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ABSTRACT: Conventional trial-and-error methods are not efficient in developing
appropriate strut-and-tie models in complex structural concrete members. This paper
describes a Performance-Based Optimization (PBO) technique for automatically producing
optimal strut-and-tie models for the design and detailing of structural concrete. The PBO
algorithm utilizes the finite element method as a modeling and analytical tool. Developing
strut-and-tie models in structural concrete is treated as an optimal topology design problem of
continuum structures. The optimal strut-and-tie model that idealizes the load transfer
mechanism in cracked structural concrete is generated by gradually removing regions that are
ineffective in carrying loads from a structural concrete member based on overall stiffness
performance criteria. A performance index is derived for evaluating the performance of strut-
and-tie systems in an optimization process. Fundamental concepts underlying the
development of strut-and-tie models are introduced. Design examples of a low-rise concrete
shearwall with openings and a bridge pier are presented to demonstrate the validity and
effectiveness of the PBO technique as a rational and reliable design tool for structural

concrete.
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INTRODUCTION

The shear design of structural concrete members is a complex problem, which has not been
solved fully. The adoption of empirical equations in current concrete model codes leads to
complex design procedures for shear. Empirical equations generally yield shear strength
predictions that deviate considerably from experimental results. In addition, they need to be
continuously evaluated for new materials. These highlight the limitations of empirical
equations and the need for a rational approach to structural concrete. Strut-and-tie modeling
has been proved to be a rational, unified and safe approach for the design and detailing of
structural concrete under combined load effects (ASCE-ACI Committee 445 on Shear and
Torsion 1998). By strut-and-tie modeling, the influence of shear and moment can be taken

into account simultaneously and directly in one model.

Truss models were introduced by Ritter (1899) for the shear design of reinforced concrete
beams, and extended by Mdrsch (1909) to beams under torsion. The truss analogy method
received considerable studies in the 1960s and 1970s (Kupfer 1964; Leonhardt 1965; Lampert
and Thurlimann 1971). Collins and Mitchell (1980) proposed the truss model approach that
considers deformations for design of reinforced and prestressed concrete. It is noted that truss
models can only be used to design regions of a concrete structure where the Bernoulli
hypothesis of plane strain distribution is assumed valid. At regions where the strain
distribution is significantly nonlinear, the truss model theory is not applicable. The strut-and-
tie model, which is a generalization of the truss analogy method for beams, can be used to
design disturbed regions of structural concrete as demonstrated by Marti (1985). Schlaich et
al. (1987, 1991) extended the truss model theory to a consistent strut-and-tie model approach
for the design and detailing of any part of reinforced and prestressed concrete structures.

Ramirez and Breen (1991) reported that a modified truss model approach with variable angle



of inclination diagonals and a concrete contribution could be used for designing reinforced
and prestressed concrete beams. Strut-and-tie modeling has been applied to the design of
pretensioned concrete members (Ramirez 1994) and post-tensioned anchorage zones (Sanders
and Breen 1997). Strut-and-tie model approach and related theories for the shear design of
structural concrete were summarized in the state-of-the-art report by the ASCE-ACI
Committee 445 on Shear and Torsion (1998). Moreover, the strut-and-tie model design
method has recently been incorporated in the ACI 318-02 for the design of structural concrete

(Cagley 2001).

Conventional methods for developing strut-and-tie models in structural concrete involves a
trial-and-error iterative process based on the designer’s intuition and past experience. It is a
challenging task for the designer to select an appropriate strut-and-tie system for a concrete
structure with complex geometry and loading conditions from many possible equilibrium
configurations. As a result of this, computer programs based on the truss topology
optimization theory have been developed for generating truss models in reinforced concrete
structures (Anderheggen and Schlaich 1990; Ali and White 2001). Computer graphics as
useful design aids have been employed to develop strut-and-tie models in structural concrete
(Alshegeir and Ramirez 1992; Mish 1994; Yun 2000). The Performance-Based Optimization
(PBO) method for continuum structures with displacement constraints proposed by Liang et
al. (2000a, 2001) has been shown to be a rational and efficient tool for automatically

generating optimal strut-and-tie models in reinforced and prestressed concrete structures.

