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Abstract: A flexible pressure sensor with a rudimentary, ultra-low cost, and solvent-free fabrication
process is presented in this paper. The sensor has a graphite-on-paper stacked paper structure, which
deforms and restores its shape when pressure is applied and released, showing an exceptionally fast
response and relaxation time of ≈0.4 ms with a sensitivity of −5%/Pa. Repeatability of the sensor
over 1000 cycles indicates an excellent long-term stability. The sensor demonstrated fast and reliable
human touch interface, and successfully integrated into a robot gripper to detect grasping forces,
showing high promise for use in robotics, human interface, and touch devices.

Keywords: graphite on paper; paper switch; resistive pressure sensor

1. Introduction

Developing flexible and high sensitivity sensors for robot hands is of interest for accomplishing a
wide range of tasks such as object manipulation, articulation, and gesture activities. The requirements
for these sensors include but are not limited to (1) high sensitivity and a wide measurement range,
(2) fast response and excellent repeatability, (3) soft flexibility and stretchability, and biodegradability,
(4) low cost and simplicity for implementation/integration into robot hands. These sensors can range
from simple two-state switches to high precision pressure/tactile sensors [1–5]. For example, several
studies have successfully demonstrated tactile sensors with the capability of both operating in a tactile
and proximity mode for tracking object motion and high-speed hands [6,7].

The working principle of tactile/pressure sensors is typically based on piezoresistive, resistivity,
and capacitive effects [8–11]. The recent development of these sensors is summarised in
Table 1. Apart from robot hand applications, these sensors have been applied in power switches,
keypads/keyboards, touchscreens, weight scales, pressure control/feedback systems, etc. Scientific
investigations have been performed on various alternatives to improve and diversify these
methods to provide high performance, yet low-cost alternative sensors. Sensor fabrication can
include many expensive/advanced materials, such as carbon nanotube/graphene, and complicated
procedures/processes that involve cleanroom facilities and toxic chemicals, as seen in Table 1.
The devices described in this table are ordered by the sensing principle to allow for a more
relevant comparison.
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Table 1. Performance of pressure sensors in literature.

Pressure Sensor Materials
Design and

Implementation
Cost

Sensitivity Range Response/Relaxation Solvent Ref.

Capacitive sparkling graphene
block

automatic egg beater,
freeze dry, annealing

229.8 kPa−1

26.86 kPa−1
0–0.12 kPa
0.4–1.0 kPa

≈1085 mm s−1

“recovery speed”
Yes [2]

Capacitive
SBS AgNP

Composite-coated
Kevlar Fibre

SBS coating, Ag
precursor absorption,
precursor reduction

0.210 kPa−1

0.064 kPa−1
<2 kPa
>2 kPa

≈40 ms
≈10 ms Yes [6]

Capacitive
Au-electroplated

planar coil. Si/glass
substrates

dissolved-wafer
process

1580
ppm/mmHg 0–50 mmHg 120 kHz/mmHg Yes [12]

Capacitive MG/PU composite
film

solution
compounding

method
0.274 kPa−1 0–0.2 kPa — Yes [13]

Capacitive PDMS coated
graphite on paper paper, pencil, PDMS 0.62 kPa−1 <2 kPa 200 ms rise

400 ms fall Yes [14]

Capacitive PDMS, CPDMS,
Ecoflex

photolithography,
micro-contact

printing, spin-coating,
thermal curing

0.42 Pa−1 0–1.2 mPa — Yes [15]

Capacitive Au nanowire coated
tissue paper, PDMS

dip coating/drying,
PDMS, PDMS
patterned with

integrated electrodes

1.14 kPa−1 5 kPa <17 ms Yes [16]

Piezo-resistive graphene CVD sputtering
system

−0.24kPa−1

0.039kPa−1
0.3–200 Pa

700+ Pa >40 ms Yes [1]

Piezo-resistive Au@PU ion sputtering 0.059 kPa−1 0–5 kPa 9 ms No [17]

Piezo-resistive sponge@CNTs@Ag
NPs

“dip and dry”
technique

2.12 kPa−1

9.08 kPa−1
2.24–11 kPa

11–61.81 kPa — Yes [18]

Piezo-resistive CB@PU sponges water-based LBL
assembly

0.068 kPa−1

0.023 kPa−1

0.036 kPa−1

≈0–2.3 kPa
2.3− ≈ 10 kPa
≈10− ≈ 16 kPa

<20ms Yes [19]

Resistive VACNT/PDMS
composite

CNT (T-CVD)
sandblasting, etc.

