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Abstract

This thesis investigates a common problem of land use impacts on flood damage costs on

a catchment scale. It does this through a particular case study, to quantify the technical

upstream-downstream dependencies and highlights the externalities through hydroeconomic

analysis of flood damages and mitigation costs. The substantive content of the project is

cross disciplinary.

Peak and volume of river flows are functions of the catchment surface characteristics. This

means that any impacts to the run-off regime (for example surface sealing or river training)

could affect people and land users in the lower catchment. Thus, upstream activities can

cause higher flood peaks, and also entail higher damages downstream. These damages are

either borne by the affected parties or they are mitigated by state financed flood defence

works or offset with financial compensation. These costs are usually not included in the

economic considerations of the upstream land user who is partially causing them. In eco-

nomic terms, these effects are referred to as unidirectional externalities. This means that a

producer can export parts of his production costs to third parties and these are not included

in the price of the product.

The Herzogbach is a small tributary of the Danube River in Lower Bavaria. It is located in a

rural area, dominated by intensive farming practices. Two villages (Bachling and Buchhofen)

in the headwaters and middle section of the catchment and one city (Osterhofen) in the lower

catchment were analysed to determine the impact of upstream land use practices on the flood

situation.

A combination of hydrological and hydraulic modelling provided the core data to allow the

interpretation of economic data, using methods of cost damage estimation. A hydrological

model of the catchment provided hydrograph simulations based on (a) a regionalisation ap-

proach, (b) hydrologic flood routing and (c) hydrologic reservoir routing. A two dimensional

stream flow model was then used to convert the hydrographs into flood levels, to simulate

the run-off in settled areas and determine the flood affected areas, flood levels and flow



velocities. Estimates for flood damages or mitigation costs resulting from different hydro-

logical scenarios were compared. The scenarios are based on different land uses and allow

economic externalities to be estimated.

It was found that intensive farming and river training increase the peaks, shape and volume

of flood waves in comparison to extensive land use, grassland or forest. In the study area,

especially river training reduced the detention effect of the river bed and the natural flood

plain. These significant changes to the natural run-off regime directly affect land use in

the lower catchment through flood damages and increased flood risk, and by reducing the

effectiveness of planned or existing flood protection works.

The thesis concludes with linked technical and economic findings which indicate a rich

potential new area for research - “hydroeconomics”. The published literature shows few

people have worked in this cross disciplinary area. The technical finding is that changes to

land use, especially in agriculture, can increase the flood damages in downstream settlements

or increase the cost of flood mitigation works significantly. From an economic point of

view, this is a unidirectional externality which should be considered in catchment and flood

management. Possible solutions could include the control of land use and instruments such

as separate waste water fees for rainwater and sewage or run-off certificates.
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Glossary

Catchment: Area of a landscape that collects all water that flows towards a defined outlet.

Certificate/Certificate trading: Right/permission to emit a certain amount of a defined

substance. Certification trading is the process of trading these emission rights between

different groups of emitters in a defined market.

Externality: Is any impact, either positive or negative, on a party not involved in an

economic transaction.

Flood Risk Management Directive: Directive of the European Parliament and of the

Council on the assessment and management of flood risks.

Hydroeconomics: Field of environmental economics dealing with economic aspects of wa-

ter under its special hydrological and hydrodynamic boundary conditions.

Internalisation: Is the process of integrating all externalities in the calculus of the causer.

Land consolidation: Legal and administrative instrument and management process to

reorganise field structures and land property to improve the agricultural situation in

an area.

Rivulet: Permanent water courses in a catchment smaller than 100km2.

Rural development: All instruments to improve the competitiveness and attractiveness

of rural areas including e.g. land consolidation and the development or rural infras-

tructure.

Separate waste water fee: In contrast to regular waste water fees, calculating the fees

for waste water based on the fresh water consumed by a household, the separate fee

vii



distinguishes between waste water (based on consumed fresh water) and storm water

based on sealed areas connected to the storm water sewer.

Settlement: Group of houses and buildings.

Water Framework Directive: Directive 2000/60/EC of the European Parliament and of

the Council establishing a framework for the Community action in the field of water

policy.



Preface

This thesis is cross disciplinary in nature. It stands on the border between engineering

sciences and environmental economics and is written partly for both audiences. It aims

to fill a gap in the understanding of hydrological processes from an economic perspective

and, as an instrument of river basin management, develops a methodology of how to detect

and handle land use externalities. A major emphasis is to draw on principles from both

disciplines and use them together to enhance the effectiveness of this study. It is difficult

to write a formal dissertation for both specialists at once. In this preface, I outline my

approach to presenting the project to both groups. I hope that I have addressed the most

interesting and relevant topics and have shown where future interaction and knowledge

exchange between engineering sciences and economics must be fostered.

In order to provide understandable information for all readers, while also giving detailed

information for the specialists in each field, this dissertation is structured as follows. The

Introduction provides an overview of the study and its focus. It also describes the main ob-

jectives and the interdisciplinary focus. The Theoretical Background and Literature Review

chapter then provides an overview of the interaction between land use and hydrological cycle,

the necessary economic theory, especially concerning resource economics, and the external-

ity problem applied to the special characteristics of water and water bodies. For readers

with an engineering background, the principles of economics - especially the basic theory

of markets - is described in more detail in the Appendix. For economists, the Appendix

contains an extra chapter giving an introduction into the theory of hydrology.

Because of the breadth of subject matter, the Methodology includes a broad overview of the

use, necessity and interaction of different evaluations and analysis techniques used in the
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dissertation. The chapter then describes how each individual discipline approach, such as

hydrologic and hydraulic modelling and economic assessment, is used and how they can be

combined to achieve the objective of identifying externalities.

The chapter Case Study gives an overview of the applied modelling approach. It presents

the model results and the interpretation of hydrologic, hydraulic and economic data for

each individual section of the catchment as well as the interpretation on a catchment scale.

Detailed data and the graphic representation of model results are attached in the Appendix.

The Discussion and Conclusion Chapters suggest which instruments are suitable for inter-

nalising externalities. They also describe how the methodology can be used in the future

for river basin management and as an instrument for flood mitigation.

Although the work described in this thesis is theory based, it responds to practical problems

which inspired the study. In Germany, the administrative responsibilities for water bodies are

shared between the state (major water bodies), the municipalities (smaller water bodies) and

the districts. Often, two to ten municipalities share responsibility for one small catchment.

Actions have to be coordinated and costs shared in projects within this catchment. This is

often a problem in flood mitigation projects, because the most effective measures to protect

an affected area downstream are often located in the next municipality upstream. At the

moment, no regulations exist to enforce cross community projects. Even the argument that

upstream land use increases flood problems in the downstream community is ignored or

rejected.

The Bavarian government picked up this topic and assigned the University of Applied Sci-

ences with a research project to prove and show the benefits of cooperative planning and

action for a distinctive catchment. Dorner, Spachinger & Metzka (2005, p. 28) point out:

“To improve the situation in the catchment a masterplan has been developed that integrates

measures of flood protection and prevention, improvement of the water quality and the river

morphology and combines them with measures of erosion reduction and sediment and nu-

trient retention in the area. The main strategy to implement all suggested measures is a

combination of acquisition in areas of main interest along the river, fallow along rivulets

and drains and measures of land clearance to improve the structure of fields and introduce

retention structures like filter strips, grassed water ways and drains. [...] One aspect are



also recommendations to change agricultural policies concerning subsidies and incentives

to increase the size of extensive used agricultural areas and the implementation of sustain-

able agricultural techniques.” This dissertation project amends the results of the research

project with an economic assessment of the externalities of human actions in a catchment

with respect to flood protection.
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Chapter 1

Introduction

1.1 Problem statement

Rivers and rivulets densely cover our landscape and link upstream areas to downstream

ones. Rivers also connect different human groups and their activities from the head to the

tailwaters of the catchment. Almost every quantitative or qualitative human impact to the

river system is transported by the flow and may affect downstream stakeholders.

The project commences from the position that all human actions in a catchment and along a

river system influence other parties - mostly downstream of the action. Conflicts of interest

between these parties pre-exist because each user has potential demands of the system. The

level of awareness of the conflict varies, but where negative impacts are recognised, some

form of protest can arise against other users and even pre-existing uses. The problem of

conflicting useage rights in river basins is bound to the nature of environmental services

being public goods or common resources (Green 2003).

In most cases, nobody can be prevented from using the resource, nor can access be restricted.

In some cases use restrictions have already, for example for water extraction and irrigation

(Dinar & Subrahmanian 1997, Tsur & Dinar 1995), been established. However, unnoticed

intensive usage of the resource can result in reduced availability, inefficiencies, conflicts and

external impacts within the catchment (Bernauer 2002, Holden & Thobani 1996, Thurston,

1
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Goddard, Szlag & Lemberg 2003). Direct uses, such as waste water discharge and irrigation

abstractions, already need licenses or are constrained by water fees (Johansson, Tsur, Roe,

Doukkali & Dinar 2002, Kraemer, Pielen & Leipprand 2003). Other impacts, like increased

run-off and flood development, are consequences of intensified land use or changes in land

use. They, in turn, affect the flood risk to downstream users in a way that is not recognised

from an economical point of view.

River systems that cross national boundaries pose extra concerns. Upstream countries and

upstream users within the same country, tend to export their social costs. The problem

that occurs when human economic actions affect other stakeholder groups without any form

of compensation is referred to as an negative externality, hereafter called externality. Most

environmental economic problems or externalities in river basins are caused by the upstream

to downstream conflicts discussed above, and they represent a special form, called a unidirec-

tional externality (Bernauer 2002). Bernauer (2002) lists water use, irrigation, agriculture

(adding sediments and chemicals) and hydroelectric power production (creating additional

peak flows and hindering navigation) as common upstream to downstream problems. Other

types of common costs can also be considered as water-related externalities. They include for

example the maintenance required for trained rivulets (small stream channels) in agricultural

catchments following land clearance projects and the resulting responsibility of governments

or city councils to conserve the existing river structures. Other types of land uses and

their effects on the quantitative and qualitative availability and appearance of water would

include:

• effects of land use, such as surface sealing in cities or intensive farming, on the peak

and duration of floods

• river training and artificial channel structures, which increase the flow rate, reduce the

detention capacity of the natural flood plain and increase the flood damages in settled

areas.

These types of externalities can be negative and are worth analysing from an economic

viewpoint for different reasons because:

• The environmental costs of human actions are not integrated into the economic equa-
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tion of the producer, but assigned over time to other people.

• Externalities may have inter-temporal effects. The negative effects can be delayed and

occur as economic costs to future generations.

• Minor externalities of different individual polluters or causers can accumulate over

time and on a catchment scale.

In some cases, especially in areas where water scarcity determines the efficiency of the

economy, we already know how externalities can be handled (Green 2003, Qdaisa & Al

Nassayl 2001, Tsur & Dinar 1995). Johansson et al. (2002) list several instruments and ap-

proaches such as certificate markets for water abstraction, water fees and regulations. The

lack of clean water represents a special form of scarcity and is therefore linked to externality

problems too. The request of the European Water Framework Directive (European Parlia-

ment & Council of the European Union 2000) to use “cost effective” measures to establish

the good status of river systems, is an official task to take into account water related costs.

We know that human action in the catchment and along the river system affect flood develop-

ment and consequently the peak, volume and duration of a flood. Maniak (1993, p. 10) states

“Beim Ausbau oberirdischer Gewässer wurden vielfach die natürlichen Rückhalteräume in

der Talaue verkleinert, um die Landwirtschaft gegen Sommerhochwasser und die Siedlungs-

gebiete gegen noch größere Hochwasser zu schützen. Dies führt zu Abflussverschärfungen

mit größeren Hochwasserspitzen in den unterliegenden Gebieten.” [As the river systems

were developed, the natural detention storage was often reduced in the flood plain. Mea-

sures were required in order to protect agriculture from summer floods and the settlement

areas against increased floods. There has been an increase in flood water levels and peaks

in the lower catchment areas.].

Especially in small scale catchments, these quantitative relations between land use and water

in the literature have been proven (Bormann, Diekkrüger & Hauschild 1999, Koehler 2005).

But linkages between land use, river training and flood development can be shown for larger

catchments as well (Lammersen, Engel, van de Langemheen & Buitveld 2002, de Roo, Odijk,

Schmuck, Koster & Lucier 2001). Dyck (1995, p. 433) describes the enormous losses in flood

capacity along the Elbe in Germany over the past 800 years and refers to the inadequate or

token attempts to construct flood detention works to compensate these losses within the past
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100 years. He states “Infolge Flußregelung und Deichbau haben sich die Retentiosflächen

vieler Flüsse verringert. Dies konnte auch durch Rückhaltebecken und HW-Schutzräume in

Talsperren meist nicht kompensiert werden. [In-stream works and levee construction have

reduced the flood capacities of many river systems. It was not possible to balance this by

detention reservoirs or flood storage in dams.]” (Dyck 1995, p. 433).

Figure 1.1: Cause and effect relations between anthropogenic impacts and flood development

The hydrological cycle as a physical process links detention in the catchment and in the river

valley to flood development and resulting flood damages. The economic hypothesis would be:

the extent of flood damages is influenced by land use in the upstream areas. Therefore, flood

damages are a function of hydrological parameters, e.g. surface characteristics, catchment,

river structure, land use and other anthropogenic impacts (Fig. 1.1). The main questions

that follow are:

1. Can externalities, for example flood damages, be directly linked to land use and human-

induced changes to hydrology and river morphology, and so quantified using hydrolog-

ical models?

2. Can externalities be assigned to identified causers or polluters, or at least alternatively

to specified user groups?
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3. Can natural effects of flood development be split from anthropogenic ones?

4. Will the costs of the internalisation process not exceed the benefit?

To answer these questions for individual catchments, a lot of physical and environmental

processes would have to be examined before an economic investigation could be started.

The relevant circumstances determining the interaction between human impact, flood de-

velopment and resulting damages must be identified and the human-induced run-off must

be separated from natural effects.

1.2 Thesis scope

Widespread efforts have been made in recent years, especially in arid countries, to establish

markets to trade water and avoid externalities (Johansson et al. 2002, Dinar & Subrahmanian

1997). Also, water quality is increasingly mentioned in the context of externalities and

internalisation strategies (Kraemer et al. 2003). These trends form the context for this

dissertation project and highlight the need to include flood development and protection in

an economic framework. Costs for flood defence work have increased in recent years as

have flood damages (European Commission 2006a, MunichRE 2003). Political, legal and

market mechanisms have consistently failed to establish preventive measures and reduce

flood impacts as well as related damages, because the hydrological development of floods

has never been linked to the economic consequences on a catchment scale.

Umweltbundesamt (2007, p. 5) pointed out: “Die Umweltpolitik muss sich heute mehr

als in früheren Zeiten dem ökonomischen Kalkül stellen. Die ökonomische Bewertung von

Umweltschäden ermöglicht es, den ökonomischen Nutzen umweltpolitischer Maßnahmen zu

schätzen, denn Umweltpolitik heute vermeidet Umweltschäden morgen. [Environmental

politics must have a greater rationale now than in previous times of the economic calculus.

The economic assessment of environmental damages allows the benefit resulting from envi-

ronmental political measures to be estimated, because environmental politics today avoids

environmental damages tomorrow.] ” This must also be applied to land use management.

Lord & Israel (1996) nominated the major problems in water resource management as:
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1. the externality problem,

2. the open access problem,

3. the public good problem and

4. the scarcity problem.

They suggested the implementation of economic methods as providing a possible means to

solve these problems.

The open access problem and the public good character of water and river systems are

the main reasons for the development of externalities. If the use of a resource can not be

restricted automatically, an open access situation arises in most cases, and results in an

externality.

This raises the question as to whether the oft mentioned scarcity problem (Bella, Duckstein

& Szidarovszky 1996, Johansson et al. 2002, Holden & Thobani 1996), is the only relevant

aspect of water resources that can be linked to economic issues. It would seem that land use

as well as river training and their effects on the development of floods should be recognised

as serious upstream-downstream problems resulting in (negative) externalities. In literature,

the quantitative and physical aspects of land use and river training were often mentioned

(Niehoff, Fritsch & Bronstert 2002, Lammersen et al. 2002, Croke, Merritt & Jakeman 2004,

Scheidleder, Winkler, Grath & Vogel 1996). Agthe, Billings & Ince (2000), Green (2003) and

Thurston et al. (2003) also linked land use to the externality problem, but no framework or

methodology existed on how to quantify the extent of the externality problem as a physical

basis for an internalisation strategy.

This project is based on the hydrologic behaviour of the catchment. Water-related processes

in the landscape, such as evapotranspiration, infiltration and surface run-off and the genesis

and development of floods, will be first quantified. A broad variety of computer models are

available to describe and simulate different subprocesses of the hydrology of a catchment.

They can be used to calculate the volume and peak of design floods as well as for flood

forecasting and the control of detention structures, such as lakes and reservoirs. In a lot of

cases, they have shown that the development and extent of flood waves can be simulated

accurately (Plate 2002).
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When combined with a hydrodynamic model, the extent, depth and velocity of floods in

settlements and a relation between land use and flood affected areas in a catchment can be

established. A comparison of the situation in the catchment before human land use with

the status quo can then be used to split off the human-induced effects from the natural

run-off. Hence, it should be possible to connect human impact and the resulting changes of

the natural system to the economic consequences for flood affected citizens. These analyt-

ical linkages would establish flood-damage functions for defined design floods under these

scenarios and help to identify and quantify externalities.

The hypothesis addressed in this project is that land use in the upper catchment can have

significant negative impacts in the lower catchment, which must be seen as negative ex-

ternalities of land use. The key question to be answered is how these externalities can be

quantified and which parameters describing land use in the hydrological systems can be used

to draw conclusions about the economic effects of changes to this system.

Two economic concepts are applied in this thesis and must be distinguished:

1. the estimation of damage costs or costs for flood mitigation,

2. the evaluation of transfer of costs (externalities) and the potential for internalisation

or regulation.

Both concepts will be connected in this thesis to identify whether damage and mitigation

costs can be used to identify externalities of land use with regard to surface run-off and

floods.

The project will investigate how human land use affects third parties on a river system

regarding floods, and how these impacts can be modelled with regards to the externality

problem.

This will be done in a two step approach:

1. A methodology will be suggested to estimate the physical aspects of the externality

problem.

2. The methodology will be tested in a sample catchment using a combination of hydro-

logical, hydraulic and economic methods and models.
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The dissertation will concentrate on the aspects of land use that affect run-off and flood

development. It will provide a methodology to model land use changes, like intensive agri-

culture, urban sealing and also river training, and their impact on the hydrological cycle as

the basis for an assessment of the externality character of these activities. A combination

of hydrologic and hydrodynamic stream flow models will be used in combination with flood

damage estimations to link negative effects on flood development with costs and damages

and show how costs are transferred in the catchment. The case study of the Herzogbach

catchment will show how a combination of technical and environmental models can be linked

with economic calculation to provide the basis for future internalisation strategies.

Due to the restrictions of modelling hydrologic processes on a meso and macro scale (Debene

2006, O’Connell, Beven, Carney, Clements, Ewen, Fowler, Harris, Hollis, Morris, O’Donnell,

Packman, Parkin, Quinn & Rose 2006) and the related consequences for hydrodynamic

modelling and damage assessment, no precise result can be expected. The proposed approach

can only deliver evidence that in a catchment, land use altered run-off and therefore causes

externalities. It can provide a rough estimate of the amount of the externality. Results of

the case study can not be directly transferred to other river basins nor be scaled up to larger

units.

1.3 Aim

A lot of international organisations call for the use of economic instruments to control the

use of water. In a recent publication, the WWF (2006, p. 5) asks to “properly value water

and the natural features and services offered by catchments, streams, aquifers, floodplains

and wetlands.”