Shape and topology optimization of continuum structure has been reviewed by Hatka and
Grandhi (1986) and Rozvany et al. (1995). Several continuum topology optimization methods

have been developed in the last two decades. The homogenization-based optimization (HBO)



method (Bendsee and Kikuchi 1988; Suzuki and Kikuchi 1991; Diaz and Bendsee 1992; Diaz
and Kikuchi 1992; Tenek and Hagiwara 1993; Bendsee et al. 1995; Ma et al. 1995; Krog and
Olhoff 1999) treats topology optimization of continuum structures as a problem of material
redistribution within a design domain composed of composite material with microstructures.
The homogenization theory is used in the HBO method to calculate the effective properties of
composite material. Simple approaches to topology optimization of continuum structures are
also available, such as the density function approach (Mlejnek and Schirrmacher 1993; Yang
and Chuang 1994), the hard kill optimization (HKO) method (Rodriguez and Seireg 1985;
Atrek 1989; Rozvany et al. 1992; Xie and Steven 1993), and the soft kill optimization (SKO)
method (Baumgartner et al. 1992). It should be noted that these continuum topology
optimization methods could lead to many locally optimal solutions. To overcome this
problem, performance-based optimality criteria have been proposed by Liang et al. (1999,

2000b, 2000c) and Liang (2001) to identify the global optimum as opposed to the local.

This paper extends the PBO method proposed by Liang et al. (2000b) for topology design of
continuum structures with mean compliance constraints to the strut-and-tie modeling of
structural concrete. The development of strut-and-tie models in structural concrete is
transformed to the topology optimization problem of continuum structures. Optimization
criteria for strut-and-tie models are described. An integrated design optimization procedure is
proposed for strut-and-tie design of structural concrete. Optimal strut-and-tie models in a low-
rise concrete shearwall with openings and a bridge pier are automatically generated by the

PBO technique, and compared with analytical solutions.

STRUT-AND-TIE MODEL OPTIMIZATION PROBLEM



Strut-and-tie models are used to idealize the load transfer mechanism in cracked structural
concrete at ultimate limit states. The design task is mainly to identify the load transfer
mechanism in a structural concrete member and reinforce the member such that this load path
will safely transfer applied loads to the supports. In reality, some regions of a structural
concrete member are not as effective in carrying loads as others. By eliminating underutilized
portions from a structural concrete member, the actual load path in the member can be found.
The PBO method has the capacity to find the underutilized portions of a member and remove
them from the member to improve its performance. Therefore, the strut-and-tie modeling of
structural concrete can be transformed to a topology optimization problem of continuum

structures.

In nature, loads are transmitted by the principle of minimum strain energy (Kumar 1978).
Minimizing the strain energy of a structure is equivalent to maximizing its overall stiffness.
Thus, strut-and-tie systems in structural concrete should be developed on the basis of system
performance criteria (overall stiffness) rather than component performance criteria (strength).
Dimensioning the components of a structural system easily satisfies component performance
criteria. It should be noted that the enhanced ductility design approach should be used to
detail the strut-and-tie model obtained. Based on these design criteria, the performance
objective of the strut-and-tie model optimization is to minimize the weight of a structural
concrete member while maintaining its overall stiffness within an acceptable performance
level. For a structural member modeled with plane stress elements, the performance objective

can be expressed in mathematical forms as follows:

minimize W = i w, (t) ()
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subjectto C<C’ ()
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where W = the total weight of a structural concrete member; w,= the weight of the eth
element; ¢ = the thickness of elements (or the width of member cross-section); C = the
absolute value of the mean compliance of the member; C*= the prescribed limit of C; n = the

total number of elements in the member; ¢" = the lower limit of element thickness; and " =
the upper limit of element thickness. To simplify the optimization problem, only uniform

sizing of the element thickness is considered in the PBO method.

LIMIT ANALYSIS AND FINITE ELEMENT MODELING

The behavior of structural concrete members under applied loads can be well approximated
by the uncracked linear, cracked linear and limit analysis (Marti 1999). Strength performance
predictions based on a limit analysis will be reliable if structural concrete members are
designed with adequate ductility and detailing. The limit analysis can be divided into lower-
bound and upper-bound methods (Nielsen 1984). Lower-bound methods require the designer
to design a structural concrete member by strengthening its load transfer mechanism. They
are particularly suitable for designing new concrete structures. On the other hand, upper-
bound methods allow for quick checks for ultimate strength, dimensions and details of
existing structures. They are suitable for the performance evaluation of existing structures.
Strut-and-tie models correspond to the lower-bound limit analysis, and can indicate the

necessary amount, the correct locations and the required detailing of the steel reinforcement.



