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A B S T R A C T   

This article showcases a personal decision support tool (PDST) called HOPLITE, for performing insightful and 
actionable quantitative assessments of hospital capacity, to support hospital planners and health care managers. 
The tool is user-friendly and intuitive, automates tasks, provides instant reporting, and is extensible. It has been 
developed as an Excel Visual Basic for Applications (VBA) due to its perceived ease of deployment, ease of use, 
Office’s vast installed user base, and extensive legacy in business. The methodology developed in this article 
bridges the gap between mathematical theory and practice, which our inference suggests, has restricted the 
uptake and or development of advanced hospital planning tools and software. To the best of our knowledge, no 
personal decision support tool (PDST) has yet been created and installed within any existing hospital IT systems, 
to perform the aforementioned tasks. This article demonstrates that the development of a PDST for hospitals is 
viable and that optimization methods can be embedded quite simply at no cost. The results of extensive 
development and testing indicate that HOPLITE can automate many nuanced tasks. Furthermore, there are few 
limitations and only minor scalability issues with the application of free to use optimization software. The 
functionality that HOPLITE provides may make it easier to calibrate hospitals strategically and/or tactically to 
demands. It may give hospitals more control over their case mix and their resources, helping them to operate 
more proactively and more efficiently.   

1. Introduction 

Hospitals play a vital role in health care systems worldwide. Oper
ating continuously all year-round, most hospitals have the capability to 
treat and care for a diverse cohort (i.e., group) of patients with different 
illnesses and conditions, and with different health care requirements. 
Yet the goal of delivering quality care to as many patients as possible, at 
an affordable cost, is an ongoing challenge (Krueger, 2018). Hospital 
output is restricted by finite and often dissimilar health care resources, 
and these are limited by diminishing health care funding (Walczak et al., 
2002). The inherent conflicts between quality, cost, and output, are ever 
present, and require careful and constant mediation (Burdett and Kozan, 
2016). 

There is an essential need for a holistic and predictive view of an 
entire hospital to understand the factors driving outputs and financial 
performance (Krueger, 2018). Currently most hospitals function in a 

reactive manner and have a short-term insular focus. Based upon staffing 
levels and the current setup of theatres, wards, beds, and so forth, pa
tients are chosen from the waiting list and treated opportunistically. 
However, this often leads to significant imbalances between the supply 
and demand for medical resources (Emanual et al., 2020). To provide a 
long-term remedy for this issue it is necessary to fully understand how 
various structural and operational factors affect a hospital’s perfor
mance and output. For instance, there is a need to quickly provide 
situational awareness around the prioritisation, allocation and sharing 
of hospital resources and the performance impacts of capacity-related 
decisions like adding or removing beds in wards, building new the
atres, changing the master surgical schedule (i.e., adding or removing 
sessions, changing session duration or sessions per day, changing the 
number of days theatres operate per week), treating new patient types, 
applying new medical or surgical techniques, and so forth. 

To provide a comprehensive view of hospital capacity this article 
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proposes the development of a software solution with embedded opti
misation methods to help hospital planners and staff perform insightful 
quantitative assessments of hospital capacity and utilization. Deter
mining whether an adequate approach can be devised and put into 
practice is our primary line of inquiry. How best to facilitate the inte
gration of mathematical techniques is our second line of enquiry. This 
article’s approach builds upon the research presented in Burdett and 
Kozan (2016) and Burdett et al. (2017) that is now well established in 
the literature. In those articles, mathematical models and other quan
titative techniques were successfully developed to perform holistic 
hospital capacity assessment and capacity querying activities. A case 
study of a large tertiary hospital was previously used to validate those 
approaches. The practicalities of designing an appropriate decision 
support tool and integrating those models, however, was not considered, 
and provides the motivation for this article. 

Our software solution is called HOPLITE, which stands for hospital 
planning, intel, and tactical evaluation. To the best of our knowledge our 
software solution, is a new capability, that can replace the inexact ad- 
hoc calculations often performed by hand by health care managers 
and planners. HOPLITE is a prototype and a minimum viable product for 
performing various capacity assessment and capacity querying tasks. 
HOPLITE also provides the capability to check whether a hospital’s 
configuration, layout and resources are sufficient to meet current and 
future demands. It also suggests outputs which are achievable when 
demands cannot be met. 

A foremost aim of the HOPLITE software is to handle the many nu
ances that make “prompt” capacity assessments troublesome. The soft
ware and its graphical user interfaces have been implemented in 
Microsoft Excel using VBA and can be run on any personal computer. 
Excel has been chosen as the driver of the PDST because it is an event 
driven framework, and because some capacity assessment tasks and 
queries require a linear and non-linear programming solver. The PDST 
makes use of the inbuilt optimization solver of Excel or the more capable 
and unrestricted “OpenSolver” add-in (Mason (2012)) so that hospitals 
do not have to purchase a licence or subscription for more capable 
optimization software like IBM CPLEX or GUROBI, nor consider the 
integration of a PDST with those software packages. The tool is regarded 
as a PDST because it is developed for one manager and/or planner or a 
small team. 

The format of this article is as follows. In Section 2 a literature review 

and analysis are provided. In Section 3 the details of the quantitative 
framework and techniques used in HOPLITE are provided commencing 
with an outline of key technical details. The specification, capabilities 
and graphical user interfaces are then presented in Section 4. Design 
strategies employed during development are also provided and exam
ples of how the PDST is used to perform various assessments is shown. 
Conclusions and final remarks are given in Section 5. Broader issues 
including potential further extensions to the software are also discussed. 

2. Literature review 

In this section, techniques for hospital case mix planning, capacity 
assessment and capacity allocation are reviewed, and the current state of 
the art is described. Some other loosely related topics like operating 
room planning/scheduling with a focus on capacity are also included. 
Our discussion describes the decision problem addressed, and the 
methods used to solve it. Interface development and the integration of 
mathematical techniques is then focussed upon. 

2.1. Hospital capacity and case mix planning 

Hospital case mix planning, and capacity assessment are contem
porary topics. In recent times there has been considerable interest from 
researchers, academics, and other decision makers. Deficiencies in 
existing health care systems and practices, exacerbated by the COVID 
pandemic, have fuelled research to find better ways to plan and manage 
health care resources. In past research, a variety of approaches have 
been applied to the aforesaid decision problem, including mixed integer 
programming (Ma et al., (2011), Burdett et al. (2017), Shafaei and 
Mozdgir (2018)), stochastic programming (Burdett et al., 2023; 
Freeman, Zhao, & Melouk, 2018; McRae & Brunner, 2020; Neyshabouri 
& Berg, 2017), process mining (Andrews et al., 2022) and multicriteria 
optimisation (Malik et al., 2015; Burdett and Kozan, 2016, Zhou et al., 
2018). Table 1 summarises the most crucial details about recent 
research. 

In summary, Ma et al. (2011) developed and tested a case mix 
planning model maximizing the overall financial contribution of a 
hospital. Chen et al (2015) developed quantitative approaches for pa
tient flow scheduling and capacity planning in a rheumatology depart
ment, which would be useful in a smart hospital and health care 

Table 1 
Summary of recent CMP and related research.  

Article Problem E 
D 

O 
R 

W 
A 
R 
D 

I 
C 
U 

Objectives ST 
O 
CH 

M 
C 

G 
U 
I 

R 
E 
G 

Method 

Ma et al. (2011) CMS ✕ ✓ ✓ ✕ Profit ✕ ✕ ✕ ✕ MIP 
Ma and Demeulemeester (2013) CMP-ORS ✕ ✓ ✓ ✕ Profit, 

Bed Shortage 
✕ ✕ ✕ ✕ MIP 

Malik et al. (2015) ORP ✕ ✓ ✕ ✕ Waiting List 
Size, Costs 

✕ ✓ ✕ ✕ Meta H. 

Jebali and Diabat (2015) ORP ✕ ✓ ✓ ✓ Costs ✓ ✕ ✕ ✕ SAA 
Burdett & Kozan (2016) HCA ✕ ✓ ✓ ✓ Output × 21 ✕ ✓ ✕ ✕ LP, ECM. 
Yahia et al. (2016) CMP ✕ ✓ ✓ ✓ Output ✓ ✕ ✕ ✕ SAA 
Jebali and Diabat (2017) ORP ✕ ✓ ✕ ✓ Cost ✓ ✕ ✕ ✕ SAA 
Burdett et al. (2017) HCA ✓ ✓ ✓ ✓ Output ✕ ✕ ✕ ✕ LP 
Zhou et al. (2018) HCA ✕ ✓ ✓ ✕ Revenue, Equity ✓ ✓ ✕ ✕ DES, MIP, ECM 
Shafaei & Mozdgir (2018) ORP ✕ ✓ ✓ ✓ Value ✓ ✕ ✕ ✕ LP & TOPSIS 
Freeman et al. (2018) ORS ✕ ✓ ✓ ✓ Payment ✓ ✕ ✕ ✕ MIP 
McRae et al. (2018) CMP ✕ ✓ ✓ ✓ Profit ✕ ✕ ✕ ✕ NLP 
McRae & Brunner (2020) CMP ✕ ✓ ✓ ✓ Revenue ✓ ✕ ✕ ✕ SAA 
Burdett et al. (2023) HCA ✕ ✓ ✓ ✓ Output, Unmet Demand, Outsourcing ✕ ✓ ✕ ✓ MIP 
Saha & Rathore (2022) CMP ✕ ✕ ✕ ✓ Expected Cost ✓ ✕ ✕ ✕ Heuristic 
This article HCA ✕ ✓ ✓ ✓ Output ✕ ✕ ✓ ✕ MIP 

Abbreviation: Case Mix Scheduling (CMS); Case Mix Planning (CMP); Discrete Event Simulation (DES); Epsilon Constraint Method (ECM); Graphical User Interface 
(GUI), Hospital Capacity Assessment (HCA); Linear Programming (LP); Multicriteria (MC); Non-Linear Programming (NLP); Operating Room Planning (ORP); 
Operating Room Scheduling (ORS); Regional (REG); Sample Avg. Appr (SAA); 
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environment. Malik et al. (2015) formulated and solved a bi-objective 
aggregate capacity planning problem for operating theatres. Yahia 
et al. (2016) applied the sample average approximation (SAA) approach 
to solve a stochastic planning model. They considered the selection of a 
case mix for a single surgical department, with uncertain surgery du
rations, length of stay and demand. The number of theatre hours 
assigned to each patient group was a primary decision. 

