
Joining the Game and the Experiment in Peer-to-Peer
Remote Laboratories for STEM Education

Ananda Maiti1, Andrew D. Maxwell1, Alexander A. Kist1 and Lindy Orwin2

1School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
2ADFI, University of Southern Queensland, Australia

anandamaiti@live.com, andrew.maxwell@usq.edu.au, kist@ieee.org, Lindy.Orwin@usq.edu.au

Abstract— Remote Access Laboratories (RAL) provide access
to experimental setups from remote locations. These
experimental setups are composed of controller units
programmed to gather data and interact with user inputs. A
distributed version of RAL can be maker oriented i.e. the
experiment rigs are designed by individuals and shared among
each other. This paper presents the programming aspects and
activity user interface (UI) design and organization of
experiments in a distributed RAL aims at STEM education. The
user interface must be interactive to increase engagement and
motivation for the user. Being designed for school students, the
environment to create the control logic of a rig created by the
student needs to be on a homogenous platform. The
programming language has to be easy to understand and use.
Characteristics and requirements of a graphical programming
language SNAP, which is modified and used as the programming
platform for RAL, is studied in this paper.

Keywords — remote laboratories; e-learning; computer
programming; progarmming languages; quest-based learning

I. INTRODUCTION
The educational disciplines of science and engineering

typically require learners to demonstrate proficiency bridging
the theoretical and experimental world. As part of these
experiential learning experiences, online Remote Access
Laboratories (RAL) may be used for demonstrations of actual
event and experiment [1]. A novel project, "RALfie – Remote
Access Laboratories for fun, innovation and education", is used
as an example of a Peer-to-Peer (P2P) environment for the
deployment of remote access laboratories where users create
lab activities and associated programs and share them through
the Internet (see Fig. 1). This system aims to promote Science,
Technology, Engineering and Maths (STEM) education among
young learners by enabling collaboration and increasing 'hands
on experience' [2].

Computer-based games are fundamentally designed for
quick, colorful and creative fun and entertainment. Other than
entertainment, games have also been used to create
environments for the students (players) to acquire knowledge
and skills [3]. Gamification of learning environments can take
many forms. In context of RALfie a quest-based approach is
taken. Students access experiments through quests, which
provide context and guidance. The content of quests is
presented as a set of instructions and associated resources. It
guides the interaction between the students and the User
Interface (UI) of the experiment. Quests are organized into
hierarchical groups as a larger game-based learning
environment [8] where individual users can accomplice bigger

goals by completing multiple quests. In addition, experiments
themselves can be designed as interactive games.

The key innovation of the RALfie system is that users are
able to design and host experiments themselves. The
environment has two types of users – Makers (experiment
providers), who create experiments and the learners, who run
the experiment for learning purposes [5]. Any user can be both
maker and learner. The creation of experiments by the Makers
involves programming to develop a user interface and to
control the experiment. This often involves setting parameters
and retrieving data. However, learning programming languages
can be challenging for new users as they have their own syntax
and semantics to describe complex functionalities.

Several methods have been suggested to teach
programming to young learners using either library based or
visual methods [3]. In order to provide a unified, consistent,
and easily understood programming interface to represent the
states of the experimental activity, this paper outlines the
requirements of a programming language and supporting
technical tools for a P2P RAL environment and evaluates the
feasibility of using a graphical languages as the Integrated
Development Environment (IDE) to create a Human-Machine
interface for experiments.

The rest of the paper is organized as follows: Section 2
discusses related works in robotics and programming for RAL.
Section 3 shows how P2P RAL operations. Section 4 presents
the P2P RAL programming and storage requirements. Section
5 and 6 presents the RALfie implementations and users'
feedback.

II. RELATED WORK
This section describes the teaching practices for robotics

and programming languages.

Fig1. The RALfie Communication System Architecture

978-1-4673-7716-4/15/$31.00 ©2015 IEEE 2-4 June 2015, University of the Azores, Ponta Delgada, Portugal
2015 3rd Experiment@ International Conference (exp.at'15)

Page 213

A. Teaching Programming Languages
 A computer game was used as a tool for teaching Object-

Oriented programming (OOP) methodologies and paradigms in
a computer science course [12]. This was a character based
role-playing game where the player’s character has to follow a
storyline and clear some objectives. In doing so, the character
(or object as in OOP) acquires traits (properties as in OOP) and
performs tasks (methods as in OOP). The player gets
experience points or rewards for finishing the given set of
objectives. Game oriented procedures have been implementing
in STEM fields [14]. Student’s motivation mainly includes
intrinsic goals and tasks of the game.

