
A Model, Schema, and Interface for Metadata File Systems

Stijn Dekeyser Richard Watson Lasse Motrøen

University of Southern Queensland, Australia
{dekeyser,rwatson}@usq.edu.au, lassemot@yahoo.com

Abstract

Modern computer systems are based on the tradi-
tional hierarchical file system model, but typically
contain large numbers of files with complex interre-
lationships. This traditional model is not capable of
meeting the needs of current computer system users,
who need to be able to store and retrieve files based
on flexible criteria. A metadata file system can asso-
ciate an extensive and rich set of data with a file, thus
enabling more effective file organisation and retrieval
than traditional file systems.

In this paper we review a wide range of existing
proposals to add metadata to files and make that
metadata available for searching. We then propose
a hierarchy of definitions for metadata file systems
based on the reviewed prototypes. We introduce a
data model for a database-oriented pure mdfss com-
plete with operations and semantics. The model sup-
ports user-initiated instance and schema updates and
file searches based on structured queries. We also
explore the design space of a set of user interface op-
erations intended to implement the pure model and
facilitate the capturing of rich metadata. We argue
that without such a simple method for users to cre-
ate rich metadata, progress in this field will remain
limited.

Keywords: Operating systems, Advanced applica-
tions of databases, Metadata.

1 Introduction

Traditional file systems store simple file metadata;
a predefined set of data, mostly maintained by the
operating system, is held in directories and file
control blocks (e.g. inodes). Apart from assigning
file names, users can effectively specify metadata
by creating a directory hierarchy. The file path
may encode some metadata. For instance the
path courses/csc2404/07/s2/ass1/1234/sync.c
assigns the following attributes to the file sync.c:
course=csc2404, year=2007, semester=2, stu-
dentId=1234, assignmentNum=1, filename=sync,
filetype=Csource. The ability to search based on
attributes is limited as these attributes are stored
hierarchically, and accessed via a path specification.
It is a simple matter to build a search query that
specifies all attributes in a file’s path; this will yield
all files in a directory. In our example, it is easy
to locate all student assignment submissions for a

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

particular offer of a course. However, a query that
seeks to find all submissions for a particular student
in a given semester is not supported.

To further explore these problems, consider the
following common scenario. Bill has a multitude of
music and image files on his personal computer and
wants to organise his collection such that he can find
and relate files easily. Using a traditional folder ap-
proach leads to various problems. The multimedia
files can be placed in folders named according to sev-
eral properties such as genre, year, band name, and
location of photo. As discussed above, using hier-
archical folders means that Bill loses the ability to
search for files from different perspectives. He could
populate the folders with soft links (or shortcuts) to
the actual music files, but this would create an un-
acceptable burden of managing such links. Bill has
installed third-party applications such as Google Pi-
casa (for his image files) and RealPlayer (for his mu-
sic files). These applications manage the organisation
of files into groups based on the value of a property
like “genre”, which addresses the shortcoming of the
folder approach. However it offers no solution if Bill
wishes to link an image file to to a music file or if he
wants to add his own metadata fields to a file.

This scenario demonstrates that organising mul-
timedia using a traditional hierarchical file system,
even when enhanced with specific applications, often
proves to be impractical. The problem is not limited
to multimedia as every type of file can have a large
collection of metadata associated to it which can be
used to organise the file space.

Problem Statement Simply stated, the first prob-
lem we address is that users must be able to manage
files such that they can be located effectively at some
future time. We need to be able to search for a file
using multiple pathways (or search criteria). For ex-
ample, we may use keywords that have been auto-
matically extracted from the file, or attribute values
(assigned by system or user), or links to related files,
to seek the target file. A design for a metadata file
system must include both the metadata storage model
and appropriate user interfaces to allow a user to eas-
ily locate a file based on its metadata.

Critically, the second problem that we address is
that a successful metadata file system must feature a
user interface that allows users to easily assign mean-
ingful and rich metadata. Requiring the user to create
every piece of metadata through keyboard entry will
almost certainly impede the adoption of such poten-
tially revolutionary systems.

Existing Work Recently the advent of social net-
working websites that let users share images (e.g.
Flickr) and video (e.g. YouTube) has demonstrated
novel ways of organising multimedia. Such applica-
tions use the simple concept of tags to let users assign

metadata to their files, and allow others to search for
files easily. On the users’ own computers, more ad-
vanced applications such as Picasa and Google Desk-
top offer automated collection of metadata and use
localised databases to store metadata and use it in
search. Solutions proposed by researchers in the past
decade took a more comprehensive approach by ex-
tending file systems with metadata functionality. On
the commercial side, Microsoft is attempting1 to im-
plement a metadata file system called WinFS. We re-
view these efforts in Section 2.

Contribution It is clear that various approaches to
create, manage, and use metadata for files are being
considered and developed, and that there is no single
solution currently available that has wide adoption or
satisfactorily solves all issues. In this paper we review
a wide range of existing proposals to add metadata
to files and make that metadata available for search-
ing. We then propose a taxonomy for metadata file
systems based on the reviewed prototypes. We in-
troduce a data model for a database-oriented pure
mdfs complete with operations and semantics. We
explore a number of interesting and non-trivial issues
that must be solved before a full-scale pure mdfs can
be implemented. We also discuss two prototype im-
plementations of our model and outline user interface
interactions to capture rich metadata.

As evidenced by the fact that a major software
company has not been able to deliver one after many
years of work, it is clear that creating a truly useful
and powerful mdfs is a daunting task. The problems
are likely not only technical, but also of a more human
nature (complexity for users, compatibility issues for
businesses, etc). We therefore present our work as a
modest step and as a basis for future extensions.

Note that the work presented in this paper is,
within the context of computer science, of a highly
multidisciplinary nature, drawing on results from
multimedia systems, databases, programming lan-
guages, file systems, and human-computer interfaces.

