, in the channel
sub-branch, Xg is sequentially fed into a 1× 1 convolutional
layer, a BN layer, a ReLU activation function and a linear layer
to obtain the attention tensor Xc ∈ R1×1×C′

. In the weight
learning sub-branch, Xg is fed into a linear layer followed by a
softmax activation function to adaptively learn two weights v
and w. Therefore, the transformation tensor T ∈ RH′×W ′×C′

can be computed as

T = β(η(vXs) + η(wXc)), (6)

CBR
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Linear
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×
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Fig. 6. The network architecture of FTB. In the figure, “LReLU” represents
the Leaky ReLU activate function.

where β(·) denotes the Sigmoid activation function. Before the
addition operation, the channel attention values are broadcast
(copied) along the spatial dimension, while the spatial attention
values are broadcast along the channel dimension.

Finally, the element-wise multiplication is performed be-
tween Xf and T, which is formulated as

X̂f = T⊗ Xf , (7)

where X̂f represents the transformed feature map.
It is worth noting that the scSE block also learns the

attention on both spatial and channel dimensions. However,
different from the scSE block, the proposed FTB not only
applies the attention sub-branches on both spatial and channel
dimensions to obtain attention tensors, but also adaptively
learns weights by designing a weight learning sub-branch.
Hence, the attention tensors from the spatial and channel sub-
branches can be effectively combined to obtain a transfor-
mation tensor. Furthermore, the scSE block uses the squeeze
operator and the excitation operator on the channel dimension.
However, the squeeze operator may lead to information loss
since the channel number is reduced. In contrast, FTB removes
these operators to model the dependencies between channels
more accurately.

3) Global Context Block (GCB): Currently, most semantic
segmentation methods are based on the DCNN models that
are originally designed for the image classification task. Such
a task relies largely on the high-level semantic information
(such as object-level or category-level evidence). These DCNN
models, however, may not accurately identify and locate the
objects due to the lack of global contextual information, thus
leading to a negative impact on the accuracy of semantic
segmentation. Therefore, the global contextual information
plays a critical role in street scene segmentation.



JOURNAL OF LATEX CLASS FILES 8

Based on the above observations, similar to BiSeNet [15],
we append a GCB at the end of ResNet-18 to exploit the
contextual information of the image. The network architecture
of GCB is shown in Fig. 2. GCB first performs the GAP
operation on the feature map (whose size is 1/32 of the
original input image size) from sub-network 4 of ResNet-
18 to obtain a 1 × 1 feature map with the largest receptive
fields. Then, the feature map is passed through a Conv-BN-
ReLU module. Finally, the bilinear interpolation is used to
restore the feature map back to 1/32 of the original input
image size. In fact, compared with the pooling features with
multiple window sizes used in RefineNet [8], GCB has smaller
memory consumption and less floating-point operations.

D. Joint Loss

In DMA-Net, both the auxiliary loss and principal loss are
employed to optimize the training of the network. In particular,
the auxiliary losses are used to supervise the training of the
MB and HB of MAN, and the principal loss is employed to
supervise the output of the whole network (i.e., the output from
the LB of MAN). To be specific, the joint loss is formulated
as

Ljoint =Lprincipal(Op,O) + λ[Lauxiliary(Op
mid,O)

+ Lauxiliary(Op
high,O)],

(8)

where Ljoint, Lprincipal, and Lauxiliary represent the joint
loss, the principal loss, and the auxiliary loss, respectively. λ
denotes the balance weight. Op denotes the predicted output
from the whole network. Op

mid and Op
high denote the resized

predicted outputs (having the same size as the input image)
from the MB and HB of MAN, respectively. O denotes the
ground-truth semantic labels.

All the loss functions adopt the pixel-wise cross entropy,
whose form is defined as follows:

L(Zp;Z) = − 1

N

K∑
i

N∑
j

zi,j log(z
p
i,j), (9)

where Zp is the predicted output given by the softmax function
and Z is the ground-truth semantic labels. zpi,j and zi,j denote
the probability value of the i-th category at the j-th pixel
location of the output and its corresponding ground-truth label,
respectively. N is the total number of pixels and K is the total
number of semantic categories.

E. Discussions

Both our proposed DMA-Net method and some recent
real-time semantic segmentation methods [2], [15], [18] take
advantage of the encoder-decoder structure to improve the seg-
mentation accuracy. However, there are significant differences
between DMA-Net and these methods.

