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This article showcases a personal decision support tool (PDST) called HOPLITE, for performing insightful and
actionable quantitative assessments of hospital capacity, to support hospital planners and health care managers.
The tool is user-friendly and intuitive, automates tasks, provides instant reporting, and is extensible. It has been
developed as an Excel Visual Basic for Applications (VBA) due to its perceived ease of deployment, ease of use,
Office’s vast installed user base, and extensive legacy in business. The methodology developed in this article
bridges the gap between mathematical theory and practice, which our inference suggests, has restricted the
uptake and or development of advanced hospital planning tools and software. To the best of our knowledge, no
personal decision support tool (PDST) has yet been created and installed within any existing hospital IT systems,
to perform the aforementioned tasks. This article demonstrates that the development of a PDST for hospitals is
viable and that optimization methods can be embedded quite simply at no cost. The results of extensive
development and testing indicate that HOPLITE can automate many nuanced tasks. Furthermore, there are few
limitations and only minor scalability issues with the application of free to use optimization software. The
functionality that HOPLITE provides may make it easier to calibrate hospitals strategically and/or tactically to
demands. It may give hospitals more control over their case mix and their resources, helping them to operate
more proactively and more efficiently.

1. Introduction

reactive manner and have a short-term insular focus. Based upon staffing
levels and the current setup of theatres, wards, beds, and so forth, pa-

Hospitals play a vital role in health care systems worldwide. Oper-
ating continuously all year-round, most hospitals have the capability to
treat and care for a diverse cohort (i.e., group) of patients with different
illnesses and conditions, and with different health care requirements.
Yet the goal of delivering quality care to as many patients as possible, at
an affordable cost, is an ongoing challenge (Krueger, 2018). Hospital
output is restricted by finite and often dissimilar health care resources,
and these are limited by diminishing health care funding (Walczak et al.,
2002). The inherent conflicts between quality, cost, and output, are ever
present, and require careful and constant mediation (Burdett and Kozan,
2016).

There is an essential need for a holistic and predictive view of an
entire hospital to understand the factors driving outputs and financial
performance (Krueger, 2018). Currently most hospitals function in a
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tients are chosen from the waiting list and treated opportunistically.
However, this often leads to significant imbalances between the supply
and demand for medical resources (Emanual et al., 2020). To provide a
long-term remedy for this issue it is necessary to fully understand how
various structural and operational factors affect a hospital’s perfor-
mance and output. For instance, there is a need to quickly provide
situational awareness around the prioritisation, allocation and sharing
of hospital resources and the performance impacts of capacity-related
decisions like adding or removing beds in wards, building new the-
atres, changing the master surgical schedule (i.e., adding or removing
sessions, changing session duration or sessions per day, changing the
number of days theatres operate per week), treating new patient types,
applying new medical or surgical techniques, and so forth.

To provide a comprehensive view of hospital capacity this article
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Table 1
Summary of recent CMP and related research.
Article Problem E [0} w I Objectives ST M G R Method
D R A C o C U E
R U CH I G
D
Ma et al. (2011) CMS X v v X Profit X X X X MIP
Ma and Demeulemeester (2013) CMP-ORS X v v X Profit, X X X X MIP
Bed Shortage
Malik et al. (2015) ORP X 4 X X Waiting List X v X X Meta H.
Size, Costs
Jebali and Diabat (2015) ORP X v v v Costs v X X X SAA
Burdett & Kozan (2016) HCA X v v v Output x 21 X v X X LP, ECM.
Yahia et al. (2016) CMP X v v v Output v X X X SAA
Jebali and Diabat (2017) ORP X v X v Cost v X X X SAA
Burdett et al. (2017) HCA v v v v Output X X X X Lp
Zhou et al. (2018) HCA X v v X Revenue, Equity v v X X DES, MIP, ECM
Shafaei & Mozdgir (2018) ORP X v v v Value v X X X LP & TOPSIS
Freeman et al. (2018) ORS X v v v Payment v X X X MIP
McRae et al. (2018) CMP X v v v Profit X X X X NLP
McRae & Brunner (2020) CMP X v v v Revenue v X X X SAA
Burdett et al. (2023) HCA X v v v Output, Unmet Demand, Outsourcing X v X v MIP
Saha & Rathore (2022) CMP X x X v Expected Cost v X X X Heuristic
This article HCA X v v v Output X X v X MIP

Abbreviation: Case Mix Scheduling (CMS); Case Mix Planning (CMP); Discrete Event Simulation (DES); Epsilon Constraint Method (ECM); Graphical User Interface
(GUI), Hospital Capacity Assessment (HCA); Linear Programming (LP); Multicriteria (MC); Non-Linear Programming (NLP); Operating Room Planning (ORP);

Operating Room Scheduling (ORS); Regional (REG); Sample Avg. Appr (SAA);

proposes the development of a software solution with embedded opti-
misation methods to help hospital planners and staff perform insightful
quantitative assessments of hospital capacity and utilization. Deter-
mining whether an adequate approach can be devised and put into
practice is our primary line of inquiry. How best to facilitate the inte-
gration of mathematical techniques is our second line of enquiry. This
article’s approach builds upon the research presented in Burdett and
Kozan (2016) and Burdett et al. (2017) that is now well established in
the literature. In those articles, mathematical models and other quan-
titative techniques were successfully developed to perform holistic
hospital capacity assessment and capacity querying activities. A case
study of a large tertiary hospital was previously used to validate those
approaches. The practicalities of designing an appropriate decision
support tool and integrating those models, however, was not considered,
and provides the motivation for this article.

Our software solution is called HOPLITE, which stands for hospital
planning, intel, and tactical evaluation. To the best of our knowledge our
software solution, is a new capability, that can replace the inexact ad-
hoc calculations often performed by hand by health care managers
and planners. HOPLITE is a prototype and a minimum viable product for
performing various capacity assessment and capacity querying tasks.
HOPLITE also provides the capability to check whether a hospital’s
configuration, layout and resources are sufficient to meet current and
future demands. It also suggests outputs which are achievable when
demands cannot be met.

A foremost aim of the HOPLITE software is to handle the many nu-
ances that make “prompt” capacity assessments troublesome. The soft-
ware and its graphical user interfaces have been implemented in
Microsoft Excel using VBA and can be run on any personal computer.
Excel has been chosen as the driver of the PDST because it is an event
driven framework, and because some capacity assessment tasks and
queries require a linear and non-linear programming solver. The PDST
makes use of the inbuilt optimization solver of Excel or the more capable
and unrestricted “OpenSolver” add-in (Mason (2012)) so that hospitals
do not have to purchase a licence or subscription for more capable
optimization software like IBM CPLEX or GUROBI, nor consider the
integration of a PDST with those software packages. The tool is regarded
as a PDST because it is developed for one manager and/or planner or a
small team.

The format of this article is as follows. In Section 2 a literature review

and analysis are provided. In Section 3 the details of the quantitative
framework and techniques used in HOPLITE are provided commencing
with an outline of key technical details. The specification, capabilities
and graphical user interfaces are then presented in Section 4. Design
strategies employed during development are also provided and exam-
ples of how the PDST is used to perform various assessments is shown.
Conclusions and final remarks are given in Section 5. Broader issues
including potential further extensions to the software are also discussed.

2. Literature review

In this section, techniques for hospital case mix planning, capacity
assessment and capacity allocation are reviewed, and the current state of
the art is described. Some other loosely related topics like operating
room planning/scheduling with a focus on capacity are also included.
Our discussion describes the decision problem addressed, and the
methods used to solve it. Interface development and the integration of
mathematical techniques is then focussed upon.

2.1. Hospital capacity and case mix planning

Hospital case mix planning, and capacity assessment are contem-
porary topics. In recent times there has been considerable interest from
researchers, academics, and other decision makers. Deficiencies in
existing health care systems and practices, exacerbated by the COVID
pandemic, have fuelled research to find better ways to plan and manage
health care resources. In past research, a variety of approaches have
been applied to the aforesaid decision problem, including mixed integer
programming (Ma et al., (2011), Burdett et al. (2017), Shafaei and
Mozdgir (2018)), stochastic programming (Burdett et al., 2023;
Freeman, Zhao, & Melouk, 2018; McRae & Brunner, 2020; Neyshabouri
& Berg, 2017), process mining (Andrews et al., 2022) and multicriteria
optimisation (Malik et al., 2015; Burdett and Kozan, 2016, Zhou et al.,
2018). Table 1 summarises the most crucial details about recent
research.

In summary, Ma et al. (2011) developed and tested a case mix
planning model maximizing the overall financial contribution of a
hospital. Chen et al (2015) developed quantitative approaches for pa-
tient flow scheduling and capacity planning in a rheumatology depart-
ment, which would be useful in a smart hospital and health care
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environment. Malik et al. (2015) formulated and solved a bi-objective
aggregate capacity planning problem for operating theatres. Yahia
et al. (2016) applied the sample average approximation (SAA) approach
to solve a stochastic planning model. They considered the selection of a
case mix for a single surgical department, with uncertain surgery du-
rations, length of stay and demand. The number of theatre hours
assigned to each patient group was a primary decision.

Burdett and Kozan (2016) and Burdett et al. (2017) developed the
first holistic hospital capacity allocation approach. They include case
mix constraints in their deterministic mixed integer programming (MIP)
model or else impose multiple objectives, from which a set of non-
dominated capacity solutions can be generated. Their approach has
been applied to a twenty-one objective real-life scenario. Burdett et al.
(2023) provided the first regional hospital capacity allocation approach
and applied it to a 15-hospital regional case study. Zhou et al. (2017)
considered the capacity allocation of hospital wards and the joint opti-
mization of hospital revenue and equity among several types of patients.
In response they proposed a multi-objective stochastic programming
model with two objectives. As their objective functions have no “closed
form” they used a data-driven discrete-event simulation to evaluate
random patient arrivals and lengths of stay. An adaptive epsilon-
constraint algorithm (ECM) and a multi-objective Genetic algorithm
were developed to solve the proposed non-linear mathematical model.
Shafaei and Mozdgir (2018) developed a mathematical model to opti-
mise the allocation of OR time among surgical groups and applied a
robust estimator for values of the model parameters. McRae, Brunner,
Bard (2018) developed a non-linear mixed-integer programming model
and incorporated economies of scale. Freeman et al. (2018) considered
case mix planning and developed a multi-phase approach to generate a
set of candidate solutions. They applied simulation techniques to eval-
uate the master surgical schedule (MSS) and each case mix solution.
McRae and Brunner (2020) presented a framework for evaluating the
effect of stochastic parameters on the case mix of a hospital. Liu et al.
(2019) developed for the daily scheduling of surgical patients, an inte-
grated scheduling and capacity planning approach. They declare that
“traditional scheduling policy, driven by operating room usage, may
lead to significantly suboptimal use of downstream capacity and may
result in up to a three-fold increase in total expenses”. In contrast, “a
scheduling policy based on downstream capacity usage often performs
close to an integrated scheduling policy, and therefore may serve as a
simple, effective scheduling heuristic for hospital managers—especially
when the downstream capacity is costly and less flexible”. Burdett et al.
(2023) provided the first regional HCA approach and applied it to a 15-
hospital regional case study. Saha and Rathore (2022) considered phy-
sicians as a significant limiting factor in hospital care. They developed a
two-stage stochastic programming approach in which decisions on
regular physician allocation and their capacity adjustments are a trade-
off between expected cost and patient demand fulfillment. To solve the
problem inexactly, a scenario-based heuristic was applied with one
thousand scenarios.

Information Technology and Decision Support Systems. Around the
world there are various IT platforms for decision making. In the litera-
ture the following are prevalent: decision support systems (DSS), expert
systems (ES), executive information system (EIS), management infor-
mation systems (MIS), and management support systems (MSS). There
does not appear to be a distinct boundary or delineation between the
different types. As far as we can pertain, a management information
system organizes and retrieves data and generates reports that summa-
rize activities and performance of interest to managers (Burstein &
Holsapple, 2008); however, an expert system is akin to an electronic
counsellor, delivering expertise to appropriate staff (Forgionne & Kohli,
1996).

Of the different types of IT platform developed, personal decision
support systems (PDSS) stand out. PDSS were very well-used in the 1980
s and are a pure form of IT-based management support, generally
thought of as superior to MIS (Arnott, 2008). The emphasis of PDSS is to
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empower and support individual managers. The term PDSS is not well
known or used nowadays and has been replaced with the general term
analytics (Arnott, 2008). What makes PDSS development projects
different to others is that users do not know what they want, and ana-
lysts do not understand what users need, the analyst and user cannot
provide functional specifications, the users’ concept of the task will be
shaped by the DSS, and users have the autonomy to tackle the tasks in a
variety of ways. The term PDSS best fits the type of software developed
in this article, and the project environment upon which it has been
developed.

Regarding health care applications, the following systems are pop-
ular: clinical decision support system (CDSS), hospital information sys-
tem (HIS), healthcare information technologies (HIT), and hospital
management support systems (HMSS). Computerized CDSS have rapidly
evolved since the 1980s (Sutton et al., 2020). This specific type of
management information system is specifically designed to aid clinical
decision making by promptly providing actions, advice, alerts, and re-
minders, to a clinician. CDSS software often matches individual patients
to a computerized clinical knowledge base. They are either knowledge-
based or non-knowledge based. In the former type, rules are pro-
grammed, if-then actions are created, and expert medical knowledge is
followed. In the later, artificial intelligence, machine learning and other
statistical methods are applied. In recent years Rahimi et al. (2016)
developed a dynamic risk-based framework for patient prioritization.
This is regarded as a complex decision-making process, currently
skewed for instance by surgeons’ opinions, and a static assessment of a
patient’s condition. That article highlights the development of user-
friendly software as a necessary development task to facilitate the
implementation of the proposed framework. Sutton et al. (2020) ana-
lysed the application of CDSS and identified both positives and nega-
tives. The biggest downsides include, maintaining necessary databases,
the complexity of data integration, keeping up with changes in data, the
use of poor-quality data, the use of what is regarded as sensitive infor-
mation, and financial viability to develop and set up new CDSS systems.
Advantages include instant access to patient-specific information, the
provision of assessments and recommendations, the capability to send
reminders for preventative care, and alerts about potentially dangerous
situations.

Forgionne and Kohli (1996) are one of the first to propose the
development and application of hospital management support systems
(HMSS). They view hospitals as a “make-to-order” enterprises and use
concurrent engineering (CE) principles in their HMSS. The goal of their
HMSS is to improve quality, reduce costs, and decrease the lead time
from admission to discharge for new or readmitted patients. James et al.
(2010) describes the development of a DST for expert elicitation of data.
The integration of sophisticated mathematical techniques is focused
upon. They demonstrate how to create a viable DST in Java, using
object-oriented design, open-source libraries, data persistence using
MySQL, and the application of the R statistical software to perform all
statistical calculations. The software architecture is based around the
creation of a project model that serves to encapsulate all data and data
relationships necessary for an elicitation project. Each project consists of
several independent project phases. Gupta and Sharda (2013) and
Bardhan and Thouin (2013) have reviewed the application and current
state of research of healthcare information technologies and the appli-
cation of informatics. Six key themes have been identified in the former
article. In the later article, it was identified that spending on health IT
does matter, and this has important policy implications for investments
in health IT. Additionally, the usage of financial management systems is
associated with lower hospital operating expenses. Sebaa et al. (2017)
developed a medical decision support platform and clinical relational
database as a medical data warehouse. The platform is intended to
identify health care trends and to report other important statistics to
users. Bodina et al. (2017) considered the identification of objective
criterions for the strategic management of a complex hospital and the
allocation of scarce hospital resources. An evaluation (a.k.a., scoring)
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system was described based upon six themes, namely strategic, oper-
ating, research, economic, organizational, and quality. No actual “con-
crete” mathematical methods were however provided or tested.
Bruggemann et al. (2021) developed a web accessible simulation-based
decision support tool to explore hospital resource usage in high demand
circumstances like the COVID pandemic. They advocate the develop-
ment of “what-if” scenarios for the evaluation of stochasticity and the
export of results to a CSV file to enable connectivity to other software
suited. The capability to provide meaningful and easy to understand
outputs is also emphasised.
Corporate Solutions. Corporate healthcare analytics software and
services is increasing and there are numerous market drivers. The need
for better capacity management and pricing in hospitals and a need to
curtail healthcare costs are explicitly quoted in an online report (Hos-
pital Capacity Management Solutions Market). In that report, healthcare
software is described as either integrated or standalone, and delivered
on-premises, or by the cloud. The following products are described as
most popular at present:
e Asset Management (Medical
Management)

e Patient Flow Management Solutions

e Workforce Management (Nursing & Staff Scheduling Solutions,
Leave and Absence Management)

e Quality Patient Care

Equipment Management, Bed

The major players in the global hospital capacity management so-
lutions market are listed as Cerner Corporation (US), McKesson Corpo-
ration (US), HealthStream (US), Stanley Healthcare (US), and Halma plc
(US). Other prominent players in this market include Infosys (India),
Teletracking Technologies, Inc. (US), NextGen Healthcare (US), All-
scripts Healthcare Solutions, Inc. (US), Epic Systems Corporation (US),
Sonitor Technologies (US), Koninklijke Philips N.V. (Netherlands),
Neusoft Corporation (China), Infinitt Healthcare Co., Ltd. (South Korea),
JVS Group (India), Infor Systems (US), Care Logistics (US), WellSky
(US), Simul8 Corporation (US), and Alcidion Corporation (Australia).