2 Review of Existing Proposals and Systems

In this section we present existing systems and re-
search proposals that attempt to overcome some of
the shortcomings that are present in traditional hier-
archical file systems. They include file systems specif-
ically designed to make use of metadata and applica-
tions that make use of existing file systems to organ-
ise files. Due to space restrictions we refer the reader
to [15] for a more detailed review of these and other
systems (e.g. Nebula [3], Windows Media Player, etc).

Google Desktop Google Desktop provides a set
of features that allows users to search for content on
their computers, based on file name and, for some file
types, content as well. When Google Desktop is in-
stalled on a system, it automatically indexes files on
the computer. The index of words extracted from file
names and, where possible, file content are stored in
a local database. When new files are added to the
system, or files are modified, the index is updated.
Google Desktop relies on keyword search rather than
structured queries. A search will retrieve a list of
documents which are to some extent relevant to the
keywords entered by the user. Hence, both the user
interface and the kind of results are similar to those
in the Google web search engine. A significant limita-
tion is that users are not able to modify any metadata

1Both the history and future of WinFS is relatively opaque.
Contrary to earlier plans, it has not been shipped with Microsoft’s
Windows Vista operating system.

associated with a file. This can only be done by al-
tering the file itself which will result in re-indexation.
Windows Desktop Search is a similar system, based
on the research prototype Stuff I’ve Seen (SIS) [7].

MIT Semantic File System The MIT Semantic
File System [11] is one of the first file systems to ad-
dress the shortcomings of traditional tree structured
file systems. The main aim of the MIT Semantic File
System (SFS) is to allow users to access files based
on file content, as well as accessing files by name.

MIT SFS is designed to be integrated into a tree
structured file system and it does so through the con-
cept of virtual directories. Each virtual directory is
interpreted as a query and contains symbolic links to
the actual files stored in the underlying file system.

In order for SFS to provide file access based on file
content (to make use of virtual directories as queries)
the content of a file needs to be extracted. SFS does
this by associating each file type with a transducer
program that will extract the relevant metadata from
files in the system. Each file type will have a specific
transducer, and each transducer will be specifically
designed to extract desired attributes and values from
a file type. For example, a transducer for an email
file may extract attributes “To”, “From” and “Sub-
ject”. MIT SFS comes with a set of default transduc-
ers that can handle the most common file types, but
users are also able to implement their own transduc-
ers. A transducer table is used to determine which
transducer to use for a certain file type.

Gifford et al. [11] outline some of the shortcom-
ings of MIT SFS. The first point mentioned is that of
the query language that each virtual directory can be
associated with. MIT SFS offers only a basic query
language that prohibits users from using boolean op-
erators (such as ‘OR’, ‘AND’, etc.) to specify their
queries. Users are also unable to assign metadata to
files manually. It is also recognised by [11] that a more
expressive data model should be utilised, instead of
relying on simple attribute-value pairs.

To some extent, the open-source project
MoveMetaFS [16] is similar to MIT SFS. The
MMFS allows users to associate a set of tags to a file.
The tags can be queried in a simple manner. The
project mainly focusses on user interface operations
to tag files, using a similar, but more limited,
technique as we coined in [6] and describe in more
depth in Section 7.

Haystack The Haystack project [12] is mainly
based on the argument that developers cannot pre-
dict the ways a user wants to utilise information. All
users have different needs and preferences when it
comes to accessing information. Users should be able
to specify relationships between different information
objects, how these relationships should be presented,
and how information should be gathered. Haystack
currently accomplishes the required flexibility by stor-
ing all data using RDF [13]. Metadata for information
objects in Haystack is initially automatically captured
when a file is added to the system. It does so by gen-
erating RDF data using an extractor similar to MIT’s
transducer. The user interface for Haystack also al-
lows users to easily modify metadata associated with
files.

Aside from significant performance issues, an im-
portant shortcoming of the Haystack system is the
absence of an API that other applications may use.
Users have to interact with Haystack using its own
user interface.

WinFS WinFS, like Haystack, attempts to offer a
file system that allows information objects to be dy-

namically related to other information objects. Ob-
jects in WinFS can range from files of various types
to persons, meetings, locations, etc., and they are
all treated as information objects. The WinFS data
model offers a rich set of operations that lets appli-
cations create, modify and query information objects,
and is implemented on a relational database back-end.

WinFS allows applications to modify metadata
stored in WinFS along with the schema for each infor-
mation object, but offers only limited functionality to
end-users. We argue that this unnecessarily curtails
the usefulness of the system.

A less comprehensive open source project similar
to WinFS is GNOME Storage which also uses a re-
lational database backend. However, Storage focuses
more on end-user keyword search rather than applica-
tions formulating structured queries. For more infor-
mation on Storage and other systems we again refer
the reader to [15].

Graffiti Graffiti [14] is a distributed organisation
layer that augments an existing file system to add
user-defined metadata and provide sharing of meta-
data across users and hosts. Graffiti supports the
association of a simple text string tag with either a
file or a pair of files (a named link). Apart from a
linking capability, this differs from the common tag-
ging systems (e.g. Flickr) in that it is generic rather
than application-specific. Command line and graphi-
cal interfaces are provided.

While its metadata structure is unsophisticated,
Graffiti addresses the problem of sharing files and
metadata with some success. File checksums are used
to ensure that a file and its metadata can be synchro-
nised across multiple platforms. See section 5.2 for
more discussion.

Linking File System The Linking File System [1]
(LiFS) is a prototype implemented on top of a Linux
filesystem. It augments a traditional file system with
user specified attributes on files, and links between
pairs of files. Links also have an associated set of at-
tributes. The attributes are key/value pairs. LiFS
implements the concept of a file trigger, which is an
executable file attribute, encoded as a pattern/action
pair. When a file operation occurs that matches
the pattern, the associated action is executed. This
generic mechanism is similar to the MIT SFS’s trans-
ducer concept and could be used to implement the
automatic collection of metadata (see Section 4.3).

