Textbooks: Under Inspection

Michael de Raadt, Richard Watson

Department of Mathematics and Computing
University of Southern Queensland
Toowoomba, Queensland, Australia

{deraadt, rwatson}@usqg.edu.au

Mark Toleman

Department of Information Systems
University of Southern Queensland
Toowoomba, Queensland, Australia

markt@usqg.edu.au

Abstract

Textbooks are an important resource in tertiary education, particularly in Introductory Programming. In many
university courses they form the basis of curriculum. But how good are the texts being used? Can they be relied on for
skills required for students' later study and employment? Do they earn the high price tag publishers place on them?

The 2003 Introductory Programming Census of Australian and New Zealand universities' courses revealed texts in use.
This paper objectively compares these texts, differentiating them according to content and features, ACM/IEEE
curriculum compliance and problem solving approach. This review found large variation in the texts reviewed. Many
texts rely on examples to fill content. Few texts attempt to comply with curricula recommendations. Few contain a
continuous instruction in problem solving.

Keywords: introductory programming, textbooks

1 Introduction

The most recent Census of eighty-five introductory programming courses in Australian and New Zealand universities
(de Raadt, Watson and Toleman 2004), discovered that forty-nine texts were being prescribed to students. This paper
attempts to compare these texts.

This comparison is motivated by the following factors.

e Many instructors who participated in the Census reported that they were constantly engaged in teaching and
related activities. It is likely that such instructors would lack the time to undertake a thorough comparison of a
complete set of available texts. The authors believe it would be valuable to create a list of such texts as a
resource for instructors and the public, which is without publisher bias.

o There is a lack of any existing equivalent study which focuses on current texts available in Australia and New
Zealand. Some research reflects text impact on a migration between languages or teaching approaches (Doube
2000; Becker 2001). Other papers refer to the role and structure of texts used in teaching (Lister 2000; Kuittinen
and Sajaniemi 2004; Simon 2004). Means (1988) compares a number of texts and reports a lack of change in
texts over time.

e The ACM/IEEE 2001 curricular guidelines (ACM IEEE Joint Task Force on Computing Curricula 2001)
provide a strong recommendation for course content. It is desirable to discover if any texts explicitly follow
these guidelines, or if any texts can otherwise be used with the guidelines.

o It is desirable to discover the problem solving approaches and depth present in current texts.

2 Methodology

A pilot study was conducted based on twelve representative texts. The study was used to identify the important features
of texts that could be used to make meaningful comparisons and to ensure the reviewers of the texts were consistent in
their appraisal of these features. The features are described below.

The content of each text was divided into chapter content, language reference, glossary, bibliography and index. The
size of these elements was measured in complete pages. Within each chapter, the proportion occupied by exercises and
examples can be separated from other chapter content. For the purposes of comparison, an example is seen as a
complete, continuous item of source code. Exercises contained within a chapter and at the end of a chapter were
measured together. Exercises range from reflective questions, which may consist of a single line of text, through to

projects which may occupy several pages. Exercises and examples were measured in partial pages. Frontmatter and
preface material was not measured, although instructor information is usually contained in the preface and this was
compared.

The ACM/IEEE 2001 curricular guidelines suggest several tracks that involve introductory programming courses listed
as follows.

e CSI101I. Programming Fundamentals
(Imperative-first Track)

e CSI111I. Introduction to Programming
(Imperative-first Track)

e CS1010. Introduction to Object-Oriented Programming (Objects-first Track)

e CS1110. Object-Oriented Programming
(Objects-first Track)

e CS111F. Introduction to Functional Programming
(Functional-first Track)

e CS101B. Introduction to Computer Science
(Breadth-first Track)

e CS111A. Introduction to Algorithms and Applications (Algorithms-first Track)

e CSI111H. Introduction to the Computer
(Hardware-first Track)

Within these courses, core units are recommended which cover introductory aspects relevant to the containing course.
The extent to which each text covered these core units was recorded. These units are listed as follows.

o Discrete Structures (DS1-6)

e Programming Fundamentals (PF1-4)

o Algorithms and Complexity (AL1-3,5-6)
o Architecture and Organisation (AR1-4)
e Operating Systems (OS1,3)

e Net-Centric Computing (NC1)

e Programming Languages (PL1,3-8)

e Human Computer Interaction (HC1)

e Graphics and Visual Computing (GV1)
e Social and Professional Issues (SP1-2,4-6)
o Software Engineering (SE1-3,5-6)

Texts vary significantly in the way content was presented. The presence of various layout aspects was determined to
allow instructors to choose texts that match their needs and preferences. Layout aspects measured include location of
exercises (within chapters, at end of chapters, or both), the presence of more than one scale of exercise (review
questions, questions for paper exercises and/or coding exercises), colour coding and visual separation of sections within
chapters.

