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ABSTRACT 
In psychological assessment, a raw score transformation is the first step in the 

clinical decision-making process. During this process, clinicians will transform a raw 

score typically using linear standardised scores and a normative sample with 

characteristics similar to their client. While the literature stresses the importance of 

using adequate normative data, little research has evaluated the effect skewness has 

on sample size. Currently the consensus is that a sample size of 50 is deemed 

adequate for normative data. However, an alarming number of studies that present 

normative data have much smaller sample sizes particularly when the data is 

stratified by age, gender, and/or education. Additionally, the use of linear 

transformations onto a normal distribution introduces further problems the more 

positively or negatively skewed the normative raw score distribution is. Skewed 

distributions are commonly encountered in neuropsychology and accordingly their 

deviation from a normal distribution should be considered during the clinical 

decision-making process. The primary goal of the current thesis was therefore to 

evaluate the psychometric issues related to the standardisation process. In particular 

to investigate the current understanding of sample sizes in neuropsychological 

samples, assess how this is influenced by different skewed distributions, and evaluate 

the potential errors involved in the decision-making process. Three studies were 

conducted. The first study explored the minimum sample size needed to produce 

stable measures of central tendency and variance for a range of distributions. Results 

indicated that the optimal sample size required was dependent on the level of 

skewness of the distribution and was not the often cited N = 50. For normally 

distributed data, a sample size of 70 is required in each cell in order to produce stable 

means and standard deviations. Negatively or positively skewed distributions 

required sample sizes that ranged from 30 to 80 in each cell. This study highlighted 

the inadequacy of currently available normative data and called for further normative 

research to be conducted. The second study evaluated the errors introduced when 

using three different linear transformations on different skewed distributions with 

adequate sample sizes. Seven tests with differing skewness coefficients were 

evaluated using the z score transformation, a t-test method developed by Crawford 

and Howell (1998), and a median z score transformation developed for this research. 

Results indicated that the traditional z score transformation produced the least errors 

of the three methods. However, for highly positively skewed distributions, the use of 

this transformation introduces considerable error in the clinical decision-making 

process. A regression equation was derived as a tool for clinicians to help correct 

adequate data for the effect of skewness. The final study evaluated whether using 

different linear transformations created substantial errors when using normative data 

that ranged in skewness and that had sample sizes less than those recommended from 

Study One. This study is particularly important given the common practice in 

neuropsychology for at least some measures to be derived from the clinical research 

literature utilising inadequate sample sizes. Results indicated that the error in 

judgement when using the preferred z score transformation is nearly doubled in 

positively skewed distributions. It was recommended that normative data with 

sample sizes less than 30 should not be used in clinical practice and guidelines were 

proposed for incorporating issues of sample size and skewness into their testing 

practices. It is hoped that clinicians will adopt the findings and subsequent 

recommendations of these studies in order to improve the current standards of 

clinical decision-making in neuropsychology.  
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CHAPTER ONE 
INTRODUCTION 

 

1.1 Introduction 
The discipline of neuropsychology is concerned with the relationship 

between human brain function and behaviour (Beaumont, 2008).  

Neuropsychological assessment is the process of evaluating cognitive and 

psychosocial functioning in relation to neuropathology and how it influences an 

individual’s ability to function in everyday life (Goldstein, 2005).  The initial level of 

clinical evaluation involves comparing the individual’s score from a test with a set of 

normative data that is representative of the normal population.  These inferences are 

only made after the raw score is transformed into a standardised score and are 

compared with this normal population, a process called standardisation.  Whilst this 

may be common knowledge for clinicians, Donnell, Belanger, and Vanderploeg 

(2011) note: 

“In the clinical practice of neuropsychology it is imperative to understand the 

psychometric properties of the measures used to evaluate patients and how 

those properties might affect decision-making about individual patients.  

Neuropsychological test performance has little meaning without 

understanding how an individual’s score compares to the normative sample.” 

(p. 1097)  

 These authors make a point that appears to be often disregarded or ignored in 

neuropsychology, the issue of standardisation.  Much of the psychometric and 

clinical research literature has focused primarily on the issues of reliability and 

validity and how these influence neuropsychological assessments.  Through clinical 

training and numerous neuropsychology textbooks, clinicians are taught the 

importance of considering the appropriateness, adequacy, reliability, and validity of 

any psychological test being administered to a client.  In addition, professional ethics 

codes in psychology require clinicians to use psychometrically reliable and valid 

measures in clinical practice (Australian Psychological Association, 2007; Canadian 

Psychological Association, 2000; American Psychological Association, 2010). It is 

surprising, therefore, that only basic standardisation information is taught and 

provided to clinicians.  As an example, in the Handbook of Psychological 

Assessments – Fourth Edition (Groth-Marnat, 2003) some discussion is based around 

general standardisation issues such as adequacy of the sample size, standardised 

administration, and the appropriateness of the normative data.  While these issues are 

fundamental in test interpretation, the authors do not provide any guidance on how to 

address these issues.  Rather, they are questions posed to the reader requiring them to 

consider these issues when providing an assessment.  

In the Handbook of Normative Data for Neuropsychological Assessment 

(Mitrushina, Boone, Razani, & D’Elia, 2005) these standardisation issues are 

discussed in more depth.  The authors provide a chapter on statistical and 

psychometric issues covering the standardisation of raw scores, the normal 

distribution, reliability, validity, and meta-analysis. While they introduce some 

issues, they do not provide evidence-based practice guidelines or consider the 

consequences of not contemplating the psychometric issues related to 

standardisation.  Scrutiny of these issues is the purpose of the current thesis, which 

was conducted with the aim of providing recommendations, solutions, and 

theoretical guidelines relevant to the practice of everyday clinical neuropsychology.  
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It is hoped that better awareness of these issues will transform into more evidence-

based and informed clinical judgements and subsequently improvement in the 

assessment and care of clients.   

 

1.2 Neuropsychological Assessments 
 The psychometric issues of standardisation are not only applicable to 

individual test scores but also to scores within a test battery which consists of 

multiple measures that provide data over a broad range of cognitive and psychosocial 

domains (Vanderploeg, 1994).  There are two predominant approaches to 

neuropsychological test batteries, with most clinicians fitting somewhere on the 

continuum between “fixed” and “flexible” testing (Vanderploeg, 1994).  Fixed 

batteries use an unvarying group of tests that are administered in their entirety and 

are designed to comprehensively cover a broad range of cognitive domains in order 

to identify possible deficits (Lezak, 1995).  They are also customarily co-normed and 

standardised on a single sample.  The Halstead-Reitan Neuropsychological Battery 

(HRNB; Reitan & Wolfson, 1985) is perhaps the most well known example of a 

fixed battery.  On the other end of the continuum is the flexible approach in which 

clinicians choose and interchange tests for each individual with the resulting battery 

tailored to the needs of each client (Vanderploeg, 2000).  This clinically oriented 

approach allows clinicians to select tests based on hypotheses generated through 

clinical interviews, referral questions, and behavioural observations (Cimino, 2000).  

In addition to these more formal reasons, tests may also be selected based upon 

availability, routine, or clinical training.   

While there are many advantages to the fixed battery, this approach also 

suffers from a number of major limitations.  Because a fixed battery is administered 

in its entirety regardless of the status of the client, tests that measure a cognitive 

domain of no relevance to the case may be administered.  Similarly, if one of the 

tests indicates that a particular cognitive domain is intact, the remaining related 

measures must still be administered.  This means that such assessments can be 

extremely time-consuming, inefficient, and expensive.   

 Despite the appeal of a comprehensive fixed battery, research indicates that 

most clinicians adopt an intermediate approach, in which a core group of tests are 

repeatedly administered with other tests being added or substituted as needed (Sweet, 

Nelson, & Moberg, 2006; Sweet, Moberg, & Suchy, 2000; Sweet, Moberg, & 

Westergaard, 1996; Sweet & Moberg, 1990). This approach is clearly flexible.  By 

using some aspects of fixed batteries and including smaller tests that supplement 

relevant cognitive domains, clinicians are able to integrate both approaches.  What 

most clinicians fail to recognise is that such a “semiflexible” approach may 

undermine the psychometric properties of the fixed battery approaches which they 

seek to emulate.  Without proper psychometric evaluation of the measurement error, 

reliability and validity associated with the individual tests and the battery as a whole, 

clinicians may be using combinations of tests that are psychometrically unstable, and 

may make test-based inferences of an individual’s cognitive functioning based on 

error (Ingraham & Aikken, 1996).   

The doctoral research of Olm-Madden (2008) conducted at the University of 

Southern Queensland compiled the mathematical procedures for computing the 

necessary psychometric properties in a flexible battery in an approach termed the 

Reliable Approach to Psychological Testing (RAPT).  This method allowed “the 

application of psychometric, actuarial methodology to a flexible collection of 

cognitive tests” (Olm-Madden, 2008, pg. 3) and evaluated the psychometric issues 
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related to them.  The RAPT methodology permits an extensive evaluation of the 

implications and consequences of test selection and substitution on the reliability of 

batteries and test combinations, essentially permitting the type of analysis found in 

fixed batteries to be applied to flexible batteries.  While this is an invaluable tool for 

clinicians and researchers alike, RAPT does not consider standardisation issues and 

essentially focussed on the incorporation and use of psychometric characteristics 

without reference to the standardisation samples from which they were derived.  

Consideration of the issues associated with using standardised scores and normative 

data is the focus of the current research.  

 

1.3 Summary of Thesis 
The structure of this thesis will be to review relevant psychometric literature 

and highlight critical issues at each step of the standardisation process.  Each issue 

will be evaluated through studies, and recommendations and methodologies for use 

in clinical practice will be provided.  

Chapter Two discusses the basic standardisation concepts that are employed 

by clinicians in clinical neuropsychology.  This includes discussing the different 

ways of standardising a raw score, the ongoing debate surrounding the use of 

percentile ranks in neuropsychology, and an introduction to normal and skewed 

distributions.   

Chapter Three introduces normative samples, samples that are theoretically 

representative of the population.  Also evaluated are the different methods used by 

clinicians and researchers to collect normative samples, and the representativeness of 

these samples for the individual or client being tested. Finally, this chapter addresses 

and analyses the issue of sample size and its relation to establishing stable means and 

standard deviations for different distributions (i.e., normal and skewed).  

Recommendations are provided to aid clinicians and researchers.  

Chapter Four focuses on the different approaches commonly employed by 

clinicians when deciding whether a standardised score is abnormal.  This decision-

making process is important on two levels.  The first level is concerned with the 

individual test score and is normally interpreted with the aid of abnormality cut-off 

scores. The second level is assessing abnormality of the difference between two test 

scores.   

Chapter Five is concerned with evaluating the effects of skewness on 

standardisation.  In particular, this chapter empirically evaluates the errors produced 

when three linear transformations are applied to a range of skewed distributions for 

tests commonly used in neuropsychology.  This chapter also integrates the 

information from Chapter Three and assesses the effect of skewness and sample size 

on the clinical decision-making process.  Recommendations for clinical practice are 

provided.  

Chapter Six summarises the main findings of the thesis.  These findings are 

evaluated in terms of common practice, and recommendations are made to aid 

clinicians in the clinical decision-making process.  The implications to the discipline 

of neuropsychology are also explored.   
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CHAPTER TWO 
 BASIC PSYCHOMETRIC CONCEPTS 

 
2.1 Introduction 

In order to fully understand the issues of standardisation and normalisation 

most relevant to clinical interpretation, it is necessary to understand the related and 

basic psychometric properties.  Whilst most of these concepts are common 

knowledge in psychology, there is considerable scientific debate over the proper use 

of standardised scores and the existence of percentiles in cognitive reports.  That 

said, the way clinicians utilise and process normative data introduces and/or masks 

errors that have an effect on clinical decision-making  

 

2.2 Basic Psychometric Concepts 
 When cognitive tests are administered, the operational value that is obtained 

after scoring is called the raw score.  Depending on the test itself, the raw score can 

be represented as a rating, a function of time, or the number of correct or incorrect 

items (Gregory, 2007).  In this form, the raw score tells the clinician little about the 

individual’s ability.  Inferences about the individual’s performance are only achieved 

after the raw score is compared with others of similar characteristics on the same 

cognitive test (Gregory, 2007).  This comparison group is referred to as the 

normative sample, and is intended to be representative of the population.  However, 

in order to complete this comparison, the clinician must convert the raw score into 

the meaningful percentile rank and/or standardised score.   

 

2.2.1 Percentile rank 
In its simplest form, percentile ranks are the ordinal positions of raw scores 

within a normative sample’s distribution (Mitrushina et al., 2005).  For example, a 

raw score of 123 on the Peabody Picture Vocabulary Test, Fourth Edition for an 

eight-year-old boy, equates to the 37
th

 percentile.  That is, this score is as good as or 

better than 37 percent of people in the normative sample.  The advantage, as 

described by Crawford and Garthwaite (2009) is that “percentile ranks express test 

scores in a form that is of greater relevance to the neuropsychologist than any 

alternative metric because they tell us directly how common or uncommon such 

scores are in the normative population” (p. 194).  Some also go further to highlight 

that percentile ranks are universally applicable (Anastasi & Urbina, 1997) and can be 

readily understood not only by clinicians but also by other professionals and clients 

themselves (Lezak, Howieson, Loring, Hannay, & Fischer, 2004).   

However, as a percentile rank is the relative standing of a score in a normal 

distribution, it does not provide any information on the difference between scores 

(Mitrushina et al., 2005).  Additionally, differences between the percentile ranks on 

the distribution are wider towards the mean or the median and narrower at the upper 

and lower limits of the distribution (Anastasi & Urbina, 1997).  As such, it is difficult 

for the clinician to determine whether a difference between the 5
th

 and 15
th

 percentile 

is bigger than a difference between the 55
th

 and 65
th

 percentile.  Another major 

disadvantage of percentile ranks is that they have little use in the combination 

process for decision-making.  That is, it is difficult to combine different percentile 

ranks for a variety of cognitive tests and determine an individual’s strengths and 

weaknesses.   

Irrespective of these major limitations, percentile ranks also present many 

advantages, especially for clinical neuropsychology.  One of the assumptions so far 
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has been that the distribution of the normative sample, from which percentile ranks 

are derived, is based around normality or a distribution that is symmetrical.  It is 

important to note that this is not always the case.  Because cumulative percentiles are 

based on the actual raw score distribution, if a distribution is skewed or 

asymmetrical, as is the case with many neuropsychological tests, then interpretative 

power will not be lost (Donnell, Belanger, & Vanderploeg, 2011; Brooks, Strauss, 

Sherman, Iverson, & Slick, 2009).  In other words, the interpretive power of these 

percentile ranks is not affected by skewness in the normative sample (Crawford, 

Garthwaite, & Slick, 2009).  

Another issue that warrants investigation is the three different ways to 

conceptualise a percentile rank.  Crawford et al. (2009) discuss this issue in depth 

and describe three definitions as follows: 

1. The percentage of scores that fall below a given score  

(m/N)     Formula 1 

2. The percentage of scores that fall at or below a given score  

(m + k)/N    Formula 2 

3. The percentage of scores that fall below a score and half of those obtaining 

the score of interest  

(m + 0.5k)/N    Formula 3 

Where:  

m = the number of people scoring below the given score 

k = the number of people obtaining the given score 

N = the overall size of the normative sample 

 

While these authors appreciated that the three percentile definitions may 

cause minimal differences, they do highlight that such differences may be greater 

when tests consist of a small number of items, have a normative sample with a small 

sample size, or when the normative sample distribution is skewed.  They emphasise 

this point with a worked example.  The authors firstly created a hypothetical 

frequency distribution of raw scores on a 12-item neuropsychological test, and then 

calculated the percentile ranks of the raw scores using each of the three methods for 

a normative sample of 100 people.  Table 1 reproduces the results of the Crawford et 

al. (2009) study.   

 

Table 2.1.   

Applying Three Different Definitions of a Percentile Rank to the Raw Scores 

  Percentile Ranks 

Raw Score n obtaining Definition A: 

m/N 

Definition B: 

(m + k)/N 

Definition C: 

(m + 0.5k)/N 

0 0 <1 <1 <1 

1 0 <1 <1 <1 

2 0 <1 <1 <1 

3 0 <1 <1 <1 

4 0 <1 <1 <1 

5 2 <1 2 1 

6 4 2 6 4 

7 4 6 10 8 

8 14 10 24 17 

9 16 24 40 32 

10 20 40 60 50 
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11 30 60 90 75 

12 10 90 >99 95 

 

As can be appreciated, the effects of applying the three different methods are 

considerable.  For example, for a raw score of 9 (N = 16), definition A would 

provide a percentile rank of 24; definition B would provide a percentile rank of 40; 

and definition C would provide a percentile rank of 32.  Using the qualitative 

classifications presented in Table 2, definition A would yield a description in the 

Low Average range whilst definitions B and C would result in an Average range 

classification.   

 

Table 2.2.   

Qualitative Classifications used in Neuropsychology 

Classification Lower Limit Percentile 

Extremely High* 98 

Above Average 91 

High Average 75 

Average 25 

Low Average 9 

Below Average 2 

Extremely Low* - 
* The terms Extremely High and Low have replaced Significantly Above and Below Average 

Adapted from Kramer (1990) 

  

 Although this debate may divide the scientific community, it begs the 

question to what extent does this affect the clinical decision making process? 

Although Crawford et al. (2009) have clearly demonstrated the differences between 

the three methods, are these differences significant enough to influence the overall 

process? Study One critically evaluates this issue below.   

 

2.2.1.1 Study One - Different Percentile Definitions  
 The different percentile ranks used in the Crawford et al. (2009) study have 

been utilised, but using actual normative data rather than a hypothetical data set and 

from four tests with 30 (Judgement of Line Orientation; JLO), 38 (Conceptual Level 

Analogy Test; CLAT), 50 (National Adult Reading Test; NART), and 60 (Boston 

Naming Test; BNT) items in an effort to examine the extent of the differences with 

larger item sets. A test with only 12 items would, by necessity, generate a 

discontinuous set of percentile ranks and accordingly magnify the apparent 

differences between the percentile methods.   

Participants 

The normative data for each of these tests was drawn from ongoing 

normative studies conducted through the Department of Psychology at the University 

of Southern Queensland. Ethics approval was obtained through the University of 

Southern Queensland (H10REA096).  Participants were generally from regional 

South-East Queensland or metropolitan Brisbane areas and had volunteered to 

participate in studies designed to establish Australian norms for a number of 

neuropsychological tests. Table 2.3 presents the descriptive statistics for each of the 

normative studies used in this worked example.                         
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Table 2.3 

Demographic Characteristics for the Four Normative Samples 

    Age Education Gender 

Test n M  SD M (SD) M (SD) M F 

BNT 571 54.5 3.83 37.18 (14.60) 12.67 (2.39) 245 326 

CLAT 265 24.00 6.91 33.13 (13.63) 12.46 (2.10) 101 164 

JLO 379 25.61 3.67 35.90 (16.05) 12.50 (2.39) 150 229 

NART 160 30.47 8.54 37.76 (15.47) 13.31 (2.27) 68 92 
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Materials 

Four tests were utilised in this study. The Boston Naming Test (BNT; 

Kaplan, Goodglass, & Weintraub, 1983) is a confrontational naming test that 

requires the participant to name pictures, ordered with increasing difficulty. It is used 

to assess word retrieval abilities and word-finding difficulties. The BNT was 

originally developed in 1978 for use in adult populations but has since been normed 

for children and was revised in 1983 to include 60 items instead of the original 85.  

The Conceptual Level Analogy Test (CLAT) is a 42-item multiple-choice analogy 

test that assesses abstract reasoning. It was adapted by Willner in 1971 from the 

original Willner-Scheerer Analogy Test (1965). The Judgement of Line Orientation 

(JLO; Benton, Varney, & Hamsher, 1978) is a test designed to assess spatial 

perception and orientation. It consists of 30 items of increasing item difficulty. The 

participant must identify which line is in the exactly same position and orientation as 

a target item. Lastly, the National Adult Reading Test (NART; Nelson & O’Connell, 

1978) is a 50 item reading test used as a measure of premorbid functioning. 

Tables 2.4 to 2.7 display the percentile ranks of the raw scores using each of 

the three methods for the normative samples. 

 

 



 

 

 

9 

Table 2.4.   

Percentile Ranks for Three Different Definitions for the Judgement of Line Orientation Test 

Items 1-4 5-13 14 15 16 17 18 19 20 21 22 23 24 25 26 

n obtaining 0 1 1 3 4 3 7 11 14 12 8 23 25 40 41 

Definition 

A 

0 <1 <1 <1 1 2 3 5 8 12 15 17 23 30 40 

Definition 

B 

0 <1 <1 1 2 3 5 8 12 15 17 23 30 40 51 

Definition 

C 

0 <1 <1 <1 2 3 4 6 10 13 16 20 26 35 46 

 

Items 27 28 29 30 

n obtaining 41 57 55 33 

Definition A 51 62 77 91 

Definition B 62 77 91 100 

Definition C 56 69 84 96 
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Table 2.5.   

