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Abstract 

A stabilized conforming nodal integration (SCNI) method is presented to formulate two efficient 

smoothing piezoelectric elements for static analysis of planar piezoelectric structures with quadrilateral 

mesh. The approximations of mechanical strains and electric potential fields are normalized by the 

smoothing constant function of the SCNI technique over each smoothing cell. This method allows field 

gradients to be directly computed from interpolating shape functions using boundary integrations along 

each edge of the smoothing element. The boundary integration will contribute to the preservation of 

high accuracy of the method even when elements are extremely distorted, for example, a concave 

quadrilateral. No mapping or coordinate transformation and derivatives of shape functions are 

necessary so that the original meshes with badly shaped elements can be used. The present elements do 

not introduce any additional degrees of freedom and are easy to implement into an existing finite 

element method (FEM). Numerical examples and comparative studies with analytic solutions are 

presented to demonstrate the simplicity, efficiency and accuracy of the elements. 
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1. Introduction 

Piezoelectric materials have many applications in various modern engineering fields such as smart 

structures, mechatronics, or micro-electromechanical system (MEMS) technology. It is evident that 

they have attracted significant attention of researchers. Great progress have been made over past 

decades towards better understanding of electromechanical coupling behaviour of piezoelectric 

materials using analytic/numerical methods and experimental models. Since the work of Allik and 

Hughes (1970) using FEM to analyze the vibration of piezoelectric media, the literature on 

piezoelectric FEM has been developed extensively and is too large to list here. More details and 

reviews on the development of the FEM for piezoelectric materials and smart structures can be 

found in Mackerle (2003). 

Although the FEM solution is quite effective and versatile, its performance is highly mesh- 

dependent and badly deteriorates when mesh distortion occurs. On the other hand, several mesh-

free methods have become an alternative approach for analysis of piezoelectric material such as the 

Point Interpolation Meshfree (PIM) method of Liu et al. (2002), the Radial Point Interpolation 

Meshfree (RIPM) method of Liu et al. (2003), the Point Collocation Meshfree (PCM) method of 

Ohs and Aluru (2001), the Meshless Local Petrov-Galerkin (MLPG) method of Sladek et al. 

(2006), etc. A recent meshless technique is the stabilized conforming nodal integration (SCNI) 

mesh-free method (Chen et al. 2001). The application of the SCNI in the FEM was first proposed 

by Liu et al. (2007a, b), Dai et al. (2007a, b) for 2D elasticity. It is found that the FEM, integrated 

with the SCNI technique, achieves more accurate results as compared with the conventional one 

without increasing the modelling and computational costs. Following the works of Liu et al., the 
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application of the SCNI in the FEM has been further developed for the analysis of coupling 

between mechanical and electrical behaviours of 2D piezoelectricity structures by Nguyen-Van et 

al. (2008a, b, c). A family of simple, accurate and efficient planar low-order piezoelectric elements 

have been successfully developed by the present authors. 

In this paper, two types of the developed elements are introduced and summarized for static 

analysis of piezoelectric solids. 

2. Review of finite element formulations for 2D piezoelectric problems 

The mechanical constitutive relation for 2D piezoelectric materials can be expressed in the e–form 

as follows. 

Eeεcσ
T

E −= ,    (1) 

gEeεD += ,    (2) 

where cE, is the plane elastic stiffness matrix, e is the plane piezoelectric matrix and g is the plane 

dielectric constant matrix. 

Equations (1)–(2) can be rewritten in the explicit form in the x–z plane as 
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The finite element approximation solution for 2D piezoelectric problems using the standard linear 

element can be expressed as 
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where np is the number of nodes of an element; q, ϕϕϕϕ are the nodal displacement and nodal electric 

potential vectors and Nu, Nφ are shape function matrices. 

The corresponding approximation of the linear strain εεεε and electric field E are 

s u= ∇ =ε u B q ,    (7) 
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By taking the Hamilton's principle, the piezoelectric dynamic equations of an element can be 

obtained as follows. 
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For static analysis ( 0=q&& ), Equation (10) is reduced to 
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3. Nodal integration techniques for piezoelectric finite element method 

In the SCNI technique, the strain ( ε% ) and the electric ( E% ) field used to evaluate the stiffness matrix 

is computed by a weighted average of the standard strain and electric field of the finite element 

method. In particular, at an arbitrary point x
k
 in a smoothing element domain kΩ , they are 

approximated as follows. 
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where kΦ  is a smoothing function that is here chosen as a constant function 
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in which ∫Ω Ω=
k

dA
k  is the area of the smoothing cell kΩ .  