Dashboards have become particularly popular, and many are pro-
duced and packaged in business intelligence solutions (https://www.si
sense.com). Most dashboards summarise outcomes, performance, and
cost information over a given period.

General Findings. Hospital case mix planning and capacity alloca-
tion/ assessment is a niche research area with relatively few articles
overall. Despite the arguments concerning the efficacy and potential of
recent analytical approaches, actual decision support tools (DST) using
those approaches have not been described. From this we infer that they
have not been implemented and deployed, and if they have, it is not
extensive. We also infer that prior articles on the topic are far too
nuanced for hospital planners, information technology staff, and man-
agers, to understand and interpret. As such there is little motivation to
progress these methods to the point where they can be deployed within
hospital information systems.

Providing advanced predictive analytics is an important goal in the
healthcare industry (Krueger, 2018). The development of planning
software is, however, challenging. To apply a software solution, it is
necessary to fully understand the needs of the potential hospital users
and to ensure access to appropriate hospital information. This is also
true of analytical methods. Unfortunately, hospitals are data rich, and
information poor (Adeyemi et al., 2013). Raw data is frequently held
hostage in disparate enterprise IT systems, data archives and data
warehouses (Krueger, 2018) and access may be granted to only a select
number of personnel within an organisation. The time to extract infor-
mation from raw data stored within the IT system may also be prohib-
itive and is at the very least, nuanced.

Despite the great need for decision support tools, there appears to be
a significant lack of them to implement and put into practice (Hum-
phreys et al., 2022). Of the existing decision support tools found in the
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literature, anecdotal evidence suggests very few hospitals have adopted
them for regular use. As Hulshof et al. (2013) reports, current techniques
are too limited, being too myopic, focussing only on the development of
long-term cyclical plans, and are incapable of providing solutions for
real-life sized instances. Hawkinson et al. (2018) also comments that
integrated models that can tie together competing metrics in capacity
planning decisions are not being developed. Nor are there tools that
provide sufficient “what-if” capabilities to support managerial decision
making.

For decision making and planning it is vital that hospital personnel
transform information into task, event, and process knowledge. Ac-
cording to Forgionne and Kohli (1996), comprehensive decision support
requires consolidation of separate information systems or data sources,
and the effective delivery of integrated capabilities and knowledge,
involving clinical and administrative information, in a systematic,
complete, and timely manner. However, all these activities are still
complex to this day, and it would appear, there are no easy shortcuts in
the development of effective DSS and DST.

Information technologies are often described as having the potential
to improve both the quality and effectiveness of healthcare providers
(Bardhan and Thouin, 2013). However, the impact of health information
technologies (HIT) on healthcare delivery and quality of care is difficult
if not impossible to determine, without first applying them for an
extended period and comparing metrics of performance. The quality of
the human user interface also plays an important part in the adoption of
many information technology and decision support systems. The aes-
thetics, however, cannot justify lack of capability and essential analyses
and evaluations must be present.

In the cited literature, various DSS and DST are described. However,
most articles only provide very high-level explanations, and many
important technical details are not described. There is truly little advice
or transferrable methodology. Furthermore, there is no detailed
description of why interfaces are set up a particular way and how
alternative layouts affect decision making. At this point in time, very few
of the DSTs proposed in health-related articles use and or integrate so-
phisticated mathematical techniques. Of the papers that do provide so-
phisticated mathematical techniques, very few consider how analytical
techniques could be used by hospitals, and as such, only contribute to
the literature. Overall, there are few managerial insights provided in
those technical articles.

Many DSTs are described as tools to make health care resource al-
locations. Most of those, however, suggest a manual approach, not an
automated optimization approach. We have observed a variety of claims
that proposed data warehouses alone will help decision makers (i.e., like
Sebaa et al., 2017), however, there is no evidence to suggest that deci-
sion makers would know how to use the data that is collected and
archived in their platforms. Nor is there any evidence to suggest that by
simply looking at dashboard results, it would be clear how to apportion
resources optimally.

There are many DSS in other domains, and this leads us to the
conclusion that those may be a good reference point for healthcare and
should be investigated in more detail. For instance, the article by James
et al. (2010) is a model of how mathematical techniques can be imple-
mented successfully in a DSS. A review of other domains, however, is a
considerable task, outside the scope of this article.

3. Quantitative framework

In this section, the mathematical framework behind HOPLITE is
detailed. HOPLITE is a predictive analytics tool designed for health care
managers (HCM). HCM have a variety of strategic and operational re-
sponsibilities, some of which are delegated to other staff. One of their
key strategic responsibilities, however, is capacity planning (Ozcan,
2017). HOPLITE was developed and validated collaboratively with
hospital administrators and clinicians who were involved in our
research project.
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Legend:

ARR: Arrival, a.k.a., admittance

ICU: Intensive Care Unit

PAC: Post Anaesthesia Care

POSTOP: Post-Operative Care, a.k.a. recovery
PREOP: Pre-Operative Care

SUR: Surgery, a.k.a., surgical operation

DEPART

Legend:

HOD: Hospital Data / Config. HD = (W, S,,)
PAT: Patient Type Data. PAT = (G, F;, RCP)
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Fig. 2. Primary quantitative methods of HOPLITE.

3.1. General overview and assumptions

The terms and concepts below are important for understanding
HOPLITE, and it is necessary to discuss them first.

Hospital Capacity. Hospital capacity is viewed as the number of
patients of different types treatable over time or the number of activities
of different types that can be performed over time. As such, it can also be
viewed as a rate.

Patient Types. Hospitals treat and care for a diverse cohort of pa-
tients with very different illnesses and conditions, with very different
health care requirements. For planning purposes, it is necessary to
aggregate patients into a finite and more manageable number of patient
type groupings. Aggregation by specialty (i.e., medical, and surgical)
and by condition (i.e., diagnostic related group (DRG)) is logically
appropriate based upon our observations and consultations with hos-
pital practitioners. Other approaches could be taken, based for instance
upon the clustering of patients with similar attributes, however, this
does not conform with the way hospitals themselves classify patients,
and would inevitably be less intuitive to the end users. Patients of the
same type often have different treatments and resource requirements,
and this necessitates the definition of a sub-group or sub-type.

Hospital Activities. The purpose of HOPLITE is to perform various
assessments, evaluations and queries relating to hospital activity. In our
prototype tool, typical high-level activities like pre-operative care
(preop), surgery (sur), post anaesthesia care (pac), post-operative care
(postop), and intensive care (ic) are currently included. Lower-level
activities are not considered for the simple reason that they are of
dubious value strategically and overcomplicate the assessments and the
software. This, however, is not to say that they could and should not be
included at some point, in another version. Preoperative care and post
anaesthesia care occur either in a specific surgical care area or in a ward

bed. Also, any significant surgery occurs in an operating theatre and
post-operative recovery is almost always performed in a ward bed.

Patient Pathways. The path taken by patients during their hospital
stay is an important piece of information relevant to an assessment of
hospital capacity. Patient pathways can be used to distinguish patients
of different types and sub types. Patient pathways can be defined in
diverse ways. In this article a patient pathway is deemed a list of the
places (a.k.a., hospital areas) a patient visits and a description of the
activity(s) performed in each of those places. Formally, pathway = {(act,
w,t)lw € W, t € R} where W is the set of hospital areas and t is the length
of stay (a.k.a., occupation time) in that area, recorded in a suitable unit
of measure like hours or minutes.

Pathways should be extracted for each patient type grouping g € G.
They can either be extracted from hospital records or inferred.
Regarding surgical patients, there are a finite number of surgical path-
ways. We have observed that most surgical patients have a similar set of
activities and a common flow through the hospital. The paths that may
be taken are summarised in the directed “cyclic” graph shown in Fig. 1.
In this network there are no unknown entry and departure points.
Assuming the possibility of at most two surgeries (i.e., two cycles), this
network produces 51 paths. These can be extracted using a depth first
traversal algorithm.

The network in Fig. 1 includes a death event activity. This is worth
adding because patients that die during surgery, intensive care, and
postop activities have a different “resource consumption” profile. If
these events are not distinguished, expected activity durations will be in
error. Any random variable created from the data will be “bi-modal” and
may have unnecessarily long “tails”.

Patient Profiles. A resource consumption profile (RCP) is recom-
mended to be created for each patient type or sub type. Conceptually it is
a set of the resources required and the time each of those is required. A
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Table 2

Notation and key parameters.

SYMBOL

MEANING

ADDITIONAL NOTES

G

Lepk)

orT,ICU

WARDS

Beds
ICBed

Use,,

GP
8p

Set of patient types

Set of patient sub types
within group g

Set of all surgical/
medical activities

The set of activities for
patients of sub type (g,
p)

The number of activities
in the profile for patient
sub type (g,p).

Time (deterministic) to
perform activity type (g,
p.k). Otherwise viewed
as the resource time
consumed. Unit is
hours.

The set of activities
performed in area w
The set of theatres and
intensive care beds

The set of recovery
wards

Set of hospital

areas.W =

OTUICUU WARDS
Number of treatment
spaces in area w.

Total number of ward
recovery beds

Total number of
intensive care beds
Time usage of area w
The set of areas that
activity a can be
performed in. This set
describes alternative
options.

The time availability of
hospital areaw € W
Case mix. The
proportion of patients
of type g amongst the
entire patient cohort.
Sub type mix. The
proportion of patients
of sub type p amongst
type g

Target case mix and sub
mix

Target number of
patients
Target allocation

The revenue specified
for a specific sub type
Total number of
patients to be treated
[DVAR]

Number of type g € G
patients to be treated
[DVAR]. The name/
descriptor of the type is
denoted 1D,.

Number of sub type p €
P, patients to be treated
[DVAR]. The name/
descriptor of the sub
type is denoted 1Dg,.
The number of activities
of type a = (g,p,k)
assigned to hospital
area w, where g is the
patient type, p is the sub

* Agp ={(&p.1),(8D,2),(8p.3)}
o Kop =3

e k = 1= theatre “surgery” time
k = 2= ward postop time
k = 3= intensive care time

e Areas include wards, theatres, and the
intensive care area

o Typically refers to number of beds
present.

® Beds = 3=, yarpsSw

e Unit is hours
e There must be at least one option, i.
e,[Wol > 1

e Unit is hours

o S g =10<uf <1

o Yoep gy =1¥8€ GO < gy <1

. Conditionally,ﬁ? = ;45@

-, SGP _ GpaG
Conditionally,n,, = pgpn,

_ PP —Gp

o N=3,n; or N =375 cp Mgy
~Gp 2

o Consequence:fiy, = > ,cw,faw

o 85 =3 ,p nGPS0P and § = 3,87

&P "8Pp

o N =3m = 30X per, 55

o G is the set of patient types
ngG=pecPgng,pGP YgcGConditionally,
ng = udN

o Pg is the set of patient sub types.
nGP GP nG

Conditionally, ngy = ugyn,

o 1 <k<Kgpfyn =0VacAVwecW\W,
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Table 2 (continued)

SYMBOL MEANING ADDITIONAL NOTES
type, and k is the
activity type indexer
[DVAR].
M Total number of ® M = weeks x days x sess x |OTU|M x D is
sessions in the MSS the total time availability for surgical
activities
D Duration of sessions in e Typically, D =4 hrs
the MSS
days Days per week in that e Typically,days =5
theatres are running in
MSS
sess Sessions per day in MSS e Typically,sess = 2
weeks Number of weeks over o weeks > 1
which an assessment is
performed
mg Number of sessions o mg = ng or else it is chosen such that

assigned to patients of
type g Real valued and
may take fractional
values

my < pgMy,;mg = M

profile is formally defined as a set of tuples {(r, t)|r € R,t € R } where the
time utilisation t is measured in either minutes or hours. From a practical
perspective, the time utilisation is unlikely to be invariable. As such it is
worth computing an expected (a.k.a., averaged) value based upon his-
torical or other empirical evidence. Not all resources need to be
included; a guideline would be to include “principal” resources, for
instance, which have been established as bottlenecks, as being scarce, or
as being highly costly. A minimal profile may also include only loca-
tions. In many patient pathways the same location is visited numerous
times, or the same resource is used for different activities. When
assessing capacity, how many times a location or any other resource is
required is not important, but the total time required is. In this article,
only hospital areas are considered as resources. As such, the RCP is
{w,t)lwe W,teR}.

The RCP discussed above is “inherently linked” to the patient
pathway discussed earlier. A patient pathway can be converted into a
RCP by aggregating pathway records with the same location or resource.
This can be done iteratively by adding tuples from the pathway to the
profile.

Example. If pathway = [(preop, sca, t1),(sur, ot, tz),(ic, icu, t3),(postop,
ward, t4), (preop,ward, ts),(sur, ot, ts),(pac, sca, t;),(postop, ward, tg)] then
profile = [(sca,t; + t7), (ot ts +tc), (ward, t4 +ts5 +tg), (icu, t3)].

Patient Case Mix and Sub Case Mix. A sub-division of a patient
cohort into specific patient types is called the case mix. The case mix is
typically viewed as either the proportion of each patient type or as an
actual number of patients of each type. A sub-division of the patients of a
particular type into different sub-types is called the sub case mix or
simply sub mix. The sub mix is the proportion of each sub-type.

Master Surgical Schedule (MSS): How often theatres are used, and
how effectively they are used, affects the output of a hospital. The
operating theatres of a hospital operate on certain days of the week and
at certain times during the day. This results in a set of theatre sessions,
which can be used for surgical procedures. A master surgical schedule
(MSS) is a plan that describes which hospital unit or specialty has access
to each theatre session.

Final Remarks: The creation of this PDST has raised some key
questions. How much detail should be included is one question of in-
terest. It is hypothesised that a minimum viable PDST should only
include theatre, ward, and intensive care unit areas. Similarly, only
surgery, intensive care and postop activities should be included. Surgical
care areas and the associated pre-operative and post anaesthesia care
activities could be left out because the time requirements are small at
those locations, and those areas usually have excess bed capacity. In-
dividual treatment spaces, like beds, should not be treated indepen-
dently; they should be aggregated. As such, task allocations to individual
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Hospital Planning, Intel, and Tactical Evaluation X
— Project
Choose | Recent I Open Close New

I kcen ario_l.project

— Assessments & Queries
1. 1dentify given static theatre session allocations to specialties the case mix
" 2. Determine maximum # of patients that are treatable and the associated case mix
" 3. Check utilization levels and feasibility of a selected case mix
¢ 4 Find a feasible casemix that best meets given targets

" 5_perform a sensitivity analysis of patient case mix

Fig. 3. Main application and options window.

beds are avoided. This contrasts with the numerical studies in Burdett
et al. (2017) and Burdett and Kozan (2016) which were “over-detailed”
in that respect.