Percentile Ranks for Three Different Definitions for the Conceptual Level Analogy Test 

Items 0-2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

n obtaining 0 1 1 0 1 3 2 1 3 2 4 0 4 4 8 

Definition 

A 

0 0 <1 <1 <1 1 2 3 4 5 5 7 7 8 10 

Definition B 0 <1 <1 <1 1 2 3 3 5 5 7 7 8 10 13 

Definition C 0 <1 <1 <1 <1 2 2 3 4 5 6 7 8 9 11 

Items 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

n obtaining 9 7 13 14 10 14 17 21 14 14 11 17 10 12 14 

Definition 

A 

13 16 19 24 29 33 38 44 52 58 63 67 73 77 82 

Definition B 16 19 24 29 33 38 44 52 58 63 67 73 77 82 87 

Definition C 14 18 21 26 31 35 41 48 55 60 65 70 75 79 84 

Items 32 33 34 35 36 37 38 39 40 41 42 

n obtaining 10 6 4 5 1 3 2 2 1 0 0 

Definition A 87 91 93 94 96 97 98 98 99 100 100 

Definition B 91 93 94 96 97 98 98 99 100 100 100 

Definition C 89 92 94 95 96 97 98 99 99 100 100 
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Table 2.6.   

Percentile Ranks for Three Different Definitions for the National Adult Reading Test 

Items 1 2-4 5 6-12 13 14 15 16 17 18 19 20 21 22 

n obtaining 0 1 1 0 3 2 0 3 1 4 3 2 2 2 

Definition A 0 <1 <1 1 1 3 4 4 6 7 9 11 13 14 

Definition B 0 <1 1 1 3 4 4 6 7 9 11 13 14 15 

Definition C 0 <1 <1 1 2 4 4 5 7 8 10 12 13 14 

 

Items 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

n obtaining 6 5 4 6 9 12 7 7 10 4 7 7 5 6 5 

Definition 

A 

15 19 22 24 28 34 41 46 50 56 59 63 68 71 75 

Definition 

B 

19 22 24 28 34 41 46 50 56 59 63 68 71 74 78 

Definition 

C 

17 20 23 26 31 38 43 48 53 58 61 65 69 73 76 

 

Items 38 39 40 41 42 43 44 45 46 47 48 49 50 

n obtaining 7 8 1 5 2 3 3 3 2 1 0 0 1 

Definition A 78 82 87 88 91 92 94 96 98 99 99 99 99 

Definition B 82 87 88 91 92 94 96 98 99 99 99 99 100 

Definition C 80 84 87 89 91 93 95 97 98 99 99 99 100 
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 Table 2.7.   
Percentile Ranks for Three Different Definitions for the Boston Naming Test 

Items 1-36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

n obtaining 0 1 0 0 0 3 2 2 3 7 6 11 11 15 18 

Definition 

A 

0 0 <1 <1 <1 <1 <1 1 1 2 3 4 6 8 11 

Definition B 0 <1 <1 <1 <1 <1 1 1 2 3 4 6 8 11 14 

Definition C 0 <1 <1 <1 <1 <1 <1 1 2 3 4 5 7 9 12 

 

Items 51 52 53 54 55 56 57 58 59 60 

n obtaining 32 34 44 45 71 69 79 53 35 30 

Definition A 14 19 25 33 41 53 66 79 89 95 

Definition B 19 25 33 41 53 66 79 89 95 100 

Definition C 17 22 29 37 47 59 72 84 92 97 
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 As can be seen from this example, the differences between the three methods 

are minimal in the grand scheme of clinical decision-making. The mean difference 

between Definition A and Definition B, the most discrepant methods, is 3.30 

percentile points for the JLO, 2.34 for the CLAT, 1.98 for the NART, and 1.65 for 

the BNT. The differences are also minimal within the lower limits of the distribution. 

This is particularly important, as clinicians are primarily interested in the extreme 

ends of the distribution as more indicative of abnormality.  

 Overall, however, many researchers have concluded percentile ranks still 

hold great value in neuropsychological assessment and should be used alongside the 

standard metric of a standardised score (Crawford et al., 2009; Crawford & 

Garthwaite, 2009). As such it is important to report which method is being used 

when referring to percentiles. In the context of the current study, it is definition B 

that is utilised in which the percentile rank is computed as the percentage of people 

who score at or below the indicated score.  

 

2.2.2 Standardised Scores 
Raw scores do not contain any interpretive power without being converted 

into a percentile rank or a standardised score.  Additionally, it is difficult to combine 

raw scores from different tests within a cognitive battery because they each present 

with different weightings and actual distributions.  Standardising a score resolves 

these problems by transforming each raw score onto a common scale, which allows 

measures to be combined and analysed using known mathematics (Mitrushina et al., 

2005; Lezak, Howieson, & Loring, 2004).  This was a major limitation of percentile 

ranks and one that has been addressed in “fixed” batteries.  The co-standardised 

methodology of scaled scores (SS) found in the “fixed” Wechsler scales (Wechsler, 

1981) in theory allows an accurate comparison between standardised scores.  

However, for many tests used in the “flexible” battery approaches, clinicians need to 

complete the standardisation process themselves.  Standardised scores can be 

represented in two distinct ways, linear scores and normalised scores, each with 

their own advantages, limitations, and psychometric issues.  In order to discuss each 

type of standardised score, it is firstly important to understand normal and skewed 

distributions and the concept of the normative sample.   

 

2.2.3 The Normal Distribution 
The normal curve, bell curve, or Gaussian distribution was a theory first 

published by Carl Friedrich Gauss in 1809 in his book titled “Theory of the Motion 

of Celestial Bodies Moving Around the Sun in Conic Sections” (Davis, 1857). The 

general formula for the normal distribution curve is presented below in Formula 4 

(Guilford, 1936):  

      Formula 4 

Where N = the number of measurements 

e = the base of the Naperian system of logarithms, 2.718 

π = pi, or 3.1416 

σ = sigma, the standard deviation of the distribution     

x = a deviation from the mean (X – M) 

  

 The theoretical mean of the normal distribution is zero and the standard 

deviation is one. As Guilford (1936) explains: 
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“The first terms, N, σ, and the square root of 2π, are constant for any 

 distribution. They have nothing important to do with the general shape of the 

 curve. The symbol e is also a constant value, namely, 2.718. The independent 

 variable x appears in the exponent of the number 2.718. Y changes according 

 to that exponent, and the value of the exponent changes according to the 

 value of x. Let us assign a few values to x and then see what happens to Y. If 

 x is equal to zero, the whole exponent becomes zero. We know that any 

 number to the power zero is equal to 1, no matter what the number may be. 

 Thus e to the power of 0 equals 1. We know from this fact that the expression 

     
   

will never be greater than 1 and that, when x departs from zero, either 

 plus or minus, this expression becomes smaller. The curve will be 

 symmetrical around the Y-axis because of the x
2 

in the equation (p. 85).” 

Figure 2.1 depicts the normal curve distribution with its characteristic “bell-shaped” 

curve and symmetry.   

 

 
Figure 2.1.  The normal distribution  

 

The characteristic of the normal distribution that is commonly utilised by 

clinicians is that the area under the curve equals one. The normal curve is 

symmetrical and has the highest frequency of scores falling around the middle of the 

distribution. As such, the mode, median, and mean of the distribution are identical. 

This means that 68.4 percent of the population falls within one standard deviation of 

the mean. Essentially, this allows clinicians to make inferences about how a score 

compares to the population. An advantage of the theoretical normal distribution over 

observed distributions is that the former is mathematically defined and consequently 

we know essentially everything about it.  

Overall, the normal distribution simplifies the representation of the world 

around us.  Few human behaviours are likely to be truly normally distributed, and 

without transformation to a mathematically known distribution, researchers would 

have to know about the actual distribution of behaviours before making any 

inferences regarding them.  For example where time is a dependent variable, there 

will be physical limitations on how quickly an individual can respond but no 

theoretical limitation on how slow. Transforming the data onto a normal distribution 
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allows us to make theoretical inferences about the meaning of particular scores 

despite not knowing the exact parameters of the positively skewed distribution.  

Most human characteristics and behaviours can be expressed using the normal curve 

(Mitrushina et al., 2005).  The clinician can then take any portion of the normal curve 

and know what the corresponding percentage is for the area under the curve.  This 

underlies the transformation of linear standardised scores.    

 

2.2.4 Linear Standardised Scores 
The z score is the most commonly used method by clinicians for converting 

raw scores into standardised scores (Bridges & Holler, 2007).  The z score is 

evaluated by consulting the area under the normal curve and can be expressed by the 

following formula: 

z  = [x – M]/ SD     Formula 5 

Where:  

x = the observed score 

M = the mean 

SD = the standard deviation  

 

The benefit of a linear transformation is that the differences between the 

standardised scores are comparable to the differences in the equivalent raw scores.  

By and large, this allows the clinician to calculate the differences between scores, a 

major limitation of the percentile rank (Mitrushina et al., 2005).  The main problem 

of using z scores is that they are expressed as both negative and positive numbers 

with decimal places, with negative scores falling below the mean, and positive scores 

above the mean. It is likely that most clinicians do not report z scores in their reports 

for this very reason and also because negative numbers can be difficult to compute.  

To resolve this issue, a number of scaling systems have been developed to represent 

these same values. These scaling systems are identical to z scores, but have adjusted 

means and standard deviations so that they are expressed as positive whole numbers 

(Anastasi & Urbina, 1997).  The underlying distribution is not affected by this 

process.  For example, T-scores have a mean of 50 and a standard deviation of 10.  

The formula for a T-score is: 

T = 10z + 50     Formula 6 

Where:  

z = the z score 

 

Other commonly used scaling systems are the scaled scores (ss) with a 

population mean of 10 and a standard deviation of three, and the Standard Score (SS) 

with a mean of 100 and a standard deviation of 15. Any linear transformation can be 

computed to any scaling system with the following general formula: 

Scale Score  = Scale standard deviation (z) + Scale mean    Formula 7 

 

The benefit of assuming (or asserting) normality of behaviours and using 

linear standardised scores is that it allows clinicians to compare scores on a variety of 

tests and ultimately across their different distributions.  Subsequently, clinicians can 

then observe extreme scores or outliers in the distribution that may indicate 

pathology/abnormality or a cognitive strength, depending on which tail it appears 

However, Mitrushina et al. (2005) are quick to point out that thought needs to be 

given to other sources of outliers in the distribution.  These include, but are not 

limited to, inadequate reliability; differences in test administration and errors in data 
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collection; psychosocial, emotional, or motivational effects on the test score; 

situational factors when testing (e.g., external noise); demographic or physical 

characteristics of the examinee (e.g., physical handicaps); practice effects; and test 

biases. 

The major limitation of linear standardised scores was emphasised by 

Nunnally (1978) when he stated, “strictly speaking, test scores are seldom normally 

distributed” (p. 160).  To further emphasise this point, Micceri (1989) conducted an 

analysis of 440 distributions within the psychometric and psychology research 

literature with varying populations and settings.  He found that no distribution passed 

all tests of normality.  When tests are not normally distributed, the effect is a skewed 

distribution.   

 

2.2.5 Skewed Distributions  
Asymmetrical or skewed distributions can either be positive or negative in 

direction. Figures 2 and 3 depict examples of positive and negative skewed 

distributions, respectively.  A coefficient of skewness can be computed using the 

following formula.   

    
   

 

 
    Formula 8 

 Where:  

z = z score, n = sample size 

 

 
Figure 2.2.  Positively skewed distribution 
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Figure 2.3.  Negatively skewed distribution 

 

Negatively skewed distributions have scores that largely fall within the upper 

half (the median falls above the mean) of the score range and as such have the 

highest sensitivity at the lower part of the distribution.  On the other hand, positively 

skewed distributions have scores that largely fall within the lower half of the score 

range (the median falls below the mean) and, therefore, have the highest sensitivity 

in the upper part of the distribution.  Overall, the implication of a skewed distribution 

is that unlike the normal distribution, the mean and the median are not the same.   

The consequence of skewed distributions is that they cannot be readily 

compared like normal distributions (Anastasi & Urbina, 1997).  The mathematical 

process for comparing normal distributions is well known and can be performed with 

relative ease.  However, it is highly error-prone and extremely difficult to compare 

skewed distributions in order to make interpretations.  Furthermore, linear 

transformations are unreliable when used on skewed distributions (Crawford et al., 

2006).  Linear standardised scores are calculated using the normative sample’s mean 

and standard deviation and are based on the assumption of normality, where the 

median and mean reflect the same measure of central tendency.  The problem is that 

the mean and median of skewed distributions are not the same, and therefore it 

would be inappropriate to use a linear transformation on a non-normal distribution 

(Crawford et al., 2006; Mitrushina et al., 2005).  The implication, as highlighted by 

many researchers, is that using the traditional and uncritically accepted linear 

transformations to interpret raw scores on a skewed distribution will result in 

multiple errors, including increasing the risk of Type I errors (Brooks et al., 2009; 

Crawford & Howell, 1998; Crawford et al., 2006).  Overall, this may result in over – 

or under-detection of abnormality, misdiagnosis, unnecessary or incorrect treatment, 

and/or adverse psychological effects (Strauss, Sherman, & Spreen, 2006).  Using a 

linear transformation on skewed distributions could inaccurately reflect the 

underlying population rank, skewing the relative standing between the standardised 

scores.   

 One solution is forcing skewed distributions into normal distributions 

(Anastasi & Urbina, 1997).  Even though this is distorting the distribution, the power 

that is gained by doing so is considered to far outweigh the complications and 

logistical problems of maintaining the skewed distribution.   
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2.2.6 Normalised Standard Scores 
 Normalised standard scores have distributions that have been mathematically 

transformed to fit the normal curve (Anastasi & Urbina, 1997).  However, unlike 

standardised scores, these are mapped on the median, not the mean.  Normalised 

standard scores are created by computing the cumulative frequency of the raw scores 

of the normative sample and mapping these against the corresponding standard score 

that represents that percentile on the normal distribution. As such, normalised 

standard scores can also be referred to as an equipercentile (Budescu, 1987). 

Clinicians can achieve this by using a percentile conversion table similar to that in 

Figure 2.4.  
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Figure 2.4. Conversion Table for Percentiles, z Scores, Scaled Scores, Standard 

scores, and T-Scores  

 

The corresponding standardised score is normally presented in the same 

fashion as a linear standardised score, with a mean of zero and standard deviation of 

one.  The following illustrates the normalised transformation of Australian 

Normative data for the Trail Making Test.   
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2.2.6.1 Study Two - Normalised Standard Scores for the Trail Making 
Test  

Participants for this study were sourced from a normative database drawn 

from ongoing normative studies conducted through the Department of Psychology at 

the University of Southern Queensland (USQ).  Participants were generally from 

regional South-East Queensland or metropolitan Brisbane areas and had volunteered 

to participate in studies designed to establish Australian norms for a number of 

neuropsychological tests. In total, 416 cases with Trail Making Test (TMT) data 

were selected for this study. The TMT is a test designed to measure an individual’s 

“speed for attention, sequencing, mental flexibility and of visual search and motor 

functioning” (Spreen & Strauss, 1998, p. 533). It has a long and comprehensive 

history, originally developed for use in the 1944 Army Individual Test Battery 

(Army Individual Test Battery, 1944).  More recent adaptations can be found in 

several neuropsychological test batteries including the Halstead-Reitan Battery 

(Reitan & Wolfson, 1993), the Individual Neuropsychological Testing for 

Neurotoxicity  (Singer, 1990), and the Delis-Kaplan Executive Function System 

(Delis, Kaplan, & Kramer, 2001). The TMT consists of two trials: Trial A (TMT-A) 

in which participants are required to rapidly draw a line connecting the numbers 1 to 

25 in order; and Trial B (TMT-B) in which the participant must alternate between 

numbers (1 – 13)  and letters (A – L) in order.  

Of the 416 cases analysed, 240 were female and 176 were male.  Ages ranged 

from 16 to 79 years old (M = 35.97, SD = 15.49) and education from 8 to 20 years 

(M = 12.93, SD = 2.37).  The data were initially stratified into five different age 

groups, three different education groups, and two gender groups in order to assess 

the influence of these variables on Part A and Part B test scores.  The frequencies of 

cases in each group are presented in Table 2.8.   

 

Table 2.8.   

Number of Cases in Each Stratified Category 

Age N Edu. N Gender N 

17 - 20 72 <12 112 Male 176 

20-29 101 12 89 Female 240 

30-39 86 >12 215   

40-49 64     

>50 92     

Total 416  416  416 

  



 

 

 

21 

The TMT A and TMT B scores were subjected to a three-way analysis of 

variance (ANOVA) using the three independent variables of age, education, and 

gender.  For TMT A, no main effect was found for gender, F(1, 386) = 3.19, p >.05, 

or education, F(2, 386) = 0.27, p >.05.  A significant main effect was found for age, 

F(4, 386) = 11.43, p <.05.  While there was also a significant age by education 

effect, F(8, 386) = 2.58, p <.05, the Tukey post hoc test indicated two homogeneous 

groupings for age; less than 50 years, and more than 50 years, and a single 

homogeneous group was found for education.  

 For TMT B, no main effect was found for gender, F(1, 383) = 0.52, p >.05. 

However, a significant main effect was found for age F(4, 383) = 8.24, p <.05 and 

education F(2, 383) = 4.14, p <.05.  The Tukey post hoc test indicated two 

homogeneous groupings for age, less than 50 years and more than 50 years, and two 

homogeneous groupings for education, less than 12 years and 12 or more years.  As a 

result, normative data for TMT B was stratified to reflect the 2x2 groupings of age 

and education.  For TMT A, normative data would only need to be stratified by the 

two levels of age. However, in order to make comparisons between TMT A and 

TMT B more direct, it was decided that imposing the education structure of the TMT 

B onto the TMT A, while redundant, would facilitate comparisons between the two 

trials.  The descriptive statistics for the new stratified groups are presented in Table 

2.9.   

 

Table 2.9.   

 Descriptive statistics for mean completion time of TMT A and B for the four groups  

Category  TMT-Part A TMT-Part B 

<50 Years Old 

<12 Years Education 

 

N 

M 

SD 

73 

23.87 

7.15 

72 

60.78 

23.44 

<50 Years Old 

>12 Years Education 

N 

M 

SD 

251 

24.64 

8.2 

250 

54.47 

19.26 

>50 Years Old 

<12 Years Education 

 

N 

M 

SD 

39 

34.04 

11.94 

38 

79.36 

29.37 

Category  TMT-Part A TMT-Part B 

>50 Years Old 

>12 Years Education 

N 

M 

SD 

53 

29.67 

9.29 

53 

68.44 

21.69 
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 Based upon the percentiles derived from the cumulative frequencies of the 

completion times in each group (see Appendix A) scaled scores were allocated to 

completion time ranges using the percentile range map in Table 2.10.    

 

Table 2.10. 

Percentile Rank Ranges Corresponding to Scaled Scores 

Scaled Score Percentile Range 

1 ≤ 0.5 

2 0.6 – 0.9 

3 1 

4 2 - 3 

5 4 - 6 

6 7 - 12 

7 13 - 20 

8 21 - 30 

9 31 - 43 

10 44 - 56 

11 57 - 68 

12 69 - 79 

13 80 - 87 

14 88 – 93 

15 94 – 96 

16 97 – 98 

17 99 

18 99.1 - 99.4 

19 99.5 + 

 

The results are the corresponding scaled score ranges for the four stratified 

groups mapped for the TMTA (Table 2.11) and TMT B (Table 2.12).   

 

Table 2.11.   

Mapped TMT A Raw Scores to Scaled Scores 

 Group  

Scaled 

Score  

 <50 years old 

<12 years ed. 

<50 years old 

12+ years ed.  

50+ years old 

<12 years ed.  

50+ years old 

12+ years ed.  

1  49.6 +   

2 48.6 + 49.1 – 49.5   

3 42.1 – 48.5 47.6 – 49.0 61.6 + 49.1 + 

4 39.1 – 42.0 44.0 – 47.5 60.1 – 61.5 45.1 – 49.0 

5 37.6 – 39.0 39.1 – 43.9 51.1 – 60.0 44.1 – 45.0 

6 30.1 – 37.5 33.6 – 39.0 48.1 – 51.0 39.1 – 44.0 

7 27.1 – 30 30.1 – 33.5 42.6 – 48.0 33.6 – 39.0  
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8 24.6 – 27 26.6 – 30.0 36.1 – 42.5 31.1 – 33.5 

9 23.6 – 24.5 24.1 – 26.5 32.1 – 36.0 29.6 – 31.0 

10 21.6 – 23.5  21.6 – 24.0 30.0 – 32.0  27.1 – 29.5 

12 18.6 – 19.9 18.1 – 19.5 25.6 – 28.0 23.1 – 24.0 

13 17 – 18.5 16.0 – 18.0 21.1 – 25.5 22.1 – 23.0 

14 15.6 – 16.9 14.6 – 15.9 18.1 – 21.0 18.1 – 22.0 

15 15 – 15.5 13.1 – 14.5  6.1 – 18.0 7.1 – 18.0 

16 ≤ 14 12.6 – 13.0 ≤ ≤ 7.0 

17  12.1 – 12.5   

18  11.6 -12.0   

19  ≤ 11.5   

 

Table 2.12.   