The presence of extra teaching materials (not directly related to programming language syntax or problem solving) was
measured. This included practice hints, common error warnings, biographies of historical persons and other historical
information, interviews with current industry related persons, real world industry based case studies and other non-
programming facts.

Resources available for use by instructors or students were noted. This included a language reference, code examples
and/or a compiler. The location of such resources was also noted as being within the text, on a CD that accompanied
the text, on a website, or from some other source (for example, by email from the author or publisher). The availability
to students and instructors of solutions to exercises was gathered. Awvailability of other instructor resources including a
laboratory manual, instructor's notes, lecture slides and a test question bank was determined.

The approach and depth of problem solving content was noted. Other general notable aspects were recorded.

The forty texts reviewed by the authors contained over 31,000 pages, most of which have been individually inspected,
sometimes more than once (a page turning marathon!) While every attempt has been made to maintain accuracy, the
amount of visual information and range of presentation styles virtually guarantees that errors of omission will have
occurred. Counting part pages of examples and exercises that were distributed throughout chapters is also problematic.
This was performed with a combination of visual estimation and measurement; the error bound for these features is at
best £10%.

3 Results and Discussion

Forty-nine texts were reported by the 2003 Census. Some instructors reported that they did not prescribe a text and
relied on their own materials. Some courses used more than one text. All reported texts were included. Forty texts
were made available by local text distributors. All texts prescribed during 2003 are listed in Appendix 1 including
language (where applicable), count of courses where the text is prescribed, the number of students undertaking those
courses and if the text was made available to this study. Each text was given a unique number which can be used as a
key for matching between later tables. The overall picture of an average text is shown in Table 1.

Average pages 775.4
Average chapters 16.3
Average examples 113
Average example length 0.92 pages
Average exercises 470.4
Average exercise length 0.17 pages

Table 1: Overall text averages.

The most widely used text is Lesley Anne Robertson's "Simple Program Design". This is not a text targeted at a
specific language, but rather covers problem solving aspects related to programming. This text is used together with a
language based text in most cases.

When choosing a text an instructor may appreciate more code examples. The instructor may want exercises which can
be given to students for practical work. They may want a text which includes a language reference. The inclusion of a
compiler with the text may be desirable. Appendix 3 shows the proportions of content separated into examples,
exercises, other chapter content, language reference, glossary, bibliography, other appendix content and index.
Appendix 4 shows the features of each text including the number of exercises and examples, the presence or absence of
various layout features, the inclusion and location of a language reference, code examples and compiler, the availability
of solutions to students and instructors, and the availability of various instructor resources.

The ACM/IEEE curricular guidelines (ACM IEEE Joint Task Force on Computing Curricula 2001) suggest eight
introductory programming courses with a number of core units specified in each. Appendix 5 shows how each text
could be applied to these courses. Where the description of a unit matched the content of a topic present in a text, that
unit was marked as present for the text. The proportion of units covered is shown as a fraction of the total course core
units. Different texts approached these topics from different perspectives and to differing depths. These differences
were not measured.

Problem solving instruction was presented in varying degrees between texts. Some texts avoid problem solving as a
specific topic altogether. Some authors rely on large numbers of examples and contain little explicit instruction of
problem solving. One author bluntly stated "Students learn to program by example" (Gerard Sparke "The Java Way").
Some texts offer a brief mention of algorithmic problem solving in an early chapter, but this teaching is not obviously
integrated in the remainder of the text. Other texts offer high level systems analysis or software engineering but little
algorithmic problem solving; object-oriented software engineering is a common topic. There were a small number of
texts which raise problem solving and attempt to integrate this teaching throughout the text using case studies and
examinations of problems. Of note were:

e D.S. Malik "C++ Programming: From Problem Analysis to Program Design";

Jeri R. Hanly & Elliot B. Koffman "C Program Design for Engineers";

Simon Thompson "Haskell: The Craft of Functional Programming";

Elliot B. Koffman & Ursula Wolz "Problem Solving with Java";

C. Thomas Wu "Introduction to Object-Oriented Programming with Java"; and

Walter J. Savitch "Problem Solving with C++: The Object of Programming".

