
Metadata Manipulation Interface Design

Stijn Dekeyser Richard Watson

Department of Mathematics and Computing
University of Southern Queensland

Toowoomba, Australia
{dekeyser,rwatson}@usq.edu.au

Abstract

Management of the increasingly large collections of
files and other electronic artifacts held on desktop as
well as enterprise systems is becoming more difficult.
Organisation and searching using extensive metadata
is an emerging solution, but is predicated upon the
development of appropriate interfaces for metadata
management. In this paper we seek to advance the
state of the art by proposing a set of design principles
for metadata interfaces. We do this by first defining
the abstract operations required, then reviewing the
functionality and interfaces of current applications
with respect to these operations, before extending the
observed best practice to create a generic set of guide-
lines. We also present a novel direct manipulation in-
terface for higher level metadata manipulation that
addresses shortcomings observed in the sampled soft-
ware.

1 Introduction

Computer users of all kinds are storing an ever in-
creasing number of files (Agrawal et al. 2007). The
usage ranges from the straightforward personal stor-
age of generic media files to the specialised storage of
outcomes of scientific observations or simulations and
includes diverse and increasingly mandated archival
storage of corporate and government agency docu-
ments.

While the increasing aggregate size of stored files
presents significant challenges in storing the bit-
streams (Rosenthal 2010), there are other important
and complex issues related to the growing number of
files, most prominently the attendant problem of (a)
organising and (b) locating individual files within a
file store. The traditional hierarchical file system is
no longer able to support either the kinds or organisa-
tion or the search strategies that users need (Seltzer &
Murphy 2009). Alternate, post-hierarchical file sys-
tem architectures have been proposed (e.g. Ames et
al. 2006, Dekeyser et al. 2008, Gifford et al. 1991, Pa-
dioleau & Ridoux 2003, Rizzo 2004, Seltzer & Mur-
phy 2009) whose logical organisation is based on a
rich collection of file metadata rather than the famil-
iar nested directory structure.

This problem–how to organise and find growing
numbers of electronic artifacts–extends beyond the
desktop file system. A huge number of files are now

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 14th Australasian User Interface Confer-
ence (AUIC 2013), Adelaide, Australia, January 2013. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 139, Ross T. Smith and Burkhard Wuensche,
Eds. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

stored in cloud-based systems, and non-file objects
such as email have very similar characteristics (in-
creasing quantity, need to organise and locate) to files.

We believe that metadata-based systems hold the
key to designing better ways of managing our bur-
geoning collections of electronic things. Informally,
metadata is a collection of attributes and correspond-
ing values that is associated with a file or object.
While all systems that manipulate objects will cre-
ate some metadata such as creation time, and others
can extract metadata such as keywords from the ob-
jects themselves, we focus here on metadata that the
user can create or modify.

We will utilize the term user-centric metadata to
refer to values provided by users and associated with
predefined named attributes. In other words, the
structure of such metadata (also known as schema)
is considered to be fixed while its instance may be
modified by users. User-centric metadata is a subset
of the richer user-defined metadata where the user
may define new attributes as well as the associated
values.

Motivation The post-hierarchical file systems
cited earlier rely on the use of metadata to organ-
ise and search large collections of files. If we assume
that a file system has a complete set of information
for all user-centric metadata, it is straightforward
to argue that organising and searching files become
much simpler tasks. Unfortunately, the assumption
is problematic. Indeed, it has been claimed (Soules &
Ganger 2003) that users are unlikely to supply meta-
data and that automatic collection of metadata values
is a better alternative. While admitting that file loca-
tion systems based on automatically collected meta-
data (Freeman & Gelernter 1996, Hailpern et al. 2011,
Soules & Ganger 2005) are indeed valuable, we hold
that working with user-centric metadata is still im-
portant and in many cases indispensable. We offer
four arguments to support our case:

1. Some files simply do not contain the objective
data that is necessary for them to be included in
some collection deemed meaningful by the user,
and hence an automatic process cannot hope to
extract it.
An example is of a scanned image of a building
construction plan that is part of a legal case. The
particulars of the legal case are not present in any
part of the file, its bitmap content, or the file sys-
tem; it must be provided by a person tasked with
documenting the case.
This argument is especially valid in the context
of organisations that archive information for pub-
lic retrieval; much of the required metadata will
have to be manually collected at some point.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

33

2. Some kinds of metadata are inherently subjec-
tive rather than objective; since the values for
such attributes depend purely on the user, there
is no software process that can obtain them.
An obvious example is the ‘rating’ tag that is
associated to music or image files. More gener-
ally (Sease & McDonald 2011), individual users
catalogue (i.e. attach metadata to) files in id-
iosyncratic ways that suit their own organisa-
tional and retrieval strategies.

3. Searches based on automatically extracted meta-
data (such as document keywords or a user’s con-
textual access history) may well locate a single
file or range of similar files, but only a well-
organised set of manually assigned metadata is
likely to return logically-related collections of
files. The argument here is that an automatic
system would attempt to cluster files according
to extracted metadata; however, the number of
metadata attributes is relatively large, and val-
ues for many would be missing for various files.
Clustering is ineffective when the multidimen-
sional space is sparsely populated, so this ap-
proach is unlikely to be able to retrieve collec-
tions without user input.
Consider as an example a freelance software engi-
neer who works on several long-running projects
concurrently. A time-based search in a ‘flat’
document store is likely to return files that be-
long to more than one project. If the freelancer
only works from home, other searches based
on automatically extracted contextual metadata
(e.g. location, or audio being played while work-
ing (Hailpern et al. 2011)) are unlikely to be able
to cluster files exactly around projects. Again,
the user will need to supply the project details—
not as directory names, but as metadata at-
tribute values.