Burdett and Kozan (2016) and Burdett et al. (2017) developed the 
first holistic hospital capacity allocation approach. They include case 
mix constraints in their deterministic mixed integer programming (MIP) 
model or else impose multiple objectives, from which a set of non- 
dominated capacity solutions can be generated. Their approach has 
been applied to a twenty-one objective real-life scenario. Burdett et al. 
(2023) provided the first regional hospital capacity allocation approach 
and applied it to a 15-hospital regional case study. Zhou et al. (2017) 
considered the capacity allocation of hospital wards and the joint opti
mization of hospital revenue and equity among several types of patients. 
In response they proposed a multi-objective stochastic programming 
model with two objectives. As their objective functions have no “closed 
form” they used a data-driven discrete-event simulation to evaluate 
random patient arrivals and lengths of stay. An adaptive epsilon- 
constraint algorithm (ECM) and a multi-objective Genetic algorithm 
were developed to solve the proposed non-linear mathematical model. 
Shafaei and Mozdgir (2018) developed a mathematical model to opti
mise the allocation of OR time among surgical groups and applied a 
robust estimator for values of the model parameters. McRae, Brunner, 
Bard (2018) developed a non-linear mixed-integer programming model 
and incorporated economies of scale. Freeman et al. (2018) considered 
case mix planning and developed a multi-phase approach to generate a 
set of candidate solutions. They applied simulation techniques to eval
uate the master surgical schedule (MSS) and each case mix solution. 
McRae and Brunner (2020) presented a framework for evaluating the 
effect of stochastic parameters on the case mix of a hospital. Liu et al. 
(2019) developed for the daily scheduling of surgical patients, an inte
grated scheduling and capacity planning approach. They declare that 
“traditional scheduling policy, driven by operating room usage, may 
lead to significantly suboptimal use of downstream capacity and may 
result in up to a three-fold increase in total expenses”. In contrast, “a 
scheduling policy based on downstream capacity usage often performs 
close to an integrated scheduling policy, and therefore may serve as a 
simple, effective scheduling heuristic for hospital managers—especially 
when the downstream capacity is costly and less flexible”. Burdett et al. 
(2023) provided the first regional HCA approach and applied it to a 15- 
hospital regional case study. Saha and Rathore (2022) considered phy
sicians as a significant limiting factor in hospital care. They developed a 
two-stage stochastic programming approach in which decisions on 
regular physician allocation and their capacity adjustments are a trade- 
off between expected cost and patient demand fulfillment. To solve the 
problem inexactly, a scenario-based heuristic was applied with one 
thousand scenarios. 

Information Technology and Decision Support Systems. Around the 
world there are various IT platforms for decision making. In the litera
ture the following are prevalent: decision support systems (DSS), expert 
systems (ES), executive information system (EIS), management infor
mation systems (MIS), and management support systems (MSS). There 
does not appear to be a distinct boundary or delineation between the 
different types. As far as we can pertain, a management information 
system organizes and retrieves data and generates reports that summa
rize activities and performance of interest to managers (Burstein & 
Holsapple, 2008); however, an expert system is akin to an electronic 
counsellor, delivering expertise to appropriate staff (Forgionne & Kohli, 
1996). 

Of the different types of IT platform developed, personal decision 
support systems (PDSS) stand out. PDSS were very well-used in the 1980 
s and are a pure form of IT-based management support, generally 
thought of as superior to MIS (Arnott, 2008). The emphasis of PDSS is to 

empower and support individual managers. The term PDSS is not well 
known or used nowadays and has been replaced with the general term 
analytics (Arnott, 2008). What makes PDSS development projects 
different to others is that users do not know what they want, and ana
lysts do not understand what users need, the analyst and user cannot 
provide functional specifications, the users’ concept of the task will be 
shaped by the DSS, and users have the autonomy to tackle the tasks in a 
variety of ways. The term PDSS best fits the type of software developed 
in this article, and the project environment upon which it has been 
developed. 

Regarding health care applications, the following systems are pop
ular: clinical decision support system (CDSS), hospital information sys
tem (HIS), healthcare information technologies (HIT), and hospital 
management support systems (HMSS). Computerized CDSS have rapidly 
evolved since the 1980s (Sutton et al., 2020). This specific type of 
management information system is specifically designed to aid clinical 
decision making by promptly providing actions, advice, alerts, and re
minders, to a clinician. CDSS software often matches individual patients 
to a computerized clinical knowledge base. They are either knowledge- 
based or non-knowledge based. In the former type, rules are pro
grammed, if-then actions are created, and expert medical knowledge is 
followed. In the later, artificial intelligence, machine learning and other 
statistical methods are applied. In recent years Rahimi et al. (2016) 
developed a dynamic risk-based framework for patient prioritization. 
This is regarded as a complex decision-making process, currently 
skewed for instance by surgeons’ opinions, and a static assessment of a 
patient’s condition. That article highlights the development of user- 
friendly software as a necessary development task to facilitate the 
implementation of the proposed framework. Sutton et al. (2020) ana
lysed the application of CDSS and identified both positives and nega
tives. The biggest downsides include, maintaining necessary databases, 
the complexity of data integration, keeping up with changes in data, the 
use of poor-quality data, the use of what is regarded as sensitive infor
mation, and financial viability to develop and set up new CDSS systems. 
Advantages include instant access to patient-specific information, the 
provision of assessments and recommendations, the capability to send 
reminders for preventative care, and alerts about potentially dangerous 
situations. 

Forgionne and Kohli (1996) are one of the first to propose the 
development and application of hospital management support systems 
(HMSS). They view hospitals as a “make-to-order” enterprises and use 
concurrent engineering (CE) principles in their HMSS. The goal of their 
HMSS is to improve quality, reduce costs, and decrease the lead time 
from admission to discharge for new or readmitted patients. James et al. 
(2010) describes the development of a DST for expert elicitation of data. 
The integration of sophisticated mathematical techniques is focused 
upon. They demonstrate how to create a viable DST in Java, using 
object-oriented design, open-source libraries, data persistence using 
MySQL, and the application of the R statistical software to perform all 
statistical calculations. The software architecture is based around the 
creation of a project model that serves to encapsulate all data and data 
relationships necessary for an elicitation project. Each project consists of 
several independent project phases. Gupta and Sharda (2013) and 
Bardhan and Thouin (2013) have reviewed the application and current 
state of research of healthcare information technologies and the appli
cation of informatics. Six key themes have been identified in the former 
article. In the later article, it was identified that spending on health IT 
does matter, and this has important policy implications for investments 
in health IT. Additionally, the usage of financial management systems is 
associated with lower hospital operating expenses. Sebaa et al. (2017) 
developed a medical decision support platform and clinical relational 
database as a medical data warehouse. The platform is intended to 
identify health care trends and to report other important statistics to 
users. Bodina et al. (2017) considered the identification of objective 
criterions for the strategic management of a complex hospital and the 
allocation of scarce hospital resources. An evaluation (a.k.a., scoring) 
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system was described based upon six themes, namely strategic, oper
ating, research, economic, organizational, and quality. No actual “con
crete” mathematical methods were however provided or tested. 
Bruggemann et al. (2021) developed a web accessible simulation-based 
decision support tool to explore hospital resource usage in high demand 
circumstances like the COVID pandemic. They advocate the develop
ment of “what-if” scenarios for the evaluation of stochasticity and the 
export of results to a CSV file to enable connectivity to other software 
suited. The capability to provide meaningful and easy to understand 
outputs is also emphasised. 

Corporate Solutions. Corporate healthcare analytics software and 
services is increasing and there are numerous market drivers. The need 
for better capacity management and pricing in hospitals and a need to 
curtail healthcare costs are explicitly quoted in an online report (Hos
pital Capacity Management Solutions Market). In that report, healthcare 
software is described as either integrated or standalone, and delivered 
on-premises, or by the cloud. The following products are described as 
most popular at present:  

• Asset Management (Medical Equipment Management, Bed 
Management)  

• Patient Flow Management Solutions  
• Workforce Management (Nursing & Staff Scheduling Solutions, 

Leave and Absence Management)  
• Quality Patient Care 

The major players in the global hospital capacity management so
lutions market are listed as Cerner Corporation (US), McKesson Corpo
ration (US), HealthStream (US), Stanley Healthcare (US), and Halma plc 
(US). Other prominent players in this market include Infosys (India), 
Teletracking Technologies, Inc. (US), NextGen Healthcare (US), All
scripts Healthcare Solutions, Inc. (US), Epic Systems Corporation (US), 
Sonitor Technologies (US), Koninklijke Philips N.V. (Netherlands), 
Neusoft Corporation (China), Infinitt Healthcare Co., Ltd. (South Korea), 
JVS Group (India), Infor Systems (US), Care Logistics (US), WellSky 
(US), Simul8 Corporation (US), and Alcidion Corporation (Australia). 

Dashboards have become particularly popular, and many are pro
duced and packaged in business intelligence solutions (https://www.si 
sense.com). Most dashboards summarise outcomes, performance, and 
cost information over a given period. 

General Findings. Hospital case mix planning and capacity alloca
tion/ assessment is a niche research area with relatively few articles 
overall. Despite the arguments concerning the efficacy and potential of 
recent analytical approaches, actual decision support tools (DST) using 
those approaches have not been described. From this we infer that they 
have not been implemented and deployed, and if they have, it is not 
extensive. We also infer that prior articles on the topic are far too 
nuanced for hospital planners, information technology staff, and man
agers, to understand and interpret. As such there is little motivation to 
progress these methods to the point where they can be deployed within 
hospital information systems. 

Providing advanced predictive analytics is an important goal in the 
healthcare industry (Krueger, 2018). The development of planning 
software is, however, challenging. To apply a software solution, it is 
necessary to fully understand the needs of the potential hospital users 
and to ensure access to appropriate hospital information. This is also 
true of analytical methods. Unfortunately, hospitals are data rich, and 
information poor (Adeyemi et al., 2013). Raw data is frequently held 
hostage in disparate enterprise IT systems, data archives and data 
warehouses (Krueger, 2018) and access may be granted to only a select 
number of personnel within an organisation. The time to extract infor
mation from raw data stored within the IT system may also be prohib
itive and is at the very least, nuanced. 

Despite the great need for decision support tools, there appears to be 
a significant lack of them to implement and put into practice (Hum
phreys et al., 2022). Of the existing decision support tools found in the 

literature, anecdotal evidence suggests very few hospitals have adopted 
them for regular use. As Hulshof et al. (2013) reports, current techniques 
are too limited, being too myopic, focussing only on the development of 
long-term cyclical plans, and are incapable of providing solutions for 
real-life sized instances. Hawkinson et al. (2018) also comments that 
integrated models that can tie together competing metrics in capacity 
planning decisions are not being developed. Nor are there tools that 
provide sufficient “what-if” capabilities to support managerial decision 
making. 

For decision making and planning it is vital that hospital personnel 
transform information into task, event, and process knowledge. Ac
cording to Forgionne and Kohli (1996), comprehensive decision support 
requires consolidation of separate information systems or data sources, 
and the effective delivery of integrated capabilities and knowledge, 
involving clinical and administrative information, in a systematic, 
complete, and timely manner. However, all these activities are still 
complex to this day, and it would appear, there are no easy shortcuts in 
the development of effective DSS and DST. 