3.2. Techniques

In this section the quantitative techniques behind HOPLITE are
described. The main procedures facilitated by HOPLITE are summarised
in Fig. 2. Table 2 then describes all notation, parameters, and termi-
nology needed to understand them. Decision variables are labelled
DVAR in Table 2.

3.2.1. Basic assessment of capacity

An approach to perform a basic assessment of capacity is first
described. This approach involves static calculations and does not
require the application of a mathematical optimization model. The main
idea behind the approach is the restriction of capacity by a particular
resource type. Evaluating changes to key parameters like M, D, days, sess,
weeks, S,, can be quickly evaluated and this permits hospital capacity
expansion planning and other what-if assessments. Resource utilisation
information can be computed, viewed, and actioned.

Method 1. Given an MSS template and a pre-established allocation
of theatre sessions to specialties (i.e., mg) an important task is to identify
the patients, denoted N,ng,ng7, that can be theoretically treated. If we
assume that there is only one ward option for each postop activity, the
static calculations described by equation (1) and (3) are sufficient to
determine the case mix and sub mix. Only theatre usage is restricted
with this approach, and all other resource type usage is unrestricted.
=P e m

8 GP
ZpePg ﬂg,p tg,pJ

Term, mgD is the total time available, and the denominator is the
weighted average surgery time.

Method 2. A second query of a similar nature can also be performed
using Equation (2). With this approach it is assumed that output is
restricted by ward bed availability, and not theatre availability.

Beds are assumed available 24 hrs/day and 7 days/week; hence
availability is 168 hrs/week per bed. Parameter ward,, is the specific
ward assigned to perform the postop activity designated (g,p, 2).

nd = (168 x weeks x S,,) / ZpePg,ugl; (tep1 +tgp2) Wherew = ward,,  (2)

In equation (2), the denominator represents the weighted average time

utilisation in a ward bed. In many hospitals, ward beds are acquired and
made vacant before surgery is performed. Hence, the total time
consumed is t;p1 + tgpo2-

For both methods, the following calculations are made:

ngi = ,ugn?Vg €G,VpeP,,N= decng 3)

BedUse = decngﬂ’ng; (tepa +1gp2), BedUt

=100 x BedUse/(l68 X Beds) “4)

BedUsew = deGZpePg\wurdg,,,:wngl; (IS-P,I + tg,p,Z)VW € WARDS

BedUt,, = 100 x BedUse,, /(168 x S,,) (5)

OWse =3 >, oy (tepa), Ot = 100 x OtUse / (M x D) (6)
&

IcUse = deGZpePgng (tep3),1cUt = 100 x IcUse/(168 x ICBed)
)

3.2.2. Advanced assessments of capacity

The methods in this section constitute a more advanced assessment
of capacity. Identifying the maximum number of patients treatable, over
time, given specified time availabilities of ward beds, theatres, and
intensive care beds, and some notion of case mix, provides useful in-
formation to hospital managers and planners. A mathematical model
must be applied to determine the exact number of each type/sub-type,

namely n¢ and n}, and a resource allocation f,,, because of the

gp’
competition for common resources, and the availability of optional lo-
cations and resources to choose from. It is not possible to know how to
assign resources just by looking, or to apply static calculations.
Conceptually this decision problem is akin to multi-knapsack and bin-
packing problems.

Method 1. When a case mix is viewed as the proportion of all pa-
tients treated, the necessary optimization model is as follows:

Maximize.N

Subject to

1 = D, Pana € A ®
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> |

Create a new hospital project X
— Project
Mame: -
scenario 1
|
— Hospital Areas
R | Ward 5 + | # | Name | #oOf
1 Ward1l 2
#Beds: I 3 - | 2 ward2 5
3 Ward 3 10
# | 4  Ward4 14
OTU (#Rooms): I 10 i’ = Ward 5 3
ICU (#Beds): I 5 ﬂ < >
— Patient Type Profiles
L= | speclty 5 + | # | Name | #sul
1 Specialty1 2
2 Specialty2 1
3 Specialty3 3
4  Specialty4 1
5 Specialty 5 1
< >
= | Spedialty 5-1 + I # | Name | Ty... | Sur. | IntC.l Post... I Wards Used
. 1 Specialty1... 1 12 0 1786 Ward 1
Surgery (#hrs): | 41 2 Specialtyl. 1 125 0 835 Ward1
. 3 Specialty 2... 2 24 0 16.31 Ward 2,Ward 1,..
Int. C. (#hrs): | 0 4 Specialtys. 3 65 0 1294 Ward3
. 5 Specialty3... 3 456 0O 1239 Ward 3
Postop (#hrs): | 22.81 6 Specialty3. 3 76 O 554 Ward3
. 7 Specialty4... 4 34 0 1899 Ward4
Charge (£): I 0 Specialty5.. 5 41 0 2281 Ward5Ward4
Ward Option: I Ward 4 j + | ( %

Table 3
Main project file and primary inputs.

Fig. 4. Project creation window.

File Type: *.project

File Type: *.config

File Type: *.patient

Project Name,name
Hospital Configuration,*.config
Patient Information, *.patient
Case Mix,*.mix
Session,*.session
Targets,*.target
Allocation, *.alloc

Intensive Care Beds,S;cy
Theatres,Sory

Wards,| WARD|

Ward Information,{([w], 1Dy, Sy)}

Patient Types,|G|

Patient Type,

{[g], 1Dy, |P;| }Patient Sub Type,
{[gllp], 1D, }Profile,

{[8llP): tep1: tep2, tepa, Agp }Revenue,{[g] P, 82, }

D vuen Panta S TS.Yw € W

® > eccd perBgp1)ortepr < TorvSoru (10)

9
gp =

ng > uiNvg € G

m Yo per Blgp2w(tep1 +lgp2) < TwSwYw € WARD (11)

® > e perPigpicuteps < TicuSicu (12)

ngy > udtnivg € G,Vp € P,

13

14
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Table 4
Concrete examples of primary files shown in Table 3.

scenario_l.project scenario_1.

config

scenario_l.patient

Intensive Care
Beds,5
Theatres,10
Wards,5
Ward Info,
[1],Ward 1,2
[2],Ward 2,5
[3],Ward 3,10
[4],Ward 4,14
[5],Ward 5,3

Project Name,scenario_1
Hospital Configuration,
scenario_l.config
Patient Information,
scenario_l.patient
Case Mix,

Session,
Targets,
Allocation,

Patient Types,5

Patient Type,
[1],Specialty 1,2
[2],Specialty 2,1
[3],Specialty 3,3
[4],Specialty 4,1
[5],Specialty 5,1

Patient Sub Type,
[11[1],Specialty 1-1
[1]1[2],Specialty 1-2
[2][1],Specialty 2-1
[31[1],Specialty 3-1
[3]1[2],Specialty 3-2
[31[3],Specialty 3-3
[41[1],Specialty 4-1
[51[11,Specialty 5-1
Profile,
[11[11,0,1.2,17.86,Ward 1
[11[2],6,1.25,8.35,Ward 1
[2][1],0,2.4,16.31,Ward 2,
Ward 1,Ward 5
[31[11,0,6.5,12.94,Ward 3
[31[21,0,4.56,12.39,Ward 3
[31[31,0,7.6,5.54,Ward 3
[4][11,0,3.4,18.99,Ward 4
[51[1],12,4.1,22.81,Ward 5,
Ward 4

Revenue,

[1][1],1000.0
[1][2],1500.0
[2][11,600.0
[3111]1,2500.0
[31[21,6000.0
[31[31,3700.0
[41[1],10000.0
[51[11,5500.0

Baw = 0Va € A,Vw € W, 15

Equation (8) is a balance equation, providing a link between the allo-
cations made and the number of patients of a given sub type. Equation
(9) is a generic constraint for the time availability restriction of hospital
area. Equation (10)-(12) are respectively specific to OT, WARD, and ICU
areas. Typically, T, = weeks x 7 x 24vw € W\OTU and Tory = weeks x
days x sess x D. Equation (13) and (14) are “administrative” constraints
enforcing specified case mix and sub mix proportions.

Method 2. Anecdotally, we have observed that hospitals do not al-
ways view the case mix as a proportion of the whole. Instead, they view
case mix relative to the theatre time allocated to each group type. In that
scenario a different optimization model is required:

Maximize. " ng

Subject to.
Constraint (8), (9) or (10) — (12), (13), (15)
D e Mettarn) < mgDVg € G 16
>0V eG a7

Constraint (16) is added to restrict output by session time allocated. The
number of sessions assigned to each group is my; = yg'M. To simplify

Table 5
Auxiliary input files.
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matters, it is recommended that all theatres are aggregated into a single
area within the model input data. Hence, the number of spaces in that
area is the number of theatres. It can be assumed that there is only one
ICU in most hospitals, and all intensive care beds are there. If that is not
the case, it is recommended to aggregate all the ICU beds into one area
too.

3.2.3. Evaluating case mix feasibility and requirements

Testing the feasibility of a selected case mix and/or resource allo-
cation is another useful capacity query. All intensions specified by a
planner are hereby designated as targets and denoted using the variables
ﬁg,ﬁgﬁu‘w. If only Eu‘w is defined, then the usage level of each resource

can be directly evaluated using equation (4)-(7). If no resource is over-

used, then feasibility of the allocation is verified. In these circumstances,
GP _ r G _ GP -G ~GP 3

Ngp = > wew Paw and ng =37, p nor. If 0 or Ay, or both are defined,

but ﬁayw is not, it is necessary to solve the model from Section 3.2.2 to

identify whether a feasible resource allocation can be obtained. Two

additional constraints are, however added, namely ng = ﬁgGVg € G and
Gp __ oGP,
ng, =M,,Vg € G,Vp € Py.

Determining the number of surgical sessions required in the MSS for
each specialty is another useful piece of information. Given target ﬁ?

~G

n OPy,
then m, = g#’w The numerator is the weighted average multi-
plied by the number of patients. Similarly, given ﬁg;, then m, =
S /rfmtg 1
=t 2 Vg e G,
Table 6
Concrete examples of files shown in Table 5,Table 6.
scenario_1. scenario_1. scenario_l.alloc scenario_l.
mix session target
Case Mix, Patient Type, Allocation, Patient Type,
[11,5 [1],Specialty [11[1][1],Specialty [1],Specialty
[2],43 1,12 1-1@Ward 1,5.26 1,10
[31,18 [2],Specialty [11[2][1],Specialty [2],Specialty
[41,9 2,25 1-2@Ward 1,2.42 2,55
[51,25 [3],Specialty [2][1][1],Specialty [3],Specialty
Sub Mix, 3,34 2-1@Ward 2,22.88 3,65
[1]1[11,70 [4],Specialty [2][1][2],Specialty [4],Specialty
[1]1[2],30 4,10 2-1@Ward 1,0 4,35
[2][1],100 [5],Specialty [21[1]1(3],Specialty [5],Specialty
[31[1],25 5,19 2-1@Ward 5,27.94 5,53
[3][2],40 [31[1][1],Specialty Patient Sub-Type,
[31[31,35 3-1@Ward 3,6.11 [1]1[1],Specialty
[4]1[11,100 [31[2][1],Specialty 1-1,5
[51[1],100 3-2@Ward 3,9.17 [11[2],Specialty
[31[31[1],Specialty 1-2,5
3-3@Ward 3,8.15 [2][1],Specialty
[41[1]1[1],Specialty 2-1,55
4-1@Ward 4,11.22 [31[1],Specialty
[51[1]1[1],Specialty 3-1,16
5-1@Ward 5,0 [3]1[2],Specialty
[51[11[2],Specialty 3-2,20
5-1@Ward 4,29.38 [31[3],Specialty
3-3,29
[4]1[1]1,Specialty
4-1,35
[5][1],Specialty
5-1,53

File Type: *.mix File Type: *.session

File Type: *.alloc

File Type: *.target

Case Mix,

{ (181 106.9) Ysub Mix, { (Iglpl, 1D i5) }

Patient type,

{ (8], 1D, mg) }

Allocation,{ ([g] [p][k], descr, B(gp 1) ) }

Patient type,
{ (18}, 10, 75 }Patient Sub Type,{ (lglp]. 1Dy, igy) |
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HOPLITE 1: Given static “theatre session allocations” to specialties, identify the case mix “
MAIN PARAMETERS & SETTINGS CAPACITY AND UTILISATION
#Weeks: 1 j’ - Caveat: "By beds" option requires one ward location per specialty e
= 1
B = |
Session time: 2 Z‘ : s [c (o [ [ e A [
: >~ 1 CAPACITY 13374 REVENUE(S) [ 386203.24
Sessions / day: 2 j‘ : N\ 2
o . = H \ 3 TYPE #OF OT HRS
ays / week: 5 zl y / 4 specialty1 3951 a8
o - - 5 Specialty 2 4167 100
== 100 < 6 Specialty3 | 2226 136
o ~ 7 Specialty 4 1176 40 117647.06
#Unassigned: 0 \, 8 Specialtys 1854 Il 76 10195122
9
. . -
Ebeate= 10 j - 10 TYPE susTvée #OF OTHRS WARD HRS ICU HRS WARD MIX(5%) REVENUE(S)
P R 11 Specialty 1 speciblty 11 27565 33.19 49391 o Ward 1 70 27654.32
neLbeds: 5 Z’ == 12 Specialty 1 Spefialty 12 1185 1481 98.96 7111 Ward 1 30 17777.78
| 13 Specialty 2 Sgecialty2-1 4167 100 679.58 o ward 2 100 25000
Ward: Ward 1 o 1 14 Speci N
! pecialty 3 ecialty3-1 = 557 36.18 72.02 o Ward 3 25 139139
. R S X 15 Specialty 3 Specialty3-2 89 4061 11033 0 Ward 3. 40 5342937
eds: 2 Z’ ! S 16  Specialty 3 Specialty3-3  7.79 59.22 4317 o warl3 35 288296
Aestriction: - N |17 specialty s Specialty4-1 1176 40 223.41 o AWward 4 100 117647.06
SSScHon @ Bytheatre  ( Bybeds N|18 specialtys /  Specialtys-1 1854 76 42282 22244 o Ward 5 100 101951.22
\9\ / e
20" QESOURGE HRS USED AVAIL HRS %USED ATTREATED
PATIENT CATEGORY & SUB TYPE SETTINGS 21 OW 4 400 400 1000 - 13374
Type: I Specialty 1 j 2 1 N 293.55 840 34957 3039
23 wapd1 N 640.87 336 #30.73[1] 3951
#Sessions: 12 i‘ P — 24 n/ird 2 77958 B0 7 o281 4167
25 ward3 36152 1689 2152 2226
Hours assigned: 48 26 ard 4 263.41 - 2352 112 1176
27/ Ward 5 29882 7 s04 98.97 1854
Sub Type: I Specialty 1-1 Z| 29 ALLWARDS 254527 5712 4454 13374
/ A
Sub Mix (%): 70 j’ / -
- -
e / -
ror: 0 Fix Error 7 »
: / e
Theatre time (#hrs): | 12 D —— I _-
q . -
Ward time (#hrs). 17.86 Save Sessions g P
Int.C time (#hrs): 7
[CEEmE{ e 0 Load Sub Mix
Ward required: Ward 1 Save Sub Mix < >

Fig. 5. HOPLITE GUI 1 - Solution “By Theatre”.