4. Finally, the simple fact that a large number of ap-
plications exist that allow users to modify meta-
data (together, perhaps, with the perceived pop-
ularity of those applications that manage to do
it well) is proof of a need for such systems.

Given our assertion of the importance of user-centric
metadata, and recognising that users may be reluc-
tant to commit effort to metadata creation, we arrive
at the central issue addressed in this paper: how to
increase the likelihood that users will supply meta-
data? Our thesis is that (1) there is a clear need to
develop powerful and intuitive interfaces for actively
empowering users to capture metadata, and (2) very
few such interfaces currently exist.

Organisation In this paper we will first propose a
framework (Section 2) including definitions and then
in Section 3 proceed to assess a set of software titles
(representing the state-of-the-art in the area of meta-
data manipulation interface design) with respect to
the framework. Having identified a hiatus in the ca-
pabilities of assessed software, we then add to the
state-of-the-art by introducing a tightly-focused pro-
totype in Section 4. Both the software assessment
and the prototype then lead to a number of guides or
principles in Section 5 for the design of user interfaces
for updating metadata.

Scope This paper deals with interface design issues
for systems that allow users to create and modify
metadata. The related issue of query interfaces will

not be considered in detail. Most of the systems ex-
amined are desktop applications that manage files on
a local file system. We also consider different tar-
get objects: email and cloud-based file systems. Al-
though web-based systems are examined briefly we
note that, even with the advent of AJAX-ified inter-
faces, these are frequently less rich in terms of inter-
face design. Mobile apps have not been considered, as
touch interfaces are arguably not (yet) optimized to
manipulate sets of objects, and screen size limitations
are a significant limiting factor.

Contributions The contributions made through
this paper include: (1) a proposed framework for
assessing metadata manipulation interfaces; (2) as-
sessment of a number of relevant software titles; (3)
the presentation of a partial prototype that addresses
identified shortcomings; and (4) the enumeration of a
concrete set of guiding principles for UI design in this
context.

2 Framework

2.1 Metadata

What is metadata? Intuitively, metadata is “data
about data”. While this description is acceptable in
many contexts, this paper is concerned with meta-
data manipulation, so a more precise definition is
necessary. Before offering such a definition, and be-
cause the term ‘metadata’ has many interpretations,
we briefly explore the kinds of metadata exhibited in
current systems so that we can establish a context for
the following discussion.

Metadata can be classified on at least three coor-
dinates.

1. Where is it stored? Possible locations are within
the object, within the file system, or in some
third location such as a database.

2. Who manages it? This could be the user (per-
haps a privileged user like an archivist) or the
computer system. System created metadata is
often read-only (file size), but sometimes user-
writable (ID3 image metadata).

3. Descriptive or representational? Most metadata
is descriptive, and pertains to a single file: a
file size, creation date, file type, etc. Represen-
tational metadata (Giaretta 2011) describes the
format or structure of a file’s data (e.g. the JPEG
image standard). It is “data about the contain-
ers of data” (maybe it could be called meta-
metadata); many objects share a single piece of
representational metadata.

This paper addresses user-centric metadata ma-
nipulation. Using the classifications above, the meta-
data manipulated will be user-modifiable, descriptive,
and may reside anywhere (file system, with content,
or separate file).

We posit the following definition for the kind of
metadata used in this paper, and include details
about its logical structure.

Definition: User-centric metadata is a set of (at-
tribute,value) pairs that is associated with an object.
The metadata values are user-modifiable.

We define the type of metadata in Figure 1. The
value type V can be a simple (non-structured) type, a
collection of values of the simple types (referred to as
multi-valued attributes), or a collection of (attribute,

CRPIT Volume 139 - User Interfaces 2013

34

T ::= [(Attr, V)]
V ::= S

| [S]
| T

S ::= string | int | . . . | E

Figure 1: Metadata type

value) pairs. The recursive definition of T admits
metadata with arbitrarily complex record structure.
The type E represents application-defined enumer-
ated types.

The inclusion of enumerations gives more control
over the values that can be stored. Just as program-
ming languages that require names to be declared be-
fore use can largely prevent errors due to typograph-
ical mistakes, the use of predefined metadata values
rather than unconstrained character strings can miti-
gate the proliferation of value synonyms and mistyped
values. (Values of an enumerated type would typically
be used to populate the values of a GUI selection wid-
get.)

Note that this scheme can model tags, value-less
attributes commonly used in web and social media
applications, by using a multi-valued attribute named
(say) tag.

Expressive Power Most of the software that we
assess in this paper, and most of the post-hierarchical
file systems that have been proposed in the literature,
are limited to metadata attributes of simple types.
There are, however, a select few that support complex
types. In particular WinFS (Rizzo 2004), LiFS Ames
et al. (2006), and MDFS (Dekeyser et al. 2008) all
support the notion of relationships between (file) ob-
jects.

Relationships, as defined in the Entity-
Relationship Model, are important to represent
associations between objects. The three file systems
mentioned above are built around the argument
that creating explicit associations between files adds
significantly to the usefulness of metadata-based file
systems.

One-to-Many relationships can be supported
through our definition of metadata, as multi-valued
attributes are supported, provided each object has a
unique identifier. Relationship attributes can be de-
scribed by using the recursive T type given above to
construct a record for each link between objects.

Many-to-Many relationships between two sets of
objects can then be simulated by implementing the
One-to-Many relationship in both directions. A naive
implementation of this simulation would be prone to
inconsistent and redundant data; however, the defi-
nition given above is independent of implementation
details.

2.2 Logical data model

To be able to present a language and operations to up-
date metadata for a set of objects, we propose a sim-
ple logical data model for a metadata store, based on
the definition of user-centric metadata given above.