Information technologies are often described as having the potential 
to improve both the quality and effectiveness of healthcare providers 
(Bardhan and Thouin, 2013). However, the impact of health information 
technologies (HIT) on healthcare delivery and quality of care is difficult 
if not impossible to determine, without first applying them for an 
extended period and comparing metrics of performance. The quality of 
the human user interface also plays an important part in the adoption of 
many information technology and decision support systems. The aes
thetics, however, cannot justify lack of capability and essential analyses 
and evaluations must be present. 

In the cited literature, various DSS and DST are described. However, 
most articles only provide very high-level explanations, and many 
important technical details are not described. There is truly little advice 
or transferrable methodology. Furthermore, there is no detailed 
description of why interfaces are set up a particular way and how 
alternative layouts affect decision making. At this point in time, very few 
of the DSTs proposed in health-related articles use and or integrate so
phisticated mathematical techniques. Of the papers that do provide so
phisticated mathematical techniques, very few consider how analytical 
techniques could be used by hospitals, and as such, only contribute to 
the literature. Overall, there are few managerial insights provided in 
those technical articles. 

Many DSTs are described as tools to make health care resource al
locations. Most of those, however, suggest a manual approach, not an 
automated optimization approach. We have observed a variety of claims 
that proposed data warehouses alone will help decision makers (i.e., like 
Sebaa et al., 2017), however, there is no evidence to suggest that deci
sion makers would know how to use the data that is collected and 
archived in their platforms. Nor is there any evidence to suggest that by 
simply looking at dashboard results, it would be clear how to apportion 
resources optimally. 

There are many DSS in other domains, and this leads us to the 
conclusion that those may be a good reference point for healthcare and 
should be investigated in more detail. For instance, the article by James 
et al. (2010) is a model of how mathematical techniques can be imple
mented successfully in a DSS. A review of other domains, however, is a 
considerable task, outside the scope of this article. 

3. Quantitative framework 

In this section, the mathematical framework behind HOPLITE is 
detailed. HOPLITE is a predictive analytics tool designed for health care 
managers (HCM). HCM have a variety of strategic and operational re
sponsibilities, some of which are delegated to other staff. One of their 
key strategic responsibilities, however, is capacity planning (Ozcan, 
2017). HOPLITE was developed and validated collaboratively with 
hospital administrators and clinicians who were involved in our 
research project. 
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3.1. General overview and assumptions 

The terms and concepts below are important for understanding 
HOPLITE, and it is necessary to discuss them first. 

Hospital Capacity. Hospital capacity is viewed as the number of 
patients of different types treatable over time or the number of activities 
of different types that can be performed over time. As such, it can also be 
viewed as a rate. 

Patient Types. Hospitals treat and care for a diverse cohort of pa
tients with very different illnesses and conditions, with very different 
health care requirements. For planning purposes, it is necessary to 
aggregate patients into a finite and more manageable number of patient 
type groupings. Aggregation by specialty (i.e., medical, and surgical) 
and by condition (i.e., diagnostic related group (DRG)) is logically 
appropriate based upon our observations and consultations with hos
pital practitioners. Other approaches could be taken, based for instance 
upon the clustering of patients with similar attributes, however, this 
does not conform with the way hospitals themselves classify patients, 
and would inevitably be less intuitive to the end users. Patients of the 
same type often have different treatments and resource requirements, 
and this necessitates the definition of a sub-group or sub-type. 

Hospital Activities. The purpose of HOPLITE is to perform various 
assessments, evaluations and queries relating to hospital activity. In our 
prototype tool, typical high-level activities like pre-operative care 
(preop), surgery (sur), post anaesthesia care (pac), post-operative care 
(postop), and intensive care (ic) are currently included. Lower-level 
activities are not considered for the simple reason that they are of 
dubious value strategically and overcomplicate the assessments and the 
software. This, however, is not to say that they could and should not be 
included at some point, in another version. Preoperative care and post 
anaesthesia care occur either in a specific surgical care area or in a ward 

bed. Also, any significant surgery occurs in an operating theatre and 
post-operative recovery is almost always performed in a ward bed. 

Patient Pathways. The path taken by patients during their hospital 
stay is an important piece of information relevant to an assessment of 
hospital capacity. Patient pathways can be used to distinguish patients 
of different types and sub types. Patient pathways can be defined in 
diverse ways. In this article a patient pathway is deemed a list of the 
places (a.k.a., hospital areas) a patient visits and a description of the 
activity(s) performed in each of those places. Formally, pathway = {(act,
w, t)|w ∈ W, t ∈ R} where W is the set of hospital areas and t is the length 
of stay (a.k.a., occupation time) in that area, recorded in a suitable unit 
of measure like hours or minutes. 

Pathways should be extracted for each patient type grouping g ∈ G. 
They can either be extracted from hospital records or inferred. 
Regarding surgical patients, there are a finite number of surgical path
ways. We have observed that most surgical patients have a similar set of 
activities and a common flow through the hospital. The paths that may 
be taken are summarised in the directed “cyclic” graph shown in Fig. 1. 
In this network there are no unknown entry and departure points. 
Assuming the possibility of at most two surgeries (i.e., two cycles), this 
network produces 51 paths. These can be extracted using a depth first 
traversal algorithm. 

The network in Fig. 1 includes a death event activity. This is worth 
adding because patients that die during surgery, intensive care, and 
postop activities have a different “resource consumption” profile. If 
these events are not distinguished, expected activity durations will be in 
error. Any random variable created from the data will be “bi-modal” and 
may have unnecessarily long “tails”. 

Patient Profiles. A resource consumption profile (RCP) is recom
mended to be created for each patient type or sub type. Conceptually it is 
a set of the resources required and the time each of those is required. A 

Fig. 1. Network of potential pathways for surgical patients.  

Fig. 2. Primary quantitative methods of HOPLITE.  
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profile is formally defined as a set of tuples {(r, t)|r ∈ R, t ∈ R } where the 
time utilisation t is measured in either minutes or hours. From a practical 
perspective, the time utilisation is unlikely to be invariable. As such it is 
worth computing an expected (a.k.a., averaged) value based upon his
torical or other empirical evidence. Not all resources need to be 
included; a guideline would be to include “principal” resources, for 
instance, which have been established as bottlenecks, as being scarce, or 
as being highly costly. A minimal profile may also include only loca
tions. In many patient pathways the same location is visited numerous 
times, or the same resource is used for different activities. When 
assessing capacity, how many times a location or any other resource is 
required is not important, but the total time required is. In this article, 
only hospital areas are considered as resources. As such, the RCP is 
{(w, t)|w ∈ W, t ∈ R }. 

The RCP discussed above is “inherently linked” to the patient 
pathway discussed earlier. A patient pathway can be converted into a 
RCP by aggregating pathway records with the same location or resource. 
This can be done iteratively by adding tuples from the pathway to the 
profile. 

Example. If pathway = [(preop, sca, t1),(sur, ot, t2),(ic, icu, t3),(postop,
ward, t4), (preop,ward, t5),(sur, ot, t6),(pac, sca, t7),(postop,ward, t8)] then 
profile = [(sca, t1 + t7), (ot, t2 +t6), (ward, t4 +t5 +t8), (icu, t3)]. 

Patient Case Mix and Sub Case Mix. A sub-division of a patient 
cohort into specific patient types is called the case mix. The case mix is 
typically viewed as either the proportion of each patient type or as an 
actual number of patients of each type. A sub-division of the patients of a 
particular type into different sub-types is called the sub case mix or 
simply sub mix. The sub mix is the proportion of each sub-type. 

Master Surgical Schedule (MSS): How often theatres are used, and 
how effectively they are used, affects the output of a hospital. The 
operating theatres of a hospital operate on certain days of the week and 
at certain times during the day. This results in a set of theatre sessions, 
which can be used for surgical procedures. A master surgical schedule 
(MSS) is a plan that describes which hospital unit or specialty has access 
to each theatre session. 

Final Remarks: The creation of this PDST has raised some key 
questions. How much detail should be included is one question of in
terest. It is hypothesised that a minimum viable PDST should only 
include theatre, ward, and intensive care unit areas. Similarly, only 
surgery, intensive care and postop activities should be included. Surgical 
care areas and the associated pre-operative and post anaesthesia care 
activities could be left out because the time requirements are small at 
those locations, and those areas usually have excess bed capacity. In
dividual treatment spaces, like beds, should not be treated indepen
dently; they should be aggregated. As such, task allocations to individual 

Table 2 
Notation and key parameters.  

SYMBOL MEANING ADDITIONAL NOTES 

G Set of patient types  
Pg Set of patient sub types 

within group g  
A Set of all surgical/ 

medical activities  
Ag,p The set of activities for 

patients of sub type (g,
p)

• Ag,p = {(g, p,1), (g, p,2), (g, p,3) }

Kg,p The number of activities 
in the profile for patient 
sub type (g, p).  

• Kg,p = 3 

t(g,p,k) Time (deterministic) to 
perform activity type (g,
p,k). Otherwise viewed 
as the resource time 
consumed. Unit is 
hours.  

• k = 1⇒ theatre “surgery” time 
k = 2⇒ ward postop time 
k = 3⇒ intensive care time 

Aw The set of activities 
performed in area w  

OT, ICU The set of theatres and 
intensive care beds  

WARDS The set of recovery 
wards  

W Set of hospital 
areas.W =

OT ∪ ICU ∪ WARDS  

• Areas include wards, theatres, and the 
intensive care area 

Sw Number of treatment 
spaces in area w.  

• Typically refers to number of beds 
present. 

Beds Total number of ward 
recovery beds  

• Beds =
∑

w∈WARDSSw 

ICBed Total number of 
intensive care beds  

Usew Time usage of area w  • Unit is hours 
Wa The set of areas that 

activity a can be 
performed in. This set 
describes alternative 
options.  

• There must be at least one option, i. 
e.,|Wa| ≥ 1 

Tw The time availability of 
hospital area w ∈ W  

• Unit is hours 

μG
g Case mix. The 

proportion of patients 
of type g amongst the 
entire patient cohort.  