~0.3 kPa−1

~0.05 kPa−1
0–0.7 kPa
0.7–2 kPa

≈162 ms
≈108 ms Yes [3]

Resistive
Au-patterned

polydimethylsiloxane
membrane

MEMs process (PR,
deposition, etc.) 0.23 kPa−1 0–6.7 kPa ≈200ms Yes [20]

Resistive
graphene Porous

Network Structure
and PDMS

PDMS infiltration Ni
etching 0.09 kPa−1 <1000 kPa ≈100 ms rise

≈80 ms fall Yes [21]

Resistive graphene foam and
PDMS

vacuum-assisted
dip-coating reduction

etching

≈0.6 kPa−1

≈0.8 kPa−1

60 kPa−1

0–200 kPa
200–500 kPa

500+ kPa
>10s Yes [22]

Resistive graphene-wrapped
PU sponges

RGO-PUS-HT-P
sponge — 9+ Pa — Yes [23]

Resistive
elastic

microstructured
conducting polymer

— ≈7.7–41.9 kPa−1

<0.4 kPa−1
<100 Pa
>1 kPa ≈50 ms Yes [24]

Resistive CNT/polymer
Chemical vapour

deposition,
polymer tape

0.15–0.67 Pa−1 0–60 kPa 100 ms Yes [25]

Resistive graphite on paper Paper, Pencil,
office tape

≈−0.35 Pa−1

≈−0.05 Pa−1
100–250 kPa
300–800 kPa ≈0.4 ms No This

Environmental issues have been brought to attention, causing a growing interest in the need
to develop eco-friendly and biodegradable sensors, for a wide range of applications, including
robotics and flexible electronic devices. Paper-based sensory devices have been paid a great deal of
attention, owing to their low cost, robustness, biodegradability, and flexibility. More specifically,
Graphite-on-Paper (GoP) devices, capable of alleviating many complex fabrication processes,
by substituting them with simple pencil drawn structures on a paper substrate, are of high interest
for flexible electronic applications. These GoP devices have been successfully investigated in terms
of resistors [26], capacitors [27], field effect transistor [28], and chemiresistors for both physical and
chemical sensors [29]. Since piezoresistive/resistive pressure sensors have certain advantages in terms
of design simplicity, fabrication, and characterisation, GoP resistive pressure sensors could provide
further insights into the development of ultra-low cost smart robotics [28,30,31].

In the current work, we present the design, fabrication, and characterisation of a novel ultra-low
cost GoP resistive pressure sensor with a very simple fabrication method. The sensor showed an
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exceptionally fast response time compared to that of other literature of 0.4 ms, with excellent long-term
stability, after a thousand cycles of testing. Our sensor has a much faster response time, which is at
least one order of magnitude faster than that of other pressure sensors, Table 1. In addition, while
pressure sensors manufactured by classical mixing process have been reported with the occurrence
of sensitivity degradation under dynamic loading or highly non-linear response [32–34], our sensors
exhibited excellent long-term stability, repeatability, and no damage when overloading. Successful
demonstration of the sensor as tactile feedback for both human and robotic applications shows
the potential of the sensor as an ultra-low cost rapid prototyping device, requiring no expensive
materials or equipment, and no solvents. The performance of our sensor is comparable to that of
numerous sensors employing advanced materials, showing that it has potential uses in robot hands
and other versatile fields whose facilities have inadequate funding or lack of access to advanced
fabrication processes.

2. Sensor Principle and Design

Figure 1a,b shows a schematic cross-sectional sketch of the sensor mechanism. Figure 1c shows
a 3D surface profiling image of the GoP in which we can see how pinpoint pressure exerted on the
paper during the drawing process causes the drawn areas to deform. Both the paper and the graphite
areas share a rough surface area, leading to a pressure dependent contact resistance between the
graphite-shaded layers. Pressure is applied perpendicular to the sensor, until the paper deforms,
allowing the two graphite layers to make contact through the gaps in the mask, seen in Figure 1b.
As pressure increases, the contact area between the graphite layers increases. Increased contact between
the graphite layers causes a reduction in the overall resistance between terminals causing an increased
measured electrical current.
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Figure 1. (a) Concept sketch of sensing mechanism with no applied pressure, (b) concept sketch of the
sensing mechanism with applied pressure, and (c) 3D surface profile of GoP devices.

