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Abstract This paper reports a new boundary-integral-equation method (BIEM) for

numerically solving biharmonic problems with Dirichlet boundary conditions. For

the solution of these problems in convex polygons, it was found that the accuracy of

the conventional BIEM is significantly reduced, and spurious oscillatory behaviour is

often observed in the boundary solutions especially for areas near corners (Mai-Duy

N, Tanner RI. An effective high order interpolation scheme in BIEM for biharmonic

boundary value problems. Eng Anal Bound Elem 2005; 29:210–23). In this study, a

new treatment for these difficulties is proposed. The unknown functions in boundary

integrals are approximated using a domain-type interpolation scheme rather than

traditional boundary-type interpolation schemes. Two test problems are considered

to validate the formulation and to demonstrate the attractiveness of the proposed

method.

KEY WORDS: biharmonic Dirichlet problems, boundary integral equations, radial-

basis-function networks, double boundary conditions

1 INTRODUCTION

Many engineering problems such as bending of thin plate and flow of viscous fluid

can be formulated in terms of biharmonic equation/two Poisson equations. Owing

to the existence of free-space fundamental solutions, one can obtain exact inte-

gral representations of these differential equations. The boundary-element method

(BEM)/boundary-integral-equation method (BIEM) is a powerful numerical tool to

solve the integral equations. For biharmonic problems, the conventional BIEM re-

quires a pair of BIEs in order to deal with two unknown variables on the boundary.

Since the governing differential equation is satisfied exactly, very accurate solutions

are typically obtained. The interested reader is referred to, for example, References
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[1-6] for the solution of thin-plate problems, and References [7,8] for the solution of

fluid-flow problems.

The present work is concerned with biharmonic Dirichlet problems in non-smooth

geometries. The field variable (normal deflection of the plate/streamfunction of the

flow) and its first-order normal derivative are prescribed along the boundary of the

domain. Such problems have been investigated using BIEMs since the late 1960s

[9]. A non-iterative coupled approach was usually used to solve a pair of BIEs. For

most problems reported, the variations of the boundary data were simple (e.g homo-

geneous boundary conditions). Recently, the accuracy of the BIEM was examined

in detail for the case where the boundary data have complicated shapes/high-order

variations [10]. In that work, the governing equation was chosen in the form of two

Poisson equations. Linear elements, quadratic elements and radial-basis-function

networks (RBFNs) were employed to represent the variations of the variables along

the boundary. Numerical results showed that BIEMs work well in a smooth geome-

try, where one does not need to derive a computational boundary condition for the

intermediate variable from the normal derivative boundary conditions. This feature

can be seen as an advantage of BIEMs over other discretization methods such as

finite-difference methods. However, in a non-smooth geometry, BIEMs produced

fluctuations in the computed boundary solutions especially for areas near corners.

In solving inverse biharmonic boundary-value problems, Zeb et al [11] also reported

such phenomena. It was found that the use of an iterative decoupled approach can

prevent spurious oscillatory behaviour, however it causes a very slow convergence

with mesh refinement [10].

The objective of this paper is to present a new treatment for the above difficul-

ties. The unknown functions in boundary integrals are approximated by utilizing

a domain-type interpolation scheme rather than traditional boundary-type inter-

polation schemes. In this study, global high-order radial-basis-function networks
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(RBFNs) are considered. The problem of implementing the multiple boundary con-

ditions is resolved here by using integration to construct the RBF approximations

(indirect/integrated RBFNs (IRBFNs)) [12,13]. Numerical results show that this

approach produces not only smooth solutions but also rapid convergence. The pro-

posed method is truly meshless for the case of homogeneous biharmonic equations.

The present formulation also appears to be suitable for solving nonlinear problems.

From the literature, two well-known iterative techniques, namely a Picard-type and

a Newton-type iteration schemes, are often used to handle the nonlinearity of the

system matrix. The latter exhibits quadratic convergence, while the former is of-

ten slow. In the context of BIEMs, to use a Newton-type procedure, the interior

equations must be brought into the system matrix [14,15]. In the present numerical

procedure, the system matrix is composed of the BIE for interior points, and one

can use a Newton-type iteration scheme for the solution of the resultant equations.

