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Abstract
Arrhythmias such as Atrial Fibrillation (Afib), Atrial Flutter (Afl), and Ventricular Fibrillation (Vfib) are early indicators of 
Stroke and Sudden Cardiac Death, which are significant causes of death globally. Therefore, it is vital to detect patients 
with these conditions early. Manual inspection of ECG signals is tedious, time-consuming, and is limited by inter-observer 
variabilities. Further, it is challenging to accurately differentiate several types of arrhythmias in complex non-linear ECG 
signals. Computer-aided Decision Support Systems (CDSS) could be valuable in such a scenario. The CDSS uses machine 
learning techniques to learn the subtle differences in these rhythms and can be used for fast, accurate, repeated, and objective 
classification of arrhythmias. A novel CDSS has been proposed for the discrimination of normal rhythm (Nsr) from Afib, Afl, 
and Vfib using machine learning techniques. Predictive models have been developed for ECG segments of two durations: 
2 s and 5 s. The number of samples from each of the four classes were balanced using synthetically generated samples with 
the ADASYN technique. Third-order cumulant images were determined from the ECG segments. 18 non-linear features, 
including entropies and other texture-based features, were extracted from the cumulant images, and significant features were 
selected using the t-test. The selected features were used to train several classifiers.On evaluating several different classifiers 
with the significant features using tenfold stratified cross-validation, the Random Forest classifier consistently performed 
better for both two and five second ECG duration studies. An accuracy of 98.2%, sensitivity of 98.1%, and specificity of 
99.4% were obtained for the 2-s dataset. For the 5-s dataset, the accuracy, sensitivity, and specificity were 98.8%, 98.8%, 
and 99.6%, respectively. Due to the intermittent occurrence of arrhythmia, analysis of longer duration ECG signals will help 
detect the onset of critical episodes of arrhythmia more accurately. Since the proposed predictive models work effectively in 
detecting arrhythmia in two or five second ECG segments rather than single ECG beats, they have better clinical adaptability 
and can be incorporated into clinical monitoring systems.
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1  Introduction

An irregular heartbeat is called an arrhythmia. Based on 
the location of origin in the heart and based on the nature 
of changes in the heart rhythms, arrhythmias are classified 
into several types. Atrial Fibrillation (Afib), Atrial Flut-
ter (Afl), and Ventricular Fibrillation (Vfib) are recurring 
arrhythmias which can be fatal and affect a large popula-
tion. An electrocardiogram (ECG) is the most used signal 
to measure and detect the presence of these rhythms. The 
ECG contains a P wave, QRS complex, and T wave. In 
simple terms, the P wave occurs during the activation of 

the atria, the QRS complex appears during the activation 
of the ventricles, and the T wave follows the QRS complex 
and is indicative of ventricular repolarization or the recov-
ery phase (Fig. 1a).

Atrial fibrillation is the most common chronic arrhyth-
mia and is characterized by an irregular heart rate caused 
when the atria of the heart move chaotically. Atrial fibril-
lation can lead to stroke, particularly when the ventricular 
rate is uncontrolled. Afib results in the disappearance of 
the P wave in the ECG signal, and the appearance of an 
unusual atrial activity between discrete QRS complexes 
which occur in an irregular pattern (Fig. 1b). Afib affects 
an estimated 2.7–6.7 million people in the US, and it is 

Fig. 1   Display of two-second segments of different types of arrhythmias on an ECG signal
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expected to increase to 5.6–15.9 million cases by 2050 
(Du et al. 2017).

Atrial flutter is less typical than fibrillation, and the 
rhythm is more organized than the rhythms associated 
with Afib. It may occur in patients with structurally healthy 
hearts but is more commonly seen in patients with struc-
tural heart disease. Atrial flutter can also lead to stroke. 
The ECG typically demonstrates a “sawtooth” pattern of 
atrial activity (Fig. 1c).

Ventricular fibrillation is a life-threatening abnor-
mal rhythm that usually precedes Sudden Cardiac Death 
(SCD), where clinically well or stable patients die within 
1 h after the onset of symptoms. This rhythm occurs when 
the two ventricles of the heart beat irregularly due to 
defective electrical impulses. On an ECG, Vfib is character-
ized by the absence of identifiable P waves and QRS com-
plexes, and the presence of erratic undulations (Fig. 1d). 
Ventricular Tachycardia (VT), which is a fast rhythm that 
generally occurs after prior heart attack or from heart 
defects, can often lead to Vfib.