Different types of texts are being used according to the 2003 census. Most texts were academic in their approach
including instruction, examples and exercises. At least one reported text could be considered a commercial text

consisting of language syntax instruction for a member of the general public but was notably lacking exercises. One
reported text could be considered as a reference only with an extensive language summary and no instruction or
exercises. In both cases where this text is used it is in conjunction with another text.

4 Conclusions and Recommendations

It was not obvious in most texts that authors had attempted to follow a standard curricular model presented by the
ACM, IEEE or other organisation. The ACM/IEEE 2003 curriculum specifies a number of courses and the content of
these courses has been matched to texts within this study. An author attempting to cover many courses may wish to
consider including instruction on certain core units common to several of the courses as shown in Table 2.

Units Courses using units
PF1, PF2, PF2, SP1 8 (all)

AL3, ALS PL4 7

PL1, PLS, SE1 6

PF4, SE3 5

AR2, PL6 4

Table 2: Units common to four or more courses in the ACM/IEEE curriculum guidelines.

Many texts rate poorly in the matching to the ACM/IEEE curriculum guidelines. This may be because these text's
authors focus on presenting a programming language in as much detail as possible rather than applying a more holistic
approach to programming. One of the tracks of the ACM/IEEE curriculum guidelines is suggested as Breadth-first, yet
even the introductory programming courses present in other tracks appear to cover a broader range of topics than those
present in most texts. For this reason texts with a more general computer science focus rated higher. Some of these
texts were independent of any programming language and some included a shallow teaching of one particular language.

Who writes texts and why? Most authors represented in this study are writing texts as a source of income. Some of the
texts are in fourth and fifth editions indicating not only the success of the texts, but also the willingness of the authors
to keep them up to date. Texts of this type are probably targeted at a wide audience and may attempt to cover a broader
range of topics. Some texts are constructed by instructors for use with their own students. These texts are likely to be
focused on the author's current curriculum, but may be adopted by other instructors if the content is considered
appropriate. It may be useful for instructors considering a text to determine which of these two categories it falls into;
publishers should be able to answer this question.

What makes a good textbook? This question does not have a simple or a single answer. To some extent it depends upon
how the book it to be used and who is the audience. The following is a set of features whose inclusion we consider to
be very important, if not mandatory.

Effective use of graphical devices

While analysing the content of several thousand pages, it became apparent that texts which visually separated
exercises and examples from other chapter content, using colour and other graphical means, were much easier to
read. This aspect may not reflect the pedagogical significance of the texts, but it was quite clear that several texts
poorly distinguish sections using formatting. A textbook is a collection of many different kinds of information, as
described in Appendix 3. Unlike a novel, a textbook is not read linearly but rather consumed in small chunks with
much searching backward and forward for information. A good text facilitates this navigation by appropriate
differentiation of the various types of material. While it is clearly possible to overdo the use of colour in particular,
appropriate use of such techniques as background colours, boxing of information, marginal notes, sidebars, and
icons can significantly enhance the usability of a text. It can also make a book a pleasure to read.

Well chosen and presented examples

Most reviewed texts provided some examples of code. Some were presented in complete continuous blocks while
others presented only fragments. Examples should concisely illustrate a technique. They should include line
numbers for reference, though should preferably be as self-contained as possible, not requiring the reader to keep
referring back to the accompanying text discussion. Better examples will often include the author's comments,
maybe accompanied with some lines and arrows just like the typical classroom blackboard example.

Exercises

A distinction was made between texts with exercises located within chapters, at the end of chapters and texts
taking both approaches. Incorporating exercises within chapters encourages readers to reflect on content almost
immediately. This may have a positive pedagogical benefit, especially for students undertaking independent or
external study. Having exercises at the end of a text allows instructors to suggest practical work for students which
can be located easily. This may be beneficial in face-to-face tutorial situations. Having a range of exercises from
reflective activities to programming projects may also aid an instructor. If a text were to be constructed to suit
different types of students while assisting instructors in their work, all these aspects would need to be combined.

Solutions

Solutions to texts were presented in a number of ways. Some texts presented no solutions, some presented a partial
set of solutions and some presented all solutions. Some texts posed restrictions on access to solutions allowing
only instructors to access solutions not in the text. Obviously having solutions is more important to students
studying independently. The presence of selected solutions to questions and exercises can be a boon to students
and instructors alike.

Biographies

These are introductory textbooks. It behoves the authors to include some background information about the
discipline; well chosen biographies, and possibly small interviews do this very well and have the added advantage
of motivating students (and adding some light relief from a difficult subject). Surprising few texts included this
feature; those that did tended to have a broader focus.