3.2.4. Identifying a case mix that best meets given targets

In Section 3.2.3, the feasibility of a target case and/or sub mix was
discussed. If those targets are infeasible, a pertinent question is, what is
the closest feasible case mix to the designated targets. The model shown
in Section 3.2.2 should be solved such that the deviation between the
targets and the actual values is minimized. If the targets can be met
exactly, then the objective value will be zero.

For this capacity query it is assumed that exceeding one target is not

sufficient to counterbalance any unmet target. In other words, the
~GP

constraints ng < ﬁ;Vg and or ng} < 7, Vg,Vp € Py should be added. The
following upper bound is also needed:
TW'SH"
Baparw < 7 V(8P 2) € A,Yw € Wiy, 18
(tgw + tgyﬁl)

This constraint is helpful when solving the decision model with a non-
linear solver. Adding upper bounds is general advice provided on the
OpenSolver website. As theatres are deemed generic, and there is one
ICU, the following upper bounds could also be imposed:

ToruS.

Blepiyw < %V(g, 1) €AW € Wip 19)
8.1
TicuS

Blapsyw < ——29(2,p,3) € A, YW € Wi, (20)

(tg,p~3)

Several variant objective functions may be used, and these relate to
different “targeting options”.

Target Option 1 (TO1): Given targets ﬁg and importance weights

)

oy, the objective is either of the following:

— ~G G
= E ga)g<ng ng

Minimize||n® — 7°|), = Zgwg

(21

G -G
ng n 8

10

12

e e ~G
orMinimize E Wy (nG —-n
" ¢ g

5

(22)

2
S -G ~G
Minimize|[n® —7°||, = E gwg<n§—ng)

TlG

;) in

The absolute value term ‘ng — ﬁg’

’ can be replaced with (ﬁg -

equation (21) as ng’ < ﬁ?. This makes equation (21) a linear expression.

Equation (22), however, is non-linear and that necessitates the appli-
cation of a non-linear solver. Minimizing the sum of squares
~G
—-n

2% (ng g
iate quadratic function (see Appendix A-1). As such, it is hypothesised
that the decision model may be solved more efficiently via Quadratic
Programming techniques, rather than generic non-linear solvers.

2
> is a viable alternative. That expression is a multivar-

If sub-types are specified, then targets ﬁg; may be defined as follows,

~GP _

=G
n GP

gp — Hepllg:
Target Option 2 (TO2): Given targets ﬁg}: the objective is either of

These can also be chosen to be explicitly met too.

the following:

L ~GP ~GP __GP
Minimize||n®" — 7 = Z ® Z n, — orz [0) Z
H Hl‘] ¢ 8L apep, \' 8P P ¢ 8L upep,
~GP GP ~GP
(ngvp n&’xp) ng«P
(23)
1
2 2
s e GP ~GP _ GP _ ~GP
Minimize||n n |y, = E ga)gzpepg (ngy ng’p) (24)
. . . - ~GP .
Like equation (21), equation (23) is linear, because n® < 71, . Equation
8P gp

(24), however, is non-linear like (22). It is also a quadratic function (see
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HOPLITE 2: Determine maximum # of patients that are treatable and the associated case mix “
MAIN PARAMETERS & SETTINGS CAPACITY AND UTILISATION
#Weeks: ll—ﬂ
M Save
Session Time: a i‘
) = A [s [ic [o [e F G H [
Sessions / day: 2 i‘ 1 CAPACITY 11353 REVENUE(S) | 382372.56 I
2
R 5 é’ 3 Tvee REVENUE(S)
§ 4 Specialty1 6527.84
e 100 5 Specialty 2 2929014
6  Specialty3 88279.12
#Theatres: 10 j’ 7 Specialty4 10217491
— ,s_i, g Specialty 5 156100.55
. 10 TYPE WARD HRS ICU HRS MIX(%) REVENUE(S)
are: Ward 1 < 11 Specialty 1 Spedfalty 1-1  3.97 477 75.73 o 3973.47
12 Specialty 1 spcialty1-2 17 213 1635 1022 2554.37
# Beds: 2 é’ 13 Specialty 2 dpecialty2-1 4882 117.16 913.36 0 29290.14
14 Specialty3 / Specialty3-1  5.11 3321 99.31 o 12771.86
Case Mix Definition: 15 Specialty3 / Specialty3-2 817 37.27 13855 o _ 49043.96
16 Specialty?  Specialty3-3 7.5 5436 9398 [\ 26463.3
(¥ As proportion of all patients to be treated 17 Specialf 4 Specialty 4-1 = 10.22 3474 22877 - % 10217491
18  Specidity 5 Specialty5-1 2838 116.37 76376, < 34058 156100.55
" As proportion of theatre time allotted 19 / ”
20 TPE SUB TYPE #OF WARD @aronrs  ((REVENUE(S) )
21 Mpecialty 1 Specialty 1-1 397 Ward 1, 75.73 3973.47
PATIENT CATEGORY & SUB TYPE SETTINGS 2% Specialty 1 Specialty1-2 17 \&ann/ 1635 255437
Type: | Specialty 1 j 43  Specialty 2 Specialty 2-1 8.84 »Ward 2 165.45 5305.61
/|24 Specialty 2 Specialty2-1  13.04 Ward 1 243.92 7822.05
Case Mix (%): ls—il '0— ¥ |25 specialty2 Specialty 2-1 = 2694 Ward 5 504 16162.48
M /| | |26 specialty3 Specialty 3-1, #5111 Ward 3 99.31 12771.86
— | T | = /| 27 Specta]ty 3 Spectalt\u- 817 Ward 3 13855 49043.96
z 28 Specialty 3 Spgsiffty3-3  7.15 Ward 3 93.98 264633
: , 29 Specialty4 _ Apecialty4-1 1022 Ward 4 22877 10217491
DU | speciaiy -1 s - 30 Sspecialtys ~ Specialty5-1 | 0 Wards ) 0
ST Vs 31 Spegidffy s Specialty5-1 2838 Ward 4 763.76 156100.55
ubiMix (): 'm—él '0—/ Fix 32~
435 RESOURCE #BEDS HRS USED AVAIL HRS %USED #TREATED
Theatre, Ward, ICU (#hrs): ’ 34 oOT 10 400 400 100[!] 11353
35 ICU s 350.8 840 4176 3008
17ps 36 Ward1 2 336 336 100[1] 1871
o 37 Ward2 H 165.45 840 197 8.84
b Wardl o~ 38 Ward3 10 331.84 1680 1975 2043
39 Ward4 14 992.53 2352 422 386
40 Wards 3 504 504 100[1] 2694
Load Case Mix (%) | Save Case Mix (%) | 41 ALLWARDS 34 2329.82 5712 4079 11353

Fig. 6. HOPLITE GUI-2. Solution given case mix definition 1.

Appendix A-2).
Target Option 3 (TO3): Given both targets ﬁG and 7,
A Al 1f

is [|n°® |+ [In —

inconsistent, and it makes sense to redefine n n

P » the objective
S < Zpep ng p ® then the deﬁmtlon of n is

= pep, Nl gp " automati-

cally. In general, the update ﬁ? = max (ﬁg’, Zpepg g p) is appropriate.

Further things to note. The alternative norms shown do different
things and will not produce the same optimal decisions. The 2-norm will

ensure most of the targets are met or are minimally unmet. This is
because any difference is squared. The 1-norm can lead to solutions
which meet some targets exactly at the expense of others. If the objective
is zero, i.e., the norms are zero, then there may be a better solution that
satisfies all targets, but with higher overall throughput. A better solution

can for instance be obtained by setting the objective to Maximize N,

Maximize |[n¢ —A°|, or Maximize ||n° —A||, and by adding the con-
. G < =G GP - =GP
straints n;’ > n, and ngy > Mg
The previously defined objectives penalise all differences that occur.
Exceeding targets is desirable, but exceeding a target is not deemed
sufficient to counterbalance any unmet target. Hence, the following al-

ternatives are considered invalid.

MinimizeDeficits = Zg&fwhereﬁ? = max (ﬁ: - ng, 0) (25)
MinimizeDeficits = ZSZ éGpwhereéng = max (ﬁfi ngﬁ, O) (26)
MinimizeDeficits = max(N — N, 0) 27)
The target capacity is computed as N = Z n oras N = Zgzpepxﬁg;.

Minimizing ||N — N|| as the objective is another option.
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When 7 n IS specified, it would be tempting to conclude that n n

~GP
Zpepg n,, as well. However, minimising ||n® -7 H will not guarantee

that ||n%? —A°"|| is minimized. Also, ||nS —A%| # |[n°® —A%"|| except
when the 1-norm is applied.

-G 0P
Lemma 1. [n®—n"[, =|[]n" — 7™, ! where [[Afl, = [Ive ( )Hx =

Y>> Proof. By definition, |n®—n I Ezg(ﬁG

~G AGP ~G AGP
ZpePgng; and n, = ZpeP gp? then ”ngfn Hl = Zg(zpepg
AGP GP
SpernSh) = SeXper, (Rgy —h) = 0o A% .

If the two norm is applied (i.e., see equation (22) and (24)), then

2 2

(ng - ﬁg) # Ypep, (ngc'g - ﬁg;) and Lemma 2 holds true.

Lemma 2. [n% —7%|,, <|nS—7%|,. Proof. By Definition,
G G 2 G =G 2

(In = 2%1,)* = S, (S ~ 7g)~ and

AGP AGP
(In% =A% )0)* = (Ivee(n% —A%),)* = Xy Spen, (nS5-
2

~GP : GP GP G .

m, p) - Given that iy = ygpn;, then:
2
(I A% 55)% = 3T, (WG — uERS)" = 55, (n — )
GP2 A @) <1, th P _7%),,)% <
ZpePg .ug,p S Engg /"g,p = 5 en (”n n ”2,2) =

~G) \2
(IS =a7]5)"
4. Hoplite PDST

In this section our PDST is introduced, and the main capabilities and
features are demonstrated.
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A B C D E F G H
1 | CAPACITY | 113.5277 | <« _
2 l T T -=---_ ] Maximize this
3 TYPE HOF CASEMIX(3%)
4 1 5676384 5
5 2 48.8169 43
6 3 00.43498 18 )
7 3 10.21749 g = constraint
8 5 838192 25 1
=] A I B e Bt A '
10 | TYPE PATH Ny #0OF OT HRS WARD HRS ICU HRS MIX (%) #ALLOCATED
11 1 1 3.973468583| 4768162299 7573431119 0 70 3.973468583
12 1 2 1702915107 | 2128643884 16.34798503 10.217491 30 1.702915107
13 2 1 48.81689973| 117.1605594 913.3641939 0 100 48.81689973
14 3 1 5.108745321| 33.20684458 99.31400903 0 25 5.108745321
15 3 2 8.173992513| 37.27340586 1385491731 0 40 8.173992513
16 3 3 7.152243449| 5435705021 93.08047892 0 35 7.152243449
17 4 1 10.21749064 | 3473946818 2287696155 0 100 10.21749064
18 5 1 28.38191845| 1163658656 763.7574254 340.58302 100 28.38191845
19
20 TYPE SUB HOF WARD WARD HRS
21 1 1 3.973468583 Ward 1 75.73431119
22 1 2 1.702915107 Ward 1 16.34798503 _ Decision variables
23 2 1 44 89577766 Ward 2 B0 _._--"
24 2 1 0 wardl o
25 2 1 3.921122071 Wa_rq_af"?s.ssmgsgct
26 3 1 5.108745321| “4Ward 3 99.31400903
27 3 2 8.173992513 Ward 3 138.5491731
28 3 3 7.152243449 Ward 3 93.08047892
29 4 1 1021749064 Ward 4 228.7696155
30 5 1 0 Ward 5 ]
31 5 1 28.38191845 Ward 4 763.7574254 ]
32 - < Constraint
33 | RESOURCE #BEDS USED HRS AVAILHRS_ _ — - %USED  #TREATE
34 oT 10 400 €0 100 113.52767
35 Icu 350.800512 840 4176196572 30.084834
36| Wward1 92.08220621[ 336 27.4054453 56763837
37 Ward 2 840 840 100 44 895778
38| Ward3 10 331.843661 1680 19.75259887 20.434981
39| Ward4d 14 992 5270409 2352 4219927895 38.500409
40| Wards 3 73.36419394 504 1455638769 3.0211221
41| ALLWARDS 34 2329.817192 5712 4078811611 113.52767

Fig. 7. Capacity model (1).

4.1. Software organisation and design.

The PDST provides several graphical interfaces. After loading the
PDST, the main application window is shown. This leads users to the
main options window, see Fig. 3. From this window, the user can then
choose which decision making, evaluation or assessment task they
would like to do. Once completed, users are returned to the main win-
dow. Decision-making tasks require the solution of a mathematical
optimization model, but evaluation tasks do not. Model generation is
automated using VBA and solution is via the application of the Excel
Solver or OpenSolver. OpenSolver extracts the optimization model
defined in the spreadsheet, which is then written to a file and passed to
the Coin - CBC optimization engine to solve. The result is then read in,
and automatically loaded back into the spreadsheet. When using
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OpenSolver, a decision model can be generated by applying the Open-
Solvers’ inbuilt commands and functions. These are different to Solvers’.
However, OpenSolver also takes as input a model generated using Solver
commands and functions.

Each task is performed in a different window at present. Some tasks
could be aggregated into one window, however, that would result in a
more congested and cluttered appearance.

To select an existing project to load, the “Choose” or “Recent” button
is first pressed. A project however is not loaded until “Open” is pressed.
Once a valid project is loaded, the options are enabled; prior to this, they
are disabled. A new project can be set up either using HOPLITE or
externally. The “New” button brings up the window shown in Fig. 4. A
plain example is shown in that figure for ease of understanding. Frame 1
asks for a project name first. When the command button “>” in that
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; | capacry |1sasoto| € Maximize this

3 | GROUP #OF OTHRS __ AVAIL OTHRS %USED  CASEMIX(%)

4 | 1 16.45091 20 20 100 5

5 | 2 71.66667 172 172 100 a3

6 3 11.78589 72 72 100 18

7 | a 10.58824 36 36 100 9

8 5 24.39024 100 100 100 25

9 ®

10| GROUP PATH HOF "\ OTHRS WARDHRS ~ ICUHRS  MIX(%) _ #ALLOCATED
11 | 1 1 1152263374 1382716043 2196213992 0 70 11.52263374
12 | 1 2 4.938271605| 61728539506 47.40740741 29.62963 30 4938271605
13 | 2 1 71.66666667 172\ 1340883333 0 100 71.66666667
14 | 3 1 2.946472418( 19.15207072, 57.2794238 0 25 2.946472418
15 | 3 2 4714355868 21.49746276 “79.90833197 0 40 4714355868
16 | 3 3 4.125061385| 31.35046652 52033066 0 35 4125061385
17 | a 1 10.58823529 36 237.0705852 0 100 10.58823529
18 | 5 1 24.3902439 100 656.341M634 29268293 100 24.3902439
19 N

20 GROUP PATH #OF WARD WARD HRS "\

21 1 1 1152263374|  ward1 2196213982 N

22 | 1 2 4938271605 Wwardl 4740740741

23 2 1 4489577766  Ward 2 840 AN

24 2 1 3686327815 Wardl 6897119342 ,- | sconstraint

25 2 1 23.08456119| ward5 4319121399 -~

26 3 1 2946472418  Ward 3 572794238

27 3 2 4714355868 ward3  79.90838197

28 3 3 4125061385  Ward 3 542033066

29 a 1 1058823529 ward4 -337.0705882

30 | 5 1 0 ward 57 0

31 5 1 24.3902439 Wwafd4  656.3414634

32 A7

33| RESOURCE  #BEDS _ USED HRS AVAIL HRS %USED  #TREATED

34 oT 10 400 400 100 134.89194

35,  Icu 5 322.3125565 840 38.37054244 29.328516

36, Ward1 2 336 [ 336 100 20.147233

37| Ward2 5 840 840 100 44895778

38| Ward3 10 | 191.3910624 1680 11.39232514 11.78589

39 Ward4 14 | 893.4120516 2352 37.98520628 34.978479

40, Wards 3 431.9121399 504 85.69685316 23.084561

41| ALLWARDS 34 | 2692715254 5712 47.14137349 134.89194

Fig. 8. Capacity model (2).