Mapped TMT B Raw Scores to Standard Scores 

 Group 

Scaled 

Score 

<50 years old 

<12 years ed.  

<50 years old 

12+ years ed.  

50+ years old 

<12 years ed.  

50+ years old 

12+ years ed.  

1  116.1 +   

2 120.1 + 115.1 – 116.0   

3 118.1 – 120.0 111.1 – 115.0   

4 116.1 – 118.0 99.1 – 111.0 140.1 + 124.1 + 

5 96.6 – 116.0 79.1 – 99.0 131.0 – 140.0 94.1 – 124.0 

6 79.6 – 96.5 70.0 – 79.0 93.1 – 130.0 84.1 – 94.0 

7 72.1 – 79.5 64.6 – 69.9 91.0 – 93.0 79.6 – 84.0 

8 65.1 – 72.0 59.1 – 64.5 86.6 – 90.0 74.6 – 79.5 

10 51.6 – 57.5 49.1 – 53.5 68.1 – 77.5 64.1 – 67.5 
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11 48.6 – 51.5 45.0 – 49.0 63.1 – 68.0 57.1 – 64.0 

12 41.1 – 48.5 40.6 – 44.9 60.1 – 63.0 50.6 – 57.0 

13 38.6 – 41.0 36.6 – 40.5 55.1 – 60.0 44.1 – 50.5 

14 35.1 – 38.5 30.1 – 36.5 38.1 – 55.0 35.1 – 44.0 

15 33.1 – 35.0 27.1 – 30.0 30.1 – 38.0 29.1 – 35.0 

16 32.1 – 33.0 24.1 – 27.0 ≤ 30.0 ≤ 29.0 

17 ≤ 32.0 23.1 – 24.0   

18  16.1 – 23.0   

19  ≤ 16.0   

   

 Overall, this method essentially converts the continuous raw score 

distribution (time to completion) into a discontinuous scaled score distribution 

ranging from 1 to 19. The benefit of this is that this data can now be combined with 

other test scores in a battery to create composite or index scores. To illustrate the use 

of this system, raw scores for Part A and Part B were standardised using a linear 

transformation and compared to those standardised using Tables 2.11 and 2.12. For 

this example, the Part A raw score was 35 seconds and Part B raw scores was 81.5 

seconds. The respondent was 35 years old and had 13 years of formal education. For 

the linear transformation, the z scores were calculated using Formula 5 and the 

descriptive statistics from Table 2.9. Based on these, the z score is 1.24 for Part A 

and 1.40 for Part B. The z scores were converted to percentiles using Figure 2.4 with 

Part A corresponding to the 11
th

 percentile and Part B falling at the 8
th

 percentile. 

The normalised standard scores corresponding to these raw scores equal a scaled 

score of 6 (equivalent to 9
th

 percentile) for Part A and a scaled score of 5 (equivalent 

to 5
th

 percentile) for Part B. As this example demonstrates, using normalised 

standard scores that are mathematically mapped using the raw score distribution 

produces scaled scores and corresponding percentiles that are more sensitive than 

linear transformations. 

 

2.3 Conclusions 
When a test is administered, it produces an operational value called a raw 

score. In order for a clinician to interpret such a score, it needs to be converted into a 

percentile rank or a standardised score. Both methods have their advantages and 

disadvantages. For example, while the percentile provides an ordinal position of the 

client’s score and can be readily interpreted by other stakeholders, it fails to provide 

any information regarding the differences between scores. This type of analysis is 

particularly important when test batteries are administered. The standardised scores, 

on the other hand, transform the raw score into a common scale so that analyses can 

be performed at the battery level. The linear standard score is based around the 

theoretical normal distribution and as such can introduce error when working with 

skewed distributions.  
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What many clinicians may not realise or perhaps choose to ignore, is that 

skewed distributions are highly exploited in clinical neuropsychology.  As such, 

many neuropsychological tests have distributions that deviate from the normal 

distribution (Brooks et al., 2009; Capitani & Laiacona, 2000; Crawford & Howell, 

1998; Crawford & Garthwaite, 2005). It is important to understand that 

neuropsychologists and clinicians alike should be particularly interested in skewed 

distributions because of the predictive and discriminative power they yield (Brooks 

et al., 2009).  The fundamental idea behind cognitive assessments is to identify 

impairments and strengths.  Tests with positively skewed distributions have the 

majority of their items in the lower end of the distribution and can be particularly 

effective at differentiating levels of lower performance. Negatively skewed 

distributions with the bulk of their item content in the upper part of the distribution 

reflect relatively easy tests for which low scores are generally rare. These often serve 

well as screening measures as while they do not differentiate levels of poor 

performance, they are highly sensitive to impairment. Intentionally skewing a test 

negatively, such as in recognition memory, malingering or effort testing, allows for 

the highest discriminative power at the lower ability level (Mitrushina et al., 2005).  

However, another reason why many neuropsychological tests may have skewed 

distributions is that they often have small normative sample sizes and the 

implications of this is the topic of the next chapter.   
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CHAPTER THREE 
NORMATIVE DATA AND SAMPLE SIZES 

  
3.1 Normative Samples 

A normative sample is a group of people who are theoretically representative 

of the population (Mitrushina et al., 2005).  Tests are administered to this normative 

sample and the scores generated are called normative data.  Normative data can be 

collected through a variety of means.  One method is that of census-based norms 

where the normative sample is compiled in order to match the demographic variables 

of a nation’s census (Cochran, 1977).  The commonly used Wechsler scales utilised 

this method in creating their extensive normative databases (Wechsler, 1981, 1997, 

2008). While this method is thorough and comprehensive, it may disadvantage 

specific groups.  For example, results from a specific ethnic minority group, low 

education group, or from the extreme elderly may appear as outliers in a normative 

sample.  This may skew the distribution and, more seriously, normal scores from 

these specific groups may be misinterpreted as impaired (Brooks et al., 2009).   

This issue is particularly important in neuropsychology and culturally 

sensitive testing.  For example, developing a normative sample of 100 people in 

Australia which is intended to be census-matched would be expected to include only 

two to three indigenous Australians based on the base rate of 2.5 percent of this 

ethnic group in Australia (Australian Bureau of Statistics, 2011) It is not hard to 

recognise that this ethnic group would be severely underrepresented by using census-

based norming methods.  Furthermore, research has found that clinicians are likely to 

misdiagnose a healthy and cognitively normal African-American as impaired 

because their scores on cognitive tests are, on average, lower  when compared to 

White American participants (Campbell et al., 2002).   

Similar findings have been revealed for low education (Bornstein & Suga, 

1988) and the cognitive test performance of normal elderly persons.  The study by 

Marcopulos, McLain, and Giuliano (1997), which sought to generate preliminary 

normative data for nine common neuropsychological tests, found that many of their 

participants would be misclassified if the published cut-offs were used.  The 133 

rural participants in their study were aged over 55 years, had completed no more than 

10 years of formal education, and had no history of psychiatric, medical, or 

neurological disease.  The participants were mostly female but there was near equal 

numbers of White and African Americans.  While the conclusions were limited to 

healthy, low educated, rural, older adults, the study nevertheless highlights the 

consequences of comparing low frequency groups with the mean for the whole 

population.  Some normative studies, such as the Wechsler scales (The Psychological 

Corporation, 1997), have attempted to overcome these issues by oversampling some 

demographic characteristics such as education.  

Another method to collect normative data is called the recruitment method.  

This method entails researchers specifying a set of selection criteria and standards 

and recruiting volunteers based upon these (e.g., healthy volunteers aged 60-70 years 

with no history of organic or acquired brain damage and with more than 12 years of 

education).  The difference between this method and census-based norms is that the 

underlying distribution of recruitment norms will not represent the normal 

population, especially in regard to demographic variables (Williams & Cottle, 1977) 

but are targeted specifically for the population for which they are intended.   

A third method, which is perhaps the most relevant to neuropsychological 

assessment, is anchor norms.  Anchor norms are ideal for neuropsychology because 
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of the enormous costs and time needed to develop census-based normative samples.  

Furthermore, because neuropsychological assessment is concerned with testing target 

populations, demographic variables can be chosen and oversampled in order to meet 

the needs of the clinician and researcher (Anastasi & Urbina, 1997).  Following on 

from the previous example, while only three indigenous Australians would be 

sampled for census-based norms, researchers using anchor-norms may choose to 

sample 100 indigenous Australians to make the sample more appropriate.  However, 

a disadvantage of anchor-norms is the very reason why neuropsychologists and 

researchers use them:  they still tend to have small sample sizes.   

 

3.1.2 Representativeness of the Normative Sample with the Individual 
Adequate interpretative comparisons can only be made if the individual being 

tested is compared with a normative sample that is representative on a variety of 

levels.  Mitrushina et al. (2005) proposed a set of standards to use when selecting 

appropriate normative samples.  They explained:    

“All normative data are limited to use with patients whose demographic 

characteristics are similar to those of the normative sample and match the 

administration/scoring procedures of the test utilized (p. 18).”   

Without this consideration, it is unknown whether the discrepancies between 

the individual and the normative sample are reflective of abnormality or the 

differences between the characteristics of the individual and the normative sample 

(Ardila, 1995).  For example, comparing an 80-year-old individual’s response time 

with the norms of 12-year-olds would probably place the individual in the impaired 

range, when the difference may only reflect the individual’s nonconformity to the 

characteristics of the normative sample.  Overall, this comparison would be prone to 

errors of both small and large magnitudes.  As such, it is important to consider the 

subject characteristics of the normative data set and the procedures used to obtain 

them.  These commonly include age, gender, education, ethnicity, language, and 

literacy (Dotson, Kitner-Triolo, Evans, & Zonderman, 2008).    

In addition, Mitrushina et al. (2005) highlight the importance of using up-to-

date normative samples to take into account changes in the actual test and/or the 

increases in mean cognitive test performance over time, a phenomenon called the 

Flynn Effect (Flynn, 1984; 1987; 1994; 1998a; 1998b; 1999).  While uncertainty still 

surrounds the Flynn effect and its implications for psychological testing (Hagan, 

Drogin, & Guilmette, 2008), the point is nonetheless well-taken that normative 

samples need to be evaluated for their appropriateness over time particularly with 

census-based sampling. For example, in 1911 only 3.5% of Australians 18 years or 

older participated in higher education. By the end of the 20
th

 century in 1996, 65.8% 

of this same age group were attending an educational institution, (Australian Bureau 

of Statistics, 2000) highlighting that normative data that is sensitive to the influence 

of education would need to be re-standardised to accommodate the changes in the 

population.  

 Another important standard outlined by Mitrushina et al. (2005) is the notion 

of sample sizes (n). They cited Crawford & Howell (1998) that for normative studies 

to be deemed adequate and sound, a minimum sample size of 50 is required 

(Mitrushina et al., 2005).  Furthermore, they state “a large number of studies suggest 

that data based on small sample sizes are highly influenced by individual differences 

and do not provide a reliable estimate of the population mean” (Mitrushina et al., 

2005, p. 70). However, upon analysis of the cell sample sizes found in the studies 

included in their book, it is apparent that many normative databases do not follow 
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this rule. For example, for the BNT, there were 28 normative studies included in 

Mitrushina et al’s (2005) book. Out of these, 24 studies had overall sample sizes 

above 50. However, when analysing the cell sample sizes, only 39 out of 166 cells in 

the 28 studies had adequate sample sizes of above 50. For JLO, only 11 of the 20 

normative studies achieved an overall sample size of 50 or more. For the cell sample 

sizes, only 17 of the 56 cells had adequate sample sizes. This demonstrates that 

although there is a standard for sample size in normative studies, the reality is that a 

large proportion of the published data actually do not conform to this.  

 

3.2 The Optimal Sample Size 
Crawford and Howell first mentioned this number, 50, in the literature in 

1998 when they developed the Crawford-Howell modified t-test to be used on small 

sample-sizes instead of the conventional z score.  However, it is important to note 

that the concept of normative sample sizes needing to have an n of 50 is based on an 

article that actually arrives at a different conclusion.  Specifically, Crawford and 

Howell (1998) suggested “that the modified t-test be used with an n of less than 50; 

with larger sample sizes either method is more rapid” (p. 485) where “either method” 

refers to z scores and t-tests.  In fact, at no point in the article did they suggest that a 

minimum n of 50 was acceptable for a normative study (J. R. Crawford, personal 

communication, June, 29, 2013)  

More recent research by Bridges and Holler (2007) attempted to determine 

optimal sample sizes for normative studies.  While their study was based on 

paediatric norms, the results still provide a valid means for questioning and 

evaluating normative studies in clinical neuropsychology.  Their research was two-

fold.  The first section consisted of calculating confidence intervals and their 

equivalent z scores around the paediatric norms for four common neuropsychological 

tests: Boston Naming Test (BNT), Rey Auditory Verbal Learning Test (RAVLT), 

Hooper Visual Organisation Test (HVOT), and the Rey-Osterrieth Complex Figure 

Test (RCFT).  At this initial level, results indicated that the confidence intervals 

around the normative sample means varied widely, especially when the normative 

data had a small n.  For example, on the BNT, normative data for five-year-old boys 

had a sample size of only 17.  When confidence intervals were calculated, the 

difference between the upper and lower limits was 1.02 standard deviations.  Even 

more unreliable were the 13-year-old girl norms on the same test where the sample 

size was 4, and the difference between the upper and lower confidence intervals was 

3.18 standard deviations.  

The second part of the Bridges and Holler (2007) study comprised of 

recalculating the confidence intervals for the same paediatric normative studies, but 

with different sample sizes (i.e., n = 5, 10, 25, 50, 100, 200, 300, and 500).  Bridges 

and Holler (2007) concluded: 

“Fewer than 50 subjects results in confidence intervals that are deemed too 

 large to be of clinical utility to neuropsychologists.  Alternatively, normative 

studies having more than 75 subjects per group may not significantly 

decrease the width of the confidence interval” (p. 537).   

One limitation reported by the researchers is that their study focused 

primarily on the effect sample size had on normative sample means.  They 

highlighted that sample standard deviations are also affected by sample size.  They 

also pointed out their study calculated confidence intervals around normative means 

that were based on a normal distribution (Bridges & Holler, 2007).  Therefore, for 
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highly skewed distributions, their optimal sample size recommendations may not be 

applicable.    

Crawford and Garthwaite (2008) disagreed with the optimal sample size 

recommendations of Bridges and Holler (2007).  They stated “the ‘one size fits all’ 

approach is inappropriate” (p. 112).  They expressed the view that clinicians can 

benefit from small sample sizes, but that “every effort should be expended to make 

the sample as large as practical constraints allow” (Crawford & Garthwaite, 2008, p. 

112).   

It is interesting to consider that some researchers have approached this same 

problem of adequate sample sizes but with regard to creating stable reliability 

coefficients. Nunnally (1978) specified that 300 participants were required for a 

sample to create a stable reliability coefficient. Charter (1999) concluded that a 

minimum of 400 participants was needed for accurate and stable estimates of 

reliability for an individual test score.  He later stated “the larger the n the greater the 

precision there is in estimating the population reliability coefficient (Charter, 2001, 

p. 693).  This suggests that even if smaller sample sizes were capable of generating 

stable measures of central tendency and variance, much larger sample sizes may be 

needed to generate a comparable level of stability in another psychometric 

characteristic.     

It is an interesting aside that clinicians reveal important underlying 

assumptions in the way and extent to which they apply psychometric properties to 

their clinical decision-making. While virtually all practitioners are aware of 

reliability and its influence on test score error, and may generate confidence intervals 

to express the scope of that error, they nonetheless treat the reliability coefficient for 

the test as if it is invariant and itself has no error. One wonders if clinicians would 

care to compute confidence intervals if the upper and lower bounds of the score had 

to be computed based on the upper and lower bounds of the reliability coefficient. 

 

3.2.1 Neuropsychology and Sample Sizes 
Neuropsychology is particularly vulnerable to the issue of sample size 

because of the nature of the discipline.  While some studies use optimal sample sizes, 

most fail to recognise that many tests are stratified by demographic variables 

(Crawford & Howell, 1998).  For example, Forrester and Geffen’s (1991) Australian 

children’s norms for the Rey Auditory Verbal Learning Test (RAVLT) have an 

ostensibly adequate sample size of 80, exceeding the Bridges & Holler (2007) 

suggestion of 75.  However, once these norms are stratified by age (7-8; 9-10; 11-12; 

and 14-15) and gender, the resulting n for each cell is only 10.  If children assessed 

with the RAVLT were intended to be compared to the grand mean and standard 

deviation of the study this may be an acceptable sample size. However, the 

stratification of the normative data was based upon the determination that both age 

and gender influence performance on the RAVLT. Applying the minimum n of 75 to 

each stratified cell would suggest a minimum sample size of 600. For this purpose 

the sample size was woefully inadequate. Similarly, the Australian child normative 

data study of six tests including the RAVLT collected by Anderson and Lajoie in 

1996 suffers from the same drawback. While they report a large sample size of 376, 

they also stratify their data by gender and seven age groups. As a result, they have 

sample sizes ranging from 18 to 33. It is interesting to note that these two Australian 

normative studies published in the early to mid 1990’s still constitute the main 

published norms for children and adolescents for this test.  
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Another reason for small sample sizes is that most normative studies require a 

great deal of time and resources to obtain large samples (Crawford & Garthwaite, 

2002).  Unlike other disciplines of psychology, development of normative data is not 

only conducted by test publishers, but is also performed by independent clinicians 

who benefit from more specific anchor-normed studies.  This is particularly apparent 

for neuropsychological tests that were developed without affixed norms (Williams & 

Cottle, 2011).  Forrester and Geffen’s (1991) norms are a prime example of this.  The 

RAVLT was initially popularised in North America in the first edition of 

Neuropsychological Assessment (Lezak, 1976) and provided normative data from 

Swiss and French samples of Labourers (N = 25), Professionals (N = 30), Students 

(N = 47), Elderly Labourers (N = 15), and Elderly Professionals (N = 15) (Rey, 

1964).  The onus has been, and still is, on clinicians to develop more appropriate 

norms that would benefit their own clinical practice.  Another reason is that many 

neuropsychological tests do not have clear copyright statuses (Williams & Cottle, 

2011) and test publishers may prefer not to invest in large-scale norming studies 

because of the commercial risks involved.  For example, the copyright status of the 

RAVLT is uncertain given that it was developed more than 50 years ago using a list 

of words that was originally developed by Édouard Claparède for his “Test de 

mémoire des mots”, a single trial memory test developed between 1916 and 1919 at 

the University of Geneva (Boake, 2000)   

 

3.2.2 Meta-norming 
Meta-norming is the process of combining a variety of individual studies 

through regression analyses in order to develop collective normative data sets for 

particular cognitive tests (Mitrushina et al., 2005).  Analyses take into account 

demographic variables, sample sizes, and the version of the tests used, administration 

procedures, recency of the studies, recruitment strategies, scoring procedures, and 

reporting of IQ levels. Overall, meta-norming is intended to allow clinicians to make 

clinical interpretations based on large compiled normative database for any particular 

test.   

While there are some significant advantages to meta-norming, particularly 

with regard to increasing normative sample sizes, there are two major limitations:  

error from the underlying normative samples, and the presence of recruitment bias.  

The former is related to the representativeness of the normative sample.  The process 

of meta-norming may introduce error from the level of disparities between the meta-

norming of normative samples (Mitrushina et al., 2005).  For example, it is highly 

improbable that adolescent norms from one study have the same characteristics as 

the adolescent norms of another on the same test.  This type of error, however, is 

evident regardless of whether a clinician utilises meta-norms.  That is, any clinical 

interpretations based on a variety of tests will utilise normative data that are 

dissimilar in their demographic characteristics and testing procedures (Russell, 

Russell & Hill, 2005).  While Mitrushina et al. commented on these issues, they 

outlined selection criteria for their large-scale meta-norming study.  For example, 

studies on a particular cognitive test are only included if they examine the same 

version of the test and have the same administration procedures.  As such, research 

that failed to include standardised administration procedures and demographic details 

about their samples, had idiosyncratic samples, or did not provide sample statistics 

were not included in the meta-norming process (Mitrushina et al., 2005) 

Recruitment bias is the second limitation of meta-norming.  A study by 

Williams and Cottle (2011) compared census-based norms of the WAIS-R with their 
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own meta-analysis of independent norms published on the WAIS-R from 1981 to 

2009.  The independent norms were combined using the procedures outlined by 

Mitrushina et al. (2005).  Comparisons found levels of recruitment bias within the 

meta-norming samples.  The meta-analysis sample had an average of two more years 

of education than the published WAIS-R norms.  There were also more women in 

the community-based normative data within the meta-analysis sample than in the 

WAIS-R norms.  Race distribution was also different between the two sets of 

normative data, with WAIS-R norms including more non-white-identified subjects 

(13% compared to 7% in the meta-analysis).  When the meta-analysis norms were 

corrected for this recruitment bias, using a Cholesky decomposition (Mooney, 1997) 

and adjusting the scores using the Deming method (Deming & Stephan, 1940) to 

match the census-based norms used with the WAIS-R, results indicated that the 

summary statistics were comparable with the WAIS-R published norms.   

