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A B S T R A C T   

Machine learning algorithms have emerged as an effective and popular decision-making tool for solving 
complicated engineering problems and challenges. Although introducing these algorithms can accelerate the 
optimization of fire retardants for polymeric materials by replacing traditional tedious and time-consuming trial- 
and-error methods, this tool remains at the elementary stage of designing fire retardants for polymeric materials, 
and thus to date there is a lack of insightful yet review on this topic. Herein, we review the most practical and 
accurate algorithms used to predict flame retardancy features, such as limiting oxygen index (LOI) and cone 
calorimetry results, of their polymeric materials. We highlight the merits of some current algorithms, including 
artificial neural network (ANN), Lasso, Ridge, ANN (L-ANN), and extreme gradient boosting (XGB). Finally, key 
challenges with existing algorithms for predicting next-generation fire retardants, followed by some proposed 
solution and future directions. This review will help expedite the development of optimized fire retardants 
accelerated by machine learning.   

1. Introduction 

Polymeric materials have become incredibly prevalent in contem-
porary civilization ever since their initial identification. These versatile 
substances have permeated nearly every aspect of modern life, finding 
extensive application across numerous industries and sectors [1–3]. The 
Current advancement in polymeric materials reaps many benefits to 
communities nowadays such as being widely employed in applications 
like manufacturing, construction, healthcare, electronics, commodities, 
transportation, and building [4–8]. Polymeric materials, however, can 
pose significant safety risks when utilized in applications that necessi-
tate strong flame resistance, primarily due to their flammability [9–12]. 
New heat-resistant polymer materials must possess excellent thermal 
stability and significant processability [13], but high thermal resistance 
in polymers can lead to undesirable, weaker processing properties [14]. 
Developing flame-retardant polymers having high standards has always 
been a challenge due to the time-consuming traditional methods 
established on experiential intuition and trial-and-error screenings [15, 
16]. 

In recent times, there has been a growing interest in the exploration 
of new materials using Machine Learning (ML) models. This approach 
has gained attention for its practical application in enhancing the design 
of material properties, leveraging the advancements in computing 
power and related algorithms [17–21]. ML regression algorithms, with 
feature engineering and large datasets, predict material properties for 
quality fabrication and practical applications. By training on available 
data, researchers save time and effort in experimentation. ML algorithms 
optimize and discover functional materials in thermoelectric, photo-
voltaic, catalytic, and optical fields [22–30]. 

In the area of polymer science, ML has found significant applications 
in recent years and still is evolving. Zhu et al. [31] developed an ML 
algorithm to rationally design polymer nanocomposites. Sahu et al. [32] 
used an informatics method to predict electrical conductivity for 
designing conducting polymers. Kim et al. [33] combined a genetic al-
gorithm with ML models to design polymers with their preferred prop-
erties. Wei et al. [34] systematically explored an ML algorithm to 
categorize different states of polymer configurations. Yaseen et al. [35] 
used extreme learning machines, which is a fast and efficient form of ML, 
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to optimize the design and predict the compressive strengths of foamed 
concrete materials. A number of researchers started using available al-
gorithms such as ANNs to predict the temperature-related characteris-
tics of different materials such as composite, steel, concrete, and timber 
[35]. 

In this review, we investigate recent progress in applying ML 
methods to predict fire retardants used for polymer materials. Based on 
our review study, there appear to be several algorithms that researchers 
have employed to train their experimental datasets and optimize the 
design of their final products. However, not all of them possess high 
accuracy and enough efficiency to be considered robust research out-
comes. Therefore, we have adopted the algorithms that had relatively 
high accuracy and introduce them to the practical application field of 
next generation advanced fire retardants. In accordance with our find-
ings, the selected ML algorithms are ANN [36], L-ANN, Ridge model 
with the recursive feature elimination (RFE) [37], XGB regression [38] 
and the sure independence screening and sparsifying operator (SISSO) 
method [39]. In this review paper, we explain the basic foundations of 
ML, followed by a full introduction of the carefully screened algorithms 
and their methods of operation. The review also includes a comparison 
of ML methods, assessing their performance, strengths, and limitations. 
Conclusions are drawn, highlighting current challenges and prospects 
for further development and application of ML models in the optimal 
design of advanced fire retardants. 

2. Basic foundations of machine learning 

2.1. Algorithms and their performance 

The field of artificial intelligence, particularly machine learning 
(ML), has found extensive applications in various areas of scientific 
research [40]. Catalyst development [41], perovskite synthesis [42,43], 
3D printing materials [44], studies on batteries [45,46], biomaterials 
[47,48] and other domains [49] have all benefited from the widespread 

adoption of AI techniques. Furthermore, several autonomous systems or 
ML-driven frameworks have been proposed to expedite the development 
of materials and simplify the process of achieving targeted performance 
[41,50,51]. The ML methods can create a model from analysis of linear 
or nonlinear complex relationships without regarding the essence of the 
relationships between the input and the output, illustrating benefits over 
conventional computational techniques. Unlike other conventional 
computing methods such as CFD [52] or FEM [53], which are usually 
time-consuming, ML algorithms are more efficient to predict any un-
known data without any necessity for human interventions [54]. There 
are several steps to attain an ML model. These begin with a collection of 
data from reliable data sources, such as carefully performed single ex-
periments or collating a large suite of datasets from comparable exper-
iments where errors in datasets are a minimum. Choosing relevant 
descriptors for input data and splitting the dataset into the training and 
test sets are the next steps. Then, an ML algorithm should be selected to 
train the data, an evaluation process needs to be implemented to obtain 
relevant accuracy of the proposed model, and finally the model needs to 
be improved by increasing the accuracy of the predicted results. These 
steps are briefly shown in Fig. 1. 

Constructing an ML model could be a significant challenge when 
creating a material dataset. For the input and output parameters, one 
should provide a reliable and well-defined dataset [36], which needs to 
come from carefully performed experiments or simulations. In research, 
datasets are commonly created using experimental results, databases, or 
existing literature. Descriptors are used to represent specific properties 
with numerical values, and they serve as input variables that describe 
the characteristics of materials. When training a dataset, researchers 
typically use the entire dataset to develop a machine learning (ML) 
model. However, to evaluate the reliability of the ML model, it is rec-
ommended to train it with unfamiliar data. This is done by dividing the 
dataset into two sets: the training set and the test set. In some cases, a 
validation set is also used to select the best model from multiple trained 
models. The test set, which represents future predictions, is used to 

Fig. 1. Machine learning data driven design.  