Case studies

Explicitly showing how to progress from a requirement specification, however simple, through to a design or
algorithm, then on to the final coded program is an excellent way to teach problem solving skills. Students need to
see the intermediate steps, explained by an expert, in order to build their own competence. Adding one case study
per chapter is a good aim, though few texts have adopted this approach.

This study has presented a relatively brief examination of approaches to problem solving instruction. However this is a
key pedagogical topic, and much remains to be done in analysing and comparing the approaches taken by various
authors. Future work is planned to address this issue.

5 References

ACM IEEE Joint Task Force on Computing Curricula (2001). Computing Curricula 2001, Computer Science.
Available online: http://www.computer.org/education/cc2001/final/index.htm, Accessed: 17th August, 2004.

Becker, B. W. (2001). "Teaching CS1 with Karel the Robot in Java." ACM SIGCSE Bulletin 33(1): 50-54.

de Raadt, M., R. Watson and M. Toleman (2004). Introductory Programming: What's happening today and will there
be any students to teach tomorrow? Proceedings of the Sixth Australasian Computing Education Conference

(ACE2004), Dunedin, New Zealand, Australian Computer Society.

Doube, W. (2000). The impact on student performance of a change of language in successive introductory computer
programming subjects. Proceedings of the on Australasian computing education conference, Melbourne Australia,

ACM Press, New York, NY, USA.

Kuittinen, M. and J. Sajaniemi (2004). Teaching roles of variables in elementary programming courses. Proceedings of
the 9th annual SIGCSE conference on Innovation and technology in computer science education, Leeds, United

Kingdom, ACM Press.

Lister, R. (2000). On Blooming First Year Programming and its Blooming Assessment. Proceedings of the on
Australasian computing education conference, Melbourne Australia, ACM Press, New York, NY, USA.

Means, H. W. (1988). A content analysis of ten introduction to programming textbooks. Proceedings of the nineteenth
SIGCSE technical symposium on Computer science education, Atlanta, Georgia, United States, ACM Press.

Simon (2004). The cryptic crossword puzzle as a useful analogue in teaching programming. Proceedings of the sixth
conference on Australian computing education, Dunedin, New Zealand, Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia.