•
∑

gμG
g = 10 ≤ μG

g ≤ 1 

μGP
g,p Sub type mix. The 

proportion of patients 
of sub type p amongst 
type g  

•
∑

p∈Pg
μGP

g,p = 1∀g ∈ G0 ≤ μGP
g,p ≤ 1 

n̂G
g , n̂GP

g,p 
Target case mix and sub 
mix  

• Conditionally,n̂G
g = μG

g N̂ 

Conditionally,n̂GP
g,p = μGP

g,p n̂G
g 

N̂ Target number of 
patients  

• N̂ =
∑

g n̂G
g or N̂ =

∑
g
∑

p∈Pg
n̂GP

g,p 

β̂a,w Target allocation  • Consequence:n̂GP
g,p =

∑
w∈Wa

β̂a,w 

$
GP
g,p 

The revenue specified 
for a specific sub type  

• $G
g =

∑
p∈Pg

nGP
g,p$

GP
g,p and $̂ =

∑
g$

G
g 

N Total number of 
patients to be treated 
[DVAR]  

• N =
∑

gnG
g =

∑
g
∑

p∈Pg
nGP

g,p 

nG
g Number of type g ∈ G 

patients to be treated 
[DVAR]. The name/ 
descriptor of the type is 
denoted IDg.  

• G is the set of patient types 
ngG=p∈Pgng,pGP ∀g∈GConditionally, 

nG
g = μG

g N 

nGP
g,p Number of sub type p ∈

Pg patients to be treated 
[DVAR]. The name/ 
descriptor of the sub 
type is denoted IDg,p.  

• Pg is the set of patient sub types. 
Conditionally, nGP

g,p = μGP
g,p nG

g 

βa,w The number of activities 
of type a = (g, p, k)
assigned to hospital 
area w, where g is the 
patient type, p is the sub  

• 1 ≤ k ≤ Kg,pβa,w = 0∀a ∈ A,∀w ∈ W\Wa  

Table 2 (continued ) 

SYMBOL MEANING ADDITIONAL NOTES 

type, and k is the 
activity type indexer 
[DVAR]. 

M Total number of 
sessions in the MSS  

• M = weeks × days × sess × |OTU|M × D is 
the total time availability for surgical 
activities 

D Duration of sessions in 
the MSS  

• Typically, D = 4 hrs 

days Days per week in that 
theatres are running in 
MSS  

• Typically,days = 5 

sess Sessions per day in MSS  • Typically,sess = 2 
weeks Number of weeks over 

which an assessment is 
performed  

• weeks ≥ 1 

mg Number of sessions 
assigned to patients of 
type g. Real valued and 
may take fractional 
values  

• mg = μG
g M or else it is chosen such that 

mg ≤ μG
g M
∑

gmg = M  
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beds are avoided. This contrasts with the numerical studies in Burdett 
et al. (2017) and Burdett and Kozan (2016) which were “over-detailed” 
in that respect. 

3.2. Techniques 

In this section the quantitative techniques behind HOPLITE are 
described. The main procedures facilitated by HOPLITE are summarised 
in Fig. 2. Table 2 then describes all notation, parameters, and termi
nology needed to understand them. Decision variables are labelled 
DVAR in Table 2. 

3.2.1. Basic assessment of capacity 
An approach to perform a basic assessment of capacity is first 

described. This approach involves static calculations and does not 
require the application of a mathematical optimization model. The main 
idea behind the approach is the restriction of capacity by a particular 
resource type. Evaluating changes to key parameters like M,D, days, sess,
weeks, Sw can be quickly evaluated and this permits hospital capacity 
expansion planning and other what-if assessments. Resource utilisation 
information can be computed, viewed, and actioned. 

Method 1. Given an MSS template and a pre-established allocation 
of theatre sessions to specialties (i.e., mg) an important task is to identify 
the patients, denoted N,nG

g ,nGP
g,p , that can be theoretically treated. If we 

assume that there is only one ward option for each postop activity, the 
static calculations described by equation (1) and (3) are sufficient to 
determine the case mix and sub mix. Only theatre usage is restricted 
with this approach, and all other resource type usage is unrestricted. 

nG
g =

mgD
∑

p∈Pg
μGP

g,ptg,p,1
∀g ∈ G (1)  

Term, mgD is the total time available, and the denominator is the 
weighted average surgery time. 

Method 2. A second query of a similar nature can also be performed 
using Equation (2). With this approach it is assumed that output is 
restricted by ward bed availability, and not theatre availability. 

Beds are assumed available 24 hrs/day and 7 days/week; hence 
availability is 168 hrs/week per bed. Parameter wardg,p is the specific 
ward assigned to perform the postop activity designated (g, p,2). 

nG
g = (168 × weeks × Sw)

/
∑

p∈Pg
μGP

g,p

(
tg,p,1 + tg,p,2

)
wherew = wardg,p (2)  

In equation (2), the denominator represents the weighted average time 

utilisation in a ward bed. In many hospitals, ward beds are acquired and 
made vacant before surgery is performed. Hence, the total time 
consumed is tg,p,1 + tg,p,2. 

For both methods, the following calculations are made: 

nGP
g,p = μGP

g,pnG
g ∀g ∈ G, ∀p ∈ Pg,N =

∑

g∈G
nG

g (3)  

BedUse =
∑

g∈G

∑

p∈Pg
nGP

g,p

(
tg,p,1 + tg,p,2

)
,BedUt

= 100 × BedUse

/

(168 × Beds) (4)  

BedUsew =
∑

g∈G

∑

p∈Pg |wardg,p=w
nGP

g,p

(
tg,p,1 + tg,p,2

)
∀w ∈ WARDS  

BedUtw = 100 × BedUsew/(168 × Sw) (5)  

OtUse =
∑

g∈G

∑

p∈Pg
nGP

g,p

(
tg,p,1

)
,OtUt = 100 × OtUse

/

(M × D) (6)  

IcUse =
∑

g∈G

∑

p∈Pg
nGP

g,p

(
tg,p,3

)
, IcUt = 100 × IcUse

/

(168 × ICBed)

(7)  

3.2.2. Advanced assessments of capacity 
The methods in this section constitute a more advanced assessment 

of capacity. Identifying the maximum number of patients treatable, over 
time, given specified time availabilities of ward beds, theatres, and 
intensive care beds, and some notion of case mix, provides useful in
formation to hospital managers and planners. A mathematical model 
must be applied to determine the exact number of each type/sub-type, 
namely nG

g and nGP
g,p , and a resource allocation βa,w, because of the 

competition for common resources, and the availability of optional lo
cations and resources to choose from. It is not possible to know how to 
assign resources just by looking, or to apply static calculations. 
Conceptually this decision problem is akin to multi-knapsack and bin- 
packing problems. 

Method 1. When a case mix is viewed as the proportion of all pa
tients treated, the necessary optimization model is as follows: 

Maximize.N 

Subject to 

nGP
g,p =

∑

w∈Wa
βa,w∀a ∈ A (8)  

Fig. 3. Main application and options window.  

R.L. Burdett et al.                                                                                                                                                                                                                               



Expert Systems With Applications 248 (2024) 123367

8

∑

∀a∈Aw
βa,wta ≤ TwSw∀w ∈ W (9)    

▪ 
∑

g∈G
∑

p∈Pg
β(g,p,1),OTtg,p,1 ≤ TOTUSOTU (10)  

▪ 
∑

g∈G
∑

p∈Pg
β(g,p,2),w

(
tg,p,1 +tg,p,2

)
≤ TwSw∀w ∈ WARD (11)  

▪ 
∑

g∈G
∑

p∈Pg
β(g,p,3),ICUtg,p,3 ≤ TICUSICU (12) 

nGP
g,p ≥ μGP

g,pnG
g ∀g ∈ G, ∀p ∈ Pg (13)  

nG
g ≥ μG

g N∀g ∈ G (14)  

Fig. 4. Project creation window.  

Table 3 
Main project file and primary inputs.  

File Type: *.project File Type: *.config File Type: *.patient 

Project Name,name 
Hospital Configuration,*.config 
Patient Information,*.patient 
Case Mix,*.mix 
Session,*.session 
Targets,*.target 
Allocation,*.alloc 

Intensive Care Beds,SICU 

Theatres,SOTU 

Wards,|WARD|
Ward Information,{([w], IDw, Sw)}

Patient Types,|G|
Patient Type, 
{
[g], IDg,

⃒
⃒Pg
⃒
⃒
}
Patient Sub Type, 

{
[g][p], IDg,p

}
Profile, 

{
[g][p], tg,p,1 , tg,p,2, tg,p,3,Ag,p

}
Revenue,

{
[g][p], $2

g,p

}
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βa,w ≥ 0∀a ∈ A,∀w ∈ Wa (15)  

Equation (8) is a balance equation, providing a link between the allo
cations made and the number of patients of a given sub type. Equation 
(9) is a generic constraint for the time availability restriction of hospital 
area. Equation (10)-(12) are respectively specific to OT, WARD, and ICU 
areas. Typically, Tw = weeks × 7 × 24∀w ∈ W\OTU and TOTU = weeks×
days× sess× D. Equation (13) and (14) are “administrative” constraints 
enforcing specified case mix and sub mix proportions. 

Method 2. Anecdotally, we have observed that hospitals do not al
ways view the case mix as a proportion of the whole. Instead, they view 
case mix relative to the theatre time allocated to each group type. In that 
scenario a different optimization model is required: 

Maximize.
∑

gnG
g 

Subject to. 
Constraint (8), (9) or (10) – (12), (13), (15) 

∑

p∈Pg
nGP

g,pt(g,p,1) ≤ mgD∀g ∈ G (16)  

nG
g ≥ 0∀g ∈ G (17)  

Constraint (16) is added to restrict output by session time allocated. The 
number of sessions assigned to each group is mg = μG

g M. To simplify 

matters, it is recommended that all theatres are aggregated into a single 
area within the model input data. Hence, the number of spaces in that 
area is the number of theatres. It can be assumed that there is only one 
ICU in most hospitals, and all intensive care beds are there. If that is not 
the case, it is recommended to aggregate all the ICU beds into one area 
too. 

3.2.3. Evaluating case mix feasibility and requirements 
Testing the feasibility of a selected case mix and/or resource allo

cation is another useful capacity query. All intensions specified by a 
planner are hereby designated as targets and denoted using the variables 
n̂G

g , n̂
GP
g,p , β̂a,w. If only β̂a,w is defined, then the usage level of each resource 

can be directly evaluated using equation (4)-(7). If no resource is over- 
used, then feasibility of the allocation is verified. In these circumstances, 
nGP

g,p =
∑

w∈Wa
β̂a,w and nG

g =
∑

p∈Pg
nGP

g,p . If n̂G
g or n̂GP

g,p or both are defined, 

but β̂a,w is not, it is necessary to solve the model from Section 3.2.2 to 
identify whether a feasible resource allocation can be obtained. Two 
additional constraints are, however added, namely nG

g = n̂G
g ∀g ∈ G and 

nGP
g,p = n̂GP

g,p∀g ∈ G,∀p ∈ Pg. 
Determining the number of surgical sessions required in the MSS for 

each specialty is another useful piece of information. Given target n̂G
g 

then mg =
n̂

G
g

∑
p∈Pg

μGP
g,p tg,p,1

D . The numerator is the weighted average multi

plied by the number of patients. Similarly, given n̂GP
g,p , then mg =

∑
p∈Pg

n̂
GP
g,p tg,p,1

D ∀g ∈ G. 