These arrhythmias are early indicators of Stroke and 
SCD, which are major causes of death globally. It is vital 
to detect patients with these conditions early to reduce 
the risk of stroke and SCD. Even though manual analysis 
of ECG can be done for detection by trained profession-
als, the chances of inter-observer variabilities in inter-
pretation are high, and the process is time-consuming, 
especially when volumes of data have to be analyzed. 
Further, besides these familiar rhythms, there are several 
other types of arrhythmias, and the challenge lies in their 
successful detection and differentiation in ECG signals, 
which are complex and non-linear (Acharya et al. 2007). 
Computer-aided Decision Support Systems (CDSS) could 
be valuable in such a scenario. The CDSS uses machine 
learning techniques to learn subtle differences in these 
rhythms, and can be used for fast, accurate, repeated, and 
objective classification of arrhythmia.

In this paper, we present a novel machine learning 
framework for automated detection of these three classes 
of arrhythmias in ECG segments. The data used in this 
work is described in Sect. 2. Related work in the literature 
is presented in Sect. 3. The steps in the machine learning 
framework are detailed in Sect. 4. Model development and 
validation results are shown in Sect. 5. Discussions and Con-
clusions are given in Sect. 6.

2 � Data

The ECG signals used for developing the predictive models 
were obtained from the following publicly available arrhyth-
mia databases (Goldberger et al. 2000).

•	 Vfib ECG signals were obtained from the Creighton 
University ventricular tachyarrhythmia database (cudb) 
(Nolle et al. 1986). This database contains 35 eight-min-
ute ECG signals of subjects who experienced episodes 
of sustained ventricular tachycardia, ventricular flutter, 
and ventricular fibrillation.

•	 Afib and Afl ECG signals from the MIT-BIH atrial fibril-
lation database (afdb) (Moody et al. 1983). This database 
contains 25 long-term (10-h) ECG recordings of subjects 
with atrial fibrillation.

•	 Afib, Afl, and Nsr (Normal Sinus Rhythm) ECG signals 
from the MIT-BIH arrhythmia database (mitdb) (Moody 
et al. 2001). This database contains 48 half-hour excerpts 
of two-channel ambulatory ECG recordings, obtained 
from 47 subjects.

Two second and five second ECG segments were used in 
this study. Only lead II signals were used. Figure 2 shows an 
illustration of 5-s segments of different types of arrhythmia 
on an ECG signal.

3 � Related work

Several studies have been conducted to develop CDSS for 
arrhythmia detection. A predictive model that can detect 
and characterize normal rhythm from the three commonly 
occurring critical arrhythmias, namely, Atrial Fibrillation 
(Afib), Atrial Flutter (Afl), and Ventricular Fibrillation (Vfib), 
would be more useful in a clinical setting than techniques 
that detect just one type of arrhythmia.

Wang et al. (2001) utilized the short-time multifractal-
ity property and trained a Fuzzy Kohonen Network classi-
fier to detect Afib, Vfib, and VT classes. They studied ECG 
segments of 1.2 s, 1.8 s, and 2.4 s duration from the mitdb 
database and reported an overall accuracy of 99.40% for 
Afib, 97.20% for Vfib, and 97.80% for VT. Fahim and Khalil 
(2011) used 800 10-s ECG segments from 50 compressed 
ECG entries in the mitdb database to develop a rule-based 
system for the classification of Afib, Premature Ventricular 
Contraction, and Vfib. They reported an average accuracy 
of 97.00%.

Martis et al. (2013, 2014) developed prediction models 
to classify Afib, Afl, and Nsr signals automatically. They ana-
lyzed 2942 ECG beats from the afdb and mitdb databases 
using the discrete cosine transform and Independent Com-
ponent Analysis (ICA). With the k-Nearest Neighbor (KNN) 
classifier, they achieved an accuracy of 99.45% (Martis 
et al. 2013). In their next study (Martis et al. 2014), they 
extracted HOS based features from 641 Nsr, 855 Afib, and 
887 Afl beats, used ICA for feature selection, and trained a 
KNN classifier. They observed an accuracy of 97.65%. Fur-
ther, Desai et al. (2016) trained a rotation forest classifier to 
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classify normal, and three classes of arrhythmias (Afib, Afl, 
and Vfib) using 3858 ECG beats from the afdb, cudb, and 
mitdb databases. They extracted Recurrence Quantification 
Analysis (RQA) based features, used Student’s t-test for fea-
ture selection, and reported an accuracy of 98.37%.