6 Appendices
Appendix 1. List of Books and Publication Details
Title Author Publ. Language LatestEd Year ISBN Courses Students Avail.
Simple Program Design Lesley Anne Robertson 9 None 4th 004 0-17-010704-3 12 2294 Yes
Java Software Solutions Lewis & Loftus 1 Java 3rd 003 0-201-78129-8 8 1470 Yes
7 Java: A Framework for Programming and Problem Solving Kenneth A. Lambert & Martin Osborne 9 Java 2nd 2002 0-53-438277-0 5 1291 Yes
4 Introduction to Programming Using VB.NET David |. Schneider 8 VB.NET 5th 2003 0-13-030657-6 5 770 No
21 Big Java Cay Horstmann 11 Java 1st 2001 0-471-40248-6 4 1302 Yes
12 Java: An Introduction to Computer Science & Programming Walter Savitch 8 Java 3rd 2001 0-13-101378-5 3 980 No
C Program Design for Engineers Jeri R. Hanly & Elliot B. Koffman 1 C 2nd 001 0-201-70871-X 229 Yes
JAVA 2: The Complete Reference Herbert Schildt 4 Java 5th 002 0-07-222420-7 1200 Yes
A First Book of C++: From Here to There Gary J. Bronson 2 Ct++ 2nd 000 0-53-436801-8 700 Yes
C++ Programming: From Problem Analysis to Program Design D.S. Malik Ct+ 1st 002 0-61-906213-4 640 Yes
17 Problem Solving with Java Elliot B. Koffman & Ursula Wolz 1 Java 2nd 2002 0-321-15486-X 2 560 Yes
30 The Object of Java David D. Riley 1 Java Blue JEd 2003 0-321-16854-2 2 430 Yes
13 Haskell: The Craft of Functional Programming Simon Thompson 1 Haskell 2nd 1999 0-201-34275-8 2 383 Yes
29 Microsoft Visual Basic .NET Diane Zak 3 VB.NET Reloaded 2004 0-619-21287-X 2 370 Yes
18 Programming in Visual Basic 6.0 Julia Case Bradley & Anita C. Millspaugh 4 VB6 st 002 0-07-251874-X 260 Yes
34 Introduction to Programming with Visual Basic 6.0 David |. Schneider VB6 4th 004 0-13-142707-5 145 Yes
35 C How to Program Harvey M. Deitel & Paul J. Deitel C 4th 004 0-13-142644-3 100 Yes
20 Java Programming: From the Beginning K. N. King 10 Java 1st 2000 0-393-97437-5 1 700 Yes
32 A Computer Science Tapestry: Exploring Computer Science with C++ Owen Astrachan 4 Ct+ 2nd 2000 0-07-246536-0 1 700 Yes
44 Programming, Problem Solving & Abstraction with C Alistair Moffat 7 C 1st 2002 1-74-103080-3 1 700 No
6 Structured & Object-Oriented Problem Solving Using C++ Andrew C. Staugaard 8 C++ 3rd 2002 0-13-028451-3 1 600 No
33 _An Introduction to Computing with Haskell Manuel Chakravarty and Gabriele Keller 7 Haskell 1st 003 1-74-009404-2 1 600 No
38 The Visual Basic Coach Jeff Salvage 1 VB6 1st 001 0-201-74549-6 1 500 Yes
42 Introduction to Object-Oriented Programming with Java C. Thomas Wu 4 Java 2nd 001 0-07-255133-X 1 500 Yes
14 Objects First with Java: A Practical Introduction Using BlueJ David J. Barnes & Michael Kolling 8 Java 1st 003 0-13-044929-6 1 350 No
22 Java Genesis Roger Duke & Eric Salzmann 1 Java 2nd 1999 1-74-091111-3 1 350 No
28 Programming and Problem Solving with Java James M. Slack 1 Java 1st 2000 0-53-437486-7 1 350 Yes
9 Object-Oriented Programming in Eiffel Raymond A. Weedon & Peter G. Thomas 1 Eiffel 2nd 1998 0-20-133131-4 1 340 Yes
37 C Programming: A Modern Approach K. N. King 10 C 1st 1996 0-393-96945-2 1 300 Yes
43 Computing Concepts with Java Essentials Cay Horstmann 11 Java 3rd 003 0-471-46900-9 1 80 Yes
24 Introduction to Java Programming with Sun ONE Studio 4 Y. Daniel Liang 8 Java 1st 003 0-13-009258-4 1 53 No
25 Using UML: Software Engineering with Objects and Components Rob Pooley & Perdita Stevens 1 None 1st 000 0-201-64860-1 1 53 Yes
5 C++ Program Design James P. Cohoon & Jack W. Davidson 4 Ct+ 3rd 2001 0-07-256040-1 1 235 Yes
48 Problem Solving with C++: The Object of Programming Walter J. Savitch 1 Ct+ 5th 2004 0-321-26865-2 1 230 Yes
40 An Invitation to Computer Science - Java Version G. Michael Schneider & Judith Gersting 2 Java 1st 2000 0-53-437488-3 1 203 Yes
1 Beginning With C Ron House 6 C 1st 1994 0-17-008821-9 1 200 Yes
15 Programming and Problem Solving with Delphi Mitchell C. Kerman 1 Delphi 1st 002 0-201-70844-2 1 00 Yes
16 Computer Science: An Overview J. Glenn Brookshear 1 None 7th 003 0-201-78130-1 1 00 Yes
41 C by Dissection: The Essentials of C Programming Al Kelley & Ira Pohl 1 C 4th 000 0-201-71374-8 1 00 Yes
23 MATLAB Programming for Engineers Stephen J. Chapman 2 Matlab 2nd 002 0-534-39056-0 1 70 Yes
36 Java How to Program Harvey M. Deitel & Paul J. Deitel 8 Java 5th 2003 0-13-101621-0 1 130 Yes
45 Programming in Visual Basic .NET Julia Case Bradley & Anita C. Millspaugh 4 VB.NET 4th 2003 0-07-293870-6 1 120 Yes
47 Learning Programming Using Visual Basic.Net William E. Burrows, Joseph D. Langford, Johny K. Johansson 4 VB.NET 4th 2003 0-07-293871-4 1 100 Yes
10 C++: An Introduction to Computing Joel Adams & Larry R. Nyhoff 8 C++ 3rd 2002 0-13-091426-6 1 87 No
31 Visual Basic 6 from the Ground Up Gary Comnell 5 VB6 1st 998 0-078-82508-3 1 80 Yes
39 Java, Java, Java Object-Oriented Problem Solving Ralph Morelli 8 Java 2nd 002 0-13-033370-0 1 60 Yes
27 Computing Concepts with C++ Essentials Cay Horstmann 11 C++ 3rd 002 0-471-16437-2 1 50 Yes
46 Programming with Visual Basic 6.0 Diane Zak 3 VB6 Enhanced 2001 0-619-06204-5 1 50 Yes
49 The Java Way : An Introduction to Programming in Java Gerard Sparke 6 Java 1st 2003 1-74-103191-5 1 40 Yes