Table 4 
Concrete examples of primary files shown in Table 3.  

scenario_1.project scenario_1. 
config 

scenario_1.patient 

Project Name,scenario_1 
Hospital Configuration, 
scenario_1.config 
Patient Information, 
scenario_1.patient 
Case Mix, 
Session, 
Targets, 
Allocation, 

Intensive Care 
Beds,5 
Theatres,10 
Wards,5 
Ward Info, 
[1],Ward 1,2 
[2],Ward 2,5 
[3],Ward 3,10 
[4],Ward 4,14 
[5],Ward 5,3 

Patient Types,5 
Patient Type, 
[1],Specialty 1,2 
[2],Specialty 2,1 
[3],Specialty 3,3 
[4],Specialty 4,1 
[5],Specialty 5,1 
Patient Sub Type, 
[1][1],Specialty 1-1 
[1][2],Specialty 1-2 
[2][1],Specialty 2-1 
[3][1],Specialty 3-1 
[3][2],Specialty 3-2 
[3][3],Specialty 3-3 
[4][1],Specialty 4-1 
[5][1],Specialty 5-1 
Profile, 
[1][1],0,1.2,17.86,Ward 1 
[1][2],6,1.25,8.35,Ward 1 
[2][1],0,2.4,16.31,Ward 2, 
Ward 1,Ward 5 
[3][1],0,6.5,12.94,Ward 3 
[3][2],0,4.56,12.39,Ward 3 
[3][3],0,7.6,5.54,Ward 3 
[4][1],0,3.4,18.99,Ward 4 
[5][1],12,4.1,22.81,Ward 5, 
Ward 4 
Revenue, 
[1][1],1000.0 
[1][2],1500.0 
[2][1],600.0 
[3][1],2500.0 
[3][2],6000.0 
[3][3],3700.0 
[4][1],10000.0 
[5][1],5500.0  

Table 5 
Auxiliary input files.  

File Type: *.mix File Type: *.session File Type: *.alloc File Type: *.target 

Case Mix, 
{(

[g], IDg , μG
g )
}

Sub Mix,
{(

[g][p], IDg,p , μGP
g,p )

}
Patient type, 
{(

[g], IDg,mg)
} Allocation,

{(
[g][p][k], descr, β(g,p,k),w

)}
Patient type, 
{(

[g], IDg, n̂
G
g )
}

Patient Sub Type,
{
([g][p], IDg,p, n̂

GP
g,p )
}

Table 6 
Concrete examples of files shown in Table 5,Table 6.  

scenario_1. 
mix 

scenario_1. 
session 

scenario_1.alloc scenario_1. 
target 

Case Mix, 
[1],5 
[2],43 
[3],18 
[4],9 
[5],25 
Sub Mix, 
[1][1],70 
[1][2],30 
[2][1],100 
[3][1],25 
[3][2],40 
[3][3],35 
[4][1],100 
[5][1],100 

Patient Type, 
[1],Specialty 
1,12 
[2],Specialty 
2,25 
[3],Specialty 
3,34 
[4],Specialty 
4,10 
[5],Specialty 
5,19 

Allocation, 
[1][1][1],Specialty 
1–1@Ward 1,5.26 
[1][2][1],Specialty 
1–2@Ward 1,2.42 
[2][1][1],Specialty 
2–1@Ward 2,22.88 
[2][1][2],Specialty 
2–1@Ward 1,0 
[2][1][3],Specialty 
2–1@Ward 5,27.94 
[3][1][1],Specialty 
3–1@Ward 3,6.11 
[3][2][1],Specialty 
3–2@Ward 3,9.17 
[3][3][1],Specialty 
3–3@Ward 3,8.15 
[4][1][1],Specialty 
4–1@Ward 4,11.22 
[5][1][1],Specialty 
5–1@Ward 5,0 
[5][1][2],Specialty 
5–1@Ward 4,29.38 

Patient Type, 
[1],Specialty 
1,10 
[2],Specialty 
2,55 
[3],Specialty 
3,65 
[4],Specialty 
4,35 
[5],Specialty 
5,53 
Patient Sub-Type, 
[1][1],Specialty 
1–1,5 
[1][2],Specialty 
1–2,5 
[2][1],Specialty 
2–1,55 
[3][1],Specialty 
3–1,16 
[3][2],Specialty 
3–2,20 
[3][3],Specialty 
3–3,29 
[4][1],Specialty 
4–1,35 
[5][1],Specialty 
5–1,53  
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3.2.4. Identifying a case mix that best meets given targets 
In Section 3.2.3, the feasibility of a target case and/or sub mix was 

discussed. If those targets are infeasible, a pertinent question is, what is 
the closest feasible case mix to the designated targets. The model shown 
in Section 3.2.2 should be solved such that the deviation between the 
targets and the actual values is minimized. If the targets can be met 
exactly, then the objective value will be zero. 

For this capacity query it is assumed that exceeding one target is not 
sufficient to counterbalance any unmet target. In other words, the 
constraints nG

g ≤ n̂G
g ∀g and or nGP

g,p ≤ n̂GP
g,p∀g,∀p ∈ Pg should be added. The 

following upper bound is also needed: 

β(g,p,2),w ≤
TwSw(

tg,p,1 + tg,p,2
) ∀(g, p, 2) ∈ A|,∀w ∈ W(g,p,2) (18)  

This constraint is helpful when solving the decision model with a non- 
linear solver. Adding upper bounds is general advice provided on the 
OpenSolver website. As theatres are deemed generic, and there is one 
ICU, the following upper bounds could also be imposed: 

β(g,p,1),w ≤
TOTUSOTU(

tg,p,1
) ∀(g, p, 1) ∈ A,∀w ∈ W(g,p,1) (19)  

β(g,p,3),w ≤
TICUSICU(

tg,p,3
) ∀(g, p, 3) ∈ A,∀w ∈ W(g,p,3) (20)  

Several variant objective functions may be used, and these relate to 
different “targeting options”. 

Target Option 1 (TO1): Given targets n̂G
g and importance weights 

ωg, the objective is either of the following: 

Minimize‖nG − n̂G
‖1 =

∑

g
ωg

⃒
⃒
⃒nG

g − n̂G
g

⃒
⃒
⃒ ≡

∑

g
ωg

(
n̂G

g − nG
g

)
(21)  

Minimize‖nG − n̂G
‖2=

(
∑

g
ωg

(
nG

g − n̂G
g

)2
)1/2

orMinimize
∑

g
ωg

(
nG

g − n̂G
g

)2

(22)  

The absolute value term 
⃒
⃒
⃒nG

g − n̂G
g

⃒
⃒
⃒ can be replaced with (n̂G

g − nG
g ) in 

equation (21) as nG
g ≤ n̂G

g . This makes equation (21) a linear expression. 
Equation (22), however, is non-linear and that necessitates the appli
cation of a non-linear solver. Minimizing the sum of squares 
∑

gωg

(
nG

g − n̂G
g

)2 
is a viable alternative. That expression is a multivar

iate quadratic function (see Appendix A-1). As such, it is hypothesised 
that the decision model may be solved more efficiently via Quadratic 
Programming techniques, rather than generic non-linear solvers. 

If sub-types are specified, then targets n̂GP
g,p may be defined as follows, 

n̂GP
g,p = μGP

g,p n̂G
g . These can also be chosen to be explicitly met too. 

Target Option 2 (TO2): Given targets n̂GP
g,p the objective is either of 

the following: 

Minimize‖nGP − n̂GP
‖1,1 =

∑

g
ωg

∑

p∈Pg

(
n̂GP

g,p − nGP
g,p

)
or
∑

g
ωg

∑

p∈Pg

(
n̂GP

g,p − nGP
g,p

)
/

n̂GP
g,p

(23)  

Minimize‖nGP − n̂GP
‖2,2 =

(
∑

g
ωg

∑

p∈Pg

(
nGP

g,p − n̂GP
g,p

)2
)1

2

(24)  

Like equation (21), equation (23) is linear, because nGP
g,p ≤ n̂GP

g,p . Equation 
(24), however, is non-linear like (22). It is also a quadratic function (see 

Fig. 5. HOPLITE GUI 1 – Solution “By Theatre”.  
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Appendix A-2). 
Target Option 3 (TO3): Given both targets n̂G

g and n̂GP
g,p the objective 

is ‖nGP − n̂GP
‖+ ‖nG − n̂G

‖. If n̂G
g <

∑
p∈Pg

n̂GP
g,p then the definition of n̂G

g is 

inconsistent, and it makes sense to redefine n̂G
g =

∑
p∈Pg

n̂GP
g,p automati

cally. In general, the update n̂G
g = max

(
n̂G

g ,
∑

p∈Pg
n̂GP

g,p

)
is appropriate. 

Further things to note. The alternative norms shown do different 
things and will not produce the same optimal decisions. The 2-norm will 
ensure most of the targets are met or are minimally unmet. This is 
because any difference is squared. The 1-norm can lead to solutions 
which meet some targets exactly at the expense of others. If the objective 
is zero, i.e., the norms are zero, then there may be a better solution that 
satisfies all targets, but with higher overall throughput. A better solution 
can for instance be obtained by setting the objective to Maximize N, 
Maximize ‖nG − n̂G

‖, or Maximize ‖nGP − n̂GP
‖, and by adding the con

straints nG
g ≥ n̂G

g and nGP
g,p ≥ n̂GP

g,p . 
The previously defined objectives penalise all differences that occur. 

Exceeding targets is desirable, but exceeding a target is not deemed 
sufficient to counterbalance any unmet target. Hence, the following al
ternatives are considered invalid. 

MinimizeDeficits =
∑

g
δG

g whereδG
g = max

(
n̂G

g − nG
g , 0
)

(25)  

MinimizeDeficits =
∑

g

∑

p
δGP

g,pwhereδGP
g,p = max

(
n̂GP

g,p − nGP
g,p, 0

)
(26)  

MinimizeDeficits = max(N̂ − N, 0) (27)  

The target capacity is computed as N̂ =
∑

g n̂G
g or as N̂ =

∑
g
∑

p∈Pg
n̂GP

g,p . 

Minimizing ‖N − N̂‖ as the objective is another option. 

When n̂GP
g,p is specified, it would be tempting to conclude that n̂G

g =
∑

p∈Pg
n̂GP

g,p as well. However, minimising ‖nG − n̂G
‖ will not guarantee 

that ‖nGP − n̂GP
‖ is minimized. Also, ‖nG − n̂G

‖ ∕= ‖nGP − n̂GP
‖ except 

when the 1-norm is applied. 