The Kyoto Protocol has shown that a global approach to establish environmental economic

methods is possible and desired by many people and nations. Similar strategies for local,

regional and international river basins can be built on this cooperative approach to estab-

lish economically based methods for supporting the sustainable use of water and related

resources. The objective of this project is to investigate the impacts and reactions between

humans and nature in a river catchment. It aims to identify parameters that environmental

economics and policy instruments can be based on, that they can successfully internalise and
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allocate these interactions in the case of flood development and flood damages. The pro-

posed model structure and approach should help to apply environmental economic methods

as an instrument of flood management. Other political objectives of river basin management

can be supported as well, including:

• Use of agrarian subsidies to encourage best practices for improving sustainable land

use and reduce diffuse pollution,

• development of insurance strategies to avoid or reduce settlement along river banks,

• providing a basis for new development strategies on a catchment scale.

The thesis will show how hydrological, hydrodynamic and economic models can be combined

and used as a basis for the development of policies for flood prevention control. The following

aspects are of importance for further political steps or the development of transnational or

supra-regional water management policies. The thesis will provide guidance for the following

questions regarding floods:

• What are the causes of external effects and misallocations and which developments in

land use did result in flood problems?

• What are the economic costs of external effects or misallocation of rights in river

systems and how can they be derived from technical and environmental data?

• On which environmental parameters, e.g. run-off coefficients for land cover, detention

volume or flood peak, can internalisation strategies be based on to define or measure

impacts and results of environmental policies?

The study is compatible with current developments in the European Union, where two Di-

rectives aim to establish new ways of water management. The so-called Water Framework

Directive (WFD), “DIRECTIVE 2000/60/EC of the European Parliament and of the Coun-

cil of 23 October 2000 establishing a framework for Community action in the field of water

policy” (European Parliament & Council of the European Union 2000), is an approach to

harmonise the process of river basin management in Europe and establish coordinated man-

agement plans for national and international river basins. The main objective is to achieve
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a good status of all water bodies as the consequence of coordinated planning, management

and action. The directive claims that member states should “take account of the princi-

ple of recovery of the costs of water services, including environmental and resource costs”

(European Parliament & Council of the European Union 2000, Art. 9). In addition, a Flood

Directive (European Commission 2006b) was published in 2007 to support and enforce the

development of flood risk management plans on a catchment scale.

At the moment, the cause-effect linkages between human impacts, resulting changes in flood

behaviour and costs are not part of the political discussion regarding flood risk management.

The new political developments, resulting in new integrated and transnational management

action, in combination with an increased flood awareness and the costs for developing and

maintaining flood protection should result in a discussion about the aspects of externalities

of land use in the catchment and the flood plain.

The challenge for policy-making regarding floods is to identify the impact of land use on

floods and relate it to the externality problem. From an environmental point of view,

emissions can be defined as the discharge of substances into the environment, with regard to

economic activities, as a by-product of the production of goods or services (Wikipedia 2008).

Land cover and soil condition are the relevant factors that influence detention and, as a

consequence, excess run-off. From this point of view, the additional run-off as a result of

land use can be compared to emissions. In the case of flood development and flood damages,

the cause-effect relations with regard to externalities are, at the moment, not well understood

or have not sufficiently been quantified. This makes it difficult for policy makers to establish

new systems to promote greater environmental, but also economic efficiency. The thesis

aims to identify the key parameters of flood development in river basins as a physical basis

to allow the internalisation of human activities related to flood development.

In the future the developed methodology to physically quantify externalities can be combined

with economic models, e.g. to develop internalisation strategies or combined with other

methods predict the reaction of participants in the market to these internalisation strategies.



Chapter 2

Theoretical Background &

Literature Review

The economic aspects of water are often discussed in the scientific literature with regard

to ecological economics, environmental economics or ecosystem services (Green 2003, Ward

& Pulido-Velazquez n.d., Brouwer & Hofkes 2008). The discussion about water scarcity

(Johansson et al. 2002) or pollution (Kraemer et al. 2003, Cason, Gangadharan & Duke 2003)

shows the economic importance of water. Studies addressing the social, economic and eco-

logical aspects of water are now mainly performed for arid climates. Especially irrigation and

its impacts, dependencies, chances and risks have been covered in literature (Dinar 2000).

Wallacher (1999, p. 3) describes a new approach for defining a sustainable management

and general use of water resources. He takes ethical, religious, sociological and political

aspects of water management into account together with natural sciences, engineering and

economics. Wallacher derives an interesting model for the interaction between these disci-

plines: While hydrology provides necessary data on the temporal and spatial availability of

water, economics and socioeconomics can provide the information about current and future

demand. Ecology is then seen to influence the supply side and to define the limits for sus-

tainable water consumption. These limits provide a basis for water management planning

and the analysis of hydrologic impacts. The need for water often conflicts with the scarcity

of available supplies. This conflict includes an ethical dimension and not only an economic

11
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one, which must be dealt with. Therefore, it is necessary to establish ethical rules for the

just distribution of water and for the proper allocation of usage rights.

A main reason for missing experiences in the resource allocation can be the complex in-

teraction of hydrological cycle and human activities as well as a deficient economic under-

standing of the resource water. The following paragraphs give an overview of the ecological

backgrounds of the resource water, as well as the relevant economic theory. More general

information about the principles of hydrology and economics can be found in the Appendix.

2.1 Impacts of land use and river structure on run-off

Human actions have affected the catchment and along the river reaches over several centuries.

They have altered different hydrological sub-processes, such as evaporation, infiltration and

surface run-off, and affected hydraulic conditions of flows in water courses.

The European Environmental Agency (Scheidleder et al. 1996) conducted a metastudy to

detect the effects of human interventions on the hydrologic cycle in the Biogeographic Re-

gions (Boreal, Atlantic, Continental, Alpine, Mediterranean, Macronesian) in Europe. Sev-

eral member states, including Denmark, France and Austria, participated in this survey.

State administrations were asked to answer questions about the extent of interventions,

their measured impacts on the hydrological cycle and the reason for the occurrence of these

interventions. Three types of interventions were identified in the study:

• river, lake and estuary regulation,

• water abstraction,

• activities in the catchment.

Human actions like land use and river training have influenced different sub-processes within

the hydrological cycle over the last decades. Examples include land clearance, farming and

urban development which changed the surface characteristics, infiltration capacity, small

run-off relevant structures like depressions and drains as well as run-off paths in the land-

scape. The Umweltbundesamt (2001) performed a study to identify the impacts of land
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use on run-off and flood development. Three sub-catchments were assessed: Lein 115 km2,

agricultural and flat to hilly, Körsch 127 km2 as a mainly settled area and, Lenne 455 km2

with a hilly catchment and mainly forestry. The main objective of the study was to detect

the effect of different land use types on run-off development and floods. Different future

land use scenarios were forecast using a model that combined prediction of the quantitative

change and spatial analysis for the local areal development. A trend of increased urbani-

sation and the use of more intensive agricultural techniques were predicted. Hydrological

model results showed that, depending on the type of precipitation, a 50% increase of settled

areas can increase flood peaks by 30%. A historical scenario for land use (1.3% settled areas

in 1836 in contrast to 25% today) showed that a real flood event from 1992 would have had

a greatly reduced peak in 1836.

Auerswald (2002) measured the impacts of different farming practices on surface run-off. He

compared traditional techniques with new systems like intermediate cropping. In parallel to

a reduction of soil erosion, he detected a decrease of surface run-off from the new system.

Scheidleder et al. (1996, p. 4) summarise the outcomes of the European study: “Land sealing

by urbanisation and land drainage for cultivation occur in each of the proposed regions and,

where it occurs, seem to be most important activities in the catchment.”. Changes of surface

and subsurface structures influenced detention and run-off in addition to the type of surface.

Unfortunately it is still problematic to make statements about the general reaction of a

catchment to human actions due to the differing geological, geometric and climatic situa-

tions. Scheidleder et al. (1996, p. 3) stated as an outlook, that “there is a need to define

precisely human interventions and agree a methodology for quantifying their effects on water

resources, water and ecological quality of the water and riparian areas [...] Human interven-

tions can have profound effects on water resources, water quality and aquatic and riparian

ecology. There is a need to quantify both their extent and importance, and to quantify the

nature and significance of the effects they have.”

O’Connell et al. (2006) critically analysed the outcomes of available international studies.

The analysis of studies from Great Britain, continental Europe and the US gave significant

evidence that there are strong relations between land use patterns, field structures and

drainage on local run-off. On a catchment scale, this study saw potential evidence that

surface run-off and land use are linked with respect to surface water networks. Unfortunately,
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it failed to address and compare the effects for different catchments scales. Therefore,

the study states, that “there is very little direct evidence that changes in surface run-off

associated with changes in land management are transferred to the surface water network

and propagate downstream.” (O’Connell et al. 2006, p. 65). An analysis of sources used

in this study, e.g. (Fiener & Auerswald 2003) or (Umweltbundesamt 2001) showed that for

small catchments (≤ 200km2), reactions of catchments to land use can be shown and have

been quantified in several research projects.

To summarise, land use influences the run-off on a local scale, but also in small catchments.

Effects of other human interventions in the surface water network, such as river training,

damming or the control of floodplain vegetation, can have an impact on discharge and flood

development. In general, the results can not be transferred from one catchment to an-

other, because hydrological processes rely on a range of factors like geology, geomorphology,

hydrological regime and climate, and must be assessed for each catchment individually.

2.2 Negative externalities and responses

2.2.1 Negative externalities

In a market based economy, most goods are allocated via markets. Prices are indicators

for demand and scarcity of these goods. In a perfect market the price causes the optimal

allocation of a good or resource and an optimal welfare of all market participants. The

theoretical assumption of a perfect market includes the idea that all market actions only

affect participants in this market. In reality, other people are often affected by market actions

as shown by the case of pollution. The situation where the assumption of an optimal market

differs from the real world situation and causes misallocation is called market failure. The

market fails to maximise the total welfare and to allocate resources efficiently. The special

case of misallocation of costs to third parties not involved in the market is called negative

externality. The name indicates that a person outside the market has to bear the costs of

market activities.

“Sofern die Akteure die mit der Nutzung der Umwelt einhergehenden Wirkun-
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gen nicht - oder nicht ausreichend - in ihr ökonomisches Entscheidungskalkül ein-

beziehen, spricht man von externen Effekten. Die mit diesen Effekten monetär

bewerteten negativen Wirkungen bezeichnet man als externe Kosten. Charak-

teristisch für externe Kosten ist die Tatsache, dass nicht die Verursacher diese

Kosten tragen, sondern Individuen (oder auch die Gesellschaft als Ganzes), die

in keiner direkten oder indirekten Marktbeziehung zu den Verursachern stehen.

Im Ergebnis stellt sich eine Situation ein, in der die Umwelt über ein ökonomisch

optimales Maß hinaus beansprucht wird. [In case stakeholders do not - or do

not sufficiently - include the outcomes of the use of the environment in their

economic determinants, outcomes can be called externalities. Effects valued in

monetary terms are called external costs. Characteristic of external costs is the

fact that the causer does not bear the costs, but individuals (or societies as a

whole) who are not in a direct or indirect market relation with the causer. The

result is a situation, where the environment is used beyond an optimal level.]”

(Umweltbundesamt 2007)

There are different circumstances, bound to the characteristics of goods and resources, that

must be met for them to be marketable. For goods to be bought and sold, two criteria must

be met:

1. The good must be excludable, which means that people can be prevented from using

it; and

2. it must be sought by rival users, which means that the potential users of the good will

compete for its acquisition.

Therefore, four different types of goods (Table 2.1) can be identified (Mankiw 2003, p. 224):

1. Private goods, which are rivalrous and excludable,

2. public goods, which are neither rivalrous nor excludable,

3. common resources, which are not excludable but rivalrous, and

4. natural monopolies, which are not rivalrous but excludable.
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Use Access

open excludable

rival Common resources Private goods

non-rival Public goods Natural monopolies

Table 2.1: Characters of goods

Public goods and common resources can result in allocation problems in most systems.

Public goods are not excludable, so no one can make a profit from their use. There is no

motivation to provide them. If they are provided for a fee, there is a risk that free riders

not willing to pay for the provided good will use the good because it is not excludable.

For this reason, public goods are normally provided by governments for all possible users

(Mankiw 2003, p. 226). The problem with common resources is often explained by the

parable of the “Tragedy of the common” (Hardin 1968) or “Almende”.

In this parable, raising sheep for wool sales is the major business of a small town. The

necessary land for grazing is owned by the community. To gain more profit, all sheep holders

will attempt to produce more sheep. However, the limited grazing capacity of the available

land is then exceeded by the total number of sheep, resulting in insufficient nutrition and

hence reduced wool production for all farmers. Air, wildlife and water are often cited as

the most important or known common resources (Mankiw 2003). Problems occur because

economic markets cannot effectively handle the resource allocation of common or public

goods. Generally, the cost of the use of the resource is not carried by the user. This

unearned cost is called a negative externality. “An externality arises when a person engages

in an activity that influences the well-being of a bystander and yet neither pays nor receives

any compensation for that effect” (Mankiw 2003, p. 204). Two types of externalities are

possible, depending on whether the effect on the bystander is positive or negative. Negative

externalities represent market failures, because equilibrium in market forces is not possible.

“The equilibrium fails to maximise the total benefit to society as a whole” (Mankiw 2003,

p. 204). “Externalities cause markets to allocate resources inefficiently” (Mankiw 2003, p.

205).

Externalities do not only occur between individuals or groups of actors, they exist in the

form of spatial externalities and inter-temporal externalities. Most actions take place in



Chapter 2. Theoretical Background & Literature Review 17

one area, but the effects are transferred to another area. Typical samples are air emissions

or waste water discharge into river systems (Kraemer et al. 2003). But externalities can

also have a temporal effect if the consequence or costs are transferred to other generations.

Global warming and the effect of carbon dioxide emissions on the atmosphere or nitrate

pollution of the groundwater are samples of temporal externalities.

2.2.2 Regulation and internalisation

Although the development of an internalisation strategy is not a main objective of the

presented approach, the understanding of how externalities could be controlled, regulated

or internalised is of importance for the comprehension of the economic concept behind this

special part of welfare economics. In the following section, the main ideas of internalisation

as well as command and control strategies and other political concepts, are presented and

shortly discussed.

Public and private solutions can be used to avoid market failures from externalities or to

reduce their effects. These solutions involve a process called internalisation, which means

that political, social or economic instruments are used to include the external costs in the

economic model. Private solutions can be based on moral or social codes like charities or

contracts (Mankiw 2003).

Over the past years, different types of strategies and instruments have or are still being

developed to avoid, reduce or compensate external costs. They can be subdivided into

different categories (Table 2.2).

Beside market oriented solutions, command and control is also used to regulate markets, es-

tablish emission levels or ban practices. Hawkins (2000, p. 382) points out that “Command

and control policies suit the bureaucratic instinct to regulate matters rather than help mar-

kets operate more efficiently within an appropriate, even-handedly, transparently enforced

legal framework. It is harmful to pile law upon law without regard to the cumulative effect

of measures which individually may be laudable.”

In contrast to market based solutions, command and control strategies are criticised for

different reasons:
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CHARGE SYSTEMS MARKET CREATION

Road Tolls Tradable Emission Permits

Access Fees Tradable Catch Quotas

Pollution Charges Tradable Development Quotas

User Charges Tradable Water Shares

Betterment Charges Tradable Resource Shares

Impact Fees Tradable Land Permits

Administrative Charges Tradable Offsets/Credits

FINANCIAL INSTRUMENTS BONDS AND DEPOSIT

REFUND SYSTEMS

Eco Funds/Environmental Funds Environmental Accident Bonds

Financial Subsidies Environmental Performance Bonds

Soft Loans Land Reclamation Bonds

Grants Waste Delivery Bonds

Location/Relocation Incentives Deposit Refund System

Subsidised Interest Deposit Refund Shares

Hard Currency at below Equilibrium Exchange

Rate

Revolving Funds

Sectoral Funds

FISCAL INSTRUMENTS LIABILITY SYSTEMS

Pollution Taxes (on Emissions or Effluents Legal Liability

Product Taxes Non-Compliance Charges

Input Taxes Joint and Several Liabilities

Export Taxes Natural Resource Damage Liability

Import Tariffs Liability Insurance

Tax Differentiation Enforcement Incentives

Royalties and Resource Taxes

Land Use Taxes

Investment Tax Credits

Accelerated Depreciation Subsidies

PROPERTY RIGHTS

Ownership Rights (Land, Water, Mining)

User Rights

Table 2.2: Political, legal and economic instruments for environmental protection and nat-

ural resources management after Hawkins (2000, p. 385)
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• They provide little incentive for technical developments to reduce emissions or impacts.

• Because of fixed emission levels, industries with low possibilities of reducing emissions

are penalised in contrast to those with readily available technologies. (Hawkins 2000,

p. 383)

Different economic theories and system types, as described below, are the basis for most

internalisation strategies or approaches to control and regulate externalities. They either

describe how internalisation strategies can be set up (Coase Theorem), or how the market

is influenced to compensate externalities (liability, insurance systems, Pigouvian tax) or

reduce them to a defined level (Pigouvian tax, charge systems, tradable permits). In the

following the most important concepts will be presented. In the following chapters only

regulations, subsidies and tradable permits will be discussed with regard to the technical and

scientific findings of the study. The development of an internalisation strategy or the detailed

comparison of different instruments would require a comprehensive economic analysis as well

as as an evaluation of the political and organisational framing conditions.

Regulations

Regulations tend to work by setting a special limit (e.g. in the case of emissions). They

require a good knowledge of affected industries and technologies (Mankiw 2004). The major

advantage is that if all emitting activities are known, a maximum total emission level can

be defined as the sum of all allowed emissions (Cansier 1996, p. 205). Regulations can be

a quick instrument to achieve results. But they are also criticized for disregarding market

mechanisms (Hawkins 2000, p. 382).

Pigouvian Tax

Public solutions for the problem of external effects are known as “command-and-control

policies” or “market based policies” (Mankiw 2004, p. 212). The use of taxes to allocate

resources goes back to the 19th century and the economist Pigou (1932). Taxes or subsidies

are used to provide incentives for economic parties to change their behaviour. Problem-

atic is that a maximum level of emission can not be established because the reaction of
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the parties involved can only be estimated. Taxes and subsidies are more market based

mechanisms, because they allow economic actors to decide how and how much they change

their behaviour or are willing to pay (Mankiw 2004, p. 213). Their decisions will be based

on cost-benefit analysis and will lead to the development of more cost-efficient technologies

and economic processes as they look for cheap and effective technologies to reduce their

tax-payments or optimise the emission reduction (Mankiw 2004). Pigou’s (1932) concept

was critisised (Baumol 1972) for several reasons such as its inefficiency to handle external-

ities under monopoly or oligolopoly. Baumol (1972) presents a concept extending Pigou’s

approach and combines it with the setting of technical emission levels.

Charge systems

“Charge systems have been typically applied for the protection of resources from waste

emissions and discharges.” (Hawkins 2000, p. 384). Typical charging systems can be

found in the water sector for the regulation of waste water discharge to water bodies. Also,

charging systems set an incentive for polluters to recalculate their behaviour. The amount

of the emission fee can influence the behaviour of the emitter to rethink his emission level

and include the costs into his economic calculus. In comparison to tradable permits charge

systems define a fixed price for the emission. Charge systems can be seen as a special form

of the Pigouvian Tax.

Subsidies

Hawkins (2000) sums up all forms of financial instruments like reduced credits and subsidies.

