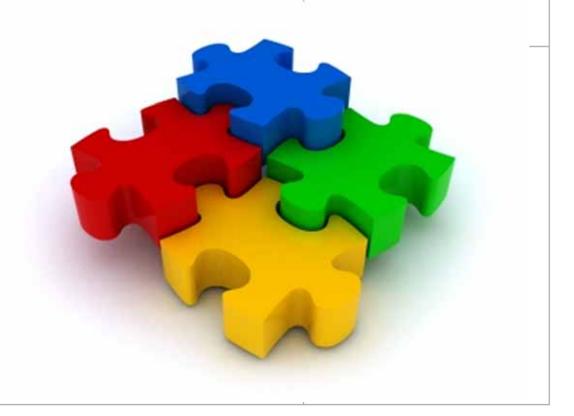


Overview


What does the title mean?

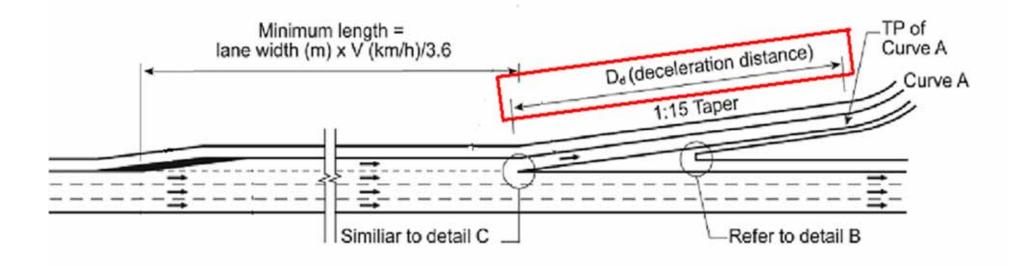
Background Information

Methodology

Results & Comparisons

Conclusion

What does the project title mean?



Effects of improved vehicle technology

Design of acceleration and deceleration lanes

Freeway entry and exit ramps

Austroads 2009, Guide to Road design – Part 4C – Interchanges, Sydney

Table 1: History of acceleration and deceleration lane length guidelines (m).

Background Information

	Acceler	ration	Deceleration		
	Entry speed: 40km/h	Entry speed: 60 km/h	Through speed: 100km/h	Through speed: 100 km/h	
	Target speed: 100 km/h	Target speed: 100 km/h	Exit speed: 40 km/h	Exit speed: 60 km/h	
DMR, NSW (1941)	230	230	140	140	
AASHO (1957)	280	170	110	80	
NAASRA (1979)	275	205	144	118	
Austroads (1988)	410	360	144	118	
AASHTO (1994)	300	220	145	120	
AASHTO (2004)	285	205	145	120	
Qld DMR (2005)	300	240	155	135	
Austroads (2010)	410	340	130	100	

Background Information

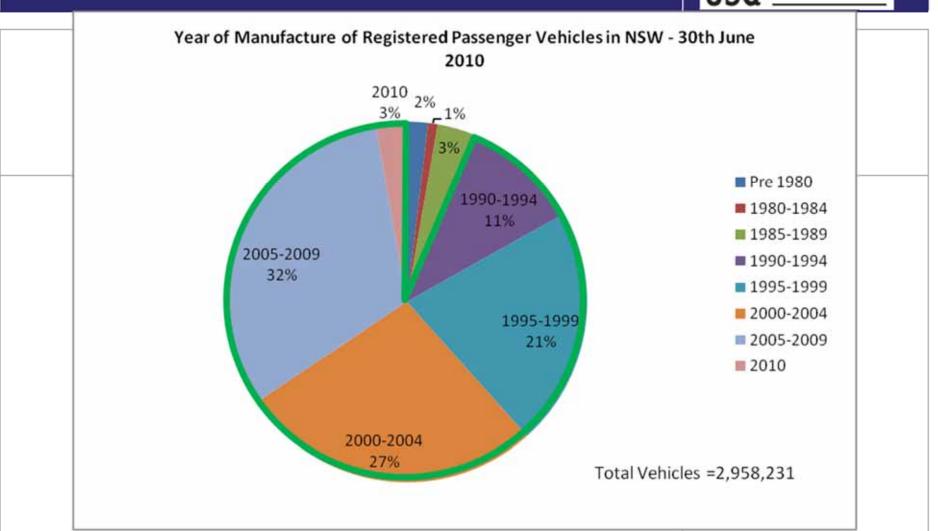
Table 1: History of acceleration and deceleration lane length guidelines (m).