First, we propose LERB to address the problem of in-
ferior feature extraction capability of the lightweight back-
bone network. Specifically, LERB enhances the spatial detail
and context information in the feature maps by two feature
enhancement blocks (i.e., a contextual enhanced block and
a spatial enhanced block). In particular, LERB can expand

the representation space of features by introducing the lattice
structures. Hence, LERB effectively and efficiently improves
the feature representations of the network. In contrast, previous
methods either use additional branches for feature enhance-
ment (such as BiSeNet [15], RTHP [18]), or employ a parallel
network structure to enlarge the receptive fields of the network
(such as SwiftNet [2]). Although these methods can enhance
feature maps to a certain extent, additional branches or parallel
networks will also bring high computational costs.

Second, we leverage FTB to reduce the gap between differ-
ent levels of feature maps. Specifically, we use a weight learn-
ing sub-branch in FTB to adaptively enhance the important
information and suppress the irrelevant information. Therefore,
the problem of feature interference between different levels
of feature maps is greatly alleviated, so that the spatial and
contextual information in these feature maps can be properly
aggregated. On the contrary, many methods [18], [19] adopt
simple aggregation operations (such as the element-wise addi-
tion and the channel-wise concatenation) to aggregate different
levels of feature maps. Hence, they ignore the differences
between feature maps, resulting in a performance decrease.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
DMA-Net on the challenging street scene benchmarks (includ-
ing the Cityscapes and CamVid datasets). We first introduce
the datasets and evaluation metrics in Section IV-A. Then, we
describe the implementation details in Section IV-B. Next, we
conduct ablation studies to analyze the effectiveness of each
key component of DMA-Net in Section IV-C. We compare
DMA-Net with several state-of-the-art real-time semantic seg-
mentation methods on the Cityscapes and CamVid datasets
in Section IV-D and Section IV-E, respectively. Finally, we
discuss the limitations of DMA-Net in Section IV-F.

A. Datasets and Evaluation Metrics

The Cityscapes dataset consists of 25,000 high-resolution
(with the size of 1024× 2048) street scene images that were
collected from 50 different cities in Germany. These images
are divided into two parts: 5,000 fine-annotated images and
20,000 weakly-annotated images. In this paper, we only use
the fine-annotated images in our experiments. These fine-
annotated images can be classified into 30 categories and split
into three datasets: a training dataset (including 2,975 images),
a validation dataset (including 500 images), and a test dataset
(including 1,525 images). Similar to state-of-the-art semantic
segmentation methods [14], [16], we only use 19 common
semantic categories (such as sidewalk, road, and car) in our
experiments. For the test dataset, we evaluate our method by
using the online service provided by Cityscapes, which do not
release the ground-truth images to users.

The CamVid dataset is another challenging semantic dataset
for street scene understanding. It consists of 701 high-
resolution (with the size of 720× 960) video frames collected
from five video sequences and 11 semantic categories. For
a fair comparison, we split the whole dataset into training,
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TABLE I
THE ACCURACY , SPEED, AND PARAMS ANALYSIS OF DIFFERENT

BACKBONE NETWORKS: MOBILENETV2, RESNET-101, AND RESNET-18
ON THE CITYSCAPES VALIDATION DATASET.

Backbone Network mIoU (%) Speed (FPS) Params (M)

FCN+MobileNetV2 61.7 28 2.04
FCN+ResNet-101 65.2 9 51.95
FCN+ResNet-50 64.1 19 32.95
FCN+ResNet-18 63.6 54 11.77

validation, and test datasets, which respectively contain 367
images, 101 images, and 233 images, as done in [27].

For evaluation metrics, we adopt mean Intersection over
Union (mIoU) and Frames Per Second (FPS), which measure
the segmentation accuracy and latency, respectively. Moreover,
we also use the number of parameters (Params) and floating-
point operations (FLOPs) to evaluate the memory consumption
and computational complexity of the model, respectively.

B. Implementation Details

For training, we employ the horizontal flipping, random
scaling (the scale ratio ranges from 0.5 to 2.0), and random
cropping on all the images to augment the dataset. The final
image resolution for Cityscapes is 768 × 1536 and that for
CamVid is 640 × 640. All the network parameters of the
convolutional layers in ResNet-18 are initialized from the
publicly available ResNet-18 [12] pretrained on the ImageNet
[40]. The network parameters of MAN and GCB are randomly
initialized by using the Kaiming normal initialization [44].

To optimize the whole network, we adopt Stochastic Gra-
dient Descent (SGD) [45] with the batch size of 16, the
momentum of 0.9, and the weight decay of 0.0005 to update
the network parameters for Cityscapes. Moreover, we utilize
the online hard example mining [46] to mitigate the influence
of class imbalance. Similar to state-of-the-art semantic seg-
mentation methods, we use the popular ”poly” learning rate
strategy (1− iter

total iters )
power with the power of 0.9 to update

the learning rate, where the initial learning rate is set to 0.005.
For CamVid, the batch size and learning rate are set to 4 and
0.001, respectively.