P. Jafari et al.                                                                                                                                                                                                                                   



Composites Communications 45 (2024) 101806

3

assess the predictability of the ML model, while the training set is used to 
identify patterns in the data and effectively train the proposed ML 
model. The selection of an algorithm for an ML model is crucial because 
no single algorithm can guarantee sufficient accuracy in terms of pre-
dictive performance. 

Machine learning is generally divided into three sub-groups based on 
the structure of the training data: unsupervised, supervised, and semi- 
supervised [55]. In supervised ML, data are classified, and predictions 
are made using correctly labelled datasets whereas in unsupervised ML 
where labelled data are not available, researchers attempt to understand 
relationships within datasets. While supervised ML is much more 
resource-intensive because of the need for labelled data, it can lead to 
remarkable results if such training data are readily available. Decision 
trees, support vector machines (SVM), artificial neural networks, 
ensemble learning, and clustering are more popular rather other algo-
rithms in designing and developing advanced materials [56]. 

2.2. Assessing the performance of ML models 

To determine the accuracy of a machine learning model in its pre-
diction, an assessment needs to be performed to demonstrate the dif-
ference between the actual and the predicted results. For regression 
problems, there are usually three statistical values to obtain the accuracy 
of machine-learning models, including the mean square root (MSR) or 
root-mean-square error (RMSE), average absolute error (AAE), and the 
coefficient of determination (R2). These statistical values are demon-
strated as follows: 

R2 =

∑n

i=1
(ŷi − y)2

∑n

i=1
(yi − y)2

(1)  

AAE =

∑n

i=1
|ŷi − yi|

n
(2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(3)  

In the above equations, n denotes the total number of data points, ŷi is 
the predicted value for each point, yi is the experimental value for each 
point, and y is the mean value of all experimental cases. The R2 ranges 
from 0 to 1.0, and the closer it is to 1.0 for a model, the more accurate 
the model is. 

3. Machine learning algorithms in developing fire retardants for 
polymer composites 

In this section, most of the accurate and practical machine learning 
algorithms employed to predict fire retardant properties, such as 
limiting oxygen index (LOI) and cone calorimeter results, including the 
time to ignition (TTI), total heat release (THR), and peak heat release 
rate (pHRR), are introduced. The performance of these algorithms is 
explained and their accuracy in predicting the results is compared. 

3.1. Artificial neural networks 

Artificial neural networks, as one of the most well-established algo-
rithms, are typically employed to tackle the issues that are challenging 
for algorithms to analyze, where there is a lack of complete or accurate 
data, or there is a nonlinear relationship between the parameters being 
researched [57]. An ANN imitates the neuronal structure of brain [55]. 
This structure has a minimum of three levels, each of which has a group 
of processing units referred to as neurons. The first level is defined as the 

input layer because input variables and features used to control a spe-
cific phenomenon are entered. 

Subsequently, the first layer is linked to the second group of one or 
some layers, which might be called the hidden layers. Then, the hidden 
layer is connected to an output layer with the desired qualities that need 
to be predicted. Activation functions that are non-linear, such as Sig-
moid, Step, Logistic, tangent hyperbolic and rectified linear unit (ReLu), 
are typically utilized to help link these layers [55]. With the use of these 
functions, an ANN model can provide an approximation form that fa-
cilitates gradient-based optimization. 

In order to provide the best match to the input data, the parameters 
between each layer of the network are changed during the calculation 
process. Obviously, the scales of the values for various input descriptors 
are different. Therefore, before training the model, the data must be 
standardized to a range of 0–1, or -1 to 1 for all descriptors. Finally, the 
output of the model comes within the 0–1 range. There are several 
different variants of an ANN model presently available in the open 
literature whose architectures have been modified slightly to suit more 
sophisticated datasets. Recursive neural network (RNN), convolutional 
neural network (CNN), multilayer perceptron (MLP), and recurrent 
neural network (ReNN) are the examples of regularly utilized ANNs on 
more complex datasets. These derivatives are distinct from each other 
despite possessing some characteristics in common due to the principles 
applied to their creation and purpose. As a result, ANNs can be employed 
alone or in conjunction with other algorithms. A layout of a typical ANN 
is depicted in Fig. 2. 

Because of the initial layer structures in artificial neural network 
algorithms, they have the capacity to take numerous properties of fire 
retardants at the commencement of the algorithmic layers. These 
properties are then examined throughout subsequent calculations in the 
following layers, leading to improved predictions in the final layer. 
Consequently, the influence of each property on the flame retardancy 
characteristics of polymer composites can be investigated with greater 
accuracy. However, the proper selection of the number of nodes and 
intermediate layers is crucial, as their inappropriate choice can 
adversely affect the prediction process. For instance, it may result in 
prolonged processing times or give rise to issues related to overtraining. 
This can be viewed as a drawback when employing them to address the 
flammability of polymer composites, especially when dealing with a 
multitude of variables. 

3.2. Lasso and ridge and their combination with ANNs 

Chen et al. [36] developed a new scheme illustration algorithm 

Fig. 2. Framework of an artificial neural network.  
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(L-ANN) by combing linear regressions (Ridge, Lasso) and ANN to 
achieve a more accurate model to predict the limiting oxygen index of 
material. The innovative distinction of the newly developed L-ANN is 
the incorporation of ANN and linear regression, which fully utilizes 
linear and nonlinear techniques. Biased estimation regression tech-
niques, such as Ridge and Lasso, are frequently utilized in collinear 
analysis. By forgoing the objectivity of least squares method, the Ridge 
regression is a dependable regression that may get regression co-
efficients at the cost of some information and accuracy. It also has a great 
capacity to fit inadequately conditioned data [58]. The least absolute 
selection and shrinkage operator, often known as the least absolute 
value selection and shrinkage operator, are the full name of the Lasso 
regression. To achieve the goal of the variable selection, it can compress 
the regression coefficients and make some of them 0 by creating a 
penalty function [58]. 