The remainder of the paper is organized as follows. The BIE analog of the bihar-

monic equation is given in Section 2. Section 3 presents a brief review of integrated

RBFNs. The proposed method is described in Section 4, followed by several nu-

merical examples in Section 5 to demonstrate the validity and attractiveness of the

present implementation. Section 6 gives some concluding remarks.

2 BOUNDARY INTEGRAL EQUATION

Consider the fourth-order biharmonic equation

∇4v = b, (1)
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where b is a driving function, subject to Dirichlet boundary conditions v and ∂v/∂n

(n – the outward normal to the boundary). This equation is one of the simplest

forms of high-order differential equations, which is important in the modelling of

many engineering applications.

The BIE analog of (1) [9,16,17] can be written as

C(y)v(y) +

∫

Γ

∂GH(y,x)

∂n
v(x)dΓ =

∫

Γ

GH(y,x)
∂v(x)

∂n
dΓ

−

∫

Γ

(
∂GB(y,x)

∂n
u(x) − GB(y,x)

∂u(x)

∂n

)
dΓ −

∫

Ω

GB(y,x)b(x)dΩ, (2)

where y is the source point, x the field point, Γ the piecewise smooth boundary of

a domain Ω in R2, C(y) the free term coefficient which is 1 if y is an interior point,

1/2 if y is a point on the smooth boundary and θ/(2π) if y is a corner (θ the internal

angle of the corner in radians), u the new variable defined as u = ∇2v, and GH and

GB the harmonic and biharmonic fundamental solutions whose forms respectively

are

GH =
1

2π
ln

(
1

r

)
,

∂GH

∂n
= −

1

2πr

∂r

∂n
, (3)

GB =
1

8π
r2

[
ln

(
1

r

)
+ 1

]
,

∂GB

∂n
=

1

8π
r
∂r

∂n

[
1 + 2 ln

(
1

r

)]
, (4)

in which r = ‖y − x‖.

For viscous fluid flows, the variables v and u represent the streamfunction and

vorticity, respectively while for thin plate bending problems, they are the deflection

and “bending moment”, respectively. The variable u has no physical meaning inside

the plate domain, however it may be equal to the bending moment on the boundary.
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3 INTEGRATED RADIAL-BASIS-FUNCTION

NETWORKS

A function v, to be approximated, can be represented by an RBFN as follows

v(x) =
m∑

i=1

w(i)g(i)(x), (5)

where x is the input vector, m the number of RBFs, {w(i)}m
i=1 the set of network

weights to be found and {g(i)(x)}m
i=1 the set of RBFs. It has been proved that

RBFNs have the property of universal approximation [18]. This study is concerned

with multiquadrics (MQ) whose form is

g(i)(x) =
√

(x − c(i))T (x − c(i)) + a(i)2, (6)

where c(i) and a(i) are the centre and width of the ith RBF, respectively, and su-

perscript T denotes the transpose of a vector. For simplicity, the set of centres is

chosen to be the same as the set of collocation points, i.e {c(i)}m
i=1 ≡ {x(i)}n

i=1 with

m = n, while the widths are chosen according to

a(i) = βd(i), (7)

where β is a positive scalar and d(i) is the minimum of distances from the ith center

to its neighbours.

The pth-order IRBFN, which is denoted by IRBFN-p, is defined as an RBFN approx-

imation scheme in which RBFNs are employed to represent the pth-order derivatives

and then integrated p times to obtain expressions for lower-order derivatives and the

original function itself [19].
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For the present two-dimensional case, the IRBFN-p scheme can be expressed as

∂pv(x)

∂xp
j

=
m∑

i=1

w
(i)
[xj ]

g(i)(x) =
m∑

i=1

w
(i)
[xj ]

H
[p](i)
[xj ]

(x), (8)

∂p−1v(x)

∂xp−1
j

=
m∑

i=1

w
(i)
[xj ]

H
[p−1](i)
[xj ]

(x) + C1[xj ](xk), (9)

∂p−2v(x)

∂xp−2
j

=
m∑

i=1

w
(i)
[xj ]

H
[p−2](i)
[xj ]

(x) +
xj

1!
C1[xj ](xk) + C2[xj ](xk), (10)

· · · · · · · · · · · · · · · · · ·

v[xj ](x) =
m∑

i=1

w
(i)
[xj ]