Meta-norming is particularly useful for clinicians who adopt the “flexible” or 

semi-flexible approach to a cognitive test battery.  However, in a “fixed battery” this 

approach is not warranted because of their comprehensive and co-normed 

construction.  

  

3.2.3 Co-norming in “Fixed” Batteries 
Batteries that are “fixed” have the advantage of being co-normed.  Each test 

in the battery is normed together using the same procedure and normative sample 

(Russell et al., 2005).  This approach, therefore, eliminates the discrepancies that are 

found when different normative samples for several neuropsychological tests are 

used.  Furthermore, when a variety of tests is standardised together they can be 

corrected for the probabilities of scores obtained in the impaired range when no 

impairment exists (Russell et al., 2005).  Overall, a “fixed” battery can provide 

validated cut-scores that help the clinician to determine which scores are in the range 

associated with impairment and whether the impairment is significant and/or 

abnormal.   

Overall, the fact remains that the practitioners are still divided and perhaps 

unaware of the optimal n that is needed in order to obtain stable means and standard 

deviations let alone the issue raised by Bridges and Holler (2007) of non-normal or 

skewed distributions.  It is, therefore, important to evaluate the sample size needed to 

get stable means and standard deviations for different skewed distributions of tests 

commonly employed in neuropsychology.  No study has evaluated the clinical 

consequence of having data cells with inadequate sample sizes and this is the basis 

for the following study.  

 

3.3 Finding the Optimal N – Study Two 
Study Two is concerned with finding the optimal n in order to produce stable 

means and standard deviations from different distributions.   

Participants: 

Participants for this study were sourced from three separate databases. One 

normative sample used for analysis was drawn from ongoing normative studies 

conducted by the Department of Psychology at the University of Southern 

Queensland (USQ).  Participants were generally from regional South-East 

Queensland or metropolitan Brisbane areas and had volunteered to participate in 

studies designed to establish Australian norms for a number of neuropsychological 

tests.  
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Two additional databases were used for Study Two. The standardisation and 

educational oversampling normative data for Wechsler Adult Intelligence Scale – 

Third Edition (WAIS-III; Wechsler, 1997a) Symbol Search was sourced from Lange, 

Chelune, Taylor, Woodward, & Heaton (2006). Sampling characteristics for this data 

are described in the WAIS-III/WMS-III Technical Manual (The Psychology 

Corporation, 1997). In addition, data for the Rey 15 Item test was from an archival 

clinical database of personal injury litigant cases assessed in a forensic psychological 

practice in Brisbane, Australia.  

Materials: 

Due to differences in testing protocols over time only protocols that 

contained data for Trail Making Test A and B (TMT A, TMT B), Controlled Oral 

Word Association Test (COWAT), WAIS-III Symbol Search (WAIS-III SS), 

Wechsler Test of Adult Reading (WTAR), Rey 15 Item Test (Rey 15 Item) or 

Hooper Visual Organisation Test (HVOT) were analysed.  The COWAT is a verbal 

fluency test which requires the test-taker to spontaneously name words beginning 

with the letters F, A, and S. The version analysed is an update from the original test 

developed by Benton, Hamsher, and Sivan (1983). WAIS-III Symbol Search 

(Wechsler, 1997a) is a visual scanning and processing subtest on the WAIS-III used 

to assess a test-taker’s ability to detect the presence of one or more target symbols in 

a sequence of five. The WTAR (Wechsler, 2001) is a reading test that includes 50 of 

irregularly pronounced words ordered in increasing difficulty and was developed 

using methodology directly associated with the NART. It was developed and co-

normed with the WAIS-III (Wechsler, 1997a) and the Wechsler Memory Scale – 

Third Edition (WMS-III; Wechsler, 1997b) and can be used as an estimate of 

premorbid functioning. The Rey Fifteen Item Test (Lezak, 1995) is a brief memory 

test used to detect inadequate cognitive effort. Lastly, the HVOT (Hooper, 1952; 

Western Psychological Services, 1983) is a visual perception and discrimination test 

which requires test takers to identify common objects and animals that are cut-up and 

rearranged in an unsystematic way. It should be noted that there are new editions for 

many of the tests used in the current study. These tests were ultimately selected 

because of the large sample sizes they possess and because they served as a means of 

illustrating the methodology.   

These tests were chosen because of the hypothesised differences in skewness 

underlying their distributions.  The Statistical Package for the Social Sciences 

(SPSS) version 21 was used for the analyses. Pairwise deletion was used to separate 

protocols that did not contain data for these tests.  Table 3.1 presents the sample sizes 

for each of the seven chosen measures and the database from which they were 

acquired.   

 

Table 3.1.   

Sample Sizes and Databases for Seven Neuropsychological Tests 

Tests Sample Size (N) Database 

TMT A 507 USQ Normative 

TMT B 507 USQ Normative 

COWAT 935 USQ Normative  

WAIS-III Symbol Search 1250 WAIS-III Standardisation 

WTAR 389 USQ Normative 

Rey 15 Item 272 Clinical Data 

HVOT 379 USQ Normative  
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Note: COWAT = Controlled Oral Word Association Test; HVOT = Hooper Visual Organisation Test; 

TMT A = Trail Making Test Subtest A; TMT B = Trail Making Test Subtest B; WAIS-III SS = 

WAIS-III Symbol Search; WTAR = Wechsler Test of Adult Reading 

  

The demographic characteristics for each of the tests were calculated and are 

presented in Table 3.2. 
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Table 3.2. 

Descriptive Statistics for the Seven Tests  

    Age              Education              Gender 

Test M SD Mdn M (SD) M (SD) M   % Males   F 

TMT A 25.95   9.20 24 35.66 (15.17) 13.10 (2.37) 212 42%  295 

TMT B 59.61 22.69 55 35.66 (15.17) 13.10 (2.37) 212 42%  295 

COWAT 42.11 11.70 41 36.04 (14.17) 12.78 (2.30) 383 41% 552 

WAIS-III SS 28.22 10.50 29 48.36 (23.96) 12.47 (2.60) 581 46% 669 

WTAR 37.32   8.05 39 40.19 (14.12) 12.82 (2.50) 168 43% 221 

Rey 15 Item 13.02   2.67 15 37.73 (12.82) 11.56 (2.60) 187 69% 85 

HVOT 26.43   2.55 27 35.49 (16.05) 12.5 (2.40) 150 38% 229 

 

 

 

 



 

 

 

35 

All test distributions were then analysed for skewness, and normal area curve 

histograms created for each measure.  Non-normality of the distributions was 

determined using Kolmogorov-Smirnov statistics and rudimentary skewness 

classifications developed by Bulmer (1979).  The Kolmogorov-Smirnov statistics 

assess normality of a distribution of scores.  Table 5 presents normality information 

for each test and are characterised using Bulmer’s classifications as follows: 

 Distribution is approximately normal if skewness is between -0.  5 and + 0.5 

 Distribution moderately skewed if skewness is either between -1 and -0.5 or 

+ 1 and + 0.5 

 Distribution is extremely skewed if skewness is either less than -1 or greater 

than + 1 

 

Table 3.3.   

Tests of Normality for the Seven Tests 

     Skewness Statistics 

Test Skewness SEE Bulmer SEE Statistic Sig. 

TMT B 1.70 0.11 Extremely 0.22 0.12 0.00 

TMT A 1.40 0.11 Extremely 0.22 0.12 0.00 

COWAT 0.60 0.08 Moderately 0.16 0.05 0.00 

WAIS-III SS 0.00 0.70 Normal 0.14 0.05 0.00 

WTAR -0.81 0.12 Moderately 0.25 0.09 0.00 

Rey 15 Item -1.42 0.15 Extremely 0.29 0.29 0.00 

HVOT -1.64 0.13 Extremely 0.25 0.12 0.00 

Note: Bulmer refers to Bulmer’s (1979) classifications. Skewness Statistics = Kolmogorov-Smirnov 

Statistics. SEE = standard error of the estimate.  

 

The seven neuropsychological tests chosen for this study range in degree of 

skewness.  TMT A and TMT B are both extremely positively skewed whereas Rey 

15 Item Test and HVOT are extremely negatively skewed.  The Kolmogorov-

Smirnov test statistics for each of these tests also indicate non-normality (p< 0.05).  

A moderately positively skewed test (COWAT) and a moderately negatively skewed 

test (WTAR) were also included.  What is interesting to note is that the WAIS-III 

Symbol Search’s skewness statistic would be classified as “Normal” according to 

Bulmer (1979), but is non-normal according to the Kolmogorov-Smirnov test.  

Pallant (2010), however, explains that the Kolmogorov-Smirnov test has high power 

in large samples, and that it is quite common to get significant values.  In other 

words, the Kolmogorov-Smirnov test is suggesting that the WAIS-III Symbol Search 

distribution differs significantly from a normal population, even though the said 

deviation is not large enough to cause an issue with the skewness statistic that 
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assumes normality.  Given this, the WAIS-III Symbol Search test will be considered 

“normally distributed”.  It is important to note here that in social sciences a 

distribution with skewness and kurtosis equalling zero is quite uncommon (Pallant, 

2010).    

Distributions for each test were transformed into histograms.  These are 

presented below in Figures 3.1 through 3.7.  Distribution curves have been 

incorporated into each histogram as a visual indicator of degree of skewness and 

kurtosis.  Also included are lines indicating the mean and median of each 

distribution.   

 

 
Figure 3.1.  Histogram of TMT B distribution 
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Figure 3.2.  Histogram of TMT A distribution 

 

 
Figure 3.3.  Histogram of COWAT distribution 
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Figure 3.4.  Histogram of WAIS-III Symbol Search distribution 

 

 
Figure 3.5.  Histogram of WTAR distribution 
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Figure 3.6.  Histogram of Rey 15 Item Test distribution 

 

 
Figure 3.7.  Histogram of HVOT distribution 

 

SPSS 21 was then utilised to randomly draw cases with replacement from 

each of the seven tests, producing sample sizes of 10, 20, 30, 40, 50, 60, 70, 80, 90, 
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and 100.  For TMT A, TMT B, and COWAT, the sample sizes also included 110 and 

120.  For each sample size, the process was completed five times and the average 

mean and variances were calculated. Technically, only one sample should be drawn 

for each sample size as this replicates the method used with small n normative 

studies. However, multiple samples are required to generate a variance measure for 

the stnadard deviations, necessitating multiple samples to compute an average 

standard deviation. This was achieved by drawing of five samples with replacement 

for each sample size. This number was chosen in an effort to keep the sampling as 

small as possible, consistent with the spirit of the thesis.  

  Average standard deviations were computed by averaging the variances and 

taking the square root of the resulting result. Descriptive statistics for each test and 

the sample parameters for each sample size are displayed in Tables 3.4 through 3.10.  

It should be noted that the mean () and standard deviation () of each distribution 

are now treated as population statistics, whereas the means and standard deviations 

for the samples are treated as sample statistics.   
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Table 3.4.   

Descriptive Statistics for TMT B as a Function of Sample Size ( = 59.61;  = 22.70) 

n 10 20 30 40 50 60 70 80 90 100 110 120 

Sample M 62.47 63.78 57.57 55.11 61.67 59.43 59.10 59.25 59.63 59.84 59.63 59.94 

Sample SD 20.71 24.94 20.85 17.65 22.34 23.40 21.86 21.27 21.38 22.30 21.85 23.07 

 

Table 3.5.   

Descriptive Statistics for TMT A as a Function of Sample Size ( = 25.95;  = 9.20) 

n 10 20 30 40 50 60 70 80 90 100 110 120 

Sample M 26.22 26.57 24.96 24.93 26.5 25.92 25.18 25.87 25.98 26.35 26.01 25.91 

Sample SD 7.01 9.59 8.98 9.30 9.26 9.34 8.94 9.05 9.36 9.32 9.37 9.51 

 

Table 3.6.   

Descriptive Statistics for COWAT as a Function of Sample Size ( = 42.11;  = 11.70) 

n 10 20 30 40 50 60 70 80 90 100 110 120 

Sample M 43.32 41.25 41.66 41.67 42.24 40.61 40.74 41.85 42.23 42.12 41.96 41.97 

Sample SD 10.40 10.81 10.32 12.02 11.31 10.92 10.93 11.20 11.20 11.20 11.19 11.53 

 

Table 3.7.   

Descriptive Statistics for WAIS-III Symbol Search as a Function of Sample Size ( = 28.22;  = 10.50) 

n 10 20 30 40 50 60 70 80 90 100 

Sample M 28.28 29.06 28.55 27.53 27.09 28.22 28.14 28.12 28.06 28.39 

Sample SD 11.68 11.06 10.28 9.67 10.01 9.98 10.58 10.72 10.29 10.71 

 

Table 3.8.   

Descriptive Statistics for WTAR as a Function of Sample Size ( = 37.32;  = 8.05) 

n 10 20 30 40 50 60 70 80 90 100 

Sample M 37.32 37.01 36.98 38.70 38.16 37.54 37.41 37.06 37.05 37.47 

Sample SD 6.73 6.92 8.70 7.92 8.29 8.03 7.84 8.47 8.36 7.98 
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Table 3.9.   

Descriptive Statistics for Rey 15 Item as a Function of Sample Size ( = 13.02;  = 2.67) 

n 10 20 30 40 50 60 70 80 90 100 

Sample M 13.40 13.14 13.20 13.09 13.16 13.04 12.95 12.9 13.05 13.10 

Sample SD 2.40 2.48 2.51 2.47 2.54 2.51 2.76 2.82 2.62 2.55 

 

Table 3.10.   

Descriptive Statistics for HVOT as a Function of Sample Size ( = 26.46;  = 2.55) 

n 10 20 30 40 50 60 70 80 90 100 

Sample M 26.32 26.13 26.63 26.53 26.59 26.44 26.45 26.59 25.35 26.35 

Sample SD 2.32 2.20 2.45 2.38 2.38 2.78 2.51 2.41 2.60 2.52 
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 To account for sampling error, 90% confidence intervals were calculated for 

the population statistics for each test.  For the population mean, the standard error of 

the mean was calculated using Formula 9 below.  This was then utilised in Formula 

10 to calculate upper and lower 90% confidence intervals.   

     = 
 

  
     Formula 9 

Where:  

 = the population standard deviation 

n = the sample size 

 ± (SE x 1.645)     Formula 10 

Where:  

 = the population mean 

SEM = the standard error of mean 

  

 Ninety percent confidence intervals for the population standard deviation 

were calculated using Bootstrap, a computer program based on the general 

assumption that the characteristics of a population can be approximately determined 

by a random sample of that sample population (Field, 2009).  It is commonly applied 

to determine confidence intervals of population parameters or statistics (Sheskin, 

2004).  For this study, Bootstrap was set to obtain m = 1000 bootstrap samples 

(where m is subsamples) and calculate the 90% confidence interval around the 

estimated population standard deviation.  This technique was applied to all seven 

tests.  Table 3.11 below presents the 90% confidence intervals for the population 

statistics for each test and the standard error of means.   

 

Table 3.11.   

90% Confidence Intervals for Population Means and Standard Deviations 

  90% Confidence Intervals 

  M SD 

Test SEM Upper Lower Upper Lower 

TMT B 1.01 61.27 57.95 24.83 20.61 

TMT A 0.41 26.63 25.28 10.00 8.45 

COWAT 0.38 42.74 41.49 12.29 11.07 

WAIS-III SS 0.30 28.71 27.73 10.84 10.2 

WTAR 0.41 38.00 36.65 8.57 7.48 

Rey 15 Item 0.16 13.28 12.76 2.90 2.40 

HVOT 0.13 26.67 26.25 2.80 2.28 
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 These confidence intervals were then applied to the sample means and 

standard deviations of each sample size.  Figures 3.8 through 3.20 display graphs of 

the sample means and standard deviations with corresponding 90% confidence 

intervals for each of the seven measures.  For each figure, the point at which the 

mean and the standard deviations stabilise is defined as the point at which the sample 

means and standard deviations consistently fall within the 90% confidence intervals 

and indicates the optimal sample size.   

 

 
Figure 3.8.  TMT B sample means with 90% confidence intervals  

 

 
Figure 3.9.  TMT B sample standard deviations with 90% confidence intervals  
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Figure 3.10.  TMT A sample means with 90% confidence intervals   

 

 
Figure 3.11.  TMT A sample standard deviations with 90% confidence intervals 
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Figure 3.12.  COWAT sample means with 90% confidence intervals 

 

 
Figure 3.13.  COWAT sample standard deviations with 90% confidence intervals  
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Figure 3.14.  WAIS-III Symbol Search sample means with 90% confidence intervals 

 

 
Figure 3.15.  WAIS-III Symbol Search sample standard deviations with 90% 

confidence intervals  
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Figure 3.16.  WTAR sample means with 90% confidence intervals 

 

 
Figure 3.17.  WTAR sample standard deviations with 90% confidence intervals  
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Figure 3.18.  Rey 15 Item sample means with 90% confidence intervals 

 

 
Figure 3.19.  Rey 15 Item sample standard deviations with 90% confidence intervals  
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Figure 3.20.  HVOT sample means with 90% confidence intervals 

 

 
Figure 3.21.  HVOT sample standard deviations with 90% confidence intervals  
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Table 3.12.   

Sample Sizes needed for Stable Means and Standard Deviations for Seven Tests 

 Sample Size Required 

Test M SD Minimum 

TMT B 60 50 60 

TMT A 80 20 80 

COWAT 80 80 80 

WAIS-III SS 60 70 70 

WTAR 60 40 60 

Rey 15 Item 40 20 40 

HVOT 30 30 30 

  

 The data from Table 3.12 were then plotted with regard to degree of 

skewness.  A trendline or line of best fit was added between the series data points, as 

displayed in Figure 3.22.  A fourth order polynomial was selected as the best fit for 

the data (R
2
 = 0.995).  

  

 
Figure 3.22.  Stable means and standard deviations as a function of skewness  

 

The trendline formula to calculate optimum sample size needed for tests with 

varying degrees of skewness was: 

y  = -5.3239 x
4
 – 2.1725 x

3
 + 5.8663 x

2
 + 17.028 x + 69.869    Formula 11 

Where:  

x = the skewness statistic of the sample distribution 

 

This formula can then be used to calculate the optimum sample size needed 

for normative data for psychometric tests. For cross-validation purposes and to 
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demonstrate the effectiveness of Formula 11 examinations of two other measures 

from the WAIS-III Standardisation sample that reflected different degrees of 

skewness were conducted.  

 

3.3.1 Cross Validation 
 Following the same methodology, the demographic characteristics and 

skewness statistics, were calculated for two further tests from the WAIS-III 

standardisation study.  The tests chosen were the WAIS-III Information and the 

WAIS-III Digit Symbol – Symbol Copy (DSC) subtests. Both are subtests from the 

WAIS-III (Wechsler, 1997a) with Information designed to access the test-taker’s 

general knowledge of literature, geography, science, and history and Digit Symbol – 

Symbol Copy assessing the test-taker’s ability to copy a abstract symbol.  Table 3.13 

presents demographic characteristics for the two tests while Table 3.14 presents the 

normality test statistics.                         .
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Table 3.13.   

Descriptive Statistics for WAIS-III Information and Digit Symbol – Symbol Copy 

       Gender 

Test N M SD Mdn Age   M (SD) Education M (SD) M F 

Information 1250 15.44 5.53 16 48.36 (23.96) 12.47 (2.63) 581 669 

Digit Symbol – Copy 1250 103.38 27.6 108 48.36 (23.96) 12.47 (2.63) 581 669 



 

 

 

54 

Table 3.14.   

Tests of Normality for WAIS-III Information and Digit Symbol – Symbol Copy 

     Statistics 

Test Skewness SE Bulmer SE Statistic Sig. 

Information 0.05 0.07 Normal  0.1

4 

0.08 0.00 

Digit Symbol - 

Copy 

-0.74 0.07 Moderately 0.1

4 

0.14 0.00 

Note: Statistics = Kolmogorov-Smirnov Statistics; Bulmer refers to Bulmer’s 1979 Classification; 

Test 1 = WAIS-III Information; Test 2 = WAIS-III Digit Symbol – Symbol Copy. 

 

Histograms displaying underlying distributions of the two tests were also 

produced and are displayed in Figures 3.23 (Information) and 3.24 (Digit Symbol-

Copy).   

 

 
Figure 3.23.  Histogram of WAIS-III Information distribution 
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Figure 3.24.  Histogram of WAIS-III Digit Symbol –Copy distribution 

 

Formula 11 was then applied to each test substituting the skewness statistic 

into the equation.  For the Information subtest: 

y  = -5.3239 (0.05)
4
 – 2.1725 (0.05)

3
 + 5.8663 (0.05)

2
 + 17.028 (0.05) + 69.869  

= 70.73 

 For Digit Symbol – Copy:  

y  = -5.3239 (-0.74)
4
 – 2.1725 (-0.74)

3
 + 5.8663 (-0.74)

2
 + 17.028 (-0.74) + 69.869 

y = 59.76 

  

As can be appreciated from the above calculations, WAIS-III Information 

with a 0.05 degree of skewness (i.e., normally skewed) will need a sample size of 

approximately 70 in order to produce a stable mean and standard deviation.  