The goal of the Lasso regression is to find the variables and accom-
panying regression coefficients that result in a model with the least 
amount of error in the prediction. This is done by placing a restriction on 
the parameters of model that “shrink” the regression coefficients in the 
direction of zero, or, more specifically, by requiring that the total ab-
solute value of the regression coefficients to be smaller than a pre-
determined value (λ) [59]. This limits the complexity of model 
practically. The model does not include variables having a regression 
coefficient of 0 following shrinkage. An automated k-fold 
cross-validation method is typically used to select the value of λ. The 
dataset is randomly divided into k equal-sized sub-samples for this 
method. The remaining sub-sample is utilized to validate the prediction 
model created by the k-1 sub-samples. Each of the k sub-samples is used 
for validation and the remaining ones for model development as this 
process is repeated k times. By aggregating the k individual validation 
results for a range of values λ and selecting the preferred λ, an overall 
result is generated that is then utilized to choose the final model. This 
technique has the specific benefit of reducing overfitting without 
limiting the usage of a subset of the dataset only for internal validation 
[59]. The repeated process of cross-validation hence allows for a more 
robust evaluation of the model, resulting in improved accuracy and 
reliable evaluation metrics. Additionally, this technique allows for the 
selection of a hyperparameter λ which is optimal for the given dataset, as 
it takes into account the variability of the data and the underlying pat-
terns. This further allows for a better understanding of the data and the 
model’s performance. 

Integrating the ridge and lasso methods with artificial neural net-
works offers a solution to the challenge of insufficient data, thereby 
enhancing prediction accuracy. This integration proves advantageous in 
tackling the flammability of polymer composites and identifying the 
influential parameters in the composition of fire retardants. However, as 
mentioned earlier, the improper selection of nodes and intermediate 
layers in neural networks can lead to overfitting, posing a potential 
drawback that may adversely affect the prediction process. 

3.3. Sure independence screening and sparsifying operator (SISSO) 

Ouyang et al. [60] developed an approach called the sure indepen-
dence screening and sparsifying operator (SISSO), which is a subfield of 
artificial intelligence, especially a fusion of compressed sensing with 
symbolic regression. The compressed sensing feature of SISSO enables it 
to locate sparse linear models from tens to thousands of data points [61]. 
One of the main obstacles to effective material development is the 
absence of trustworthy techniques for determining descriptors, the sets 
of parameters that capture the underlying mechanisms of material 
behavior. The SISSO deals with large and correlated feature spaces, and 
it converges to the best result by combining properties related to the 
desired features of the materials [60]. SISSO takes on expansive spaces 
while preserving compressed the efficacy of sensing. SISSO is designed 
to function even when there are just a few training sets available, albeit 
this is not a requirement. The descriptor-property relationship is defined 

by SISSO in terms of an analytical equation [60]. 
Building the feature space and identifying the descriptors are the two 

parts of SISSO [62]. To create a large new feature space from the pre-
vious feature space, the first part of method, known as feature space 
construction, is utilized; otherwise, it is an increasing dimension 
approach. The process of finding the best descriptors and matching co-
efficients from the feature space created in the first phase is called 
descriptor identification and it is considered second part. The two stages 
of descriptor identification are sure independence screening (SIS) [63] 
and sparsifying operation (SO) [60,64]. SISSO has already been used in 
the fields of catalysts, perovskites, and topological insulators [65,66]. 

In case of discovering the properties of materials, SISSO has been 
specifically designed to work with high dimensional feature spaces. For 
the characteristics of flame retardant polymer composites, it can be said 
that since a huge number of variables can be effective in determining the 
flame retardant properties, SISSO can be used as an effective tool. 
Moreover, this algorithm can be used for small training datasets [60] 
and identifies the optimal descriptor by evaluating combinations of 
features, particularly physical properties. It possesses the ability to 
discern irrelevant descriptors for the given problem, allowing for further 
optimization of the feature space [60]. However, presently, the sole 
challenge associated with SISSO pertains to the necessary computer 
memory for managing the feature space. Ongoing endeavours are 
focused on developing more efficient implementations to address this 
concern [60]. 

3.4. Extreme gradient boosting (XGB) 

Tianqi Chen and Carlos Guestin [67] created the extreme gradient 
boosting (XGB) regularizing gradient boosting framework. They sug-
gested a brand-new algorithm for dealing with sparse data as well as a 
theoretically supported weighted quantile sketch for approximate 
learning. In addition to utilizing the structure of hardware to speed up 
computation and improve memory use, XGB incorporates regression 
penalties into the boosting equation (for example, elastic net) [38]. As 
described by Chen [67], XGB is a scalable machine learning system for 
tree boosting. In numerous machine learning and data mining problems, 
the influence of algorithm has been extensively acknowledged. A tree 
ensemble model employs K additive functions to forecast the output for 
a given data set with n examples and m features D = {(xi,yi)} (|D | = n,
xi ∈ Rm,yi ∈ R). 

ŷi =
∑K

k=1
fk(xi), fk ∈ F (4)  

In equation (4), F represents the space of regression trees (also known 
as CART) and fk is an independent tree structure with leaf scores. The 
regularized objective to optimize is represented in equation (5): 

L (φ)=
∑

i
l(ŷi , yi) +

∑

k
Ω(fk) (5)  

where Ω(f) = γT+ 1
2 λ‖ω‖ 2. 

In equation (5), the difference between the target yi and the fore-
casted ŷi is measured by a differentiable loss function, called l. The 
second is a regularization term Ω, which deters over-fitting by penal-
izing model complexity. In this term, the number of leaves and the score 
on each leaf are, respectively, denoted by T and ω. γ and λ are employed 
to control the degree of regularization. 

Given the intricate patterns and relationships within the dataset of 
flame retardant polymer materials, utilizing XGBoost can prove bene-
ficial due to its notable predictive accuracy. The algorithm’s capability 
to capture non-linear behaviours aligns well with the potentially com-
plex nature of flammability in flame retardant polymer composites. It’s 
important to note, however, that optimizing XGBoost performance re-
quires careful adjustment of various hyperparameters. This tuning 
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process, especially for complex datasets assessing the flammability of 
fire retardant polymer composites, may demand a significant investment 
of time and effort. 