Entropy features are commonly used in heart rate vari-
ability analysis and subsequent arrhythmia detection. Mayer 
et al. (2014) have presented a study detailing how appropri-
ate parameter selection for entropies could be performed. 
Acharya et al. (2016) proposed a CDSS to classify normal 
and three classes of arrhythmias (Afib, Afl, and Vfib) using 
all data in the afdb, cudb, and mitdb databases (614,526 
ECG beats). Entropy features were extracted from the beats 
and used to train a Decision Tree classifier. The resulting 

accuracy was 96.30%. Ashtiyani et al. (2018) extracted Dis-
crete Wavelet Transform (DWT) based features from Heart 
Rate Variability signals contained in 53 ECG records of 
the mitdb database. They employed a Genetic Algorithm to 
select features and trained a Support Vector Machine clas-
sifier with the selected features. An accuracy of 97.14% was 
reported in the classification of Nsr, Afib, and Vfl classes.

4 � Methodology

The conventional machine learning-based predictive model 
development framework has been followed in this study. 
This framework is comprised of five key steps: (1) Data 

Fig. 2   Display of five-second segments of different types of arrhythmia on an ECG signal
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Pre-Processing, (2) Feature Extraction, (3) Feature Selec-
tion, (4) Predictive Model Development, also known as the 
Training phase, and (5) Model Evaluation/Validation. This 
section provides a short description of each of these steps, 
customized for the ECG dataset used in this study. Figure 3 
shows an illustration of the machine learning framework 
used in this work.

4.1 � Step 1: ECG pre‑processing

The ECG signals in cudb and afdb have been sampled at a 
frequency of 250 Hz. However, the ECG signals in mitdb 
have been sampled at a frequency of 360 Hz. To maintain 
uniformity in sampling, the signals from mitdb were down-
sampled from 360 to 250 Hz. Subsequently, Daubechies 
wavelet 6 was employed to denoise the signals and remove 
the baseline (Alfaouri and Daqrouq 2008; Singh and Tiwari 
2006). The denoised signals were then segmented into 2-s 
and 5-s segments (shown in Figs. 1 and 2, respectively). The 
segmentations were done without any overlapping. Z-score 
normalization was utilized  to normalize each segment, 
account for varying ranges of amplitude, and to eliminate 
the offset effect (Jing et al. 2018).

4.1.1 � ADASYN

In this work, we report the results from both intra and pre-
balancing. This gives both a fair comparison to other works 
with pre-balancing, a standard methodology, and a debat-
ably superior method of balancing. To our knowledge, we 
are the first in this area to report the intra-fold balancing. 

The technique is to perform ten-fold cross-validation typi-
cally, except when in each fold of the cross-validation, we 
synthesized additional synthetic data points to be included 
in the training set, only using the fold’s training set as the 
source of synthesizing data points with ADASYN. A typical 
experiment does not provide the level of rigor that this subtle 
yet powerful modulation of the data allows. Typically, all of 
the synthetic training points are included before the cross-
validation, allowing a fold’s synthetic training point to have 
been created from a data point in the same fold’s testing set. 
Intra-fold balancing properties and advantages have been 
explored recently by Santos et al. (Santos et al. 2018).

Overall, there were 902 Nsr, two-second segments, 18,804 
Afib segments, 1840 Afl segments, and 163 Vfib segments. 
The dataset is imbalanced with a significantly high num-
ber of Afib segments compared to the other three classes. 
Similarly, there were 361 Nsr five-second segments, 7521 
Afib segments, 736 Afl segments, and 65 Vfib segments. To 
develop an unbiased machine learning prediction model, the 
number of samples in each class must be relatively similar. 
To balance this dataset, an oversampling technique called 
ADASYN (Adaptive Synthetic Sampling Method) was used 
in this work. ADASYN is an algorithm that generates syn-
thetic samples from the minority class (He et al. 2008). In 
simple terms, new synthetic samples will be generated con-
sidering the k nearest-neighbors of the original sample in 
each minority class. After generating the synthetic samples, 
the algorithm adds small random values to them to make 
them more realistic. Tables 1 and 2 provide a summary of 
the total number of original and synthetic data generated 
by ADASYN for both the 2-s ECG and 5-s ECG studies, 

Fig. 3   An illustration of the machine learning framework used in this study

Table 1   The total number of 
two-second ECG segments in 
each of the four classes before 
and after applying ADASYN

Class Total number of original 2-s 
segments (Total in %)

Total segments generated 
by ADASYN (2 s)

Total segments (Origi-
nal + ADASYN) (2 s)

Nsr 902 (4.15%) 17,736 18,638
Afib 18,804 (86.62%) 0 18,804
Afl 1,840 (8.48%) 17,006 18,846
Vfib 163 (0.75%) 18,626 18,789
Total segments 21,709 53,368 75,077
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including the percentage of distribution of the original sam-
ples in each class. The total number of segments combin-
ing both the original samples and the samples generated by 
ADASYN in each class is approximately equal.