Whereas, the moderately negatively skewed distribution of the WAIS-III Digit 

Symbol – Symbol Copy would need a sample size of approximately 60 for a stable 

mean and standard deviation.  In order to cross-validate these approximations, SPSS 

21 was used to randomly draw cases with replacement from their respective 

distributions with sample sizes of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. Samples 

were drawn five times each and the averages calculated (see Table 3.15).  Ninety 

percent confidence intervals were also calculated for the mean and standard 

deviations using Formula 9 and 10 and Bootstrapping, respectively and these are 

presented in Table 3.16.   
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Table 3.15.   

Descriptive Statistics for WAIS-III Information and Digit Symbol – Symbol Copy as a 

Function of Sample Size 

Test n   Sample M Sample SD 

WAIS- III Information 10 15.44 5.53 17.20 5.59 

 20 15.44 5.53 14.64 5.12 

 30 15.44 5.53 15.53 5.42 

 40 15.44 5.53 15.97 5.63 

 50 15.44 5.53 14.94 5.78 

 60 15.44 5.53 15.41 5.39 

 70 15.44 5.53 15.22 5.57 

 80 15.44 5.53 15.28 5.52 

 90 15.44 5.53 15.27 5.47 

 100 15.44 5.53 15.32 5.60 

WAIS-III Digit Symbol -  10 103.38 27.6 105.20 28.64 

Symbol Copy 20 103.38 27.6 102.37 27.70 

 30 103.38 27.6 102.54 29.44 

 40 103.38 27.6 103.57 26.58 

 50 103.38 27.6 101.57 28.48 

 60 103.38 27.6 104.48 27.02 

 70 103.38 27.6 103.87 27.00 

 80 103.38 27.6 103.22 27.86 

 90 103.38 27.6 103.50 28.23 

 100 103.38 27.6 103.52 27.36 
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Table 3.16.   

90% Confidence Intervals for Population Means and Standard Deviations 

  90% Confidence Intervals 

  M SD 

Test SEM Upper Lower Upper Lower 

1 0.79 15.70 15.18 5.66 5.39 

2 0.16 104.7 102.08 28.52 26.72 

Note: Test 1 = WAIS-III Information; Test 2 = WAIS-III Digit Symbol – Symbol Copy 

 

Using the information from Tables 3.15 and 3.16, graphs were generated in 

order to determine the sample size at which the mean and standard deviation 

stabilises for each test.  These are presented in Figures 3.25 through 3.28.   

 

 
Figure 3.25.  WAIS-III Information sample means with 90% Confidence Intervals  
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Figure 3.26.  WAIS-III Information sample standard deviations with 90% 

Confidence Intervals  

 

 
Figure 3.27.  WAIS-III Digit Symbol – Symbol Copy sample means with 90% 

Confidence Intervals  
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Figure 3.28.  WAIS-III Digit Symbol – Symbol Copy sample standard deviations 

with 90% Confidence Intervals  

 

 As can be seen in the above figures, WAIS-III Information has a stable mean 

and standard deviation at a sample size of 70.  WAIS-III Digit Symbol – Symbol 

Copy has a stable mean and standard deviation at sample size 60.  These are 

consistent with the estimated sample sizes calculated using Formula 11 above and 

suggests that the formula 11 is an adequate method to predict required sample sizes 

for distributions with different degrees of skewness.   

 

3.4 Summary 
 Normative samples are the foundations of clinical interpretation.  They 

represent the theoretical population through which comparison with a client’s 

performance can be judged.  Normative samples are collected through a variety of 

methods.  Census-based norms are collected to represent the demographic variables 

of a given country’s census.  The disadvantage is that it may under-represent 

minority groups, such as specific ethnic groups or extremes of demographic 

characteristics that while uncommon in the general population present specific 

confounds with respect to clinical inferences.   This has the potential of introducing 

error in the interpretation process.  The recruitment method is applied when a 

researcher uses a set of criteria to select participants to make up the normative 

sample.  However, this method will not be representative of the census population 

parameters.  Anchor-norms are the most commonly employed in neuropsychology as 

a target audience is selected and tested in order to meet the needs of the clinician or 

the researcher.  This method is particularly useful for testing minority groups or 

populations with specific impairments.  The disadvantage of collecting norms on 

such specific target populations is that sample sizes are often small.  

  Error is introduced into the interpretation process when using normative 

samples.  Clinicians must consider whether the normative sample they are using as a 

comparison group for their client is representative particularly with reference to 

salient demographic variables such as age, gender, level of education, or ethnicity.   

It would be an unethical and thoughtless clinician who compared a 60-year-old 
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client’s scores with a normative sample of 18-year-olds and concluded the presence 

of a cognitive impairment.   

Another important issue when evaluating the appropriateness of normative 

samples is sample size.  While it is commonly reported that normative samples 

should have a minimum of 50 cases per cell, little research has been conducted to 

establish any recommended minimum and in particular, the work of Bridges and 

Holler (2007) has highlighted the importance of considering skewed distributions.  

This is particularly important in neuropsychology where small sample sizes and 

skewed distributions abound. While methods such as meta-norming were developed 

to overcome some of the issues associated with small sample sizes in normative data, 

the problem remains. Accordingly, the purpose of Study Two was to systematically 

evaluate optimal sample size with regard to creating stable means and standard 

deviations while considering the impact of skewness.  

The study consisted of using established normative data on seven commonly 

used neuropsychological tests with sample sizes greater than 200.  Due to the large 

sample sizes, the means and standard deviations for each test were treated as 

population parameters.  Sample metrics were then calculated for sample sizes 

ranging form 10 to 120 cases and compared to the population parameter. The sample 

size, at which the sample parameters converged to within the 90 percent confidence 

interval of the population parameters, indicated stable measures of central tendency 

and variance.   

The current study found that the optimal n is not 50, and that the sample sizes 

required for stable measures were influenced by skewness.  Interestingly, for 

normally distributed data, the sample size required for stable measures of central 

tendency and variance was 70.  For negatively skewed distributions, the sample size 

ranges from n = 30 to n = 70 and for positively skewed distributions the required 

sample sizes were between 60 and 85.  In the absence of computations of skewness 

in the normative data for the tests they employ, it is highly recommended that 

clinicians use normative samples with at least 90 cases in each cell.  If skewness 

statistics are available Formula 11 can be used to calculate the optimal sample size 

required for stable measures of central tendency and variance. It should be noted that 

this formula is no means absolute in its calculation of sample size as there is a 

potential for it to be dependent on the samples and tests used to generate it. 

Regardless, it does serve as a valuable resource for clinicians and researchers alike 

and should be extended upon by inclusion of additional neuropsychological measures 

and normative distributions.  

Overall, Chapter Three has evaluated the psychometric issues associated with 

using normative studies.  This is the first stage in the clinical interpretation process.  

The next level involves understanding and determining whether a score falls within 

the impaired range and is indicative of abnormality and this is the focus of the next 

chapter.  
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CHAPTER FOUR 
ASSESSING ABNORMALITY 

 
4.1 Levels of Abnormality 

It is important for clinicians to understand how one determines whether a 

standardised score reflects abnormality or impairment and can be considered in two 

ways. The first is the degree of abnormality for the individual score compared to the 

normative sample. This point estimate compares an observed score with that of the 

standardised distribution of the test. The second is the intra-individual comparisons 

of two tests. At this level, inferential statistics are employed to determine whether the 

standardised scores on the two tests differ significantly. It is important to note here a 

common clinical misconception: a significant difference between two scores does not 

signal abnormality, it merely indicates that the two numbers are not the same.  While 

significance is necessary for abnormality, it is not sufficient. Abnormality 

fundamentally relates to the frequency or rarity of the magnitude of the difference 

between two scores, with cut-offs of 10 or five percent most commonly encountered 

in clinical practice. 

 

4.2 Abnormality at the Individual Test Level 
A linear standardised score allows a clinician to compare an individual with a 

normative sample in order to make inferences about performance.  As described 

earlier, the most common method employed by clinicians is to convert the raw score 

into a z score using the mean and standard deviation of the sample and then consult 

the area under the curve of the normal distribution to indicate the percentile rank.  

Clinicians are then able to compare this score with a predetermined cut-off score and 

ascertain whether the individual’s score is lower than would be expected in the 

normative sample.  Base rates are preset at the discretion of the clinician but are 

conventionally placed at either the 5% or 10% level, with corresponding z scores of 

approximately -1.6 and -1.27 respectively.  Many researchers have opposed the use 

of z scores because the methodology treats the statistics as parameters of the 

population rather than sample statistics and consequently increases the chance of 

Type I errors (Crawford & Howell, 1998; Crawford & Garthwaite, 2002; Crawford, 

Garthwaite, Howell, & Gray, 2004; Crawford, Garthwaite, Azzalini, Howell, & 

Laws, 2006; Crawford & Garthwaite, 2012).  Type I errors result in the clinician 

incorrectly classifying individuals as impaired when in reality they are not.  

However, this standardisation method fails to measure the degree of abnormality 

found in the test.  As Crawford, Garthwaite, and Gault (2007) note, “...information 

on the rarity or abnormality of test scores (or test score differences) is fundamental in 

interpreting the results of a neuropsychological assessment” (p. 419).  Some methods 

have been proposed as alternatives to the z score and these will be evaluated in terms 

of their vulnerability to sample size and sensitivity to Type I errors.   

 

4.2.1 Solutions for Determining Abnormality at the Individual Test Level 
 Crawford and Garthwaite (2012) evaluated six different methods for 

comparing an individual to a control.  Five methods employed t-distributions while 

the sixth approach used the conventional z score.  By running Monte Carlo 

simulation trials, three of the inferential methods were deemed obsolete due to 

substantially high error rates especially with an increase in sample size.  Z scores 

were noted to increase in Type I errors as the sample size decreased.  The two 

remaining statistical methods were Crawford and Howell’s (1998) “t-test approach” 
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and the prediction interval method (Barton, Press, Keenan, & O’Connor, 2002).  The 

t-test approach (Crawford & Howell, 1998) is computed using Formula 12 below.   

           Formula 12 

Where:  

   = the observed score 

 = the normative sample mean 

    = the standard deviation of normative sample 

   = sample size 

  

This method estimates the abnormality of an obtained score and compares it for 

significance against the scores of the control sample.  The p value is used to test this 

significance, and also acts as an indicator of the proportion of the control population 

who would obtain a lower score (Crawford & Howell, 1998). 

The prediction interval method (Formula 13) is used to calculate the standard 

error between the sample mean and an additional case (Crawford & Garthwaite, 

2012).  This is then multiplied by t corresponding to n – 1 degrees of freedom 

providing a prediction interval on the control mean.   

    Formula 13 

Where:  

m = the number of people scoring below the given score 

k = the number of people obtaining the given score 

 

Crawford and Garthwaite (2012) explained how these methods while quite 

similar, have some distinct differences.  When testing for abnormality, the t-test 

approach generally uses a one-tail test of significance while the prediction interval 

method generally uses a two-tailed test of significance.  Additionally, the t-test 

approach provides a probability and has supplementary statistics developed by 

Crawford and Garthwaite (2002), which provide 95% confidence intervals around 

the point-estimate.  Statistically, however, these two methods produce identical 

results when Monte Carlo simulation trials are run.  For example, for a sample size 

of 10, both methods have Type I error percentages of 5.01 (Crawford & Garthwaite, 

2012).   

 The benefit of using the t-test approach, in particular, is that it can be applied 

to small sample sizes as an alternative to the z score.  For example, Crawford and 

Howell (1998) suggest “that the modified t-test be used with an N of less than 50” (p. 

485) and have even recommended that it “should be used in preference to z” 

(Crawford et al., 2006, p. 673).  However, this method assumes normality of the 

underlying actual distribution, with concerns remaining that Type I errors become 

inflated when these distributions are skewed.   

Crawford et al. (2006) aimed to test the effect of normal, skewed, and 

leptokurtic distributions on Type I error rates for the z score method and Crawford 

and Howell’s (1998) approach.  Using Monte Carlo simulation trials with an error 

rate preset at 0.05, results indicated that for small to moderate sample sizes (n = 5 to 

20), Type I errors were larger for the z score method than Crawford and Howell’s t-

test approach.  With extreme skewness and kurtosis in the distributions, the 

percentage of Type I errors was between 7.84% and 9.96% for the t-test approach 

and between 8.68% and 14.31% when using z scores.  When there was no kurtosis 
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but extreme skewness in the distribution of small to moderate sample sizes, the Type 

I error percentage for the t-test approach was between 7.70% and 8.27% and between 

8.85% and 13.37% for z scores.  For small to moderate sample sizes, however, with 

distributions that have a moderate skew and no leptokurtosis, the percentage of Type 

I errors was 5.88% to 5.93% and 7.10% to 11.28% for the two methods, respectively.   

 These findings highlight the use of the Crawford and Howell (1998) method 

over the z score method with normal, skewed, or leptokurtic distributions of small to 

moderate sample sizes.  Similar to previous research, results of this study also found 

the Crawford and Howell’s method had a lower percentage of Type I errors than z 

scores across different sample sizes (n = 5 to n = 100).  Furthermore, although Type I 

errors were inflated when using Crawford and Howell’s method, the researchers did 

not believe these were drastic and overall, they still recommended this method for 

use by clinicians.   

 

4.3 Abnormality Between Two Tests and Solutions 
 The second consideration of clinicians in neuropsychological assessments is 

to analyse the difference between scores on two tests and calculate whether this 

discrepancy is abnormal.  The methods developed by Payne and Jones (1957) and 

Crawford, Howell, and Garthwaite (1998) both provide viable approaches to this 

task.  The Payne and Jones method determines the abnormality of the difference 

between two scores and the magnitude of the discrepancy compared to the 

population by the following formulae (Formula 14): 

Z = 
      

            

               Formula 14 

 When standardised scores are used this simplifies to 

     Z = 
      

       
               Formula 15 

Where:  

rxy = the correlation between the two tests 

Zx = the standardised score for test one 

Zy = the standardised score for test two  

x1 = score for test one 

x2 = score for test two  

s1 = standard deviation for test one 

s2 = standard deviation for test two 

 

This simplified version clearly indicates that the determination of the 

frequency of a difference between two scores is a product of the magnitude of the 

difference and the correlation between them. 

Although the practicality of this method has been demonstrated in clinical 

neuropsychology (Ley, 1972), it does however treat the sample statistics as if they 

are population parameters (Crawford & Garthwaite, 2002).  Furthermore, clinicians 

must know the correlations between the two tests in question and this is not always 

readily available to clinicians.  The alternative method developed by Crawford, 

Howell, and Garthwaite (1998) calculates abnormality between two tests based on 

sample statistics.  This modified t-test (formula 16) is also a useful method when 

used with small sample sizes.   

      
        

                     
      Formula 16 

Where:  
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Zx = the standard score for test one 

Zy = the standard score for test two  

rxy = the correlation between the two tests 

N2 = the number of persons in the sample 

 

Multiplying the t-score from this formula by 100 provides the point-estimate 

of the abnormality of the difference between the scores.  Crawford and Garthwaite 

(2002) also provide confidence limits for this point-estimate method.  As with the 

Payne and Jones approach, the Crawford et al. (1998) method also requires the 

clinician to have access to the correlation between the two tests in question.   

 

4.4 Summary 
Chapter four addressed the second stage of the clinical decision making 

process. After standardising a raw score, a clinician must determine whether a 

standardised score is indicative of abnormality. This can occur on two levels: at the 

basic individual test level, and in relation to comparisons between two tests. The 

chapter summarised both of these levels and discussed potential errors and current 

strategies available to correct them. While these methods are practical for clinicians 

to employ in clinical decision-making, they fail to address or account for the 

influence of skewed distributions. That is, the standardised scores and the methods 

for determining rates of abnormality at the individual test score level all assume 

normality of the actual distribution. Therefore the next chapter will empirically 

evaluate the interpretation and issues involved when standardising a raw score with a 

skewed distribution.  
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CHAPTER FIVE 
SKEWED DISTRIBUTIONS AND CLINICAL DECISION MAKING 

 
5.1 Interpretation Issues When Standardising on Skewed Distributions  

As demonstrated in Chapter three, the benefit of using normalised scores is 

that it allows clinicians to correctly take into account the skewness of the underlying 

normative distribution in representing percentiles.  Donnell et al. (2011) took this a 

step further by studying the actual interpretative effect of using linear versus 

normalised scores on negatively skewed neuropsychological test data.  This study 

used archival data from the Vietnam Experience Study of 4462 randomly selected 

US Army veterans, who had served during the Vietnam War era.  All participants 

undertook three days of evaluation including completing a comprehensive 

neuropsychological battery (i.e., nine neuropsychological tests, from which 21 

variables were derived).  An analysis of the normative samples’ distribution 

identified eight variables that had skewed distributions.  These variables were 

transformed into a normal distribution.  The remaining normally distributed variables 

were converted to linearly transformed z scores and then assigned to corresponding 

scaled scores.    

The researchers then measured the degree of difference between the 

normalised and linear scaled scores of one of the skewed neuropsychology tests and 

found that some linear scaled scores were within the abnormal range while the 

corresponding normalised scaled score fell in the normal range, thus altering the 

interpretation depending upon the approach that was used  (Donnell et al., 2011).  

This was particularly evident at the lower end of the negatively skewed distribution.  

Donnell et al (2011) emphasised:  

“…the importance of knowing the performance frequency distributions of 

various tests before assuming the data are normally distributed and using 

strict linearly transformed standard scores.  Without normalisation of the 

performance distributions, lower scores can easily be misinterpreted as being 

pathological when they may not be.” (p. 1105) 

Although this study is invaluable in demonstrating the potentially 

catastrophic impact of treating skewed distributions as if they were normally 

distributed, it does not address the degree of skewness.  It is, therefore, necessary to 

determine how different skewed distributions affect the way data is interpreted.  

There is little value in belabouring clinicians with the perils of not knowing the 

underlying distribution of the tests they employ, if no guidelines exist for them to 

consider, accommodate, or adjust their practices for differing levels of skewness.  

Clinicians need to make educated decisions about how to approach standardisation in 

clinical practice.  This concern forms the basis of the following study.   

 

5.2 Study Three –Errors With Standardising Skewed Distributions 
 This study assessed the magnitude of errors produced when different 

standardisation methods were applied to raw score distributions with varied levels of 

skewness.  It utilised the seven neuropsychological tests from Study Two with their 

broad range of skewed distributions.  Three standardisation methods were analysed.  

These were the traditional linear z score transformation, Crawford and Howell’s 

(1998) modified t-test and a new method created for this study, the Median z score 

transformation.  This method is a modified version of the linear z score but is based 

on the median rather than the mean.  It was hypothesised that using the median as a 

measure of central tendency instead of the mean in the z score transformation would 
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provide a standardised score more appropriate for highly skewed distributions as the 

median reflects the 50
th

 percentile regardless of the degree of skewness.  The formula 

for the Median z score transformation was as follows: 

Mdn z  = [x – mdn]/ mdnsd     Formula 17 

Where:  

x         = the observed score 

mdn    = the median  

mdnsd = the median standard deviation  

 

 The median standard deviation was a modified version of the standard 

deviation formula but reflected the spread of scores around the median.   

Mdnsd =      Formula 18 

Where:  

x         = the observed score 

mdn    = the median  

n         = the population size 

 

 It should be noted that a difference between the median and the mean is that 

deviations from the median do not sum to zero in a skewed distribution. The median 

standard deviations were calculated for each of the seven neuropsychological tests 

with the results presented in Table 5.1.   

 

Table 5.1. 

Medians and Median Standard Deviations for Seven Neuropsychological Tests  

Tests N Median Median Standard 

Deviation 

COWAT 935 41 11.53 

HVOT 379 27 2.6 

TMT A 507 24 9.4 

TMT B 507 55 23.14 

Rey 15 Item 

Test 

272 15 3.32 

WAIS-III 

Symbol Search 

1250 29 10.53 

WTAR 389 39 8.22 

 

 Using the known raw scores for each percentile from the actual raw score 

distribution of each test, the three standardisation methods were then applied and 

compared for each distribution.  For each method, the z score or t-score was 

calculated and was converted into the corresponding percentile rank using Table 2.4. 

This percentile rank was then compared to the original percentile rank, and the 

difference between them was calculated.  Tables 5.2 through 5.8 present the data for 

each of the seven tests.  It should be noted that the 5
th

 and 10
th

 percentiles are the 

most relevant for inferring impairment in neuropsychological assessment.   
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Table 5.2.   

COWAT – Comparisons of Three Standardisation Methods 

Actual

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s 

(1998) t - score 

%ile Difference 

1 -2.06 2 1 -1.99 2 1 -2.06 2 1 

5 -1.46 7 2 -1.39 8 3 -1.46 8 3 

10 -1.21 12 2 -1.13 13 3 -1.21 12 2 

25 -0.69 24 -1 -0.61 27 2 -0.69 25 0 

50 -0.09 46 -4 0 50 0 -0.09 47 -3 

75 0.59 73 -2 0.69 76 1 0.59 72 -3 

90 1.19 88 -2 1.3 91 1 1.19 88 -2 

95 1.7 97 1 1.82 96 1 1.7 96 1 

99 2.81 99.4 0.4 2.94 99.6 0.6 2.81 99.5 0.5 
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Table 5.3.   