“These involve the direct use of subsidies or investments to accelerate the development of

environmentally benign technologies. Sometimes they can be seen as negating the polluter

pays principle” (Hawkins 2000, p. 386). Subsidies should be an incentive for polluters to

rethink and calculate their behaviour. Assuming a logic and benefit oriented behaviour of

actors, they would reduce their emission level or avoid emissions if the amount of the subsidy

compensates or exceeds the costs for a mitigation strategy.

Subsidies can also serve other purposes, for example to compensate market failures and

set an incentive for profitless businesses. The European agricultural subsidy system was
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mainly developed to compensate the high cost of national agricultural production compared

to foreign products. To set additional incentives to take into account environmental aspects,

subsidies are bound to so-called “cross compliance” conditions (Heißenhuber 2005). This

means that agricultural subsidies are only paid to farmers if they respect certain defined

farming practices including environmental objectives. So subsidies aimed to solve problems

other than environmental can be used to set an incentive for environmental tasks.

Coasean Bargains

One of the best known theories about private internalisation solutions is the Coase theorem

(Coase 1960), which states “if private parties can bargain without cost over the allocation

of resources, then private market will always solve the problem of externalities and allocate

resources efficiently” (Mankiw 2004, p. 210). The bargaining process will include compen-

sation for the parties that give up their rights to a good (Endres 2000, p.34). Fundamental

to this approach is the allocation of the property right to one of the parties by the state or

government. The allocation of the right to the polluter is called the “laissez-faire” principle.

The affected party in the market will start the bargaining process and try to make the holder

of the right pay for any externality. Allocating rights to the affected party is called the pol-

luter pays principle, because the polluter, or user of the resource, has to try to buy the right

to emit or pollute as part of their activity (Endres 2000, p.34). The initial allocation of

rights determines who will benefit from the outcomes (Coase 1960, Cansier 1996). Potential

problems with the Coase theorem include the possibility that bargaining can fail, that the

transaction costs are higher than the benefit obtained by the process, or that the number of

participants is too big to co-ordinate the process (Mankiw 2004, p. 212). The results of the

process can also be inefficient if the legal, economic or public position of one of the parties

or its level of access to information affects the bargaining process (Endres 2000, p.47).

Tradable permits

Tradable permits are an instrument that allows a public program to be more like a market

based system. Different forms of systems can be distinguished based on whether permissions

are handed out or auctioned, unrestricted or time limited. The basic idea behind permits or
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emission certificates is that each emitter or polluter needs permission certiciates equal to his

pollution level. Costs of permissions or the benefit of selling them will influence his decision.

The company with the lowest potential for economic return will sell its permits to other users

with higher potential returns. From the economic point of view, this is even more efficient

than the use of taxes, because price equilibrium will develop in the permit market. Decisions

to buy or sell permits are based on the relative costs of reducing emissions. An individual

activity’s emission can be reduced to a required level, established by the number of permits

initially allocated by the government (Mankiw 2004, p. 215). Tradable permits are well

known from the Kyoto protocol, which aims to establish a market to trade carbon dioxide

emissions and establish a fixed emission level based on the amount of emitted permits.

Liability

From an economic point of view, liability law can also be used for the internalisation of

external effects. It is a legal implementation of the polluter pays principle. The body

responsible for damage can be required by the law to pay compensation to the injured

party. The extent of the payment should reflect the costs incurred by the injured party.

The existence of the law will affect the actions of the parties using the resource. They may

calculate possible damages to be paid and, depending on this calculation, act or refrain from

action because of their legal liability.

The liability law has a more preventive aspect than do other methods. The two main

principles required to make liability law effective as an environmental economic instrument

are that all parties understand its provisions and that they have the ability to estimate

the damage costs that they will incur in monetary terms (Endres 2000, pp. 67). Liability

systems are also problematic if the externality has an inter-temporal character, or is caused

by a bigger group of actors, so that an individual liability is difficult to assess.

Insurances

Risk insurance can be seen as a consequence of liability. Insurance payments are based

on risk estimation, likelihood and expected cost of payments to the insurance company

(Endres 2000, p. 88). “Indeed, insurance itself is one of the best working examples of an
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economic instrument. It involves the quantification of environmental risk and an explicit

financial discouragement to high risk activities. Pollution insurance can be seen as part of a

broader universe of economic instruments which act as direct financial incentives away from

polluting processes.” (Hawkins 2000, p. 381)

Insurance systems are also established for natural hazards like floods. German insurance

companies established their own zoning system to allocate property to different risk zones.

Flood insurances have, in contrast to other flood mitigation and protection measures, a

steering function. Because of the rising costs for insurance in flood affected areas, land

owners and buyers will also include flood related costs in the form of fees in their investment

assessment.

2.3 The economy of water

From the economic point of view, water is an interesting resource. Its economic importance

is often pointed out in technical literature.

“Wasser ist eine sich erneuernde natürliche Ressource. Es ist der am meisten

genutzte Naturstoff. Wasserressourcen sind Wasservorkommen (Wasserdarge-

bot), die für ein bestimmtes Gebiet und einen bestimmten Zeitraum (Raum- und

Zeitbezug) für eine gesellschaftliche Nutzung prognostiziert, ermittelt, erkundet

oder erschlossen wurden, gekennzeichnet durch ihre hydrologische und ökologische

Verfügbarkeit sowie die technisch/technologischeen und ökonomischen Bedingun-

gen. [Water is a renewable natural resource. It is one of the most used natural

materials. Water resources are water sources (water supplies), forecasted, esti-

mated, explored and made available for a special area and restricted period of

time (temporal and spatial connection), depending on hydrological and ecolog-

ical availability and the technical/technological and economic circumstances]”

(Dyck 1995, p. 80)

Water is not only a basis for human life, but also a major factor for economic development

through food, industrial and energy production. Rivers, lakes and the sea support major
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transport infrastructure. Together with groundwater streams and artificial reservoirs, they

provide the necessary water supply for agricultural and industrial production. Its kinetic

energy is used for hydro power and its thermal abilities for coal, gas and atomic power

stations. Wallacher (1999, p. 17) points out that industry, agriculture and food production

are major consumers of water. The production of one litre of beer requires an average 60

litres of water, one kilogram of sugar 120 liters, and a single car 20,000 liters.

It is not only of importance to look at the use of water itself, but also the functions wa-

ter bodies provide. Technical intervention and human actions in general do not only use

the resource water, but lead to severe damages and irreversible changes in our environ-

ment. “Wasser wird heute zumeist als eine unter vielen Ressourcen angesehen, die für die

wirtschaftliche Entwicklung eines Landes notwendig ist und die sich für diese Zwecke nach

Belieben aufstauen, umleiten und vermehren läßt. [Today water is seen as one of many

resources necessary for the economic development of a country and that can be detained,

redirected and increased for this purpose.]” (Wallacher 1999, p. 165)

But the relation between water and society depends not only on economic development or

the ecologic value, but also population growth and land use. Increased population needs

more space for settlements and agricultural production, industrialisation for infrastructure

and production sites. These aspects have severe feedback on the hydrological cycle, because

they increase water consumption, reduce the infiltration capacity of soils and enforce the

development of anthropogenic structures in the fertile and flat flood plains of rivers.

2.3.1 Classification of water use

Water use or the use of water bodies can be subdivided into direct and indirect use. Direct

use includes all types of use where water becomes directly part of the product or is used

in the process of production. Indirect use sums up all effects where water is influenced as

a side effect of the production; where the water “use” has no direct impact on the success

or failure of the production process and the resulting product. Examples of direct uses are

hydropower, farming in connection with irrigation or washing water for vegetables. A typical

form of indirect use is erosion on agricultural sites and surface run-off. Excessive rainfall

does not play a role for the success of agriculture. During such events most rain water is lost,
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because of low infiltration and fast surface run-off. But through erosive processes because

of agriculture and the transport of sediments, nutrients and pesticides the farming process

influences the water bodies.

Water can be used physically and chemically. A typical form of physical use of water is

hydropower. The elevation energy of water is transformed into motion energy in a turbine,

which is transformed to electricity. In sewer systems, the transport capacity is used to

remove sewage and waste. In power stations, water is used to cool the system or transfer

heat energy via steam to drive turbines. Classical chemical uses are the ability of water

to serve as a solvent, either for other chemical substances (colouring, nutrition,...) or for

detergents to remove dirt.

A discussion about the use of water should evaluate two different forms of use:

1. Consumptive use, for example irrigation or thermal power station cooling

2. modifying uses such as discharge of waste water

Dyck (1995, p. 82) names the main functions of water bodies as:

• self-purification,

• biological potential yield,

• ecologic potential,

• transport of material (solids or solved materials),

• potential energy (kinetic energy, heat capacity),

• recreational use and

• flood routing.

We can use a scientific classification scheme for the use of water, water bodies and ecosys-

tems:

• Physical use, like gravitational energy, flow energy, transport capacity for suspended

and solid substances and temperature.
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• Chemical conditions like solvents for substances and fluids.

• Biological conditions, like self-cleaning capacity.

Anthropogenic uses can be said to be:

• drinking,

• basis for food production e.g. for irrigation and fisheries,

• energy production e.g. hydro power or process water for other types of power plants,

• transport function and cleaning of sewage and waste,

• transport of goods e.g. shipping or timber,

• industrial production,

• recreation and tourism.

This listing of different economic views on the resource water already shows the difficulty of

classifying water in environmental economic terms. As a result, no general statement can be

made about the rivalry of water. Each combination of scientific use types must be assessed

individually. We know, for example, that the influx of water used for cooling purposes in

industry changes the habitat conditions. It also may increase the biomass production as a

benefit for fisheries, but also may increase algae growth and decrease the recreation factor.

Besides the direct uses described above, indirect uses or better side effects can be discussed.

For example, run-off increases as a consequence of land sealing or the diffuse pollution with

agricultural fertilizers as a result of surface run-off and erosion. Both can cause externalities.

While direct uses are mostly regulated, indirect uses or side effects are often overlooked or

not analysed from an economic point of view.

2.3.2 Economically relevant characteristics of water

“Watersheds differ from air sheds, however, in such key aspects as confinement to a chan-

nel, nonuniform mixing, and downstream accumulation” (Thurston et al. 2003, p. 410).
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Therefore the can be more easily privatized or turned into a private good. For an economic

classification and valuation, a lot of information about the regional situation, but also in

general the hydrologic system interrelation is necessary: How much water is necessary for

human and natural use? How much water can be expected for an area and a specific pe-

riod? What quality will the available water have? What is the most efficient way to use

the resource? What must we do to protect the resource? Who will be allowed to use the

resource, and in which way?

Its regional and temporal varying availability, the problem of ownership (often referred to

as water being a public good) and its allocation, make it difficult to evaluate water in

economic terms. Especially its importance for human survival opens the door for discussion

about the possibility and ethical dimension of fiscalising water or restricting the use of

water. Water also became an important political issue, influencing local developments and

international relations, for example, in the Jordan valley, the Euphrates and Tigris areas

(Wallacher 1999, Sadoff & Grey 2002, Green 2003, Bernauer 2002).

To economically evaluate the resource water, we must distinguish between the different

stations of water in the hydrologic cycle, the conditions of the catchment, the different

functions water, water bodies and water ecosystems provide, and water related services. In

parallel, we have to take into account the question of access and rivalry of use types.

Access to water depends on the station within the hydrological cycle. Water as rain is an

open accessible good and mainly depends on its spatial and temporal availability. Except

impacts of local and global climate change, precipitation is of theoretical relevance for the

evaluation of externalities. Land use, land ownership and its impacts on surface run-off and

infiltration are more important. Precipitation can be collected, stored and drained so the

access to surface or ground-water can be restricted (but also increased, referring to floods).

With smaller permanent and temporal water bodies like drains, ponds and rivulets, storage

capacity and ecosystems can be accessed by neighbouring land owners - therefore the access

is restricted. Bigger systems like rivers, lakes and seas are open to more potential users,

but can not be called openly accessible. In transnational river basins or lake catchments the

access is or can be restricted and depends on the upstream-downstream situation.

From the perspective of rivalry of use, we have to distinguish between the different func-
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tions that water, water bodies and water ecosystems provide. Water provides a range of

functions, like food, transport fluid and solvent, energy transporter and energy control (e.g.

temperature/climate), like we have seen above.

The environmental and physical aspects of water bodies cause a lot of problems in the

economic evaluation of water resources. Any limitation on the evaluation on individual

river basins will also restrict the dependencies in cause-effect chains, and of the impact of

individuals. In contrast to climatic processes, where a global perspective is necessary in

a catchment, only local factors and uses must be taken into account. But because of the

upstream-downstream situation in a river basin, an upstream user will only marginally be

affected by their own actions, while downstream users have to deal with the full effect of

upstream activities. This shows that a technical and economic evaluation is strongly affected

by the evaluation scale used (Bergström & Graham 1998, Brouwer & Hofkes 2008). While an

upstream use of water by an individual would normally not affect the individual himself, it

could affect other individual users within the same region or state. Therefore, a transnational

and international dimension exists in addition to local or regional scales (Bernauer 2002).

While national regulations and actions have a national economic consequence, they can

strongly affect the political situation between two states.

Each person upstream influences, or can influence, the quantitative and qualitative avail-

ability and the temporal and spatial distribution of water available for a downstream user.

Acting and affected persons can thereby be individuals in small catchments, regions in

medium size catchments or even countries in the catchments of big streams (e.g. in the

catchment of the Danube, 19 countries are spatially involved).

Water users can be separated into three different groups as upstream users, downstream users

and riparian users. While an upstream-downstream situation causes mainly uni-directional

externalities, the riparian situation can cause bi- or multidirectional externalities. Typical

forms of unidirectional externalities are sewage and waste disposal or water extractions in

river systems (Green 2003). Bi-directional externalities are, for example, one-sided flood

protection measures causing higher water levels at the opposite bank of the river system

(Agthe et al. 2000). Downstream-upstream relations are not so common because of the

physics of discharge. Only backwater effects provide one example on a local or regional

scale. Physical aspects of water-related externalities are not well described in literature.
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2.3.3 Water related externalities and internalisation strategies

“Die natürlichen Ressourcen sind unter ökonomischer Rücksicht zwar knappe Güter, werden

in der Praxis jedoch nicht als solche bewertet.” [Indeed, natural resources are, from an eco-

nomic perspective, scarce resources. In practice, they are not valued as such.] (Wallacher

1999, p. 165). The characteristics of water being a scarce resource and a public or com-

mon good leads to misuse of water and water bodies. Water and water bodies are used

as production factors without taking into account potential alternative uses. This causes

misallocations and damages. While the products are part of the economic system and allo-

cated as private goods, the resource is available for free. Direct consumptive use of water

is of relevance. Other forms of impacts on the resource water can lead to inefficiencies and

externalities as well. Only particular direct uses of water or water bodies have been regu-

lated to this date. Economic and market-oriented solutions are scarce, and mainly concern

trading of water extraction rights (tradable permits) (Dinar & Subrahmanian 1997, Holden

& Thobani 1996) or fees for emissions such as waste water fees (Kraemer et al. 2003, Sieker

& Klein 1998).

Water scarcity and fresh water consumption

Most papers and theories in environmental economics discuss aspects of internalisation and

allocation of fresh water as a scarce resource. They either address the efficiency of water

use as potable water, or in irrigation systems or deal with rival uses.

The literature describes three rival types of water use:

1. Potable water as a scarce resource,

2. irrigation water and its efficient distribution, and

3. the rivalry between different use types such as the need for potable and irrigation

water.

Qdaisa & Al Nassayl (2001) describe a fresh water pricing policy in Abu Dhabi and its

effects on water use. Citizens of Abu Dhabi were charged a flat rate of 13.5 USD/month

for water up until 1997. Campaigns to make users aware of the costs of water production
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using desalination and the value of the resource were not able to significantly reduce usage.

A change to a metered system with a corresponding 290% increase in the price of water

(calculated as a proportion of the average use of 650 l/cap∗d and the flat rate) resulted in a

percentage reduction in consumption of 28.8%. It was concluded that only realistic pricing

can lead to a responsible use of water.

Irrigation is a major focal topic of the World Bank. Johansson et al. (2002) describe dif-

ferent theories and samples of the allocation of irrigation water in different countries. The

conclusion is that “efficient allocations will help meet increasing water demands”. Water use

for irrigation has many impacts on other sectors. It has to respect these users’ uses. “There

are too few theoretical or empirical GE studies that consider the broader, economy-wide

implications of changes in the allocation of irrigation water” (Johansson et al. 2002).

Another aspect of the problem is the rivalry of different users. One major example (Holden

& Thobani 1996) is the Aral Sea case in Kazakhstan, where most of the water from the

two supplying rivers is now used to irrigate cotton. Once the fourth largest inland sea in

the world, it is now running dry. Salinity and pesticide storms are destroying the ecological

system, as well as the local fishing industry, which was previously the primary source of

income and food supply in the region.

Different instruments were developed to deal with the problem of water scarcity and water

allocation. An interesting example is given by the change in pricing policy in Abu Dhabi

(Qdaisa, Al Nassay 2001) as described above, where most fresh water is produced by de-

salination plants. A new pricing system based on volumetric charges more than double

the charge for an average user and caused a reduction in use of 28%. This experience is

repeated in the World Bank Paper by Dinar & Subrahmanian (1997), who compared the

water pricing systems of 22 different countries. They point out that policy makers often

have different reasons for charging, including “cost recovery, redistribution of income, im-

provement of water allocation, and water conservation”(Dinar & Subrahmanian 1997). This

shows that pricing systems interconnect with other political aims. For this reason, not all

pricing and allocation instruments provide equality of access or efficient results. Holden &

Thobani (1996) compared examples of centrally administered systems with tradable rights

systems and concluded that a central administration leads to inefficient outcomes, unsus-

tainable use and poorly operated public infrastructure. Systems for pricing irrigation water
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have a very old tradition in some areas of the world. Tsur & Dinar (1995) describe different

systems of pricing irrigation water in developing and developed countries. They distin-

guished eight different systems ranging from volumetric charges “per unit area” to water

markets. They conclude that “Pricing schemes that do not involve quantity quotas cannot

be used in policies aimed at affecting income” (Tsur & Dinar 1995).

Water quality and pollution

In the year 2000, the European Water Framework Directive (European Parliament & Council

of the European Union 2000) was published as a legal framework for river basin manage-

ment and the protection and improvement of water bodies and water quality in the member

states of the European Union. Its approach is to harmonise national actions in the water

sector and implement principles of trans-national river basin management for all European

rivers. Article 5 asks for an economic analysis of water use and Article 9 for the recovery of

costs for water services. These requests are formulated more precisely in Annex VI Part B,

which suggests a list of measures to adopt parts of the program including legislative instru-

ments, administrative instruments, economic or fiscal instruments, negotiated environmental

agreements, emission controls, codes of good practice and abstraction controls.

In its Water Framework Directive, the European Union takes into account the economic

impacts of water use and pollution. The Directive claims that member states should “take

account of the principle of recovery of the costs of water services, including environmental

and resource costs” (European Parliament & Council of the European Union 2000, Art.

9). According to the Guidance Documents (European Communities 2003, p.32) for the

implementation of the Water Framework Directive, the economic analysis should contain

an economic analysis of water use, an assessment and forecast for key economic drivers to

influence pressures, the assessment of the actual status of cost recovery of water services

and an analysis of the cost-effectiveness of measures to achieve the goal of the good status

for all water bodies. The cost recovery should not only include direct costs of services, but

also environmental and resource costs.