After extensive cracking of concrete, loads applied to a structural concrete member are
mainly carried by concrete struts and steel reinforcement, which form the load transfer
mechanism. The failure of a structural concrete member is mainly caused by the breakdown
of the load transfer mechanism, such as the yielding of steel reinforcement in ductile
structural concrete members (ASCE-ACI Committee 445 on Shear and Torsion 1998). Before
designing a structural concrete member, the locations of tensile ties and the amounts of steel
reinforcement are unknown. Actually, it is the designer’s task to identify an appropriate strut-
and-tie system in a structural concrete member in order to reinforce it. As a result of this, the
nonlinear behavior of reinforced concrete cannot be taken into account in the finite element

model for developing strut-and-tie systems.

It is proposed here to develop strut-and-tie systems in structural concrete based on the linear
elastic theory of cracked concrete for system performance criteria and to design the structural
concrete member based on the theory of plasticity for component performance criteria. Only
two-dimensional models are considered here. In the finite element analysis, plain concrete
members are treated as homogenization continuum structures, and modeled using plane stress
elements. The PBO algorithm has been written to link with the finite element STRANDG6
codes (1993) to perform the finite element analysis and optimization tasks in an iterative
manner. The progressive cracking of a concrete member is characterized by gradually
removing concrete from the member, which is fully cracked at the optimum. It is noted that
load-deformation responses of a structural concrete member in an optimization process are

highly nonlinear because the topology of the member is changing at each iteration.

ELEMENT REMOVAL CRITERIA



Element removal criteria can be derived by undertaking a design sensitivity analysis on the
mean compliance of a structural concrete member with respect to element removal. A detailed
derivation has been given in a previous paper by Liang et al. (2000b). Element removal
criteria are such that elements with the lowest strain energy densities should gradually be
removed from the continuum design domain to achieve the performance objective. The strain

energy density of the eth element is defined as (Liang et al. 2000b)

u;rkeue
o= — (4)
2w,

in which u, = nodal displacement vector of the eth element; and k ,= stiffness matrix of the

eth element.

For a concrete member under multiple load cases, a logical AND scheme is employed in the
calculation of element strain energy densities for elimination (Liang et al. 2000b). In the
logical AND scheme, an element is deleted from the structural concrete member only if its
strain energy density is the lowest for all load cases. By removing elements with the lowest
strain energy densities from a concrete member, the maximum stiffness design at minimum
weight can be achieved. In order to obtain a smooth solution, however, only a small number
of elements are removed from the discretized concrete member. The element removal ratio
(R) for each iteration is defined as the ratio of the number of elements to be removed to the

total number of elements in the initial design domain.

PERFORMANCE-BASED OPTIMALITY CRITERIA



The performance evaluation of strut-and-tie systems in an optimization process is required in
order to determine the optimum. A performance index has been proposed by Liang et al.
(2000b) for quantifying the performance of bracing systems for multistory steel building
frameworks with an overall stiffness constraint. This performance index is also applicable to

strut-and-tie systems, and its mathematical derivation is presented here.

The strain energy or mean compliance of a structure is expressed by
C= 1 P'u (5)
2

where P =nodal load vector; and u = nodal displacement vector.