	Acceler	ration	Deceleration		
	Entry speed: 40km/h	Entry speed: 60 km/h	Through speed: 100km/h	Through speed: 100 km/h	
	Target speed: 100 km/h	Target speed: 100 km/h	Exit speed: 40 km/h	Exit speed: 60 km/h	
DMR, NSW (1941)	230	230	140	140	
AASHO (1957)	280	170	110	80	
NAASRA (1979)	275	205	144	118	
Austroads (1988)	410	360	144	118	
AASHTO (1994)	300	220	145	120	
AASHTO (2004)	285	205	145	120	
Qld DMR (2005)	300	240	155	135	
Austroads (2010)	410	340	130	100	

Background Information

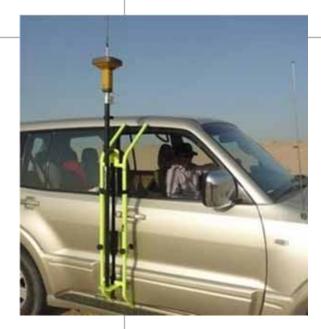
Acceleration performance significant increase since mid 1980's

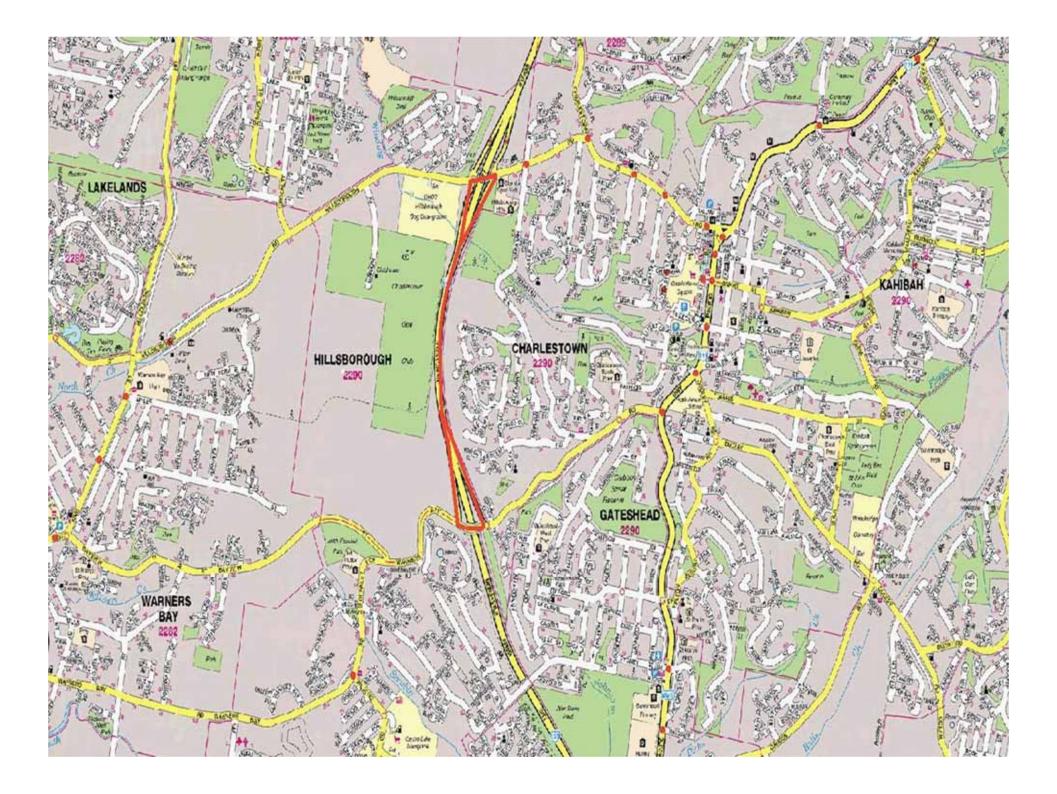
Deceleration performance slight increase since mid 1980's



NSW Vehicle Fleet

Data Collection





Trimble GPS through CORSNET

Blackvue video camera

Microsoft excel

Acceleration Model

Based on Newtons 2nd Law of Motion

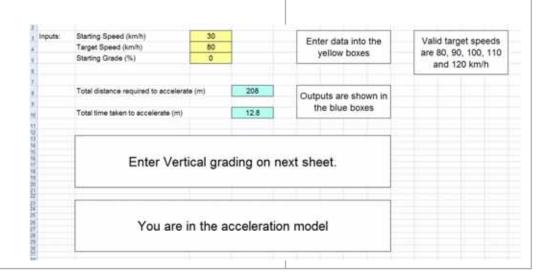
• F=ma

Total net force (F) is broken up into two parts

- Tractive force (based on engine power)
- Resisting forces

Vertical geometry is accepted

Model Inputs


- Initial and Target Speeds
- Vertical Geometry

Acceleration Model

- Vehicle Parameters
- Coefficients
- Driver Characteristic Value

Model Outputs

- Distance to accelerate
- Time to accelerate

Deceleration Model

Based on Newtons 2nd Law of Motion

• F=ma

Total net force (F) is broken up into two parts

Tractive force (based on braking power)