Lemma 1. ‖nG − n̂G
‖1 = ‖nGP − n̂GP

‖1,1 where ‖A‖x,x = ‖vec(A)‖x =
∑

i
∑

jai,j. Proof. By definition, ‖nG − n̂G
‖1 ≡

∑
g

(
n̂G

g − nG
g

)
. As nG

g =

∑
p∈Pg

nGP
g,p and n̂G

g =
∑

p∈Pg
n̂GP

g,p , then ‖nG − n̂G
‖1 =

∑
g

(∑
p∈Pg

n̂GP
g,p −

∑
p∈Pg

nGP
g,p

)
=
∑

g
∑

p∈Pg

(
n̂GP

g,p − nGP
g,p

)
= ‖nGP − n̂GP

‖1,1. 

If the two norm is applied (i.e., see equation (22) and (24)), then 
(

nG
g − n̂G

g

)2
∕=
∑

p∈Pg

(
nGP

g,p − n̂GP
g,p

)2 
and Lemma 2 holds true. 

Lemma 2. ‖nGP − n̂GP
‖2,2 ≤ ‖nG − n̂G

‖2. Proof. By Definition, 
(
‖nG − n̂G

‖2
)2

=
∑

g

(
nG

g − n̂G
g

)2 
and 

(
‖nGP − n̂GP

‖2,2
)2

=
(
‖vec

(
nGP − n̂GP)

‖2
)2

=
∑

g
∑

p∈Pg

(
nGP

g,p −

n̂GP
g,p

)2
. Given that nGP

g,p = μGP
g,pnG

g , then: 
(
‖nGP − n̂GP

‖2,2
)2

=
∑

g
∑

p∈Pg

(
μGP

g,pnG
g − μGP

g,p n̂G
g

)2
=
∑

g

(
nG

g − n̂G
g

)2 

∑
p∈Pg

(
μGP

g,p

)2
. As 

∑
p∈Pg

(
μGP

g,p

)2
≤ 1, then 

(
‖nGP − n̂GP

‖2,2
)2

≤

(
‖nG − n̂G

‖2
)2. 

4. Hoplite PDST 

In this section our PDST is introduced, and the main capabilities and 
features are demonstrated. 

Fig. 6. HOPLITE GUI-2. Solution given case mix definition 1.  
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4.1. Software organisation and design. 

The PDST provides several graphical interfaces. After loading the 
PDST, the main application window is shown. This leads users to the 
main options window, see Fig. 3. From this window, the user can then 
choose which decision making, evaluation or assessment task they 
would like to do. Once completed, users are returned to the main win
dow. Decision-making tasks require the solution of a mathematical 
optimization model, but evaluation tasks do not. Model generation is 
automated using VBA and solution is via the application of the Excel 
Solver or OpenSolver. OpenSolver extracts the optimization model 
defined in the spreadsheet, which is then written to a file and passed to 
the Coin - CBC optimization engine to solve. The result is then read in, 
and automatically loaded back into the spreadsheet. When using 

OpenSolver, a decision model can be generated by applying the Open
Solvers’ inbuilt commands and functions. These are different to Solvers’. 
However, OpenSolver also takes as input a model generated using Solver 
commands and functions. 

Each task is performed in a different window at present. Some tasks 
could be aggregated into one window, however, that would result in a 
more congested and cluttered appearance. 

To select an existing project to load, the “Choose” or “Recent” button 
is first pressed. A project however is not loaded until “Open” is pressed. 
Once a valid project is loaded, the options are enabled; prior to this, they 
are disabled. A new project can be set up either using HOPLITE or 
externally. The “New” button brings up the window shown in Fig. 4. A 
plain example is shown in that figure for ease of understanding. Frame 1 
asks for a project name first. When the command button “≫” in that 

Fig. 7. Capacity model (1).  
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Fig. 8. Capacity model (2).  
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frame is pressed, a folder is created, and necessary data files are created. 
These will be discussed in Section 4.2. In Frame 2, all theatres, ward 
beds, and intensive care beds can be defined. The ListView in that frame 
only shows the wards, as these are deemed unique objects. In contrast, 
theatres and intensive beds are not. In this PDST there is assumed one 
operating theatre unit to encapsulate all the theatres and one intensive 
care unit to encapsulate all the intensive care beds. Pressing the com
mand button “≫” in that frame permits the user to move on to Frame 3 
to designate patient types and sub types. The time required for surgery, 
intensive care and postop activities must be input for each sub type. 
These values constitute the resource consumption profile discussed at 
the start of Section 3. In theory these values could be populated pro
grammatically for larger datasets and input directly from historical re
cords stored in a data warehouse. 

To add a patient sub type, it is first necessary to select a row from 
ListView 2. This requirement explicitly links a patient type to a patient 
sub type. To add a ward option for each patient sub type, it is necessary 
to select a row from ListView 3 and to press the “+” button to the right of 
the “Ward Option” combo box. This combo box is populated by the in
formation input in Frame 2. Pressing the command button “≫” at the 
bottom of Frame 3 finalises the project by extracting all information on 
the UserForm and writing it to file in the proper data format. 

4.2. Data requirements and inputs 

HOPLITE requires various information, and this is input from a va
riety of primary and secondary (a.k.a., auxiliary) files. In this section 
details of those files are summarised in Table 3 and 4. The set bracketing 
notation “{(…)}” implies multiple line inputs of tuples (…). 

The first requirement is a project file that specifies the primary in
puts, namely the hospital configuration and the patient type informa

tion. In the configuration file, the hospital areas (a.k.a., resources) are 
input. Given our development assumptions, it is not necessary to 
differentiate between different theatres and intensive care beds. How
ever, it is necessary to differentiate between different wards. This is 
strictly necessary for the quantitative techniques and for reporting. As 
such, each ward has an identifier IDw. 

A concrete example is shown below for a small fictional hospital. 
There are a total of 34 beds placed across five wards. Of the different 
patient sub types, two have optional ward locations. In total there are 
eight patient profiles. 

Other inputs include a case mix, sub mix, session allocation, targets, 
and resource allocation. These are loaded from the following files: 

For demonstrative purposes, a concrete example is shown below for a 
small fictional hospital. 

4.3. Task windows and demonstrative examples 

4.3.1. GUI-1 
For performing a basic assessment of hospital capacity, the GUI 

shown in Fig. 5 has been created. It has three frames. On the left are two 
frames of inputs that affect the analysis. The third frame on the right is 
the results window. The parameters that can be directly altered have a 
blue label to make it easier for users. The MSS template can be manip
ulated by altering four parameters using the scroll buttons provided. 
Edit boxes for these are in the top frame. After any change, the number 
of sessions is immediately updated (i.e., M = weeks× sess× days×
|OTU|) and displayed (i.e., edit box 5 from the top). As the number of 
sessions increases, the number of unassigned sessions also increases and 
edit box 6 from the top is automatically revised. The user should 
manually assign “unassigned” sessions otherwise hospital capacity is 
unused. The number of beds in each ward can be incremented or 

Fig. 9. HOPLITE GUI-2. Solution given case mix definition 2.  
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decremented. This requires a ward to be selected first from the drop- 
down combo box. 

In the second frame, the number of sessions (i.e., mg) assigned to a 
particular patient type is alterable. The default value, however, is one. 
Sessions can be loaded from file and alterations can be saved to file for 
later assessments. The “Set Even Number” button evenly assigns sessions 
to patient types. For instance, the total number of sessions is divided by 
the number of patient types. The patient case mix is not an input and is 
determined from the static calculations previously described in Section 
3. Those calculations are performed using the “≫” button in frame three. 
The patient sub mix however is a requirement and should be defined in 
frame two manually or via the “Load Sub Mix” button. When the sub mix 
is directly manipulated using the scroll buttons, the proportions may no 
longer add to 100 % The %error is shown immediately below and must 
be corrected before the assessment is permitted to be performed. An 
error message is provided to inform the user. The error can be auto 
corrected using the “Fix Error” button. This rescales the current 
percentages. 

The solution report is output within a ListView with resizable col
umns and shows N, n1, n2 and other important utilisation information; 
these are circled in orange. Any resource that is fully utilised or over 
utilised has an “[!]” next to it, so that users can see this important 
outcome easily. When the “By Theatre” restriction is selected, the 
theatre utilisation will be at 100 %, whereas other resources will not. 
When the “By beds” restriction is used, the theatre utilisation may 
exceed 100 % but all bed utilisations will be at 100 %. These two options 
allow the user to consider what would happen if beds were fully satu
rated, or theatres and what the difference in output would look like. 

4.3.2. GUI-2 
For performing a more advanced assessment of hospital capacity, the 

GUI shown in Fig. 6 has been created. It also has a three-frame setup like 
GUI-1. For this assessment a case mix and a sub mix should be selected, 
and the number of sessions assigned to each patient type is not required. 
The case mix and sub mix can be input from file or selected manually. 
Any % errors are automatically shown and must be corrected before 
analysis is permitted. The “fix” button auto-corrects the percentages by 
rescaling. The number of theatres and beds is an important parameter 
that can be altered for “what-if” analysis, that greatly affects a hospital’s 
output. The MSS template parameters affect the time availability of 
theatres, and so must also be placed on this window. 

This GUI permits users to perform a “bound” analysis for each patient 
type, where the maximum number of patients treatable can be deter
mined. This is facilitated by pressing the “100 %” button for a chosen 
patient type. Pressing this button sets the case mix for the selected pa
tient type at 100 %, while zeroing all others. The “Even” option is also 
provided, that partitions the case mix equally amongst the different 
types. 

As described in Section 3, there are two case mix viewpoints. These 
can be selected by the radio buttons in Frame 1. There are two assess
ment buttons “≫” and “≫2”. These buttons activate the generation and 
solution of the optimization models described in Section 3.2.2. Button 
“≫” assumes only the first ward option is used for POSTOP. Button “≫2” 
permits all ward options to be considered. 

The solution report shows N, nG, nGP, β and utilisation information 
like that shown in GUI-1; again, circled in orange. Any resource that is 
intended to be fully used has an “[!]” next to it. However, no resource is 
over-utilised as the model does not permit it. 

Behind the scenes, the mathematical model is generated in an Excel 
sheet as shown in Fig. 7. The setup required is evidently like the output 
shown in Fig. 6. The capacity value shown at B1 is N. It is the sum of the 
values C21:C31. These are the resource allocation (i.e., βa,w) values. The 

Fig. 10. HOPLITE GUI-3. Evaluation of a case mix allocation.  
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value at B1 is decomposed into the values shown at B4:B8. These are the 
current nG

g values. They are calculated as follows, nG
g = μG

g N. They are 
then decomposed further using the sub mix to obtain C11:C18. The 
values at C11:C18 are the current values of nGP

g,p . These must equal the 
values at H11:H18 which are aggregated from C21:C31. The resource 

time availability constraint is imposed by setting C34:C41 to be less than 
or equal to D34:D41. 