HVOT – Comparisons of Three Standardisation Methods 

Actual

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s 

(1998) t - score 

%ile Difference 

1 -3.79 0.03 -0.97 -3.92 0.03 -0.97 -3.79 0.03 -0.97 

5 -2.14 2 -3 -2.31 1 -4 -2.14 2 -3 

10 -1.16 13 3 -1.35 9 -1 -1.16 13 3 

25 -0.38 35 10 -0.58 28 3 -0.38 36 11 

50 0.21 58 8 0 50 0 0.21 59 9 

75 0.60 73 -2 0.38 65 -10 0.60 73 -2 

90 1.00 84 -6 0.77 78 -12 1.00 84 -6 

95 1.19 88 -7 0.96 84 11 1.19 88 -7 

99 1.39 92 -7 1.15 88 -11 1.39 92 -7 
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Table 5.4.   

TMT A – Comparisons of Three Standardisation Methods 

Actual

%ile 

z – 

score 

%ile Difference  Mdn       

z – 

score 

%ile Difference  Crawford & 

Howell’s 

(1998) t - score 

%ile Difference  

1 -1.51 6 5 -1.27 10 9 -1.51 7 6 

5 -1.19 12 7 -0.96 17 12 -1.19 13 8 

10 -1.08 14 4 -0.85 20 10 -1.08 14 4 

25 -0.70 24 -1 -0.48 32 7 -0.70 24 -1 

50 -0.21 42 -8 0 50 0 -0.21 42 -8 

75 0.44 67 -8 0.64 74 -1 0.44 67 -8 

90 1.32 91 1 1.5 94 4 1.32 91 1 

95 1.92 97 2 2.08 98 3 1.92 97 2 

99 3.67 99.98 0.98 3.80 99.98 0.98 3.68 99.98 0.98 

 

 

 

 

 

 

 



 

 

 

70 

Table 5.5.   

TMT B – Comparisons of Three Standardisation Methods  

Actual

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s 

(1998) t - score 

%ile Difference 

1 -1.52 6 5 -1.29 10 9 -1.52 6 5 

5 -1.21 12 7 -0.99 16 11 -1.21 12 7 

10 -0.99 16 6 -0.77 22 12 -0.99 16 6 

25 -0.64 26 1 -0.43 33 8 -0.64 26 1 

50 -0.20 42 -8 0 50 0 -0.20 42 -8 

75 0.41 67 -8 0.61 73 -2 0.41 67 -8 

90 1.20 88 -2 1.38 92 2 1.20 88 -2 

95 2.11 98 3 2.27 99 4 2.12 98 3 

99 3.69 99.98 0.98 3.82 99.98 0.98 3.69 99.98 0.98 
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Table 5.6.   

Rey 15 Item – Comparisons of Three Standardisation Methods 

Actual

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s 

(1998) t - score 

%ile Difference 

1 -3.10 0.02 -0.98 -3.09 0.2 -0.8 -3.11 0.1 -0.9 

5 -2.39 1 -4 -2.52 1 -4 -2.39 1 -4 

10 -1.51 6 -4 -1.81 4 -6 -1.51 7 -3 

25 -0.38 35 -10 -0.90 19 -6 -0.38 36 11 

50 0.74 77 27 0 50 0 0.74 78 28 

75 0.74 77 2 0 50 -25 0.74 78 3 

90 0.74 77 -13 0 50 -40 0.74 78 -12 

95 0.74 77 -18 0 50 -45 0.74 78 -17 

99 0.74 77 -22 0 50 -49 0.74 78 -21 
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Table 5.7.   

WAIS-III Symbol Search – Comparisons of Three Standardisation Methods 

Actual

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s 

(1998) t - score 

%ile Difference 

1 -2.21 1 0 -2.28 1 0 -2.21 1 0 

5 -1.64 5 0 -1.71 4 -1 -1.64 5 0 

10 -1.35 9 -1 -1.42 8 -2 -1.35 9 -1 

25 -0.69 25 0 -0.76 22 -3 -0.69 25 0 

50 0.07 53 3 0 50 0 -0.07 47 -3 

75 0.65 74 -1 0.57 72 -3 0.65 75 0 

90 1.31 91 1 1.23 89 -1 1.31 91 1 

95 1.69 96 1 1.62 95 0 1.69 96 1 

99 2.26 99 0 2.18 99 0 2.27 99 0 
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Table 5.8.   

WTAR – Comparisons of Three Standardisation Methods 

Actual

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s 

(1998) t - score 

%ile Difference 

1 -3.28 0.08 -0.92 -3.42 0.06 -0.94 -3.29 0.08 -0.92 

5 -1.90 3 -2 -2.07 2 -3 -1.91 3 -2 

10 -1.16 13 3 -1.34 9 -1 -1.16 13 3 

25 -0.66 25 0 -0.85 20 -5 -0.66 26 1 

50 0.21 42 -8 0 50 0 0.21 59 9 

75 0.83 80 5 0.61 74 -1 0.83 80 5 

90 1.20 88 -2 0.97 84 -6 1.20 88 -2 

95 1.33 91 -4 1.09 87 -8 1.33 91 -4 

99 1.58 95 -4 1.34 91 -8 1.58 95 -4 
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The difference scores for the 5
th

 and 10
th

 percentiles were then summarised 

for each of the seven tests, as presented in Table 5.9.  

 

Table 5.9. 

Summary of the Differences Between the Actual and Obtained Percentile Ranks  

 

Note: Positive numbers reflect overestimation and negative numbers indicate underestimation.   

 

When regarding the difference scores in Table 5.9, it is apparent that the 

traditional z score transformation produces the smallest error out of the three 

transformations analysed.  Whilst Crawford and Howell’s (1998) modified t-test is 

designed to accommodate small sample sizes, when using large sample sizes there is 

no substantial difference between the method and the z score when assessing the 

impact of skewness.  Therefore, it is recommended that z score transformations be 

used with normative data of all skewness levels that have large sample sizes (i.e., 

more than 90).  Although the z score transformation is deemed adequate, it is also 

important to acknowledge that this method still introduces an error that will 

potentially impact the clinical decision making process.  Table 5.10 summarises the 

clinical interpretation when using the 5
th

 percentile as the cut-off for abnormality.  

Percentiles above the cut-off would, therefore, be interpreted as ‘No impairment’ 

while percentiles at or below the 5
th

 percentile would be interpreted as ‘impairment’.  

 

Table 5.10. 

Clinical Interpretation using 5
th 

Percentile Cut-off for z score Transformations 

Skewness z score Difference Interpretation 

1.7 + 7 No impairment 

 5
th

 %ile Equivalents 10
th

 %ile Equivalents  

Skewness z score Mdn z 

score 

t-score z score Mdn z 

score 

t-score 

1.7 + 7 + 11 + 7  + 6 + 12 + 6  

1.4 + 7 + 12 + 8  + 4 + 10 + 4 

0.6 + 2 + 3 + 3 + 2 + 3  + 2 

0 0 1 0 1 - 2 - 1 

-0.81 - 2 + 3 - 2 - 3 - 1 + 3 

-1.42 - 4 - 4 - 4 - 4 - 6 - 3 

-1.64 - 3  - 4 - 3  + 3  - 1 + 3  
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1.4 + 7 No impairment  

0.6 + 2 No impairment  

0 0 Impairment 

-0.81 - 2 Impairment 

-1.42 - 4 Impairment 

-1.64 - 3  Impairment 

 

As can be seen, for positively skewed distributions, percentiles that should be 

reflecting impairment are being misclassified as unimpaired.  This raises some 

ethical and professional issues that need to be addressed in clinical practice.   

 

5.2.1 Implications and Recommendations From Study Three 
Clinicians need to avoid error in judgment when using z score 

transformations by making corrections based on the skewness of the normative data 

they are using.  Based on the data in Table 5.10, a regression equation can be used to 

achieve this result.  The z score difference using the 5
th

 percentile was plotted with 

regard to degree of skewness.  A 4
th

 order polynomial trend line was fitted to the data 

(R
2
 = 0.985), as depicted in Figure 5.1. 

 

 
Figure 5.1. The difference between actual and obtained %ile as a function of 

skewness 
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This formula accounts for more than 98 percent of the variance in predicting 

obtained percentile corresponding to the 5
th

 percentile when standardising a score 

using the z score transformation for differing levels of skewness is: 

y  = -0.2299 x
4
 – 0.2433 x

3
 + 1.3765 x

2
 + 3.8999 x + 0.1918           Formula 19 

Where:  

x = the skewness statistic of the sample distribution 

Based on these findings, it is recommended that clinicians adhere to the 

following steps in order to reduce the error introduced when using z score 

transformations in cognitive assessment: 

1. Acquire skewness statistic for the normative data being used. 

2. Substitute the skewness statistic into Formula 19. 

3. Determine how much correction is needed in order to adjust the obtained 

percentile (output of Formula 19) into the actual 5
th

 percentile.  

For example, in administering TMT B to a client, a clinician can use the 

skewness statistic to work out what percentile rank represents the 5
th

 percentile or the 

cut-off for classifying abnormality. Formula 19 indicates that the 5
th

 percentile 

equivalent for TMT B when using a z score transformation appears as the 12
th

 

percentile. Therefore, if a client’s score were the 12
th

 percentile when using a z score, 

the clinician would correctly interpret this level as reflecting impairment.  If a 

clinician disregards the effect of skewness on z score transformations, the client’s 

performance would be incorrectly classified as not reflecting impairment.  

To aid a clinician in performing these corrections when using the 5
th

 

percentile cut-off criteria, Table 5.11 can be used. This table displays different levels 

of skewness and the estimated obtained z score produced calculated for each using 

Formula 19.  A clinician can then subtract the corresponding amount in order to 

correct for skewness. No values have been computed for negative skewness as the 

resultant z scores indicate percentiles lower than 5 percent and do not pose a risk of 

being misidentified as being unimpaired. 

 

Table 5.11. 

Corrections Required to Reflect 5
th

 Percentile Cut-off as a Function of Skewness 

Skewness Obtained z score Subtract 

1.7 12.30 7.30 

1.6 12.07 7.07 

1.5 11.77 6.77 

1.4 11.42 6.42 

1.3 11.01 6.01 

1.2 10.57 5.57 

1.1 10.10 5.10 

1.0 9.61 4.61 

0.9 9.1 4.1 

0.8 8.59 3.59 

0.7 8.07 3.07 

0.6 7.56 2.56 

0.5 7.06 2.06 

0.4 6.57 1.57 

0.3 6.09 1.09 

0.2 5.64 0.64 

0.1 5.21 0.21 

0 4.81 - 
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These findings demonstrate that it is necessary to consider skewness when 

standardising a raw score using normative data.  Clinicians should utilise Formula 19 

in clinical practice as a means of adjusting the error introduced through skewed 

distributions. It is, however, important to note that Study Three evaluated this issue 

using test distributions with large sample sizes.  Although the use of optimal sample 

size is consistent with the findings of Study Two, it fails to address pre-established 

normative studies with small sample sizes.  Therefore, it is necessary to consider the 

errors associated from each of these three standardisation methods when smaller 

sample sizes are used.  This will be evaluated in Study Four.   

 

5.3 Study Four - Errors with Standardising Skewed Distributions with 
Small Sample Sizes 

This study will evaluate the errors produced when the three standardisation 

methods outlined in Study Three are applied to raw score distributions with small 

sample sizes.  The rationale for this study is based on the common practice of 

clinicians to use normative data that have small sample sizes.  For example, the 

norms for the Hooper Visual Organisation Test (i.e., a test of perceptual 

organisation) developed by Richardson and Marottoli (1996) have sample sizes 

ranging from 18 to 33 because of data stratification.  Although Study Two has 

demonstrated that the optimal sample size for normative data is a function of 

skewness, it is understood that many clinicians will continue to use normative data 

that do not comply with these new findings.  

The methodology of this study is similar to Study Three. However, instead of 

using the raw score distributions of the seven neuropsychological tests with large 

sample sizes, this study will use only a random sample of 20 cases from each 

distribution.  The descriptive statistics are presented in Table 5.12. 

 

Table 5.12. 

Descriptive Statistics of Seven Neuropsychological Tests with N = 20 

Test Skewness Mean SD Median Median SD 

COWAT 0.00 43.30 11.30 43.00 11.30 

HVOT -1.11 25.48 2.35 27.00 2.41 

TMT A 1.92 26.92 13.27 22.17 14.14 

TMT B 1.04 64.25 26.61 53.77 28.69 

Rey 15 Item -0.96 13.05 2.31 13.5 2.35 

WAIS-III Symbol Search -0.90 29.8 11.6 32.00 11.81 

WTAR -0.90 36.95 7.38 37.5 7.40 
Note: Median SD was calculated using Formula 18 

  

 It is important to note that the skewness statistics for the tests differ from the 

skewness statistics shown in Study two.  This was due to the small sample size 

creating unstable skewness statistics.  

 The first step in this study was to analyse each distribution and find the raw 

scores corresponding to different percentiles in the distributions.  The percentiles 

chosen included the 1
st
, 5

th
, 10

th
, 25

th
, 50

th
, 75

th
, 90

th
, and 95

th
. Raw scores 

corresponding to the 99
th

 percentile for each distribution were unable to be calculated 

due to the small sample size. Neuropsychological assessment, which focuses on 

abnormally low scores, means that the omission of the 99
th

 percentile is not of 

concern. The results are presented in Table 5.13 below.   
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Table 5.13.   

Corresponding Raw Scores for Different Percentiles in the Underlying Distribution Based on a Sample Size of 20 

 %iles 

Test 1 5 10 25 50 75 90 95 99 

COWAT 22.00 22.30 28.40 33.25 43.00 52.50 60.00 60.95 - 

HVOT 20.50 20.60 22.60 25.63 27.00 27.88 29.45 29.5 - 

TMT A 15.18 15.18 15.37 19.39 22.17 28 58.62 60.95 - 

TMT B 32.30 32.38 34.61 45.76 53.77 83.25 113.55 126.44 - 

WAIS-III Symbol 

Search 

0.00 0.65 13.20 21.75 32.00 38.00 42.70 48.70 - 

WTAR 21.00 21.35 28.10 30.50 37.50 43.00 45.90 48.85 - 

Rey 15 Item 8.00 8.00 8.30 12.00 13.50 15.00 15.00 15.00 - 
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 Using the known raw scores for each percentile, the three standardisation 

methods could then be applied and compared for each distribution.  For each method, 

the z score or t-score was calculated and was converted into the corresponding 

percentile rank using Table 5.12.  This percentile rank was then compared to the 

original percentile rank, and the difference between them was calculated.  Tables 

5.14 through to 5.20 present the data for each of the seven tests.  It is important to 

note that the 5
th

 and 10
th

 percentiles are most important for inferring impairment in 

neuropsychological assessment.   
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Table 5.14.   

COWAT – Comparisons of Three Standardisation Methods with N = 20 

Actual    

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s (1998)     

t - score 

%ile Difference 

1 -1.88 3 2 -1.86 4 3 -1.93 3 2 

5 -1.86 4 -1 -1.83 4 -1 -1.90 3 -2 

10 -1.32 10 0 -1.29 10 0 -1.35 9 -1 

25 -0.90 19 -6 -0.86 20 -5 -0.91 19 -6 

50 -0.02 49 -1 0 50 0 -0.02 49 -1 

75 0.81 80 5 0.84 80 5 0.83 80 5 

90 1.48 94 4 1.50 94 4 1.51 94 4 

95 1.56 95 0 1.59 95 0 1.60 95 0 
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Table 5.15.   

HVOT – Comparisons of Three Standardisation Methods with n = 20 

Actual    

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s (1998)     

t - score 

%ile Difference 

1 -3.69 0.03 -0.97 -4.23 0.03 -0.97 -3.78 0.03 -0.97 

5 -1.91 3 -2 -2.50 1 -4 -1.95 3 -2 

10 -0.84 20 10 -1.45 8 -2 -0.86 20 10 

25 0.01 51 26 -0.62 27 2 0.01 51 26 

50 0.65 75 25 0 50 0 0.66 75 25 

75 1.07 86 11 0.41 67 -8 1.10 87 12 

90 1.50 94 4 0.83 80 -10 1.53 94 4 

95 1.71 96 1 1.04 86 -9 1.75 96 1 
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Table 5.16.   

TMT A – Comparisons of Three Standardisation Methods with n = 20 

Actual    

%ile 

z – 

score 

%ile Difference  Mdn       

z – 

score 

%ile Difference  Crawford & 

Howell’s (1998)     

t - score 

%ile Difference  

1 -0.88 19 18 -0.49 32 31 -0.91 19 18 

5 -0.88 19 14 -0.49 32 27 -0.91 19 14 

10 -0.87 19 9 -0.48 32 22 -0.89 19 9 

25 -0.57 29 4 -0.20 43 18 -0.58 28 3 

50 -0.36 36 -14 0 50 0 -0.37 36 -14 

75 0.08 54 -21 0.41 67 -8 0.08 47 -28 

90 2.39 99 8 2.58 99.1 9.1 2.45 99 9 

95 2.56 99.1 4.1 2.74 99.4 4.4 2.63 99.2 4.2 
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Table 5.17.   

TMT B – Comparisons of Three Standardisation Methods with n = 20 

Actual    

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s (1998)     

t - score 

%ile Difference 

1 -1.20 12 11 -0.75 23 22 -1.23 11 10 

5 -1.20 13 8 -0.75 23 18 -1.22 11 6 

10 -1.11 14 4 -0.67 25 15 -1.14 13 3 

25 -0.69 25 0 -0.28 39 14 -0.73 24 1 

50 -0.39 35 -35 0 50 0 -0.40 34 16 

75 0.71 76 1 1.03 85 10 0.73 77 2 

90 1.85 97 7 2.08 98 8 1.90 97 7 

95 2.34 99 4 2.53 99 4 2.39 99 4 
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Table 5.18. 

Rey 15 Item – Comparisons of Three Standardisation Methods with n = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Actual    

%ile 

z – 

score 

%ile Difference Mdn       

z – 

score 

%ile Difference Crawford & 

Howell’s (1998)     

t - score 

%ile Difference 

1 -2.19 2 1 -2.34 1 0 -2.24 1 0 

5 -2.19 2 -3 -2.34 1 -4 -2.24 1 -4 

10 -2.06 2 -8 -2.21 1 -9 -2.11 2 -8 

25 -0.45 33 8 -0.64 26 1 -0.47 32 7 

50 0.19 58 8 0 50 0 0.20 58 8 

75 0.84 80 5 0.64 74 -1 0.87 81 6 

90 0.84 80 -10 0.64 74 -16 0.87 81 -9 

95 0.84 80 -15 0.64 74 -21 0.87 81 -14 
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Table 5.19 

WAIS-III Symbol Search – Comparisons of Three Standardisation Methods n = 20 

Actual    

%ile 

z – score %ile Difference Mdn       

z – score 

%ile Difference Crawford & 

Howell’s (1998)     

t - score 

%ile Difference 

1 -2.57 1 0 -2.71 0.8 -0.2 -2.63 0.9 -0.1 

5 -2.51 1 -4 -2.65 0.9 -4.1 -2.57 1 -4 

10 -1.43 8 -2 -1.59 6 -4 -1.47 7 -3 

25 -0.69 25 0 -0.87 19 -6 -0.71 24 -1 

50 0.19 43 -7 0 50 0 0.19 58 8 

75 0.71 76 1 0.51 70 -5 0.72 77 2 

90 1.11 87 -3 0.91 82 -8 1.14 88 -2 

95 1.63 95 0 1.41 93 -2 1.67 95 0 
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Table 5.20.   

WTAR – Comparisons of Three Standardisation Methods with N = 20 

Actual   

%ile 

z – score %ile Difference Mdn       

z – score 

%ile Difference Crawford & 

Howell’s (1998)     

t - score 

%ile Difference 

1 -2.16 2 1 -2.23 1 0 -2.21 1 0 

5 -2.11 2 -3 -2.18 2 -3 -2.12 2 -3 

10 -1.20 12 2 -1.27 10 0 -1.20 12 2 

25 -0.87 19 -6 -0.95 17 -8 -0.88 19 -6 

50 0.07 53 3 0 50 0 0.07 53 3 

75 0.82 80 5 0.74 78 3 0.82 80 5 

90 1.21 89 -1 1.14 88 -2 1.21 89 -1 

95 1.61 95 0 1.53 94 -1 1.61 95 0 
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The difference scores for the 5
th

 and 10
th

 percentiles were then summarised 

for each of the seven tests, as presented in Table 5.21.  

 

Table 5.21. 