The whole training process contains 60,000 iterations for
Cityscapes and 80,000 iterations for CamVid. Codes are
implemented by the PyTorch framework. All experiments on
speed analysis are performed by using a single NVIDIA GTX
1080Ti GPU.

C. Ablation Studies

In this subsection, we investigate the effectiveness of each
key component of DMA-Net (including ResNet-18, MAN,
LERB, FTB, and GCB) step-by-step. In the following ex-
periments, we evaluate these components on the Cityscapes
validation dataset [5].

1) Effectiveness of ResNet-18: In this paper, we employ
ResNet-18 (a lightweight version of ResNet) as our backbone
network (the encoder of DMA-Net). As we mentioned above,

TABLE II
THE INFLUENCE OF GCB, LERB, AND FTB ON THE CITYSCAPES

VALIDATION DATASET.

Method mIoU (%) Speed (FPS) Params (M)

Baseline 72.9 55.3 12.99
Baseline+GCB 74.1 55.0 13.13
Baseline+GCB+FTB 75.7 54.4 13.50
Baseline+GCB+LERB 76.3 47.4 14.23
DMA-Net 76.8 46.7 14.60

the backbone network provides the basic feature extraction for
the whole network, and it can affect both the segmentation
accuracy and the inference speed of semantic segmentation.
Complicated backbone networks have a large number of net-
work parameters and floating-point operations, leading to seri-
ous degradation of the inference speed. Therefore, lightweight
networks are usually adopted as backbone networks for real-
time semantic segmentation.

To evaluate the effectiveness and efficiency of ResNet-18,
we compare it with three widely used backbone networks
(including MobileNetV2 [21], ResNet-50 [12], and ResNet-
101 [12]). For simplicity, all the backbone networks are
pretrained on the ImageNet dataset and use FCN [24] as the
base structure. The comparison results are shown in Table I.

We can see that FCN+ResNet-101 achieves the highest seg-
mentation accuracy (about 65.2% mIoU), which is about 3.5%
and 1.6% higher than FCN+MobileNetV2 and FCN+ResNet-
18, respectively. However, the number of network parameters
of FCN+ResNet-101 is significantly high (about 51.95M),
and its inference speed is the slowest (about 9 FPS) among
all the competing methods. Although FCN+MobileNetV2 has
the smaller number of parameters than the other three back-
bone networks, it achieves the lowest mIoU. FCN+ResNet-
50 achieves 64.1% mIoU in terms of segmentation accuracy
and the inference speed of 19 FPS. Note that FCN+ResNet-18
achieves worse segmentation accuracy than FCN+ResNet-101
and FCN+ResNet-50, but its number of parameters is much
smaller. Moreover, FCN+ResNet-18 has much faster inference
speed than the other competing methods. This shows that
ResNet-18 can achieve a good balance between accuracy and
inference speed. In the following, we will fix ResNet-18 as
our encoder.

2) Effectiveness of MAN: To demonstrate the effectiveness
of MAN (the decoder of DMA-Net), we evaluate the influence
of different combinations of key components on the accuracy,
speed, and memory consumption, as shown in Table II. The
Baseline method adopts the encoder-decoder structure and it
consists of ResNet-18 and a simplified version of MAN, where
LERB, FTB, and GCB are not used. The Baseline+GCB,
Baseline+GCB+FTB, Baseline+GCB+LERB, and DMA-Net
methods share the same network architectures as the Base-
line method, except that GCB, GCB+FTB, GCB+LERB, and
GCB+LERB+FTB are respectively employed in MAN.

By comparing Table I and Table II, the Baseline
method achieves 72.9% mIoU, which is much higher than
FCN+ResNet-18 (about 9.3% mIoU higher). This demon-
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(a) (b) (c)

Fig. 7. Visualization results of feature maps. The images from the first column to the last column represent the feature maps from the (a) LB, (b) MB, and
(c) HB, respectively. The upper panel and the lower panel show the feature maps before and after LERB, respectively.

strates the superiority of the encoder-decoder structure. Com-
pared with the Baseline method, the Baseline+GCB method
achieves better segmentation accuracy (about 1.2% mIoU
higher). This result validates the importance of GCB.

Incorporating FTB or LERB into the Baseline+GCB method
can further boost the segmentation accuracy. By taking into
account both LERB and FTB, our DMA-Net method achieves
the highest mIoU (about 76.8%). The above results show that
both LERB and FTB are beneficial to improve the performance
of semantic segmentation. This is because the joint learning of
LERB and FTB enables the network to effectively aggregate
hierarchical feature maps.