In problems with the element thickness as design variables, an infeasible design in an
optimization process can be converted into a feasible one by the scaling design procedure
(Kirsch 1982; Liang et al. 1999, 2000c¢). Since the stiffness matrix of a plane stress continuum
structure is a linear function of the element thickness, the element thickness can be uniformly

scaled to keep the mean compliance constraint active at each iteration in the optimization

process. By scaling the initial structural concrete member with a factor of C,/C", the scaled

weight of the initial design is represented by
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where W, = the actual weight of the initial design domain; and C,= the absolute value of the

strain energy of the initial design under applied loads. Similarly, by scaling the current design
with respect to the mean compliance limit, the scaled weight of the current design at the ith

iteration can be determined by

s _ Ci
(& "

in which C; = the absolute value of the strain energy of the current design under applied

loads at the ith iteration; and W, = the actual weight of the current design at the ith iteration.
The performance index at the ith iteration is proposed as

Wy (C,/C W, CW,
Wy (C,/ICW, CW,

1

Pl = 3

The performance index is a measure of structural responses and the weight of a structural
member in an optimization process, and thus quantifies the performance of structural
topologies. By gradually eliminating elements with the lowest strain energy densities from a
concrete member, its performance in terms of the efficiency of material and overall stiffness
can be improved. To obtain the optimal topology, performance-based optimality criteria for

structures with mean compliance constraints can be proposed as

C,
C
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)
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The optimal topology obtained represents the most efficient load-carrying mechanism in the
continuum design domain. Thus, optimal topologies generated by the PBO technique can be
treated as optimal strut-and-tie models in structural concrete members. The physical meaning
of the performance-based optimality criteria is that the optimal strut-and-tie model transmits
loads in a way such that the associated strain energy and material consumption are a
minimum. For a concrete member subject to multiple loading cases, the performance index
can be calculated by using the strain energy of the member under the most critical loading

case in an optimization process.

DESIGN OPTIMIZATION PROCEDURE

The design of a structural concrete member using strut-and-tie modeling involves the
estimation of an initial member size, developing an appropriate strut-and-tie model and
dimensioning struts, ties and nodes. The finite element STRANDG6 codes (1993) are used in
the PBO method as a modeling and analytical tool. The PBO algorithm has been written to
link with STRAND®G to automatically carry out the finite element analysis and optimization
tasks. Once the user has set up the finite element model, the computer would automatically
generate the optimal strut-and-tie model. The main steps of the design optimization procedure

are given as follows:

1. Select an appropriate size for the concrete structure based on serviceability performance
criteria and design space constraints.
2. Model the two-dimensional concrete member using finite element programs. Applied

loads, support conditions and material properties of the concrete member are specified.
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10.

11.

12.

13.

14.

Prestressing forces can be treated as external loads (Schlaich et al. 1987; Ramirez 1994;
Liang et al. 2001).

Perform a linear elastic finite element analysis on the concrete member.

Evaluate the performance of the resulting system by using Eq. (8).

Calculate the strain energy densities of elements for each loading case.

Remove R (%) elements with the lowest strain energy densities from the concrete
member.

Check model continuity. This is to ensure that the strut-and-tie model generated by the
PBO technique is a continuous structure that satisfies the equilibrium condition.

Check model symmetry for a concrete member with an initially symmetrical loading,
geometry and support condition.

Save current model. The models generated at each iteration are automatically saved to
files for use in latter stage.

Repeat step (3) to (9) until the performance index is less than unity.

Select the optimal strut-and-tie model, which corresponds to the maximum performance
index.

Analyze the discrete strut-and-tie model to determine internal forces in members.
Dimension struts, ties and nodes.

Detail steel reinforcement based on the optimal strut-and-tie model obtained.

Dimensioning a strut-and-tie model, which includes sizing the concrete struts, reinforcing the

ties, and checking the bearing capacities of nodal zones, is of significant importance to the

overall performance of a structural concrete member. The detailing of nodes and steel

reinforcement influences the flow of forces in a structural concrete member, and thus directly

affects the strength performance of concrete struts and ties connected with them. The key

12



importance is to ensure that the optimal strut-and-tie model generated by the PBO technique
can be realized at ultimate after detailing. It should be noted that the optimal strut-and-tie
model produced by the PBO technique indicates the locations of struts, ties and nodes but not
necessarily their exact dimensions. This is because it is developed on the basis of overall
stiffness performance criteria without consideration of strength performance criteria.
Dimensioning strut-and-tie models should be based on the bearing conditions and strength

requirements.