Two schemes are proposed to transform original finite elements into smoothing domains kΩ  

(smoothing elements) in which the smoothing operation of the SCNI is performed. The first 

scheme forms the so-called cell-based element approach and the second the node-based element 

approach. The two approaches are illustrated in detail in Figure 1. 

Substituting kΦ  into Equation (17) – (18) and applying the divergence theorem, we obtain a 

smoothed strain and smoothed electric field in the domain kΩ  as 
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where k

u
n and k

φn are matrices associated with unit outward normal to the boundary kΓ , 
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and ( )u x , ( )xφφφφ  are approximated function as in Equation (5) – (6). 

 

Figure 1. Details of smoothing elements: (a) Cell-based element: each element is divided into 4 smoothing 

cells, (b) Node-based element: each smoothing cell associated with a node is built by connecting midside 

points with centroidal points of original elements surrounding the node. 

 

By introducing the finite element approximation of u and φφφφ, Equation (20)–(21) can be transformed 

in the matrix form as follows. 

1

( ) ( )
nk

k k i k

u i

i=

=∑ε x B x q%% ,               (23) 

1

( ) ( )
nk

k k i k

i

i

φ
=

= −∑E x B x% % φφφφ ,               (24) 

where nk is the number of nodes connecting directly to node k (node-based element approach) or 

the number of subcells (cell-based element approach),  
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When bilinear quadrilateral elements are used for modelling, a linear completed displacement field 

along the boundary kΓ  is guaranteed. Therefore, one Gaussian point is sufficient for accurate 

boundary integration along each line segment k
iΓ  of the contour kΓ  of the domian kΩ , and 

Equations (25) – (26) can be evaluated as 
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where nb is the total number of the line segments of the contour kΓ , G
bx is the midpoint (Gauss 

point) of each line segment k
bΓ , whose length and outward unit normal are k

bl and kn , respectively. 

Finally, the element stiffness matrices in Equations (12) – (14) can be rewritten as follows. 
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4. Numerical examples 

In this section, two examples are employed to demonstrate and assess the performance of two 

smoothing elements as applied to the linear static analysis of two-dimensional piezoelectric 

structures. The node-based smoothing piezoelectric element is denoted as NSPE-Q4 and the cell-

based one as SPE-Q4. 

A piezoelectric (PZT-5) strip, polarized in the z-direction, under a combined loading of pressure 

and applied voltage is analyzed (Figure 2). Two types of combined loads corresponding to shear 

and bending behaviour are considered, respectively. The material PZT-5 is used for the problems 

and its properties are 
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(a) (b) 

Figure 2. A piezo-strip under different combined loads: (a)shear deformation and (b) bending 

deformation. 

The boundary conditions for the piezo-strip in shear are 
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and the boundary conditions for the piezo-strip in bending deformation are 
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The analytic solutions for these problems can be found in Gaudnzi and Bathe (1995). In the 

calculation, we set L= 2h= 1 mm, σo= -5 N/mm
2
, σ1= 20 N/mm

2
 and V0= 1000V.  

Two meshes, one with 8×8 uniform elements and the other with 8×8 distorted elements, are 

considered in this analysis as shown in Figure 3. 
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(a) (b) 

Figure 3. Typical meshes of a piezo-strip: (a) regular elements and (b) irregular elements. 

All the numerical results of the piezo-strip in shear are compared with corresponding analytic 

solutions and plotted together in Figures 4 – 6. 
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(a) (b) 

Figure 4. A piezo-strip in shear: (a) u-displacement distribution, (b) u-displacement error. 
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Figure 5. A piezo-strip in shear: (a) w-displacement distribution, (b) w-displacement error. 
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Figure 6. A piezo-strip in shear: (a) φ-electric potential, (b) φ-electric potential error. 

It can be seen that all the computed displacements and electric potentials for both meshes and for 

both elements are in good agreement with analytic solutions.  

For a uniform mesh, it is observed that the performance of SPE-Q4 element and NSPE-Q4 element 

achieves similar predictions. However, for the distorted mesh, the accuracy of SPE-Q4 for 

displacements is better than that of the NSPE-4 as can be seen from Figure 4b–5b.  
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Analytic solution

NSPE−Q4 (regular mesh)

SPE−Q4 (regular mesh)

NSPE−Q4 (irregular mesh)

SPE−Q4 (irregular mesh)

 

(a) (b) 

Figure 7. A piezo-strip in bending: (a) u-displacement distribution, (b) u-displacement error. 
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Analytic solution
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(a) (b) 

Figure 8. A piezo-strip in bending: (a) w-displacement distribution, (b) w-displacement error. 
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The numerical results for the piezo-strip in bending are illustrated in Figure 7–9. As can be seen, 

both computed displacements and electric potential match well the exact solutions for SPE-Q4 

element as well as NSPE-Q4 element.  