The LiFS approach addresses the requirements of
storing arbitrary user metadata. However, the ab-
sence of a metadata schema is an obstacle to the cre-
ation of advanced user interfaces, and implementa-
tion of powerful search queries. LiFS does not accom-
modate either specialisation of metadata for related
file types through inheritance, or the ability to create
non-file objects that could be linked to files. While
the LiFS model is expressible using a database style
model like WinFS, or that described in this paper,
the reverse is not true.

3 A Taxonomy of Metadata File Systems

The full review of existing proposal and systems [15]
brings to light a number of features which can be used
to classify the systems into categories, and assist in
constructing a taxonomy for a variety of metadata file
systems and applications.

Data Model The data model for the reviewed sys-
tems ranges from attribute-value pairs over a re-
lational model to RDF graphs.

Metadata–Filesystem integration Some appli-
cations maintain metadata in special purpose
databases, and offer no filesystem functionality
(e.g. for launching files). More advanced systems
integrate the storage of metadata within the file
system itself, and also offer rich operations on
files.

Metadata Capture and Modification Most sys-
tems implement the concept of the MIT SFS
transducer to capture metadata automatically.
Few systems allow users to modify the metadata
manually. Hence, rich metadata that is impracti-
cal to capture automatically (e.g. appearance of
persons in images) is often neglected (some ap-
plications will allow users to add information in
a predefined “comments” field).

Metadata Schema Modification very few sys-
tems allow users (or even applications) to mod-
ify the schema of the metadata store. Hence it
is often impossible to create new types, new at-
tributes, or new relationships between types.

Dynamic Views Only a few systems support the
concept of dynamic views of objects defined by
metadata properties. In addition, the expressive
power of the view definition language is very lim-
ited.

We now propose a hierarchical classification of meta-
data file systems and applications.
Definition 1 (Metadata Enabled Application).
A Metadata enabled application is a stand-alone soft-
ware package that runs on top of a host file system
and has the following properties:

1. Manages its own database of metadata for files
of a limited number of types.

2. Has a user interface that allows files to be or-
ganised based on the metadata, and allows users
to search for files using keywords or simple
attribute-value comparison.

Such applications typically lack the ability to re-
late files of different types and to modify the schema
of the metadata store. Examples of such tools include
Google Picasa, Windows Media Player, Graffiti, and
even MIT SFS.
Definition 2 (Rich Metadata Applications). A
rich metadata application supports the features of a
metadata enabled application and also runs on top of
an existing file system. It has the following additional
features:

1. Allows end-users full power to manage meta-
data previously captured automatically, and al-
lows users to relate files of different types.

2. Allows the schema for the metadata store to be
modified.

Such applications typically lack an API that other
applications can use, and are not well integrated with
the host filesystem. Examples of rich metadata ap-
plications include Nebula and Haystack.
Definition 3 (Metadata File Systems). A Meta-
data file system (mdfs) supports the features of a
rich metadata application but is tightly integrated with
the traditional features of a filesystem. In addition it
uses an expressive data model (i.e. relational, object-
relational, object-oriented, or semi-structured), and
has a comprehensive API to be used by third-party
applications. Examples of such systems include Mi-
crosoft’s WinFS and GNOME’s Storage.

Finally we present the definition used in the re-
mainder of this paper.
Definition 4 (Pure Metadata File Systems). A
Pure metadata file system is an mdfs built on an
object-oriented data model and features a powerful
generic graphical user interface allowing end-users to
fully manage metadata and schema modification.

WinFS is not a pure mdfs because it is aimed
towards software developers rather than end-users.
While Microsoft’s policy has the advantage of simpli-
fying implementation and has the potential of mak-
ing the introduction of WinFS on the desktop more
palatable, we take the view that it is unnecessarily
restrictive and misses the opportunity to present end-
users with a potentially revolutionary new approach
to file management. Indeed, users of WinFS will need
to rely on applications to capture and use metadata
and especially on their provisions to associate files of
various types. Hence, users will not have access to a
generic file browser for this functionality.

4 A Model for a Pure MDFS

In this section we present the formal definition of a
data model for a metadata file system. What form
should such a model take? A model must support the
association of named attributes to files, and also have
the ability to record relationships between files. A
metadata file system must also support non-file enti-
ties (e.g. Persons) in order to be able to store complex
metadata. A key feature of a pure metadata file sys-
tem is that users can extend the metadata structure,
typically by specialising an existing entity. Special-
isation can be implemented using inheritance. The
features described so far correspond closely with the
entity-relationship data model. However, we will also
need to provide special behaviour to entities (see Sec-
tion 4.3).

In essence then, the data model we use at the low-
est level is almost a subset of the ODMG Object
Model [17, 5]. A significant departure from the
ODMG model is that the deletion of a class from the
schema has novel and unusual semantics. As class
deletion implies object deletion, removing a class in
the usual manner could also remove files. We define
a more sophisticated delete operation (section 4.2.1)
that does not result in file deletion.

We support the functions of a metadata file sys-
tem by defining a series of schemas over the data
model. Such schemas naturally form a hierarchy, with
the base level ignoring concrete issues such as built-
in classes and relationships, an fundamental file at-
tributes. Schemas at higher levels are defined through
extending the base level with new classes and at-
tributes, mostly through inheritance. The next level
in the hierarchy shown in Figure 1, the minimal
schema, provides generic classes, file attributes and
relationships. It is the minimum system that could
be employed by users of an operating system which
includes an mdfs file system.

In many cases this vanilla file system will be ex-
tended by operating system vendors and distribu-
tors to meet their requirements, for example shipping
standard multimedia and word processing document
classes and built-in relationships between email and
person classes. Organisations could further extend
the metadata schema to meet corporate and project
specific needs. Finally, individual users can add to
the hierarchy of classes if needed.

The rich hierarchy of built-in classes and relation-
ships in the schema that end users will obtain with

Figure 1: Filesystem schema levels

their OS, means that a possible proliferation of mutu-
ally incompatible schemas is somewhat mitigated. In
addition, any two MDFS volumes will share at least
part of the class hierarchy, making data and schema
integration issues less of a problem. We discuss this
further in Section 5.