From the perspective of inference speed, the speed of
Baseline+GCB is only slightly slower than that of Baseline.
Hence, GCB brings only a small computational cost. By
combining LERB with Baseline+GCB, the speed of the Base-
line+GCB+LERB method is only about 7.6 FPS slower than
that of the Baseline+GCB method. This shows the efficiency
of LERB. Meanwhile, FTB has a subtle influence on the
inference speed, since the speed of the Baseline+GCB+FTB
method is only slightly slower than that of the Baseline+GCB
method. Similarly, the inference speed of DMA-Net is almost
the same as that of Baseline+GCB+LERB. In terms of the
number of network parameters, the differences between all
the competing methods are not significant. Thus, the memory
consumption of these methods is relatively small (< 15M).

In summary, the above experimental results show that by
incorporating GCB, LERB, and FTB into MAN, our method
is able to achieve a good tradeoff between speed and accuracy.

3) Effectiveness of LERB: In this subsection, we evaluate
the effectiveness of our proposed LERB. We replace the LERB
in DMA-Net with the Basicblock and Bottleneck used in
ResNet [12], respectively. The comparison results are shown
in Table III.

We can observe that the mIoU obtained by DMA-Net is
improved by about 1.0% in comparison with DMA-Net (Ba-
sicblock). Moreover, compared with DMA-Net (Bottleneck),
DMA-Net also achieves higher accuracy (about 1.2% mIoU

TABLE III
THE ACCURACY, SPEED, AND PARAMS COMPARISON BETWEEN LERB,
LERB-ADDITION, AND RESIDUAL BUILDING BLOCKS: BASICBLOCK,

BOTTLENECK ON THE CITYSCAPES VALIDATION DATASET.

Method mIoU (%) Speed (FPS) Params (M)

DMA-Net (Basicblock) 75.8 49.7 15.05
DMA-Net (Bottleneck) 75.6 50.9 13.59

DMA-Net (LERB-addition) 76.1 47.9 14.60
DMA-Net (LERB-b) 76.4 46.7 14.60
DMA-Net (LERB-c) 76.3 46.7 14.60
DMA-Net 76.8 46.7 14.60

higher). With regards to speed, DMA-Net is only about 3 FPS
and 4.2 FPS slower than DMA-Net (Basicblock) and DMA-
Net (Bottleneck), respectively. These results demonstrate that
LERB can enhance feature representations of our network
more effectively than the other residual blocks for real-time
semantic segmentation in street scenes.

In order to further investigate the effectiveness of the lattice
structure in LERB on the final performance, we also replace
the lattice structure in LERB with the element-wise addition
operation, named DMA-Net (LERB-addition). As we can see,
compared with the simple element-wise addition operation,
adopting the lattice structure in LERB improves the segmen-
tation accuracy by about 0.7% mIoU with a slight drop in
terms of inference speed. This indicates that feature maps with
different combinations in the lattice structure can effectively
improve the representation capability of the network in an
efficient manner.

Then, we compare LERB with its two variants. The two
variants are denoted as DMA-Net (LERB-b) and DMA-Net
(LERB-c) according to the structures given in Figs. 5(b) and
5(c), respectively. We can see that the accuracy obtained by
DMA-Net (LERB-b) and DMA-Net (LERB-c) is lower than
that obtained by DMA-Net. This is because the feature maps
used for concatenation have different receptive fields, which
have an adverse effect on the feature aggregation, thereby
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TABLE IV
THE ACCURACY, SPEED, AND PARAMS COMPARISON BETWEEN
DIFFERENT TRANSFORMATION BLOCKS ON THE CITYSCAPES

VALIDATION DATASET.

Method mIoU (%) Speed (FPS) Params (M)

DMA-Net (scSE) 76.5 46.6 14.25

DMA-Net (FTB WLB) 76.4 46.8 14.60
DMA-Net 76.8 46.7 14.60

(a) (b)

Fig. 8. Visualization results of feature maps obtained by (a) Baseline+GCB
and (b) Baseline+GCB+FTB, respectively.

reducing the final segmentation performance.
Finally, we give some visualization results to show the

importance of LERB, as shown in Fig. 7. To be specific, we
visualize the feature maps before and after LERB in three
branches of MAN for DMA-Net. We can observe that LERB
enables the network to enhance spatial details and context
information of feature maps in three branches. For example,
the feature map after LERB pays more attention to edge details
in the LB, while it focuses more on the context information
in the HB.

4) Effectiveness of FTB: In this subsection, we further
study the importance of FTB. The results are listed in Table
IV. DMA-Net (scSE) denotes the method that has the same
network architecture as DMA-Net, except that FTB is replaced
with the scSE block [43].

From Table IV, we can see that the segmentation accuracy
obtained by DMA-Net is higher than DMA-Net scSE (about
0.3% mIoU improvement). This is because FTB adaptively
combines the spatial and channel sub-branches with a weight
learning sub-branch. Moreover, FTB preserves more informa-
tion than scSE in the channel dimension (note that the squeeze
operator used in scSE is not adopted in FTB). Therefore, FTB
is able to obtain informative transformed feature maps. As
a result, different levels of feature maps can be effectively
aggregated. From the perspective of speed, DMA-Net and
DMA-Net (scSE) obtain almost the same inference speed. In
terms of network parameters, DMA-Net is only slightly higher
than DMA-Net (scSE).