Once again, the SPE-Q4 element demonstrates better performance with respect to displacement 

fields than that of the NSPE-Q4 for the distorted mesh.  For the uniform mesh, both elements 

perform nearly equally well. 
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Figure 9. A piezo-strip in bending: (a) φ-electric potential, (b) φ-electric potential error. 

5. Conclusions 

Two efficient piezoelectric elements based on nodal integration finite element techniques are 

developed and presented for linear static analysis of 2D piezoelectric solids. Numerical solutions 

are verified by excellent agreement with analytic solutions. Particularly, the present method can 

yield accurate results even with extremely distorted meshes. 

6. References 

Allik, H., Hughes, T. (1970). Finite element method for piezoelectric vibration. International 

Journal for Numerical Methods in Engineering, 2, pp. 151–157. 

Chen, J., Wu, C., and You, Y. (2001) A stabilized conforming nodal integration for Galerkin 

meshfree method. International Journal for Numerical Methods in Engineering, 50, pp. 435–466. 

Dai, K. Y. and Liu, G. R. (2007a). Free and forced vibration analysis using the smoothed finite 

element method (SFEM). Journal of Sound and Vibration, 301 (3–5), pp. 803–820. 

Dai, K. Y., Liu, G. R., and Nguyen T. T. (2007b). An n-sided polygonal smoothed finite element 

method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design, 43(11-12), pp. 847-

860. 

Gaudnzi, P., and Bathe, K. J. (1995). An iterative finite element procedure for the analysis of 

piezoelectric continua. Journal of Intelligent Material System Structures, 6, pp. 266–273. 

Lim, C. W., and Lau, C. W. H. (2005). A new two-dimensional model for electro-mechanical 

response of thick laminated piezoelectric actuator. International Journal of Solids and Structures, 

42, pp. 5589–5611. 

Liu, G. R., Dai, K. Y., Lim, K. M., and Gu, Y. T. (2002). A point interpolation mesh free method 

for static and frequency analysis of two-dimensional piezoelectric structures. Computational 

Mechanics, 29, pp. 510–519. 

Liu, G. R., Dai, K. Y., Lim, K.M., and Gu, Y. T. (2003): A radial point interpolation method for 

simulation of two dimensional piezoelectric structures. Smart Materials and Structures, 12, pp. 

171–180. 



9 

Liu, G. R., Dai, K. Y., and Nguyen, T. T. (2007a). A smoothed finite element method for 

mechanics problems. Computational Mechanics, 39(6), pp. 859–877. 

Liu, G. R., Nguyen, T. T., Dai, K. Y., and Lam, K. Y. (2007b). Theoretical aspects of the smoothed 

finite element method (SFEM). International Journal for Numerical Methods in Engineering, 71, 

pp. 902–930. 

Mackerle, J. (2003). Smart materials and structures – an finite element approach - an addendum: a 

bibliography (1997-2002). Modelling and Simulation in Materials Science and Engineering, 11, 

pp. 707–744. 

Nguyen-Van, H., Mai-Duy, N., and Tran-Cong, T. (2008a). A smoothed four-node piezoelectric 

element for analysis of two-dimensional smart structures. CMES: Computer Modeling in 

Engineering & Sciences, 23(2), pp. 209-222. 

Nguyen-Van, H., Mai-Duy, N., and Tran-Cong, T. (2008b). Analysis of piezoelectric solids with an 

efficient node-based smoothing element. The 8
th
 World Congress on Computational Mechanics 

(WCCM8), June 30 –July 5, 2008, Venice, Italy. 

Nguyen-Van, H., Mai-Duy, N., and Tran-Cong, T. (2008c). A node-based element for analysis of 

planar piezoelectric structures. CMES: Computer Modeling in Engineering & Sciences (accepted) 

Ohs, R. R., and Aluru, N. R. (2001). Meshless analysis of piezoelectric devices. Computational 

Mechanics, 27, pp. 23–36. 

Sladek, J., Sladek, V., Zhang, C., Garcia-Sanche, F.,and  Wunsche, M. (2006). Meshless Local 

Petrov-Galerkin Method for Plane Piezoelectricity. CMC: Computers, Materials & Continua, 4(2) 

pp. 109–117. 

 