In a lot of countries, waste water discharge is already regulated. Sets of instruments such

as emission rights, the determination of emission levels and charge systems are established
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(Green 2003, Kraemer et al. 2003). “It is necessary to differentiate between faecel waste and

other streams for wastewater. It is also necessary to distinguish between the problems of

removing waste streams and the treatment of that waste once removed. Removal typically

enables the producer to externalise the costs of that waste by depositing that waste on other

people or in the environment” (Green 2003, p. 259). Diffuse pollution is another type of

emission that must be taken into account. Bismuth, Buschhardt, Diewitz, Dittmann, Eich-

ler, Garber, Gerten, Gregor, Haase, Junker, Kremser, Locher, Möller, Nantke, Rechenberg,

Rechenberg, Schablitzki, Schmitz, Schulz, Solms, Terytze, Voigt, Werner & Wiemann (1998)

show the connection between human land use, floods and, as a consequence, the effects on

the transport of loads and suspended solids. Although the main reason for these effects is

not the removal of substances, they contribute to water quality problems as a side effect of

agricultural production.

Länderarbeitsgemeinschaft Wasser (2002) points out in its common report of the “Federal

Working Group on Water Problems” and the “Federal Working Group on Agrarian Prob-

lems” the negative effects of agricultural land use. About 70% to 80% of N and P discharge

into German rivers originates from non-point sources and especially from agricultural areas.

The paper points out that political and economical instruments used in other sectors can

negatively affect the water sector.

Floods

From the economic point of view the problem of floods is not in the first point their existence,

extent or severity, because floods are natural phenomena. From an economic perspective

it is of prior interest whether or not floods conflict with human activities such as land use

infrastructure or other values. If floods conflicts with human interests, this can result in

significant damages and economic costs. It can be distinguished between four types of costs:

direct and indirect as well as tangible and intangible damages (Merz 2006). Direct damages,

such as damages to buildings, furniture or infrastructure, are caused by the impact of water

to these structures and goods. Indirect damages can also occur in areas outside or far away

of the flood plain. The interruption of infrastructure or transportation and the resulting

consequences for energy supply, communication or logistics in other areas are typical samples.

In contrast to tangible damages, such as damages to infrastructure, intangible damages are
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difficult or impossible to assess from an economic perspective. Examples are loss of life,

injuries or diseases. In the following case study the focus will be on direct tangible damages.

They represent the majority of costs in small rural catchments, provide an accurate basis

for the assessment of flood costs and can be seen as a conservative but robust approach.

The Munich RE (2002) quantifies the overall damage caused by the 2002 summer floods in

Europe at over 18.5 billion Euros. This level of damage indicates that flood insurance could

play a regulative role in any new policies. The fees and the risk of incurring additional costs

from smaller events, which do not attract governmental help or insurance money, provide

an incentive for users to think about land use patterns and the flood hazard in residential

areas (MunichRE 2002, p. 21). The authors point out that the high costs of floods during

previous years were due to three factors:

1. settlement and agricultural land use in flood endangered areas close to rivers,

2. a lack of understanding by the public of the functionality and protection afforded by

technical flood protection works and

3. human influences in the catchments that increased the severity and characteristics of

a flood.

After these severe floods in Central Europe, the anthropogenic impacts on the river systems,

especially the effects of land use and modifications to river channels, were debated. Bismuth

et al. (1998) showed a correlation between human actions and floods in his study for the

German Federal Environmental Agency. Especially in larger areas with a high density of

population like the Rhine basin, interactions between the severity of floods and the sealing

of areas and land use are now proven. As a consequence, international regulations and a

change in environmental politics are necessary.

Maniak (1993, p. 10) and Dyck (1995, p. 433) address the effects of anthropogenic influ-

ences. Dyck (1995, p. 433) describes the enormous losses of detention along the Elbe river

during the last 800 years. He points out that the efforts to compensate for these lost volumes

through technical detention measures are insignificant. These human activities result in eco-

nomic consequences for downstream riparian users. “Construction of a levee can channelize

a river so that during flood stage the flow of water is swifter and sent downstream where it
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does more damage than if the upstream levee were not constructed. Thus, the decision of

community X to construct a levee may impose an external cost on downstream community Y

through greater flood damage, higher levee construction costs, or both.” (Agthe et al. 2000,

p. 253). The same idea can be applied to river training.

Most papers dealing with the problems of floods - particularly the economic damages caused

by floods and the anthropogenic impacts on flood development - fail to account explicitly for

the link between externalities and resulting economic damages. “The effects of land use like

agriculture or settlement can also be externalities if they influence others e.g. increase floods

or pollute rivers. Rivers and their catchment show an upstream-downstream dependency.

Land use and increased run-off in the upstream area cause floods in the regions downstream.

Flood damages can therefore be seen as externalities.” (Dorner, Spachinger & Metzka 2005,

p. 29)

“It has to be mentioned that also the development in settled areas increased the potential

damage of floods. This makes it more difficult to separate land use induced changes in

the flood regime and the consequences for potential damages.” (Dorner, Spachinger &

Metzka 2005, p. 29). The concept of internalising these costs or of splitting off the “external

costs” from regular flood damage due to misuse of the flood plain were not found in the

literature. The same situation can be found in the area of water protection and waste water

discharge, where from an economic point of view, only point sources are in the focus of

public interest. The relations between agricultural land use, erosion, sediment delivery and

water quality are well known from a technical point of view. Although the major influences

on water quality are diffuse sources, a link to the economic consequences of this type of

externality is yet to be developed.

Some authors have referred to the externality problem of land use and surface run-off.

Thurston et al. (2003, p. 409) distinguishes between four land use types; namely residential,

commercial, industrial and agricultural. He suggests the use of tradable run-off permits to

reduce storm water run-off in impervious areas to reduce excess storm water flow. Problems

caused by impervious areas include reduced infiltration and consequently less water available

for groundwater recharge and reduced base flow (especially during dry periods) and the

transport of chemicals.“A market-based tradable allowance mechanism for trading runoff

reductions will be a practical and cost-effective method by which to assign dispersed runoff



control throughout urbanized areas.”(Thurston et al. 2003, p. 410). The authors see two

kinds of benefits resulting from such a market mechanism:

1. to stimulate the most efficient technology to hold surface run-off,

2. to provide an incentive to operate the technology efficiently.

A similar approach (Umweltbundesamt 2001, p. 50) is used in German cities. Municipalities

charge households for waste water discharge. In most cases, the fee is based on the fresh

water consumption. Some cities recognised that the increasing amount of impervious areas

leads to increased renovation and extension investments for mixed and split sewer systems.

The city of Munich was one of the first communities to implement a split waste water fee.

The first part of the fee is still based on the fresh water consumption of a household. The

second part of the fee is calculated per squaremeter of sealed area. Especially the second

part of the fee was intended to set an incentive for newly built areas to reduce impervious

areas and for unsealing existing areas.

Agthe et al. (2000, p. 250) discuss the economic aspects of flood protection systems. “The

demand for flood control is similar to that for other commodities except that the buyers

and sellers are usually, but not always, public bodies.” (Agthe et al. 2000, p. 248). The

authors especially see misallocation effects due to flood protection works as a major problem.

“Forcing developers to pay for levees would discourage development in flood prone areas and

make the economic costs and benefits of choosing such a location more realistic and better

reflect market forces.” (Agthe et al. 2000, p. 252). They argue that flood control is only a

public good under two conditions:

1. Costs and benefits can not be directly assigned to an individual and cause free rider

effects.

2. The liability for the failure of structures will retard private investors and the good

“flood protection” will not be produced.
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Chapter 3

Methodology

Different approaches are used to estimate and quantify externalities. The calculation of dam-

age costs, substitutes or costs for protection are established approaches (Umweltbundesamt

2007). In contrast to other forms of externalities, the assessment of floods regarding exter-

nalities of land use from the upper catchment provides an additional problem: floods are, in

general, a natural phenomenon. Although floods increase continously on a spatial basis the

related damage function increases in steps. The affectedness of a building, e.g. the basement

or first floor, is prior a question of whether or not the building is touched by the flood. The

basement can get filled or floors, walls and furniture of the first floor will be damaged inde-

pendent of the water level. Later flood damages per building increase depending on water

level. Therefore flood damages can either be

1. the result of a flood as a natural phenomenon, if the flood is not altered by any human

impacts,

2. ”pre-existing” flood damages can be increased through human alterations, if these

alterations increase for the example the peak of flood, or

3. flood damages can be the sole result of anthropogenic impacts in the upper catchment,

if human values would not have been affected by a ”natural´´ flood.

37
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The first case can appear if an object at risk is situated in the natural flood plain and the

increase of the flood due to human land use is not significant. Case two will appear if an

object is situated in the natural flood plain, but a flood is significantly amplified by land

use. If alterations in land use extremely influence the hydrology of the catchment, buildings

outside the natural floodplain can also be affected - like in case three.

This means that the effects of anthropogenic alterations must be split from the natural flood.

This already shows a second problem. The intensity of a flood event is not only dependent

on the hydrological reaction of the catchment, but also on the probability of the storm

event. It must be assessed how run-off, discharge and related costs will change under similar

precipitation and initial hydrological conditions, but with altered land use and landscape

structures. Therefore, a comparison of design storm events is necessary to derive the costs

of the status quo of land use as well as those of a pristine catchment. The difference of these

costs would represent the externality of land use, the costs tranferred from land users in the

head water to downstream riparians. Statistical and measured data are not suitable tools

and do not offer sufficient spatial and temporal distributed data to perform such an analysis.

Hence, a combination of computer models will be necessary to apply the methodology to a

catchment.

In flood risk management, the combination of hydrological, hydraulic and economic methods

is widely applied (Brouwer & Hofkes 2008, Correia, Rego, Saraiva & Ramos 1998, Molner,

Burlando & Ruf 2002, Zerger & Wealands 2004). Models have also been applied to estimate

the effects of land use changes on run-off (Auerswald 2002, Bismuth et al. 1998, Bormann

et al. 1999, Debene 2006, Lammersen et al. 2002, Niehoff et al. 2002, Scheidleder et al. 1996).

A combination of both approaches to simulate the effects of land use changes on flood risk

and to draw conclusions regarding externalities has not yet been applied. The coupling

of hydrological, hydraulic and economic models and methods can provide evidence for the

existence of land use related externalities. Using sensitivity analysis and scenario analysis,

effects can be traced back to distinct model parameters representing different types of land

use and landscape structure as causes. The accuracy of results underlies several constraints

and restrictions. In particular, these are type and approach of the chosen models and their

combination as well as the parametrisation of input data and handing over of data between

the models, as well as calibration.
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In the following sections, several individual categories of models and modelling approaches

are presented which could be used to assess the externalities of land use from the perspective

of quantitative hydrology. In the chapter ”Case Study”, a distinct modelling approach is

selected, presented in detail and applied to a test catchment.

3.1 Background

The Umweltbundesamt (2007, p. 53) describes a standardised approach for the analysis and

evaluation of externalities in Germany. The authors propose a methodology in seven steps:

1. definition of objectives

2. specification of the subject of analysis and the boundaries of the system

3. description of impacts

4. description of cause-effect relations

5. allocation of economic benefit and cost categories

6. economic interpretation of resulting changes in benefits

7. interpretation and comparison of damages with internalised costs

In this particular case, the objective is to identify and quantify the effects of land use on

flood behaviour and related costs for downstream land owners and land users - which can be

referred to as externalities. The boundaries of the system are defined by the natural border

of the catchment. For meso scale catchments, it will be assumed that human impacts did

not significantly modify these boundaries.

To show the effect of land use changes on discharge and to identify the related externality,

it is necessary to link activities in the catchment with the effects downstream quantified

in monetary terms. These hydrological processes in the wider catchment must be linked

to discharge in the river channel and the development of floods in the floodplain. The

impacts of these floods have to be estimated in monetary terms to quantify the amount of

the externality.
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In principle, two different approaches could be used to provide the necessary data:

• Comparison of measured and mapped data and

• computer-based modelling of hydrologic and hydrodynamic processes and economic

effects.

For this purpose, measured data is insufficient. Intensive land use developed over the past

50 to 100 years. Although hydrological and measured data would be available for this space

of time, it would be difficult to find sufficient flood data like water levels, extent of flood

plains or flow velocities. Even from a hydrologic and statistical perspective, this short period

would be insufficient to provide evidence for the effects of land use change on frequent, rare

and extreme flood events.

Especially in smaller catchments where the impact of land use on discharge and flood de-

velopment seems to be more significant, measured data and longer time series are often not

available. Hence, no statistical analysis of hydrological and flood data can be performed for

the pre- and post-land-use change period.

The idea to identify and quantify unidirectional externalities in river basins makes it neces-

sary to solve interdisciplinary problems. This study connects hydrology and environmental

sciences with engineering methods and economic analysis. In the first step, different an-

swers to environmental questions must be found. The first hypothesis of this study (that

upstream land use increases flood waves) can not be proven using statistical data. Changes

in land use and landscape structures happened in central Europe over the last 2000 years.

Only the status quo of climate, land use and run-off can be evaluated using statistical and

topographic data sets from the last 50 to 200 years. For small river basins, no detailed

recordings about discharge and precipitation pattern are available. The analysis of historic

maps and recordings, but also paleontologic studies, gives us a very detailed idea how the

landscape looked. This allows assumptions to be made about land distribution, agricul-

tural techniques, typical vegetation and natural river structures. This data can be input for

different types of computer models.

Combining different types of scientific and engineering models provides a general approach

to identifying changes and developments in the natural and built environment. Molner
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et al. (2002) describe a framework for an integrated, physically-based catchment modelling

system. It consists of hydrological, hydrodynamic, morphological and ecological models.

They assess the long term effects of changes in the catchment of the river. Their aims are

to identify which consequences in the river are man-made, what the interactions of different

factors like quality and quantity are and how human impacts can be avoided. The core of

their assessment is to be done through simulation with computer models. They mention the

definition of important parameters that must be assessed and the need to combine different

models at differing temporal and spatial scales as special problems.

Hydrological models deliver quantitative data about the development of flood waves. They

allow different land use scenarios and river structures to be simulated in a computer model.

Results indicate how changes in the landscape influenced run-off processes and affected the

peak, shape and volume of flood waves. On a catchment scale, but also for subsections of the

catchment, they show how a flood wave is fed by surface run-off and other sources, how the

catchment structure influences run-off processes and how waves from different reaches su-

perimpose or follow each other. They do not allow conclusions about the spatial distribution

and the extent of a flood in the flood plain e.g. in a settled area.

Hydrodynamic models can use these data sets of flood waves as input to simulate the distri-

bution of flood waves in spatial structures. The landscape is represented as a digital elevation

model including the river channel, surface structures and buildings. The model can calculate

the extent of a flood, water levels and flow velocities for this digitized landscape.

These data can then be used for the first step of economic evaluation. The knowledge of

affected structures like buildings or infrastructure in combination with the corresponding

water levels offers the possibility to derive the related damages for each scenario. A com-

parison of the different land usage and run-off scenarios is now possible from an economic

stand point. This shows how a practical interaction of models can be used on a large scale.

Only a few combinations of scientific and economic models of river basin management are

described in the literature. For the design of flood protection works, combinations of hy-

drologic, hydrodynamic models and cost-comparison method are used. In flood risk man-

agement, such combinations are applied for risk assessment and risk mapping (Büchele,

Kreibich, Kron, Thieken, Ihringer, Oberle, Merz & Nestmann 2006, Hall, Meadowcroft,
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Sayers & Bramley 2003, Thieken, Müller, Kleist, Seifert, Borst & Werner 2006, Zerger &

Wealands 2004). Insurance and reinsurance companies also combine simplified engineering

methodologies and economic assessment tools on a large scale to identify potentially flooded

areas and associated risks.

Studies of SwissRE (1998) and MunichRE (2004) draw an interesting picture of the aspects

of floods. Except for the loss of human life or the deposition of toxic substances, floods are

mainly viewed from an economic perspective. German insurance companies have developed

a system of risk zoning for their own purposes. It categorises settled areas along 55.000 km of

river systems in Germany into three different zones, based on flooding probability (average

recurrence interval). Annual fees for flood insurance policies are based on this risk-zone

estimation, in combination with insured value and exposure to floods.

The concept of combining different types of models was tested on the Herzogbach catchment.

The models, described later on in detail, were developed to simulate different situations of

land use in the test catchment. Responsible human impacts in the catchment, like land use

and river training, were identified for the study site. As a main approach, different scenarios

of land uses and river structures were used to detect the effect of land use practices and other

influences on the earth bound part of the hydrologic cycle. The focus in the upstream part

and middle section of the catchment was on the changes in agriculture, which influenced

the hydrological characteristics. Downstream, the development of urban settlements was

investigated to estimate the flood damages and mitigation costs. The scenarios simulated

compared the status quo to a number of different alternatives, including a pristine catchment

or river without any human influences, as it existed before humans started to act in the

region.

The impacts of conflicts in usage were worked out and technical parameters identified as

measures of causes and impacts. External costs were calculated, for example, by estimating

the average costs of flood damage. Direct tangible costs, which can be calculated and

estimated easily, were the basis of the calculation of external costs. But also some approaches

to integrate intangible and indirect costs could be evaluated. In the last step, different

instruments of internalisation are proposed. The comparison of different land use scenarios

will make it possible to split human induced and the regular costs of purely natural events.
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The models adopted for this project interacted by exchanging data with each other. The

hydrological model calculated the main run-off data in the river at specified nodes, depending

on land use scenarios, river bed structure and precipitation. The hydraulic model used the

run-off at the nodes to calculate the flood situation in settled areas. Outputs were the

exact size of the flood plain, flow velocity and flow depth for all points of the flood plain.

Empirical formulas for costs and damages were used with floods of different recurrence

intervals to establish average costs per year. The parameters, structures and mathematical

and physical formulas behind the models are described in detail in the Chapter Case study.

The general approaches and available disciplinary concepts of modelling and analysis are

described in the following sections.

Two types of hydroeconomic modelling approaches can be distinguished (Brouwer & Hofkes

2008):

• the integrated approach and

• the modular approach.

Economic assessment, as well as hydrological and hydraulic modelling, can take place at

different levels: micro, meso and macro level. Based on the chosen problem area, different

methodologies and approaches are available. With regards to integrated economic and envi-

ronmental assessment one problem is the different perspectives. While hydrological problems

are mostly modelled on a catchment scale regarding the geographic characteristics of a re-

gion, economic data is available for administrative regions, and mostly at a different scale

(Brouwer & Hofkes 2008).

3.2 Hydrological Modelling

The main intention of this study is to identify the impact of land use and river development in

the headwater on people and property in the lower reaches of the catchment. Because of the

long history of land clearance and agricultural development, there is insufficient statistical

hydrological data available for a statistically-based analysis of the historical development of

land use in small catchments and its impacts in the lower reaches.
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Hydrological models simulate the run-off development in a catchment based on statistical or

real time precipitation values. Input data include the duration and intensity of precipitation

and the state of all surfaces in the catchment as defined by slope, surface roughness and soil

conditions. For areas that lack recorded water levels, such models provide the design data to

develop flood mitigation systems, in particular the volume and temporal information needed

for the design of retention basins.

“Hydrologische Erscheinungen, wie der Ablauf von Hochwasserwellen, können

nach Methoden der Systemanalyse untersucht werden. [...] Es [das hydrolg. Sys-

tem] kann bestimmte Eingaben z.B. Niederschläge aufnehmen, sie transformieren

und als Ausgaben z.B. Hochwasserwellen, ausgeben. Das Ergebnis (output) wird

von der Eingabe (input) oder Belastung sowie von den Übertragungseigenschaften

des Systems beeinflußt, welche mit Hilfe von mathematisch-deterministischen

Modellen simuliert werden können.” [Hydrologic events, like the development of

a flood wave, can be assessed using methods of System Analysis. ... It (Anno-

tation: The hydrological system) can use special input data like precipitation,

transform it and display results like the flood wave. The result (output) is influ-

enced by the input or load, as well as the transmission function of the system,

which can be simulated using mathematical deterministic models.](Maniak 1993,

p. 263)

Two concepts of hydrological modelling can be distinguished (Chiew, Stewardson & McMahon

1993):

• Black box models,

• process models.