Natural Language has been used to teach programming
fundamentals [11]. It has been shown to be a good alternative
to traditional programming languages defined by context free
grammar. The natural language although attractive, may not be
directly applied to RAL, due to its complex use of ports [15]
used to control peripheral. A visual drag and drop language
like SCATCH [7] which is a simple language used to teach
programming concepts to K12 students is more suitable. The
drag enabled programing building blocks allows the
pedagogical principles of teaching programming with a low
threshold for entry.

B. STEM and RAL
The effects of applying remote laboratories based education

have been studied before [1, 2]. The main objective of a STEM
RAL is to provide experiments in the STEM fields to school
level students. These experiments involve lesser complicacy in
building or running the experiments and focus more on the
visual actions of the rigs and appropriate pedagogical tools to
teach the STEM concepts.

RALfie aims to be a STEM based RAL [2] that can be
effective in creating engagement for students to continue with
STEM field in higher studies. This requires certain features in
RAL such as collaboration and hands-on-experience to build a
rig. Collaboration can help with to exchange of ideas about a
STEM concept while self-made designs increase engagement.

C. Robotics and programming in RAL
Robotics and automation are integral parts of online

laboratories. Robotics components are added to a localized
version of the experiment setup to make it accessible from
remote locations [6]. LEGO based robotics is designed for
teaching K12 students about robotics. These have been part of
many school based STEM initiatives [13].

RAL programming uses various programming languages
although often it is LabVIEW. Pastor et al [10] describe user
based custom programming. This approach uses XML to
specify the components and the corresponding functions which
are then recompiled as Java programs. The students rely on
using a XML based Laboratory Experimentation Description
Markup Language for creating the laboratory modules and
joining them to form an experiment. This form of language is
not suitable for STEM students..

III. P2P RAL CHARATERISTICS AND ARCHITECTIRE
This section describes the RAL learning objectives in

context of the STEM education, the P2P RAL operation and
the pedagogical advantages of the P2PRAL.

A. RAL Learning Objectives
The learning is RALfie happens in following steps:

1. As in regular RAL, the experiments have an underlying
curriculum concept, in this case a topic from STEM. For
those using experiments, the learning objective is to run
the experiments as per given instruction and observe the
action on the experimental rig.

2. In-experiments data collection/observation is important
part of the activity. Each activity will have at least one
question to be answered based upon the observation of the
experiment run.

3. Post-experiment data analysis is less common but can
accompany an experimental activity. Learners are then
required to collect large amount of data during the
experiment run and after completing it, analyze it to
answer a question.

The innovative part of the RALfie is the maker aspect.
Some users are also developers of the experimental rigs. This
aspect has the following learning objectives:

1. Designing and creating an experimental setup to express
the STEM concept.

2. Adding automation and programing it to operate using
Remote UI. This allows the Makers to gain experience in
prototyping innovative ideas.

Thus, a distributed P2P RAL engages user in two distinct
activities - assembling and programming the experiment setup
and then sharing it with others.

B. P2P RAL Operation
The operation of the P2P maker-learner experimental rig

sharing is shown in Fig 2. The process starts with the developer
identifying/given a STEM problem. Once it is decided on what
is to be built, the corresponding experimental setup is prepared.
The experimental rig uses automation components such as
actuators into the experimental rig that enables its computer-
based/remote control. The additional of the automation tools
may require minor re-design of the rigs. These two steps are a
repeated until a satisfactory control interface and the rig is
setup.

Once the setup is ready, it needs to be stored as a published
experiment in a repository where other users can search them.
This storage mechanism id modelled around the quest-based
learning [8].

After the experiments are published, it is available to the
learners. They run the experiments, collect data and complete
activities to gain experience points and collect badges in the
quest based system. The creation to publishing affects the users
experience with the system in the reverse order –
• Search is affected by storage policy,
• Experiments run and answering the questions is affected by

automation and programming of the rig and its interface.
• The learning outcome and ‘game incentives’ in the form of

badges, eXperience Points (XP) or achievements gained by
the learner is dependent on the type of rig and the
experiments chosen by the experiment developer (Makers).

978-1-4673-7716-4/15/$31.00 ©2015 IEEE 2-4 June 2015, University of the Azores, Ponta Delgada, Portugal
2015 3rd Experiment@ International Conference (exp.at'15)

Page 214

For this paper, the focus is on the "Automation and
Programming" and “Storage Mechanisms” from a developer's
perspective.