The compressive strength of concrete in struts is influenced by its state of stresses, cracks and
the arrangement of steel reinforcement. For safety, the effective compressive strength of

concrete should be used in designing concrete struts. Marti (1985) suggested that the effective

compressive strength of concrete in struts should be taken as 0.6 f,, whereas Ramirez and

Breen (1991) suggested a value of 2.5, f. (MPa). Different values of the effective

compressive strength of struts could be used in design, depending on the state of stresses,
cracks and the arrangement of steel reinforcement in the structural concrete member (Schlaich
et al. 1987). Design rules for the effective compressive strength of struts have been proposed

for ACI 318-02 (Cagley 2001).
Reinforcing steel should be provided to carry tensile forces in ties in strut-and-tie models. The

cross-sectional area of reinforcing steel for each tensile tie can be determined from the

following expression

PA S+ A4, f ) 2T (10)
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where ¢ = the capacity reduction factor; A, = the cross-sectional area of reinforcing bars; f
= the yield strength of reinforcing bars; A4, = the cross-sectional area of prestressing steel;
f,, = the effective yield strength of prestressing steel for tensile ties; and 7' = the tensile

force in a tensile tie.

ILLUSTRATIVE DESIGN EXAMPLES

Low-Rise Shearwall with Openings

In this example, the PBO technique is used to automatically generate an optimal strut-and-tie
model in a low-rise concrete shearwall with openings, and numerical results are compared
with analytical solutions. Fig. 1 shows the geometry and loading of a low-rise concrete
shearwall with openings based on the example presented by Marti (1985). The shearwall is

fixed on the foundation. In the present study, the values of the point loads P, = 1000 kN and
P, = 500 kN are assumed. A compressive cylinder strength of concrete f, = 32 MPa,
Young’s modulus of concrete E, = 28600 MPa, Poisson’s ratio v = 0.15 and the initial
thickness of the shearwall 7,= 200 mm are used in the analysis. The concrete shearwall is

modeled using 100-mm square, four-node, plane stress elements. A mean compliance

constraint is considered. The element removal ratio R = 1% is used.

The performance characteristics of the shearwall in the optimization process are presented in
Fig. 2. It is seen that by gradually eliminating elements from the shearwall, the mean
compliance of the shearwall increases with reductions in its weight. In addition, rapid

increases are observed after more and more elements are deleted from the model. The
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performance characteristic curve indicates whether a proposed design for required
performance is feasible. Fig. 3 shows the performance index history of the shearwall with
openings. It can be seen from Fig. 3 that the performance of the shearwall in terms of the
efficiency of material and overall stiffness is still gradually improved by eliminating elements
with the lowest strain energy densities from the model even if there are a large portion of

openings. The maximum performance index of 1.2 occurs at iteration 35.

The optimization history of strut-and-tie model in the shearwall is presented in Fig. 4. When
elements with the lowest strain energy densities are removed from the shearwall, the resulting
topology evolves to a frame-like structure. Fig. 4(d) shows the optimal topology obtained at
iteration 35. This optimal topology represents the load transfer mechanism in the concrete
shearwall under given loading and support conditions, and can be idealized as the discrete
model illustrated in Fig. 4(e). This model is composed of only struts. The optimal strut model
of the shearwall with openings generated by the PBO technique agrees extremely well with

the analytical solution given by Marti (1985), as shown in Fig. 4(f).

In detailing the strut-and-tie model, the depths of concrete struts can be based on either the
optimal topology shown in Fig. 4(d) or the model given in Fig. 4(f). The final thickness of
concrete struts (or the shearwall) can then be determined by using the effective compressive
strength of concrete based on the forces they carry and bearing conditions. Since the strut-
and-tie model obtained has no tensile ties, the main steel reinforcement is not required to
carry tensile forces in the shearwall. However, a minimum amount of steel reinforcement in a
form of reinforcing meshes in compliance with codes of practice should be provided in the

concrete shearwall to control cracking, which may be induced by shrinkage and temperature
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effects. For a completed design, the bearing capacities of nodal zones in the model should be

checked.

Design of a Bridge Pier

The design domain for a bridge pier is shown in Fig. 5. The bridge pier fixed on the
foundation is required to support four concentrated loads of 2750 kN transferred from four
steel girders. An initial thickness of 1.5 m is assumed for this bridge pier. The PBO technique

is employed to produce an optimal strut-and-tie model for the design and detailing of the

bridge pier. A compressive cylinder strength of concrete f, = 32 MPa, Young’s modulus of
concrete £, = 28600 MPa, and Poisson’s ratio v = 0.15 are used in the finite element

analysis. The bridge pier is modeled using 125-mm square, four-node, plane stress elements.
Plane stress conditions and the mean compliance constraint are considered. The element

removal ratio R = 1% is used in optimization process.