3.5. Support vector machine (SVM) 

Cortes and Vapnik [68] developed the Support Vector Machine 
(SVM) as an innovative form of a learning machine. Support Vector 
Machines (SVM) exhibit numerous appealing characteristics and 
demonstrate promising empirical performance. In comparison to con-
ventional neural networks, SVM boasts significant advantages [69]. The 
algorithm’s robust theoretical foundation contributes to a strong ability 
for high generalization and avoidance of local minima. Moreover, a 
solution is guaranteed and can be efficiently obtained using a standard 
algorithm, specifically quadratic programming. Besides, there is no 
requirement to pre-determine the network topology; it can be auto-
matically derived upon the conclusion of the training process. Support 
Vector Regression involves the fundamental concept of transforming the 
input data x into a high-dimensional feature space F using a nonlinear 
mapping Φ, followed by conducting linear regression within this feature 
space. One can show the input data and output data as follows: 

{(xi, yi)} (xi ∈Rn, yi ∈R) (6) 

The decision function f(x) is expressed as follows: 

f (x)=
∑

i

(
ci − c∗i

)
Φ(xi).Φ(x) + b (7)  

In equation (7), ci and c∗i are the Lagrange multi pliers. The parameter b 
refers to the bias of the regression function. Φ(xi).Φ(x) is the kernel 
function and by substituting in the decision function formula (7), the 
following equation is obtained: 

f (x)=
∑

i

(
ci − c∗i

)
K(x, xi) + b (8) 

The Kernel function can take different forms such as linear kernel, 
polynomial kernel, sigmoid kernel and so on. However, the typical 
kernel function commonly used by researchers is the Gaussian kernel (or 
radial basis function). The Gaussian kernel can be written as follows: 

K
(
xi, xj

)
= exp

(

−

⃦
⃦xi − xj

⃦
⃦2

2σ2

)

(9)  

In equation (9), the parameter σ controls the generalization of the al-
gorithm by adjusting the width of the kernel. 

Support Vector Machines (SVM) can be employed as one of the most 
useful algorithms to design new fire retardants for polymeric materials. 
In fact, SVMs possess high generalization ability, which shows SVMs can 
perform well on unseen data. One can train a dataset collecting effective 
parameters using SVM, then use the model to predict the properties of 
new fire retardants. Support Vector Machines (SVMs) are adept at 
addressing the challenge of outliers, a common issue when collecting 
training datasets for fire retardant data. Specifically, obtaining 
completely outlier-free, high-quality data is nearly impractical. None-
theless, the utilization of SVMs can be a practical approach to mitigate 
the model’s sensitivity to outliers. Support Vector Machines (SVMs) may 
exhibit drawbacks when employed to predict flame retardancy proper-
ties. One such limitation lies in the potential negative impact on the 
learning process if the choice of kernel and regularization parameter is 
not appropriately tuned. 

3.6. Random forests 

Random Forests (RF) represent an amalgamation of machine 
learning algorithms [70]. Breiman [71] invented random forests for the 
first time, where each tree’s dependency on values is determined by a 
randomly sampled vector. The sampling is independent, and all trees in 
the forest share the same distribution. The essence of the Random Forest 

regression model can be succinctly described as follows: within the 
sample space X and classification labels Y, the construction of random 
forests for regression involves growing trees that are contingent on the 
random variable Φ. In relation to each category label, the tree h(x, Φ) 
yields an outcome [72]. If L = {(x1, y1), (x2, y2),…….,(xM, yM)} in-
dicates the training data, a training data L j of size N would be separated 
from L . Obviously, it can be said that N < M and a decision tree is 
formed to train with L j. As previously stated, RF consisted of a number 
of decision trees h(x, Φ) which each of them predicts a result. The final 
prediction of the algorithm is achieved as follows: 

f (x)=
1
J
∑J

j=1
h(x,Φ) (10)  

In other words, the final prediction of random forests would be obtained 
by taking average over K of the trees h(x,Φ). 

Random forests (RF) can be suggested for datasets consisting of large 
number of samples, RF can indicate satisfactory since they divide the 
dataset into smaller training datasets and achieve the final prediction by 
averaging the results predicted for smaller training datasets. This can 
increase the accuracy of final prediction for high-number sample data-
sets. However, it is crucial to understand that the selection of an 
appropriate number of trees significantly influences the algorithm’s 
predictions. Opting for a large number of trees can result in prolonged 
processing times and less accurate outcomes. Moreover, one challenge of 
random forests (RF) in predicting flammability of fire retardant com-
posite is the interpretability. Due to the mechanism of RF, the specific 
impact of each property on the target variable might be less considered 
which might be a disadvantage for using it to predict the flammability of 
fire-retardant polymer composites. 

4. Comparison study for the use of machine learning algorithms 
to predict flame retardant properties 

In this section, the performance of the above algorithms in predicting 
flame retardant properties (LOI and cone calorimetry results) of poly-
meric materials are studied [73]. Moreover, the advantages and the 
disadvantages of each algorithm will be discussed. 