Appendix 2. List of Publishers and Associated Distributors
Publisher Aus/NZ Distributor
1 Addison-Wesley Pearson Education
2 Brooks-Cole Thompson Learning
3 Course Technology Thompson Learning
4 McGraw-Hill McGraw-Hill
5 McGraw-Hill Osborne Media ~ McGraw-Hill
6 Nelson ITP Thompson Learning
7 Pearson SprintPrint Pearson Education
8 Prentice Hall Pearson Education
9 Thomson Nelson Thompson Learning

10 W.W. Norton Company Wiley
11 Wiley Wiley

Appendix 3. Content Proportions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Simple Program Design (#2) ‘ ‘ ‘ |WMW
Using UML (#25) | | | I
CS: An Overview (#16)] ‘ Rf‘\“ﬁﬁﬁ%ﬁ
C Progr.: A Modern Approach (#37, 10) b R
C by Dissection (#41, 1) | X | X
C Progr. Des. for Engineers (#11, 1) | I\‘ RE=R|
Beginning With C (#1, 6) | E \l‘ M NG|
C How to Program (#35, 8) | | ||
C++ Program Design (#5, 4) | RRRRRRR |
A First Book of C++ (#26, 2) ‘M
A CS Tapestry: ...with C++ (#32, 4) | k= \‘It‘\.f\.f\f\x:l
Computing Concepts w ith C++ (#27, 11) | | | R
Problem Solving w ith C++ (#48, 1) | | E=]
C++ Programming... (#8, 9) | | a5
JAVA 2: Complete Ref. (#19, 4) XI
An Invitation to CS - Java Ver. (#40, 2) | | | R
Intro. to OO Progr. with Java (#42, 4) | | =
The Object of Java (#30, 1) | E: \lv"‘\-"‘\-"‘\-"‘\-"‘\l
Java Progr: From Beginning (#20, 10) | IR | R
Java, Java, Java (#39, 8) | | | RS |
Progr. and PS w ith Java (#28, 1) | NLW
PS with Java (#17, 1) L‘ | R 2|
Computing Concepts w ith Java (#43, 11) | | E RE
Java: A Framew ork... (#7, 9) | | | 98 R R
Big Java (#21, 11) | l\‘ ST ET
Java Softw are Solutions (#3, 1) | E: \\I-‘ R s |
The Java Way (#49, 6) | | =1
Java How to Program (#36, 8) | |
Learning Progr. Using VB.NET (#47, 4) AR R |
Progr. with VB 6.1 (#46, 3) | | ||
Microsoft VB.NET (#29, 3) | IZ‘ Emma]
Progr. in VB.NET (#45, 4) | n‘.mw
Progr.in VB 6.1 (#18, 4) | ‘NM
VB6 from the Ground Up (#31, 5) | | I
The Visual Basic Coach (#38, 1) | | H
Intro. to Progr. with VB 6.1 (#34, 8) | | DN |]
Progr. and PS w ith Delphi (#15, 1) | RSN |
0O Progr. in Eiffel (#9, 1) | | | | [\Rf\f‘\f\f\f\f\ﬂ
MATLAB Progr. for Engineers (#23, 2) | £l | | | | | |
Haskell: The Craft of... (#13, 1)] 7| 1 1 1 1 1IF-\..'-\..&1
B Examples Exercises O Other Chapter Content & Language Reference
& Glossary m Bibliography & Other Appendix O Index

Appendix 4.

Language Courses

2
16
25

OOO0O00

C++

C++
C++
C++
C++
C++
C++

Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java

VB.NET
VB.NET
VB.NET
VB.NET

VB6
VB6
VB6
VB6

Delphi
Eiffel
Haskell
Haskell
Matlab

Simple Program Design
CS: An Overview
Using UML

Beginning With C

C Progr. Des. for Engineers
C How to Program

C Progr.: A Modern Approach
C by Dissection

Progr., PS & Abstr. with C

C++ Program Design

Struct. & OO PS Using C++
C++ Programming...

C++: An Intro. to Comp.