We will now define models for a schema and instance
of a schema. The operations defined over the schema
and instance are the application programming inter-
face (API) to the metadata file system. Like their
counterparts in a traditional file system, these would
be implemented as system calls and execute in kernel
space.

4.1 Data Model

The data model is class based, with relationships and
simple inheritance. A schema defines classes and re-
lationships between classes. Classes are also elements
of an inheritance tree that is part of a schema. In the
minimal schema we distinguish between classes that
are associated with files (fileable) and those that are
not (abstract). An instance over a schema defines in-
stances of classes (objects) and relationship instances.

4.1.1 Names, identifiers, and values

The sets of possible class, relationship, attribute, and
type names are respectively: class, rel , att and type.
Objects and files are identified by members of the
sets oid and fid , whereas value is the set of values. If
type = {t1 . . . tn} and dom t is the set of values asso-
ciated with type t , then value = dom(t1)∪ dom(t2)∪
. . .dom(tn). Each type contains a NULL value.

4.1.2 Schema definitions

A schema defines classes, organised into a specialisa-
tion hierarchy, and relationships between classes. We
define the schema as the triple (class function, hier-
archy relation, relationship relation). We define three
supplementary functions on classes P (parent), S (su-
perclass), and A (attribute), that are used in defining
the schema operation semantics, and the instance se-
mantics.

Each class introduces new attributes (class func-
tion C below), and instances of a class (objects) will
contain the union of attributes defined by all ances-
tor classes. A class also inherits relationships from its
ancestors.

S The schema S = (C ,R,H).

C The class function C : class 7→ (att 7→ type).

H The class hierarchy H ⊆ class × class such that
H is the set of branches between classes, forming
a single, rooted tree. Hence (c1, c2) ∈ H means

that c2 inherits directly from c1, or c1 is the par-
ent class of c2 (see P below).
∀(c1, c2) ∈ H • dom(C (c2)) ∩ dom(A(c1) = ∅.
That is, subclasses can only extend a superclass
definition.
A few classes and a small hierarchy is pre-
defined in the minimal schema (the base schema
is empty). There is a single root class (TC),
which has two subclasses (FC and AC). All user-
created classes in the schema inherit from one of
these two subclasses.

TC The root of H . TC ∈ class.
C (TC) = {creationTime 7→ time}

FC The ‘fileable’ superclass FC ∈ class.
(TC ,FC) ∈ H .
C (FC) = {fileId 7→ fid}

AC The ‘abstract’ superclass AC ∈ class.
(TC ,AC) ∈ H ∧ TC 6= FC

R The set of relationships R ⊆ rel × class × class.
A class inherits its ancestors’ relationships, so
the same relationship cannot be defined for the
descendant classes.
∀(r , c1, c2) ∈ R • ¬∃(r1, c3, c4) ∈ R • r =
r1 ∧ c3 ∈ S (c1) ∧ c4 ∈ S (c2).

P The parent function on classes P : class 7→ class.
P = H−1.

S The superclass function S : class → P class.
S = P+.

A The attribute function on classes.
A : class 7→ (att 7→ type).
A(c) = {(a, t) | c′ ∈ S (c) ∧ (c′′, f) ∈ C ∧ c′ =
c′′∧(a, t) ∈ f }. A(c) defines the attributes, some
inherited from superclasses, of an object instance
of c.

4.1.3 Instance

The instance of a schema is modelled by a set of func-
tions that encode the state of objects (O), and provide
a means of identifying objects (IC), and relationship
instances (IR). We also present definitions for two
functions on object identifiers that are used to reveal
the type (T) of the associated class, and its attributes
(AO). These are used in defining the semantics of the
instance operations.

I The instance of schema S. I = (O , IC , IR).

O The object function O : oid 7→ (att 7→ value).
The familiar object.attribute field access notation
can be used as a shorthand:
∀ o : oid , a : att • o.a = O(o)(a)

IC The instance function identifies objects that have
been created as an instance of a class.
IC : class 7→ P oid .
∀ c1, c2 ∈ class • c1 6= c2 ⇒ IC (c1) ∩ IC (c2) = ∅.
(Object is instance of just one class.)
∀(c, s) ∈ IC • ∀ o ∈ s • dom(A(c)) =
dom(O(o))
∀(c, s) ∈ IC • ∀ o ∈ s • ∀ a ∈ dom(O(o)) •
O(o)(a) : A(c)(a)
(A class instance contains precisely the attributes
of its instantiating class.)

IR The relationship instance function
IR : (rel × class × class) 7→ P(oid × oid).
∀(r , c1, c2) ∈ R • ∀(o1, o2) ∈ IR(r , c1, c2) • c1 ∈
T (o1) ∧ c2 ∈ T (o2).

T The type function on object identifiers
T : oid 7→ P C .
T = S ◦ I−1

C
T (o) is a set that includes the class c that was
used to instantiate o as well as all the super-
classes of c.

AO The attribute function on object identifiers.
AO : oid 7→ (att 7→ type).
AO = A ◦ I−1

C .

4.2 Operations

The following operations are sufficient to maintain the
schema and an instance of a metadata store. Their
semantics are defined with respect to the data model.

For each operation we show state transformations,
the return value and, if the operation is partial, the
exception condition. A transformation of a relation
X is typically described as X ′ = f (X), where X is
the state of X before the operation and X ′ the post-
operation state.