4.1. The usage of ANN and L-ANN in predicting LOI of polymer 
composites 

LOI is a key indicator for flame retardancy of materials [73,74]. 
Typically, a greater LOI value corresponds to higher flame retardancy 
[73]. Chen et al. [36] created a database including 233 items from ex-
periments and handbooks to train ANN and L-ANN. To investigate the 
flame retardancy of composites, both halogen and halogen-free flame 
retardants were used to blend with the matrix for experimental results. 
Due to the extensive use of PP, they focused their emphasis mostly on it 
as the composite matrix. Although antimony trioxide (Sb2O3) can 
improve the flame-retardant properties of decabromodi phenylethane 
(DBDPE), the use of Sb2O3 is prohibited due to its harmful effects on the 
environment and human health. The following halogen-free flame re-
tardants were selected for testing: magnesium hydroxide (MH), 9, 
10-dihydro9-oxa-10-phosphaphenanthrene-oxide-phosphonamidate 
(DOPO), zinc stannate (ZS), and zinc hydrostannate (ZHS). As for the 
handbook data, there are numerous formulations about halogen and 
halogen-free flame retardants. Hexabromocyclododecane (HBCD), 1, 
2-bispentabromophenoxy (BPBPE), and other substances are among 
the halogen flame retardants. Ammonium polyphosphate (APP), 
aluminum hydroxide (ATH), and other substances are examples of 
halogen-free flame retardants. As additional partial data for base data 
resources, 80 formulations about flame-retardant PP were gathered from 
handbooks. As a result, the initial dataset had 233 pieces of information 
that can be utilized to train algorithms (ANN and L-ANN) [36]. For the 
first run of algorithm training, Fig. 3a and b shows the scatterplots of 
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predicted versus true LOI for ANN and L-ANN methods. The high degree 
of correlation between ANN and L-ANN is demonstrated by the R2 values 
of 0.91 and 0.92 for ANN and L-ANN, respectively. This demonstrates 
that both algorithms are capable of accurately predicting the LOI values 
of the dataset, with the ANN being slightly more accurate. Additionally, 
the results indicate that the training process was successful since a 
strong degree of correlation between the predicted and true LOI values 
was observed. For the second run of algorithm training, they added 339 
new samples from published papers to the initial dataset to build an 
augmented dataset. The scatter plots between predicted versus true LOI 
by ANN and L-ANN methods and their corresponding R2 values are 
depicted in Fig. 3c and d. L-ANN and ANN have extremely high R2 

values of 0.93 and 0.90 in the second run of algorithm training. 
Despite the fact the ANN and L-ANN algorithms indicated a satis-

factory coefficient of determination in this study, it would be better to 
express them individually for both training and test sets. This enables 
other researchers to have better insight toward the performance of the 
developed model. To be more specific, the difference between the co-
efficient of determination of training and test sets can indicate how well 
it has been trained. For instance, if the difference is considerably high, 
then it might be interpreted that an overfitting issue happened. In order 
to confirm the performance of their algorithm with a new unseen set of 
dataset, they added two samples to predict LOI. The result of this pre-
diction for LOI has been reported in Table 1. Assessing a model’s per-
formance with new unseen data is crucial. If a model demonstrates 
satisfactory accuracy in predicting target variables for a new dataset, it 
signifies generalization and adds to the credibility of the developed 

model. In this study, two additional samples were employed for this 
evaluation, affirming the model’s high accuracy in predicting LOI. While 
this supports the model’s reliability, a more extensive inclusion of 
samples would further enhance confidence in the generalizability of the 
predictions. 

In another study, Yan et al. [75] recruited a machine learning 
approach by developing a self-enforcing deep neural network (SDNN) to 
forecast the flammability of flame-retardant epoxy resins. This algo-
rithm is a specific type of artificial neural networks which has a 
considerable number of hidden layers. The term “deep” refers to the 
high number of hidden layers between input and output layers. The 
authors of this research paper have not clearly expressed the “self--
enforcing” term but they announced that they have been inspired by 
Vaswani et al. [76] work. In this research, they define a term called 
“self-attention” which might have the same concept with the term 
“self-enforcing”. They have defined the “self-attention” term as a 
mechanism that focuses on various positions within a single sequence to 
generate a comprehensive representation of that sequence. 

They created three types of datasets for three different parameters 
including LOI, PHHR and THR. The input data was created by finger-
printing 2D chemical structures by Morgan fingerprinting [77]. This 
then leaded to a high dimensional binary vector which then was com-
bined with molar ratio of flame retardants. For the database of LOI, 163 
combinations have been achieved along with 126 combinations for 
PHRR and 131 for THR. After training the datasets with SDNN algo-
rithm, the results have been depicted in Fig. 3. Based on their results, the 
coefficient of determination R2 was 0.98 for the training data of LOI and 
0.86 for the test set. Regarding PHRR, the training set had R2 of 0.93 and 
0.87 for the test set. As for THR, R2 was 0.92 for the training dataset, and 
it is reported 0.85 for the test set. There are two other metrics on the 
scatter plots, percentage of correct point (PCP) and mean average per-
centage error (MAPE). PCP indicates the percentage of points that were 
predicted correctly. For each parameter, they considered a percentage 
error as an acceptable range. This was 10 % for LOI and 20 % for PHRR 
and THR. As for MAPE, MAPE measures the percentage difference be-
tween predicted and actual values. These two parameters are also 

Fig. 3. The scatter plots of predicted versus true LOI by (a, c) ANN method, (b, d) L-ANN method and their corresponding R2 values for the first and second runs. 
Adapted with permission form ref. [36]. 

Table 1 
The prediction of the model for two new samples. Adapted with permission from 
Ref. [36].  

Samples PP0 
(g) 

APP 
(g) 

DPER 
(g) 

ZS 
(g) 

AO 
(g) 

LOI-pre 
(%) 

LOI-Exp 
(%) 

ADZ5 700 250 83.3 5 5 28.56 29.2 
ADZ10 700 250 83.3 10 5 28.42 29.5  
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depicted in Fig. 4. They claimed that to prevent overfitting, the MAPE 
difference between the test and training sets of data should typically not 
be greater than 20 %. The MAPE difference between the training and test 
data for LOI is only 2 %, suggesting a well-fitted model with no signs of 
overfitting. Moreover, the MAPE discrepancies for PHRR and THR 

between the training and test data, both at 10 %, are deemed satisfac-
tory, especially considering the limited size of the training dataset. 
While the model’s performance is deemed satisfactory in this study, the 
researchers have not presented any information about the utilization of 
a novel dataset to validate the model’s generalization. It is 

Fig. 4. Scatter plots of training and test sets of SDNN model: (a) LOI (b) PHRR (c) THR. Adapted with permission from Ref. [75].  
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acknowledged that models, despite displaying excellent performance on 
training and test sets, may exhibit lower accuracy when applied to 
entirely new datasets. In contrast to the prior study, which introduced 
new samples for assessing generalization, the current study lacks any 
reported details in this regard. However, in this study, the model’s 
performance was distinctly presented for the training and test datasets. 
This approach is considered more favourable when compared to the 
prior study, where the coefficient of determination was reported for both 
training and test sets in a single scatter plot, leading to challenges in 
assessing the model’s performance. 