We further investigate the effect of adaptive weights on the
final segmentation performance. We denote DMA-Net without
using the weight learning sub-branch in FTB as DMA-Net
(FTB WLB). DMA-Net achieves better accuracy than DMA-
Net (FTB WLB). This shows the importance of the weight
learning sub-branch in FTB.

Finally, we also visualize the feature maps (the output of
MAN) obtained by Baseline+GCB and Baseline+GCB+FTB,
respectively. Some visualization results are shown in Fig. 8.

TABLE V
THE ACCURACY, SPEED, AND PARAMS COMPARISON BETWEEN

DIFFERENT GLOBAL CONTEXTUAL MODULES ON THE CITYSCAPES
VALIDATION DATASET.

Method mIoU (%) Speed (FPS) Params (M)

DMA-Net (GAP) 76.5 46.8 14.60
DMA-Net 76.8 46.7 14.60

Compared with the feature map obtained by Baseline+GCB,
the feature map obtained by Baseline+GCB+FTB not only
preserves finer edge details, but also better focuses on objects
at different scales. This validates that FTB can effectively
reduce the gap between different levels of feature maps and
thus facilitates the combination of spatial details and semantic
information.

5) Effectiveness of GCB: In this subsection, we further
verify the effectiveness of GCB. We compare GCB with GAP.
The comparison results are as shown in Table V, where DMA-
Net (GAP) shares the same network architecture as DMA-Net,
except that GCB is replaced with GAP.

Compared with the DMA-Net (GAP) method, the DMA-
Net method increases about 0.3% mIoU, which indicates
the superiority of GCB. GCB can effectively capture the
global contextual information. This is due to the fact that
we use the convolutional operation after the GAP operation,
which enables the network to extract more compact global
feature representations, thus improving the final segmentation
performance. Meanwhile, GCB has little influence on the
inference speed, since DMA-Net is only slightly slower than
DMA-Net (GAP).

6) Influence of Auxiliary Loss: In this subsection, we eval-
uate the influence of auxiliary loss on the final performance.
In the experiments, we change the balance weight λ from 0
to 1.2. All the results are shown in Fig. 9.

In Fig. 9, we can observe that the accuracy obtained by
DMA-Net is only slightly different when the values of λ are
within the range of [0.2, 1.2]. This shows that the network
is not very sensitive to the value of λ. When λ = 1,
our proposed method achieves the best performance (77.4%
mIoU). Therefore, employing the auxiliary loss in MAN is
beneficial to improve the segmentation performance. When
λ = 0, only the principal loss is used to supervise the training.
In this case, the mIoU obtained by our method drops to 76.8%.
The above results show that the proposed auxiliary loss enables
our method to explicitly supervise the training of the MB and
HB of MAN, thus improving the segmentation performance.

D. Comparisons with State-of-the-Art Methods

To evaluate the effectiveness and efficiency of DMA-Net,
we first compare it with the simplified PSPNet [7] and Swift-
Net [2] on the Cityscapes validation dataset. The simplified
PSPNet is obtained by compressing the kernel keeping rate of
PSPNet and SwiftNet is the current representative real-time
semantic segmentation method. All the results are reported in
Table VI.



JOURNAL OF LATEX CLASS FILES 12

 76.7

 77

 77.3

 77.6

 0  0.2  0.4  0.6  0.8  1  1.2

A
cc

u
ra

cy
 (

m
Io

U
%

)

λ

76.8

77.3 77.3

77.2 77.2

77.4

77.2

Fig. 9. The accuracy obtained by the proposed DMA-Net with different values
of the parameter λ on the Cityscapes validation dataset.

TABLE VI
THE ACCURACY AND SPEED COMPARISON BETWEEN THE PROPOSED

METHOD AND PSPNET, ICNET ON THE CITYSCAPES VALIDATION
DATASET.

Item PSPNet SwiftNet DMA-Net (ours)

mIoU (%) 67.9 75.4 77.4
Time (ms) 170 25 21.4
Speed (FPS) 5.9 39.9 46.7
Image size 713× 713 1024× 2048 1024× 2048

It can be seen that DMA-Net outperforms the two compet-
ing methods and achieves an overwhelming performance with
77.4% mIoU accuracy at the inference speed of 46.7 FPS.
Specifically, the segmentation accuracy of our proposed DMA-
Net exceeds that of the simplified PSPNet and ICNet by about
10% and 2%, respectively. Meanwhile, the inference speed of
our method is much faster than that of the two competing
methods. The results demonstrate that DMA-Net provides
excellent inference speed and high segmentation accuracy on
the Cityscapes validation dataset.