Summary of Differences Between Obtained and Actual Percentiles 

  5
th

 %ile equiv 10
th

 %ile equiv  

Test Skew z score Mdn z 

score 

t-

score 

Z score Mdn z 

score 

t-

score 

TMT A 1.92 + 14 + 27 + 14 + 9 + 22 + 9 

TMT B 1.04 + 8 + 18 + 6  + 4 + 15 + 3  

COWAT 0.00 - 1 - 1 - 2 0 0 - 1 

WTAR -0.90 - 3 - 3 - 3 + 2 0 + 2 

WAIS-III SS -0.90 - 4 - 4.1 - 4 - 2 - 3 - 3  

Rey 15 Item -0.96 - 3 - 4 - 4 - 8  - 9  - 8 

HVOT -1.11 - 2 - 4  - 2 + 10 - 2 + 10 

Note: Positive numbers reflect overestimation and negative numbers indicate underestimation.   

  

 As can be appreciated from the above table, the traditional z score 

transformation  and Crawford and Howell’s (1998) modified t-score produce very 

similar results.  Consistent with the results of Study Three, it is recommended that 

the z score transformation be used with normative data of all skewness levels 

regardless of sample size.  It should be noted that this is counter to the findings and 

recommendations of Crawford et al., (2006).  In their study, the modified t-test 

produced fewer errors than the z score transformation and was the recommended 

method when using small sample sizes.  Regardless, it is crucial to evaluate how 

much error is introduced into clinical decision making when using the z score 

transformation on small sample sizes.  Table 5.22 presents the clinical interpretation 

of the obtained z scores if a clinician was to use the 5
th

 percentile cut-off on small 

sample sizes compared with those with adequate sample sizes.  

 

Table 5.22. 

Clinical Interpretation using 5
th 

Percentile Cut-off for z score Transformations using 

Different Sample Sizes  

Skewness Adequate n n = 20 

>1.7 + 7 + 14 
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>1.0 + 7 + 8 

0.6 + 2 - 1 

0 0 - 4 

-0.81 - 2 - 3 

-1.42 - 4 - 3 

-1.64 - 3  - 2  

  

This new information can then be superimposed into the graph from Study 

Three (Figure 5.1) and is depicted in Figure 5.2.
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Figure 5.2. The difference between actual and obtained percentile as a function of skewness and sample size.  
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 As can be appreciated, the consequences of standardisation using inadequate 

normative data with positively skewed distributions are extensive.  For distributions 

with skewness statistics greater than 1.7, the error between the actual and obtained 

percentiles using the z score transformation is approximately doubled.  It is, 

therefore, recommended that clinicians should discontinue using normative samples 

with inadequate sample sizes in their clinical decision making processes. From Study 

Two, the minimum sample size required for stable means and standard deviations for 

highly negatively skewed distributions (e.g., HVOT) was 30 (Table 3.12). Therefore 

clinicians should no longer use sample sizes with less than 30 in each cell with these 

types of distributions.  

 

5.4 Summary  
 The issue of skewed distributions has particular importance to clinicians 

because of the errors introduced during standardisation.  The study by Donnell et al. 

(2011) demonstrated that the errors are greater for linear-transformed scores than 

their normalised-standard score counterparts in skewed distributions. Although these 

findings are important, the fact remains that some clinicians still utilise linear 

transformations in clinical practice regardless or without considering the results of 

Donnell et al. (2011).  Study Three, therefore aimed to assess how much error is 

introduced when different linear transformations are used on raw-score distributions 

that vary in levels of skewness.  Results indicated that the traditional and commonly 

used z score transformation was the best method to be used for skewed distributions.  

However, the error rates are still of considerable concern for positively skewed 

distributions.   A regression formula was created in order to perform corrections 

when using the 5
th

 percentile cut-off for abnormality.  

Study Four investigated the effects on clinical interpretation if a clinician 

continues to transform scores using skewed normative data with inadequate sample 

sizes.  Results indicated that the error rates associated with positively skewed 

distributions are even larger when using small sample sizes.  It was, therefore, 

recommended that clinicians discontinue using normative samples with sample sizes 

below those recommended in Study Two.    
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CHAPTER SIX 
GENERAL DISCUSSION, CONCLUSIONS AND IMPLICATIONS 

 
6.1 Overview 

 In neuropsychological assessment little can be understood without comparing 

an individual’s raw score with a normative sample. This is achieved through 

standardisation – converting a raw score to a standard score and thereby creating a 

basis for comparison. While there is a wealth of literature on reliability and validity, 

far less consideration is given to the psychometrics related to the standardisation 

process. One paramount issue is related to the sample size of the normative sample. 

The current lore indicates a minimum sample size of 50 is adequate, however this 

number appears to be based on a limited psychometric base and does not reflect 

considerations of skewed distributions commonly seen in neuropsychology.  

 The task of psychological assessment is complex with potential errors 

negatively influencing clinical interpretation. Currently, many clinicians are unlikely 

to consider the error made during the standardisation process, essentially accepting 

whatever normative data that is available as adequate. As a result, the primary goal 

of the current thesis was to evaluate the psychometric literature related to 

standardisation concepts and processes required in clinical neuropsychology. In 

addition, the thesis also aimed to investigate the current understanding of sample 

sizes in normative samples, how this is influenced by different distributions, and the 

potential errors involved in the decision making process. Guidelines for determining 

adequate sample sizes were developed for normal and skewed distributions and 

recommendations provided to ensure better evidence-based practice for clinicians.  

 This chapter will present a summary of each of the studies undertaken in this 

thesis and will specifically discuss the implications and applications for clinical 

practice in each case. In addition, this chapter will address the limitations of the 

current research and indicate directions for future research.  

 

6.2 General Discussion and Conclusion of Results 
6.2.1 Summary, Recommendations and Implications of Study One 

After reviewing the current literature, it was found that the issue regarding 

minimum sample sizes in normative studies is often arbitrary.  The consensus is that 

sample sizes should have a minimum of 50 subjects in order to be deemed 

appropriate for use.  Whilst most normative studies have sample sizes in excess of 

this figure, the difficulty is that the data are typically stratified by demographic 

variables such as age, education, and gender.  This ultimately means that sample 

sizes for each of these stratified cells are commonly less than 50.  In some cases, 

frequently used normative data have sample sizes with n = 20 in each cell.  Study 

One aimed to empirically evaluate the issue of sample size in normative studies.  

Results indicated that the optimal n’s required to produce stable measures of central 

tendency are dependent on the level of skewness of the raw score data.  Interestingly, 

normally distributed data require 70 cases in each cell.   

A formula was developed to aid clinicians in determining the minimum n for 

different levels of skewness.  However as a general rule, if skewness statistics are not 

provided then it is recommended that clinicians use only normative data with a 

minimum of n = 90 in each cell.  Clinicians and researchers wishing to undertake 

normative studies designed to generate stable measures of central tendency and 

variance are advised to adhere to the following steps: 
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 Step 1: Acquire a minimum of 30 cases for the normative study. A sample 

size of 30 was the smallest number required for stables means and standard 

deviations for highly negatively skewed distributions (i.e., Table 3.12). If the 

data is to be stratified (e.g., by age and education), then each cell must have a 

minimum of 30 cases.  

 Step 2: Analyse this data and generate a skewness statistic. 

 Step 3: Use Formula 11 to compute the minimum n required in each cell for a 

stable mean and standard deviation at the indicated level of skewness. 

 Step 4: If the computed n is equal to cases already obtained, then the minimal 

sample size requirement is satisfied.  If a larger minimum sample size is 

indicated than the cases already obtained, then more cases will be needed 

until the minimum in each cell is satisfied.   

The implication of Study Two is that many established normative studies 

currently have inadequate sample sizes.  Using the general rule outlined above (i.e., 

only use normative studies with n > 90 when skewness statistics are not provided), 

the normative data of two neuropsychological tests contained within the Handbook 

of Normative Data for Neuropsychological Assessment (Mitrushina et al., 2005) 

were analysed.  This book contains arguably the most comprehensive listings of 

normative data made available to clinicians.  The tests were the Trail Making Test 

(TMT), and the Color Trails Test (CTT). 

 In total, 49 normative studies (including sub-studies) for the TMT are 

included in the Handbook of Normative Data for Neuropsychological Assessment 

(Mitrushina et al., 2005). Out of the 49 normative studies, 37 had inadequate sample 

sizes in one or more of their stratified cells.  In total, out of all the 243 stratified cells 

across the 47 normative studies, 71% had inadequate sample sizes.  

For the CTT, 10 normative studies (including sub-studies) were included in 

the Handbook. All of the 10 normative studies for the CTT had at least one cell with 

inadequate sample sizes and of the 53 cells, 87% had sample sizes less than 90.  

 Although these are only two examples, it raises the question of the adequacy 

of established neuropsychological normative data. The astute reader will note an 

interesting implication with regards to the TMT samples sizes used in the worked 

example in Chapter two. When referring to Table 3.12, TMT A requires a minimal 

sample of 80 and TMT B requires a minimal sample size of 60 based on the 

skewness statistics. However when the normative data was stratified, TMT A sample 

sizes ranged from 39 to 251 and TMT B sample sizes ranged from 38 to 250. It 

should be noted however that the spread of the normative data used in this example 

likely reflects the consequences of the sampling method. What this does highlight is 

the normative data collected for the TMT utilised in this thesis has extensive 

oversampling in one of the cells (i.e, <50 years old, more than 12 years of education) 

and under-sampling in another (i.e., more than 50 years of age and less than 12 years 

of education). Therefore further sampling will need to be undertaken in the cells that 

have inadequate sample sizes before publication of this data for normative purposes 

would be recommended.  

 The overall implication is that further research needs to be conducted to 

update existing normative studies with inadequate sample sizes.  This should be 

completed with due consideration of the skewness of the raw score data.  

Furthermore, skewness statistics should be provided as a standard psychometric 

characteristic for all existing and future normative studies.  
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6.2.2 Summary and Recommendations of Study Two  
Study Two was concerned with the error introduced when linear 

transformations are used on different skewed distributions.  This issue is paramount, 

as the research has demonstrated that there is an increase in errors when using a 

linear transformation on a skewed distribution.  This is because, unlike a normal 

distribution, the mean and the median are not the same in skewed distributions.  

Regardless of this research, clinicians still adopt the practice of conducting z score 

transformations presumably due to the ubiquitous provision of sample means and 

standard deviations in all normative studies.  It is, therefore, necessary to empirically 

evaluate the impact this is having on clinical decision-making. Using three different 

standardisation methods on seven neuropsychological test distributions with 

adequate sample sizes (i.e., n = 90+), the results indicated that the traditional z score 

transformation was the most effective and introduced less errors in judgement.  

While this may allay concerns regarding conventional practice, albeit through 

ignorance rather than evidence-based, the errors produced were still of concern, 

particularly for highly positively skewed distributions.  For example, in the 

extremely positively skewed distribution of the TMT B, the 12
th

 percentile obtained 

using the z score transformation in fact reflects the true 5
th

 percentile.  This is a 

seven-point overestimation.  Furthermore, in clinical practice, this particular score 

could be classified as unimpaired when in fact it is reflective of impairment (using 

the 5
th

 percentile as a cut-score).  A regression formula was created that helps to 

correct data with adequate sample sizes for skewness. Corrections can then be 

applied to the cut-score percentile level in order to account for the overestimation.   

An important finding from this study is that skewness statistics greater than 

+1.0 produce 5
th

 percentile equivalents that are above the 10
th

 percentile.  As a 

general rule, when standardising scores from tests that have skewness statistics 

greater than 1.0, Formula 19 should be used and corrections made.  Secondly, when 

standardising scores from tests that have skewness statistics less than +1.0 but more 

than 0, the general rule should be to use a 10
th

 percentile cut-off score for classifying 

impairment.  This will ensure skewness is considered in the interpretation process.  

For tests with skewness statistics less than 0, the fifth percentile cut-off score is 

adequate. Table 6.1 summarises these general rules.  

 

Table 6.1. 

General Rules for z score Transformations as a Function of Skewness 

General Rule Skewness Range of 

Normative Data 

Cut-score for 

Impairment 

1 1.0+ Caution. Consult 

Formula 11 

2 0.0 – 1.0 Use 10
th

 percentile 

3 < 0.0 Use 5
th

 percentile 

 

6.2.3 Summary and Recommendations of Study Three  
Study three was concerned with the errors produced if clinicians choose to 

ignore the findings from Study One and continue to use normative data with small 

sample sizes.  The three standardisation methods used in Study Two were applied to 
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sample sizes of n = 20 on various skewed raw score distributions.  Results indicated 

the error in judgement is nearly doubled on positively skewed distributions. 

Therefore, if a clinician chooses to use inadequate sample sizes, producing unstable 

measures of central tendency and skewness statistics, the problem is potentially 

severe.  It is recommended that normative data with sample sizes less than 30 should 

not be used in clinical practice as this number represents the minimum sample size 

needed to produce stable means and standard deviations in highly negatively skewed 

distributions (i.e., HVOT).  

 

6.3 General Recommendations 
Overall, the purpose of this dissertation was to illustrate and evaluate 

important psychometric issues relevant to the standardisation process.  The results of 

the three empirical studies are two-fold.  Firstly, they outline the importance of 

adequate sample size as a function of skewness. Secondly, they demonstrate the 

appropriate procedures for transforming raw scores into standardised scores while 

adjusting for errors introduced through level of skewness.  Table 6.2, which 

combines these results, is intended to provide a valuable resource for clinicians by  

presenting the optimum sample size for different levels of skewness (i.e., derived 

using Formula 11) and an approximation of the judgement errors and corrections 

required as calculated using derived formula 19.  

 

Table 6.2. 

Optimum Sample Size and Estimated Judgement Errors for Differing Skewness 

Levels at the 5
th

 percentile 

Skewness Minimum n z score percentile Subtract 

1.7 61 12.30 7.30 

1.6 69 12.07 7.07 

1.5 75 11.77 6.77 

1.4 79 11.42 6.42 

1.3 82 11.01 6.01 

1.2 84 10.57 5.57 

1.1 85 10.10 5.10 

1.0 86 9.61 4.61 

0.9 85 9.1 4.1 

0.8 84 8.59 3.59 

0.7 83 8.07 3.07 

0.6 81 7.56 2.56 

0.5 80 7.06 2.06 

0.4 78 6.57 1.57 

0.3 76 6.09 1.09 

0.2 74 5.64 0.64 

0.1 72 5.21 0.21 

0 70 4.81 - 

-0.1 69 - - 

-0.2 67 - - 

-0.3 66 - - 

-0.4 64 - - 

-0.5 63 - - 

-0.6 62 - - 

-0.7 61 - - 
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-0.8 59 - - 

-0.9 58 - - 

-1.0 56 - - 

-1.1 54 - - 

-1.2 51 - - 

-1.3 48 - - 

-1.4 43 - - 

-1.5 38 - - 

-1.6 32 - - 
Note: Skewness levels less than 0 do not require a correction. 

 

As can be appreciated by the above table, the requirement underlying the 

correct use of this resource is the skewness statistic.  The dilemma facing clinicians 

is how to evaluate established normative studies where skewness statistics are not 

made available.  This will be a common problem faced by clinicians.  For example, 

in the Handbook of Normative Data for Neuropsychological Assessments 

(Mitrushina et al., 2005), no skewness statistics are provided for any of the normative 

studies.  Unfortunately, skewness statistics cannot be calculated without access to the 

raw score data.  In order to aid clinicians, Table 6.3 provides skewness statistics for 

raw score distributions of all neuropsychological tests from the three databases used 

throughout this thesis. Also included in Table 6.3 is the estimated optimal n for each 

and the rule from Table 6.1 above that should be applied when standardising the 

particular test. 

By way of summary, Table 6.4 presents levels of consideration by 

practitioners in relation to skewness, sample sizes, and the use of normative data. It 

is intended as a way for clinicians to evaluate the extent to which they are prepared 

to alter their practices to reduce error in relation to these issues and how best to act.    
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Table 6.3. 

Skewness Statistics for 45 Neuropsychological Tests and Calculated z score Equivalents Based on the 5
th

 Percentile  

Cut-off Score (Presented in Order of Skewness). 

Test Database* N Skewness SE  Optimum 

n 

 Rule (Table 6.1) 

TMT B 1 508 1.65 0.11  60 1 

TMT A 1 508 1.40 0.11  79 1 

RAVLT – Interference 1 200 1.25 0.17  84 1 

Stroop Colour-Word 1 729 0.70 0.91  83 2 

RAVLT – Trial I 1 200 0.63 0.17  82 2 

COWAT 1 935 0.60 0.08  82 2 

WAIS-III Digit Span Backwards 2 1250 0.54 0.07  80 2 

Visual Form Discrimination 1 345 0.41 0.13  78 2 

WAIS-III Digit Span 2 1250 0.35 0.07  77 2 

Symbol Digit Modalities Test – Oral 1 629 0.20 0.10  74 2 

WAIS-III Block Design 2 1250 0.18 0.07  74 2 

Rey Visual Design Learning Test – Trial 

I 

1 166 0.12 0.19  72 2 

WAIS-III Arithmetic 2 1250 0.10 0.07  72 2 

Stroop Word 1 729 0.09 0.91  72 2 

WAIS-III Matrix Reasoning 2 1250 0.05 0.07  71 2 

WAIS-III Information 2 1250 0.05 0.07  71 2 

WAIS-III Symbol Search 2 1250 0.00 0.07  70 3 

Stroop Colour 1 729 -0.01 0.91  70 3 

Symbol Digit Modalities Test – Word 1 628 -0.07 0.10  69 3 

WAIS-III Digit Symbol  2 1250 -0.08 0.07  69 3 

Speed of Comprehension 1 787 -0.11 0.09  69 3 

WAIS-III Vocabulary 2 1250 -0.17 0.07  68 3 

WAIS-III Letter-Number Sequencing 2 1250 -0.18 0.07  67 3 

WAIS-III Picture Arrangement 2 1250 -0.32 0.07  65 3 

Rey Visual Design Learning Test – Trial 1 166 -0.33 0.19  65 3 
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I-IV 

WAIS-III Similarities 2 1250 -0.39 0.07  65 3 

National Adult Reading Test (NART) 1 160 -0.40 0.19  64 3 

WAIS-III Comprehension 2 1250 -0.43 0.07  64 3 

RAVLT – Trial I-IV 1 200 -0.48 0.17  63 3 

Rey Visual Design Learning Test – 

Delayed 

1 166 -0.50 0.19  63 3 

Test of Premorbid Functioning (TOPF) 1 145 -0.51 0.20  63 3 

Conceptual Level Analogies Test 

(CLAT) 

1 265 -0.54 0.15  63 3 

RAVLT – Trial VI 1 200 -0.65 0.17  61 3 

Spot the Word 1 783 -0.70 0.08  61 3 

Rey Visual Design Learning Test –Trial I 1 166 -0.76 0.19  60 3 

Wechsler Test of Adult Reading 

(WTAR) 

1 389 -0.83 0.12  59 3 

RAVLT – Trial VII 1 200 -0.83 0.17  59 3 

Shipley Institute of Living Scale 

(Shipley)  

1 404 -0.92 0.12  57 3 

Boston Naming Test (BNT) 1 571 -1.07 0.10  54 3 

WAIS-III Picture Completion 2 1250 -1.09 0.07  54 3 

Judgement of Line Orientation Test 

(JLO) 

1 379 -1.31 0.13  47 3 

Rey 15 Item Test 3 272 -1.42 0.15  42 3 

Hooper Visual Organisation Test 

(HVOT) 

1  379 -1.64 0.13  30 3 

Note: Database 1 = USQ Normative data, 2 = WAIS-III/WMS-III; Standardisation data, 3 = Clinical data  
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Table 6.4. 

Levels of Consideration for Clinicians in relation to Skewness, Sample Size, and Standardisation 

Level  Considerations and Recommendations 

0 Avoidance. Utilise established normative data only where there is a minimum of n = 90 in each cell.  This will 

ensure that the data have stable means and standard deviations.  Do not use tests that have extreme positive 

skewness.  Clinicians at this level seek to remove the need for consideration of sample and distribution factors by 

choosing only those measures that do not suffer from them. 

1 Assimilation. Utilise the skewness estimates for a range of neuropsychological tests presented in Table 6.3 to inform 

clinical decision-making and utilise the percentile heuristic to adjust cut-offs for abnormality accordingly.  At this 

level the clinician attempts to correct for skewness and inadequate sample sizes within their existing test battery. 

2 Accommodation. At this level, clinicians actively engage in the process of determining the influence of sample size 

and skewness on their test battery, through examining their own data and modifying test selection procedures just as 

they do for validity and reliability considerations in designing a test battery that accommodates psychometric issues.  

That is, clinicians should only select tests for their battery if the accompanying norms satisfy the sample size 

requirements.  This would require the established normative data to include skewness statistics so sample size can be 

evaluated and appropriate standardisation methods can be employed.   Clinicians could also consult Table 6.2 to 

calculate error associated with level of skewness and consequently correct their clinical interpretation. 



 

 

 

99 

6.4 Limitations and Future Directions 
 The lack of skewness statistics made available by test publishers and 

researchers presents a primary barrier to the application of the recommendations 

presented in this dissertation. Without skewness statistics, clinicians are forced to use 

the basic level of psychometric consideration or Level One of Table 6.4 (i.e., 

Avoidance). However, with inclusions of skewness statistics in manuals and/or 

papers, clinicians can begin to apply the full statistical algorithm and evaluate the 

adequacy and potentials errors themselves.  