4.2. The usage of SISSO in predicting LOI of polymer composites 

Chen et al. [39] have developed an effective flame retardant 
(ZHS@GO), nano graphene oxide (GO) wrapped micro zinc hydrox-
ystannate (ZHS), to improve the mechanical properties and flame 
retardancy of PP composites. Then, they learned a straightforward 
equation for the LOI using the SISSO and 20 composite samples they 
prepared. They first created composites with varying ratios of ammo-
nium polyphosphate (APP), pentaerythritol (PER), and ZHS@GO, and 
then they initially assessed the flame-retardant performances of these 
samples using LOI. The PP composites with various fractions of APP, 
PER, and ZHS@GO exhibited different LOI values. 

The percentages of APP, PER, and ZHS@GO, as well as the LOI values 
from experiments and machine learning, are denoted by x1, x2, x3, y-Exp 
LOI and y-ML LOI, respectively. After training the above dataset using 
SISSO, a training root-mean-square-error (RMSE) of 0.868 and the co-
efficient of determination ( R2) of 0.95 are achieved. A scatter plot be-
tween predicted versus true LOI using SISSO is depicted in Fig. 5. 
Moreover, experiments were performed on two new samples derived 
from 3D scatters of anticipated LOI. Due to the limited number of 
samples in the dataset, the researchers opted not to split it into training 
and test sets. While it is generally recommended to perform this division 
to mitigate overfitting, the use of SISSO can potentially overlook this 
concern, especially when dealing with small training datasets. For 
experimental validation of their model, and confirming the generaliza-
tion, they employed two new samples and predicted LOI with the al-
gorithm. The results of this study have been presented in Table 2. 
Despite the limited number of training samples, the model demonstrated 
commendable accuracy in predicting new samples, suggesting effective 
training. However, additional samples may be necessary for prediction 
to thoroughly assess the model’s generalization capabilities. 

’The experiment excellently confirms the one prediction (x1 = 20, x2 

= 5, and x3 = 5), demonstrating the strong predictive ability of SISSO. 
In another study, Chen et al. [78] employed SISSO algorithm to 

identify new flame retardant polymeric composites. They gathered 
different types of flame retardants including halogen and halogen-free 
ones used for polypropylene (PP) as the matrix of composites. A total 
of 153 flame-retardant polymer composites (FRPC) incorporating at 
least two of the six fillers—ZS, ZHS, DBDPE, Sb2O3, Mg(OH)2, 
DOPO—were synthesized. Subsequently, all the composites underwent 
testing for four performance metrics: LOI, TS, Dsmax, and VOF4. The 
input features for all subsequent machine learning analyses included the 
content of the six fillers: ZS, ZHS, DBDPE, Sb2O3, Mg(OH)2, and DOPO. 
They specified 80 % of the 153 samples for the training and the rest for 
the test set. After training the model with the provided dataset, a coef-
ficient of determination (R2) of 0.83 has been achieved for the test set. 
The scatter plot for comparison study between experimental and pre-
diction results has been shown in Fig. 6. The researchers have not re-
ported the coefficient of determination for training set, which can make 
it a little bit challenging to assess the performance of the model. How-
ever, they have provided 10 more samples to assess the generalization of 
the model. In fact, this action can help researchers have better insight 
towards the performance of their developed model. The results of this 
comparison study have been reported in Table 3. Regarding other three 
target variables, researchers reported R2 less than 0.5 which might 
suggest that these properties may need better impactive variables as 
input in the dataset. In contrast to the prior study that also employed the 
SISSO algorithm, this current study exhibited higher accuracy in pre-
dicting new datasets. This observation implies that while SISSO can 
achieve satisfactory predictions with a limited number of datasets, its 
accuracy can be enhanced with a larger sample size. 

Fig. 5. A scatter plot of the predicted versus true LOI using SISSO for 20 
composite samples. Adapted with permission from Ref. [39]. 

Table 2 
Experimental validation of LOI for two new samples. Adapted with permission 
from Ref. [39].  

No APP(%) PER(%) ZHS@GO(%) Predict-LOI Experiment-LOI 

Exp1 20 5 5 26.82 28.40 
Exp2 25 10 5 36.13 29.5  

Fig. 6. A scatter plot of the predicted versus experimental LOI. Adapted with 
permission form ref. [78]. 
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4.3. The usage of ridge models with RFE for feature selection in predicting 
LOI of polymer composites 

Chen et al. [37] developed a machine learning model employing 
Ridge regression as an inner estimator and RFE for feature selection 
[79]. They gathered information from the existing literature on the LOI 
values of epoxy resin (EP) composites containing organophosphate 
flame retardants (OPFRs) from 2005. In order to make the structural 
data suitable for ML modeling, a simplified molecular-input line-entry 
system (SMILES) string was utilized to encode the structural information 
into a numerical list [80]. The SMILES helped them to investigate the 
relationship between the structure and the addition amount of OPFRs 
with the LOI values of EP composites. Based on the LOIs of the reported 
EP composites, a trained ML model was obtained and used to forecast a 
novel 9,10-dihydro9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 
derivative (BDOPO), which was later confirmed through experiments. 
Their LOI database had a total of 1053 data points. The fitting outcomes 
of the LOI ML model on the training and test sets are displayed in Fig. 7. 
The training and test sets’ coefficient of determination ( R2) values are 
0.844 (790 data points) and 0.642 (263 data points), respectively. The 
outcome of their model is an indication that the relationship between 
the FR structure, the amount of addition, and the LOI of EP composites 
can be accurately predicted. 