While black box models use empirical equations, process-oriented approaches describe sev-

eral physical processes through the relevant differential equations (Chiew et al. 1993).

By the spatial resolution of parameters, two types of hydrological models can be differenti-

ated (Correia et al. 1998):

• distributed, where parameters are spatially distributed within the observation area;
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• lumped, spatially independent representation of input parameters for the modelled

observation area.

Beven (1989) sees several problems to use physically-based hydrological models. He mistrusts

especially the application of these models for prediction and modelling of larger river basins.

”We know that the descriptive equations that underly these models are good descriptors

of processes occurring in well defined, spatially homogeneous, structurally stationary model

catchments and hillslopes in the laboratory. We can feel less assured that those equations

may describe the complex three-dimensional spatially heterogeneous and time varying sys-

tem that is a real catchment.” (Beven 1989). He sees problems in the use of physically-based

models for predictions.

Chiew et al. (1993) compared different types of modelling approaches regarding their effi-

ciency. In comparison to simple polynomial, time-series and process equations, conceptual

modelling approaches gave the best results. They suggest using simple polynomial and time

series equations for the estimations of monthly and annual flows. Conceptual models have

been shown to provide better results for daily flows - especially under wetter conditions.

Bergström & Graham (1998) discuss the scale problem in hydrological modelling. Due to the

problem of gathering detailed data and the heterogeneity of larger catchments they suggest

using conceptual modelling approaches. They point out that conceptual models are quite

insensitive to scale problems.

A special approach in conceptual models is regionalisation. “Regionalisierung ist die re-

gionale Übertragung oder flächenmäßige Verallgemeinerung (Generalisierung) einer Größe

oder einer Funktion (dieses Modells) bzw. der Parameter dieser Funktion (dieses Modells).”

[Regionalisation is the regional transfer or spatial generalization of a dimension or function

(of the model) or the parameters of this function (of the model).] (Dyck 1995, p. 74). It

is necessary to first split off the effective precipitation, relevant for surface run-off, from the

total rainfall and subtract losses from evapotranspiration and infiltration. If experiences

with parametrisation and a sufficient amount of measured data are available, regionalisation

as a conceptual lumped approach provides a suitable tool to build up catchment models for

small, ungauged river basins (Plate, Ihringer & Lutz 1988).

Besides the simulation of the status quo, it is necessary to derive several alternative scenarios



46 3.3. Hydrodynamic modelling - identification of the flood plains

and especially the simulation of a pristine catchment without any or a reduced amount of

anthropogenic alterations. Scenarios could include the following modifications to the status

quo:

• Land cover,

• landscape structures such as hedges, ditches or boundary ridges,

• length of the river channel,

• profile of the river including shape of the flood plain.

For a sensitivity analysis it is necessary to have a model which distinguishes between surface

run-off and channel run-off (flood routing) and offers the possibility to model reservoirs. So

the different types of alterations regarding land cover, surface structures, channel structure

and flood plain as well as technical detention as a substitute for natural detention could be

evaluated individually.

A feasible approach would be to subdivide the catchment into sub-catchments and apply the

regionalisation approach to these sub-catchments. Subunits are connected via river channels

modelled with a flood routing approach. Existing and planned reservoirs can be integrated

to simulate the effect and efficiency of technical detention and to compare it with lost natural

detention volumes. As input data statistical design storm events can be used.

3.3 Hydrodynamic modelling - identification of the flood

plains

To evaluate the spatial impact of floods it is necessary to have a distinct knowledge of the

flood and its parameters, such as extent in the floodplain, water depth and flow velocity.

Although different earth observation services (EOS) and technologies provide data about

inundation and extent of floods (Horritt & Bates 2002, Horritt & Bates 2001), this data is

not sufficient:

• Hydrological design events are not covered,
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• resolution of earth observation data is not sufficient (Horritt & Bates 2001),

• the number of events covered and time span are insufficient,

• scenarios calculated using hydrological modelling approaches as design events are not

represented by EOS data.

Hence, modelling approaches are necessary to estimate the spatial distribution of discharges

of flood events calculated by the hydrological models. Four types or concepts of hydraulic

and hydrodynamic modelling can be distinguished to get this spatial information:

• Raster based approaches,

• 1D hydraulic models,

• 2D hydrodynamic models,

• 3D hydrodynamic models.

For integrated flood risk modelling, several combinations of raster based, 1D and 2D ap-

proaches with hydrological approaches and methods of risk assessment can be found in

literature (Bradbrook, Waller & Morris 2005, Correia et al. 1998, Hall et al. 2003, Zerger &

Wealands 2004)

Also, simple GIS and raster based methods are described in literature, which are used to

describe the filling of landscape structures by flooding using digital elevation models (Krüger

& Meinel n.d.). Because they can not represent the hydrodynamic situation at intersecting

buildings and do not reflect the effect of land cover on water flow and height, they have not

been taken into account.

Hydraulic computer modelling numerically solves complex stream flow equations to calculate

the water level and direction of the stream flow for a defined terrain and flow. Outputs can

be presented as tables of water level, direction and velocity, but also as maps of flooded

areas showing water depths in different colours. Hydraulic models help to identify flood

endangered areas and allow the assessment of protection mechanisms like levees, dams or

bypasses to be checked.
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Horritt & Bates (2001) compared raster based approaches and 2D hydrodynamic models.

They showed that raster based and finite element approaches can both represent the situ-

ation in the flood plain well. But raster based approaches are restricted in their ability to

solve more complex hydraulic situations in the river channel itself. Horritt & Bates (2002)

compared 1D and 2D modelling approaches. They conclude that both types of models can

be used to model flood extent as well as flood wave travel times. They see 1D models equal

to 2D models, if water surfaces are extrapolated against a high resolution digital elevation

model. Results can not generally be transferred to other situations because the case study

was only applied to one river with a quite narrow river valley and a small flood plain. The

authors assume that in wider floodplains, 2D models may prove more effective.

1D models are simple to use, but neglect the spatial character of flood hydraulics (Horritt

& Bates 2001). Especially complex situations of the river channel itself (bend, intersecting

buildings), and of varying land cover in the wider flood plain, are difficult to model.

The selection of models to detect flood prone areas is a difficult task because the type of

model (2D or combined 1D and 2D models), the area (topography, multiple flow paths)

and the type of run-off (waves or bores) have to be recognised. Especially in settled areas

where different flow paths are possible, simplified models can lead to large errors (Leopardi,

Oliveri & Greco 2002). 2D models provide better results in small channel structures and

under complex discharge situations, like built-up areas in the foreland and structures in the

main river channel. Horritt & Bates (2002) use friction parameters to calibrate the model

against a real event. They see advantages in 2D models because of better distributed friction

parametrisation.

3.4 Estimation of flood damages

3.4.1 Categories of damages

Flood damages and types of damages rang from damages to objects through the interruption

of transportation-systems to immaterial damages.

“Der Begriff Umweltschaden umfasst sowohl Schäden an Gesundheit und Eigentum (tradi-
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tioneller Umweltschaden im juristischen Sprachgebrauch) als auch den erweiterten Umwelt-

schaden (ökologischer Schaden, z.B. Schäden an der Artenvielfalt). Die Beantwortung der

Frage, ob – und falls ja in welchem Ausmaß – ein Umweltschaden vorliegt, muss sich sowohl

auf naturwissenschaftliche Erkenntnisse als auch auf gesellschaftliche Wertungen stützen.

[The term environmental damage covers damages to health and environment (traditional

environmental damages in a juristic usage) as well as extended environmental damages

(ecological damages, e.g. to biodiversity). The answer to the question, whether - and if

so, up to which extent - an environmental damage exists, has to be supported by scientific

results as well as societal valuation.]” (Umweltbundesamt 2007, p. 7).

Kelman & Spence (2004) separate indirect flood damages like business interruption or

changed spending patterns from direct damages caused by forces, pressure or chemical re-

actions to objects or persons.

“Moreover, tangible damage is further divisible into two subtypes (i.e. direct

and indirect damage). Direct damage is the damage caused to items (e.g. build-

ings and inventory items) by contact with or submersion in water. In contrast,

indirect damage is the damage caused by the disruption to physical and eco-

nomic linkages, and includes such things as the interruption of traffic flows, loss

of personal income and business profit, as well as such consequences of flooding

as, for instance, the cost of alleviating hardship. Direct damage can be cal-

culated by using the damage curve, which describes the relationship between

the two main flood characteristics (i.e. depth and duration) affecting the prop-

erty and the damage suffered per establishment. In general, the same flood

depth causes different flood damage to different types of land use.” (Lekuthai &

Vongvisessomjai 2001, pp. 345-346)

Flood damages are normally subdivided in four different categories (Merz 2006):

• Direct damages

– Tangible damages (e.g. to buildings, furniture, cars)

– Intangible damages (e.g. loss of life)

• Indirect damages
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– Tangible damages (e.g. interruption of transportation and communication sys-

tems)

– Intangible damages (e.g. epidemics)

Indirect damages and especially indirect intangible damages are difficult to assess. Different

methodologies have been derived to calculate or estimate indirect damages, for example as

a percentage of direct damages:

“indirect damage can be determined, as it is usually considered to amount

to a fixed percentage of the direct damage.” ... “values for indirect dam-

age (formulated as a percentage of direct damage): 15% for residential land,

35% for commercial, 45% for industrial and 10% for agricultural.” (Lekuthai &

Vongvisessomjai 2001, p. 347)

The approach suggested by the German Federal Environmental Agency (Umweltbundesamt

2007, p. 41) for the assessment of externalities goes beyond the estimation of damages. It

names and structures the potential costs resulting from externalities or their internalisation

as:

1. Damage reduction costs

• direct costs (Renovation and reconstitution)

• indirect costs (adaptation or avoidance)

• costs of prevention

2. Costs of uncompensated environmental and health damages

• costs of additional measures to reduce damages

• costs of uncompensatable damages

Also, compensation of damage reduction costs as a possible alternative or extension are

included. The classical approach for the evaluation of efficiency of flood protection works

differs from the assessment of externalities. In flood protection studies the cost-comparison

or cost-benefit method (Schmidtke 1981) is used to assess the efficiency of a project or
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different scenarios against the status quo without flood protection. Flood damages and

building costs are weighed against each other for a defined period (in Germany 100 years

(Länderarbeitsgemeinschaft Wasser - LAWA 1998)). The scenario with the most efficient

outcome will be chosen. If the building costs significantly exceed the prevented damages, the

project would not proceed. The effects resulting or causing externalities are often ignored.

Following Umweltbundesamt (2007) these additional types of costs could be found from an

analysis of flood-related damages and costs related to flood risk management:

1. Damage reduction costs:

• Costs for technical structures like levees, walls and dams,

• resettlement of infrastructure or buildings,

• implementation of flood resistant building standards,

• declaration of flood plains and restriction for buildings.

2. Costs of uncompensated environmental and health damages:

• Insurance costs,

• effort for disaster control,

• costs for residual damages.

Because floods also have a natural non-human component (floods as a natural phenomenon),

the full damage costs can not be used for the estimation of externalities. The costs resulting

from protection against or the damages of natural flood events must be subtracted from

the costs of a flood event increased by human activities. Only the costs caused by human

alterations in the upper catchment are transferred to stakeholders in the lower section. Other

costs or damages are the result of a misallocation of land use in the lower reach or the risk

or mitigation of natural disasters.

The list above shows that the structure of costs resulting from flood related land use ex-

ternalities is very complex. It is difficult to estimate all types of indirect (tangible and

intangible) and direct intangible damages, like business interruptions, loss of life and casu-

alties. In literature, different approaches can be found for handling these cost categories.
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But these approaches either refer to assessments on a larger scale or require comprehensive

data from local surveys.

For the assessment of hydrological externalities of land use, three different methods could

be applied:

• Damage costs: assessment of flood damages as a result of land use, using the difference

between the costs from floods resulting from the status quo of land use minus those

from a natural catchment.

• Substitutional approach: costs for technical flood detention to compensate the loss of

natural detention

• Costs of avoidance: building costs for technical flood protection such as levees and

walls

3.4.2 Relevant factors

The SwissRE (1998) uses six factors to estimate the possible losses in an area affected by

floods:

1. Depth of water,

2. flow velocity,

3. surge effects,

4. transportation of debris,

5. speed of rise and

6. standing period.

Also, Kelman & Spence (2004, p. 297) mention a similar list with water depth, flow veloc-

ity, bed shear stress, dynamic forces (flow momentum, stream power, depth times speed),

rate of flood rise, debris potential and flood duration as the main parameters of hazards:
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“Flood actions may be energy transfers, forces, pressures, or the consequences of water or

contaminant contact.” (Kelman & Spence 2004, p. 297)

To assess the risk of natural disasters, the MunichRE (2003) developed a risk index and

evaluated the situation of 50 global mega-cities. The components of this risk index are:

• Risk and its likelihood,

• the possible impacts of disasters, like types of buildings, protection measures, quality

and density of infrastructure,

• the exposed values as a combination of domestic values, GDP and global importance.

3.4.3 Level of detail and data gathering

The methodologies to assess potential flood damages range from mapping of buildings in-

cluding age, structure, material and furniture on a small scale (Büchele et al. 2006, Kelman

& Spence 2004), to large-scale assessments using statistical and national accounting data

(Kleist, Thieken, Köhler, Müller, Seifert, Borst & Werner 2006, Thieken et al. 2006). This

study attempts to use meaningful economic data to restrict the complexity of the problem.

The majority of buildings in the flood plain are detached houses or functional buildings or

a combination of these as farm houses. Detached houses usually have a basement and the

first floor is about 0.1 m above the natural surface. Functional buildings such as barns and

garages are accessible and situated at ground level. These assumptions, based on German

building standards and planning practice, were evaluated by field surveys.

3.4.4 Flood damage functions

Total flood damages of an object or a village over a certain period depend not only on

affected buildings and discharge, but also on the probability of discharge.

“The total damages caused by periods of recurrent flooding (flood return periods)

are utilized to determine the probability-damage relationship [..] At the same

time, this curve presents the flood damages incurred for different intervals of
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recurrent flooding (flood return periods). The expected annual flood damage

can be determined from the above probability-damage curve. [..] the expected

annual flood damage is the damage divided by its return period, or the damage

multiplied by its exceedance probability.” (Lekuthai & Vongvisessomjai 2001, p.

357)

The accumulative effects of low losses with a high probability can exceed the damages of a

high loss and low probability event. For example, a five year flood event occurs statistically

20 times during 100 years, while a 100 year flood event occurs only once.

For the calculation of potential flood damages over a certain period, two functions are

necessary (Schmidtke 1981):

1. The distribution function of the flood peaks as a result of the hydrological model or

statistical analysis of stream gauging.

2. The flood damage function as a result of hydrodynamically simulated discharges and

damage analysis.

The following function can be used to calculate the estimated flood damages over a certain

time period (Schmidtke 1981):

S =
∫ HHQ

QA

S(Q) ∗ h(Q) ∗ dQ(Euro/a)

S(Q) : Damage function (Euro/flood event)

h(Q) : Density function of flood peaks (NumberofEvents/a ∗m3/s)

QA : lower boundary of damage inducing flood events

HHQ : maximum flood event

A distribution function for flood peaks or for flood damages is not always available. Often,

both functions are described as a set of data points for probability, discharge and flood

damages. For example, as the results of the above described combination of hydrologic and



hydrodynamic models with damage analysis. The function can be solved by approximation

(Schmidtke 1981):

S ≈
n∑

i=1

si + si+1

2
∗ hi + hi+1

2
∗∆Q

i : discharge interval

si : damages for interval i

hi : number of events per year times discharge for interval i
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Chapter 4

Case study

Because of the complexity of the analysis of processes in the catchment and the flood plain,

this case study will concentrate especially on the items 1 - 4 of the Umweltbundesamt (2007)

methodology mentioned above. This project applies this methodology to the situation in a

test catchment.

For the choice of the test catchment, a number of criteria were defined:

• Significant human land as a percentage of catchment area.

• Different types and sizes of housing and urban estates.

• Availability of basic data for modelling, as well as measured data for model calibration.

• Availability of historical data and current data of land use and river system.

• Size of the catchment between 20 and 100 km2 to be manageable from a modelling

perspective.

• Easy to access and reach for data collection and surveying.

• Prototypic for a number or a class of catchments.

Each development of a computer model needs resources and input. For the presented ap-

proach, three different models and methods must be prepared and combined. Because of

57
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the complexity of modelling and the necessity to show first the significance of anthropogenic

alterations, effort and expenditures have to be relatively efficient and must provide robust

results. In the presented case study a methodology is applied that uses and alters only two

parameters which can definitely be quantified and parameterised:

• Land use, represented by land cover by an approach similar to the CN values of the

SCS modelling approach as part of a hydrological regionalisation approach,

• length of the river channel and slope of the river bed in the flood rooting approach.

These parameters can be measured or interpreted from current and historic maps. Other

alterations and the pristine situation in the catchment, such as modifications to the terrain,

historic river profiles or small scale structures in the landscape could only be guessed from

historic data. Hence, the presented approach provides a conservative estimation of impacts

of anthropogenic alterations to the hydrologic situation.

4.1 Herzogbach river basin

The Herzogbach basin was chosen after a first assessment because it seemed to fulfill most

criteria such as availability of historical and current data, significant land use, accessibility as

well as prototypic land use and land use pattern. It is difficult to find meso scale catchments

between 10 and 100 km2 catchment size where gauged data is available as a long time series.

There are three reasons, why the Herzogbach catchment was the choice for this project:

1. The catchment is situated at the border between two landscapes representative for the

Alpine Upland. While the upper part of the catchment is situated in the tertiary hilly

landscape the lower part is located in the Gäuboden.

2. Both landscapes are intensively cultivated and have undergone significant changes of

land use and landscape structures over the past 50 years.

3. Availability of significant flood marks as well as measured data of a one year time

series.
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The different aspects of the region and landscape are now described in detail with regard to

the key parameters relevant for this study.

4.1.1 Geography

Figure 4.1: Countries and streams in Europe. (Red dot: location of the project area)

The Herzogbach catchment is located in southern Bavaria (Germany) (Figures 4.1 and 4.2).

The main river reach has a length of about 20 km and a catchment size of 72.1 km2 (53.9 km2

above Osterhofen). It flows from west to east through a hilly landscape. The Herzogbach

and all its tributaries originate in the southern hilly landscape. The areas in the upper

reaches have a rural structure with about 80% agriculture and 5% forestry. Settlements are

mainly located in the flat depressions along the rivulets. The lower reach passes through

the city of Osterhofen, where in the past major floods have caused severe damage. The

Herzogbach ends in the floodplain of the Danube and has its outlet into the Danube near

the city of Vilshofen at the Danube.

The outlet is located at an altitude of 306m above sea level in the Danube valley, whereas the

highest points are located in the tertiary hilly landscape in the south east of the catchment

at an altitude between 400 and 410 m above sealevel.
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Figure 4.2: The northern part of the Danube catchment in Bavaria. (grey area: location of

the project area)

The quality of the river is influenced especially by non point sources in the rural areas.

Fertilizers, soil erosion after heavy rainfalls and erosion of the river bank are the major

reasons for the bad water quality and sediments. Three water treatment facilities with a

capacity of about 4,000 units, one unit equal to the effluent of one inhabitant, clean the

water for almost 96% of the residents in the catchment.

The flood situation is dominated by two major human influences:

1. agricultural land use close to the bank, combined in most cases with river training to

gain more arable land and

2. settlements close to the river in combination with a loss of retention volume.