C. Advantages of P2PRAL
The advantages of P2P architecture are:
• It allows collaborations or communication between

individual students.
• It allows hands-on-experience of building the required

experimental setup.
• It allows modularity i.e. multiple experiments can be

added form different locations that re totally independent
of each other.

IV. P2P RAL PROGRAMMING AND STORAGE
A proper programming language and development

environment must be used to enable users to connect the
instruments to the Internet in a homogenous manner.

A. Role of Programming Language
Once an experimental rig has been assembled, it must be

programmed to communicate with the UI through Internet.
From the perspective of young learners programming
languages may be divided into many groups:
• Procedural vs. Object oriented programming: The aspect

differentiates between programs that have a simple flow
control with programs that associates every data to a
conceptual object. Experiments in a RAL are usually
operated by a small finite set of commands for a session. As
such, it should be procedural in operation i.e. the code
composed must start and end without initializing any
object. Using objects adds higher overhead of associating
each function with an object.

• Text based vs. visual languages: This aspect differentiates
between the styles of representation of the language
components. A text-based language requires more typing of
code, with the associate potential for errors, while the visual
languages are more colorful and primarily uses drag and
drop methods. Visual languages are more appealing to the
users with less to no programming background [17].

• Declarative vs. Imperative languages: This aspect
differentiates between the structures of languages. The

declarative strategy specifies the logic of the computation
without specifying the manner in which it will be obtained
(e.g. SQL). The imperative programming explicitly
specifies the line of code. A former is more suitable for
teaching young learners but requires high level of
computational flexibility for interpreting the users input.
Hence a declarative, visual and procedural language was

chosen for RALfie. For a P2P RAL like RALfie, the
fundamental capabilities required for its programming
language are:

1. Iterative and conditional abilities: These are the two most
commonly used programing constructs and needed to write
any sort of program.

2. Data logging abilities: The language must be able to read
and write with a range of sensors and actuators.

3. Rapid user interface design capabilities: A GUI and an IDE
are also important to easily (re-) configure any program.
The visual nature of a program is more appealing to young
learners [7]. A GUI allows the users to be more expressive
and it provides an easy way for setting up the actual user-
interface for the experiment.

4. Event capturing capabilities: It must be event oriented.
Capturing an event at the user interface and responding to
that is vital to a RAL experiment program. Thus events
must be clearly defined and a wide variety of events must
be supported.

5. Web Browser based: the language and the corresponding
IDE should preferably run in a Web Browser.

6. Packaging: Packaging refers to the capability of creating
modular software and re-using code as much as possible.
Users may share their codes and designs with others.

7. Network Capabilities: Obviously to communicate through
the internet the language must be equipped with the best
internet connectivity features. Note that this feature is not
required for RALfie users. The users only create code and
run it with the experiment. The underlying network
infrastructure is hidden from the actual users of RALfie.
There are multiple graphical languages that fulfill some of

these criteria, especially 1-4, like SCRATCH. However,
Blockly and SNAP (http://snap.berkeley.edu/) has the
additional capabilities of being Web Browser oriented and

Figure. 2. The P2P experiment creation, storage and usage operational steps.

978-1-4673-7716-4/15/$31.00 ©2015 IEEE 2-4 June 2015, University of the Azores, Ponta Delgada, Portugal
2015 3rd Experiment@ International Conference (exp.at'15)

Page 215

supporting HTML5. They also allow packaging. SNAP is
chosen because of it's similar fetaures to SCRATCH which is a
wide used language. The network capabilities are not sufficient
in SNAP but an additional network module was added for the
RALfie and thus it forms the basis of the RALfie platform as
described in the next section.

B. Activity as a Game
In order to present the activity to the learner, a quest is

created. A quest is basically a game with an objective that
must be achieved with in game mechanics provided by the
developers. To make the quest interesting and hold the
attention of the learners, it is presented as a story. The
storyline follows a sequence of interaction between the learner
and the interface which leads to a final solution where the
interface tells the learner whether the user has reached a
correct stage or not.

In case of RALfie a Narrative approach [16] is taken
where a character is used to first describe the UI environment
i.e. the tools available on screen such as buttons, indicators
etc. Then the learner is presented with the quest logic during
which they are simply asked for a set of values through a set
of questions. The answers to these questions are the input
parameters to the experiments. The learners then observe any
change in the experiments site through the video feedback or
data feedback on the UI. At the end of the quest the learner is
presented with quest question(s). The answer to these final set
of questions lies within the previous interactions with the UI
and will indicate the learning outcome of the quest.