 Another limitation is that for this thesis, all that has been analysed are the 

tests used in the normative studies undertaken in Australia and the WAIS-III/WMS-

III standardisation and education oversample. There is further need to analyse more 

tests and normative databases to evaluate the extent to which skewness coefficients 

may change with different populations. Although there is awareness to use reliable 

and stable measures, coefficients are still treated as constants rather than being 

treated as variable measures which have confidence intervals in their own right. 

Caution therefore needs to be applied to the skewness statistics provided in Table 

6.3. These are skewness statistics provided for the normative data analysed in this 

research and should not be considered a constant or fixed number. Further research 

therefore needs to evaluate whether the skewness statistics found here are similar to 

those found in other normative data, evaluating whether skewness is a characteristic 

of a test that overrides or persists in different samples, countries, cultures, and/or 

languages. 

6.5 Conclusion 
 In current practice, clinicians are still using and relying on extremely poor 

normative data when standardising test scores. The fault is not with the clinicians but 

with the limited availability of adequate data. The current research aims to bring 

awareness to the instability and potential of making interpretation errors when using 

the current normative data for a large range of neuropsychological tests. Clinicians 

now have guidelines that indicate whether a sample size is adequate based on the 

level of skewness of the distribution and whether this skewness will introduce errors 

during raw score transformations. In particular, this research has demonstrated that 

the influence of skewness is important during the standardisation process, especially 

with positively skewed data. While negatively skewed distributions skew the 

percentile, they do so in a direction that does not increase the likelihood of an 

incorrect interpretation. Positively skewed data, however, overestimate the percentile 

ranks with the implication that clinicians are interpreting scores reflecting 

impairment as unimpaired. The major finding of the current research is that the level 

of error introduced when transforming data using normative samples of less than 30 

is significant and therefore should not be used in clinical practice. Thirty is the 

minimum sample size found in Study Two for highly negatively skewed distributions 

(see Table 3.12). This is an important finding given the current use of such small 

sample sizes in clinical neuropsychology. It is therefore hoped that this research will 

contribute to the efforts of clinicians who seek to reduce error in their decision-

making and to improve the standards used in neuropsychology.  
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APPENDIX A: 
Normalised Standard Scores Calculations 

TMT A 

<50 years; <12 years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

14.00 2 2.7 

15.00 1 4.1 

15.18 1 5.5 

15.69 2 8.2 

16.00 1 9.6 

16.70 1 11.0 

17.00 2 13.7 

17.16 1 15.1 

17.37 1 16.4 

18.22 1 17.8 

18.30 2 20.5 

18.66 1 21.9 

19.00 1 23.3 

19.29 1 24.7 

19.30 1 26.0 

19.50 1 27.4 

19.53 2 30.1 

19.80 1 31.5 

19.90 1 32.9 

20.00 2 35.6 

20.81 1 37.0 

21.40 1 38.4 

21.50 1 39.7 

21.60 1 41.1 

21.70 1 42.5 

21.75 1 43.8 

21.90 1 45.2 

22.00 2 47.9 

22.07 1 49.3 

23.00 2 52.1 

23.09 1 53.4 

23.15 1 54.8 

23.20 1 56.2 

23.22 1 57.5 

23.30 1 58.9 

23.44 1 60.3 

24.00 2 63.0 

 

 

 

 

TMT B  

<50 years; <12 years education 

 

Raw 

Score 

Frequency Cumulative 

Frequency 

31.94 1 1.4 

33.00 1 2.8 

33.80 1 4.2 

34.85 1 5.6 

36.00 1 6.9 

36.63 1 8.3 

38.00 1 9.7 

38.38 1 11.1 

38.57 1 12.5 

39.16 1 13.9 

39.50 1 15.3 

40.00 1 16.7 

40.09 1 18.1 

40.49 1 19.4 

42.00 1 20.8 

43.80 1 22.2 

44.00 1 23.6 

44.07 1 25.0 

46.00 1 26.4 

46.90 1 27.8 

48.00 1 29.2 

48.47 1 30.6 

48.90 1 31.9 

49.63 1 33.3 

49.75 1 34.7 

50.00 1 36.1 

50.40 1 37.5 

50.47 1 38.9 

51.00 1 40.3 

51.52 1 41.7 

51.55 1 43.1 

51.77 1 44.4 

52.20 1 45.8 

53.09 1 47.2 

53.30 1 48.6 

55.65 1 50.0 

56.00 1 51.4 
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Raw 

Score 

Frequency Cumulative 

Frequency 

24.25 1 65.8 

24.29 1 67.1 

24.56 1 68.5 

24.60 1 69.9 

24.72 1 71.2 

24.83 1 72.6 

25.06 1 74.0 

25.09 1 75.3 

25.96 1 76.7 

26.00 1 78.1 

27.00 1 79.5 

27.62 1 80.8 

29.00 1 82.2 

29.47 1 83.6 

29.56 1 84.9 

31.00 2 87.7 

33.91 1 89.0 

37.00 2 91.8 

37.30 1 93.2 

37.34 1 94.5 

38.50 1 95.9 

41.10 1 97.3 

42.81 1 98.6 

49.12 1 100.0 

Total 73 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Raw 

Score 

Frequency Cumulative 

Frequency 

56.20 1 52.8 

57.00 1 54.2 

57.45 1 55.6 

57.94 1 56.9 

59.00 1 58.3 

59.10 1 59.7 

59.61 1 61.1 

59.87 1 62.5 

60.00 2 65.3 

64.00 1 66.7 

65.00 1 68.1 

65.68 1 69.4 

66.85 1 70.8 

69.97 1 72.2 

70.00 2 75.0 

70.68 1 76.4 

71.00 1 77.8 

73.00 2 80.6 

75.00 1 81.9 

76.96 1 83.3 

78.90 1 84.7 

79.00 1 86.1 

80.00 1 87.5 

81.00 1 88.9 

86.91 1 90.3 

95.00 1 91.7 

96.56 1 93.1 

110.00 1 94.4 

115.52 1 95.8 

117.00 1 97.2 

120.00 1 98.6 

160.00 1 100.0 

Total 72 100 
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TMT A 

<50 years; 12+ years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

11.62  1 .4 

12.00  1 .8 

12.40  1 1.2 

12.46  1 1.6 

12.50  1 2.0 

12.63  1 2.4 

12.80  1 2.8 

13.00  1 3.2 

13.10  1 3.6 

13.26  1 4.0 

14.00  3 5.2 

14.40  1 5.6 

14.47  1 6.0 

15.00  4 7.6 

15.04  1 8.0 

15.10  2 8.8 

15.20  1 9.2 

15.25  1 9.6 

15.30  1 10.0 

15.33  1 10.4 

15.50  1 10.8 

15.69  1 11.2 

15.80  1 11.6 

16.00  3 12.7 

16.03  1 13.1 

16.59  1 13.5 

16.75  1 13.9 

17.00  2 14.7 

17.20  1 15.1 

17.30  1 15.5 

17.40  1 15.9 

17.50  1 16.3 

17.74  1 16.7 

18.00  7 19.5 

18.22  2 20.3 

18.28  1 20.7 

18.30  1 21.1 

 

 

 

 

TMT B 

<50 years; 12+ years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

15.84  1 .4 

22.19  1 .8 

23.31  1 1.2 

24.50  1 1.6 

25.00  1 2.0 

26.00  1 2.4 

27.00  1 2.8 

27.43  1 3.2 

28.00  1 3.6 

28.40  1 4.0 

29.00  1 4.4 

29.25  1 4.8 

29.70  1 5.2 

31.00  3 6.4 

31.75  1 6.8 

32.30  1 7.2 

32.41  1 7.6 

32.66  1 8.0 

33.00  1 8.4 

33.96  1 8.8 

33.97  1 9.2 

34.00  2 10.0 

36.00  2 10.8 

36.10  1 11.2 

36.24  1 11.6 

36.56  1 12.0 

37.00  2 12.8 

37.11  1 13.2 

37.22  1 13.6 

37.70  1 14.0 

38.50  2 14.8 

38.80  1 15.2 

39.00  3 16.4 

39.25  1 16.8 

39.40  1 17.2 

39.59  1 17.6 

39.80  1 18.0 

 

 

 



 

 

 

108 

Raw 

Score  

Frequency Cumulative 

Frequency 

18.40 1  21.5 

18.46  1 21.9 

18.50  1 22.3 

18.52  1 22.7 

18.53  1 23.1 

18.69  1 23.5 

18.80  2 24.3 

18.85  1 24.7 

18.91  2 25.5 

18.97  1 25.9 

19.00  6 28.3 

19.07  1 28.7 

19.09  1 29.1 

19.20  2 29.9 

19.24  1 30.3 

19.35  1 30.7 

19.40  1 31.1 

19.50  1 31.5 

19.60  1 31.9 

19.87  1 32.3 

20.00  3 33.5 

20.13  1 33.9 

20.20  2 34.7 

20.22  1 35.1 

20.28  1 35.5 

20.59  1 35.9 

20.66  1 36.3 

20.70  1 36.7 

20.77  1 37.1 

21.00  7 39.8 

21.03  1 40.2 

21.16  1 40.6 

21.25  2 41.4 

21.30  1 41.8 

21.35  1 42.2 

21.50  1 42.6 

22.00  7 45.4 

22.03  1 45.8 

22.13  1 46.2 

22.25  1 46.6 

22.28  1 47.0 

22.30  1 47.4 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

40.00  3 19.2 

40.24  1 19.6 

40.38  1 20.0 

40.40  1 20.4 

40.99  1 20.8 

41.00  1 21.2 

41.22  1 21.6 

41.50  1 22.0 

41.70  1 22.4 

41.81  1 22.8 

42.00  4 24.4 

42.28  1 24.8 

42.68  1 25.2 

42.80  1 25.6 

42.90  1 26.0 

43.00  2 26.8 

43.03  1 27.2 

43.08  1 27.6 

43.19  1 28.0 

43.38  1 28.4 

43.51  1 28.8 

43.70  1 29.2 

43.80  1 29.6 

44.00  1 30.0 

44.13  1 30.4 

44.81  1 30.8 

45.00  3 32.0 

45.06  1 32.4 

45.15  1 32.8 

45.38  1 33.2 

45.42  1 33.6 

45.44  1 34.0 

45.62  1 34.4 

45.70  1 34.8 

45.75  1 35.2 

46.00  1 35.6 

46.25  1 36.0 

47.00  2 36.8 

47.25  1 37.2 

47.60  1 37.6 

47.66  1 38.0 

47.72  1 38.4 

 



 

 

 

109 

Raw 

Score  

Frequency Cumulative 

Frequency 

22.80 1  47.8 

22.84  1 48.2 

22.90  1 48.6 

23.00  4 50.2 

23.60  1 50.6 

23.63  1 51.0 

23.72  1 51.4 

23.89  1 51.8 

23.90  1 52.2 

24.00  7 55.0 

24.03  1 55.4 

24.06  1 55.8 

24.09  1 56.2 

24.21  1 56.6 

24.53  1 57.0 

24.64  1 57.4 

24.73  1 57.8 

24.82  1 58.2 

25.00  8 61.4 

25.09  2 62.2 

25.25  1 62.5 

25.28  1 62.9 

25.79  1 63.3 

25.83  1 63.7 

25.91  1 64.1 

26.00  2 64.9 

26.10  1 65.3 

26.22  1 65.7 

26.31  1 66.1 

26.40  1 66.5 

26.43  1 66.9 

26.47  1 67.3 

26.69  1 67.7 

26.72  1 68.1 

27.00  5 70.1 

27.16  1 70.5 

27.63  1 70.9 

28.00  4 72.5 

28.10  1 72.9 

28.40  1 73.3 

28.63  1 73.7 

28.66  1 74.1 

29.00  3 75.3 

Raw 

Score  

Frequency Cumulative 

Frequency 

48.00 1  38.8 

48.21  1 39.2 

48.24  1 39.6 

48.88  1 40.0 

48.99  1 40.4 

49.00  7 43.2 

49.30  1 43.6 

49.48  1 44.0 

49.81  1 44.4 

49.82  1 44.8 

50.00  2 45.6 

50.16  1 46.0 

50.20  1 46.4 

50.57  1 46.8 

50.75  2 47.6 

50.97  1 48.0 

51.00  3 49.2 

51.30  1 49.6 

51.69  1 50.0 

51.70  1 50.4 

51.77  1 50.8 

52.00  3 52.0 

52.22  1 52.4 

52.26  1 52.8 

52.28  1 53.2 

52.90  1 53.6 

53.00  3 54.8 

53.30  1 55.2 

53.33  1 55.6 

53.40  1 56.0 

53.44  1 56.4 

53.72  1 56.8 

53.90  1 57.2 

54.00  3 58.4 

54.53  1 58.8 

54.56  1 59.2 

55.00  3 60.4 

55.20  1 60.8 

56.00  2 61.6 

56.10  1 62.0 

56.44  1 62.4 

56.79  1 62.8 

56.94  1 63.2 



 

 

 

110 

Raw 

Score  

Frequency Cumulative 

Frequency 

29.13  1 75.7 

29.40  1 76.1 

29.41  1 76.5 

29.56  1 76.9 

29.91  1 77.3 

30.00  4 78.9 

30.04  1 79.3 

30.20  1 79.7 

30.24  1 80.1 

30.28  1 80.5 

30.53  1 80.9 

30.57  1 81.3 

30.60  1 81.7 

30.86 1 82.1 

30.96 1 82.5 

31.00 1 82.9 

31.59  1 83.3 

31.88  1 83.7 

32.00  3 84.9 

32.50  1 85.3 

32.56  1 85.7 

33.00  1 86.1 

33.19  1 86.5 

33.25  1 86.9 

33.39  1 87.3 

33.52  1 87.6 

34.00  2 88.4 

35.00  1 88.8 

35.19  1 89.2 

35.62  1 89.6 

35.96  1 90.0 

36.00  2 90.8 

36.24  1 91.2 

36.85  1 91.6 

36.95  1 92.0 

37.85  1 92.4 

38.00  1 92.8 

38.72  1 93.2 

38.95  1 93.6 

39.00  2 94.4 

39.04  1 94.8 

40.10  1 95.2 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

57.00  3 64.4 

57.54  1 64.8 

58.00  4 66.4 

58.06  1 66.8 

58.26  1 67.2 

58.64  1 67.6 

58.70  1 68.0 

58.78  1 68.4 

59.00  2 69.2 

59.09  1 69.6 

59.22  1 70.0 

59.72  1 70.4 

59.75  1 70.8 

59.79  1 71.2 

59.94  1 71.6 

60.00  3 72.8 

60.16  1 73.2 

60.43  1 73.6 

61.00  1 74.0 

61.87  1 74.4 

62.00  3 75.6 

62.60  1 76.0 

63.00  1 76.4 

63.56  1 76.8 

64.00  3 78.0 

65.00  4 79.6 

65.28  1 80.0 

65.56  1 80.4 

65.60  1 80.8 

65.72  1 81.2 

66.00  1 81.6 

66.46  1 82.0 

66.69  1 82.4 

67.00  1 82.8 

67.22  1 83.2 

67.69  1 83.6 

68.00  2 84.4 

68.27  1 84.8 

69.00  3 86.0 

69.27  1 86.4 

69.44  1 86.8 

70.00  1 87.2 
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Raw 

Score  

Frequency Cumulative 

Frequency 

43.00 1  95.6 

43.30  1 96.0 

43.94  1 96.4 

45.00  1 96.8 

46.21  1 97.2 

46.41  1 97.6 

47.00  1 98.0 

49.00  1 98.4 

49.20  1 98.8 

49.43  1 99.2 

49.72  1 99.6 

56.66  1 100.0 

Total  251  100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

71.00  1 87.6 

71.28  1 88.0 

72.06  1 88.4 

73.00  1 88.8 

74.00  1 89.2 

75.00  1 89.6 

75.31  1 90.0 

76.00  1 90.4 

76.30  1 90.8 

76.59  1 91.2 

77.38  1 91.6 

78.00  1 92.0 

78.99  1 92.4 

79.00  1 92.8 

81.97  1 93.2 

82.00  1 93.6 

83.00  2 94.4 

86.00  1 94.8 

89.37  1 95.2 

94.30  1 95.6 

98.74  1 96.0 

102.00  1 96.4 

106.85  1 96.8 

107.00  1 97.2 

108.00  1 97.6 

111.00  1 98.0 

113.00  1 98.4 

114.00  1 98.8 

115.78  1 99.2 

120.00  1 99.6 

174.00  1 100.0 

Total  251 100  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

112 

TMT A 

50 + years; <12 years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

6.00  1 2.6 

18.00  1 5.1 

20.00  1 7.7 

22.00  2 12.8 

23.50  1 15.4 

24.00  1 17.9 

25.53  1 20.5 

26.00  1 23.1 

26.60  1 25.6 

27.25  1 28.2 

28.00  1 30.8 

28.01  1 33.3 

29.00  2 38.5 

29.94  1 41.0 

30.00  1 43.6 

31.50  1 46.2 

31.69  1 48.7 

32.00  2 53.8 

32.03  1 56.4 

32.97  1 59.0 

33.00  1 61.5 

36.00  3 69.2 

38.00  1 71.8 

40.00  1 74.4 

42.00  1 76.9 

42.68  1 79.5 

43.00  2 84.6 

48.00  1 87.2 

49.00  1 89.7 

51.00  1 92.3 

60.00  1 94.9 

61.00  1 97.4 

62.00  1 100.0 

Total  39 100  

 

 

 

 

 

 

 

TMT B 

50 + years; <12 years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

30.00  1 2.6 

37.93  1 5.3 

43.00  1 7.9 

50.00  1 10.5 

56.00  1 13.2 

58.29  1 15.8 

59.34  1 18.4 

62.00  3 26.3 

62.65  1 28.9 

64.53  1 31.6 

64.72  1 34.2 

67.00  1 36.8 

67.75  1 39.5 

67.78  1 42.1 

70.00  1 44.7 

73.00  1 47.4 

74.09  1 50.0 

75.00  1 52.6 

77.00  1 55.3 

78.00  3 63.2 

86.00  1 65.8 

87.00  2 71.1 

88.00  1 73.7 

89.63  1 76.3 

90.69  1 78.9 

91.00  1 81.6 

91.41  1 84.2 

92.00  1 86.8 

105.00  1 89.5 

127.00  1 92.1 

136.00  1 94.7 

144.00  1 97.4 

183.00  1 100.0 

Total  39  100 

 

 

 

 

 

 

 



 

 

 

113 

TMT A 

50 + years; 12+ years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

7.00  1 1.9 

17.00  1 3.8 

18.00  1 5.7 

20.00  1 7.5 

21.00  1 9.4 

22.00  1 11.3 

23.00  4 18.9 

23.11  1 20.8 

23.71  1 22.6 

24.00  5 32.1 

24.41  1 34.0 

25.00  2 37.7 

25.10  1 39.6 

26.78  1 41.5 

27.00  1 43.4 

28.00  3 49.1 

29.00  1 50.9 

29.06  1 52.8 

29.22  1 54.7 

29.56  1 56.6 

30.00  4 64.2 

31.00  1 66.0 

31.38  1 67.9 

31.50  1 69.8 

32.00  1 71.7 

32.50  1 73.6 

33.15  1 75.5 

33.18  1 77.4 

34.00  2 81.1 

36.00  1 83.0 

37.00  1 84.9 

39.00  1 86.8 

40.00  1 88.7 

40.88  1 90.6 

43.00  1 92.5 

45.00  2 96.2 

49.00  1 98.1 

67.00  1 100.0 

Total  53 100  

 

TMT B 

50 + years; 12+ years education 

 

Raw 

Score  

Frequency Cumulative 

Frequency 

29.00  1 1.9 

32.00  1 3.8 

35.00  1 5.7 

37.00  1 7.5 

41.00  1 9.4 

43.00  1 11.3 

49.00  1 13.2 

49.94  1 15.1 

50.00  1 17.0 

51.00  2 20.8 

54.09  1 22.6 

55.00  3 28.3 

56.53  1 30.2 

58.00  1 32.1 

59.63  1 34.0 

60.00  1 35.8 

62.00  2 39.6 

63.86  1 41.5 

64.00  2 45.3 

64.50  1 47.2 

65.00  2 50.9 

67.00  2 54.7 

68.00  1 56.6 

69.00  1 58.5 

71.00  2 62.3 

72.91  1 64.2 

73.00  1 66.0 

74.00  1 67.9 

75.00 1  69.8 

76.00  2 73.6 

79.00  1 75.5 

80.00  2 79.2 

81.00  1 81.1 

83.00  1 83.0 

83.50  1 84.9 

83.96  1 86.8 

88.78  1 88.7 

92.00  1 90.6 

93.43  1 92.5 

110.00  1 94.3 
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Raw 

Score  

Frequency Cumulative 

Frequency 

125.00  1 96.2 

126.00  1 98.1 

130.00  1 100.0 

Total  53 100 

 

 

 

 

 

 

 

 

 