The values under “#ALLOCATED” and “HRS USED” can be deter
mined using a SUMIF function call. The purpose of the SUMIF function is 
to aggregate specific βa,w values. An alternative approach is to write a 
different formula in each row, that is specific to the current g, p and ward 
index. Both approaches have been tested, and some speed improvements 
have been observed if SUMIF function is not used. 

A slightly different model is required when the second case mix 
option is selected. For this article’s small toy hospital scenario, that 
model is shown in Fig. 8 and the results are shown in Fig. 9. The output is 
similar but there is extra information in column C, D and E over rows 3 – 
8, concerning theatre time used. Fig. 9 shows that higher capacity is 
achieved when the case mix is used to partition MSS sessions between 
the different patient types. Viewing case mix relative to other patient 
types is more restrictive and causes a different set of bottlenecks. 

4.3.3. GUI-3 
To evaluate a “user defined” patient cohort and resource allocation, 

Fig. 11. HOPLITE GUI-4. Closest case mix to selected targets.  

Table 7 
Main recovery wards.  

WARD # 
BEDS 

WARD # 
BEDS 

W3B 10 W1C, W2B, W5B, 
W5C, W5D 

24 

W4BR, WCARD 14 W1D, W4E 26 
W3A 15 W2A, W2D, W3C, 

W4C, W4D, W5A 
28 

W4BT 16 W2E 29 
W4A 19 W2C 40 
W1A, W1B, W3D, W3E, W3F, W3H, 

WTRANS, W3D, W3E 
20    

Table 8 
Patient types.   

TYPE #SUB  TYPE # SUB  TYPE # SUB 

1 Cardiology 23 (15|8|0) 8 Hepatology 13 (6|5|2) 15 Otolaryngology 16 (9|7|0) 
2 Endocrinology 17 (10|5|2) 9 Immunology 8 (1|6|1) 16 Plastics 18 (10|8|0) 
3 Dental 2 (0|1|1) 10 Neurology 33 (7|23|3) 17 Psychiatry 10 (0|9|1) 
4 Faciomaxillary 3 (2|0|1) 11 Nephrology 20 (8|9|3) 18 Respiratory 22 (2|17|3) 
5 Gastroenterology 20 (10|7|3) 12 Oncology 8 (4|4|0) 19 Transplants 11 (10|0|1) 
6 Gynaecology 13 (10|3|0) 13 Ophthalmology 16 (12|4|0) 20 Urology 12 (6|5|1) 
7 Haematology 5 (2|3|0) 14 Orthopaedic 51 (29|21|1) 21 Vascular 17 (6|7|4)  
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the GUI in Fig. 10 has been created. 
For the considered example, Fig. 10 shows the input allocation and 

implied patient cohort is not quite feasible. Theatres and Ward 5 are 
over utilised. All other wards and the ICU are underutilised. This means 
that capacity exists to treat more patients of certain types, but only if 
there is more theatres or theatre time. 

4.3.4. GUI-4 
To find a patient cohort that meets user defined targets, the GUI 

shown in Fig. 11 has been created. The targets are loaded from file or 
else manually entered. One or both target types can be included and 
both difference metrics can be selected. 

To solve the non-linear decision model, the Excel “GRG” (i.e., 
Generalized Reduced Gradient) non-linear solver is available. This en
gine was able to solve the described test problem almost immediately. 
The results are shown in Fig. 11 for the selected nGP

g,p targets. This sce
nario shows nGP

g,p cannot be met. Other options include the non-linear 
solvers provided with OpenSolver. One of those is the “NOMAD” en
gine (i.e., see https://www.gerad.ca/nomad/) which is a “mesh adap
tive direct search algorithm. This engine also solves the model but takes 
significantly more time than the GRG engine (i.e., approx. 3 min). Two 
other options are also available, namely COUENNE (i.e., Convex over 
and under envelopes for nonlinear estimation) and BONMIN (i.e., Basic 
Open-Source Nonlinear Mixed Integer Programming). No success how
ever has been obtained with those to-date. The model seems to be 
outside the scope of those solvers. 

4.4. Full sized case study 

To further demonstrate the application of HOPLITE, a full-sized case 
study is provided next. Our case study originates from the Princess 
Alexandra Hospital (PAH), Brisbane, Qld, Australia. The PAH is a large 
public hospital, with about one thousand beds. The PAH performs 
planned elective surgeries and treats acute patients surgically as they 
eventuate. Medical outpatients are also seen in large numbers. The 
hospital is spread over five floors but there are also other various “out- 
buildings”. There is an intensive care unit (i.e., W3A & W3B with 25 
beds), an emergency department, a medical assessment and planning 
unit, and 21 operating theatres (W3L A-E). The main wards of the PAH 
are summarised in Table 7. Ward W3F is a surgical care area and 
manages surgical patient admissions prior to surgery. W3H is a post 
anaesthetic care unit and provides post anaesthesia care after surgery. 
Ward W3D is the cardiac care ward, also known as WCARD, and W3E is 
the cardiac care unit ward, commonly called WCCU. Radiology and 
imaging are performed in W1F, W1H, W1L. 

De-identified patient data has been collected from the PAH. From 
that data, patient types are defined relative to the specialties shown in 
Table 8. Patient sub types are categorised by the Australian Refined 
Diagnosis Related Groups (AR-DRGs) relevant to each of the twenty-one 
specialties. The Australian Refined Diagnosis Related Groups (AR-DRGs) 
(https://www.ihpa.gov.au/what-we-do/ar-drg-classification) is a clas
sification system, which provides a clinically meaningful way to relate 
the number and type of patients treated in a hospital to the resources 
required by the hospital. AR-DRGs group patients with similar diagnoses 
requiring similar hospital services. 

The exact number of sub types is also shown in Table 8. In total there 
are 338. We have reduced the overall number of sub types, by 

Table 9 
Patient case mix.   

TYPE %  TYPE %  TYPE % 

1 Cardiology 6.765 8 Hepatology 3.824 15 Otolaryngology 5.294 
2 Endocrinology 5 9 Immunology 2.353 16 Plastics 5.294 
3 Dental 0.588 10 Neurology 9.706 17 Psychiatry 2.941 
4 Faciomaxillary 0.882 11 Nephrology 5.882 18 Respiratory 6.471 
5 Gastroenterology 5.882 12 Oncology 2.353 19 Transplants 3.235 
6 Gynaecology 3.824 13 Ophthalmology 4.706 20 Urology 3.529 
7 Haematology 1.471 14 Orthopaedic 15 21 Vascular 5  

Table 10 
Patient sub mix.  

TYPE (#SUB) SUB MIX 

Cardiology (23) 2.25,0.76,6.02,4.53,8.72,8.48,6.06,4.37,7.03,1.05,0,0,2.02,0.1,7.41,1.97,6.51,2.26,6.76,3.74,10.12,8.34,1.5 
Endocrinology (17) 7.28,7.35,3.45,9.06,2.61,2.99,3,0,9.55,5.34,7.51,10.26,9.24,9.82,5.1,2.37,5.07 
Dental (2) 55.75,44.25 
Faciomaxillary (3) 70.67,0,29.33 
Gastroenterology (20) 8.28,5.8,2.26,6.85,3.5,0,7.43,6.89,5.68,8.28,1.93,1.03,3.54,7.13,7.67,1.75,6.24,4.55,2.94,8.25 
Gynaecology (13) 0,4.53,0,11.36,3.36,4.95,10.78,15.17,17.3,0,17.6,3.55,11.4 
Haematology (5) 37.33,2.56,26.4,23.29,10.42 
Hepatology (13) 5.37,4.62,13.43,14.32,6.68,1.55,0,0,0.51,0.01,19.88,11.11,22.52 
Immunology (8) 0,5.66,20.95,4.78,18.86,10.16,15.65,23.94 
Neurology (33) 6.11,4.05,5.84,3.72,5.38,1.39,0.46,0,3.85,3.59,0,0,0,2.99,1.2,0,4.18,6.24,3.72,5.64,4.18,6.57,0.6,6.04,0,0,6.11,3.52,1.33, 0.4,6.31,2.86,3.72 
Nephrology (20) 9.61,5.61,1.03,4.83,1.39,1.49,4.11,0.23,9.21,8.33,8.34,0.27,10.73,1.81,4.74,3.12,1.72,9.26,11.81,2.36 
Oncology (8) 16.49,20.59,16.28,3.92,2.19,23.11,13.66,3.76 
Ophthalmology (16) 6.77,8.44,6.31,4.84,9.39,0.98,4.55,6.97,6.22,5.13,5.51,3.72,8.76,7.77,4.42,10.22 
Orthopaedic (51) 3.2,0,0.49,0.4,1.45,2.63,2.94,1.9,3.3,0.14,0.47,3.17,3.09,1.35,2.6,2.78,1.55,3.36,2.57,2,3.03,2.92,2.39, 

2.5,1.44,3.33,2.42,3.5,3.08,0,0.28,1.37,2.46,2.86,1.17,2.56,3.52,1.61,1.87,2.6,1.39,1.61,0.09,0.43,2.25,1.78,2.04,1.78,2.31,2.02,0 
Otolaryngology (16) 0,10.42,1.72,12.09,7.44,8.77,3.5,2.99,7.15,2.87,0.39,8.78,8.01,15.62,7.43,2.82 
Plastics (18) 4.9,2.71,9.4,7.98,3.09,6.97,8.3,9.4,9.9,3.04,3.13,8.23,0.79,9.02,1.33,8.88,0.11,2.82 
Psychiatry (10) 4.55,3.58,8.7,15.42,15.21,14.58,5.24,0.93,20.18,11.61 
Respiratory (22) 4.84,0.78,4.21,6.7,8.01,0,0.39,8.16,1.92,3.56,8.38,2.96,7.15,1.97,6.2,6.06,8.26,0,6.13,4,5.37,4.95 
Transplants (11) 0,0,0,0,0,0,0,0,0,0,100 
Urology (12) 4.41,14.07,8.04,2.33,2.22,12.66,15.34,6.63,12.39,10.93,0,10.98 
Vascular (17) 8.52,5.27,3.72,1.67,2.49,10.18,4.11,10.44,11.58,2.6,11.67,6.57,4.17,1.15,3.48,8.45,3.93  
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aggregating the “A”, “B”, “C”, and “D” AR-DRG variants that exists. The 
following is an example of three variants that are considered as one sub 
type: 

B66A M Nervous System Neoplasms W Radiotherapy 
B66B M Nervous System Neoplasms W/O Radiotherapy W Cata
strophic or Severe CC 
B66C M Nervous System Neoplasms W/O Radiotherapy W/O Cata
strophic or Severe CC 

Otherwise, there would be a total of 807 DRG’s which is prohibitive. 
The classification of patient sub type as surgical, medical, or other is 
shown in brackets, i.e. (15|8|0) indicates 15 surgical and 8 medical 
types. 