The Herzogbach catchment is located in a geologically interesting area (Figure 4.3). It is

mainly part of the Molasse Basin in Central Europe. This basin reaches from the Swiss

Molasse Basin around Lake Bodensee towards the Viennes basin and is a debris basin north

of the Alps (Henningsen & Katzung 1992, Liedtke & Marcinek 2002, p.150). The springs of

the Herzogbach are located in the Tertiary Hilly Landscape in the south of the catchment.

Steep slopes are characteristic for this region. The reaches are steep and elongated, but
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Figure 4.3: The Herzogbach catchment and its land use.

because of the catchment size, at this part still small. The main river reach is part of the

Gäuboden or Dungau, a flat quarternary landscape with fertile loess soils. The outlet to

the Danube is part of the Danube valley. At the border between Dungau and the Danube

valley, in the city center of Osterhofen, the Herzogbach breaks through loessy hills, forming

a steep valley which stands in contrast to the flat river reach it forms before and afterwards.

Since the end of the last ice age, about 10,000 years ago, the landscape has been formed

mainly by water and wind erosion and the river systems.

4.1.2 History of land use

Archeological evidence of human activities can be dated to 50,000 BC. The first settlements

and farming have been dated to the 6th millennium BC. At this time, agriculture developed

and was transferred from Asia via the Balkans to Central Europe. The area of the Gäuboden

was preferred because of the fertile soils and the hydrological conditions with a dense net of

rivulets. The predominant oak and mixed forests provided wood for buildings and fire, and

were cleared to establish the first settlements and fields (Bayer-Niemaier 2004, p. 11).

The first period of land use intensification took place at the end of the first millenium AD,

when monasteries started to clear wide areas and adopted new farming techniques. In 1004

AD, the monastery of Osterhofen was founded on a hill top next to the Herzogbach. The
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nearby settlement and market developed quickly, and by 1378 the market of Osterhofen was

shifted to the hill top on the other side of the Herzogbach. The former market and location

of the monastery is now known as Altenmarkt, which can be translated as “old market”

(Halser 2006, p. 1 et sqq.).

Both developments are of relevance in relation to the river system in the area. The city

of Osterhofen is unusual for a medieval city because it has no city walls. In old chronicles

and pictures from the 18th century, Osterhofen is shown surrounded by lakes. Also, the

Herzogbach was blocked to develop a lake which was filled with debris in the late 18th

century. The lake was a defense measure, but also provided water and was used by the

nearby monastery growing fish and for a mill at the outlet at the city (Halser 2006, p. 1

et sqq.). Field and street names like “Seewiesen” (lake meadow) and “Georgensee” (Lake

George), now a settled and a recreational area, still refer to this history. The existence of

two urban areas on two hills next to a rivulet led to the development of new settlements in

the valley and the flood plain in-between. Old maps prove that this process started after

1820 AD (Figure 4.4).

Land use followed the geomorphology except on the flood plains. The top of the tertiary

hilly landscape in the south of the catchment is still mainly used for forestry. Rough winds,

different climatic conditions because of the altitude and thinner loess levels in this region

make farming only possible in the small valleys between the hills. The open plains of the

Gäuboden provide better conditions for farming because of the fertile soils and larger field

units. Also, the microclimate of this flat area is more suited to agriculture.

Until the late 19th century, agriculture was dominated by the three-field crop rotation

(Herbert & Maidl 2005, p.277). Like Herbert & Maidl (2005, p.277) in their introduction

about the development in the area point out, “der Strukturwandel in der Landwirtschaft

ist in der zweiten Hälfte des 20. Jahrhunderts so tiefgreifend gewesen wie in keinem Zeitab-

schnitt zuvor.” [the structural changes in agriculture in the second half of the 20th century

were more radical than any previous period].

The changes in the agricultural production followed new technological developments and

scientific findings. The implementation of new fertilizers caused a change from the old

crop rotation scheme to a rotational cropping system. The mechanisation of agriculture
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led to land reallocation projects, increasing the size of fields. New harvesting techniques,

the development of pesticides and of new crops also influenced the types of plants used

in the local agriculture. Maize, beet, vegetables and wheat are now the dominant crops -

superseding clover and crop types like rye and oats (Herbert & Maidl 2005, p. 278 et sqq.).

The changes also led to a focus on agriculture, which replaced previous livestock farming

(Herbert & Maidl 2005, p. 295 et sqq.). Meadows and pastures were converted to fields

(Figure 4.6). Field names and local names still refer to the old functions of areas and

land strips. Especially in the flood plains of rivers and rivulets, old names like “Speckwiese”

(bacon meadow), “Doblwiesn” (ravine meadow) or “Puttinger Bach Wiesn” (Putting rivulet

meadow) have remained, and indicate the former use of these wet areas or wetlands (Maidl

2004, p. 113). This opened space for settlement development on the former meadows in the

flood plain. Other important landscape structures were lost during this development such

as bushes, hedges, boundary ridges and wetlands.

These changes are shown on old land register maps (Figures 4.4 to 4.7). Surveying started in

Bavaria in 1808 AD as a basis for the new land tax system (www.geodaten.bayern.de). The

first maps, at a scale of 1:2,500 for the project area, date to the year 1820 AD. A comparison

of old and current maps show that the changes have been dramatic.

Changes did not only take place in the landscape. Also the characteristics of settlements

and cities changed. The city Osterhofen shows these developments very clearly (Figures 4.4

and 4.5). In former times, the settlements occupied the edges of the river valleys to avoid

flood damages and reserved the open spaces for agriculture. Because of the fertility of the

loess soils, the settlement development was forced towards the valleys and the flood plains.

The loss of livestock farming and the availability of former meadows in the river valleys, as

well as the intensification of agriculture on the flat fertile plains, have been the main drivers

for this development.

The village of Linzing (Figure 4.7) is the only settlement in the catchment that has preserved

its character over the years. There are no significant changes from 1820 to today. The rivulet

flows through a valley mainly used as meadow and pasture. The buildings and farmhouses

are located at the embankment - away from the flood plain and wet areas.
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Figure 4.4: Historic land register map of Osterhofen and Altenmarkt in the year 1820 AD.

The agricultural area between both cities is the Herzogbach valley. At the south-east corner

of Osterhofen a mill channel is located. The hachures in the map indicate that the flood

plain in the centre of the river valley was used as meadow and pasture
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Figure 4.5: Land register map of Osterhofen and Altenmarkt from the year 2000 AD.
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(a) 1820 AD

(b) 2000 AD

Figure 4.6: Historic and actual land register map of an agrarian area west of Wisselsing
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(a) 1820 AD (b) 2000 AD

Figure 4.7: The village Linzing
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4.1.3 Climate

The study site is located in Central Europe (Figure 4.1). It has a temperate humid conti-

nental climate. In the Köppen climate classification, it is classified as temperate climate Cf

with significant precipitation in all seasons (Malberg 1997). The annual average precipita-

tion is 850 mm, in winter between November and February also falling as snow (Figures 4.8

and4.9). In 2005, the maximum precipitation (2 day sum) was 38 mm (Figure 4.10). The

precipitation pattern ranges from 5.2 mm (half-yearly event, 5 minutes duration) to 110 mm

(100 year event, 72 hours duration) (Table 4.2).

During the mapping and surveying work in the study area, there were some experiences

with the local climate. Although the difference in elevation between the peaks in the south

of the catchment and the main flat areas of the Gäuboden are minor, in winter snow lasted

much longer in the hills than in the flatter regions. It was even noted that precipitation fell

as snow in the hills, but as rain in the flatter regions.
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Figure 4.8: Average annual precipitation in Bavaria. The black rectangle indicates the

location of the project area, after Bayerisches Landesamt für Umwelt (2007b)
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(a) Precipiation (b) Evaporation

Figure 4.9: Average annual precipitation and evaporation. The black rectangle indicates

the location of the project area, after Bayerisches Landesamt für Umwelt (2007b)

Figure 4.10: Precipitation in 2005 as 2 day sums in mm at the station Moos, 5 km north

east of Osterhofen, after Bayerisches Landesamt für Umwelt (2007a)
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4.2 Modelling approach

4.2.1 Hydrologic modelling

For the Herzogbach catchment no continuous hydrological recordings are available. Only

citizens living in or next to the flood plain have a distinct knowledge of average water

levels and the history of extreme events. A one year time series for base flow and distinct

meteorological events was available to allow a correlation between run-off and precipitation

(Slesiona 2005) and to calibrate the model. In addition, flood marks at bridges are available

and were used for calibration. A catchment model was necessary to first indentify the

hydrological behaviour of the catchment in its current state and derive the run-off of distinct

design events. It was calibrated with the available data for the scenario of the status quo.

In the second step, it was useful to simulate alternative scenarios for land use and river

structure to see the differences in discharge peaks and varying volumes of flood waves.

Because of the different scales of observation in this study, ranging from a small scale catch-

ment (1.5 km2) as a segment of the main catchment up to the observation of the full

catchment (50 km2), the suggestions of Bergström & Graham (1998) were followed to use a

conceptual model. A conceptual modelling approach is used because it is more insensitive

to scales.

The computer model used for this study is a conceptual deterministic river basin model to

simulate precipitation-run-off processes in small and medium sized catchments. “Determin-

istische konzeptionelle Flussgebietsmodell für den Abfluß setzen sich nach dem Baukasten-

prinzip aus Verfahren zur Simulation verschiedener Teilprozesse zusammen.” [Deterministic

conceptual river basin models for discharge simulation are modular systems to simulate

different processes.] (Maniak 1993, p. 361). The applied model consists of three elements:

• A regionalisation approach to calculate losses from evapotranspiration and infiltration,

and derive a flood wave as a hydrograph for each sub-basin,

• a flood routing approach to estimate the superposition of flood waves from sub-basins,

and simulate the detention of the river reach and flood plain,

• a reservoir routing approach to check the efficiency of detention measures.
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The first landscape model was developed to simulate the status quo for land use and river

structure of the catchment (Table 4.1 Scen. A). The model was then modified to simulate

different scenarios. The first change was a modification of land cover to simulate a catchment

similar or close to the natural status (Table 4.1 Scen. B). A mixture of forest and meadow

with an emphasis on dense primeval forest would be a realistic natural landscape. An

analysis of historic maps showed that the change in forested areas has been minor over a

200 year period. An assumption was made because redevelopment of wide areas into forest

would be unrealistic and there is uncertainty about the exact historical distribution of land

cover. Areas covered with trees remained as forests in the model. Agricultural sites and

sealed areas were transformed into meadow and fallow. This is a conservative assumption,

because dense forest would have higher detention capacity than meadows.

A separate and new scenario was derived as a modification of the river structure in addition

to a redeveloped land cover (Table 4.1 Scen. C). Old maps from the early 1820’is showed

very well which modifications of the river structure took place over the years. In the 18th

century, the rivers showed a natural meandering structure with a wide meadow flood plain.

The current situation shows degraded structures using artificial profiles and stretched flow

lines. A comparison of historic and actual maps provided the necessary data to modify the

river structure in the model and to adapt it to a historic and natural situation. The analysis

showed that a natural river system would have been at least 1.2 and up to 1.5 times longer

than today. The elongation depends very much on the location of the river section, the

severity of human intervention and the steepness and geology of the landscape. But the

historical maps include the first human alterations to the river structure, making it very

difficult to reconstruct the original status. Therefore, for all sections, an elongation of 20%

was assumed. This assumption was checked by comparing historic and current maps. No

data about historical profiles of the rivulet are available. No representative natural sections

of the river system remain in the whole catchment to allow an assumption for each profile

type. Renaturalized river sections show that the natural profile would not be deep, but

would have lower and flatter embankments. Unfortunately, these sections have been rebuilt,

but they are not old enough to be interpreted as a natural stream. Therefore, the measured

profiles of the current situation have been used for the historical scenario as well.

A further scenario was derived by analysing the effects of intensive land use and the effect
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Scenario Land use River Reservoirs

A status quo status quo no

A1 status quo status quo existing

B Pasture and forest status quo no

C Pasture and forest natural no

C1 Pasture and forest natural existing

D status quo and intermediate crops status quo no

Table 4.1: Scenarios for land use, river structure and reservoirs used for hydrological mod-

elling

of sustainable agricultural techniques (Table 4.1 Scen. D) on run-off. The main agricultural

crops are maize, beets, corn and vegetables. For this situation the consequent use of inter-

mediate cropping or direct cropping was assumed. Changes of land use in the river valleys,

leading to a renaturalisation of the river structures, have not been taken into account for

this scenario.

The reduced detention capacity of the catchment due to land use will lead to increased

flood waves with higher peaks and bigger run-off volumes. These increases are quantified

by checking the efficiency of detention structures and comparing the lost detention in the

catchment with available and potential artificial detention. Therefore, existing, planned and

potential reservoir locations were integrated as a last step in the methodology (Table 4.1

Scen. A1 and C1).

The applied IHW modelling software is standard in Germany. It can use a combination of

different modelling approaches.

The regionalisation approach of Lutz (Ihringer 2002) for small and medium size catchments

in Southern and Central Germany was used in this project. It allows the development

of regional hydrographs in cases where no water level or run-off recordings exist. The

hydrograph is defined by a peak value and the time required to reach this peak, which are

functions of the catchment. Rainfall data was sourced from the KOSTRA Atlas data of the

German Weather Service (DWD Deutscher Wetter Dienst) as statistical rainfall data. For

flood routing, the Kalinin-Miljukow approach was used, to route the flood wave and take

detention effects of the river structure into account. Reservoir routing was then used to
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calculate the effectiveness and efficiency of existing and planned detention reservoirs under

different scenarios.

The catchment of the Herzogbach was divided into subcatchments based on the relief. For

this, the available DEM (digital elevation model) in a raster 50 x 50 m was used. The divides

were precisely defined, taking into account the influences of anthropogenic structures like

streets and railway dams. Settlements, detention reservoirs and junctions were used to

set the size of each sub-basin to delineate a regular structure to meet the needs of later

evaluation. Forty sub-catchments were defined through this optimization process (Figure

4.11). Two are located downstream of Osterhofen and are of no relevance for this study.

Nintey-one calculation nodes were set along the river reaches representing calculation points

for sub-catchments, river reaches, reservoirs, junctions or as information nodes for certain

influx or outflux situations (Figure 4.12). The calculation was run using minute intervals

for 10,000 time steps (166 hours).

The model produced the run-off data at each node and for every time step structured for

each individual return period of precipitation and each duration of precipitation. Individual

information that can be derived from that ensemble of flood waves of different probability

and duration include the maximum flood for each return period, peak, volume, shape and

extent of each individual flood wave. For detention reservoirs the model provides in addition

influx and discharge curves at the outlet, water levels and related volumes.

Statistical data from measurements are necessary to calibrate models. “Fehlen diese Mes-

sungen oder erreichen sie nur einen Umfang, der eine gesicherte Aussage nicht mehr zuläßt,

müssen die Bemessungsgrößen mit regionalen Analysen abgeschätzt werden.” [Are the mea-

surements missing or do they have an extent that will not allow a trusted conclusion; design

values must be reevaluated with other regional analysis.] (Maniak 1993, p. 282).

For the calibration of the model, no long term series of data from gauging stations were

available. Therefore, the results of the hydrological model was processed in a hydrodynamic

2D streamflow model, which delivered the corresponding water levels and flood plains for

characteristic and specified areas in the settlements. These data were compared with infor-

mation obtained from citizens, flood marks of past events and regular (annual or biannual)

flooding and measurements performed by another study. This approach does not allow a
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perfect calibration, but it is the only suitable approach for most small catchments where no

gauging data are available.

No weather station is located in the Herzogbach catchment . There is a metering station in

Moos, 5 km north east of Osterhofen, which records the precipitation (Figure 4.10). Other

stations are located in the direct neighbourhood of the catchments. Records of these stations

are regularly evaluated by the German Weather Service (DWD Deutscher Wetterdienst).

Results of the statistical analysis are published in the Kostra Atlas for Germany. The area

of Germany is therefore subdivided into regular raster cells with a size of 71.5 km2 per

cell. For each cell, statistical precipitation volumes for rain events with durations from 5

minutes up to 72 hours and defined recurrence intervals are given. Average precipitation

ranges from 5.2 mm (5 min/ 0.5 yearly) to 110 mm (72 h/ 100 year) (Table 4.2) (Deutscher

Wetterdienst 2005)

For modelling purposes, the return periods 1, 2, 5, 10, 20, 50 and 100 years and the durations

15, 30, 45, 60, 90 minutes, 2, 4, 6, 9, 12, 18, 24, 48 and 72 hours were selected. The evaluation

of the resulting flood waves at each node of the model will show the rainfall duration for

each return period, which is responsible for the maximum flood. The wide range of return

periods from 1- 100 years was chosen, because flood damages will be derived as a flood

damage function over this period. Therefore, a number of sampling points were necessary.

For Germany Lutz, (Ihringer 2002) developed a regionalisation approach for areal retention

that fulfills the requirements for small and medium size catchments (Ihringer 2002):

Neff = Neff,u + Neff,s

Neff,u =
[
(N −AV ) ∗ c− c/a ∗ (1− e−a(N−AV )

]
∗ AE −AE,s

AE

Neff,s = (N −A′
V ∗Ψs ∗ fracAE,sAE

a = Ca ∗ e−C2/wz ∗ e−C3/qB ∗ e−C4∗TD

N : Precipitation [mm]

Neff : Effective precipitation [mm]

Neff,u : Effective precipitation of unsealed areas [mm]

Neff : Effective precipitation of sealed areas [mm]
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AV : Initial losses on unsealed areas [mm]

A′
V : Initial losses on sealed areas [mm]

c : Maximum run-off coefficient [−]

AE : Catchment area [km2]

AE,s : Sealed catchment area [km2]

ΨE : Run-off coefficient for sealed areas [−]

a : Event coefficient [1/mm]

WZ : Number of the week

qB : Discharge per unit area [ l
s∗km2 ]

TD : Duration of precipitation [h]

C1 − C4 : Area specific parameters [−]

Run-off coefficient c and initial losses A (Table 4.3) are similar to those of the SCS-CN

values (Bedient & Huber 2002). Auerswald (2002) developed new SCS-CN values for the

use of intermediate crops. The new CN values of Auerswald were transformed to c values in

the Lutz approach for the simulation of the scenario D (Table 4.1 Scen. D). Auerswald does

not make any comments on initial losses. It could be assumed that they would increase as

an effect of this sustainable farming technique. For modelling purposes, the regular values

of the parameter initial losses AV for agricultural areas of the Lutz approach were used.

Soil types and geology are quite homogeneous in the whole catchment. Due to the rural

structure for settlements, an amount of 35% sealed surface per estate was assumed. This

value was compared with measurements on aerial photos.

Each catchment develops a characteristic form of its flood wave depending on its form,

geomorphology and land cover. This process of transformation of precipitation into a flood

wave at the outlet of the catchment is described by the hydrograph as a function (Bedient &

Huber 2002, p.85 et. seq.). The regionalisation approach by Lutz for the Unit Hydrograph

describes the hydrograph with the parameters tA for time of increase till the peak and umax

for the peak value (Ihringer 2002):
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Soil Type A B C D

Land use Maximum run-off coefficient [−]

Forrest 0.17 0.48 0.62 0.70

Maize 0.62 0.75 0.84 0.88

Corn 0.54 0.70 0.80 0.85

Pasture 0.10 0.46 0.63 0.72

Initial losses [mm]

Agricultural areas 7.0 4.0 2.0 1.5

Forrest areas 8.0 5.0 3.0 2.5

Sealed areas 1.0

Table 4.3: Run-off coefficient and initial losses (Ihringer 2002)

tA = P1 ∗ (
L ∗ LC

l1.5
g

)0.26 ∗ e−0.016∗U ∗ e0.004∗W

tA : Time for the increase of the hydrograph [h]

P1 : Catchment parameter

L : Length of the main river branch [km]

LC : Length of the branch from the junction to the centroid of the catchment [km]

lg : Medium steepness of the main river branch [−]

U : Percentage of the catchment with settled areas [%]

W : Percentage of the catchment with forrests [%]

umax = 0.612 ∗ t−0.991
A

Based on available GIS data, like land register maps, land use maps and geological data, the

parameters for the Lutz approach (Tables A.1, A.2 and A.3) were defined and calculated

for the status quo. The detailed definition of individual catchment characteristics was of
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importance for the later changes to land cover and landscape structure made in the scenarios

B, C and D (Table 4.1).