4.2 � Step 2: feature extraction

Cumulant Derivation Higher Order Spectral analysis is a 
powerful tool for the analysis of nonlinear, non-stationary, 
and non-Gaussian physiological signals. Higher-Order Spec-
tra (HOS) is the spectral representation of higher-order sta-
tistics such as moments and cumulants of third and higher-
order degrees. Analysis using HOS features can help detect 
nonlinearity and deviations from Gaussianity.

Cumulants are one type of HOS feature that are com-
monly used in the analysis of biological signals (Acharya 
et al. 2011). Non-linear variations in biological signals are 
not easily detectable using first and second-order statistics 
(Nikias 1993). Hence, in this work, the third-order cumulant 
images were obtained from each of the ECG segments (both 
two second and five second segments). Let {a1, a2, a3 … ak} 
denote a k dimensional multivariate signal. The first three 
order moments are then defined as follows (Singh and Singh, 
2010):

where E[⋅] is the expectation operator, and i and j are time 
lag parameters. The cumulants are then defined as the 
nonlinear combinations of moments. They are defined as 
follows:

(1)First Order Moment ∶ ma
1
= E[a(n)]

(2)Second Order Moment ∶ ma
2
(i) = E[a(n)a(n + i)]

(3)
Third Order Moment ∶ ma

3
(i, j) = E[a(n)a(n + i)a(n + j)]

(4)First Order Cumulant ∶ Ca
1
= ma

1

(5)Second − OrderCumulant ∶ Ca
2
= ma

2
(i)

Figures 4 and 5 show illustrations of the third-order cumu-
lant RGB images of 2-s and 5-s ECG segments for normal 
and the three different types of arrhythmias, respectively. The 
images are of size 65 × 65 . Each point of the image is the 
third-order moment calculated using Eqn. [3]. The cumulant 
plots in Figs. 4 and 5 are symmetric in nature. It can be noted 
from these figures that there are unique HOS cumulant pat-
terns for normal, Afib, Afl, and Vfib arrhythmias for both 2-s 
duration (Fig. 4) and 4-s duration of ECG signals (Fig. 5). For 
the 5-s duration signals, there is a bit of stretch in the contour 
of the plots (Fig. 5) due to increase in the duration to 5 s. These 
signatures present in these plots are unique for each class i.e., 
cumulants visually differ based upon the class that they belong 
to. To quantify the unique cumulant patterns that are present in 
these images, various nonlinear features were extracted from 
these HOS cumulant plots.

Nonlinear Features Extraction From each of the derived 
cumulant images, the following 18 types of nonlinear features 
were extracted:

4.3 � Log energy

The energy of an image is a measure of the localized changes 
in the image. Such changes can be measured in the amplitude, 
brightness, or color of an image. Let the image I(x, y) have size 
NxN, the log energy is defined as:

4.4 � Image entropies

Entropy is a measure of uncertainty in the image. Let the image 
I(x, y) have Ni distinct gray values, wherei = 0, 1, ..., Li − 1 . 
The normalized histogram for a region of interest of size 
(R × C) is defined as:

(6)Third Order Cumulant ∶ Ca
3
= ma

3
(i, j)

E = loglog
∑

x,y
|I(x, y)|2

(7)Hi =
Ni

RC

Table 2   The total number of 
five-second ECG segments in 
each of the four classes before 
and after applying ADASYN

Class Total number of original 5-s 
segments (Total in %)

Total segments generated 
by ADASYN (5 s)

Total seg-
ments (Origi-
nal + ADASYN)
(5 s)

Nsr 361 (4.16%) 7,195 7,556
Afib 7,521 (86.62%) 0 7,521
Afl 736 (8.48%) 6,817 7,553
Vfib 65 (0.75%) 7,470 7,535
Total Segments 8,683 21,482 30,165
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Shannon Entropy (Singh and Singh 2010) quantifies the 
randomness of the overall distribution of the histogram. 
It is defined as:

Non-Shannon entropies such as Yager, Kapur’s, 
and Vajda entropies have a higher dynamic range than 

(8)Sn = −

L−1∑

i=0

Hilog2Hi

Shannon entropy, and are therefore useful in better esti-
mating regularity and scatters in images. Yager Entropy 
(Singh and Singh 2010) is defined as:

Kapur’s Entropy (Singh and Singh 2010) is defined as:

(9)Y =

∑L−1

i=0
��2Hi − 1��
RC

Fig. 4   Display of the cumulant images of two-second ECG segments of normal and the three different types of arrhythmias
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where 𝛼 ≠ 𝛽, 𝛼 > 0, 𝛽 > 0.
Vajda Entropy is a special case of Kapur’s Entropy in 

which � = 1

Renyi Entropy (Singh and Singh 2010) is a one param-
eter generalization of Shannon entropy, and is defined as:

(10)K�,� =
1

� − �
log2

∑L−1

i=0
H�

i
∑L−1

i=0
H

�

i

(11)K� =
1

1 − �

∑L−1

i=0
H�

i
∑L−1

i=0
Hi

Max Entropy (Guiasu, 1985; Fatma, 2020) is helpful 
in determining the largest remaining uncertainty in the 
measured entity, and is defined as:

where

(12)R =
1

1 − �
log2

L−1∑

i=0

H�

i

(13)M = max{EL(t) + EH(t)|t = 0,1,⋯ , L − 1}

Fig. 5   An illustration of the cumulant images of five-second ECG segments of normal and the three different types of arrhythmias
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4.5 � Gray level run length matrix‑based texture 
features

Texture analysis detects variations in pixel intensities such 
as smoothness, coarseness, and regularity (Manjunath and 
Ma 1996). In this work, the features based on the Gray Level 
Run Length Matrix (GLRLM) proposed by Galloway (1975) 
were determined. In the GLRLM, R(i, j) , the ith row and jth 
column capture the number of times (frequency) that j pixels 
with a gray level value i continue or run in the direction � . In 
an image with a coarse texture, it is expected that long runs 
will occur more, whereas in an image with a fine texture, 
there will be a higher proportion of shorter runs. In general, 
eleven R(i, j) based texture descriptors have been proposed 
to capture the difference in textures among various classes. 
They are described below:

Short Run Emphasis (SRE):

where Nr and Ng are the numbers of rows and columns.
Long Run Emphasis (LRE):

It measures the distribution of long homogeneous runs in 
a gray-level image.

Gray-Level Non-Uniformity (GLNU):

It indicates the non-uniformity of gray-levels.

EL(t) = −

t∑

i=0

Hi

pL
× log2

Hi

pL

EH(t) = −

L−1∑

i=t+1

Hi

pH
× log2

Hi

pH

pL =

t∑

i=0

Hi

(14)pH =

L−1∑

i=t+1

Hi

(15)SRE =

∑Ng

i=1

∑Nr

j=1

R(i,j)

j2

∑Ng

i=1

∑Nr

j=1
R(i, j)

(16)LRE =

∑Ng

i=1

∑Nr

j=1
j2R(i, j)

∑Ng

i=1

∑Nr

j=1
R(i, j)

(17)GLNU =

∑Ng

i=1

�∑Nr

j=1
R(i, j)

�2

∑Ng

i=1

∑Nr

j=1
R(i, j)

Run Length Non-Uniformity (RLNU):

It denotes the length of homogeneous runs.
Run Percentage (RP):

Here P is the total number of image pixels points. It 
indicates the homogeneity of homogeneous runs.

Low Gray-Level Run Emphasis (LGRE):

It denotes the distribution of low gray-level runs.
High Gray-Level Run Emphasis (HGRE):

It denotes the distribution of high gray-level runs.
Short Run Low Gray-Level Run Emphasis (SRLGE):

SRLGE is the distribution of short homogeneous runs 
with low gray-levels.

Short Run High Gray-Level Run Emphasis (SRHGE):

It is the spread of short homogeneous runs with high 
gray-levels.

Long Run Low Gray-Level Run Emphasis (LRLGE):

LRLGE is the spread of long homogeneous runs with 
low gray-levels.

Long Run High Gray-Level Run Emphasis (LRHGE):

(18)RLNU =

∑Nr

j=1

�∑Ng

i=1
R(i, j)

�2

∑Ng

i=1

∑Nr

j=1
R(i, j)

(19)RP =

∑Ng

i=1

∑Nr

j=1
R(i, j)

P

(20)LGRE =

∑Ng

i=1

∑Nr

j=1

R(i,j)

i2

∑Ng

i=1

∑Nr

j=1
R(i, j)

(21)HGRE =

∑Ng

i=1

∑Nr

j=1
i2R(i, j)

∑Ng

i=1

∑Nr

j=1
R(i, j)

(22)SRLGE =

∑Ng

i=1

∑Nr

j=1

R(i,j)

i2j2

∑Ng

i=1

∑Nr

j=1
R(i, j)

(23)SRHGE =

∑Ng

i=1

∑Nr

j=1

i2R(i,j)

j2

∑Ng

i=1

∑Nr

j=1
R(i, j)

(24)LRLGE =

∑Ng

i=1

∑Nr

j=1

j2R(i,j)

i2

∑Ng

i=1

∑Nr

j=1
R(i, j)
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It is the spread of long homogeneous runs with high 
gray-levels.