A First Book of C++
Computing Concepts with C++
A CS Tapestry: ...with C++
Problem Solving with C++

Java Software Solutions

Java: A Framework...

Java: An Intro to CS & Progr.
Objects First with Java

PS with Java

JAVA 2: Complete Ref.

Java Progr: From Beginning
Big Java

Java Genesis

Intro. to Java Progr. with Sun...
Progr. and PS with Java

The Object of Java

Java How to Program

Java, Java, Java

An Invitation to CS - Java Ver.
Intro. to OO Progr. with Java
Computing Concepts with Java
The Java Way

Intro. to Progr. Using VB.NET
Microsoft VB.NET

Progr. in VB.NET

Learning Progr. Using VB.NET
Progr. in VB 6.1

V/B6 from the Ground Up

Intro. to Progr. with VB 6.1
The Visual Basic Coach

Progr. with VB 6.1

Progr. and PS with Delphi

00 Progr. in Eiffel

Haskell: The Craft of...

An Intro. to Comp. with Haskell
MATLAB Progr. for Engineers

948

1104

798
765
845
937

793
683

856
1154
77
1197

1137
717
1447
866
734
863
836
650

650
649
487

478

10

14
25

Features in texts

Examples

(==

142
110
155
145

17
92

Exercises

935

357

445
503
143
580

509
486

636

715
779

838
168
636
651
338
450
585
377

Exercises Within Chapter

< Exercises at end of chapters

ANENENEN <

<

ANENENEN ANENENERENENENEN AN ANENEN
ANENENEN AN ANRNEN

ANENEN

Multiple scales of questions

AN

ANANAN

Projects/Assignments

<\ Chapter summaries

ANENENENANAREN

ANENENENERENEREN
ANEN

ANAN
ANAN

SNENEN

ANENENRN

<

ANENEN

Colour coding

<

SNENEN

AVANENENENENEN

<\ Visual layout for section separation

ANRNEAN

ANAN

ANENENEN

ANANAN

z
2z
g 2
g~
g g
S 3 =~
2 g3
w 5 & 38
22388 . 3
E£525¢8 8 s 2
$gceggs 5 : oz
s 288555 ¢ £ : o3
EsEp g8 5 & 2 8
s 535282 8 2 & g &g
§ES8 g8 2 g E§ 3 3
s 6 » & 8 § 5 § B8 S © ©
o O £ o 2 O - (] (]] @n
28]
all all
v all
28] ® some 'some
v v =) some |some
v v [an]=] ® al
v 28] ma
v v v (@3 28]
Not available at time of publication
v viv v v @A [28]0] ®
Not available at time of publication
0] [an]=] some all
Not available at time of publication
v |V [0 [an]=] some all
viv v v v i [an]=] some all
v v v |He 62 all
Vv v = al all
v [an]=} ® all
v v v @3 ®© some some
Not available at time of publication
Not available at time of publication
v [08] [08] © some 'some
28] 28]
v v | [28]0] ®© some some
v v v v =) some all
Not available at time of publication
Not available at time of publication
v [an]=|
v v @3 [0)=] ® all
v v v v some all
v v v v | 28] © some some
v v
v v [28]0] ®© some all
v v v v v A [a0]=| some all
v [an]=] all
Not available at time of publication
v = all
v be © some some
® © some 'some
v v be © some some
v v v (an]
Vv some | some
v v Vv [28]o) =} some all
v v = ®
v v v v
0] 0] some | some
= = 2
Not available at time of publication
v v 28] (0] =] some all
Key to Symbols [Contained within text
=) Available via WWW
® On CD with text

Lab Manual

Lect Slides

Notes

<
ANAN

SNANEN

ANANEN

Test Bank

<

ANENEN

Curricular Content

Language Brief Title

Appendix 5.

2
16
25

1 C
11 C
35 C
37 C
41 C
44 C

5 C++

6 C++

8 C++
100 C++
26 C+t
27 C++
32 C+t
48 C++

3 Java

7/ Java
12 Java
14 Java
17 Java
19 Java
200 Java
211 Java
22| Java
24| Java
28 Java
30/ Java
36 Java
39 Java
40/ Java
42 Java
43| Java
49 Java

4 VB.NET
29 VB.NET
45/ VB.NET
47/ VB.NET
18 VB6
31 VB6
34 VB6
38 VB6
46/ VB6
15/ Delphi

9 Eiffel
13 Haskell
33/ Haskell
23| Matlab

Simple Program Design
CS: An Overview
Using UML

Beginning With C

C Progr. Des. for Engineers
C How to Program

C Progr.: A Modern Approach
C by Dissection

Progr., PS & Abstr. with C

C++ Program Design

Struct. & OO PS Using C++
C++ Programming...