H
[0](i)
[xj ]

(x) +
xp−1

j

(p − 1)!
C1[xj ](xk) + · · · + Cp[xj ](xk), (11)

where subscript [xj] is used to denote the quantities that are associated with the

process of integration with respect to the xj direction; C1[xj ](xk), C2[xj ](xk), · · · and

Cp[xj ](xk) (k 6= j) are “integration constants”; and

{
H

[p−1](i)
[xj ]

(x)
}m

i=1
=

{∫
H

[p](i)
[xj ]

(x)dxj

}m

i=1

, · · · ,
{

H
[0](i)
[xj ]

(x)
}m

i=1
=

{∫
H

[1](i)
[xj ]

(x)dxj

}m

i=1

are new basis functions for the approximation of lower-order derivatives and the

original function v, respectively.

It can be seen from (8)-(11) that, apart from RBFNs, there are new “coefficients”

and new basis functions arising from the integration process. Each “coefficients”

Cl[xj ] (l = 1, · · · , p) is a function of the variable xk (k 6= j), and they can also

be approximated using IRBFNs. Here, IRBFN-2s are chosen to represent these
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functions

d2Cl[xj ](xk)

dx2
k

=

mj−2∑

i=1

w(i)g(i)(xk) =

mj−2∑

i=1

w(i)H
[2](i)

(xk), (12)

dCl[xj ](xk)

dxk

=

mj−2∑

i=1

w(i)H
[1](i)

(xk) + C1 =

mj−1∑

i=1

w(i)H
[1](i)

(xk), (13)

Cl[xj ](xk) =

mj−2∑

i=1

w(i)H
[0](i)

(xk) + C1xk + C2 =

mj∑

i=1

w(i)H
[0](i)

(xk), (14)

where

{
H

[1](i)
(xk)

}mj−2

i=1
=

{∫
H

[2](i)
(xk)dxk

}mj−2

i=1

,
{

H
[0](i)

(xk)
}mj−2

i=1
=

{∫
H

[1](i)
(xk)dxk

}mj−2

i=1

,

H
[1](mj−1)

(xk) = 1, H
[1](mj)

(xk) = 0, H
[0](mj−1)

(xk) = xk, H
[0](mj)

(xk) = 1,

w(mj−1) = C1 and w(mj) = C2.

Making use of (12)-(14), expressions (8)-(11) can be rewritten in a compact form

∂pv(x)

∂xp
j

=
m∑

i=1

w
(i)
[xj ]

H
[p](i)
[xj ]

(x), (15)

∂p−1v(x)

∂xp−1
j

=

m+mj∑

i=1

w
(i)
[xj ]

H
[p−1](i)
[xj ]

(x), (16)

· · · · · · · · · · · · · · · · · · · · ·

v[xj ](x) =

m+pmj∑

i=1

w
(i)
[xj ]

H
[0](i)
[xj ]

(x), (17)

where (mj − 2) is the number of new RBF centres used for the approximation of

integration constant functions.
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4 THE PROPOSED BIEM

For traditional BIEMs, two BIEs are required for the solution procedure and they are

often solved in a coupled manner. The variables in boundary integrals are approx-

imated independently. Lagrange polynomials such as constant, linear or quadratic

interpolating functions are usually employed to approximate the variations of u and

∂u/∂n along the boundary. Once all boundary unknown quantities are available,

solutions at the interior points can be obtained by direct evaluation.

For the proposed BIEM, only one BIE, namely (2), is required. A domain-type

interpolation scheme is employed to represent the variable v, from which approxi-

mations to the unknown variables u and ∂u/∂n are derived. The unknowns here

are the values of the variable v at the interior points. Once the unknown vector is

found, other solutions can be produced by means of IRBFNs. It should be noted

that fourth-order problems require two boundary conditions at each boundary point.

Hence, attention needs to be paid to the following issues

• To write the unknown functions u and ∂u/∂n in terms of nodal values of the

variable v, and

• To implement the prescribed normal derivative boundary conditions ∂v/∂n.