C. Storage in the Content Management System
Once an experiment is created, it must be hosted as part of

structured hierarchy so that users are able to search for them
and access them in the appropriate sequence. For ease of use
and ubiquitous access Content Management System (CMS)
are often associated with RAL. These provide the learning
materials and task instructions that give the context for the
experiment. Traditionally these would form lessons delivered
by a Learning Management System such as Moodle or
Blackboard.

In order to increase communication and collaboration
between learners, RALfie deploys a non-traditional, gamified
approach. Content in RALfie is delivered within a quest [8].
Learners receive eXperience Points (XP) that accumulate to
earn badges that indicate competency. Learners are members
of guilds that provide an online learning community. This
gamified approach has implications for the design and
delivery of content and learning experiences. However, the
requirements of the distributed RAL described in this paper

remain constant whether a traditional lesson structure or a
quest-based system is used in relation to a P2P network of
user-generated RAL.

V. RALFIE IMPLEMENTATIONS
This section presents the technical implementation

regarding the programming environment, communication and
users feedback for the RALfie.

A. The Instrument Programming Interface
The system components are shown in Figure 3. The

backbone of the P2P RAL communication is the VPN or
overlay connection between users. Especially
designed/programmed routers connect each experiment node to
the VPN. Each experiment setup has one such router. One
router is ideally associated with one controller although it may
connect to multiple controllers.

A web-browser based IDE of SNAP [4] is used as the
programming interface. SNAP is a graphical programming
interface that allows drag and drop of commands to form the
program. The interface is exactly same in syntax and structure
as that of SCRATCH [9]. This allows quick understanding of
the user interface. The only difference between SNAP and
SCARTCH are that SNAP is written in JavaScript allowing it
to be executed on any browser. SNAP also allows creating
custom block which are essentially subroutine or custom
functions.

The RALfie re-deploys these tools based on SNAP with the
additional requirements of RAL hardware interaction. This
adds to new programming paradigms that need to be
implemented and used by the providers.

The controllers for the experiments are low-cost
microcontrollers units (MCUs) e.g. LEGO, Arduino etc. with
multiple ports/pins for controlling sensors and actuators. These
MCUs have an interpreting program [6] that runs the command
coming from the SNAP based UI. One controller can however
run multiple setups that are part of different experiment
activities.

B. Programming Paradigms of RALfie Experiments
The following are the advanced features in

SCRATCH/SNAP that are used extensively for RALfie:
1. Network Capabilities: When the SNAP IDE is

opened, it establishes a WebSocket connection to the target
controller on the VPN. Henceforth, each new command for
the rig is sent through a WebSocket.

2. Sprites as Objects/Components: SNAP uses specific
images called ‘sprites’ that represent each component of the

Figure 3. The RALfie Communication System Architecture

978-1-4673-7716-4/15/$31.00 ©2015 IEEE 2-4 June 2015, University of the Azores, Ponta Delgada, Portugal
2015 3rd Experiment@ International Conference (exp.at'15)

Page 216

user interface. These represent aspects of ‘object oriented
programming’. Each sprite in the interface may be regarded as
objects with its associated code. But the program is written in
a functional manner and no object is ever explicitly used.

Every object in the UI is a sprite that can initiate its own
code execution or perform a particular function. This
implicitly implements the concurrency between execution
driven by user generated events such as clicks and key-press,
but the concurrency need not be part of the program logic. The
most common sprites in the UI are:

• The Narrator: This object tells the objective of the
experiments (see Fig 4a). It does not take any input either
for the UI or the experiment, but simply presents a set of
instructions and waits for the users’ actions.

• The input components: These include anything like a
button that may be clicked to generate an event (see Fig
4b). Any image file can be used as the input components.
Upon an event, these take an input either as numeric or text
value or the click itself.

• The output components: These are those components of the
UI which simply change state depending on the output
received from the experiment. The output components on
the SNAP interface may be optional as there is always a
video feedback and certain experiments may solely rely on
the video for showing the output.

All other functional blocks available in SNAP are used
related with the sprites.

1. Ports as variables: Each controller is equipped with
ports/pins and each pin is connected to a sensor or actuator of
the experimental rig. Additional READ and WRITE
components have been written for RALfie for interacting with
hardware at different ports/pins of microcontrollers. These
were created under the control and sensor block in the SNAP.
The READ commands take an input of a port number to
return the value of sensor at that port. The WRITE command
takes a port and value parameter to be written at that port to
operate an actuator. These commands are put into other
command structures to create the program logic of the rig
operation (see Figure 5).