4.2.1 Schema Operations

The following operations populate a schema. Note
that the schema “delete” operations also affect the
instance. The delete class operation is very powerful
and has interesting semantics. It removes the nomi-
nated class and all subclasses, and any relationships
that relate those classes. Class deletion removes in-
stances of deleted relationships, but objects are not
deleted. Objects are instead recast as instances of the
parent of the class being deleted. This will result in
deletion of some attribute values.
The initial state of the minimal schema is:

S = {{ TC 7→ {creationTime 7→ time},
FC 7→ {fileId 7→ fid},
AC 7→ ∅

},
∅,
{ (TC ,FC), (TC ,AC)}
}

createClass(c, p,m): class×class×P(att×type) → bool
C ′ = C ∪ {c 7→ m}
H ′ = H ∪ {(p, c)}
Returns: c 6∈ domC ∧ p ∈ domC

deleteClass(c): class → bool
C ′ = C −C D
H ′ = {(p, c) | (p, c) ∈ H ∧ p 6∈ D ∧ c 6∈ d}
R′ = {(r , c1, c2) | (r , c1, c2) ∈ R ∧ c1 6∈ D ∧ c2 6∈ D}
O ′ = O ⊕ {(o,O(o) C domA(P(c))) | c ∈ T (o)}
I ′C = IC −C D
I ′R = IR −C {(r , c1, c2) | (r , c1, c2) ∈ R ∧ (c1 ∈
D ∨ c2 ∈ D)}
Returns: c ∈ domC

where D = {c} ∪ {x | c ∈ S (x)}
createRelation(r , c1, c2): rel × class × class → bool

R′ = R ∪ {(r , c1, c2)}
Returns: (r , c1, c2) 6∈ R

deleteRelation(r , c1, c2): rel × class × class → bool
R′ = R \ {(r , c1, c2)}
I ′R = IR −C {(r , c1, c2)}
Returns: (r , c1, c2) ∈ R

4.2.2 Instance Operations

Operations that access the files, but do not update
metadata, are not presented here. A small set of op-
erations (open, close, read ,write, and position) would
be required; only write is likely to affect the contents

of the metadata store; we discuss this is section 4.3.
Note also that the createFile and deleteFile opera-
tions defined below reflect only the metadata store
semantics. createFile would create a zero length file
in the file store, and deleteFile would remove a file
from the file store. Initially, I = {∅, ∅, ∅}

createObject(c): class 7→ oid
O ′ = O ∪ {(o, {(a,NULL) | a ∈ dom(A(c))})} where
o ∈ oid ∧ o 6∈ domO
Exception: c 6∈ domC
Returns: o

deleteObject(o): oid → bool
O ′ = O −C {o}
I ′R = {(r , x1, x2) | (r , x1, x2) ∈ IR ∧ o 6= x1 ∧ o 6= x2}
Returns: o ∈ domO

createFile(o): oid → bool
Returns:
FC ∈ T (o) ∧ o.fileId = NULL ∧ setAtt(o,fileId , f)

where f ∈ fid ∧ ¬∃ o • o.fileId = f
deleteFile(o): oid → bool

Returns: FC ∈ T (o) ∧ setAttr(o,fileId ,NULL)
setAtt(o, a, v): oid × att × value → bool

O ′ = O ⊕ {(o,O(o)⊕ {(a, v)})}
Returns: o ∈ domO ∧a ∈ domAO(o)∧ v : AO(o)(a)

getAtt(o, a): oid × att 7→ value
Exception: o 6∈ domO ∨ a 6∈ domO(o)
Returns: o.a

relate(r , o1, o2): rel × oid × oid → bool
I ′R = IR ∪ {((c1, c2, r), (o1, o2)) | (r1, c1, c2) ∈
R ∧ r = r1 ∧ c1 : T (o1) ∧ c2 : T (o2)}
Returns:
∃(r1, c1, c2) ∈ R • r = r1 ∧ c1 : T (o1) ∧ c2 : T (o2)

unrelate(r , o1, o2): r × oid × oid → bool
I ′R = IR \ {(r , o1, o2)}
Returns: (r , o1, o2) ∈ IR

isClass(c): class → bool
Returns: c ∈ domC

isAtt(c, a): class × att → bool
Returns: a ∈ domA(c)

isInstance(o, c): oid × class → bool
Returns: c ∈ T (o)

isRelated(r , o1, o2): rel × oid × oid → bool
Returns:
∃(r1, c1, c2) ∈ R • c1 ∈ T (o1) ∧ c2 ∈ T (o2) ∧ r1 = r

search(c, f): class × F → P oid
Returns: {o | o ∈ isInstance(o, c) ∧ F}
F is a formula with the following syntax
F ::= atom | F ∧ F | F ∨ F | ¬F

| ∃ o • F | ∀ o • F
atom ::= isInstance(o, c) | isRelated(r , o, o)

| o.a Θ o.a | o.a Θ k
where c : class, a : att , k : value are constants,
Θ : value × value → bool is a comparison operator
and o : oid is a object variable. All variables except
o in a query expression must be bound, and
expressions must be safe, meaning that they should
not return infinite sets.

Example Suppose classes Audio and Wedding exist,
as does a relationship MusicUsedInWedding. The fol-
lowing query returns all music by the band Abba lis-
tened to while attending a wedding in Oslo:
search(Audio, o.artist = ‘Abba’

∧ ∃w(isInstance(w , Wedding)
∧ w .location=‘Oslo’
∧ isRelated(MusicUsedInWedding, o,w))).

4.3 Extending the Model with mdfs Trans-
ducers

In [15] we detail the extension of our model with an
active component; due to space constraints we give

an informal description.

Firstly, the model’s class attributes are extended with
system flags. The flag implies access restrictions that
work in both the instance and the schema of the
model. On the instance side, values of system at-
tributes can be read but not modified by applications
and end-users. Modification can only be done by the
mdfs system as described further in this section. On
the schema side, system attributes cannot be removed
from classes, nor can they be modified.

Note that this is not a form of security (see Sec-
tion 5), as access is not determined on the basis of a
user’s ID. Instead, this flag only denotes that some
attributes are owned by the system and cannot be
modified through the interface.

Secondly, classes are extended with behaviour in the
form of mdfs Transducers. These are functions2 that
modify the values of an object’s system attributes.
The transducers are called each time an object’s as-
sociated file stream is modified (hence also when the
file is first created); to this end, the semantics of the
file write operation mentioned in section 4.2.2 is mod-
ified.