Definition: A metadata store is a relation R ⊆ V1×
. . . × Vn where Vi is the set of all possible values for
an attribute ai of type Vi as defined in Figure 1.

Given the nature of the type system presented in
Section 2.1, it is clear that R is a nested relation as
defined in the Nested Relational Model (Gyssens &

van Gucht 1988, Korth & Roth 1987). Furthermore,
each tuple (row) in R represents an object, and each
column is an attribute. Also, in this model every
object can have a value for every attribute defined
in the system; however, as in (Merrett 2005) we take
the convention of a “don’t care” null value DC: any
attribute that should not be associated with a group
of objects will be an attribute of R but containing
only DCs for the relevant tuples.

The Nested Relational Model has been shown
to be no more expressive than the flat Relational
Model (Gyssens & van Gucht 1988). However, we
use the nested relation as a convenient model given
that metadata often includes multi-valued attributes.
Our use of the logical model does not imply a specific
implementation strategy.

2.3 Update language

In subsequent sections we seek to assess and develop
appropriate graphical user interfaces that manipulate
the values of metadata attributes. At the most funda-
mental level (the system API), however, there is only
one required operation: one that replaces the current
value of a specific attribute of a specific object. This
corresponds with overwriting the content of a single
cell in the metadata store relation R.

As an intermediate step towards GUI operations,
we loosely propose an update language (in the mold
of existing nested relational languages) which has a
single CHANGE statement that has a SET clause to list
attribute–value pairs, and a WHERE clause that identi-
fies a set of tuples (objects) to update. The insert and
delete statements are not necessary in our language
if we presume (a) the existence in R of an attribute
that acts as the Primary Key of the relation, and (b)
that the system creates an ‘empty’ row (except for
the PK attribute) when a new object is created and
removes a row when it is deleted.

While a full syntax for the language could be
derived from the relevant specifications of SQL
and SQL/NF (Korth & Roth 1987), informally
the syntax for the CHANGE statement is as follows:
CHANGE SET a1 := e1 . . . [, an := en]
WHERE condition

where ei is an expression that yields a value that is
compatible with the type of attribute ai and condition
is a first-order logic expression involving attributes
and constants that evaluates to true for each row to
be updated.

Example: Consider a metadata store that is repre-
sented by the nested relation R(Id, Name, Extension,
{Tag}, {Address(No, Street, City)}) containing the
following files (attribute types can be inferred from
the schema signature and the example rows): {(1,
P9104060akt, JPG, {John, Home, Food}, {(17, Main
St, Seattle)}), (2, IMG1384, JPG, {Ann, Work, of-
fice, Meeting}, DC), (3, notes, DOC, {Letter, Sup-
port, Sam}, {(1, Baker St, Brisbane)})}.

The following statement updates the metadata
for one file:
CHANGE SET Name:=‘ann at work’,
Tags:=Tags+{‘Client’,‘lunch’} - {‘office’}
WHERE ‘Ann’ IN Tags AND Name=‘IMG1384’

The following statement updates the complex Ad-
dress attribute:
CHANGE SET Addresses.No:=7
WHERE ‘Seattle’ IN Addresses.City

The examples illustrate that the update language
must contain the necessary constructs to deal with
nested relations and complex types. Compared to the

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

35

fundamental system-level update operation, it also
adds the ability to modify multiple attributes for mul-
tiple objects in one high-level call. But ultimately
statements in this high-end update language can be
readily translated into a sequence of the fundamental
system-level one-file–one-attribute–replace-value up-
dates.

2.4 GUI operations

Given the power of the update language specified
above, the challenge is to describe a set of GUI oper-
ations that users can perform to carry out a CHANGE
statement. There are at least the following two re-
quirements for these operations.

• Efficiency. For a given CHANGE statement
the length of the sequence of GUI operations
(keystrokes or mouse operations) should be min-
imized. This is a real challenge, though work
on gathering metadata automatically through
awareness of the user’s context may point a way
forward, as is presenting suggestions for values
for metadata based on the current instance (the
recognition vs. recall principle).

• Power. The need for advanced metadata man-
agement is predicated upon the growing number
of files/objects, which means that any interface
must, wherever possible, be able to manipulate
metadata for many files and/or attributes with
single operation. Traditional GUI systems have
often been criticised for their inability to per-
form the kind of complex or repetitive operations
possible with CLI update languages or command
scripts (Gentner & Nielsen 1996); we consider it
a mandatory requirement that “bulk” operations
be supported through a GUI interface.

Powerful, efficient interfaces allow users to define and
accomplish a complex task quickly. Speed is a key
factor in user acceptance and we argue that users in
general will create or maintain metadata only if they
can do it rapidly and with little effort.

Given these challenges, what kinds of operations
on metadata should these interfaces support? The
answer depends on the complexity of the metadata
values, as defined by three alternatives for type V
in Figure 1, and the quantity of files and attributes
addressed by the operation.

Figure 2 depicts the range of operations on meta-
data that an application may provide. An application
would provide operations that correspond to one or
more of the cells in the table. Power increases from
top left to bottom right. The vertical axis represents
the richness of the values that can be stored (each
row corresponds to a value type alternative in Fig-
ure 1) and the horizontal axis depicts the scale of an
operation—how many attributes a single operation
can affect.

The utility of applications that maintain metadata
can be rated in part by examining the complexity of
the operations that they support. We will use the
operation grid of Figure 2 as one basis for evaluating
software in Section 3.