It can be seen that the unknown functions u and ∂u/∂n can be replaced by

u =
∂2v

∂x2
1

+
∂2v

∂x2
2

, (18)

∂u

∂n
= n1

∂u

∂x1

+ n2
∂u

∂x2

, (19)

= n1

(
∂3v

∂x3
1

+
∂3v

∂x1∂x2
2

)
+ n2

(
∂3v

∂x2∂x2
1

+
∂3v

∂x3
2

)
. (20)

Making use of (18)-(20), the present solution procedure involves the approximation
9



of the second- and third-order derivatives of the variable v.

From the prescribed boundary conditions v and ∂v/∂n, the values of ∂v/∂x1 and

∂v/∂x2 at the boundary points can be easily obtained. Let nip be the number of

interior points, and nbp1 and nbp2 be the numbers of boundary points having the

boundary conditions ∂v/∂x1 and ∂v/∂x2, respectively. For example, consider a

rectangular domain. If the domain is discretized using a rectangular grid formed

by parallel nx1
and nx2

lines, one can have n = nx1
nx2

, nip = (nx1
− 2)(nx2

− 2),

nbp1 = 2nx2
and nbp2 = 2nx1

.

In (15)-(17), the IRBFN expressions of a function and its derivatives are written

in terms of network weights. In solving engineering problems, one would prefer to

implement numerical methods in the physical space. To do so, expansion coeffi-

cients/network weights need to be converted into nodal space values of the vari-

able. Owing to the presence of integration constants, the prescribed normal deriva-

tive boundary conditions can be imposed through the conversion process. This

can be seen as an advantage of the integration-based formulation over the usual

differentiation-based formulation. Consider the integration process with respect to

the xj direction. The conversion system can be formed by collocating the func-

tion (17) at the nodal points
{
x(i)

}n

i=1
and the derivative ∂v/∂xj at the relevant
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boundary points
{
x(i)

}(nbpk,k 6=j)

i=1

v(x(1)) =

m+pmj∑

i=1

w
(i)
[xj ]

H
[0](i)
[xj ]

(x(1)), (x: nodal point)

· · · · · · · · · · · · · · · · · · · · · · · · · · · (21)

v(x(n)) =

m+pmj∑

i=1

w
(i)
[xj ]

H
[0](i)
[xj ]

(x(n)),

∂v(x(1))

∂xj

=

m+(p−1)mj∑

i=1

w
(i)
[xj ]

H
[1](i)
[xj ]

(x(1)), (x: boundary point)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

∂v(x(nbpk,k 6=j))

∂xj

=

m+(p−1)mj∑

i=1

w
(i)
[xj ]

H
[1](i)
[xj ]

(x(nbpk,k 6=j)),

or in a matrix-vector form 


v̂

∂̂v
∂xj


 = C[xj ]ŵ[xj ], (22)

where C[xj ] is the matrix of dimension (n + nbpk) × (m + pmj) (here, n = m). In

constructing the conversion matrix C[xj ], the values of H
[1](i)
[xj ]

(x) are set to zeros for

i > m + (p − 1)mj.

Solving (22), one obtains

ŵ[xj ] = C−1
[xj ]




v̂

∂̂v
∂xj


 (23)

where C−1
[xj ]

is the Moore-Penrose pseudoinverse. It can be seen that (22) and (23)

describe the relations between the physical space and the network-weight space.

Making use of (23), the variable v and its derivatives at the arbitrary point x can
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be computed by

∂lv(x)

∂xl
j

=
[
H

[l](1)
[xj ]

(x), H
[l](2)
[xj ]

(x), · · · , 0
]
C−1

[xj ]




v̂

∂̂v
∂xj


 , l = (p, p − 1, · · · , 1), (24)

v[xj ](x) =
[
H

[0](1)
[xj ]

(x), H
[0](2)
[xj ]

(x), · · · , H
[0](m+pmj)

[xj ]
(x)

]
C−1

[xj ]




v̂

∂̂v
∂xj


 . (25)

Expressions (24) and (25) can be reduced to

∂lv(x)

∂xl
j

=
[
E

[l](1)
[xj ]

(x), E
[l](2)
[xj ]

(x), · · · , E
[l](n)
[xj ]

(x)
]
v̂ + K

[l]
[xj ]

(x), l = (p, p − 1, · · · , 1),

(26)

v[xj ](x) =
[
E

[0](1)
[xj ]