13
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HOPLITE 2: Determine maximum # of patients that are treatable and the associated case mix ﬂ
MAIN PARAMETERS & SETTINGS CAPACITY AND UTILISATION
#Weeks: 1 j’
Session Time: |4—i|
) [a [s G [o [e F [e [H [
Sessions / day: 2 z‘ 1 CAPACITY 13489 REVENUE(S) 352873.78
2
evs s 5 j 3 TYeE #OF OT USED #OT AVAIL %USED CASEMIX(%)  REVENUE(S)
4 sessions: 4 Specialty 1 16.46 20 20 100[1] 5 18930.04
SSl0as: 100 5 Specialty 2 7167 172 172 100[1] a3 43000
T . . 6  Specialty 3 1179 72 72 100[1] 18 50915.04
LI 10 Z’ 7 Specialty 4 10.59 36 36 100[1] 9 105882.35
8  Specialtys 2439 100 100 100! 25 134146.34
#Int.C beds: 5 i’ a pecialty 2
. 10 TYPE SUB TYPE #OF OTHRS WARD HRS ICU HRS MIX(%) REVENUE(S)
are: Ward 1 M 11 Specialty 1 Specialty -1 1152 13.83 219.62 o 70 1152263
—— R 12 Specialty 1 Specialty -2 494 6.17 47.41 29.63 30 7407.41
eas: 2 Z’ 13 Specialty 2 Specialty2-1 7167 172 1340.88 o 100 43000
14 Specialty 3 Specialty3-1 295 19.15 57.28 o 25 7366.18
Case Mix Definition: 15 Specialty 3 Specialty 3-2 471 215 7991 0 40 28286.14
16 Specialty 3 Specialty3-3 4.3 3135 542 0 3s 1526273
" As proportion of all patients to be treated 17 Specialty 4 Specialty4-1 = 10.59 36 237.07 0 100 10588235
18 Specialty 5 Specialty5-1 2439 100 656.34 292.68 100 134146.34
(¥ As proportion of theatre time allotted 19
20 TYPE SUB TYPE #OF WARD WARD HRS REVENUE(S)
21 Specialty 1 Specialty1-1 | 1152 Ward 1 219.62 1152263
PATIENT CATEGORY & SUB TYPE SETTINGS 22 Specialty 1 Specialty1-2  4.94 Ward 1 47.41 7407.41
Type: | Specialty 1 j 23 Specialty 2 Specialty2-1 | 41.04 Ward 2 767.91 2462572
24 Specialty 2 Specialty2-1 3569 Ward 1 68.97 22118
Case Mix (%): 5 il 0 25  Specialty 2 Specialty 2-1  26.94 Ward 5 504 16162.48
M 26 Specialty 3 Specialty3-1 295 Ward 3 57.28 7366.18
— e | - | 27 Spec.\a\ty 3 Specfa\ty 32 471 Ward 3 79.91 28286.14
28 Specialty 3 Specialty 3-3 413 Ward 3 542 15262.73
29 Specialty 4 Specialty4-1 | 1059 Ward 4 237.07 105882.35
Type: G
DW= | seeciaity1-1 - 30 Specialtys  Specialty5-1 0 Ward 5 ) 0
. 31 Specialty 5 Specialty5-1 | 2439 Ward 4 656.34 134146.34
Sub Mix (3%): ,m—ﬂ ,0— Fix - pecialty pecialty
33 RESOURCE #BEDS HRS USED AVAIL HRS %USED #TREATED
Theatre, Ward, ICU (#hrs): 34 o1 10 400 400 100[1] 134.89
35 ICU s 32231 840 38.37 29.33
12 17.86 0 36 Ward1 2 336 336 100[!] 2015
e 37 Ward2 s 767.91 840 91.42 4104
SR Ward 1 38 Ward3 10 19139 1680 1139 1179
39 Ward4 14 893.41 2352 37.99 34.98
40 Wards 3 504 504 100[1] 26.94
Load Case Mix (%) | Save Case Mix (%) | 41 ALLWARDS 34 2692.72 5712 47.14 13489

Fig. 9. HOPLITE GUI-2. Solution given case mix definition 2.

frame is pressed, a folder is created, and necessary data files are created.
These will be discussed in Section 4.2. In Frame 2, all theatres, ward
beds, and intensive care beds can be defined. The ListView in that frame
only shows the wards, as these are deemed unique objects. In contrast,
theatres and intensive beds are not. In this PDST there is assumed one
operating theatre unit to encapsulate all the theatres and one intensive
care unit to encapsulate all the intensive care beds. Pressing the com-
mand button “>” in that frame permits the user to move on to Frame 3
to designate patient types and sub types. The time required for surgery,
intensive care and postop activities must be input for each sub type.
These values constitute the resource consumption profile discussed at
the start of Section 3. In theory these values could be populated pro-
grammatically for larger datasets and input directly from historical re-
cords stored in a data warehouse.

To add a patient sub type, it is first necessary to select a row from
ListView 2. This requirement explicitly links a patient type to a patient
sub type. To add a ward option for each patient sub type, it is necessary
to select a row from ListView 3 and to press the “+” button to the right of
the “Ward Option” combo box. This combo box is populated by the in-
formation input in Frame 2. Pressing the command button “>" at the
bottom of Frame 3 finalises the project by extracting all information on
the UserForm and writing it to file in the proper data format.

4.2. Data requirements and inputs

HOPLITE requires various information, and this is input from a va-
riety of primary and secondary (a.k.a., auxiliary) files. In this section
details of those files are summarised in Table 3 and 4. The set bracketing
notation “{(...)}” implies multiple line inputs of tuples (...).

The first requirement is a project file that specifies the primary in-
puts, namely the hospital configuration and the patient type informa-
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tion. In the configuration file, the hospital areas (a.k.a., resources) are
input. Given our development assumptions, it is not necessary to
differentiate between different theatres and intensive care beds. How-
ever, it is necessary to differentiate between different wards. This is
strictly necessary for the quantitative techniques and for reporting. As
such, each ward has an identifier 1D,,.

A concrete example is shown below for a small fictional hospital.
There are a total of 34 beds placed across five wards. Of the different
patient sub types, two have optional ward locations. In total there are
eight patient profiles.

Other inputs include a case mix, sub mix, session allocation, targets,
and resource allocation. These are loaded from the following files:

For demonstrative purposes, a concrete example is shown below for a
small fictional hospital.

4.3. Task windows and demonstrative examples

4.3.1. GUI-1

For performing a basic assessment of hospital capacity, the GUI
shown in Fig. 5 has been created. It has three frames. On the left are two
frames of inputs that affect the analysis. The third frame on the right is
the results window. The parameters that can be directly altered have a
blue label to make it easier for users. The MSS template can be manip-
ulated by altering four parameters using the scroll buttons provided.
Edit boxes for these are in the top frame. After any change, the number
of sessions is immediately updated (i.e., M = weeks x sess x days x
|OTU)) and displayed (i.e., edit box 5 from the top). As the number of
sessions increases, the number of unassigned sessions also increases and
edit box 6 from the top is automatically revised. The user should
manually assign “unassigned” sessions otherwise hospital capacity is
unused. The number of beds in each ward can be incremented or
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HOPLITE 3: Check utilization levels and feasibility of a selected case mix allocation n
MAIN PARAMETERS & SETTINGS CAPACITY AND UTILISATION
#Weeks: 1 i‘
= Save
Session Time: 4 j‘
© [s [c [o [e F G H [
Sessions / day: 2 i’ 1 122553 REVENUE(S) 413622
s 2
Days / week: ,s—ﬂ 3 TYPE HOF CASEMIX(%) REVENUE(S)
> 4 Specialty 1 7.68 6.27 8890
#Sessions: 100 5 Specialty2 50.82 4148 30492
6  Specialty3 23.43 19.12 100450
#Theatres: ,Ti‘ 7  Specialty4 1122 9.16 112200
a 8  Specialtys 2938 23.98 161590
#1nt.C beds: 5 ﬂ 9
- 10 TYPE SUB TYPE #OF OT HRS WARD HRS ICU HRS MIX(%) REVENUE(S)
Ward Ward 1 - 11 Specialty 1 Specialty 1-1 = 5.26 631 100.26 o 68.49 5260
12 Specialty 1 Specialty 1-2  2.42 3.03 23.23 1452 3151 3630
#Beds: 2 ﬂ 13 Specialty 2 Specialty 2-1 = 50.82 12197 950.84 0 100 30492
a 14 Specialty 3 Specialty3-1 = 6.11 39.72 11878 o 26.08 15275
15  Specialty 3 Specialty3-2 = 9.17 4182 155.43 o 39.14 55020
PATIENT CATEGORY & SUB TYPE SETTINGS 16 Specialty 3 Specialty3-3 =~ 8.15 61.94 107.09 o 3478 30155
. 17 Specialty 4 Specialty 41 = 11.22 38.15 25122 o 100 112200
Type: I Specialty 1 j 18 Specialty 5 Specialty5-1 = 2938 120.46 790.62 35256 100 161590
19
SUBIPS: | Specialty 1-1 j 20 TYPE SUB TYPE #OF WARD WARD HRS REVENUE(S)
Ward Option: [m 21 Specialty 1 specialty 1-1 | 526 Ward 1 100.26 5260
22 Specialty1 Specialty 1-2 242 Ward 1 2323 3630
T —y ,D—jl 23 Specialty 2 specialty 2-1 | 228 Ward 2 42808 13728
S 24 Specialty 2 specialty2-1 | 0 Ward 1 0 o
#of Type: 5 25  Specialty 2 Specialty 2-1 | 27.94 Ward 5 522.76 16764
26 Specialty 3 specialty2 W 6.1 Ward 3 11878 15275
Theatre, Ward, ICU (#hrs): 27 specialty 3 —specialty32 | 917 Ward 3 155.43 55020
|28 spechlty3 Specialty3-3 | 8.15 Ward 3 107.09 30155
12 17.86 0 _ = T T29 specialtys Specialty 4-1 | 1122 Ward 4 25122 112200
L= 30 Specialtys Specialtys-1 | 0 Ward 5 ) o
_--" 31 Specialty 5 Specialty5-1 | 2938 Ward 4 790.62 161590
32
Load Allocation | Save Allocation | 33 RESOURCE #BEDS HRS USED AVAILHRS %USED #TREATED
34 or 10 43338 400 10835[1] 12253
35 Icu 5 367.08 840 437 318
36 Ward1 2 123.49 336 36.75 7.68
37 Ward2 5 42808 840 50.96 2288
38 Ward3 10 3813 1680 227 23.43
39 Ward4 14 104183 2352 443 406
40 Wards 3 52276 504 103.72[1] 27.94
41 ALLWARDS 34 2497.46 5712 4372 12253

Fig. 10. HOPLITE GUI-3. Evaluation of a case mix allocation.

decremented. This requires a ward to be selected first from the drop-
down combo box.

In the second frame, the number of sessions (i.e., mg) assigned to a
particular patient type is alterable. The default value, however, is one.
Sessions can be loaded from file and alterations can be saved to file for
later assessments. The “Set Even Number” button evenly assigns sessions
to patient types. For instance, the total number of sessions is divided by
the number of patient types. The patient case mix is not an input and is
determined from the static calculations previously described in Section
3. Those calculations are performed using the “>>” button in frame three.
The patient sub mix however is a requirement and should be defined in
frame two manually or via the “Load Sub Mix” button. When the sub mix
is directly manipulated using the scroll buttons, the proportions may no
longer add to 100 % The %error is shown immediately below and must
be corrected before the assessment is permitted to be performed. An
error message is provided to inform the user. The error can be auto
corrected using the “Fix Error” button. This rescales the current
percentages.

The solution report is output within a ListView with resizable col-
umns and shows N,n',n? and other important utilisation information;
these are circled in orange. Any resource that is fully utilised or over
utilised has an “[!]” next to it, so that users can see this important
outcome easily. When the “By Theatre” restriction is selected, the
theatre utilisation will be at 100 %, whereas other resources will not.
When the “By beds” restriction is used, the theatre utilisation may
exceed 100 % but all bed utilisations will be at 100 %. These two options
allow the user to consider what would happen if beds were fully satu-
rated, or theatres and what the difference in output would look like.

4.3.2. GUI-2
For performing a more advanced assessment of hospital capacity, the
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GUI shown in Fig. 6 has been created. It also has a three-frame setup like
GUI-1. For this assessment a case mix and a sub mix should be selected,
and the number of sessions assigned to each patient type is not required.
The case mix and sub mix can be input from file or selected manually.
Any % errors are automatically shown and must be corrected before
analysis is permitted. The “fix” button auto-corrects the percentages by
rescaling. The number of theatres and beds is an important parameter
that can be altered for “what-if” analysis, that greatly affects a hospital’s
output. The MSS template parameters affect the time availability of
theatres, and so must also be placed on this window.

This GUI permits users to perform a “bound” analysis for each patient
type, where the maximum number of patients treatable can be deter-
mined. This is facilitated by pressing the “100 %” button for a chosen
patient type. Pressing this button sets the case mix for the selected pa-
tient type at 100 %, while zeroing all others. The “Even” option is also
provided, that partitions the case mix equally amongst the different
types.

As described in Section 3, there are two case mix viewpoints. These
can be selected by the radio buttons in Frame 1. There are two assess-
ment buttons “>>" and “>>2”. These buttons activate the generation and
solution of the optimization models described in Section 3.2.2. Button
“>” assumes only the first ward option is used for POSTOP. Button “>2”
permits all ward options to be considered.

The solution report shows N,n% n%" g and utilisation information
like that shown in GUI-1; again, circled in orange. Any resource that is
intended to be fully used has an “[!]” next to it. However, no resource is
over-utilised as the model does not permit it.