User interfaces do more than provide a scaled-up
version of the API and even of the CLI update lan-
guage. A particular application may add functional-
ity or constraints to improve usability. For example,
if only the logical delete and add attribute value op-
erations were implemented, then the user would be
required to first delete the value then retype the en-
tire text (add the value) when a misspelling appeared

Attributes → 1 >1
Files → 1 >1 1 >1

Single value
Many values

Complex value

Figure 2: Range of metadata operations

in a string-valued attribute. Instead a typical inter-
face would present a character-at-a-time editing in-
terface to the underlying API. A typical constraint
may be that a list of values represent a set, prohibit-
ing duplicate values. Users may also be constrained
in choice of value, picking from a predetermined set
of appropriate values.

More examples of user interface functionality will
be seen in Section 3 where we examine some example
metadata manipulation interfaces.

Note that in database parlance, we have so far only
described instance data manipulation operations. An
advanced metadata management system would also
allow schema operations, such as defining new at-
tributes, or new enumerated data types. In the Intro-
duction we referred to this as user-defined metadata.
We believe that these schema operations are neces-
sary to build a truly capable system; such operation
are orthogonal to the instance operations that are the
focus of this paper.

3 Evaluating interfaces

In this section we report the results of a critical eval-
uation of a number of applications that display and
manipulate metadata. Based on this evaluation, we
propose guidelines for developers of advanced inter-
faces. Criteria for selection was that applications
were readily available (typically open source or bun-
dled with a major operating system), representative
of the application domain, and that they collectively
handled a broad range of file types. We have sum-
marised the results here and intend to publish a more
detailed analysis in the future. With a single excep-
tion (gmail) these are file handling applications; be-
cause of this we often use the word “file” instead of
the more generic “object” when referring to the arti-
fact being described.

3.1 Applications

Thirteen desktop and three web applications were se-
lected. Some applications are designed to manage
metadata for specific file formats (image, video, au-
dio, bibliography) while others are not format spe-
cific. Without claiming to be exhaustive, we have cho-
sen a set of applications that we believe to be among
the best representatives of commercial and freeware
software across the range of domains.

Table 1 lists the applications selected by applica-
tion domain and by platform. Some applications were
available on both Windows and Linux platforms (Pi-
casa, Tabbles, Clementine); the table shows the ver-
sion tested. All programs were tested on the authors’
computers except Adobe Bridge–we relied mainly on
Adobe instructional material to evaluate this prod-
uct.

3.2 Support for types

All except the simple tagging systems (Tabbles
and the web applications) support single-valued at-

CRPIT Volume 139 - User Interfaces 2013

36

Table 1: Applications
Type Application Ver Code Platform
Image ACDSee 12 AC Windows

Picasa 3.9 Pic Windows
Adobe Bridge Br N/A
iTag 476 Tag Windows
Shotwell 0.6.1 Sw Linux
flickr.com flkr Web

Video Personal VideoDB Vdb Windows
Usher 1.1.4 Us MacOSX

Music iTunes 10 iTu MacOSX
MP3tag 2.49 Mp3 Windows
Clementine 1.0 Cl Linux

Biblio Papers 2.1 Pap MacOSX
Mail gmail.com gml Web
Generic Explorer 7 Exp Windows

Tabbles 2.0.6 Tab Windows
box.com box Web

tributes. These can be categorised in two groups.
Some provide only a limited number of attributes
(Tag, Sw, Pic, Us, iTu, Cl) while others support
an extensive set (AC, Br, Vdb, Mp3, Exp). Typ-
ical examples include “rating” (numeric), “length”
(time/duration), “title” (string), “track” (numeric),
“last played” (date/time), “comments” (text), and
“metering mode” (enumeration).

Multi-valued attributes are supported with two ex-
ceptions (iTu, Cl), though support is limited either
to a single “tags” attribute (Tag, Sw, Pic, Tab, flkr,
box, gml) or a small group of predefined attributes
(AC, Vdb, Mp3, Pap, Exp): in addition to the “tags”
attribute typical examples include “authors”, “cate-
gories”, “artists”, and “genre”.

Only Adobe Bridge supports complex datatypes;
one that is built-in is a set of addresses, each with sep-
arate fields for street number, street, city, and postal
code. Other complex types can be created by pro-
grammers (see Section 3.6).

3.3 Range of operations

Figure 2 illustrates that the range of operations can
extend in three dimensions: how many files, how
many attributes, and what type of attribute are in-
volved in an operation. We have used this character-
isation to evaluate the applications. This is a high-
level view: we are only interested in knowing if an
application is capable of displaying or updating meta-
data in any way at a particular scale.

3.3.1 Selecting files/objects

The applications we reviewed typically list either all
files they manage in one grid, or use the file system’s
directories to list a tree and then display files belong-
ing to one directory in a grid. Users are then able
to visually multi-select files in the grid for collective
updating.

A few applications allow automatic selection of
files based on the values of their metadata attributes.
Media players such as Clementine have a keyword
search function that may match the value of any at-
tribute, a practice which trades precision for recall.
More advanced is Windows 7 Explorer which allows
users to filter files based on values for specific at-
tributes by manipulating the attribute titles in the
grid.

Hence, no application supports the full power of
the where clause in the update language we presented

in Section 2.3. This is unsurprising given the expres-
sive power of the condition expression; however, there
is scope for applications to use a Query-By-Example
(QBE)-type approach (Zloof 1975) to increase the se-
lection capabilities for users. We will return to this
issue in Section 4.

3.3.2 Assessment

In terms of range, Adobe Bridge is clearly the most
capable: it supports operations involving many files
and many attributes on all kinds of data types.

Almost half of the remaining 12 applications (Pic,
AC, Us, Mp3, Exp) provide operations of all kinds
(multiple file and multiple attribute) except on com-
plex data types.