Transducers automatically assign metadata that
can (and indeed, should) be captured without user
interaction. For example, keywords for a text docu-
ment, the from field of email messages, or the dimen-
sions of an image. A transducer recursively calls the
transducer of its parent class, up to the top-most class
TC . This ensures that system attributes such as file
size and access time are updated automatically, in this
case by the transducers of FC and TC respectively.

Note that relationships between objects are not set
by mdfs Transducers. Indeed, these constitute meta-
data that requires user interaction. Also note that if
an application or end-user creates a new class that
contains system attributes, a transducer for the class
should also be supplied, otherwise the values of these
attributes will always be set to null. Finally, trans-
ducers may (but are not required to) also set values
of non-system attributes if they are currently null,
but these may be overwritten by end-users.

5 Multiple Users, Multiple Volumes

The model defined in Section 4 is intended for a sin-
gle user, single volume pure metadata file system. As
Figure 2 shows, this basic (or personal) environment
is but one of four possible combinations when the twin
axes of number of users and number of volumes are
considered. The ultimate goal of our research project
is to define a metadata file system that allows mul-
tiple users and communication with other volumes,
whether they be MDFS or other systems on the same
computer or accessible over a network. In this section
we briefly outline some of the issues involved.

5.1 Security Aware MDFS

When several users have access to the information
stored in a single MDFS volume, the system will need
to provide security. Traditional file systems employ
a role-based security method [8] to control read and
write access of files’ contents. They also impose a
very limited degree of security on metadata, in that
they can make directories unreadable for some users,
thereby hiding file names, sizes, etc. However, the
main focus is on securing access to the file’s bitstream.

2An mdfs transducer is a reserved class method similar to a
Constructor or Destructor in Object-Oriented programming lan-
guages.

Figure 2: Extending the basic MDFS model to sup-
port multiple users and multiple volumes.

Interestingly, database systems also employ role-
based security, but almost exclusively on the schema
level. A database’s information schema meta
schema contains a table that stores users’ privileges
on such objects as tables and attributes. Databases
do not offer security on the instance-level, where for
example a user could be prohibited to read or write a
tuple if the value of one of its attributes is a specific
string.

For metadata file systems, we need role-based se-
curity mechanisms that work on the file contents level,
the metadata level, and the schema level. It should
also allow the use of instance-dependent access rules.
For example, we may want to allow user A to write
the content of file f1 if the metadata field ‘owner’ is set
to A’s id, and the size of the file is less than 100 KB.
A second user B may be allowed to read metadata
associated with a file, but not to update it. Finally
a user C may be allowed to create a new class by in-
heriting from an existing class in the MDFS schema,
while other users are not.

We have studied instance-dependent access rules
in the context of another research project [4] and aim
to investigate their use in the context of metadata file
systems.

5.2 Network Aware MDFS

There are several scenarios for the use of more than
one file system volume. Consider that user A wants
to copy a file from a remote network volume into his
own MDFS volume. The remote volume may or may
not be a MDFS system on its own, but will have
some metadata associated to the file. In this sce-
nario, where both the file content and metadata is
copied to the local MDFS volume, the system, prob-
ably assisted to some degree by the user, needs to
decide on a suitable mapping of metadata from the
remote volume to the local volume.

Consider a second scenario, where two MDFS vol-
umes exist and communicate via a network. Ob-
jects and files exist in one location, but both systems
may use each other’s objects and files. Clearly this
scenario must solve the inherent schema integration
problem [2].

In a third scenario user B may want to store all ob-
jects and files locally, but the metadata for an object
is stored in a remote database. To make the exam-
ple more concrete, suppose that a university stores
data on its students in a central database, and indi-
vidual lecturers have objects in their MDFSs for each
of the students they teach. They can then create re-
lationships between word processing documents and
students in their local system. However, the student’s
metadata is accessed from the central database.

We note that Graffiti[14] is able to solve at least
the problems of the first two scenarios, but only be-
cause of the simple and uniform tag metadata struc-

ture. The Graffiti server is able to synchronise files
and metadata on two or more hosts because it does
not have to deal with the issue of integrating file sys-
tems with different metadata structures.

These scenarios outline different solutions to the
problem of letting a single MDFS volume communi-
cate with other data systems. Ideally, a complete
MDFS system will support each of the scenarios. We
are currently investigating a range of solutions in this
context.

6 Implementation Issues

6.1 Implementation Choices

Aside from storing files’ binary content, a Metadata
File System needs to store metadata and make it ac-
cessible through a query mechanism. The obvious tar-
get for implementing an MDFS is by using a database
management system for the metadata, combined with
a traditional file system to store file content. However,
there are several possible avenues for implementing
the model described in this paper. We briefly list
some of them.

Employing Databases Since at the core our
MDFS model is a subset of the ODMG Ob-
ject Model, the preferred implementation platform
is an ODMG-compliant object-oriented or object-
relational database. Such a database is ideally
equipped to handle class hierarchies and relation-
ships. The actual binary content of individual files
need not be stored in the database, however. It is
sufficient to store a pointer to a file’s inode in the
database, and let the underlying file system handle
subsequent file access. The database can natively
handle queries, and also determine whether views (or
Virtual Folders, as described in Section 7) are up-
datable. However, significant care must be taken in
optimising the database and integrating it with the
underlying file system.

Using WinFS Microsoft’s WinFS was a data stor-
age and management system based on a relational
database. It is therefore similar to the previous op-
tion. We have reviewed the system in Section 2. The
main advantage of using WinFS as an implementa-
tion base for a pure mdfs is that it natively supports
many of the features that we require. However, the
main disadvantage, apart from the incompleteness of
the project, is that the metadata schema is not updat-
able at run time. This means that new classes must
be compiled and made available as Dynamic-link Li-
braries. We argue that end users must be able to
modify the schema (in particular the ability to create
relationships) in order to achieve the full potential of
metadata file systems.