In this work, the run lengths matrices were calculated 
for angles � = 0◦, 45◦, 90◦, 135◦ , and the eleven features 
were determined for each angle. The values of each feature 
calculated in different directions were averaged to obtain 
rotationally invariant results.

We have used the HOSA toolkit (MathWorks 2003) and 
written our own MATLAB code to extract features.

4.6 � Step 3: feature selection

Several features could provide redundant information, and 
the use of all features could slow or complicate the predic-
tive model training process. Therefore, feature selection is 
an important step that is generally performed to (1) decrease 
the processing time, (2) determine more compact models, 
and (3) achieve better generalization and comprehensibility 
of the final predictive model. In this work, Student’s t-test 
(Box 1987) was used to determine the significance of each 
extracted feature. The p-value, a measure from the t-test, 
indicates whether the means of a feature for the different 
classes (in this work, normal and three classes of arrhyth-
mia) are statistically different. A p-value below 0.05 indi-
cates that a feature is significant and useful for effective class 
differentiation. All features with a p-value equal or greater 
than 0.05 were not used in the predictive model training 
process.

4.7 � Step 4: predictive model development/ training 
phase

A predictive model is the best combination of selected fea-
tures and classifiers whose predicted class labels (normal 
or one of the three arrhythmias) have the maximum correla-
tion to the actual class labels. To estimate this correlation, 
several performance measures are calculated:

•	 Accuracy refers to the amount of agreement between the 
predictive model’s predictions and the actual class labels.

•	 Sensitivity refers to the ability of the model to correctly 
identify those patients with one class of arrhythmia 
against the normal and other classes.

•	 Specificity refers to the ability of the test to identify those 
patients without a particular class of arrhythmia cor-
rectly.

•	 Positive Predictive Value (PPV) answers the question: 
’How likely is it that this patient has a particular class of 
arrhythmia given that the test result states he/she has it?’

(25)LRHGE =

∑Ng

i=1

∑Nr

j=1
i2j2R(i, j)

∑Ng

i=1

∑Nr

j=1
R(i, j)

To determine this predictive model, supervised learning 
was employed to train several conventional classifiers and to 
determine the performance measures. The input to the clas-
sifiers was the selected features, and the target output was 
the class label (normal vs. one of the three arrhythmias). The 
classifiers were trained to learn the association between the 
input and the targeted output using a data resampling tech-
nique called tenfold stratified cross-validation. The selected 
final predictive model was the classifier, whose average per-
formance measures over all the tenfolds were high. In this 
work, the following classifiers were trained and evaluated: 
Random Forest (Breiman 2001), K-Nearest Neighbor Clas-
sifier (KNN) (Han and Kamber 2006), Decision Trees (DT) 
J48 classifier (Larose 2014), Part Rules classifier (Eibe and 
Ian 1998), Multi Layer Perceptron (MLP) (Larose 2014), 
Logistic Regression (Hosmer 2001), and Gaussian Naive 
Bayes (Bonaccorso 2018).

5 � Results and discussion

Various nonlinear features were extracted from the HOS 
cumulant images. From each of the four classes (normal, 
Vfib, Afl, and Afib) based cumulant images, 18 non-linear 
features were extracted. Tables 3 and 4 provide a summary 
of the Mean and Standard Deviation (SD) of the features 
extracted from the 2-s ECG and 5-s ECG cumulant images. 
The p-value and F-value of these features obtained using 
the t-test are also shown in the tables. It is evident that all 
of the features were determined to be significant and useful 
for classifier training. The low p-values and high F-values 
also justify that the proposed cumulant plots are unique for 
each class.

Table 5 shows the average tenfold performance measures 
of the Decision Tree J48 classifier calculated with combi-
nations of one class versus the remaining classes for the 
2-s ECG dataset. The average measures of overall classes 
are also shown. The Decision Tree classifier presented an 
accuracy of 95.71%, PPV of 95.70%, Sensitivity of 95.71%, 
and Specificity of 98.57%. Figure 6 shows the change in 
accuracy observed as the number of features used for clas-
sification increased from 2 to 18 in the Decision Tree classi-
fier training process. For this process, we ranked the features 
in ascending order of p-value. The subset of two features 
comprises the first two features in the ranked list, and so on. 
The highest accuracy was obtained with the first 16 features 
in Table 3.