Resisting forces

Vertical geometry is accepted

Model Inputs

- Initial and Target Speeds
- Vertical Geometry

Deceleration Model

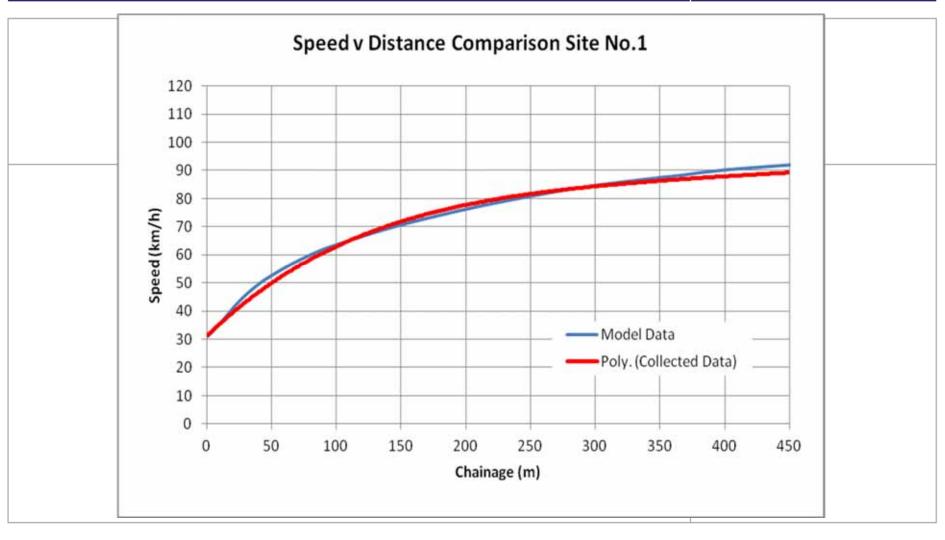
- Vehicle Parameters
- Coefficients
- Driver Characteristic Value

Model Outputs

- Distance to decelerate
- Time to decelerate

Starting Speed (km/h) Target Speed (km/h)	120		Enter data into the		
Starting Grade (%)	0		yellow boxes		
Total distance required to decelerate (m)		119	Outputs are shown in		
Total time taken to decelerate (m)		4.3	the blue boxes		

Enter Vertical grading on next sheet.


You are in the deceleration model

Driver Characteristic

Driver Characteristic

Table 2: Preliminary driver characteristics.

	Acceleration lanes			Deceleration lanes			
Site	Driver characteristic	Model fit	Site	Driver characteristic	Model fit		
1	0.43	Good	2	0.115	Poor		
3	0.70	Acceptable	6	0.20	Acceptable		
7	0.40	Good	8	0.084	Poor		
11	0.75	Good	10	0.143	Acceptable		
13	0.41	Acceptable	12	0.075	Acceptable		
			14	0.18	Good		
			16	0.089	Acceptable		

Comparison

Acceleration

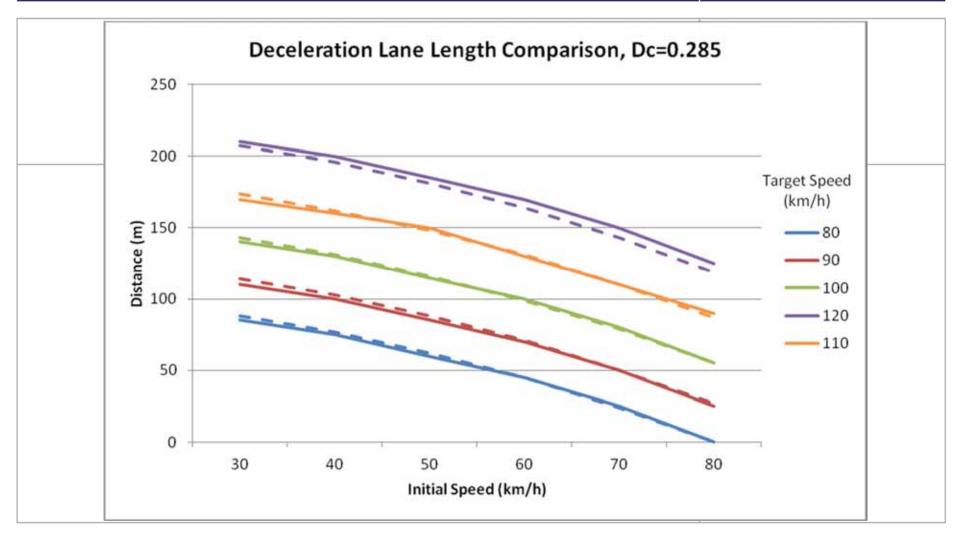
Varying driver characteristics depending on target speed

Table 3: Driver characteristics for acceleration model to replicate Austroads guidelines.

Target speed (km/h)	80	90	100	110	120
Driver characteristic	0.630	0.673	0.715	0.758	0.832

Deceleration

Driver characteristic of 0.285



Comparison

Conclusion

Drivers don't appear to use this increase

Possible to decrease lengths if the following are considered:

- -Adverse impact on driver comfort and road safety
- -Heavy vehicle characteristics for ramps with significant heavy's
- -The push towards retrofitting ramps under the managed motorways approach.