Extending File System architecture It is pos-
sible to modify the way in which current file sys-
tems store metadata. For example, the POSIX in-
ode structure could be extended to include a set of
attribute-name/value pairs, and a set of pointers to
other files. However, the notion of class with its spe-
cific attributes and its inheritance hierarchy would
still be lacking, reducing users’ power to model the
metadata schema. On the other hand, query effi-
ciency would be much less of an issue.

Use of links Soft links (or shortcuts) could be used
to virtually place one file in various directories, the
name of which represents a property of the file. As we

mentioned in the Introduction, managing the prolif-
eration of links and directories would be a significant
burden. In addition, relationships between files are
difficult to represent in this manner.

Tagging File and directory names can be used to
associate files with a set of tags. As mentioned in the
Introduction, tagging is currently enjoying significant
popularity in social web applications. Very likely this
is due to the inherent simplicity of the method. Some
of the metadata modelling power that we propose in
this paper can be simulated by tagging, but concepts
such as relationships pose a problem. In addition,
querying and keeping tags consistent becomes rather
convoluted.

6.2 Efficiency

This paper does not discuss efficiency issues as it con-
centrates on a model without bias towards any of the
possible implementation platforms discussed in the
previous section. However, it is clear that efficiency
will be one of the deciding factors in the success or
lack thereof of metadata file systems. We argue that
current database technology is sufficiently far evolved
to support the real-time data access needs required for
this application. In addition, the LiFS [1] approach
of storing metadata in new types of non-volatile main
memory is a promising avenue of research.

6.3 Prototypes

Lasse At present we have finished work on a first
tentative prototype of our model. The Lasse proto-
type was developed on top of a technology preview
of Microsoft’s WinFS. The main deliverable of Lasse
was an MDFS File Browser application which allowed
(1) the listing of objects in the MDFS file store, (2)
a simplified mechanism to capture rich metadata (see
Section 7), and (3) the creation of Virtual Folders
(view definitions). The MDFS File Browser under-
went a usability analysis by a number of staff in our
department, which provided our project with crucial
feedback to continue work on the model. The proto-
type also revealed the limitations of using WinFS as
an implementation platform, mainly in the difficulty
of letting users change the MDFS schema at run time.
Screenshots of Lasse are included in Figures 3 and 4.

Sam We are currently working on a second proof-
of-concept prototype, dubbed Sam. It is developed in
Linux using the fuse project which allows us to work
in user-space and reuse common file browser compo-
nents. We are using PostgreSQL as the database
backend to store metadata, while file content itself
will be stored in the default Linux file system. The
goal of Sam is to further explore user interface issues;
at first through a command-line interface, and later
through a graphical layer.

7 User Interface Design Decisions

In Section 4.3 we introduced mdfs Transducers
which, as in many commercial applications, handle
the automatic capture of metadata without the need
for user interaction. However, we argue that rich
metadata such as links between objects cannot be
captured automatically and requires user interaction.
We also claim that without an efficient and effective
generic GUI technique that helps end-users to rapidly
capture rich metadata, mdfs technology will not be
successful. In future work we will substantiate our
claim by performing a usability study on a number

of prototypes which we are implementing. In this
section we briefly describe several aspects that have
guided us in designing GUI operations for capturing
metadata as well as using it in search. Again we refer
the reader to [15] for more details.

Central in our approach is the concept of a virtual
folder, or dynamic View. The visual presentation of
a View is similar to a file browser (i.e. a table with
one row per file and columns for metadata attributes)
available in popular platforms, but Views have signif-
icantly different semantics. Files (or rather, fileable
objects) may appear in more than one View, while
being stored only once. A View is defined on the ba-
sis of a structured query (using the search function
described in Section 4) and is refreshed each time an
object (or set thereof) is “moved” in or out of the
View.

The move operation has a new meaning compared
to traditional file browsers, and plays a central role
in our approach for capturing rich metadata through
user interaction. Objects that are dragged into a View
will acquire metadata that is needed for the objects
to be in the result of the View’s definition. If this
process is successful the View, when refreshed, will
include the new objects. Hence, the View is updat-
able. There are several cases in which the process can
fail; (1) if the objects dragged into the View are of a
different type than the View’s definition, (2) if the
View definition is an unupdatable query, and (3) if
read-only attribute values must be changed in order
for the objects to appear in the result.

Following [9] we allow more complex queries to be
updatable than only those ranging over a single rela-
tion (class) and not using aggregation. In particular,
the joins that we use in Views contain the equivalent
of a where exists subquery and relate primary key
(object identifiers) only. Consider the query expres-
sion given in Section 4.2.2 and the end-user wanting
to drag a set of audio files into a View defined by that
query. If there is more than one wedding in the sys-
tem with location = ‘Oslo’, the GUI will prompt
the user for clarification. He may want to link the
new audio files to just one such wedding (the GUI
will display a list to choose from), or in some cases
opt for associating the audio files with all weddings
that took place in Oslo. As membership in the rela-
tionships is decidable at run time, such Views become
updatable as well.

Figure 3 illustrates the use of Virtual Folders as
a means to capture metadata through a move oper-
ation. The screenshots of the Lasse prototype show
that initially four Photo objects were selected from
the “Photos” Folder and subsequently dragged into
the Virtual Folder “Photos with Comments ‘Family
Holiday’”. The second screen then shows the con-
tent of the latter, and shows that the four objects
have obtained the necessary metadata to belong in
the Virtual Folder.

Views are persistent and can be organised into an
arbitrary hierarchy by end-users but can also be or-
ganised automatically. Since all Views are subsets of
the object store, a natural hierarchy based on set con-
tainment is implicit in the model. However, as View
definitions are First-Order Logic expressions, View
containment on the basis of their query definitions
is undecidable. Hence, an automatic organisation of
Folders will need to work on the instance level and re-
organise the hierarchy each time the content of a View
is changed. This is a potentially expensive operation
that end-users should be able to switch off, but can
be optimised by pruning parts of the hierarchy that
have not changed.