On a meso and macro scale, no models are available to evaluate the effects of drainage, field

size and field structure, and ditches. It is also difficult to estimate these changes, because

very little data about the changes in these structures are available. Therefore, small scale

structures were ignored. It can be assumed that the loss of these structures reduces natural

detention and increases run-off, and therefore increases volume and peak of floods. It can

be expected that undoing these structural changes in the landscape, e.g. modelled through

a modified parametrisation of the catchment, would decrease run-off even more. Hence,

it can be stated that the applied approach, ignoring these structures in the scenarios B-D

underestimates the effect of land use changes.

Flood routing

Channel routing

For the flood routing, two approaches have been used:

• Translation approach as a travel time calculation of the flood wave in the channel

(Ihringer 2002)

• Kalinin-Miljukov approach for river bed and flood plain (Patt 2001)

The translation approach is a simplified calculation of the travel time of the flood wave.

For each section of the river or rivulet, the travel time is calculated using the Mannings

equation. Storage effects of the river bed or flood plain, or differentiated speeds in the river

bed and flood, are not taken into account. This approach is very efficient for small rivulets

- especially for channelized sections where effects of the flood plain have no main impact on

detention and run-off velocity. Therefore, this approach was used for rivulets and smaller

reaches.

With the Kalinin-Miljukov approach, the flood routing is simulated using data of the chan-

nel geometry. The approach is based on the idea that a river system represents a linear

reservoir. Therefore, a river section is subdivided into n subsections with the length LC .
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Using surveyed profiles of the channel, for each section the steady flow discharge function

can be calculated using the Manning-Strickler equation. For each subsection, the detention

coefficient k can be derived as the first derivation of the discharge function of the section

(Ihringer 2002).

In the hydrological simulation, the input flood wave will be routed through each subsection.

Each section will be evaluated based on the discharge volume, whether the routing will take

into account only the river bed or river bed and flood plain.

The Kalinin-Miljukov approach was used to calculate the flood routing in the main river

reach. The translation approach was used for the smaller sub-branches and to calibrate the

Kalinin-Miljukov approach for the status quo scenario of the river systems. The assumption

of a simplified travel time for the flood wave in a geometrically simplified channel fits very

well with this river system. Most sections of the main river reach and also the branches in

agricultural sub-catchments have been modified and are mainly trapezoidal in profile.

For each characteristic section of the main river reach, profiles were measured using a NavS-

tarGPS System together with Earth bound reference stations (differential GPS), and the

factors n and k were derived for the status quo. These data were used for the calculation

of the scenarios A, B and D (Table 4.1). Because no historic profile data was available,

for scenario C the profiles were used as well - only the length of each section was elon-

gated following an evaluation of historical maps. Also, this simplification means that the

current hydraulically optimal profiles were used for the historic situation, resulting in an

underestimation of detention potential of natural river structures.

Pond routing

A large detention reservoir is located in the catchment for the protection of Wisselsing.

It has a capacity of 56,000 m3 and was planned to hold back a 20 year flood event. For

the river basin management plan for the Herzogbach catchment (Dorner, Spachinger, Lenz

& Metzka 2005b), the whole catchment was scanned for locations for potential detention

structures. Over 30 locations were identified delineating potential sites for dams based on

the conditions:
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• Valley with natural potential for water storage,

• river valley with a narrowing to position a dam.

But only three new dams could provide an efficient protection level (Table 4.4) regarding

the criteria:

• sufficient storage capacity calculated based on a digital elevation model,

• no villages in the backwater of the dam,

• significant reduction of a flood (reduction of the peak of a 10 year flood event).

Nr Protected city Volume Node Status

P1 Bachling 2 Planned

P2 Bachling 4 Planned

P3 Buchhofen 14 Planned

P4 Wisselsing, Osterhofen 56,000 m3 52 Existing

Table 4.4: Existing and potential detention reservoirs in the Herzogbach catchment

For the evaluation of their efficiency under different catchment situations, it is necessary to

integrate them into the model. Small reservoirs, like those in the Herzogbach catchment are

normally uncontrolled. This means that a fixed orifice controls the run-off. If the run-off

exceeds the capacity, a spillway (e.g. as an overflow section of the dam) discharges the

excess water. In the model, reservoirs are represented by the standard reservoir formula

(Ihringer 2002)

dS/dt = Qz(t)−Qa(t)

dS/dt: change of reservoir volume S over time t

Qz(t): Influx over time

Qa(t): outflow over time

solved numerically
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Si+1 − Si

∆t
=

QZ,i+1 + QZ,i

2
− QA,i+1 + QA,i

2
dS/dt: change of reservoir volume S over time t

Qz(t): Influx over time

Qa(t): outflow over time

Outflow is calculated for a pipe (diameter, roughness) as regular outlet, depending on water

level and resulting pressure. The spillway is modelled as a weir (length, weir-coefficient).

Form and volume of each reservoir are represented by six water levels and corresponding

volumes.

The efficiency was evaluated in the scenarios A1 and C1 (Table 4.1) for each individual

location. Because the existing dam at Wisselsing was planned using a simplified hydrological

model, the control strategy was evaluated and optimized using the improved data from the

new model.
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Figure 4.11: Map of the Herzogbach catchment and its division into sub-catchments
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Figure 4.12: Structure of the hydrological model of the Herzogbach catchment
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4.2.2 Hydrodynamic modelling

In the presented case study, a relatively small river channel (1-3m) is situated in a wide

flood plain. Regarding the results and suggestions of Horritt & Bates (2002), a 2D model

may produce far better results than a 1D modelling approach, because 2D models can better

handle these complex situations.

In Bavaria, the SMS - HydroAS-2D software package (Nujic 2006) is a standard system

used for 2D hydrodynamic flood routing. It is based on the SMS - Surface Water Modelling

System developed by the Environmental Modeling Research Laboratory at Brigham Young

University. It includes a pre- and a postprocessor for two- and three-dimensional finite

elements and finite difference models. HydroAS-2D is a 2D stream-flow and water level

calculation package. It is based on the Finite Volume Method.

The two dimensional stream flow equation is derived through the integration of the three

dimensional continuity equation, the Reynolds- and Navier-Stokes equations for incompress-

ible fluids over water depth and using the assumption of a hydrostatic pressure distribution.

It includes algorithms to solve complex situations like weirs, pipes or other intersecting

buildings.

The 2D stream flow equation can be written as a vector (Nujic 2006):

∂w

∂t
+

∂f

∂x
+

∂g

∂y
+ s = 0

The HydroAS-2D model can solve steady and unsteady flow problems. It requires charac-

teristic points (nodes and vertex) in and at the river to be defined. The nodes are then

connected by arcs to denote characteristic areas as triangles or rectangles, such as the bank

and the river channel. A linear net was developed in combination with other measured

points in the area, and boundary conditions are defined for the influx and the efflux. Each

polygon is assigned a friction factor based on the Mannings equation. The model can calcu-

late stream flow conditions including velocity, water depth and the local direction of stream

flow.

The net is based on the DEM (DGM25) for Bavaria at a scale of 1:25,000. Raster points

are located in a 50m x 50m grid. This data was used to model flat areas of the flood plain.
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The land register map was used to set additional points for edges of buildings and streets to

densify the net and set marks for the integration of friction factors. Surveys precisely defined

settled areas, the rivulet and its embankment. Height notations and dimensions were taken

at relevant buildings along or intersecting the water body, like weirs, pipes and bridges. Cross

sections of the rivulet were measured each 20 to 50 meters, (floodplain, top and bottom of

the embankment and streambed). Measurements were performed using NAVSTAR GPS in

combination with terrestrial and virtual reference stations (SAPOS Service of the National

Surveying Authority) for differential GPS (DGPS) surveys.

(a) Points from DEM and survey (b) Definition of nodes for pipes, weirs etc.

(c) Selection of elements (d) Definition of materials and friction factors

Figure 4.13: Development of the hydrodynamic model from DEM, land register map and

measured points

From these individual points, a combined rectangular and triangular mesh was derived. In

the SMS modelling software, relevant hydraulic coefficients and height notations were added

for special hydraulic situations, like discharge under water pressure in pipes or at bridges

and the dimensions of weirs. The friction coefficient (Manning-Strickler) was assigned for

each element of the mesh. The definition of the coefficient was based on a mapping of the

floodplain and embankments.

The simulation was run in the unsteady flow mode. The influx was increased until the peak
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of the event. Peak levels resulted from the hydrologic model described, in Hydrological

Modelling. The peak level influx remained until the end of the simulation. This form of

simulation results in all the affected areas being filled. The model simulated a time period

of 5.5 hours and was subdivided by time steps of 500 seconds. Simulations were performed

for 1, 2, 5, 10, 20, 50 and 100 year flood events and the hydrologic scenarios A, B, C and D

(Table 4.1).

The use of a constant peak influx results in a filling of all relevant flood plains. This

methodology is a standard throughout Bavaria for the assessment of flood plains. It is a

necessary process for the legal determination of flood plains. It leads to an overestimation

of the flood plain, but compensates for the inaccuracies of the elevation model, frictions or

the jamming of structures. From an engineering point of view, this method is conservative;

for example, for the design of protection works. With respect to the resulting assessment

of potential damages, this could lead to an overestimation of damages and must be taken

into account in the later analysis of model results. A simulation with flood waves instead

of peaks would result in reduced flood damages, because effects of jammed structures and

other uncertainties can not be easily simulated. This step was integrated because in small

catchments, the blocking of important structures in the river channel has a high probability.

It changes run-off characteristics and increases water levels and the extent of the flood plain,

but can’t be exactly predicted. The models were calibrated using real event data from

mappings, pictures, flood marks on buildings and interviews with affected land owners.

For the whole catchment, five models for the villages of Bachling, Neusling, Buchhofen, Wis-

selsing and Osterhofen were prepared. Three of them were selected for the study: Bachling,

Buchhofen and Osterhofen. In Neusling the profile of the rivulet was tremendously extended

during the last years. The analysis of the status quo shows that a 100 year flood event could

occur without harm to buildings or infrastructure. The situation of Wisselsing is identical to

Buchhofen. The three selected villages represent different sections of the river system (head-

water, middle section, lower reach) and different structures and settlement sizes. These are

described in detail in the Analysis and Results Chapter.

The hydrodynamic model delivers, as output data sets:

• extent of the flood plain,
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• the flow velocity,

• flow depth and

• shear stress at the riverbed.

Results of the simulations are calculated and saved for each individual time step and each

node. Using the SMS modelling software, the maximum flow depth at each node was selected

and the extent of the flood plain and relevant water levels were calculated and interpolated

from these nodes.

The flow depth was evaluated for different water levels corresponding to the height and

consequent damage to different floors in a building:

• flood plain - indicating all affected areas

• 0.01 - 0.10 m - basements

• 0.01 - 0.8 m - functional buildings affected

• 0.1 - 0.8 m - first floor of residential buildings

• 0.8 - 1.5 m - total damage to first floors of functional and residential buildings

4.2.3 Damage assessment

In the project area, land use will affect flood characteristics in two different ways:

1. Flood peaks will increase, because of higher surface run-off, loss of detention in the

flood plain and the superposition of flood waves from different branches.

2. The total volume of a flood wave will increase and the shape will differ due to a loss

of detention in the catchment and flood plain.

This will result in bigger flood plains and more affected objects. Costs for protection mea-

sures in cities will rise, due to higher elevations of levees and dams. Also, the costs of flood
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detention measures will increase, because of bigger volumes or because the efficiency of ex-

isting protection buildings is lowered. Therefore, the study concentrates on two types of

manifestation of externalities:

1. By how much will flood damages increase due to higher flood peaks and extended flood

plains?

2. How do shape and volume of flood waves affect the efficiency of detention structures?

In the project area, no important infrastructure (highways, pipelines, railways, telecom,...)

will be affected. Mainly farm and residential buildings, and almost no businesses, are located

in the flood plain. Therefore, the majority of damages will result from direct damages, to

buildings and furniture. Direct intangible, but also indirect damages are difficult to assess

and quantify. All potential damages in these categories will be described. Only the effects on

buildings and furniture will be economically quantified (direct tangible costs). As modelling

results will show later on farm land is not significantly affected due to river training.

The rivulets of the test catchment are located on flat land, and show low flow velocities.

Therefore, only the extent of the flood plain and the water level is important for the estima-

tion of damages to buildings. The standing period will be less than one day. The transport

of debris depends very much on the period of the year and erosion on agricultural sites. The

intensifying effect of sediments is ignored for calculating the damages to buildings or infras-

tructure, but will be picked up for a qualitative evaluation of externalities and internalisation

strategies. Therefore, damages to buildings calculated in this study depend on water level

and flow velocity. “f, f diff,and v or their ranges may be estimated by hydrodynamic models

and a reasonable level of predictability at useful spatial and temporal scales can be achieved

with such models [...] This predictability leads to information helpful for estimating medium

to large-scale damage patterns in a flood event.” (Kelman & Spence 2004, p. 305)

Flood damages can be estimated as the damages per event of a specified discharge, overlaying

of flooded areas (result of 2D stream flow model for a defined discharge), and the land use

established in an area - for example as described in GIS datasets like land register maps or

topographic maps. The extent of the flood plain determines the size of an affected area and

the number of buildings. The water level, as the main factor for the intensity of the event,
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determines the level of water in the building and therefore the number of affected floors,

building structures and furniture. The extent of the flood plain depends mainly on the peak

discharge of the flood wave and is statistically a function of the probability of the event.

The likelihood of an event or a flood of a certain recurrence interval can be deduced from

the hydrologic model results.

For a cost comparison a special time frame is needed. In general, for flood protection works,

this timeframe is set at 80-100 years (Länderarbeitsgemeinschaft Wasser 2005) - equal to

the lifetime of protection works. In Germany, a protection level for a 100 year event is

desired as the result of protection works. Therefore, the given period was chosen to be 100

years. During this time period, a specific flood event with a specific discharge occurs with

a certain likelihood. This means that the probability of a flood event must be taken into

account if damages of different events or different discharge scenarios are evaluated, because

low probability, high loss events would be compared with high probability, low loss events.

In this study, the other cost parameter to assess the externalities of land use is the efficiency

of technical detention structures in the catchment. It mainly relies on the size of available

or potential detention structures and the shape, volume and peak of the flood wave. The

hydrological model delivers these hydrologic input parameters and allows a comparison of

the efficiency of different control structures. It can also be used to assess the extra detention

volume necessary to compensate for increased flood volumes. The costs per cubic metre

of detention range between 10 to 50 Euros for small and medium sized detention ponds

(Dorner, Spachinger, Lenz & Metzka 2005b). For this study, an average value of 30 Euros

per cubic meter was assumed for the reservoirs analysed. (Table 4.4)

Existing detention structures were mapped and potential structures surveyed as input pa-

rameters for the hydrologic model. An optimal control strategy for each hydrologic scenario

(Table 4.1) was calculated iteratively and the achieved detention effects (reduction of the

flood peak) in the downstream village or city were compared.

In the three villages of Bachling, Buchhofen and Osterhofen, the affected buildings were

identified by overlaying the land register map on the results of the hydrodynamic model. In

the next step, affected buildings were mapped to identify the type of building and its use.

Two main types were differentiated:
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1. detached houses as the predominant form of residential houses in a rural area,

2. functional buildings - especially garages and barns.

The superposition of water levels per event and the building type makes it possible to

estimate the type and extent of damage for each building and to sum these for a flood event

in a village.

It was assumed that the basement of a residential house will be affected if the water level is

between 0.01 and 0.1 m above ground (Dorner, Spachinger & Metzka 2007). This will cause

full renovation costs and total damage to all furniture on this floor. Also, the first floor of

a functional building will be affected. First floors of all buildings, structures and furniture

have medium damages at water levels between 0.1 and 0.8 m. Between 0.8 and 2.1 m,

complete damage of all furniture and full renovation costs for the whole floor were expected.

In the project area, water levels above 2.1 m above ground level can not be expected, as the

results of the hydrodynamic model results show later in this thesis. There is a lead time of

more than 2 hours between rain event and resulting flood, damages to cars or persons were

not taken into account.

In the damage estimation, differentiations were made between costs for the renovation of

buildings and furniture. In flood action plans in North-Rhine-Westphalia NRW (Germany),

the average value of furniture per household was calculated on the basis of estimates of

insurance companies at 46,000 Euros (price basis 2001) (Staatliches Umweltamt Hagen 2002).

Assuming a 2% inflation rate, the average furniture for the year 2006 would have a total

value of 50,000 Euros and is in line with the concept and damage functions on a community

level derived by Kleist et al. (2006).

In NRW, the GDP per capita in 2005 was 26,968 Euros. In the project area GDP per capita

is 28,321 Euros and at a comparable level. Therefore, the data seem to be transferable to

the project area.

Depth-damage curves can be used to estimate potential damage to objects (Kelman &

Spence 2004, p. 297). They indicate the extent of damage caused in relation to intensity

of flood (water level, flow velocity). Meyer (2001) estimates the damages to furniture in

percentage of the total asset value depending on water level. For water levels of 0.0 to 0.1 m
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Figure 4.14: Damage functions for different types of property in relation to water level after

(Meyer & Mai 2004) Legend: value of cattle, net asset of farmers, net asset of producers,

net asset of infrastructure and IT, net asset of other businesses, stock value, housing asset,

automobile assets

he assumes damages between 0% and 2%, applied in the basement. Between 0.1 and 0.8m,

the damages rise up to 8% and are between 8% and 23% for water levels between 0.8 and 2.1

meter. Following this approach, for cost estimates, the damages to furniture were categorized

using ranges of water levels like mentioned previously in this study. The percentage damage

to furniture was assumed at 2% of total costs be building for water levels between 0.0 and

0.1m, 4% between 0.1 and 0.8m (first floor and basement) and 10% above 0.8m (Table 4.5).

The basis of these assumed damages is the average value of furniture of 50,000 Euros per

household ((Meyer & Mai 2004, Kleist et al. 2006),Stua-Hagen-Kosten-200).

Floor Water level Damage Percent.

Basement 0.0 - 0.1 m 1,000 Euro 2%

First floor 0.1 - 0.8 m 1,000 Euro 2%

Funct. building (low) 0.8 - 2.1 m 4,000 Euro 8%

Table 4.5: Average damages to furniture

Also, renovation costs were estimated for various water levels in the basement and first

floor. Costs were assumed based on clean up and the drying of brickwork and painting



Chapter 4. Case study 93

for basements, as well as additional costs of floor coverings and hangings for the first floor,

which would be affected following the entrance of water (Table 4.6) derived from interviews

with building companies experienced in the renovation of flood damages.

Floor Costs

Basement 1,000 Euros

First floor 5,000 Euros

Funct. building (low) 1,000 Euros

Funct. building (high) 3,000 Euros

Table 4.6: Renovation costs for affected structures of buildings

A comparison interval of 100 years was selected in this thesis. This represents the standard

design level for flood protection works. It is also the technical design period and depreciation

period for technical structures like dams and levees (Worreschk 2000, Länderarbeitsgemeinschaft

Wasser - LAWA 1998).