We are being a little loose (and also generous) in
describing these as multiple attribute operations. The
applications do display a complete set of attributes,
but update is on a sequential, one attribute at a time,
basis except for ACDSee. Simultaneous update of
many attributes is discussed further in Sections 3.6
and 4.

iTag, iTunes and Clementine supports single-
valued data completely, but provides no support
(iTu, Cl) or limited support (Tag–only for one at-
tribute per operation) for multi-value attribute op-
erations. Conversely, Vdb supports multi-valued at-
tributes fully, but lacks multi-file support for single-
valued attributes.

Papers supports single file operations only.
Shotwell operates only on a single attribute at a time.
The tag-based systems (Tab, box, flkr, gml) support a
single multi-valued attribute. Tabbles and gmail sup-
port multi-file/object tag operations, while box and
flickr perform metadata update on a file-at-a-time ba-
sis.

3.4 Display and update semantics

The most useful operations concern collections of files.
In the following we will examine the semantics of dis-
play and update operations on metadata when mul-
tiple files have been selected through the user inter-
face. We consider single and multi-valued attributes
separately. All applications except box and flickr sup-
ported metadata display/update for multiple file se-
lections.

How should an application display a single-valued
attribute of a collection of files? A very common ap-
proach (Tag, AC, iTu, Cl, Mp3, Exp) is this: if the
value is the same for all files then display that value,
otherwise indicate in some way (often by stating
“multiple values”) that a range of values is present.

Richer and more useful behaviour was observed for
some applications for non-text attribute types. For
date attributes that differ between files, iTag displays
the range of the dates. Windows Explorer treats dates
similarly; it sums file size and track length (if audio
file) and it averages numerical ratings.

Update behaviour is uniform and unsurprising:
when a new value is supplied for the attribute it is
set for all files selected.

There are more design choices when displaying a
multi-valued attribute of a collection of files. This is
because the attribute values (a set) of two files will
typically differ but may contain some common ele-
ments. A minimal approach is to use the “multiple-
value” technique when attributes differ (Us, Mp3).
More useful is to display the intersection (Tag, Exp)
or the union (Pic, Pap) of all attribute sets. Intersec-
tion and union can both provide useful information;
ACDSee gives both views.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

37

The smallest update to a multi-valued attribute is
the addition or deletion of a single value from the set.
Most of the applications support this (Tag, Pic, AC,
Pap, Tab, Exp, gml). Odd behaviour was observed:
some applications (Us, Vdb) replace the current set
with the new value, while Shotwell provides only add
but no delete from set operation. Only one applica-
tion (iTag) allows addition of several values (selected
from a list of existing values); it also provides a way
to remove several members from the intersection set
(which it has in common with Exp).

3.5 Value management

In some systems (e.g. iTu) the value of an attribute
is a simple character string (an editable sequence of
characters), while others (e.g. Exp) treat values as
atomic elements (enumerated types) represented by a
non-editable character string.

The “editable string” approach is versatile and
simple to implement but limiting. A major issue is
the possible proliferation of values due to typograph-
ical errors or because (as is common) the range of
existing values is unknown.

The enumerated type scheme requires a more so-
phisticated implementation but provides a more pow-
erful and usable interface. Operations relating to enu-
merated values include:

• show all values of an attribute type (Vdb, AC,
Tag, Sw, Us, Tab, box, flkr, gml)

• select (using e.g. menu) from list of values (Vdb,
AC, Tag, Us, Tab, box, flkr, gml)

• explicit and implicit value creation (Vdb, AC,
Tag, Sw, Us, Pap, Tab, box, flkr, gml)

• rename a value (AC, Sw, Tab, flkr, gml)

• delete a value (Pap, Tab, flkr, gml)

• create a new attribute (Us)

3.6 Advanced features

Two applications (Br, AC) support the notion of a
‘template’ that can be defined once and applied mul-
tiple times on different sets of files. The idea is to
make it easy for users to apply a default set of val-
ues whenever they obtain/create a new set of files. It
is no coincidence that both applications manipulate
image metadata; photographers have a clear need of
attaching identical copyright and other data to their
photographs. Having to retype this information after
each shoot is cumbersome. Of the two implementa-
tions, ACDSee is more advanced as it can interpret
an expression yielding a new value per image. Impor-
tantly, in both cases the creation as well as manage-
ment of templates involves additional special-purpose
interfaces that are not reused from the ‘default’ up-
date mechanism. We will return to this issue in Sec-
tion 4.

Two applications (Br, Us) allow for the schema of
metadata to be updated. Usher permits addition of
a multi-valued attribute via the user interface while
Adobe Bridge supports creation of complex struc-
tured attributes. The process, however, by which an
end-user can create new attributes in Bridge is pro-
hibitively complex; in essence an intricate XML doc-
ument valid over a highly complicated XSD schema
needs to be placed in a settings directory prior to
program start-up. This mechanism in effect limits
the functionality to professional programmers.

3.7 Discussion

While notions of “maturity” or “cleanness” are less
objective than the expressive power discussed in the
previous sections, it should be noted that very few of
the applications we tested had a fully professional feel
to their interfaces. Perhaps unsurprisingly, the more
mature solutions were typically created by the large
software companies; however, this does not mean that
they were most expressive. Almost to the contrary;
hobbyist implementations (such as iTag) often sur-
prised us in providing significant power in one or two
of the dimensions tested. Unfortunately they also
tended to be rather unwieldy through a large number
of windows each seemingly able to do only one task
(Clementine was a notable culprit in this aspect).

Disappointingly, some major commercial software,
while quite powerful in many ways, also felt surpris-
ingly clunky. ACDSee and Adobe Bridge were both
assessed positively in terms of power (see above), but
their tendency to split functionality over a large num-
ber of windows as well as confusing and at times over-
whelming menu options were problematic.