C. Lesson/ Quest Management Interface
The language IDE and its usage must be according to the

characteristics described so far. However, just satisfying the
IDE requirement does not guarantee success of the system. The
experiments must be stored properly. 3DGameLab, is used as
the Content Management System (CMS) for RALfie. Each
quest is associated with a general description of the problem
and related materials. The CMS also mentions the XPs and
badges one can obtain for a particular quest. Also the
3DGamlab can store the pre-requisites of the experiments. The
user’s final set of answers to the activity are submitted to meet
quest completion criteria.. Other users' feedback on the quest,
its due time and availability are also maintained by the
3Dgamelab.

The SNAP programs can be converted to XML format
including the images or sprites. Once the developer is ready
with a fully functional experiment and UI, they can publish the
experiment by saving it on the cloud. The corresponding XML
file is stored in the cloud servers and associated with the
activity in the 3DGameLab. For the learners, the experiment
xml file is downloaded and executed on the SNAP
environment to run the experiment. They can only access the
UI, but they do not have access to the associated code.

VI. USER TRIALS AND FEEDBACK

A. The objective of the trial
A trial of the system was conducted with robotics

educators, where the following sequence of activities were
conducted
• Users’ preliminary proficiency with Procedural

Programming in SNAP.
• Users’ ability to create simple activity and the usability and

effects of Procedural Programming for the purpose.
• Integrating a constructed hardware robot including a MCUs

and three Actuators into a small quest.

Participants were guided through the basics of the SNAP
language and completed two sample example programs
designed to familiarize participants with the development
environment, as well as the custom output component to talk to
the MCU. Participants then constructed a simple two wheel
based robot, with a third flag waving actuator. A small quest
was then given to the participants, to program and control their
MCU based robot through a small hook turn course, and

Fig. 4 (a) The Narrator of the activity (b) An example of an input

component

Figure 5 (a)

Fig. 5 (b)

978-1-4673-7716-4/15/$31.00 ©2015 IEEE 2-4 June 2015, University of the Azores, Ponta Delgada, Portugal
2015 3rd Experiment@ International Conference (exp.at'15)

Page 217

“wave” their flag upon completion. Participants were open to
select either a “remote-control” type of interface, or program
their wheel based robot to traverse the course by program only.

B. Observations
In the event that followed, all participants were able to

gradually create the necessary program, having first established
the networking to their robot, then creation of the sprites to
which code would be related. Participants then built upon this
with use of the SNAP output component to move each actuator
in turn. This program was then built up until the robots were
able to move in a controllable and predictable manner using
skid steering.

All participants were successful in being able to move their
robots at least partway through the track, whilst problem
solving the skid steering, as well as the speed and loop
parameters of their program.

During a focus group discussion afterwards, several key
issues were identified:

• Whilst participants themselves were aware of the objectives
of the exercise, this was not reflected in their program sprites
or control interface for the activity. Participants understood
the link between the software “ports” and the hardware
“ports”, however this was considered a threshold concept,
where both ports needed to be synchronized, thus clear
documentation and output component design is desirable.

• It was also identified by participants that this could also
cause confusion where LEGO Mindstorm (or other MCU)
hardware faults were present, particularly poor wiring
connections, or improper mechanical design flaws) would
cause incorrect response to the SNAP program. As such
debugging systems (although not present in the trial) are
desirable within the SNAP interface.

• With regards to instrumentation and sensors, participants
were unsure what these devices or mechanisms were, and
thus some examples or tutorials on sensors and
instrumentation was requested, and although not specific to
SNAP highlights the issue of open ended hardware design
with novice programmers.

• Participants indicated that the organization of the SNAP
interface was at first confusing, but related to familiarity
with the interface. When creating the interface, participants
felt a more interactive interface was required, where SNAP
blocks showed or indicated what the physical object would
do with any given SNAP block.

 SNAP/Scratch is typically used for game development, but
in this instance it was used to control the experiment; create the
graphical interface for the experiment, and to direct learning of
programming. Participants felt the most appealing aspect was
to have a quest, and achieve a level of operation or
understanding about that quest (in this case motivation of the
physical robot). They also identified they could use RALfie to
demonstrate someone else’s rig first, to understand the
capabilities of the system before building their own, and
indicated that a bank of example activities would considerably
help their understanding of the concepts. Additionally, it was
indicated that sharing of the activities with other participants
was the most memorable aspect of the trial.