Behind the scenes, the mathematical model is generated in an Excel
sheet as shown in Fig. 7. The setup required is evidently like the output
shown in Fig. 6. The capacity value shown at B1 is N. It is the sum of the
values C21:C31. These are the resource allocation (i.e., f,,,) values. The
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HOPLITE 4: Find a feasible casemix that best meets given targets “
MAIN PARAMETERS & SETTINGS RESULTS
#Weeks: 1 j’ Difference Metric: { Absolute  (* Squared Find case mix Save
Session Time: 2 i‘
- A B c [0 [e [ G H 1 [ [~
Sessions / day: 2 i’ 1 CAPACITY 118.92 REVENUE(S) 519369.57
= 2
Days / week: 5 ﬂ 3 DEVIATION 39.82
= a
#Sessions: ,T 5  GROUP #OF TARGET# SQRD DIFF CASEMIX(... REVENUE(S)
6 1 1.6936 68.9964 5 20752
#Theatres: 10 ﬂ 7 2 46.8604 55 66.253 a3 28116.24
LJ 8 3 77701 32751949 18 39192.05
#1nt.C beds: 5 j’ 9 4 2789 1325037 9 234889.76
LJ 10 5 ~ =~ 391084 192.976 25 21509631
Ward m 1 .
. 27 TvPE SUB TYPE SQRD DIFF  OTHRS WARDHRS  ICU HRS REVENUE(S)
#Beds: ,Z—jl = 13 Specialty 1 Specialty 1-1 16.56 112 17.73 0 930.39
LJ =2 14 Specialty 1 Specialty 1-2 17.95 035 7.33 458 1144.81
15  Specialty 2 Specialty 2-1 66.25 112.46 876.76 o 28116.24
TARGETS - = 16 Specialty 3 Specialty 3-1 256 [} 0 o 0
- . = A7 =Specitys = TSpiTialty 3-2 239.03 207 76.94 o 27236.17
Load targets === 18 Specialty 3 Specialty 3-3 664.02 2456 42.46 o 11955.88
19 Specialty 4 Specialty 4-1 1325 79.86 525.92 o 234889.76
# | Type [Target1 [ weight 20 Specialty 5 Specialty 5-1 192.98 160.34 1052.41 469.3 215096.31
1 Specialty1 10 1 21
2 Specialty 2 55 1 22 TYPE SUB TYPE #OF WARD WARD HRS  REVENUE(S)
3 Specialty 3 65 1 23 Specialty 1 Specialty1-1 = 0.93 Ward 1 17.73 93039
4 Specialty 4 35 1 24 Specialty1 Specialty 1-2 0o Ward 1 0.01 218
5 Specialty 5 53 1 25 Specialty 1 Specialty 1-2 0.76 Ward 2 731 114262
26  Specialty 2 Specialty2-1 = 2045 Ward 2 382.61 12269.58
27  Specialty 2 Specialty2-1 = 17.01 Ward 1 31825 10205.86
28 Specialty 2 Specialty 2-1 94 Ward 5 1759 56408
29 Specialty 3 Specialty 3-1 0 Ward 3 o] o
Revise target # 30 Specialty 3 specialty3-2 | 454 Ward 3 76.94 27236.17
31 Specialty 3 Specialty 3-3 323 Ward 3 4246 11955.88
% | Subype [Target2 | weight 32 Specialty 4 Specialtyd-1 = 23.49 Ward 4 52592 234889.76
T Specely 1l 5 i 33 Specialty 5 Specialty S-1 | 2692 Ward 4 72431 148037.4
2 specialy1z 5 N Z: Specialty 5 Specialty5-1 = 12.19 Ward 5 3281 67058.91
i :g::::x :1 f: i 36 RESOURCE #BEDS USEDHRS  AVAILHRS  %USED #TREATED
S specialtys2 20 i 37 ot 10 400 400 100[!] 11892
6  specialty3s 29 X 38 Icu 5 473.88 840 56.41 39.87
7 Tspecialty4d |35 X 39 Ward1 2 336 336 100[1] 17.94
8 specialtys1 53 X 40 Ward2 5 389.92 840 46.42 2121
41 Ward3 10 119.4 1680 7.11 777
42 Ward4 14 1250.22 2352 53.16 50.4
Revise target # 43 Ward5s 3 504 504 100[1] 2159 o
| Indude "Target 1" ¥ Indude “Target 2" < >
Fig. 11. HOPLITE GUI-4. Closest case mix to selected targets.

Table 7
Main recovery wards.
WARD # WARD #
BEDS BEDS
W3B 10 W1C, W2B, W5B, 24
W5C, W5D
W4BR, WCARD 14 W1D, W4E 26
W3A 15 W2A, W2D, W3C, 28
WA4C, W4D, W5A
W4BT 16 W2E 29
W4A 19 w2C 40

W1A, W1B, W3D, W3E, W3F, W3H, 20

WTRANS, W3D, W3E

value at Bl is decomposed into the values shown at B4:B8. These are the
current ng values. They are calculated as follows, ng = ugN. They are
then decomposed further using the sub mix to obtain C11:C18. The
values at C11:C18 are the current values of ngg . These must equal the
values at H11:H18 which are aggregated from C21:C31. The resource

time availability constraint is imposed by setting C34:C41 to be less than
or equal to D34:D41.

The values under “#ALLOCATED” and “HRS USED” can be deter-
mined using a SUMIF function call. The purpose of the SUMIF function is
to aggregate specific f,,, values. An alternative approach is to write a
different formula in each row, that is specific to the current g, p and ward
index. Both approaches have been tested, and some speed improvements
have been observed if SUMIF function is not used.

A slightly different model is required when the second case mix
option is selected. For this article’s small toy hospital scenario, that
model is shown in Fig. 8 and the results are shown in Fig. 9. The output is
similar but there is extra information in column C, D and E over rows 3 —
8, concerning theatre time used. Fig. 9 shows that higher capacity is
achieved when the case mix is used to partition MSS sessions between
the different patient types. Viewing case mix relative to other patient
types is more restrictive and causes a different set of bottlenecks.

4.3.3. GUI-3
To evaluate a “user defined” patient cohort and resource allocation,

Table 8
Patient types.
TYPE #SUB TYPE # SUB TYPE # SUB

1 Cardiology 23 (15]8]0) 8 Hepatology 13 (6/5/2) 15 Otolaryngology 16 (9|7]0)
2 Endocrinology 17 (10|5|2) 9 Immunology 8 (1l6|1) 16 Plastics 18 (10|8|0)
3 Dental 2 (0]1]1) 10 Neurology 33 (7]23]3) 17 Psychiatry 10 (0[9]1)
4 Faciomaxillary 3(2]0|1) 11 Nephrology 20 (8]9]3) 18 Respiratory 22 (2]173)
5 Gastroenterology 20 (10]7/3) 12 Oncology 8 (4]4]0) 19 Transplants 11 (10[0|1)
6 Gynaecology 13 (10|3|0) 13 Ophthalmology 16 (12|4/0) 20 Urology 12 (6|5|1)
7 Haematology 5 (2]3]0) 14 Orthopaedic 51 (29]21]1) 21 Vascular 17 (6|74

16



R.L. Burdett et al.

Expert Systems With Applications 248 (2024) 123367

Table 9
Patient case mix.
TYPE % TYPE % TYPE %

1 Cardiology 6.765 8 Hepatology 3.824 15 Otolaryngology 5.294
2 Endocrinology 5 9 Immunology 2.353 16 Plastics 5.294
3 Dental 0.588 10 Neurology 9.706 17 Psychiatry 2.941
4 Faciomaxillary 0.882 11 Nephrology 5.882 18 Respiratory 6.471
5 Gastroenterology 5.882 12 Oncology 2.353 19 Transplants 3.235
6 Gynaecology 3.824 13 Ophthalmology 4.706 20 Urology 3.529
7 Haematology 1.471 14 Orthopaedic 15 21 Vascular 5

Table 10

Patient sub mix.
TYPE (#SUB) SUB MIX

Cardiology (23)
Endocrinology (17)
Dental (2)
Faciomaxillary (3)
Gastroenterology (20)
Gynaecology (13)
Haematology (5)
Hepatology (13)
Immunology (8)
Neurology (33)
Nephrology (20)
Oncology (8)
Ophthalmology (16)
Orthopaedic (51)

Otolaryngology (16)
Plastics (18)
Psychiatry (10)
Respiratory (22)
Transplants (11)
Urology (12)
Vascular (17)

2.25,0.76,6.02,4.53,8.72,8.48,6.06,4.37,7.03,1.05,0,0,2.02,0.1,7.41,1.97,6.51,2.26,6.76,3.74,10.12,8.34,1.5
7.28,7.35,3.45,9.06,2.61,2.99,3,0,9.55,5.34,7.51,10.26,9.24,9.82,5.1,2.37,5.07

55.75,44.25

70.67,0,29.33
8.28,5.8,2.26,6.85,3.5,0,7.43,6.89,5.68,8.28,1.93,1.03,3.54,7.13,7.67,1.75,6.24,4.55,2.94,8.25
0,4.53,0,11.36,3.36,4.95,10.78,15.17,17.3,0,17.6,3.55,11.4

37.33,2.56,26.4,23.29,10.42

5.37,4.62,13.43,14.32,6.68,1.55,0,0,0.51,0.01,19.88,11.11,22.52
0,5.66,20.95,4.78,18.86,10.16,15.65,23.94
6.11,4.05,5.84,3.72,5.38,1.39,0.46,0,3.85,3.59,0,0,0,2.99,1.2,0,4.18,6.24,3.72,5.64,4.18,6.57,0.6,6.04,0,0,6.11,3.52,1.33, 0.4,6.31,2.86,3.72
9.61,5.61,1.03,4.83,1.39,1.49,4.11,0.23,9.21,8.33,8.34,0.27,10.73,1.81,4.74,3.12,1.72,9.26,11.81,2.36
16.49,20.59,16.28,3.92,2.19,23.11,13.66,3.76
6.77,8.44,6.31,4.84,9.39,0.98,4.55,6.97,6.22,5.13,5.51,3.72,8.76,7.77,4.42,10.22
3.2,0,0.49,0.4,1.45,2.63,2.94,1.9,3.3,0.14,0.47,3.17,3.09,1.35,2.6,2.78,1.55,3.36,2.57,2,3.03,2.92,2.39,
2.5,1.44,3.33,2.42,3.5,3.08,0,0.28,1.37,2.46,2.86,1.17,2.56,3.52,1.61,1.87,2.6,1.39,1.61,0.09,0.43,2.25,1.78,2.04,1.78,2.31,2.02,0
0,10.42,1.72,12.09,7.44,8.77,3.5,2.99,7.15,2.87,0.39,8.78,8.01,15.62,7.43,2.82
4.9,2.71,9.4,7.98,3.09,6.97,8.3,9.4,9.9,3.04,3.13,8.23,0.79,9.02,1.33,8.88,0.11,2.82
4.55,3.58,8.7,15.42,15.21,14.58,5.24,0.93,20.18,11.61
4.84,0.78,4.21,6.7,8.01,0,0.39,8.16,1.92,3.56,8.38,2.96,7.15,1.97,6.2,6.06,8.26,0,6.13,4,5.37,4.95
0,0,0,0,0,0,0,0,0,0,100

4.41,14.07,8.04,2.33,2.22,12.66,15.34,6.63,12.39,10.93,0,10.98
8.52,5.27,3.72,1.67,2.49,10.18,4.11,10.44,11.58,2.6,11.67,6.57,4.17,1.15,3.48,8.45,3.93

the GUI in Fig. 10 has been created.

For the considered example, Fig. 10 shows the input allocation and
implied patient cohort is not quite feasible. Theatres and Ward 5 are
over utilised. All other wards and the ICU are underutilised. This means
that capacity exists to treat more patients of certain types, but only if
there is more theatres or theatre time.

4.3.4. GUI-4

To find a patient cohort that meets user defined targets, the GUI
shown in Fig. 11 has been created. The targets are loaded from file or
else manually entered. One or both target types can be included and
both difference metrics can be selected.

To solve the non-linear decision model, the Excel “GRG” (i.e.,
Generalized Reduced Gradient) non-linear solver is available. This en-
gine was able to solve the described test problem almost immediately.
The results are shown in Fig. 11 for the selected ngg targets. This sce-

nario shows ng; cannot be met. Other options include the non-linear
solvers provided with OpenSolver. One of those is the “NOMAD” en-
gine (i.e., see https://www.gerad.ca/nomad/) which is a “mesh adap-
tive direct search algorithm. This engine also solves the model but takes
significantly more time than the GRG engine (i.e., approx. 3 min). Two
other options are also available, namely COUENNE (i.e., Convex over
and under envelopes for nonlinear estimation) and BONMIN (i.e., Basic
Open-Source Nonlinear Mixed Integer Programming). No success how-
ever has been obtained with those to-date. The model seems to be
outside the scope of those solvers.
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4.4. Full sized case study

To further demonstrate the application of HOPLITE, a full-sized case
study is provided next. Our case study originates from the Princess
Alexandra Hospital (PAH), Brisbane, Qld, Australia. The PAH is a large
public hospital, with about one thousand beds. The PAH performs
planned elective surgeries and treats acute patients surgically as they
eventuate. Medical outpatients are also seen in large numbers. The
hospital is spread over five floors but there are also other various “out-
buildings”. There is an intensive care unit (i.e., W3A & W3B with 25
beds), an emergency department, a medical assessment and planning
unit, and 21 operating theatres (W3L A-E). The main wards of the PAH
are summarised in Table 7. Ward W3F is a surgical care area and
manages surgical patient admissions prior to surgery. W3H is a post
anaesthetic care unit and provides post anaesthesia care after surgery.
Ward W3D is the cardiac care ward, also known as WCARD, and W3E is
the cardiac care unit ward, commonly called WCCU. Radiology and
imaging are performed in W1F, W1H, W1L.

De-identified patient data has been collected from the PAH. From
that data, patient types are defined relative to the specialties shown in
Table 8. Patient sub types are categorised by the Australian Refined
Diagnosis Related Groups (AR-DRGs) relevant to each of the twenty-one
specialties. The Australian Refined Diagnosis Related Groups (AR-DRGs)
(https://www.ihpa.gov.au/what-we-do/ar-drg-classification) is a clas-
sification system, which provides a clinically meaningful way to relate
the number and type of patients treated in a hospital to the resources
required by the hospital. AR-DRGs group patients with similar diagnoses
requiring similar hospital services.

The exact number of sub types is also shown in Table 8. In total there
are 338. We have reduced the overall number of sub types, by


https://www.gerad.ca/nomad/
https://www.ihpa.gov.au/what-we-do/ar-drg-classification

R.L. Burdett et al.

Expert Systems With Applications 248 (2024) 123367

HOPLITE 2: Determine maximum # of patients that are treatable and the associated case mix X
MAIN PARAMETERS & SETTINGS CAPACITY AND UTILISATION
#Weeks: ’4—i‘ > Save
Session Time: 2 j‘ }» ‘ A B €] | D | E F G H | | A ~
M CAPACITY 920.47 REVENUE(S) 17121268.6
Sessions / day: 2 j‘ 2
M 3 TYPE #OF CASEMIX(%)  REVENUE(S)
Days / week: 5 i‘ 4 CARDIOLOGY 62.33 6.77 1646965.92
2 5 ENDOCRINOLOGY = 46.12 5 643185.79
#Sessions: 840 6  DENTAL 5.42 059 20872.74
7  FACIOMAXILLARY = 812 0.88 15129236
#Theatres: 21 i‘ 8  GASTROENTEROLO.. 54.2 5.88 735818.25
= 9 GYNAECOLOGY 35.27 3.82 229668.97
#1nt.C beds: 25 i‘ 10 HEMATOLOGY 1354 147 20484254
2 11 HEPATOLOGY 35.2 3.82 436100.09
Ward: ’W‘ﬂ 12 IMMUNOLOGY 217 235 38472251
= 13 NEUROLOGY 89.34 9.71 1038581.39
Case Mix Definition: 14 NEPHROLOGY 54.03 5.88 34526054
15  ONCOLOGY 2168 2.35 386172.41
{ As proportion of all patients to be treated 16 OPHTHALMOLOGY — 43.32 471 239395.87
" As proportion of theatre time allotted 17 | ORTHOPAEDIC 137.64 15 2296408.6
18 OTOLARYNGOLOGY 4873 5.29 294250.4
19 PLASTICS 48.68 5.29 488807.27
PATIENT CATEGORY & SUB TYPE SETTINGS 20  PSYCHIATRY 27.07 294 241543.48
Type: | CARDIOLOGY ZI 21 RESPIRATORY 59.74 6.47 627817.01
22 TRANSPLANTS 29.78 3.24 5807539.74
Case Mix (%): 677 j‘ 0 23 UROLOGY 32.45 353 207396.83
M 24 VASCULAR 46.12 5 694625.88
Even 100%. ‘ Fix | 25
26 TYPE SUB TYPE #OF OTHRS WARDHRS ICUHRS  MIX(%)  REVENUE(S)
27 CARDIOLOGY CARDIOLOGY-FO1 (SUR)  1.43 0.03 158 256 225 51117.56
DI | CARDIOLOGY-FO1 (SUR) j 28 CARDIOLOGY CARDIOLOGY-FO2(SUR) 05 0 7173 0 076 7601.88
ST — - 29 CARDIOLOGY CARDIOLOGY-FO3(SUR)  3.74 24.02 1369.05 12227 6.02 252294.46
- Z’ Fix 30 CARDIOLOGY CARDIOLOGY-FO4(SUR) 2.8 15.13 45244 87.25 453 162685.09
31  CARDIOLOGY CARDIOLOGY-FOS(SUR)  5.42 27.22 1595.3 185.55 872 309317.07
Theatre, Ward, ICU (#hrs): 32 CARDIOLOGY CARDIOLOGY-FOB(SUR)  5.29 26.18 819.19 177.47 8.48 24360339
33  CARDIOLOGY CARDIOLOGY-FO7(SUR) 3.8 19.49 71041 119.95 6.06 214762.43
| 0.02 | 1103 [ 178 34  CARDIOLOGY CARDIOLOGY-FOS(SUR) 274 339 5323 2859 437 75356.54
i 35 CARDIOLOGY CARDIOLOGY-F1D(SUR)  4.36 0.05 383.07 3.22 7.03 69990.76
i w2p 36 CARDIOLOGY CARDIOLOGY-F12(SUR] 068 0 656 0 105 1127051
37 CARDIOLOGY CARDIOLOGY-F15(SUR) O 0 0 0 0 0
Load Case Mix (%) 38 CARDIOLOGY CARDIOLOGY-F16(SUR) O o 0 0 0 0
39 CARDIOLOGY CARDIOLOGY-F17(SUR) 125 0 4543 0 202 14261.89
Save Case Mix (%) 40 CARDIOLOGY CARDIOLOGY-F18(SUR)  0.06 014 1459 0 01 888.63
41 CARDIOLOGY CARDIOLOGY-F19(SUR)  4.61 o 179.24 0 7.41 86438.2
42  CARDIOLOGY CARDIOLOGY-F61(MED) 125 07 447.05 4384 197 26622.03 v
< >

Fig. 12. Capacity assessment results (Case mix option 1).

aggregating the “A”, “B”, “C”, and “D” AR-DRG variants that exists. The
following is an example of three variants that are considered as one sub
type:

B66A M Nervous System Neoplasms W Radiotherapy

B66B M Nervous System Neoplasms W/O Radiotherapy W Cata-
strophic or Severe CC

B66C M Nervous System Neoplasms W/O Radiotherapy W/O Cata-
strophic or Severe CC

Otherwise, there would be a total of 807 DRG’s which is prohibitive.
The classification of patient sub type as surgical, medical, or other is
shown in brackets, i.e. (15/8|0) indicates 15 surgical and 8 medical
types.