(x), E
[0](2)
[xj ]

(x), · · · , E
[0](n)
[xj ]

(x)
]
v̂ + K

[0]
[xj ]

(x), (27)

where E
[.](.)
[xj ]

(x) and K
[.]
[xj ]

(x) are known functions. At the collocation points, the

values of the functions v[x1] and v[x2] are forced to be exactly the same (they are

unknowns to be found); at an arbitrary point, the value of the variable v can be

computed as

v(x) =
1

2

(
v[x1](x) + v[x2](x)

)
. (28)

Partial derivatives of third-order in the case of using IRBFN-2 and mixed partial

derivatives of third-order in the case of using IRBFN-4 can be computed according

to the following relations

∂3v

∂x3
j

=
∂

∂xj

(
∂2v

∂x2
j

)
, (29)

∂3v

∂xjx2
k

=
∂

∂xj

(
∂2v

∂x2
k

)
, (30)

where the functions to be differentiated on the RHS of (29) and (30) are the deriva-

tive functions rather than the original function. Using (26) with l = (1, 2) and

regarding v (l = 1) as a generic function, one can also express the above third-order
12



partial derivatives in terms of nodal variable values.

Expressions for the unknown functions u and ∂u/∂n can now be written in terms

of nodal values of the variable v over the whole domain. Since the variable v is

prescribed along the boundary, one only needs to find the values of the variable

v at the interior points. The objective here is to generate a number of algebraic

equations equal to the number of unknowns. This can be achieved by applying the

BIE (2) at the interior points. It should be emphasized that the present equation

system consists of the interior equations only, thus completely avoiding all difficul-

ties in numerical computation caused by the singularity of boundary integrals. All

boundary integrals involved are regular, and numerical integration can be conducted

using standard Gaussian quadrature. Once the linear algebraic system is set up, the

solution can be determined using Gauss elimination.

In the context of BIEMs, the use of a Newton-type iteration algorithm was reported

to be imperative for the solution of complex nonlinear problems [15]. It can be seen

that the present formulation is based on the BIE for interior points. Consequently,

one can use a Newton-type procedure to handle the nonlinearity of the system.

5 NUMERICAL RESULTS

In the following test cases, the width of the ith RBF is simply chosen to be the min-

imum distance from the ith centre to neighbouring centres (a(i) = βd(i) = d(i)). The

accuracy of a numerical solution produced by an approximation scheme is measured

by means of the discrete relative L2 norm defined as

Ne =

√∑nt

i=1 [fe(x(i)) − f(x(i))]
2

∑nt

i=1 fe(x(i))2
, (31)

13



where nt is the number of test points, x(i) is the ith test point, f and fe are the

calculated and exact solutions, respectively. Another important measure is the con-

vergence rate of the solution with respect to the refinement of spatial discretization

Ne(h) ≈ γhα = O(hα) (32)

in which h is the spacing (mesh size), and α and γ are the exponential model’s

parameters. Given a set of observations, these parameters can be found by the

general linear least squares technique.

5.1 Linear problem

A test problem chosen here is taken from Reference [11]. Consider the homogeneous

biharmonic equation in the square domain −2 ≤ x1, x2 ≤ 2, subject to Dirichlet

boundary conditions v and ∂v/∂n. The exact solutions of this problem are given by

v =
1

2
x1 (sin x1 cosh x2 − cos x1 sinh x2) , (33)

∂v

∂x1

=
1

2
(sin x1 cosh x2 − cos x1 sinh x2) +

1

2
x1 (cos x1 cosh x2 + sin x1 sinh x2) ,

(34)

∂v

∂x2

=
1

2
x1 (sin x1 sinh x2 − cos x1 cosh x2) , (35)

u = cos x1 cosh x2 + sin x1 sinh x2, (36)

∂u

∂x1

= cos x1 sinh x2 − sin x1 cosh x2, (37)

∂u

∂x2

= sin x1 cosh x2 + cos x1 sinh x2. (38)

The geometry is non-smooth and the boundary data v and ∂v/∂n have compli-

cated shapes (high-order variations). Two versions of the proposed method, namely

IRBFN-2 and IRBFN-4, are employed. Their convergence behaviours are investi-
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gated through a number of uniform densities, 5 × 5, 7 × 7, · · · , 31 × 31. Results

concerning the discrete relative L2 norm are shown in Table 1, together with those

obtained by a linear-BIEM. For the linear BIEM, discontinuous elements (double

nodes) are used to deal with the problem of multi-values of the normal derivative

at the corner. Figures 1 and 2 display the computed solutions obtained by the

IRBFN-4 and linear BIEMs.