CONCLUSIONS
The characteristics and use graphical programming

interface SNAP for creating user interface and control logic of
an experimental rig was discussed. This programming
environment is most suitable for providing a platform
independent and homogenous set of tools to connect a user
created experiment to the internet. This approach of creating
quests can increase motivation and engagement for the users
as well as provide valuable experience on how to build a rig
and encourage collaboration. The SNAP programming
language is designed for primary school students and is
suitable for creating experimental rigs in RALfie where the
aim is to enable students to have hand-on-experience in
building experiments and sharing them with others.

REFERENCES
[1] D. Lowe, P. Newcombe, and B. Stumpers, "Evaluation of the Use of

Remote Laboratories for Secondary School Science Education,"
Research in Science Education, vol. 43, pp. 1197-1219, 2013.

[2] A. Maiti, A. D. Maxwell, A. A. Kist, and L. Orwin, "Integrating
enquiry-based learning pedagogies and remote access laboratory for
STEM education," in IEEE EDUCON 2014, pp. 706-712.

[3] I. F. de Kereki, "Scratch: Applications in Computer Science 1," in
Frontiers in Education Conference, 2008. FIE 2008, pp. T3B-7-T3B-11.

[4] B. Harvey and Jens Mönig, Bringing “No Ceiling” to Scratch: Can One
Language Serve Kids and Computer Scientists?, Constructionism 2010,
Paris.

[5] A. A. Kist, et al., "Overlay network architectures for peer-to-peer
Remote Access Laboratories," in Remote Engineering and Virtual
Instrumentation (REV), 2014 11th Intl. Conf. on, 2014, pp. 274-280.

[6] A. Maiti, A. A. Kist, and A. D. Maxwell, "Using Network Enabled
Microcontrollers in Experiments for a Distributed Remote Laboratory,"
in REV 2014, Porto, Portugal, 2014, pp180-186.

[7] P. Gruenbaum, "Undergraduates Teach Game Programming Using
Scratch," Computer, vol. 47, pp. 82-84, 2014.C. C. Haskel, “Design
Variables of Attraction in Quest-Based Learning”, May 2012.

[8] C. C. Haskel, “Design Variables of Attraction in Quest-Based
Learning”, May 2012.

[9] B. Kaucic and T. Asic, "Improving introductory programming with
Scratch?," in MIPRO, 2011 Proceedings of the 34th International
Convention, 2011, pp. 1095-1100.

[10] R. Pastor, R. Hernandez, S. Ros, D. Sanchez, A. Caminero, A. Robles,
et al., "Online laboratories as a cloud service developed by students," in
Frontiers in Education Conference, 2013 IEEE, 2013, pp. 1081-1086.

[11] O. L. Oliveira, A. M. Monteiro, and N. Trevisan Roman, "Can natural
language be utilized in the learning of programming fundamentals?," in
Frontiers in Education Conference, 2013 IEEE, 2013, pp. 1851-1856.

[12] W. Yoke Seng, M. H. M. Yatim, and T. Wee Hoe, "Use computer game
to learn Object-Oriented programming in computer science courses," in
IEEE EDUCON 2014, pp. 9-16.

[13] I. Rothe, "Organization of a Lego-robots contest offered to high school
kids by engineering students within a project based learning
environment," in IEEE EDUCON 2014, pp. 36-39.

[14] S. A. Nikou and A. A. Economides, "Transition in student motivation
during a scratch and an app inventor course," in Global Engineering
Education Conference (EDUCON), 2014 IEEE, 2014, pp. 1042-1045.

[15] A. Maiti, A. A. Kist, and A. D. Maxwell, "Real-Time Remote Access
Laboratory with Distributed and Modular Design," Industrial
Electronics, IEEE Trans. on, 2014, doi: 10.1109/TIE.2014.2374572.

[16] B. Mott and J. Lester, "Narrative-Centered Tutorial Planning for
Inquiry-Based Learning Environments," in Intelligent Tutoring Systems.
vol. 4053, M. Ikeda, K. Ashley, and T.-W. Chan, Eds., ed: Springer
Berlin Heidelberg, 2006, pp. 675-684.

[17] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, "The
Scratch Programming Language and Environment," Trans. Comput.
Educ., vol. 10, pp. 1-15, 2010.

978-1-4673-7716-4/15/$31.00 ©2015 IEEE 2-4 June 2015, University of the Azores, Ponta Delgada, Portugal
2015 3rd Experiment@ International Conference (exp.at'15)

Page 218