The performance characteristics of the pier structure in the optimization process are fully
captured by a weight-compliance curve shown in Fig. 6. Since the overall stiffness of the pier
structure is gradually reduced by element elimination, structural responses such as the mean
compliance are increased. The topology performance of the bridge pier in optimization
process is monitored by the performance index shown in Fig. 7. By removing a small number
of elements with the least contribution to the structural stiffness from the pier structure at
each iteration, the performance index increases from unity to a maximum value of 1.17. It is
observed from Fig. 7 that after iteration 69, the performance index decreases rapidly. This
indicates that further element elimination leads to the breakdown of the load-carrying

mechanism in this bridge pier.

16



Fig. 8 demonstrates the optimization history of strut-and-tie model in the bridge pier. It is
seen that the load transfer mechanism characterized by remaining elements in the pier
structure becomes more and more clear when lowly strained elements are systematically
deleted from the finite element model. The optimal topology was obtained at iteration 49, as
shown in Fig. 8(c). Applied loads are mainly carried by this optimal structure, which
represents the most efficient load transfer mechanism in the design domain considered. The
optimal topology shown in Fig. 8(¢) is transformed to the discrete strut-and-tie model for the
bridge pier illustrated in Fig. 9, where solid lines represent tensile ties and dotted lines
represent compression struts. To achieve better force flows within the pier structure and
economical designs, a final design proposal for the bridge pier is presented in Fig. 9. It is
seen from Fig. 8(c) that the pier wall can be designed as two separated columns to further

improve economical construction.

After the strut-and-tie model has been developed, it is a straightforward matter to dimension
it. Forces in members of the strut-and-tie model shown in Fig. 9 are given in Table 1. It is
important to provide steel reinforcement to carry tensile forces in inclined tensile ties shown
in Fig. 9. The locations of these inclined tensile ties are difficult to be predicted by using
conventional trial-and-error methods (Warner et al. 1998). An arrangement of the main steel
reinforcement for resisting tensile forces in the bridge pier is illustrated in Fig. 10. Additional
reinforcing meshes that are not shown in Fig. 10 should be provided in the bridge pier in

accordance with the minimum requirements of the codes of practice for crack control.

CONCLUSIONS
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The performance-based optimization (PBO) technique formulated on the basis of system
performance criteria for automatically generating optimal strut-and-tie models in structural
concrete has been described in this paper. Developing strut-and-tie models in structural
concrete is transformed to a topology optimization problem of continuum structures. Optimal
topologies produced by the PBO technique are treated as optimal strut-and-tie models for the
design and detailing of structural concrete. Performance-based optimality criteria for
determining optimal strut-and-tie models have been developed. An integrated design
optimization procedure has been proposed for optimizing and dimensioning structural

concrete with strut-and-tie systems.

The PBO algorithm has been used to generate optimal strut-and-tie models in a low-rise
concrete shearwall with openings and a bridge pier, and numerical results has been verified by
existing analytical solutions. It has been demonstrated that it is appropriate to develop strut-
and-tie systems in structural concrete based on the linear elastic theory of cracked concrete
for overall stiffness performance criteria and to design concrete members based on the theory
of plasticity for strength performance criteria. The PBO technique presented overcomes the
limitations of conventional trial-and-error methods for developing strut-and-tie models in
structural concrete, and provides concrete designers with an efficient automated design tool

for complex design situations.
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Fig. 4. Optimization History of Strut-and-Tie Model in Shearwall with Openings:
(a) Topology at Iteration 10; (b) Topology at Iteration 20; (c) Topology at Iteration 30;

(d) Optimal Topology at Iteration 35; (e) Optimal Model; (f) Model by Marti (1985)
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Table 1. Strut and Tie Forces in Strut-and-Tie Model for the Bridge Pier

Member number Force (KN)
(1) (2)

1 2114
1162
3363
-3470
-3919
-3219
-3363
-5500

(e BEN o) NV, [N -NRUS I )
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