C++: An Intro. to Comp.

A First Book of C++
Computing Concepts with C++
A CS Tapestry: ...with C++
Problem Solving with C++

Java Software Solutions
Java: A Framework...

Java: An Intro to CS & Progr.
Objects First with Java

PS with Java

JAVA 2: Complete Ref.

Java Progr: From Beginning
Big Java

Java Genesis

Intro. to Java Progr. with Sun...

Progr. and PS with Java

The Object of Java

Java How to Program

Java, Java, Java

An Invitation to CS - Java Ver.
Intro. to OO Progr. with Java
Computing Concepts with Java
The Java Way

Intro. to Progr. Using VB.NET
Microsoft VB.NET

Progr. in VB.NET

Learning Progr. Using VB.NET
Progr. in VB 6.1

VB6 from the Ground Up

Intro. to Progr. with VB 6.1
The Visual Basic Coach

Progr. with VB 6.1

Progr. and PS with Delphi

OO0 Progr. in Eiffel

Haskell: The Craft of...

An Intro. to Comp. with Haskell
MATLAB Progr. for Engineers

CS1011 CS111r CS1010 CS1110 CSMM1F

4/18
13/18
118

6/18
7118
3/18
4/18
3/18

6/18

6/18

6/18
9/18
4/18
3/18

718
10/18

6/18
3/18
8/18
8/18

9/18
3/18
2118
6/18
16/18
6/18
718
10/18

118
218
3/18
218
3/18
218
4/18
218

4/18
4/18
3/18

6/18

mnr
10117
217

mnr
77
5/17
77
517

10117

817

77
1117
6/17
417

6/17
97

6/17
a7
917
97

10/17
a7
217
6/17
14/17
817
8/17
10117

117
317
417
a7
317
317
417
217

517
mnr
317

6/17

CS1018 CS111a CS111H

5/15 7115 mnm7 5/18
1115 | 1015 | 13117 = 14/18
0/15 1115 117 0/18
4/15 8/15 917 6/18
6/15 7115 7 8/18
4/15 5/15 mnm7 6/18
5/15 7115 nm7 7118
5/15 515 517 5/18

Not available at time of publication
6/15 8/15 6/17 5/18

Not available at time of publication
6/15 8/15 917 8/18

Not available at time of publication
715 6/15 7 7118
9/15 12115 | 12117 = 10/18
715 6/15 nm7 7118
5/15 515 517 5/18
5/15 6/15 6/17 6/18
9/15 9/15 97 8/18

Not available at time of publication
Not available at time of publication

6/15
4/15
6/15
715

6/15
4/15
8/15

10/15

mnr
an7
mnr
117

6/18
3/18
8/18
9/18

Not available at time of publication
Not available at time of publication

9/15 10115 | 1117 | 10/18
4/15 5/15 4117 4/18
2/15 2/15 217 2/18
6/15 7115 M7 6/18
13115 | 12115 = 13117 | 13/18
7/15 8/15 817 7/18
7115 9/15 817 7118
6/15 10/15 817 6/18

Not available at time of publication
1/15 1115 117 1/18
3/15 3/15 2117 2/18
4/15 4/15 317 3/18
3/15 4/15 2117 2/18
2/15 4/15 217 2/18
3/15 3/15 2117 2/18
4/15 3/15 317 4/18
2/15 2/15 2117 2/18
5/15 6/15 517 5/18
5/15 6/15 6/17 5/18
4/15 4/15 6/17 5/18

Not available at time of publication

4/15

6/15

517

4/18

8/15
11115
2/15

8/15
7115
7115
7115
6/15

8/15

9/15

7115
12/15
8/15
6/15

6/15
8/15

6/15
3/15
7115
8/15

10/15
5/15
2/15
6/15
13/15
8/15
8/15
8/15

1715
2115
3/15
2115
3/15
3/15
3/15
2115

6/15
6/15
5/15

4/15

6/18
14/18
1718

9/18
8/18
7118
8/18
5/18

8/18

9/18

6/18
11/18
6/18
4/18

6/18
9/18

6/18
3/18
8/18
9/18

12/18
4/18
2/18
6/18
15/18
8/18
8/18
9/18

1718
2/18
3/18
2/18
2/18
2118
3/18
2118

5/18
6/18
4/18

5/18