For the conventional linear BIEM, large fluctuations occur on the boundary espe-

cially for areas close to corners (Figure 1). In contrast to the boundary solutions,

good accuracy is obtained for the interior solutions v and u, probably due to the fact

that spurious oscillations may cancel out each other during the numerical evaluation

of boundary integrals. The method gives very low convergence rates for all solutions

(Table 1).

For the proposed method, the two IRBFN versions perform well, especially for the

higher-order one. The computed solutions are all smooth and they are in good

agreement with the exact solutions (Figures 2). Accurate results and high conver-

gence rates are obtained. For example, using IRBFN-4, the relative L2 error at the

highest density of 31 × 31 for the solution v is 2.60 × 10−5, and the convergence

obtained is of O(h3.00) (Table 1). The order of the accuracy of the method cannot

be given theoretically at this stage; further studies are needed.

Results obtained show that the spurious oscillation behaviour on the boundary is

overcome with the use of a domain-type interpolation scheme. When compared

with the iterative decoupled approach that also has the capability to prevent the

noise [10], the proposed method gives a much faster convergence with respect to the

refinement of spatial discretization.
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5.2 Nonlinear problem

As mentioned earlier, the present system of algebraic equations is comprised of the

interior equations rather than the boundary equations. As a result, the nonlinear

term is brought into the system matrix and a Newton-type iteration algorithm can be

used for its solution. This feature is demonstrated here by considering the solution

to the following nonlinear driving function

b = v2
[(

x2
1 + x2

2

)2
+ 8x1x2 + 4

]
exp(−x1x2). (39)

The exact solution can be verified to be

ve = exp(x1x2). (40)

The driving function is computed in the form of (39) and hence, it contains a non-

linear term, namely v2. Consider the unit square domain 0 ≤ x1, x2 ≤ 1. One can

easily use (40) to obtain the values of the boundary conditions v and ∂v/∂n. The

volume integral is generated by the nonlinear driving function b. Here, this integral is

computed using the cell integration approach. The domain of interest is represented

by a set of triangular elements. The values of the driving function at the integra-

tion points are obtained by means of IRBFNs. Regular integrals are evaluated using

two-dimensional Gaussian quadrature, while weakly-singular integrals are calculated

using the transformation to polar coordinates [20]. The trust-region method, see for

example [21], is applied here to handle the nonlinearity of the resultant equations.

To study the convergence behaviour, a number of uniform meshes, namely 3×3, 5×

5, · · · and 15×15, are employed. It takes only a few iterations (two or three) to get a

convergent solution. Table 2 presents the results obtained by the IRBFN-4 scheme,

indicating a rapid improvement in accuracy with mesh refinement. The convergence
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rate is of O(h3.12) and the discrete relative L2 norm at the finest mesh of 15× 15 is

5.11 × 10−7.

6 CONCLUDING REMARKS

A domain-type interpolation scheme based on integrated radial-basis-function net-

works is introduced into BIEs to represent the field variable for numerically solving

biharmonic Dirichlet problems. Only one BIE is required for the solution procedure,

and there is no need to apply this equation at the boundary points, thereby avoid-

ing difficulties in numerical computation caused by the singularity of the boundary

integrals. Derivative boundary conditions are implemented through the process of

constructing the RBF approximations. Nonlinear systems of algebraic equations ob-

tained can be solved effectively with trust-region methods. Numerical results show

that spurious oscillatory behaviour in the computed boundary solutions due to the

effect of corners is overcome. The proposed method attains a significant improve-

ment in accuracy and convergence rate over conventional BIEMs. The application

of the method to complex viscous flows will be reported in future work.
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Table 1: Linear problem: accuracy and convergence rate. Notice that a(−b) means a × 10−b and h is the spacing (mesh size).