Table 6 shows the average tenfold performance meas-
ures of the Decision Tree J48 classifier calculated with 
combinations of one class vs. the remainder of classes for 
the five-second ECG dataset. The Decision Tree classifier 
presented an accuracy of 96.96%, PPV of 96.96%, Sensitiv-
ity of 96.96%, and Specificity of 98.99%. Figure 7 shows 
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the change in accuracy observed as the number of features 
used for classification increased from 2 to 18 in the Decision 
Tree classifier training process. The highest accuracy was 
obtained with the first 17 features in Table 4.

Table  7 presents the tenfold performance measures 
obtained for classifying each of the four independent classes 
using the Random Forest and KNN classifiers in both the 
two-second and five-second datasets. It is evident that the 
Random Forest classifier outperforms both the Decision 

Tree classifier (Tables 5 and 6) and the KNN classifier in 
both datasets. Table 8 presents the accuracies obtained with 
all classifiers on both the datasets. Figure 8 shows the Radar 
Chart which depicts the change in accuracy with respect to 
the method used for classification of the 2-s ECG dataset 
(top) and 5-s ECG dataset (bottom).

In any clinical application, sensitivity and specificity are 
also key indicators of a balanced classification. It is cru-
cial for a best performing classifier to be able to detect the 

Table 5   Confusion Matrix and 
Performance Measures obtained 
using the Decision Tree 
classifier for the two-second 
ECG dataset

Original/
Predicted

Nsr Vfib Afl Afib Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)

Nsr 18,126 20 300 192 97.25 96.11 97.25 98.70
Vfib 23 18,447 185 134 98.18 97.13 98.18 99.03
Afl 384 214 17,795 453 94.42 93.85 94.42 97.93
Afib 327 311 681 17,485 92.99 95.73 92.99 98.62

Average: 95.71 95.70 95.71 98.57

Fig. 6   Plot of the change in accuracy with respect to the number of features used for classification in the Decision Tree classifier for the two-
second ECG dataset

Table 6   Confusion Matrix and Performance Measures obtained using the Decision Tree classifier for the five-second ECG dataset

Original/Pre-
dicted

Nsr Vfib Afl Afib Accuracy (%) PPV
(Precision) (%)

Sensitivity (%) Specificity (%)

Nsr 7433 4 72 47 98.37 97.67 98.37 99.22
Vfib 3 7376 46 110 97.89 97.58 97.89 99.19
Afl 85 43 7307 118 96.74 96.28 96.74 98.75
Afib 89 136 164 7132 94.83 96.29 94.83 98.79

Average: 96.96 96.96 96.96 98.99
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Fig. 7   Plot of the change in accuracy with respect to the number of features used for classification in the Decision Tree classifier for the five-
second ECG dataset

Table 7   Performance Measures 
(for each individual class) 
obtained using the Random 
Forest and KNN classifiers for 
the two-second and five-second 
ECG datasets

Classifier Dataset Class Accuracy (%) PPV Sensitivity (%) Specificity (%)
(%)

Random Forest 2-s Nsr 99.9 96.8 99.9 98.9
Vfib 99.5 98.9 99.5 99.6
Afl 98.2 97.4 98.2 99.1
Afib 94.9 99.5 94.9 99.8
Average 98.2 98.2 98.1 99.4

KNN 2-s Nsr 98.6 95.8 98.6 98.6
Vfib 99.9 98 99.9 99.3
Afl 98 95.9 98 98.6
Afib 92.2 99.3 92.2 99.8
Average 97.3 97.3 97.2 99.1

Random Forest 5-s Nsr 99.9 98 99.9 99.3
Vfib 99.7 99.1 99.7 99.7
Afl 99 98.5 99 99.5
Afib 96.5 99.5 96.5 99.9
Average 98.8 98.8 98.8 99.6

KNN 5-s Nsr 99.5 97.4 99.5 99.1
Vfib 99.8 97.9 99.8 99.3
Afl 99.2 98.1 99.2 99.3
Afib 94.4 99.6 94.4 99.9
Average 98.2 98.2 98.2 99.4
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positive cases as well as the negative cases accurately. This 
is particularly true in an arrhythmia classification problem, 
as misdiagnosis will drastically affect the treatment plan for 
the patient. It can be seen from Tables 5, 6, 7 that all the 
top performing classifiers, namely Random Forest, J48 and 
KNN, have a balanced tenfold sensitivity and specificity. 
This indicates that the classifiers are robust and unbiased to 
either of the four classes.