Then, we compare our proposed method with several state-
of-the-art real-time semantic segmentation methods on the
Cityscapes test dataset, as given in Table VII. In Table VII, the
inference speed, segmentation accuracy, FLOPs, and Params
are included. The FLOPs and Params indicate the number of
floating-point operations and the parameters of the network,
respectively. Note that our method is also compared with the
accuracy-oriented DeepLab and PSPNet methods.

When using the original image (with the size of 1024 ×
2048) as the input, our proposed DMA-Net achieves 77.0%
mIoU at the inference speed of 46.7 FPS. Moreover, DMA-
Net has only 94.2G FLOPs and 14.60M Params, which are
substantially better than some real-time semantic segmentation
methods (including SegNet and SQNet). More specifically,
DMA-Net is about 32 FPS faster and 20.9% mIoU higher than
SegNet. Although ESPNet achieves the fastest inference speed
and the lowest memory consumption, its mIoU is about 16.7%
lower than DMA-Net. Compared with BiSeNet2, DMA-Net
not only performs better in terms of accuracy and speed, but
also has fewer Params. Although DMA-Net obtains slower
inference speed than DFANet, it improves the segmentation

accuracy by about 5.7% mIoU while maintaining the real-
time performance. Compared with our previous method RTHP,
DMA-Net adopts higher resolution images as the inputs, and
achieves better accuracy (about 3.4% mIoU higher) and similar
inference speed. Furthermore, DMA-Net even achieves better
performance than an accuracy-oriented semantic segmentation
method. For example, the proposed DMA-Net is about 185
times faster, and about 14% mIoU higher than DeepLab.

When using a low-resolution image (with the size of
768 × 1536) as the input, our method (denoted as DMA-Net
(small)) achieves 75.6% mIoU at the inference speed of 76.8
FPS. Compared with SwiftNet, our method not only achieves
higher mIoU, but also is nearly 2 times faster. Therefore,
our method achieves a good balance between accuracy and
inference speed.

Similar to BiSeNet, DFANet, and ICNet, DMA-Net also
adopts the multi-branch framework. However, compared with
BiSeNet that employs a feature fusion module to combine
the feature maps from the spatial and context branches,
DMA-Net progressively aggregates the feature maps from
the high-level branch to the low-level branch. Different from
DFANet that performs deep feature aggregation through sub-
network and sub-stage cascade, DMA-Net leverages a multi-
branch aggregation network (i.e., MAN) based on LERB
and FTB. Unlike ICNet that takes the cascade image inputs
for different branches, DMA-Net exploits different levels of
feature maps from four stages of ResNet-18 as the inputs
for multiple branches. Moreover, DMA-Net takes advantage
of an elaborately-designed MAN, which not only aggregates
different levels of feature maps, but also captures the multi-
scale information.

The per-class, mean-class, and category accuracy values of
the Cityscapes test dataset are given in Table VIII. Here, the
results obtained by BiSeNet2 are based on the open source
codes1 and the input image resolution of 1024×2048. It can be
seen that our proposed method achieves the best performance
on most classes, especially the similar objects (building vs.
wall, truck vs. bus). In particular, our method obtains much
higher mIoU than other methods on some classes (such as
truck and bus). Although our method obtains the second best
performance on some classes (such as vegetation and sky),
the difference is trivial (less than 1% IoU). Meanwhile, our
method achieves the lowest mIoU variance, which further
shows the effectiveness of our method.

It is worth noting that the Cityscapes dataset was collected
from 50 different cities in Germany, where the training set, the
validation set, and the test set consist of the images captured
in different cities. Although these subsets show different scene
changes, our method is still able to achieve good segmentation
performance at real-time inference speed. Some qualitative
segmentation results are shown in Fig. 10. Generally speaking,
DMA-Net can correctly assign the labels to different scales of
objects in street scenes, such as the pedestrians in the second
row and the cars in the third row of Fig. 10.

All our experiments are based on an NVIDIA GTX 1080Ti
GPU on the desktop platform, which is also employed by state-

1https://github.com/CoinCheung/BiSeNet
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TABLE VII
COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER STATE-OF-THE-ART METHODS ON THE CITYSCAPES TEST DATASET. “-” INDICATES

THAT THE CORRESPONDING RESULT IS NOT PROVIDED BY THE METHOD.