Linear IRBFN-2 IRBFN-4
Ne(v) Ne(u) Ne(v) Ne(u) Ne(v) Ne(u)

nx1
= nx2

Boundary Interior Boundary Interior Boundary Interior
5 1.1720(-2) 4.6349(0) 1.7829(-1) 1.6088(-2) 1.2453(-1) 2.4408(-1) 1.7484(-2) 1.0325(-1) 2.6475(-1)
7 1.2453(-2) 4.3553(0) 1.2632(-1) 3.5504(-3) 3.6317(-2) 3.9176(-2) 2.6457(-3) 2.1247(-2) 3.1643(-2)
9 1.0236(-2) 4.0599(0) 9.0515(-2) 2.2881(-3) 1.9263(-2) 1.6400(-2) 1.0782(-3) 9.8104(-3) 1.0121(-2)
11 8.4913(-3) 3.7946(0) 7.0285(-2) 1.5054(-3) 1.2177(-2) 8.4594(-3) 7.5027(-4) 5.6267(-3) 4.6423(-3)
13 7.2201(-3) 3.5625(0) 5.7887(-2) 1.0191(-3) 8.5855(-3) 5.0264(-3) 5.0061(-4) 3.5808(-3) 2.5094(-3)
15 6.2889(-3) 3.3602(0) 4.9755(-2) 7.1189(-4) 6.4935(-3) 3.3126(-3) 3.3372(-4) 2.4541(-3) 1.5060(-3)
17 5.6002(-3) 3.1830(0) 4.4192(-2) 5.1374(-4) 5.1478(-3) 2.3524(-3) 2.2568(-4) 1.7799(-3) 9.7711(-4)
19 5.0898(-3) 3.0262(0) 4.0332(-2) 3.8248(-4) 4.2196(-3) 1.7626(-3) 1.5571(-4) 1.3494(-3) 6.7476(-4)
21 4.7163(-3) 2.8860(0) 3.7703(-2) 2.9293(-4) 3.5462(-3) 1.3734(-3) 1.0983(-4) 1.0595(-3) 4.9015(-4)
23 4.4533(-3) 2.7592(0) 3.6049(-2) 2.3002(-4) 3.0384(-3) 1.1022(-3) 7.9198(-5) 8.5548(-4) 3.7082(-4)
25 4.2849(-3) 2.6431(0) 3.5238(-2) 1.8457(-4) 2.6436(-3) 9.0522(-4) 5.8317(-5) 7.0667(-4) 2.8978(-4)
27 4.2031(-3) 2.5356(0) 3.5226(-2) 1.5089(-4) 2.3291(-3) 7.5729(-4) 4.3779(-5) 5.9459(-4) 2.3265(-4)
29 4.2069(-3) 2.4348(0) 3.6038(-2) 1.2535(-4) 2.0735(-3) 6.4322(-4) 3.3459(-5) 5.0821(-4) 1.9050(-4)
31 4.3029(-3) 2.3393(0) 3.7778(-2) 1.0559(-4) 1.8621(-3) 5.5333(-4) 2.6012(-5) 4.4080(-4) 1.5844(-4)

O(h0.64) O(h0.35) O(h0.84) O(h2.37) O(h1.98) O(h2.87) O(h3.00) O(h2.58) O(h3.52)

21



Table 2: Non-linear problem: accuracy and convergence rate. Notice that a(−b)
means a × 10−b and h is the spacing (mesh size).

nx1
= nx2

Ne(v)
3 2.2711(-4)
5 2.8471(-5)
7 7.8375(-6)
9 3.4314(-6)
11 1.6681(-6)
13 8.7782(-7)
15 5.1051(-7)

O(h3.12)
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Figure 1: Linear problem, 31×31: approximate solutions obtained by linear-BIEM.
Figures (a) and (b) present the variations of v and u over the whole domain, while
figures (c) and (d) show the variations of u and its gradient along the boundary s.
Large fluctuations appear in the computed boundary solutions u and ∂u/∂n.
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Figure 2: Linear problem, IRBFN-4, 31 × 31: approximate solutions obtained by
the proposed method. Figures (a) and (b) present the variations of v and u over the
whole domain, while figures (c) and (d) show the variations of u and its gradient
along the boundary s. All computed solutions are smooth and in good agreement
with the exact solutions.
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