We have also used intra-fold ADASYN data point balanc-
ing to give an understanding of what can be expected in a 
non-optimistic estimate of model performance that would 
be expected in the real world. We report both intra and pre-
balancing to make a fair comparison to other works that have 
pre-balancing, which is a common methodology. Since the 
Random Forest classifier is the best performing classifier in 
this work, we have applied this imbalance correction to this 
classifier only. Tables 9 and 10 present the confusion matrix 
and the performance measures obtained using the Random 
Forest classifier trained with intra-fold ADASYN imbalance 
correction for both the 2-s and 5-s datasets, respectively. 
Accuracies of 81% and 85% for both datasets are the esti-
mate of the classifier performance in the real world.

6 � Discussions and conclusion

Studies by Fahim et al. (2011), Martis et al. (2013, 2014), 
Desai et al. (2016), Acharya et al. (2016), and Ashtiyani 
et al. (2018) proposed techniques that were based on single 
beat, and therefore, had QRS detection as a preprocessing 
step. Moreover, studying longer durations of ECG signals is 
key to successful clinical adaptation. This is because phy-
sicians generally analyze longer windows of ECG data to 
detect the occurrence of arrhythmia. Rhythms like ventricu-
lar tachycardia (VT), which lead to ventricular fibrillation, 

may happen intermittently, and it is easy to miss if only 
single beats of ECG are analyzed.

However, analyzing the longer duration of ECG signals 
could be challenging because of the need to separate sev-
eral types of possible rhythms that occur during that time 
period. In this work, an automatic arrhythmia detection tech-
nique has been developed and evaluated using over 18,000 
original and synthetically generated ECH segments in each 
of the four classes: normal, Afib, Afl, and Vfib. The origi-
nal segments were obtained from the afdb, cudb, and mitdb 
databases, and the synthetically generated segments were 
obtained using the ADASYN algorithm. Predictive models 
have been developed for ECG segments of two durations: 2 s 
and 5 s. From the third-order cumulant images of the ECG 
segments, 18 non-linear features, including entropies and 
other texture-based features were extracted, and significant 
features were selected using the t-test. On evaluating sev-
eral different classifiers with the significant features using 
a tenfold stratified cross-validation technique, the Random 
Forest classifier consistently performed better for both 2-s 
and 5-s ECG duration studies. An accuracy of 98.1% was 
obtained for the 2-s dataset, and 98.8% was obtained for the 
5-s dataset. Several studies have explored the use of deep 
learning for the problem of arrhythmia classification (Shaker 
et al. 2020). As part of the next step of research, we intend to 
improve the approach using deep learning techniques with-
out the QRS segment detection step.

Early detection of the onset of arrhythmia is key to pre-
venting stroke and sudden cardiac death, especially in the 
elderly population in whom the incidence of arrhythmia is 
high. A computerized robust and accurate arrhythmia moni-
toring system based on machine learning techniques could 
provide an objective and quick insight into irregularities in 
the ECG signal. In this work, two such arrhythmia detection 
models that work on 2-s and 5-s ECG segments have been 
proposed. Both models utilize non-linear features extracted 
from cumulant images of the ECG segments and are more 
than 98% accurate in detecting normal sinus rhythm and 
abnormal Afib, Afl, and Vfib arrhythmias. Most computer-
ized models for arrhythmia analysis rely on the successful 
detection of the QRS segment. However, the proposed mod-
els skip this step and directly work on the ECG segments, 
thereby reducing the computational time and complexity, 
which is vital for quick arrhythmia monitoring. As a result, 
the proposed models have a higher probability of successful 
integration in arrhythmia monitoring systems for clinical 
practice.

Table 8   A comparison of classifier accuracy on both the 2-s and 5-s 
datasets using tenfold cross-validation

Classifier 2-s accuracy (%) 5-s accuracy (%)

Random forest 98.1 98.8
KNN (1 nearest) 97.2 98.2
J48 DT 96.0 97.2
PART rules 95.9 97.4
MLP 86.6 89.5
Logistic regression 79.8 88.0
Gaussian naive bayes 62.7 62.1
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Fig. 8   Radar Chart of the change in accuracy with respect to the classifier used for classification of the two-second ECG dataset (top) and five-
second ECG dataset (bottom)
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