The (single attribute) tag-based systems (Tabbles
and the three web applications) all handled attribute
value management better than the systems that sup-
ported multiple attributes. While a little surprising,
it perhaps reflects the smaller design space of these
systems.

Of all the software reviewed, Windows 7 Explorer
left the best impression both in power and in matu-
rity. The interface is appropriately simple (all opera-
tions happen in a single window) yet allows for updat-
ing several attributes (including multi-valued types)
for a group of files of different types. Even so, in
terms of interface design we list multiple items for
improvement in Section 5. Finally, with respect to
power, Explorer could be extended by (a) allowing
use of templates (see Section 4), (b) allowing creation
of attributes, (c) supporting complex types, and (d)
providing an undo mechanism for metadata updates.

4 Updatable views

In Sections 3.3.1 and 3.6 we indicated (1) a lack of
powerful file selection mechanisms in almost all ap-
plications, and (2) a problem with the non-generic
implementation of the template notion as featured in
two programs (Br, AC).

Addressing the latter first, we note that Adobe
Bridge and ACDSee offer two significantly different
methods for updating metadata. They share the first
method with all other applications: modify attribute
values through a special-purpose interface (unfortu-
nately in some applications (e.g. Cl) more than one)
and execute those modifications on the currently se-
lected set of files. Their second method involves the
separate, prior creation of a template through an inde-
pendent interface construct. Once created, the tem-
plate can then be executed on various sets of files at
different times.

While this is a powerful and useful feature, it suf-
fers from interface duplication and increased complex-
ity. These are potential inhibitors for user uptake.

An important contribution that we make to the
state-of-the-art as assessed in Section 3, is to recog-
nise that the template idea can be merged with a
more expressive search/filter interface and reuse ex-
isting file-browser interactions to support single oper-
ation updates of many attributes over many files

Our proposal is best described as an extension of
Windows 7 Explorer: once a user has applied a filter

CRPIT Volume 139 - User Interfaces 2013

38

to a set of files (e.g. by indicating that the value of
the ‘author’ attribute should be ‘John’), she can drag
other files from another explorer instance into the fil-
tered list, causing the new files to acquire the ‘John’
value for the ‘author’ attribute. It is no coincidence
that this is akin to a current copy-action in Explorer:
in a flat file store, there are no directories to copy
from and to; instead, attribute values determine the
logical organisation of the file store. Hence the GUI
operation is reused soundly.

When a provision is added to ‘save’ the filter ac-
tion (essentially a query), we arrive at a clean alterna-
tive for templates. Saved queries become views that
users can interpret as folders. This corresponds to
the virtual directory (or folder) concept of semantic
file systems (Gifford et al. 1991) and also the collec-
tions within the Presto system (Dourish et al. 1999).
Views give users not only a powerful mechanism to
look for files, but also a second, repeatable means for
updating metadata.

Note that not all views would be updatable: this is
tightly related with relational view updatability. In
those cases, when a user attempts to drag in files,
an appropriate feedback mechanism should alert the
user that this action is not permitted. That is again
consistent with current practice in file browsers.

4.1 Prototype

To illustrate the proposal we have made in this sec-
tion, we briefly present a prototype interface that we
developed in the context of metada-based file system
(Dekeyser et al. 2008). Note that the implementation
did not focus on the other issues identified in Sec-
tion 3; it is purely meant to demonstrate the notion
of saveable updatable views as a clean alternative to
templates.

The prototype was developed on top of a technol-
ogy preview of Microsoft’s WinFS. The main feature
is a file browser application which allows (1) the list-
ing of objects in the file store, (2) a simplified mech-
anism to capture rich metadata, and (3) the creation
of virtual folders (view definitions).

Figure 3 illustrates the use of virtual folders as a
means to capture metadata through a drag and drop
operation. The screenshots of the prototype show
that initially four Photo objects were selected from
the “Photos” Folder and subsequently dragged into
the virtual folder “Photos with Comments ‘Family
Holiday’”. The second screen then depicts the con-
tent of the latter, and shows that the four objects
have obtained the necessary metadata to belong in
the virtual folder.

Dekeyser (2005) first proposed this novel drag and
drop approach to metadata manipulation and the
technique has been independently implemented (Kan-
del et al. 2008) in a system that allows field biologists
to annotate large collections of photographs. While
targeted at a particular problem rather than a generic
file system, their system established through exten-
sive user experience the viability of the concept.

The Query-by-Example interface is illustrated in
Figure 4. It is possible to create a propositional cal-
culus style query that is a set of relational expressions
between attributes and values that are joined by con-
junctive or disjunctive logical operators. A new query
(view) is initially anonymous (“Untitled”) but can be
assigned a meaningful name.

5 Design principles

In the following sections we propose a set of design
principles for file metadata manipulation systems.
These have been distilled from the better features,
as well as being informed by the poorer features, ob-
served in the candidate software. We have also sought
to extend and unify some of the interface techniques.

These principles augment or specialise, but do not
replace, existing widely recognised generic interface
guidelines (e.g. Schneiderman & Plaisant 2004). The
following sections enumerate the general principles.
We describe how these principles can be applied to
the metadata manipulation domain by formulating
specific design recommendations.

We assume that a key function of the interface is
to manipulate metadata for a collection of files.

5.1 Minimise work

A metadata operation should require as few interface
steps as possible. This is a generic goal motivated
by an understanding that users are reluctant to to
invest significant time in metadata maintenance. The
principles in the following support this goal, as does
this specific design feature.

Application: Use a single non-modal interface.

Providing complex modal interfaces to do some of
the tasks described below, such as value creation or
renaming, would result in a decrease in usability and
reduced use of key features.