A large number of other non-trivial issues are asso-

Figure 3: (a) Dragging photos into the Virtual Folder Photos with comment ‘Family Holiday’, (b) Result after
the drag operation, showing that metadata has been updated to make the photos appear in this Virtual Folder.

ciated with the operation of Views as a generic dual
mechanism of querying the file store and acquiring
new metadata for objects. For example, for a variety
of reasons Views should return homogeneous sets of
objects (as there always exists a common superclass
for objects contained in a view), and it should be
straightforward to decide which metadata attributes
should be displayed to the user.

Deletion of Views should not result in the deletion
of objects contained in the view, whereas the dele-
tion of an object should also delete all relationship
instances in which the object participated.

Creating Views should be possible in the GUI
in a effective and simple manner. Users could be
given a Wizard to create queries, use a Query-by-
Example [19] interface (this is the approach we took
in Lasse, see Figure 4 for a screenshot), employ a
graph-based query language such as PaMaL [10], or
orienteer [18] their way through class relationships to
construct Views. Regardless of how views are cre-
ated, users should see immediately whether their view
is updatable. This facilitates the creation of a men-
tal model so that users can employ the system more
effectively.

Even when a very good structured query-definition
interface exists, some users may opt to create a query
consisting of key words. This could be either trans-
lated to a structured query, or information-retrieval
algorithms can be used instead. Virtual Folders with
an unstructured query definition can also be saved
and placed in a hierarchy, but they are not updat-
able, and hence cannot be used to capture metadata.

These and other issues are detailed in [15].

8 Conclusion and Further Work

We have proposed a hierarchy of definitions for meta-
data applications and file systems based on a com-
prehensive review of existing implementations and re-
search proposals. We then formally defined a model
for a pure mdfs including data model, operations,
and behaviour. Finally we described design aspects
of a generic graphical user interface for capturing and
using metadata in a pure mdfs. We are currently
implementing a number of GUI prototypes, includ-
ing those described here, and are planning a usability
study with the aim to discover which strategies are
most effective and efficient for capturing rich meta-
data through end-user interaction.

References

[1] Alexander Ames, Nikhil Bobb, Scott Brandt,
Adam Hiatt, et al. Richer file system meta-
data using links and attributes. In Proceedings
of the 22nd IEEE / 13th NASA Goddard Confer-
ence on Mass Storage Systems and Technologies
(MSST05). IEEE, 2005.

[2] C. Batini, M. Lenzerini, and S. Navathe. A com-
parative analysis of methodologies for database
schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

Figure 4: Creating a new Virtual Folder: query-by-example–like view definition interface.

[3] C. Mic Bowman, Chanda Dharap, Mrinal
Baruda, Bill Camargo, and Sunil Potti. A file
system for information management. In Proceed-
ings of the International Conference on Intelli-
gent Information Management Systems, Wash-
ington D.C., USA, March 1994, March 1994.

[4] T. Calders, S. Dekeyser, J. Hidders, and
J. Paredaens. Analyzing workflows implied by
instance-dependent access rules. In ACM SIG-
MOD/PODS 2006 Conference, Chicago, June
2006.

[5] R. Cattell, D. Barry, M. Berler, J. Eastman,
et al. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, January 2000.

[6] S. Dekeyser. A metadata collection technique for
documents in WinFS. In Proceedings of the 10th
Australasian Document Computing Symposium.
School of Information Technologies, University
of Sydney, 2005.

[7] Susan T. Dumais, Edward Cutrell, Jonathan J.
Cadiz, Gavin Jancke, Raman Sarin, and
Daniel C. Robbins. Stuff I’ve Seen: a system
for personal information retrieval and re-use. In
SIGIR, pages 72–79. ACM, 2003.

[8] D. Ferraiolo and R. Kuhn. Role-based access con-
trols. In 15th NIST-NCSC National Computer
Security Conference, pages 554–563, 1992.

[9] Antonio L. Furtado and Marco A. Casanova. Up-
dating relational views. In Query Processing
in Database Systems, pages 127–142. Springer,
1985.

[10] Marc Gemis and Jan Paredaens. An object-
oriented pattern matching language. In ISOTAS,
pages 339–355. Lecture Notes in Computer Sci-
ence, Springer, 1993.

[11] David K. Gifford, Pierre Jouvelot, Mark A. Shel-
don, and James O’Toole. Semantic file systems.
In Proceedings of the Thirteenth ACM Sympo-
sium on Operating System Principles, Asilomar
Conference Center, Pacific Grove, California,
October 13-16, 1991, pages 16–25. ACM, 1991.

[12] David R. Karger, Karun Bakshi, David Huynh,
Dennis Quan, and Vineet Sinha. Haystack: A
general-purpose information management tool

for end users based on semistructured data. In
CIDR 2005, Second Biennial Conference on In-
novative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2005, pages 13–26, 2005.

[13] Graham Klyne. Resource description framework
(RDF), February 2004. W3C Recommendation.

[14] Carlos Maltzahn, Nikhil Bobb, Mark W. Storer,
Damian Eads, Scott A. Brandt, and Ethan L.
Miller. Graffiti: A framework for testing col-
laborative distributed metadata. In Proceedings
in Informatics, number 21, pages 97-111, March
2007.

[15] Lasse Motrøen. Metadata file systems and GUI
operations. Master’s thesis, University of South-
ern Queensland, Australia, 2007. Draft.

[16] Szabó Péter. MoveMetaFS – a searchable
filesystem metadata store for linux. Freshmeat
project http://freshmeat.net/projects/
movemetafs, 2007.

[17] Richard Soley and William Kent. The OMG Ob-
ject Model. pages 18–41, 1995.

[18] Jaime Teevan, Christine Alvarado, Mark S. Ack-
erman, and David R. Karger. The perfect search
engine is not enough: a study of orienteering be-
havior in directed search. In Elizabeth Dykstra-
Erickson and Manfred Tscheligi, editors, CHI,
pages 415–422. ACM, 2004.

[19] Moshé M. Zloof. Query-by-example: A data base
language. IBM Systems Journal, 16(4):324–343,
1977.