A complete and more detailed image of the proposed sensor design can be seen in Figure 2.
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3. Fabrication of the Sensor

The presented sensor is fabricated using elementary and very low-cost methods. The sensor
frame is first printed on to a sheet of paper (80 gsm Staples A4) using any office or home printing
device. The outlined areas for graphite shading are filled-in using a graphite pencil (5B Faber-Castell).
Using a scalpel/Stanley knife, the sensor outlines and windows are delicately cut and prepped for
assembly. Each layer is aligned and held together with tape (Keji Clear Adhesive). To provide a more
elastic sensing surface, a 500 µm thick acrylic elastomer layer (3M VHB Acrylic Foam Tape) can be
adhered to the sensing area of the sensor, as seen in Figure 3, to provide a softer interface (ergonomic
feedback) when pressing down on the sensor. The second layer is used as a spacer for the two sensing
elements in the device, allowing an ultra-high sensitivity to the initial touch, allowing the device to
be used as a switch. The manual fabrication process using a pencil-drawn approach could lead to
the variability of the dimensions of the sensing elements. To better control the size and thickness of
graphite layers, we recommend that a precisely controlled XY stage can be implemented.
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Figure 3. Assembly of the sensor.

4. Results and Discussion

4.1. Material Properties

The deposition of graphite on a porous paper substrate can be seen in Figure 4a. Three main
peaks were observed in the Raman spectroscopy, presented in Figure 4b, at the wavenumbers of 1350,
1580, and 2725 cm−1, respectively corresponding to the D, G, and 2D bands of the graphite material.
The intensity of the G-band was much larger than that of the D-band, which was indicative of the
material’s high quality [35].
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4.2. Switching

A simple voltage divider circuit was implemented with a constant voltage source (Bench
Power Supply, E3631A) and a Keysight Oscilloscope (MSO-X 3104A), for measurement. Schematic
configuration for this experiment can be seen in Figure 5a. Pressure impulses were applied to the
sensor by repeatedly tapping down on it gently, with a single index finger. It can be seen in Figure 5b
that the sensor has a steep increase in conductivity, under the applied low pressure. At a low-pressure
range, the sensor functions as a switch, where the OFF stage (i.e., no touch) is approximately 0 V and
the ON stage is a much higher level of approximately 2.3 V. The difference of the touching force is very
small, compared to the level of the signal at the ON stage. In this case, the touching force is expected to
generate a pressure of less than 100 kPa. Therefore, the GOP device is suitable to functions as a switch,
at a low pressure (e.g., below 100 kPa).
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Figure 5. (a) Experimental setup (Vcc = 5 V and R = 10 MΩ), (b) switching cycles of sensor.

4.3. Pressure Calibration

The sensors pressure capabilities were calibrated and tested using a Keysight USB Modular Source
Measure Unit (U2722A) and an Instron Universal Testing Machine (Model 3367). Measurements were
taken from both instruments, simultaneously, to obtain a reliable force/time and resistance/time
values. We have measured the current–voltage (I–V) curve of the device, under different pressures,
as presented in Figure 6. It was evident that all the I–V curves showed good linear characteristics, for the
applied voltage, from −1 V to 1 V, indicating the good Ohmic contacts of the device. Consequently,
the performance of the device was independent of the applied voltage. This also suggested that the
quantum tunnelling was not dominant in our device [36,37].
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The measured force and resistance values have been aligned and combined below, in Figure 7.
Pressure was applied to the sensor using a piece of precision cut 15 × 15 × 3 mm rubber (Goodyear
natural rubber insertion), as such all force measurements have been appropriately converted
to pressure.
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Based on a line of best fit, calibration showed a sensitivity of −5.4 × 10−5 kPa−1 between 300
and 850 kPa, under compression, and of −4.8 × 10−5 kPa−1 between 250 and 800 kPa, when released.
The overall sensitivity of the sensor was, thus, referred to as approximately −0.5 × 10−4 kPa−1, in its
main sensing region, from 250–800 kPa. Lower pressure regions of the sensor could be characterised as
−9.1 × 10−4 kPa−1, between 100 and 300 kPa, under compression, and of −3.5 × 10−4 kPa−1, between
100 and 250 kPa when released. The sensitivity of our sensors was comparable to that of other pressure
sensors [25,38–40]. In addition, the dedicated structure (very thin paper making contact window)
provided an ultrafast sensor response time.

Physical connections were formed between the rough surfaces of the graphite layers, during
compression. Due to the rough surface, these formed connections could stay connected, at lower
pressure, while being decompressed, showing lower overall resistance in decompression. There were
two distinct regions of sensitivity, the heightened sensitivity of the 100–300 kPa region could be
attributed to the initial contact of the graphite-sensing areas, while the pressure range of 300–800 kPa
was no longer affected significantly, by the new contacts.

Cycle testing was performed on the sensor by applying 10–100 N of force (≈21–210 kPa of
pressure) on the sensor in intervals of approximately 2.2 s. Figure 8a,b shows the change in resistance
for 1000 cycles over the duration of 37.5 min. The repeatability of the sensor over 1000 cycles, shows
an excellent long-term stability. However, due to the ultra-low-cost materials and the simplicity of
fabrication of the GoP, each sensor could be used in short-term service, for rapid prototyping.