The resource consumption profiles and revenues associated with
each patient sub type have been extracted and can be found in our
supplementary data document. All revenues are defined relative to the
“National Efficient Price” (NEP). The NEP is the Australian national
price for the average cost of public hospital activity (i.e., 1 NWAU). The
NEP was $5134 during 2019-2020. (Health Funding Policy and Prin-
ciples 2019-20).

4.4.1. Part 1

In our case study an advanced assessment of capacity was first per-
formed. The specified case mix is shown in Table 9 and the sub mix is
shown in Table 10. For the capacity assessment, a period of 4 weeks was
selected. As such the master surgical schedule has 840 sessions (i.e.,
two/day x five days/week x four weeks x 21 theatres).

To perform the assessment, the two methods from Section 3.3.2 were
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applied. The time to solve the model and report the results was quite fast
and was completed in under a minute. This task, however, was not
completed instantaneously. Before OpenSolver can be activated, Excel
requires time to extract and copy the model to file.

The main results are summarised in Fig. 12 and Fig. 13 for the two
case mix viewpoints, and a comparison of the differences is shown in
Fig. 14. In Fig. 15 and Fig. 16, the ward utilisation statistics are shown.
For the first option, 921 patients are achievable, and this amounts to
about 11,050 over the course of a year. For the second option, the output
is significantly higher with 1864 patients per month, and 22,368 over
the course of a year. The reason for the difference, is due to how trade-
offs between patient types is managed. The first option is more restric-
tive as we have already discussed. Under the second case mix definition,
the model is permitted to choose whether certain patient types are
treated or not. In this case study, an increased number of patients can be
achieved overall by “zeroing” some of the patient types. For instance, in
our solution, we can see that no cardiology patients were selected, even
though there was free theatre time allocated to treat them. Under the
first case mix definition, this is not possible, and cardiology patients are
selected. Choosing no cardiology patients is not realistic and highlights a
minor defect/quirk of the second case mix definition. That quirk how-
ever can be overcome by adding a minimum requirement for each pa-
tient type (a.k.a., a minimum demand or target). Consequently, some
additional constraints should be added to the model when using the
second case mix option.

The revenues associated with the obtained patient case mixes are in
the order of 17 to 24 million dollars per month. Based upon this data, the
total revenue over the course of one year would lie in the region of AUD
200-300 million.
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HOPLITE 2: Determine maximum # of patients that are treatable and the associated case mix X
— MAIN PARAMETERS & SETTINGS ————— — CAPACITY AND UTILISATION
# Weeks: 4 ii Save
Session Time: 2 j‘ [s < [o E G |s I [~
= CAPACITY 1863.64 REVENUE(S)  24358349.88
Sessions / day: 2 jl 2
= 3 TYeE #OF OT USED #OT AVAIL %USED CASEMIX... REVENUE(S)
Days / week: 5 - 4 CARDIOLOGY o 0 2273 ) 677 0
j 5  ENDOCRINOLOGY  125.64 168 168 100[1] 5 1748293.32
# Sessions: 840 6 DENTAL 23.79 19.76 19.76 100[] 059 91662.34
7 FACIOMAXILLARY  7.78 2964 20.64 100[1] 0588 144907.95
#Theatres: I—n ﬂ 8  GASTROENTEROLO.. 130.17 197.64 197.64 100[1] 588 1763494.44
= 9 GYNAECOLOGY 7656 128.49 128.49 100[1] 382 49897731
#1nt.C beds: 2 _ﬂ 10  HEMATOLOGY 4498 49.43 49.43 100[1] 147 68054537
2 11 HEPATOLOGY 178.24 12849 128.49 100[1] 3.82 2208347.3
Ward: WiA-20beds v ﬂ 12 IMMUNOLOGY 102.04 29.56 79.06 37.39 235 1807041.86
= 13 NEUROLOGY 202.13 14828 326.12 45.47 971 2349761.54
Case Mix Definition: 14 NEPHROLOGY o 0 197.64 o 588 0
15 ONCOLOGY 2416 79.06 79.06 100[1] 235 78647164
" As proportion of all patients to be treated 16 OPHTHALMOLOGY  149.49 158.12 158.12 100[1] 471 826140.09
e e T Lot 17 ORTHOPAEDIC 80.11 173.72 504 34.47 15 1343379.94
18 OTOLARYNGOLOGY = 129.17 177.88 177.88 100[1] 529 779978.99
19 PLASTICS o o 177.88 [} 5.29 0
— PATIENT CATEGORY & SUB TYPE SETTINGS 20 | PSYCHIATRY o ° o882 ° 264 o
Type: I CARDIOLOGY j 21 RESPIRATORY 468.98 173 217.43 7957 6.47 4936005.54
22 TRANSPLANTS 16.04 53.43 1087 49.16 324 312857015
Case Mix (%): 677 | ﬂ I—O 23 UROLOGY 0 0 11857 o 353 0
= 24 VASCULAR 84.33 8439 168 50.23 5 1264772.08
Even | 100%. I Fix | 25
26 TYPE SUB TYPE #OF OT HRS WARDHRS ICUHRS  MIX(%) REVENUE(S)
b . 27 CARDIOLOGY CARDIOLOGY-FO1 (SUR) 0 o o 0 225 0
EIRE= I CARDIOLOGY-FO1 (SUR) j 28  CARDIOLOGY CARDIOLOGY-FO2(SUR) O o 0 0 076 0
. = 29 CARDIOLOGY CARDIOLOGY-FO3(SUR) O 0 o o 6.02 0
CIDLINEE 225 ZI 0 Fix I 30 CARDIOLOGY CARDIOLOGY-FO4(SUR] 0O 0 o o 453 0
31 CARDIOLOGY CARDIOLOGY-FOS(SUR) O 0 o o 872 0
Theatre, Ward, ICU (#hrs): 32 CARDIOLOGY CARDIOLOGY-FOB(SUR) O 0 o 0 8.48 0
33 CARDIOLOGY CARDIOLOGY-FO7(SUR) O 0 o o 6.06 0
I 0.02 I 1103 I 179 34 CARDIOLOGY CARDIOLOGY-FO9(SUR) 0 ) o 0 437 0
4 ired- 35 CARDIOLOGY CARDIOLOGY-F10(SUR) () 0 o] 0 7.03 0
UtTe Lt w2p 36 CARDIOLOGY CARDIOLOGY-F12(SUR) O 0 0 o 105 0
37 CARDIOLOGY CARDIOLOGY-F15(SUR) O 0 o o 0 0
Load Case Mix (%) | 38  CARDIOLOGY CARDIOLOGY-F16(SUR) O 0 o ) [ 0
39 CARDIOLOGY CARDIOLOGY-F17(SUR) O 0 o 0 202 0
Save Case Mix (%) | 40 CARDIOLOGY CARDIOLOGY-F18(SUR) O 0 0 0 01 0
41 CARDIOLOGY CARDIOLOGY-F19(SUR) O 0 0 o 7.41 0
42 CARDIOLOGY CARDIOLOGY-F61(MED] 0 0 o o 197 0 v
PR = 2o = = = = =< = R
Fig. 13. Capacity assessment results (Case mix option 2).
300
H Option (1) m Option (2) 252.66
250 222.8
200 186.86
2 157.05  162.69 161.47
2 37.62
= 150 127.56
o 105.41
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100
62.33 56.22 54.02 552, 3.68 59.
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Fig. 14. Comparison of patient cohorts identified.
In Fig. 15, we can see that only four of the wards are fully occupied. utilisation. This occurs because the current patient types do not have

These wards are bottlenecks and restrict further outputs. The ICU is one those wards as candidate locations for medical or surgical care.

of them. Most of the other wards are also moderately utilised. In Fig. 16,

we can see that most of the wards are fully utilised. In both scenarios, the 4.4.2. Part 2

theatres are not deemed to be bottlenecks. Also, a few wards have zero A best-fit case mix identification task was performed next. For this
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HOPLITE 2: Determine maximum # of patients that are treatable and the associated case mix X
MAIN PARAMETERS & SETTINGS ITY AND UTILISATION
#Weeks: a i‘ Save
Session Time: 2 i‘ A 8 c D E F S H [ [a
2 1315 VASCULAR VASCULAR-F2.. 4.69 wic 633.58 72260.33
Sessions / day: 2 il 1316 VASCULAR VASCULAR-F4.. 1.89 wic 113.22 59895.28
- 1317 VASCULAR VASCULAR-F4.. 479 wic 47578 55043.79
Days / week: ls—il 1318 VASCULAR VASCULAR-F4.. 534 wic 43423 46403.03
2 1319 VASCULAR VASCULAR-F4.. 12 wic 32833 29710.73
#Sessions: ,T 1320 VASCULAR VASCULAR-F6.. 5.38 wic 876.2 33535.18
1321 VASCULAR VASCULAR-F6.. 3.04 wic 266.17 15603.68
#Theatres: ,Zl—jl 1322 VASCULAR VASCULAR-F6.. 1.93 wic 632.53 14801.29
. 1323 VASCULAR VASCULAR-F6.. 0.55 wic 133.46 3562.48
#1nt.C beds: 25 jl 1324 VASCULAR VASCULAR-F6.. 161 wic 106.98 7295.47
= 1325 VASCULAR VASCULAR-F7.. 391 wic 294.46 18186.23
Ward: ’Wli’ 1326 VASCULAR VASCULAR-F7.. 179 wic 203.69 17237.47
=2 1327
Case Mix Definition: 1328 RESOURCE #4BEDS HRS USED AVAIL HRS %USED #TREATED
1329 ot 21 125271 3360 37.28 856.05
(¥ As proportion of all patients to be treated 1330 icu 25 16800 16800 100[1] 523.32
" As proportion of theatre time allotted 1331 W1A 20 o 13440 o o
1332 wis 20 o 13440 0 0
1333 wic 24 8897.59 16128 55.17 46.12
PATIENT CATEGORY & SUB TYPE SETTINGS 1334 wiD 26 7414.41 17472 4244 105.67
Type: | CARDIOLOGY j 1335 W2A 28 18816 18816 100[1] 92564
1336 was 24 16128 16128 100[1] 85.04
Case Mix (%): 677 i‘ 0 1337 wac 40 19981.09 26880 7433 87.25
2 1338 w2D 28 15037.77 18816 79.92 86.17
- T ‘ i | 1339 W2E 29 1953.24 19488 10.02 102
1340 wsc 28 2150.98 18816 1143 182
1341 WCARD 20 4301.41 13440 32 3246
SubType: | CARDIOLOGY-FO1 (SUR) j 1342 weeu 20 4191.05 13440 31.18 2052
R - 1343 W3F 20 3} 13440 0 0
SUDMIREL 225 Z’ 0 Fix 1348 W3H 20 o 13440 0 0
1345 W4A 13 5615.78 12768 4398 2298
Theatre, Ward, ICU (#hrs): 1346 WA4BR 14 2564 9408 027 466
1347 W4BT 16 1515.74 10752 141 14.19
| 0.02 | 1103 I 179 1348 wac 28 617451 18816 3282 56.92
i 1349 wap 28 5370.12 18816 2854 3538
et w2p 1350 W4E 26 537128 17472 3074 3289
1351 WSA 28 3272.46 18816 17.39 38.15
Load Case Mix (%) 1352 ws8 24 4146.15 16128 2571 4245
1353 wsc 24 6012.17 16128 37.28 4393
Save Case Mix (%) 1354 wsD 24 3436.63 16128 2131 217
1355 WTRANS 20 13440 13440 100[1] 2253
1356 ALL WARDS 598 153252.04 401856 38.14 920.47 =
< >

Fig. 15. Ward utilisations (Case mix option 1).

analysis, a target cohort of an appropriate nature was defined arbi-
trarily. Specific targets ﬁg’ are defined for each patient type, and these
are displayed in Fig. 17.

Patient sub type targets were also defined, according to nsg =
ﬂggﬁg. These are listed explicitly in our supplementary data document.
The feasibility of that patient cohort for a one-month period was queried
by solving the model from section 3.2.4. The best fit case mix is shown in
Fig. 17. The specified case mix exceeds the capacity of the hospital, and
all the wards, theatres, and intensive care unit are at 100 % utilisation.
The targets constitute a total of 1381 patients but the maximum number
of patients that are treatable is 1008.27. The targets cannot be met
without reconfiguration of the hospital, or an increase in the period
considered. Table 11 shows how the targets are gradually met as the
number of weeks is increased.

Final Remarks. During development, we have observed that open-
ing the Solver or OpenSolver window from the ribbon menu in Excel is
not always instantaneous, particularly when instances with many pa-
tient types and sub types are loaded. Smaller instances and those of the
scale of our case study showed no such issue.

Finding a best-fit case mix is the hardest task currently facilitated by
HOPLITE. The free NLP solvers do not seem to be capable of solving
large instances like our case study with a sum of squares objective. The
linear objectives described by equation (21) and (23), however, provide
no difficulty at all. The non-linear sum of squares objective, however,
can be managed better in one of two ways. We have previously shown
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that the sum of squares objective is a quadratic function. As such, a
Quadratic Programming solver present for instance in a commercial
package like CPLEX, can be applied. Unfortunately, OpenSolver does not
have such an approach presently. Another approach worth considering
is Separable Programming. The sum of squares objective can be
approximated with arbitrary precision as a piecewise linear function.
OpenSolver is certainly capable of solving the resulting mixed integer
programming formulation.

When targets ﬁg’ are chosen, the optimization model of Section 3.2.4
will choose the sub mix ngg in an unrestricted way. In other words, some

ng? will be zeroed, in favour of other sub types ng’ﬁ within a patient type

grouping. If this is unwanted, then both target types should be included
in the objective.