Method Input Size FLOPs (G) Params (M) Speed (FPS) mIoU (%)
DeepLab [25] 512× 1024 457.8 262.1 0.25 63.1
PSPNet [7] 713× 713 412.2 250.8 0.78 78.4
SegNet [27] 640× 360 286 29.5 14.6 56.1
ENet [13] 630× 630 4.4 0.4 76.9 58.3
ESPNet [20] 512× 1024 4.7 0.4 112 60.3
SQNet [28] 1024× 2048 270 - 16.7 59.8
CRF-RNN [26] 512× 1024 - - 1.4 62.5
FCN-8S [24] 512× 1024 136.2 - 2.0 65.3
FRRN [29] 512× 1024 235 - 2.1 71.8
ERFNet [14] 512× 1024 - 2.1 41.7 68.0
ICNet [16] 1024× 2048 29.8 26.5 30.3 69.5
TwoColumn [30] 512× 1024 57.2 - 14.7 72.9
DFANet [19] 1024× 1024 3.4 7.8 100.0 71.3
LEDNet [17] 512× 1024 - 0.94 71 70.6
RTHP [18] 448× 896 49.5 6.2 51.0 73.6
BiSeNet1 [15] 768× 1536 14.8 5.8 72.3 68.4
BiSeNet2 [15] 768× 1536 55.3 49 45.7 74.7
SwiftNet [2] 1024× 2048 104 11.8 39.9 75.5
DMA-Net (small) 768× 1536 53.0 14.60 76.8 75.6
DMA-Net 1024× 2048 94.2 14.60 46.7 77.0

TABLE VIII
THE PER-CLASS, CLASS AND CATEGORY IOU(%) ON THE CITYSCAPES TEST DATASET FOR DMA-NET COMPARED TO OTHER METHODS. LIST OF

CLASSES (FROM LEFT TO RIGHT): ROAD, SIDE-WALK, BUILDING, WALL, FENCE, POLE, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY,
PEDESTRIAN, RIDER, CAR, TRUCK, BUS, TRAIN, MOTORBIKE AND BICYCLE. “CLA” DENOTES MIOU (19 CLASSES), “VAR” DENOTES THE VARIANCE.

Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic Cla Var
SegNet [27] 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 57.0 5.09
ENet [13] 96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.3 4.61
FCN-8s [24] 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3 4.11
ERFNet [14] 97.9 82.1 90.7 45.2 50.4 59.0 62.6 68.4 91.9 69.4 94.2 78.5 59.8 93.4 52.3 60.8 53.7 49.9 64.2 69.7 2.85
LEDNet [17] 98.1 79.5 91.6 47.7 49.9 62.8 61.3 72.8 92.6 61.2 94.9 76.2 53.7 90.9 64.4 64.0 52.7 44.4 71.6 70.6 2.82
BiSeNet2 [15] 98.2 82.9 91.7 44.5 51.1 63.5 71.2 75.0 92.9 71.1 94.9 83.6 65.4 94.9 60.5 68.7 56.8 61.5 72.7 73.8 2.40
SwiftNet [2] 98.3 83.9 92.2 46.3 52.8 63.2 70.6 75.8 93.1 70.3 95.4 84.0 64.5 95.3 63.9 78.0 71.9 61.6 73.6 75.5 2.15
DMA-Net 98.5 85.5 92.2 53.3 55.3 62.5 70.9 74.9 93.0 71.2 95.0 84.0 66.6 95.6 68.2 82.8 76.6 64.5 73.2 77.0 1.82

(a) (b) (c)

Fig. 10. Segmentation results of the proposed DMA-Net on the Cityscapes validation dataset. The images from the first column to the last column respectively
denote (a) input images, (b) ground-truth images, and (c) our predicted results.
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(a) (b) (c)

Fig. 11. Segmentation results of the proposed DMA-Net on the CamVid test dataset. The images from the first column to the last column respectively denote
(a) input images, (b) ground-truth images, and (c) our predicted results.

of-the-art real-time semantic segmentation methods (such as
LEDNet [17], BiSeNet [15], and SwiftNet [2]). In this way, we
can compare our method with these state-of-the-art methods by
using the same platform. As shown in Table VII, our method
achieves better segmentation accuracy than other methods at
the competitive inference speed. Meanwhile, the number of
parameters obtained by our method is only 14.60M. Note that
the main differences between the embedded platform in au-
tonomous driving and the desktop platform are the computing
power of graphics cards and memory resources. Therefore, our
method is still able to outperform these competing methods
when applied to real-world autonomous driving applications.

E. Results on the CamVid Dataset

To further illustrate the superiority of our method, we
perform experiments on the CamVid dataset. The evaluation
results are reported in Table IX. In this experiment, we also
fine-tune the model (pre-trained by Cityscapes) on the CamVid
dataset to verify the transfer properties of our model. We
denote the fine-tuned model as DMA-Net†.