5.2 Facilitate metadata visualisation

Consider some identified collection of files. There may
be many attributes present but any file may only have
a subset of these attributes. Scientific metadata in
particular is characterised by being high dimensional
and sparse. Interfaces must display metadata in a
compact but useful way to allow users to easily per-
ceive and to subsequently manipulate it.

Application: Show the names of each file’s at-
tributes, but identify specifically those attributes that
are the common to all selected files.

We should not provide update capability for at-
tributes that are not common to all files as this would
be ambiguous–users would be unsure of the outcome
of their actions. However, users may reasonably need
to know the names of other non-common attributes,
so that they can be accessed via a further file selection
operation.

Application: Display both the intersection and
union of each file’s attribute values.

This applies to both single value and multi-value
attributes if single value attributes are considered to
be singleton sets. For any attribute shared by a col-
lection of files, a user may wish to know (1) what val-
ues are associated with all files (intersection), (2) if
all the attribute values are the same (intersection =
union), and (3) the range of values present (union).
This supports users to make decisions when updating
an attribute; providing maximal information reduces
the possibility of further keystrokes being needed to
seek information.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

39

Figure 3: (a) Dragging photos into the Virtual Folder Photos with comment ‘Family Holiday’, (b) Result after
the drag operation, showing that metadata has been updated to make the photos appear in this Virtual Folder.

5.3 Provide systematic support for the ma-
nipulation of attribute values.

Application: Support typed attributes, and partic-
ularly user enumerations rather than a string type.

Adopting a typed metadata system, similar to the
definition in Section 2.1, offers significant advantages.
Typing of attributes assists in display and interpre-
tation (e.g. sort order, non-textual displays) of val-
ues, and enables provision of appripriate aggregation
functions for each type. It also facilitates input vali-
dation, and other non-UI features such as specialised
storage index construction. Typing does not neces-
sarily require a cumbersome “declare an attribute”
modal window as types can be inferred from user ac-
tions and a sophisticated interface could provide hints
about expected types.

Application: Provide an operation to change the
representation of a value.

Values may need to be renamed to better reflect
meaning. Value renaming is a global operation that
can affect attribute values of many files. Normally
renaming to an existing name would cause an error,
but it is useful to identify value merge as a special case
of rename. This is a shorthand for “set attribute value
to new for all files with attribute value old” followed
by deletion of the “old” value.

Application: Provide an operation to delete a
value from an enumerated attribute type.

If the value is currently associated with a file at-
tribute then confirmation should be sought before
proceeding.

5.4 Provide powerful update mechanisms

Here are two proposals for metadata update interfaces
for collections of files. The first scheme updates a
single attribute, and the second applies updates to
many attributes in a single operation.

Application: Update an attribute based on value
selection.

We propose the following unifying approach to up-
dating attributes. This is described in terms of at-
tribute sets but, as already noted, if single valued
attributes are modelled by singleton sets, the opera-
tions below are similarly applicable.

• Select if possible from existing values; if neces-
sary create a new value before selection.

• Update operations assume the existence of three
lists of attribute values for a given attribute

1. The intersection of values for selected files

2. The union of values for all files

CRPIT Volume 139 - User Interfaces 2013

40

Figure 4: Creating a new Virtual Folder: query-by-example–like view definition interface.

3. The union of values for selected files (this
could be displayed as an annotated subset
of the “all files” union)

• Removal of one or more items from list 1 (inter-
section) results in deletion of those values from
the attribute of all selected files

• Selecting one or more items from list 2 (universal
union) results in addition of those values to the
attribute of all selected files.

• A shortcut could be provided for a special case
of the addition operation where the values in the
selected file union (list 3) are added to the at-
tribute. This operation is can be informally de-
scribed as “share all values of an attribute among
the selected files”.

Application: Reuse the file search interface for
views-as-templates.

As described in Section 4 we propose that appli-
cations include a QBE-like search/filter and allow re-
sulting views to be saved. In addition, if the view
is updatable, it should be possible for it to be used
as a template: by dragging files into the view, they
acquire the metadata that is needed for them to be
members of the view. This principle has the advan-
tage of overloading the traditional file-browser drag-
to-copy action with an intuitive update operation.

6 Conclusions

We restate our claim that effective management of
user-centric metadata through appropriate and pow-
erful interfaces is vital to the maintenance and every-
day use of burgeoning file systems and other electronic
repositories.

We have observed and assessed a variety of ap-
proaches exhibited by various software in a range of
application domains.

All fall short of implementing uniform generic and
powerful metadata operations though some provide
pointers for a way forward.

There is a paucity of exemplars of higher-level
metadata manipulations, those that can operate on
many attributes of many files in a single operation,
and their interfaces are byzantine. We describe the

prototype of an elegant and novel direct manipulation
interface to achieve such higher-level operations.

Our proposed principles and associated applica-
tion guidelines generalise and extend current best
practice and so can be used to guide the creation of
the next generation of metadata interface systems.

Metadata based storage systems are not a new
idea. But thus far no major advances in interface de-
sign have emerged and become widely adopted. Why
is this? Why is this problem so hard? Here are a few
observations that attempt to answer these questions.

Firstly, this is a difficult problem that likely needs
an innovative solution rather than simple application
of existing techniques. Further, any new approach(s)
would require extensive user testing (formal or infor-
mal) in order to refine the solution. This is a signif-
icant issue: independent developers and researchers
typically do not have sufficient resources to carry out
such evaluation. On the other hand, commercial ven-
dors may have the resources but are also justifiably
wary of foisting new systems, however well tested,
onto their customers.

Another issue is the scale of the problem. Sys-
tems such as Haystack (Karger & Quan 2004) and the
shelved WinFS attempt to extend storage manage-
ment well beyond file storage and email into generic
object management. The dimensions of the design
space thus grow very rapidly which further compli-
cates interface design.