5. Conclusions and managerial insights

This article demonstrates how an Excel-based personal decision
support tool (PDST) called HOPLITE was designed and how it can help
hospital managers perform capacity assessments and other capacity
related queries. This article demonstrates how theory can be put into
practice and describes the practicalities of creating a graphical user
interface, inputting, and outputting information, performing optimiza-
tions, applying quantitative methods, and reporting results.

HOPLITE has many capabilities and is necessary for a variety of
reasons. The PDST can reduce the workload of planning staff. It may be
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HOPLITE 2: Determine maximum # of patients that are treatable and the associated case mix X
MAIN PARAMETERS & SETTINGS CAPACITY AND UTILISATION
#Weeks: a i‘ Save
Session Time: a i‘ | A 8 c D E F G H | ‘ AN
&2 1315 VASCULAR VASCULAR-F2.. 86 wic 1160.91 132403.1
Sessions / day: 2 j‘ 1316 VASCULAR VASCULAR-F4.. 3.46 wic 207.45 109746.53
- 1317 VASCULAR VASCULAR-F4.. 877 wic 87178 100857.12
Days / week: ls—il 1318 VASCULAR VASCULAR-F4.. 9.78 wic 795.63 850246
L2 1319 VASCULAR VASCULAR-F4.. 2.19 wic 6016 54439.17
#Sessions: ,W 1320 VASCULAR VASCULAR-F6.. 9.87 wic 1605.46 61446.75
1321 VASCULAR VASCULAR-F6... 5.57 wic 4877 28590.72
#Theatres: ,m—jl 1322 VASCULAR VASCULAR-F6.. 3.54 wic 1158.99 271205
2 1323 VASCULAR VASCULAR-F6... 1.01 wic 24454 6527.56
#1Int.C beds: ,zs—il 1324 VASCULAR VASCULAR-F6... 2.95 wic 196.01 13367.54
= 1325 VASCULAR VASCULAR-F7.. 7.17 wic 539.55 33322.76
Ward: ’Wﬂ 1326 VASCULAR VASCULAR-F7.. 3.29 wic 37321 31584.33
= 1327
Case Mix Definition: 1328 RESOURCE #BEDS HRS USED AVAIL HRS %USED #TREATED
1329 ot 21 1798.86 3360 53.54 173458
(" As proportion of all patients to be treated 1330 icu 25 16800 16800 100[] 114031
{* As proportion of theatre time allotted 1331 W1A 20 0 13440 0 o
1332 wis 20 (] 13440 0 0
1333 wic 24 16128 16128 100[1] 8433
PATIENT CATEGORY & SUB TYPE SETTINGS 1334 wiD 26 17200.84 17472 98.45 307.94
Type: | CARDIOLOGY j 1335 W2A 28 18816 18816 100[1] 80.11
1336 w28 24 16128 16128 100[1] 67.38
Case Mix (%): 677 jl 0 1337 wac 40 26880 26880 100[1] 13475
- 1338 wzD 28 18816 18816 100[1] 200.87
— o | - ‘ 1339 W2E 29 8831.31 19488 4532 4416
1340 w3c 28 18816 18816 100[1] 155.18
1341 WCARD 20 13440 13440 100[1] 69.8
I | CARDIOLOGY-FO1 (SUR) j 1342 weeu 20 13440 13440 100[1] 4314
A 1343 W3F 20 0 13440 0 0
Sl 225 i’ 0 Fix 1348 WaH 20 0 13440 0 0
1345 W4A 19 (] 12768 0 0
Theatre, Ward, ICU (#hrs): 1346 W4BR 14 o] 9408 0 0
1347 W4BT 16 (] 10752 0 0
| 0.02 | 1103 | 178 1348 wac 28 18816 18816 100[1] 129.07
i 1349 w4D 28 110.02 18816 058 228
e w2p 1350 W4E 26 17472 17472 100[1] 10137
1351 WSA 28 15526.79 18816 8252 161.94
Load Case Mix (%) 1352 w58 24 9400.95 16128 58.29 51.77
1353 wscC 24 16128 16128 100[!] 11148
Save Case Mix (%) 1354 wsD 24 16128 16128 100[1] 102.04
1355 WTRANS 20 9568.19 13440 7119 16.04
1356 ALL WARDS 598 271646.1 401856 67.6 1863.64 v
< >

Fig. 16. Ward utilisations (Case mix option 2).

used to inform hospital managers and other planners of the decisions
they can make to avert future problems (Krueger, 2018). It can be used
to make judgements about a hospitals’ capability, in the future, to treat
cohorts of different patient types. Our PDST specifically identifies pa-
tient case mixes that meet certain guidelines and constraints, or evalu-
ates those that have been defined elsewhere, by some other technique.
The development process has shown a necessity to link the master sur-
gical schedule template to the PDST. Otherwise, assessments and eval-
uations are restricted and lack realism.

After significant development and testing, the main limitation of our
approach is the capability for Excel to quickly generate a model with
tens of thousands of variables. For the most part, the free solvers are
adequate, and quick once a model has been generated. HOPLITE is best
suited for small and medium sized instances at this point, and further
development is needed to handle instances arising from larger hospitals,
or where more fine-grained analysis, resulting in more patient types and
sub types, is needed. These weaknesses, however, are not expected to
exist if a commercial optimization software is integrated, but this re-
quires a subscription or a licencing agreement.

HOPLITE is a minimal viable product, and it is intended that the
software will continue to be developed to provide further functionality.
Because it is written in VBA, the tool can be easily extended with
additional functionality. In future it is worth considering whether a
translator that converts raw hospital data into a format usable for hos-
pital capacity assessment should be created. The existence of a translator
motivates the creation of a central database to hold all relevant
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information. Currently HOPLITE does not use any type of database and
information is placed in separate text files. The joint usage of a translator
and database may facilitate an easier integration of the software to a
hospital’s IT system. The database design that should be implemented,
however, is specific to the needs of different hospitals and is a topic for a
future study.

Some simplifying assumptions have been made, to facilitate the
development of a viable prototype PDST. Our tool only includes the
primary resources of a hospital, like theatres, wards, and intensive care
beds. The quantitative techniques, however, are designed with the
capability to handle additional resources. As such, a more general PDST
could be developed. However, we believe that it is necessary to await
further positive feedback by hospitals, and their staff, before new ex-
tensions are considered, and current assumptions are removed.

Regarding the uptake of a tool like HOPLITE, the availability of data
weighs heavily. Whether hospitals can provide free flow of the necessary
information and knowledge is debatable, however we believe the
answer is ultimately yes, and probably in a not-too-distant future. This
PDST can be largely used offline since historical data can be prepared
and uploaded into a PDST project file. Long term patterns in case mix
and resource utilisation change infrequently, and so only occasional
updates to historical case mix data would be required. This means that
costly direct integration with existing IT systems is not necessary for this
tool to be used. The deployment of a PDST like HOPLITE is expected to
be beneficial, however there is no guarantee. Whether the PDST can
improve decision making outcomes and decision-making processes, is an
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HOPLITE 4: Find a feasible casemix that best meets given targets X
— MAIN PARAMETERS & SETTINGS — RESULTS
EMeskes 1 él Difference Metric: * Absolute (linear) " Squared (non-linear) Save
Session Time: B
ssion Time: 3 j 5 Ts Tc o [e F G H [1 A
Sessions / day: 2 ﬂ 1 CAPACITY 1008.273 REVENUE(S) 9403446277
2 2
Days / week: 5 il 3 DEVIATION 372727
= a
#Sessions: 210 5  GROUP #OF TARGET# DIFF CASEMIX(%)  REVENUE(S)
6 1 56.9567 85 28.0433 6.765 703886.98
#Theatres: 21 - 7 2 49.74 60 1026 5 619002.809
ZI 8 3 15 15 0 0588 57789.557
#1nt.C beds: 25 - 9 4 6.2177 12 57823 0.882 96095.943
ZI 10 5 56.7072 66 9.2928 5.882 531675.488
#Ward Beds: WIA @ 20 beds - ﬂ 1 6 32.655 a2 9.345 3.824 195464.462
= 12 7 11.2806 18 6.7194 1471 59161.439
13 8 39.9984 48 8.0016 3.824 37448381
 TARGETS 14 9 29.0179 37 7.9821 2353 347823.042
15 10 66.361 111 44639 9.706 646684.052
Load targets 16 11 156.6874 166 9.3126 5.882 815170.561
17 12 25.5107 27 1.4893 2.353 436404.101
# | Type ] Target1 | Weight £ 18 13 49.4424 54 45576 4706 249419.471
1 CARDIOLOGY 85 1 19 14 123.3086 281 157.6914 15 1069901.758
2 ENDOCRINOL.. 60 1 20 15 50.139 54 3.861 5.294 277737.895
3 DENTAL 15 1 21 16 47.718 60 12.282 5.294 29845251
4 FACIOMAXILL.. 12 1 22 17 19.7142 33 13.2858 2941 141528.762
5 GASTROENTE.. 66 1 23 18 67.2893 75 7.7107 6.471 700251.133
6  GYNAECOLOGY 42 1 24 13 5.081 21 15.919 3.235 990970.754
7  HEMATOLOGY 18 1 25 20 59 59 [} 3.529 376852.011
8  HEPATOLOGY 48 1 v 26 21 40.4473 57 16.5527 5 414689.739
- PRSP - 27 —/
Revise target 28 TYPE SUB TYPE #OF TARGET# DIFF OTHRS WARD HRS ICU HRS REVE
29 CARDIOLOGY  CARDIOLOGY.. 1913 1913 3} 0.042 210.987 3.418 682
# [ SubType [Target2 | weight A 30 CARDIOLOGY  CARDIOLOGY.. 0.646 05646 1} o 93.024 1} 9851
1 | CARDIOLOGY.. | 19125 |1 31 CARDIOLOGY  CARDIOLOGY.. O 5117 5.117 0 0 o 0
2 caRDIOOGY.. [0645 |1 32 CARDIOLOGY  CARDIOLOGY.. O 3.851 3.851 0 0 o 0
3 [caroiooGY. (517 |1 33 CARDIOLOGY  CARDIOLOGY.. O 7.412 7.412 0 1} o 0
4 caRpiooGY. (38505 |1 34 CARDIOLOGY  CARDIOLOGY.. 2.37 7.208 4.838 11723 366.757 79.453 109(
5 T cARDIOLOGY. (7412 |1 35 CARDIOLOGY  CARDIOLOGY.. O 5.151 5.151 0 o 3} 0
6 caRDiolOGY. (7208 |1 36 CARDIOLOGY  CARDIOLOGY.. 3.715 3715 [ 4591 721.649 38.761 102:
7 TcaRDioloGY. (5151 |1 37 CARDIOLOGY  CARDIOLOGY.. 5976 5.976 3} 0.066 525.139 4416 959¢
& cARDIOLOGY. (37245 |1 38 CARDIOLOGY  CARDIOLOGY.. 0.893 0.893 1} 0.006 85.474 1} 146¢
P — T b 39 CARDIOLOGY  CARDIOLOGY.. 0O 0 0 0 0 0 0
40 CARDIOLOGY  CARDIOLOGY.. O 3} o 0 0 0 0
Revise target # 41 CARDIOLOGY  CARDIOLOGY.. 1717 1717 3} 0 62.636 3} 196¢
42 CARDIOLOGY  CARDIOLOGY.. 0.085 0.085 1} 0191 19.911 3} 121:
I™ Indude Target 1" ¥ Indlude "Target 2° 43 CARDIOLOGY  CARDIOLOGY.. 6299 6.299 [} 0 244993 [ 118,
e 2 i e - N - =
Fig. 17. Best fit case mix (one month).
Table 11
Best fit case mixes.
GROUP TARGET# #TREATED #UNMET
1wk 2wks 3wks 4wks 1wk 2wks 3wks 4wks
1 85 56.9567 85 85 85 28.0433 0 0 0
2 60 49.74 60 60 60 10.26 0 0 0
3 15 15 15 15 15 0 0 0 0
4 12 6.2177 12 12 12 5.7823 0 0 0
5 66 56.7072 66 66 66 9.2928 0 0 0
6 42 32.655 42 42 42 9.345 0 0 0
7 18 11.2806 18 18 18 6.7194 0 0 0
8 48 39.9984 48 48 48 8.0016 0 0 0
9 37 29.0179 37 37 37 7.9821 0 0 0
10 111 66.361 91.4824 105.4887 111 44.639 19.5176 5.5113 0
11 166 156.6874 166 166 166 9.3126 0 0 0
12 27 25.5107 27 27 27 1.4893 0 0 0
13 54 49.4424 54 54 54 4.5576 0 0 0
14 281 123.3086 177.0855 208.492 231.1368 157.6914 103.9145 72.508 49.8632
15 54 50.139 54 54 54 3.861 0 0 0
16 60 47.718 60 60 60 12.282 0 0 0
17 33 19.7142 33 33 33 13.2858 0 0 0
18 75 67.2893 75 75 75 7.7107 0 0 0
19 21 5.081 8.5458 17.2985 21 15.919 12.4542 3.7015 0
20 59 59 59 59 59 0 0 0 0
21 57 40.4473 54.1819 57 57 16.5527 2.8181 0 0
Sum 1008.2724 1242.2956 1299.279 1331.1368 372.7276 138.7044 81.7208 49.8632
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open question, we hope can be answered.
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Appendix A-1. Let =Y, (nG -n ) By expansion, Z = ), (nG> 722gﬁ§n§’ + 3 (ﬁ;’)z

Property: Z is a quadratic function, and as such, Z =

T
n‘GG‘ ] (i.e., the vector of decisions)

_ [ 652G 452G
® = [an 2n,

~G\2,.
c = Zg (ng) (i.e., the sum of the targets squared)
2

H = 2l is the Hessian of the function f =}, (ng') ,f:RESR.
Pf_ Pf

o = 2 and non-diagonals are g

Diagonals of H are o0T =
g

Example: Given, |G| = 3 and Al = 10, i = 40, fig = 20 then:

. . 2 0 0]
ZZEXTHx—d)Tx+C:§[nf ng G110 2 0f|aS|—[20 80 40]|n§
0 0 2]],6
3
Z=(n%)" + (n$) + (n$)” —20nC — 80nS — 40n§ + 10> + 407 4 20°

Z = (n9)* =2(10)n§ + 107 + (nS)* = 2(40)1S +40% + (n)* — 2(20)n$ + 207

zZ= (an 5—40)2-&-(71?

— 10)2 + (nz

~20)°

Appendix A-2. LetZ = 3,3 (n§§ -1

0vg.glg # ¢

2xTHx —®Tx +c where:

T
Zﬁ‘GG‘ ] (i.e., the vector of targets multiplied by two)

G
n

+2100

G
n3

Gp\ 2 . FGP
g.p) . By expansion, Z = Zgngpg( P) =235, ep, ndtn,,

5 en, (7S8)’

Property: Z is a quadratic function and as such, Z = Zg< (xg) Hgxy —®gx, +cg) where:

T
_ [ ,GP LGP nGP
b xg - [ng.l ngz g‘Pg‘ ]
_ [ oaGP AGP ~GP
o 0 = | 2057 2A7 2Ag, |
~GP
e C = Zp( )

Hg = 2Ip,| is the Hessian of the function f =}, (nGP> fRPESR

T
. Gi GP LGP GP 5GP
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1
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Diagonals of H, are % = 2 and non-diagonals are mé% =0vp.plp #p'
N &p

~GP

and 7 n11 =10, n,, =5and n,; =7 then:

+125
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2 2
o = (n%) =200 + (10°) + (%) —2(5)ah + (5*) =

1 2 2
SIS =208+ 7 = (S5 - 7)

1
= E(xz)THzxz - (cI)z)sz +o= 5

Z=z4+2= (n?}l’, 10)2+ (nlg‘gis)er (ng?77)2

Appendix C. Supplementary data
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.eswa.2024.123367.
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