The calibration results have been performed using an ohmmeter, with no reference to the influence
of a source voltage to the system, as resistance measurements were taken without a source voltage.
In addition, the linear current–voltage characteristics of the sensor, at different applied pressures,
would suggest the independence of the sensor performance on the sourcing voltage. For future studies,
the repeatability, drift, and hysteresis errors at different voltages could be further investigated to assess
the overall impact of the source voltage on the device and its sensing characteristics.
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4.4. Response and Relaxation

A simple voltage divider circuit was implemented, with a constant voltage source, to measure the
response rate, performed using a Keysight Oscilloscope (MSO-X 3104A). Schematic configuration and
method for this experiment was the same as used to test the sensors response to touch, as shown in
Figure 5a. Fast impulses were applied to the sensor using a single index finger and response times,
as fast as 50 µs, were observed on the oscilloscope, showing how effective each impulse could be.

However, the exported data had clipped time intervals of 0.5 ms, effectively, limiting the calculable
response, as a lot of data was emitted by the oscilloscope, when saving to the USB. Based on the
recorded data, an excellent rise and fall time of ≈0.4 ms could be seen in Figure 9a,b, calculated and
presented in MATLAB, using standard risetime() and falltime() functions. The reaction behaviour of the
sensor included the mechanical response time and the reaction rate of the graphite. The mechanical
response was the deformation of a very thin paper layer, making the contact window, and the reaction
rate of graphite was fast. Altogether the sensor featured a response as fast as 40 µs, corresponding to
a bandwidth of 2.5 kHz. This bandwidth satisfied the practical applications of robot hands, where
the frequency bandwidth was typically lower than 2.5 kHz. The presented sensor was, therefore,
capable of at least a ≈2.5 kHz switching-frequency, based on the slower response of the recorded
data. This indicated the potential of using our sensor for high-speed robot hands and other high
frequency applications.
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4.5. Use in Robotic Touch Feedback Sensing

The sensor was integrated into a Baxter robots stock parallel grippers’ fingertip and used to
pick up and hold a squash ball (Dunlop Pro), as shown in Figure 10. For demonstration, a simple
voltage divider circuit, with a passive low-pass filter (50 Hz cut-off) was used in conjunction with a
Tiva microcontroller (Texas Instruments, TM4C123GH6PM). Custom computer software was used to
poll the microcontroller and record the measurement data. The grippers moving force, holding force,
velocity, and position were controlled using the computer software. The ball was deformed when
gripped, and then held onto, before being released slowly, in stages, as seen below in Figure 11a.
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Figure 11. (a) Contact of sensor to ball, (b) close-up showing four distinct levels of applied force.

A quick rise in the output voltage was observed in Figure 11a, when the gripper first contacts
the ball. Step decreases of the output voltage, detailed in Figure 11b, corresponded to the decrease in
the applied pressure to the ball. The change in pressure was controlled by setting the gripping speed
and modifying the desired displacement value, as the built-in controller did not allow for repeatable
precision control; hence the four distinct steps were not uniform. The ball had a varying area of contact
with the sensor. It was not possible to show the calibrated pressure conversions, without knowing
the changing contact area of the ball, due to the performed calibration being dependent only on force,
as area was non-variable. Spikes in measurements were noticed when the gripper was in motion,
this could be due to the elastic properties of the ball or software implemented safety restrictions.
Despite this, a fast response and clear change in signal output indicates the viability of integrating our
sensor in robot grippers, providing a basis for further investigation.
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It has been shown that the first stage (Figure 11a) was for touch detection, and the second stage
(Figure 11b) was for gripping force/pressure measurement. When implemented with digital control,
it was possible for the control unit to compromise with the calibration curves. Further simplification of
the calibration process could, therefore, be performed using these control units/microcontrollers and a
set of known weights.

5. Conclusions

We successfully fabricated an ultra-low-cost, biodegradable, and fast response multi-purpose
resistive pressure sensor. A rudimentary and effective fabrication process has been presented without
the use of any solvent-based materials. The sensor showed a fast response time of 0.4 ms and a
sensitivity of −5%/Pa, in the range of 300–800 kPa. The sensor was capable of high-performance, as a
switch for human touch sensing as well as a pressure sensor for robotic tactile feedback. Our sensor is a
versatile, resistive, pressure sensor, capable of detecting touch motion in near real-time, demonstrating
a strong feasibility of using this sensor for tactile sensing, touch displays, and wearable applications.
Due to the sensor’s ultra-low-cost and rapid prototyping method with standard household tools, it is
possible that the sensor can be used in institutes, such as in education centres, where more advanced
facilities or funding are not available.
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