The resource consumption profiles and revenues associated with 
each patient sub type have been extracted and can be found in our 
supplementary data document. All revenues are defined relative to the 
“National Efficient Price” (NEP). The NEP is the Australian national 
price for the average cost of public hospital activity (i.e., 1 NWAU). The 
NEP was $5134 during 2019–2020. (Health Funding Policy and Prin
ciples 2019–20). 

4.4.1. Part 1 
In our case study an advanced assessment of capacity was first per

formed. The specified case mix is shown in Table 9 and the sub mix is 
shown in Table 10. For the capacity assessment, a period of 4 weeks was 
selected. As such the master surgical schedule has 840 sessions (i.e., 
two/day × five days/week × four weeks × 21 theatres). 

To perform the assessment, the two methods from Section 3.3.2 were 

applied. The time to solve the model and report the results was quite fast 
and was completed in under a minute. This task, however, was not 
completed instantaneously. Before OpenSolver can be activated, Excel 
requires time to extract and copy the model to file. 

The main results are summarised in Fig. 12 and Fig. 13 for the two 
case mix viewpoints, and a comparison of the differences is shown in 
Fig. 14. In Fig. 15 and Fig. 16, the ward utilisation statistics are shown. 
For the first option, 921 patients are achievable, and this amounts to 
about 11,050 over the course of a year. For the second option, the output 
is significantly higher with 1864 patients per month, and 22,368 over 
the course of a year. The reason for the difference, is due to how trade- 
offs between patient types is managed. The first option is more restric
tive as we have already discussed. Under the second case mix definition, 
the model is permitted to choose whether certain patient types are 
treated or not. In this case study, an increased number of patients can be 
achieved overall by “zeroing” some of the patient types. For instance, in 
our solution, we can see that no cardiology patients were selected, even 
though there was free theatre time allocated to treat them. Under the 
first case mix definition, this is not possible, and cardiology patients are 
selected. Choosing no cardiology patients is not realistic and highlights a 
minor defect/quirk of the second case mix definition. That quirk how
ever can be overcome by adding a minimum requirement for each pa
tient type (a.k.a., a minimum demand or target). Consequently, some 
additional constraints should be added to the model when using the 
second case mix option. 

The revenues associated with the obtained patient case mixes are in 
the order of 17 to 24 million dollars per month. Based upon this data, the 
total revenue over the course of one year would lie in the region of AUD 
200–300 million. 

Fig. 12. Capacity assessment results (Case mix option 1).  
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In Fig. 15, we can see that only four of the wards are fully occupied. 
These wards are bottlenecks and restrict further outputs. The ICU is one 
of them. Most of the other wards are also moderately utilised. In Fig. 16, 
we can see that most of the wards are fully utilised. In both scenarios, the 
theatres are not deemed to be bottlenecks. Also, a few wards have zero 

utilisation. This occurs because the current patient types do not have 
those wards as candidate locations for medical or surgical care. 

4.4.2. Part 2 
A best-fit case mix identification task was performed next. For this 

Fig. 13. Capacity assessment results (Case mix option 2).  

Fig. 14. Comparison of patient cohorts identified.  
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analysis, a target cohort of an appropriate nature was defined arbi
trarily. Specific targets n̂G

g are defined for each patient type, and these 
are displayed in Fig. 17. 

Patient sub type targets were also defined, according to n̂GP
g,p =

μGP
g,p n̂G

g . These are listed explicitly in our supplementary data document. 
The feasibility of that patient cohort for a one-month period was queried 
by solving the model from section 3.2.4. The best fit case mix is shown in 
Fig. 17. The specified case mix exceeds the capacity of the hospital, and 
all the wards, theatres, and intensive care unit are at 100 % utilisation. 
The targets constitute a total of 1381 patients but the maximum number 
of patients that are treatable is 1008.27. The targets cannot be met 
without reconfiguration of the hospital, or an increase in the period 
considered. Table 11 shows how the targets are gradually met as the 
number of weeks is increased. 

Final Remarks. During development, we have observed that open
ing the Solver or OpenSolver window from the ribbon menu in Excel is 
not always instantaneous, particularly when instances with many pa
tient types and sub types are loaded. Smaller instances and those of the 
scale of our case study showed no such issue. 

Finding a best-fit case mix is the hardest task currently facilitated by 
HOPLITE. The free NLP solvers do not seem to be capable of solving 
large instances like our case study with a sum of squares objective. The 
linear objectives described by equation (21) and (23), however, provide 
no difficulty at all. The non-linear sum of squares objective, however, 
can be managed better in one of two ways. We have previously shown 

that the sum of squares objective is a quadratic function. As such, a 
Quadratic Programming solver present for instance in a commercial 
package like CPLEX, can be applied. Unfortunately, OpenSolver does not 
have such an approach presently. Another approach worth considering 
is Separable Programming. The sum of squares objective can be 
approximated with arbitrary precision as a piecewise linear function. 
OpenSolver is certainly capable of solving the resulting mixed integer 
programming formulation. 

When targets n̂G
g are chosen, the optimization model of Section 3.2.4 

will choose the sub mix nGP
g,p in an unrestricted way. In other words, some 

nGP
g,p will be zeroed, in favour of other sub types nGP

g,p′ within a patient type 
grouping. If this is unwanted, then both target types should be included 
in the objective. 

5. Conclusions and managerial insights 

This article demonstrates how an Excel-based personal decision 
support tool (PDST) called HOPLITE was designed and how it can help 
hospital managers perform capacity assessments and other capacity 
related queries. This article demonstrates how theory can be put into 
practice and describes the practicalities of creating a graphical user 
interface, inputting, and outputting information, performing optimiza
tions, applying quantitative methods, and reporting results. 

HOPLITE has many capabilities and is necessary for a variety of 
reasons. The PDST can reduce the workload of planning staff. It may be 

Fig. 15. Ward utilisations (Case mix option 1).  
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used to inform hospital managers and other planners of the decisions 
they can make to avert future problems (Krueger, 2018). It can be used 
to make judgements about a hospitals’ capability, in the future, to treat 
cohorts of different patient types. Our PDST specifically identifies pa
tient case mixes that meet certain guidelines and constraints, or evalu
ates those that have been defined elsewhere, by some other technique. 
The development process has shown a necessity to link the master sur
gical schedule template to the PDST. Otherwise, assessments and eval
uations are restricted and lack realism. 

After significant development and testing, the main limitation of our 
approach is the capability for Excel to quickly generate a model with 
tens of thousands of variables. For the most part, the free solvers are 
adequate, and quick once a model has been generated. HOPLITE is best 
suited for small and medium sized instances at this point, and further 
development is needed to handle instances arising from larger hospitals, 
or where more fine-grained analysis, resulting in more patient types and 
sub types, is needed. These weaknesses, however, are not expected to 
exist if a commercial optimization software is integrated, but this re
quires a subscription or a licencing agreement. 

HOPLITE is a minimal viable product, and it is intended that the 
software will continue to be developed to provide further functionality. 
Because it is written in VBA, the tool can be easily extended with 
additional functionality. In future it is worth considering whether a 
translator that converts raw hospital data into a format usable for hos
pital capacity assessment should be created. The existence of a translator 
motivates the creation of a central database to hold all relevant 

information. Currently HOPLITE does not use any type of database and 
information is placed in separate text files. The joint usage of a translator 
and database may facilitate an easier integration of the software to a 
hospital’s IT system. The database design that should be implemented, 
however, is specific to the needs of different hospitals and is a topic for a 
future study. 

Some simplifying assumptions have been made, to facilitate the 
development of a viable prototype PDST. Our tool only includes the 
primary resources of a hospital, like theatres, wards, and intensive care 
beds. The quantitative techniques, however, are designed with the 
capability to handle additional resources. As such, a more general PDST 
could be developed. However, we believe that it is necessary to await 
further positive feedback by hospitals, and their staff, before new ex
tensions are considered, and current assumptions are removed. 

Regarding the uptake of a tool like HOPLITE, the availability of data 
weighs heavily. Whether hospitals can provide free flow of the necessary 
information and knowledge is debatable, however we believe the 
answer is ultimately yes, and probably in a not-too-distant future. This 
PDST can be largely used offline since historical data can be prepared 
and uploaded into a PDST project file. Long term patterns in case mix 
and resource utilisation change infrequently, and so only occasional 
updates to historical case mix data would be required. This means that 
costly direct integration with existing IT systems is not necessary for this 
tool to be used. The deployment of a PDST like HOPLITE is expected to 
be beneficial, however there is no guarantee. Whether the PDST can 
improve decision making outcomes and decision-making processes, is an 

Fig. 16. Ward utilisations (Case mix option 2).  
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Fig. 17. Best fit case mix (one month).  

Table 11 
Best fit case mixes.  

GROUP TARGET# #TREATED #UNMET 

1wk 2wks 3wks 4wks 1wk 2wks 3wks 4wks 

1 85 56.9567 85 85 85 28.0433 0 0 0 
2 60 49.74 60 60 60 10.26 0 0 0 
3 15 15 15 15 15 0 0 0 0 
4 12 6.2177 12 12 12 5.7823 0 0 0 
5 66 56.7072 66 66 66 9.2928 0 0 0 
6 42 32.655 42 42 42 9.345 0 0 0 
7 18 11.2806 18 18 18 6.7194 0 0 0 
8 48 39.9984 48 48 48 8.0016 0 0 0 
9 37 29.0179 37 37 37 7.9821 0 0 0 
10 111 66.361 91.4824 105.4887 111 44.639 19.5176 5.5113 0 
11 166 156.6874 166 166 166 9.3126 0 0 0 
12 27 25.5107 27 27 27 1.4893 0 0 0 
13 54 49.4424 54 54 54 4.5576 0 0 0 
14 281 123.3086 177.0855 208.492 231.1368 157.6914 103.9145 72.508 49.8632 
15 54 50.139 54 54 54 3.861 0 0 0 
16 60 47.718 60 60 60 12.282 0 0 0 
17 33 19.7142 33 33 33 13.2858 0 0 0 
18 75 67.2893 75 75 75 7.7107 0 0 0 
19 21 5.081 8.5458 17.2985 21 15.919 12.4542 3.7015 0 
20 59 59 59 59 59 0 0 0 0 
21 57 40.4473 54.1819 57 57 16.5527 2.8181 0 0  

Sum 1008.2724 1242.2956 1299.279 1331.1368 372.7276 138.7044 81.7208 49.8632  
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open question, we hope can be answered. 
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Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eswa.2024.123367. 
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