The motivation to develop metadata based sys-
tems will continue to strengthen. We believe tech-
niques such as the prototype drag and drop inter-
face presented here exemplify the kind of alternate
approaches that will be required. We encourage re-
searchers to build systems that explore new interac-
tion or manipulation paradigms in order to advance
towards a new era of storage management systems.

References

Agrawal, N., Bolosky, W. J., Douceur, J. R. & Lorch,
J. R. (2007), ‘A five-year study of file-system meta-
data’, Trans. Storage 3, 9:1–9:32.

Ames, S., Bobb, N., Greenan, K. M., Hofmann, O. S.,
Storer, M. W., Maltzahn, C., Miller, E. L. &
Brandt, S. A. (2006), LiFS: An attribute-rich file
system for storage class memories, in ‘Proceedings

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

41

of the 23rd IEEE / 14th NASA Goddard Confer-
ence on Mass Storage Systems and Technologies’.

Dekeyser, S. (2005), ‘A metadata collection technique
for documents in WinFS’, 10th Australasian Doc-
ument Computing Symposium (ADCS 2005).

Dekeyser, S., Watson, R. & Motroen, L. (2008),
A model, schema, and interface for metadata file
systems, in ‘Proceedings of the 31st Australasian
Computer Science Conference (ACSC2008)’.

Dourish, P., Edwards, W. K., Lamarca, A. & Salis-
bury, M. (1999), Using properties for uniform inter-
action in the presto document system, in ‘In The
12th Annual ACM Symposium on User Interface
Software and Technology’, ACM Press, pp. 55–64.

Freeman, E. & Gelernter, D. (1996), ‘Lifestreams: a
storage model for personal data’, SIGMOD Rec.
25, 80–86.

Gentner, D. & Nielsen, J. (1996), ‘The anti-mac in-
terface’, Commun. ACM 39, 70–82.

Giaretta, D. (2011), Advanced Digital Preservation,
Springer.

Gifford, D. K., Jouvelot, P., Sheldon, M. A. &
O’Toole, Jr., J. W. (1991), Semantic file systems,
in ‘Proceedings of the thirteenth ACM symposium
on Operating systems principles’, SOSP ’91, ACM,
New York, NY, USA, pp. 16–25.

Gyssens, M. & van Gucht, D. (1988), The powerset al-
gebra as a result of adding programming constructs
to the nested relational algebra, in ‘Proceedings of
the 1988 ACM SIGMOD international conference
on Management of data’, SIGMOD ’88, ACM, New
York, NY, USA, pp. 225–232.

Hailpern, J., Jitkoff, N., Warr, A., Karahalios, K.,
Sesek, R. & Shkrob, N. (2011), Youpivot: improv-
ing recall with contextual search, in ‘Proceedings
of the 2011 annual conference on Human factors
in computing systems’, CHI ’11, ACM, New York,
NY, USA, pp. 1521–1530.

Kandel, S., Paepcke, A., Theobald, M., Garcia-
Molina, H. & Abelson, E. (2008), Photospread: a
spreadsheet for managing photos, in ‘Proceedings
of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems’, CHI ’08,
ACM, New York, NY, USA, pp. 1749–1758.

Karger, D. R. & Quan, D. (2004), Haystack: a user
interface for creating, browsing, and organizing ar-
bitrary semistructured information, in ‘CHI ’04 ex-
tended abstracts on Human factors in computing
systems’, CHI EA ’04, ACM, New York, NY, USA,
pp. 777–778.

Korth, H. & Roth, M. (1987), Query languages for
nested relational databases, Technical Report TR-
87-45, Department of Computer Science, The Uni-
versity of Texas at Austin.

Merrett, T. H. (2005), A nested relation implemen-
tation for semistructured data, Technical report,
McGill University.

Padioleau, Y. & Ridoux, O. (2003), A logic file sys-
tem, in ‘Proceedings of the USENIX 2003 Annual
Technical Conference, General Track’, pp. 99–112.

Rizzo, T. (2004), ‘WinFS 101: Introducing the New
Windows File System’, http://msdn.microsoft.
com/en-US/library/aa480687.aspx.

Rosenthal, D. S. H. (2010), ‘Keeping bits safe: how
hard can it be?’, Commun. ACM 53, 47–55.

Schneiderman, B. & Plaisant, C. (2004), Designing
the User Interface, 4th edn, Addison Wesley.

Sease, R. & McDonald, D. W. (2011), ‘The organiza-
tion of home media’, ACM Trans. Comput.-Hum.
Interact. 18, 9:1–9:20.

Seltzer, M. & Murphy, N. (2009), Hierarchical file
systems are dead, in ‘Proceedings of the 12th con-
ference on Hot topics in operating systems’, Ho-
tOS’09, USENIX Association, Berkeley, CA, USA.

Soules, C. A. N. & Ganger, G. R. (2003), Why can’t
I find my files? new methods for automating at-
tribute assignment, in ‘Proceedings of the Ninth
Workshop on Hot Topics in Operating Systems’,
USENIX Association.

Soules, C. A. N. & Ganger, G. R. (2005), Connec-
tions: using context to enhance file search, in ‘Pro-
ceedings of the Twentieth ACM symposium on Op-
erating systems principles’, SOSP ’05, ACM, New
York, NY, USA, pp. 119–132.

Zloof, M. M. (1975), Query-by-example: the invoca-
tion and definition of tables and forms, in ‘Proceed-
ings of the 1st International Conference on Very
Large Data Bases’, VLDB ’75, ACM, New York,
NY, USA, pp. 1–24.

CRPIT Volume 139 - User Interfaces 2013

42