To evaluate the model’s generalization and further scrutinize its 
prediction accuracy regarding LOIs, BDOPO was designed and synthe-
sized. The outcomes of the model were subsequently compared with 
experimental results. While the model did not exhibit a high R2 for the 
test set, it appeared to demonstrate satisfactory accuracy when applied 

to a new set of data. They prepared samples with 2, 3, 5, 10, 11, 15 and 
20 % addition amount. During the experiments, the Limiting Oxygen 
Index (LOI) of the EP/BDOPO composites initially rises from 24.8 % in 
pure EP to 27.1 % in the 2 wt%, 29.4 % for 3 wt%, 30.6 % for 5 wt% and 
31.7 % for 10 wt%. At the same time, the predicted LOI was 29.03 % for 
2 wt%, 31.77 % for 3 wt%, 32.4 % for 5 wt%, and 33.1 % for 10 wt%. 
Subsequently, the predicted LOI exhibits variations, reaching approxi-
mately 33.98 % at 11 wt%. Beyond this point, with addition amounts 
higher than 11 wt%, the predicted LOI shows an incremental trend at a 
slower pace compared to the 1–11 wt% range. The peak predicted LOI, 
around 34.15 %, is achieved at 20 wt% BDOPO, marking a marginal 
increase of 0.17 % from the value at 11 wt%. The experimental LOI 
values for EP/11BDOPO and EP/15BDOPO stand at 32.7 % and 32.6 %, 
respectively, representing an increase of approximately 1 % compared 
to EP/10BDOPO. The observed trend in LOI within the 10 to 15 wt% 
range aligns closely with the predicted LOIs. EP/20BDOPO records the 
highest LOI at 33.1 %, consistent with the model’s predictions. 
Furthermore, as per the model’s prediction, minimal LOI variations 
occur beyond 11 wt%. While the LOI model slightly overestimates the 
impact of BDOPO in enhancing EP LOI, with an error reaching up to 7.1 
% and an average error of 5.1 %, it accurately predicts the experimental 
LOI trends, showcasing a steady increase below 11 wt% and a constant 
trend after this threshold. 

Although the developed model could not predict the LOI for each 
sample with high accuracy, it could predict the trend almost accurately. 
However, there remains uncertainty regarding the model’s ability to 
predict additional samples, given its less-than-optimal performance on 
the test set. One possible explanation could be the limitations of the 
algorithm employed by researchers for LOI prediction, which, despite a 
large sample size, did not yield highly successful results on the test set. In 
contrast to the other algorithms examined thus far, this particular al-
gorithm struggled to capture the relationship between input data and 
the target variable. Perhaps adopting a more advanced algorithm, such 
as Artificial Neural Networks (ANNs) or SISSO, could potentially 
enhance accuracy on the test set. The high difference between R2 score 
of training and test sets might suggest that the algorithm might not be 
well-trained. Possibly, the issue lies in the extensive number of training 
samples, and a resolution could involve the utilization of the recom-
mended algorithms or even alternative ones which specifically has been 
developed for dealing with high-number datasets. 

4.4. The usage of XGB in predicting cone calorimetry results 

Zhang et al. [38] have employed five machine learning algorithms, 
including support vector machines (SVM), multiple linear regression 
(MLR), random forest (RF), k-nearest neighbors algorithm (k-NN), and 
extreme gradient boosting (XGB) to predict the flame retardancy index 
(FRI, a non-dimensional parameter derived from cone calorimetry test) 
values of different flame-retardant polymer nanocomposites. Vahabi 
et al. [81] proposed the flame retardancy index, which was utilized to 
quantify the flame retardant performances of various polymer com-
posites using a set of trustworthy data. The FRI was described as the ratio 
between pure polymer and the corresponding flame-retardant compos-
ite in terms of total heat release (THR), peak heat release rate (pHRR), 
and time to ignition (TTI). The FRI is shown in equation (6): 

FRI =

[

THR ×

(
pHRR
TTI

)]

Pure Polymer[

THR ×

(
pHRR
TTI

)]

Composite

(6) 

In this case, the outcome of machine learning-driven approaches is 
heavily influenced by the independent variables, which are numerical 
expressions of the flame-retardant system. Information on the experi-
mental settings, filler characteristics, thermal stability of nano-
composites, and flammability of polymer is contained in the 

Table 3 
The assessment of performance for SISSO for the selected samples. Adapted with 
permission from Ref. [78].  

Sample DBDPE(%) Mg(OH)2(%) DOPO(%) LOI(%)Pre/Exp 

1 22.5 0 1.5 26.06/26.7 
2 22.5 0.35 1.5 25.48/25.6 
3 22.5 0.35 2 25.49/26.3 
4 21 0 1 26.01/25.5 
5 21 0.35 1 25.44/25.4 
6 21 0 0.5 26.01/25.2 
7 19.5 0 1.5 25.95/25.8 
8 19.5 0.35 1.5 25.37/25.7 
9 16.5 0.35 1.5 25.14/24.9 
10 16.5 0 1.5 25.71/25.4  

Fig. 7. The performance of the LOI ML model on training and test datasets. 
Adapted with permission from Ref. [37]. 

P. Jafari et al.                                                                                                                                                                                                                                   



Composites Communications 45 (2024) 101806

10

independent variables. The multiple linear regression (MLR) approach 
was used by Zhang et al. [38] as a performance benchmark. The MLR 
trend misrepresented the correlation between numerous variables, 
which resulted in inaccurate outcome predictions [82]. Then, they used 
four different regression techniques (k-NN, SVRM, RF, and XGB) for the 
purpose of predicting flame retardancy. The statistical evaluation results 
of the forecasting models are listed in Table 4. Their database consisted 
of 799 samples, divided into training set and test set, which the first one 
contained 639 sample the second one had 160 samples. 

As presented in Table 4, the highest percentage of the coefficient of 
determination ( R2) belonged to the XGB algorithm, which reached 
0.935. In comparison to other algorithms, XGB indicated the highest 
accuracy in predicting the FRI. Besides, the R2 values were 0.97 and 
0.815 for the training and testing sets, respectively. 

Additionally, since the number of samples is large during training the 
algorithms, XGB and RF come out as better candidates which might 
suggest they have better prediction in comparison to others. In order to 
prove the generalization ability of their model (XGB), and to find out 
how much this model can be effective for designing puroposes, they 
embedded IiO-66, as a type of metal− organic frameworks (MOFs), into 
A poly(methylmethacrylate) PMMA. In order to obtain the independent 
variables consisting the input, the samples were examined by Ther-
mogravimetric Analysis and Differential Thermal Analysis TGA/DTG, 
and FTIR spectra. Large-scale fire tests were not conducted, and the 
sample size were as small as a few milligrams to perform TGA (Ther-
mogravimetric Analysis) and DTG (Differential Thermal Analysis) tests. 
Ultimately, the flame retardant characteristics of both pure PMMA and 
the nanocomposite were thoroughly assessed using the cone calorim-
eter, encompassing parameters such as Time to Ignition (TTI), Peak Heat 
Release Rate (pHRR), and Total Heat Release (THR). For a sample with 
1 wt% loading, the logarithmic transformation FRIexp was − 0.22, while 
the model predicted it to be − 0.207. The error was only 6 %. In another 
sample, they changed the loading wright percentage to 1.5 wt%, the 
FRIexp achieved to be 0.198 while the model predicted it to be 0.142, 
which has an acceptable accuracy. 