We can observe that our proposed DMA-Net method obtains
competitive results (i.e., 73.6% mIoU at the inference speed
of 119.8 FPS) among all the methods. In particular, DMA-
Net obtains much faster inference speed than most methods
(such as SegNet, ENet, and ICNet). Compared with BiSeNet2,
DMA-Net not only achieves better accuracy (about 4.9% mIoU
higher), but also gives a faster inference speed. Moreover,
our DMA-Net also obtains better segmentation performance
(about 1% mIoU higher) than SwiftNet. In a word, our method
achieves a balanced tradeoff between accuracy and speed.
DMA-Net† achieves the best segmentation accuracy of 76.2%
mIoU, which is about 2.6% mIoU higher than DMA-Net. This
is because the Cityscapes dataset involves a large number of
training samples, enabling us to obtain a powerful pre-trained

TABLE IX
THE ACCURACY AND SPEED COMPARISON BETWEEN THE PROPOSED

METHOD AND OTHER METHODS ON THE CAMVID TEST DATASET. †THE
CITYSCAPES DATASET IS USED FOR PRETRAINING.

Method Input Size mIoU (%) Speed (FPS)
SegNet [27] 360× 480 46.4 46
ENet [13] 360× 480 51.3 61.2
ICNet [16] 720× 960 67.1 27.8
CGNet [47] 360× 480 65.6 -
BiSeNet1 [15] 720× 960 65.6 175
BiSeNet2 [15] 720× 960 68.7 116.3
DFANet [19] 720× 960 64.7 120
SwiftNet [2] 720× 960 72.6 -
DMA-Net (ours) 720× 960 73.6 119.8
DMA-Net† (ours) 720× 960 76.2 119.8

model. As a result, the pre-trained model can be easily fine-
tuned to classify different classes on the small dataset.

Note that the images in the CamVid dataset are captured
from video sequences. Different from the Cityscapes dataset,
there exist severe illumination variations on CamVid. However,
our method still obtains good segmentation results. Some
segmentation results are shown in Fig. 11. Therefore, our
method is robust to scene changes and is applicable to real-
world applications requiring real-time inference speed.

F. Limitations

In this subsection, we discuss the limitations of our pro-
posed DMA-Net. DMA-Net is able to effectively and ef-
ficiently perform semantic segmentation. However, it still
suffers from the following two challenges.

1) Severe occlusions between objects. An object can easily
be occluded by other objects in street scenes. In particular,
when the target object and occluded objects have similar colors
and shapes, our proposed method is prone to give wrong
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(a) (b) (c)

Fig. 12. Some failure cases of the proposed DMA-Net on the Cityscapes validation dataset. The images from the first column to the last column respectively
denote (a) input images, (b) ground-truth images, and (c) our predicted results.

segmentation results. This is because the similar appearance
of different objects makes the network difficult to determine
which category the pixel belongs to in the occluded areas. A
failure segmentation result is shown in the first row of Fig. 12.
In the future, the object depth information can be exploited to
address the occlusion problem.

2) Small objects in the scenes. Semantic segmentation
performs pixel-level classification, where both spatial details
and contextual information play an important role in achieving
good performance. In our method, the encoder (i.e., ResNet-
18) generates different levels of feature maps encoding the
spatial and contextual information, while our MAN gradually
aggregates the feature maps from the encoder to perform pixel
inference. In DMA-Net, in order to improve the speed of the
network, we do not design a branch to deal with the high-
resolution feature maps from the first sub-network of ResNet-
18. Therefore, the detailed spatial information of small objects
may lose to some extent during feature aggregation. In this
way, MAN may not be able to recover the spatial information,
thus leading to the misclassification of some small objects in
the final segmentation results. As illustrated in Table VIII, our
method achieves a high IoU for some large objects (such as
road and building). In contrast, our method gets a low IoU
for some small objects (such as fence and pole). A failure
segmentation result is shown in the second row of Fig. 12. In
future, more powerful lightweight networks can be designed to
provide a good tradeoff between model capacity and inference
speed.

Note that the above two challenges also exist in other real-
time semantic segmentation methods (such as ICNet [16] and
DFANet [19]).

V. CONCLUSION

In this paper, we have presented a novel DMA-Net method
for real-time semantic segmentation in street scenes. DMA-Net
consists of two main parts: ResNet-18 and MAN. ResNet-18
generates different levels of feature maps, while MAN takes
advantage of LERB, FTB, and GCB to aggregate these feature
maps and capture the multi-scale information. In particular,
LERB makes use of lattice structures to effectively enhance

feature representations while FTB adaptively generates the
transformed feature maps for feature aggregation. Further-
more, GCB encodes the rich global contextual information.
These components are tightly coupled and jointly trained
to ensure high-quality segmentation results while running
at real-time. Experimental results on two challenging street
scene benchmarks (including the Cityscapes and the CamVid
datasets) have demonstrated the effectiveness and efficiency of
our proposed DMA-Net.
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