5. Conclusion and perspectives 

5.1. Conclusions 

This review paper discusses different available algorithms currently 
used for predicting the flame-retardant properties of polymer compos-
ites. The accuracy of each algorithm is compared based on their 
respective R2 values. The SISSO algorithm has the highest R2 of 0.95, 
but it is based on a small dataset of only 20 samples. This demonstrates 
that SISSO is capable of achieving high and satisfactory accuracy, 
especially in scenarios with a limited number of datasets. As mentioned 
earlier, while SISSO is effective in addressing the challenge of a low 
number of samples in datasets, having a larger number of samples can 
enhance the model’s accuracy in predicting the flammability of fire- 
retardant polymer composites. However, according to the findings 
presented in our paper, SISSO did not successfully predict other target 
variables such as TS, Dsmax, and VOF4. It is important to note that 
SISSO is specifically designed for the discovery of new materials and has 

demonstrated satisfactory predictions for LOI. Therefore, the lack of 
success in predicting other properties may be attributed to the charac-
teristics of the database rather than a limitation of the algorithm itself. 
The ANN and L-ANN algorithms have R2 values of 0.92 and 0.91, 
respectively, in the first run, and their performance improves when 
additional samples are included in the training set. The L-ANN algorithm 
utilizes both linear and nonlinear algorithms effectively, addressing the 
issue of data scarcity. Moreover, the newly developed algorithm, SDNN, 
demonstrated its proficiency in predicting LOI, PHRR, and THR. The 
coefficient of determination for the test set was 0.86, 0.87, and 0.85, 
respectively, indicating the algorithm’s high accuracy and performance. 
However, since researchers have not assessed the generalization prop-
erty of their newly developed model by predicting unseen data, we 
cannot make clear judgements about the generalization of SDNN. On the 
other hand, the RFE algorithm, which uses ridge regression, achieves 
lower R2 values of 0.84 for the training set and 0.64 for the test set, 
indicating lower accuracy in predicting LOI. However, it is still useful for 
small sample sizes and since the generalization was almost accurate, it 
might be a good candidate for predicting the flammability of fire- 
retardant polymer composites. Overall, the ANN and L-ANN algo-
rithms outperform others in predicting LOI and are promising for the 
development of next-generation fire retardants. However, using SISSO 
can be more practical since it can deal with low number samples in 
datasets and still shows high accurate predictions. In addition, the 
purpose of developing SISSO was discovering new materials and pre-
dicting their chemical and physical properties. Thus, SISSO can be 
considered as a better candidate in predicting the flammability of fire- 
retardant polymer composites. In summary, SISSO and artificial neural 
networks (ANNs) (along with other recently developed models like L- 
ANN and SDNN) have demonstrated superior performance as algorithms 
capable of capturing the intricate relationship between input data and 
output when predicting the flammability of polymer materials. 

In terms of predicting cone calorimetry results, the XGB model ex-
hibits the highest accuracy among the algorithms. It achieves a coeffi-
cient of 0.935, making it an excellent choice for accelerating the design 
of fire retardants. The XGB algorithm’s strength lies in its ability to 
accurately predict experimental outcomes by identifying intricate pat-
terns in complex and unstructured data. This capability makes it highly 
powerful for this application, as it can expedite the development process 
of new fire retardants by providing more precise predictions. 

5.2. Perspectives 

While AI modeling can be a powerful tool for predicting fire 
behavior, it is not without limitations. One significant drawback of 
existing algorithms is the scarcity of data, which hinders the develop-
ment of models based on AI/ML for predicting fire-retardant materials 
behavior. Machine learning algorithms require large amounts of data to 
train and improve their accuracy. Without enough fire test data, these 
models cannot accurately predict fire behavior in different scenarios, 
making it challenging to develop reliable machine learning (ML)-driven 
new materials. In summary, we introduced some challenges and some 
suggestions to overcome them below. To address these challenges, there 
is a great need of a better understanding of designing fire-retardant 
polymeric materials.  

(1) In order to tackle the sacristy of data, it is crucial to invest in more 
fire testing to enable the development of accurate and reliable AI/ 
ML models using large amounts of data. This requires extensive 
collaborative work among researchers in this field.  

(2) To solve the problem with making AL models with more dynamic 
between inputs and outputs, both experimental and AI modeling 
approaches are necessary to develop a comprehensive under-
standing of fire behavior and develop effective fire-retardant 
systems. By combining the strengths of AI modeling and fire 

Table 4 
The accuracy of machine learning algorithms used for flame retardancy pre-
diction. Adapted with permission from Ref. [38].  

model training set training set overall 

R2 RMSE R2 RMSE R2 RMSE 

MLR 0.308 0.538 0.430 0.533 0.335 0.537 
k-NN 0.418 0.508 0.460 0.520 0.426 0.510 
SVRM 0.550 0.437 0.583 0.461 0.557 0.442 
RF 0.916 0.207 0.783 0.343 0.886 0.241 
XGB 0.970 0.115 0.815 0.304 0.935 0.171  
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experiments, one can improve the ability to predict, prevent, and 
mitigate the devastating effects of fires.  

(3) Apart from the above, numerical moldering approaches, such as 
the finite element method (FEM) [83], can be employed along 
with AI modeling and experimental research to obtain more 
reliable and accurate results for designing the next-generation 
fire retardants.  

(4) It is important for researchers to construct models with the ability 
to predict outcomes for previously unseen datasets. The model’s 
generalization can serve as a valuable tool for designing and 
discovering novel materials with optimized properties.  

(5) Future research in this field should focus on key aspects such as 
the creation of high-quality datasets, the development of multi- 
objective prediction models, and enhancing the interpretability 
of models. 
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