4.3 Analysis and results

Results are presented and analyzed for three distinct sections of the Herzogbach. They

represent three characteristic sizes of sub-catchments and three different types of residential

areas. Bachling, in the upper catchment, is a small village with farm estates and single family

houses, and is affected by a comparatively small sub-catchment. Buchhofen, in the middle

section, is a larger settlement. At this point of the catchment, effects of the superposition of

floods from different branches could occur. Osterhofen, in the tail waters and not far from

the outlet, is affected by the whole catchment. It represents a city in an urban environment.

4.3.1 Upper catchment

Hydrology

Bachling is a typical small village in the steeper upper part of the catchment (Tertiary Hilly

Landscape). In the hydrologic model, only one sub-catchment (A 1 - represented by node 1,

see also Figures 4.11 and 4.12) is of relevance for the run-off and flood development in the
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Figure 4.15: Flood waves for a 100 year flood event in Bachling for the scenarios A, B, C

and D

settlement. It has a size of 1.2 km2. A second sub-catchment (A 2 - node 3) has its influx

in the centre of the village, but is not of relevance for flood hazards. 72% of the catchment

consists of fields - mainly used for root crops and vegetables without intermediate crops

(result of inspections in summer and early autumn 2004 and 2005). 15% of the catchment

is covered by forest, 12% by grassland and less than 1% is sealed and impervious area. The

rivulet is straight with a deep river bed between 1 and 1.4 m below the natural surface.

Within the village, the river bed lies between 1.2 and 1.4 m below the level of the streets

or the courts. This section is only represented by the regionalisation approach and not a

flood routing approach because of the short length of the rivulet in this sub-catchment. This

partially limits the precision of results for river elongation and renaturalisation.

The peak flow of 1.5 m3/s for a 100 year flood event is mainly influenced by land use in

the status quo scenario (Scenario A) (Figure 4.15). The catchment with natural land cover

results in a simulated peak flow of 1.2 m3/s, while a natural river structure only causes an

additional decrease of 0.1 m3/s to 1.1 m3/s. The insertion of intermediate crops (Scenario

D) causes a decrease of only 0.1 m3/s to 1.4 m3/s in comparison to Scenario A.
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In contrast to the results at other model nodes, these minor reductions can be explained by

the steepness of slopes and the river bed. On the other hand, the changes in river structure

and land use have a significant impact on the shape of the flood wave. Land use increased

the volume of the 100 year flood wave by 0.005 Mm3 to 0.019 Mm3 (Scenario A). The use

of intermediate crops decreases the volume by 0.002 Mm3 to 0.019 Mm3 (Scenario D). In

addition, a flattened wave would result from a renaturalisation (Scenario C) and decrease

the volume necessary for flood detention.

Detention pond P2 (Table 4.4) is located in sub-catchment A2 and has no significant effect

on the flood. Pond 1 has a maximum available volume of 6,600 m3. Damages in the village

start with a discharge of 0.6 m3/s. For scenario A, a volume of 3,900 m3 would be necessary

to mitigate a flood wave of 1.5 m3/s to 0.6 m3/s. For scenario B, the same reduction could

be achieved with a storage capacity of 2,000 m3. In scenario C, a volume of 1,800 m3 would

be necessary. Assuming average building costs for detention volume of 30 Euro/m3, this

will increase building costs from 54,000 Euros for scenario C to 60,000 Euros for scenario B

and 117,000 Euros for scenario A. Splitting up these costs per hectare of farmland means,

in this catchment 580 Euros/ha for scenario B for 86 ha of farmland in this sub-catchment

causing this extra runoff. For scenario A, the extra costs of detention in contrast to scenario

C are 730 Euros/ha. The difference of buildings costs of 6,000 Euros between scenario B

and C would represent the extra costs to compensate for the effects of river training. For

a channel length of 1.1 km in this particular sub-catchment, this means extra costs of 5.45

Euro/m of channel.

Although the application of intermediate crops does not show a significant change of flood

peaks, it is an important issue for flood protection. Because the settlement is located at

the bottom of the hill, the incline of the rivulet is already reduced, resulting in deposition

of sediments. Interviews with adjacent owners showed that annual or biannual cleanings

are necessary to remove sediments blocking up to 50% of pipes and outlet diameters. The

main source of sediments is erosion from agricultural sites. Studies showed that the use of

intermediate crops would reduce erosion by more than 50% in this particular sub-catchment

(Spachinger et al. 2005).



96 4.3. Analysis and results

Hydraulics

In the upper section at the inlet of the rivulet to the village, the river structure is blocked

by two piped sections. These two pipes cause backwater (fill a depression) where a farm

estate is located. In the following section, different bridges and pipes intersect the channel

of the rivulet. But in contrast to the first intersection, the pipes have larger and constant

diameters, the river channel is deeper and estates are located on the higher bank of the

rivulet.

As mentioned previously in the analysis of the hydrologic behaviour, land use and river

structure did not show large impacts on flood peaks for this particular sub-catchment. The

effects on the extent of the flood plain, also shown on the maps, are therefore minor. The

maps indicate that a changed land use and river structure (Scenario C) would reduce the

flood hazard to zero (Figure A.26) up to a 10 year flood event. For larger events, these

changes would reduce, but could not avoid, resulting flood damages (Figure 4.16). It must

be taken into account that these flood plains are the result of a hydrodynamic model using

a constant influx as a steady flow simulation. This means that the shape and volume of a

flood wave is not accounted for. Using the unsteady flow mode for the simulation would

result in a smaller area flooded.
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Figure 4.16: Extent of the 100 year flood in Bachling for the scenarios A (red), B (yellow)

and C (green). Buildings and borders of property are indicated in black.
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Damages

Only one farm estate and homestead with three buildings is located on the flood plain.

Water levels in this area are below 2 meters. Only the basement of the homestead and first

floor of functional buildings and the homestead are affected. The buildings are located in a

depression. Backwater from the piped section fills the depression. An intersecting building

also blocks the surface run-off and causes the filling of the depression. The assessment of

flood related costs is possible for the different scenarios, but difficult because only one object

blocking the discharge is simulated.

The situation in Bachling is characteristic for the situation in the area, and for German

villages in general. Already small run-off can result in the first damages. This is a result of

dense building patterns in Germany on the one hand and the development of settlements

towards the valleys on the other.

As expected, low probability, high loss events cause the highest damages per event (Figures

4.17, 4.18 and 4.19) for all hydrological scenarios. Comparing them on an annual basis

shows that the small events are responsible for the majority of damages accumulated over a

100 year period (Figure 4.20). This shows that even minor detention effects, will reduce the

intensity or even avoid small damages and contribute enormously to the reduction of total

flood damages.

Although the effects of land use and river structure are minor from a hydrological point of

view, the economic impacts are significant. The accumulated damages over a certain period

(100 years) show the significant costs resulting from high probability, low loss events (Figure

4.20). Time acts as leverage and the addition of individual damages over time results in

high costs also exceeding those of a low probability, high risk event.
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Figure 4.17: Flood damages per event for scenario A

Figure 4.18: Flood damages per event for scenario B
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Figure 4.19: Flood damages per event for scenario C

Figure 4.20: Flood damages in Bachling as a flood damages function, showing the annual

damages per event over a 100 year period
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4.3.2 Middle section

Hydrology

Buchhofen is a settlement in the small Herzogbach valley in the centre of the catchment.

It developed first along the valley axis, but in recent years also towards the flood plain.

At this point (node 32), the catchment is very symmetric and two major branches of the

Herzogbach are joining just before Buchhofen.

Detention reservoir P3 at node 14 (Table 4.4), with a calculated volume of 4,000 m3, shows

no effect as an individual basin. Also, in combination with the reservoirs P1 and P3, no

significant change in flood peaks can be achieved. In this area the landscape is too flat

to provide sufficient detention volume. Maximum water levels in a reservoir that could be

achieved are between 1.0 and 1.5 meters, and result in long dam structures.

At this point of the catchment (14 km2), agriculture (69%) is the predominant form of land

use, followed by forestry (17%) and grassland (13 %). Sealed and impervious areas are below

3 % of the size of the relevant catchment.

Land use, as well as river training, shows a significant impact on the shape and peak of the

flood wave. River training increased run off by 3 m3/s (scenario C) to 13 m3/s (scenario B),

while land use increased the peak by an additional 4 m3/s to 16 m3/s (scenario A) (Figure

4.21).

The time shift between the peaks of scenario A and C is visible (Figure 4.32), but not

significant in respect to damages. Flood routing and the modification of the river reaches

do not play a crucial role. This can be explained in terms of the short sections upstream

and the equal length of river section, which means that run-off results in equal travel times

of the flood wave from each tributary.
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Figure 4.21: Flood waves for a 100 year flood event in Buchhofen.

Hydraulics

In Buchofen, the river is straight and should therefore provide an optimized situation to

discharge a flood. But at several positions it is intersected by bridges, which in most cases

act as barriers for discharge of larger floods. This is due to the fact that the infrastructural

development took place at only one side of the rivulet, and estates on the other side are

connected via bridges and cable ducts.

The impacts of land use and river training can not be explicitly shown for larger flood events

as shown in figure 4.22. The differences between the scenarios A, B and C are minor for a 50

and also 100 year flood event. The volume of a larger flood wave is of more importance than

the peak, because of backwater effects from bridges and other structures in the flow channel,

as well as the wide flood plain in the valley. Scenarios B and C have a higher impact on the

extent of small floods. The discharge capacity of intersecting buildings is often very small.

A reduction of flood peaks therefore reduces or avoids backwater and resulting flooding.

This can be seen especially in the eastern part of the village for a 5 (Fig. A.35) and 10 year

flood event (Fig. A.36).
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Figure 4.22: Extent of the 100 year flood in Buchhofen for the scenarios A (red), B (yellow)

and C (green). Buildings and borders of property are indicated in black.

Damages

Buchhofen is a rural village, but also the centre of an independent municipality. It provides

services like a city hall, restaurants and shops. Fortunately, main businesses and municipal

infrastructure are located in the older parts of the village along the valley hillsides. The

flood plain is mainly occupied by residential areas and farm estates. Unfortunately, the whole

village is oriented along the Herzogbach valley. The number of bridges and other intersecting

buildings increases the danger from backwater effects and the number of buildings located

in the river valley increase the total damage costs.

The distribution of affected building base areas (Figure 4.23) shows that land use and river

training affects mainly small and common floods events. But the distribution of affected

buildings is also a result of the geomorphology of the flood plain, the distribution of buildings

in the flood plain and intersecting buildings. In Buchhofen, backwater processes are mainly

responsible for flooding. Once the discharge limit of an intersecting building is reached, it

results in a filling of the valley respective the flood plain. The wide valley situation results

in extensive flooding. Due to the high number of bridges and pipes in Buchhofen and their

restricted diameters, flooding is increased. The form of the valley also restricts the amount

of buildings affected to those at the bottom of the valley.

Buchhofen shows very well the increasing effect of high probability, low loss events. Small

flood events cause the majority of damages calculated over a 100 year period (Fig. 4.24).
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Figure 4.23: Affected base area of buildings in Buchhofen

Although natural detention only has a minimal effect on larger flood events and resulting

damages, it can reduce the total accumulated damages.
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Figure 4.24: Flood damages in Buchhofen as a flood damages function, showing the annual

damages per event over a 100 year period

4.3.3 Tailwater

Hydrology

Different sub-branches of the Herzogbach and its tributaries meet in the city of Osterhofen.

The main tributary is the Herzogbach, with a length of 20 km. The catchment has a total size

of 42 km2, and land use is dominated by agriculture (75%) - followed by grassland (13 %),

forests (10 %) and sealed and impervious areas (2 %). Effects of surface sealing and urban

development in Osterhofen do not affect the run-off situation of the Herzogbach, because

the sewer network transfers most of the sewage and storm water run-off directly towards the

Danube. At node 76 (inlet to Osterhofen), the different scenarios show the possible impacts

of land use and other forms of human activities on a flood wave. Human land use increased

the natural flood wave (Scenario B) of 27 m3/s by 9 m3/s to 38 m3/s (Scenario A). River

training especially shows a significant impact at this point of the catchment. A natural flood

plain would reduce the peak of 29 m3/s by 10 m3/s to 19 m3/s (Scenario C).

Of interest is the delay of the flood wave of Scenario C (natural flood plain) in contrast

to Scenario A (status quo). The asymmetric shape of the catchment causes different travel

times for the flood wave from different branches. The reduction of the flood peak in Scenario

C at node 76 Osterhofen can be explained partially by avoidance of superposition of flood
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Figure 4.25: Flood waves for a 100 year flood event in Osterhofen

waves. Figure 4.26 shows how the flood waves of Scenarios A and C develop. At node 32

(Buchhofen), a delay of the flood wave from Scenario C can be identified. The development

of the shape of the total catchment supports this effect. Because of a renaturalized river

bed and flood plain, a flood wave from the long main branch has a significantly longer travel

time than the short and even steeper side branch.

The surface and river structure influence the total volume of the flood wave, which is impor-

tant for the control of a flood by detention. But also the separation of two flood waves from

two different branches can help to improve the attenuation effect. This effect is mainly due

to channel structures. Figure 4.27 shows how land use influences the discharge volume and

detaining effect. The flood volume of Scenario A (status quo) 0.4 Mm3 differs significantly

from the 0.36 Mm3 from Scenario B (grassland and forest).

Lost detention volume can be compensated for by artificial structures. The necessary volume

depends on the peak and shape of the flood wave, but also on the location of the reservoir in

the catchment and the form and extent of the dam structure and reservoir body. Technical

detention always implies costs for building these structures. Depending on the shape and
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Figure 4.26: Flood waves for a 100 year flood for scenarios A, B, C at the nodes 2, 32 and

76

profile of the river valley, the form and volume of the necessary dam varies - and hence the

costs as well. Three types of detention reservoirs can be distinguished for run-off control:

1. uncontrolled: a fixed outlet (pipe, fixed weir) regulates the outflow depending on water

level and pressure

2. controlled with fixed run-off: the level of the control mechanism will determine the

maximum outflow. Therefore, the mechanism must be moved manually or automati-

cally depending on the water level in the reservoir

3. controlled with a flexible control strategy: depending on the influx and development

of the flood wave, the control mechanism will be opened or closed to maximize the

efficiency of the detention volume.

Type 1 is standard for small catchments and small reservoirs. It has the lowest building

cost and is easy to maintain and handle. Types 2 and 3 need advanced technical equipment,

and type 3 additional input data about the discharge in the headwater. They are only used
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for bigger detention structures, because of the costs and the need for qualified personel to

decide about the control strategy. A type 1 reservoir is located just upstream of Osterhofen.

It provides a total detention volume of 56,000 m3. It offers protection against a 20 year

flood event for the village Wisselsing just 3 kilometers upstream of Osterhofen, but not for

Osterhofen. It decreases the peak of a 10 year flood event in Osterhofen by 8 m3/s to 10

m3/s (Fig. 4.27). Using an optimized control strategy, the detention volume would result

in a maximum peak of about 5 m3/s in Scenario C (Fig. 4.27).

Figure 4.27: Detention of a HQ10 for the Scenarios A and C at the Node 76

The current reservoir is not built to protect Wisselsing against a flood more rare than a 20

year flood event. The effects of the reservoir for the protection of Osterhofen are negligible.

In the hydrologic model, the control strategy was modified and an optimized outlet unit

was applied. For Scenario A the reservoir results in only a reduction of 8 m3/s to 30 m3/s

at the node 76 in Osterhofen. For Scenario C the reservoir could reduce the peak down to

12 m3/s. However, an assessment of possible locations for new detention structures showed

that the existing dam at Wisselsing is the only available location (Dorner, Spachinger, Lenz

& Metzka 2005b). All other potential positions upstream of Osterhofen are either too small

or do not show a significant effect on flood detention. This is the result of either size or the
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distance between the reservoir and protected area. Increasing the existing structure is not

possible because the backwater would cause damage in an upstream village. The shapes of

the flood waves from Scenarios A and C show that an immense detention volume would be

necessary to achieve an equivalent detention effect to the natural flood plain. In this case

study, a realistic estimation of the necessary total reservoir volume is not possible because

the existing dam already represents the largest structure possible in the given landscape,

and structures can not be used to simulate the total lost detention volume.

Figure 4.28: Detention of a HQ100 for the Scenarios A and C at the Node 76

Hydraulics

Upstream of Osterhofen at an old weir, the Herzogbach splits into two rivulets: the former

mill channel heads directly towards the city centre, is built partially as a diked channel and

partially as a hillside channel. It passes several depressions. The main river channel flows

through several residential areas and cuts through the higher Danube bank to the Danube

valley. Especially in the flat section of the Danube valley, the rivulet passes through several

new residential areas which restrict the river channel and floodplain. In this area, the channel
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of the rivulet is broad and has a flat embankment.

For Osterhofen, the hydrodynamic model results show that the old weir in the west of

Osterhofen (splitting discharge of the Herzogbach to the mill channel in the north and the

main river bed in the south) would fail during a larger flood event. This results in additional

flooding of a depression near to the city centre.

There are three reasons for flooding in Osterhofen:

1. The mill channel is built as a hillside channel above an artificial depression. The

overtopping of the river bank results in a filling of this depression.

2. Backwater effects from the small valley through the Danube bank and bridges at the

main rivulet.

3. Flat river bed, low banks and a wide flood plain in the Danube valley.

The flood plain in Osterhofen can be subdivided in three sections:

1. The western part in the head water is a wide flood plain. The flow splits to the mill

channel and the natural river bed. The stream fills on the one side the natural open

flood plain, and on the other side the artificial depression south of the city centre when

the flood overtops the shoulder of the mill channel dam.

2. The section towards the small valley in the higher Danube embankment results in

backwater effects from two intersecting bridges.

3. It is followed by a wide flood plain in the Danube valley, where the rivulet has a flat

river bed and embankments. The topping of the embankment results in wide flooding.
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Figure 4.29: Extent of the 100 year flood in Osterhofen for the scenarios A (red), B (yellow)

and C (green). Buildings and borders of property are indicated in black.

Damages

The wide flood plain in the lower system (section 3) contributes to the majority of damages

in scenario A. Flooding results from an overtopping of the embankment and an inundation

of the wide open flood plain. Therefore, also minor reductions of the flood peaks in sce-

narios B and C could contribute to a reduction of affected buildings and damages, because

overtopping of protecting landscape structures can be avoided (Figure 4.23). In contrast to

this, backwater effects in the middle section and the natural restriction of the valley result

in a very constant extent of the flood plain in these areas and, therefore, a minor reduction

of damages in Scenarios B and C.

In Osterhofen, the simulation overestimates the number of total damages because of the

flooding of wide areas due to the constant inflow situation in the hydrodynamic model.

This happens in all four Scenarios A to D. The relation of damages between two scenarios

gives a qualitative impression of the externality. Osterhofen also provides an impression

as to which impact river structure and the super positioning of flood waves from different

branches can have on the damages. River training contributes to the majority of damages
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Figure 4.30: Affected base area of buildings in Osterhofen

(Scenario C minus Scenario A) and hence the main part of the externalities in Osterhofen.



Chapter 4. Case study 113

Figure 4.31: Flood damages in Osterhofen as a flood damages function, showing the annual

damages per event over a 100 year period

4.3.4 Evaluation on a catchment scale

The increase of flood peaks is due to different effects.

• Reduced retention capacity of the land cover, especially during spring and autumn after

the crop harvest and before seeding (expressed by the c values of the regionalisation

approach in the hydrological analysis).

• Reduced retention capacity of the river bed and especially the flood plain (expressed

by a prolongation of river reaches in the Kalinin-Miljukov approach, but also in the

factors l and lc in the regionalisation approach).

• Increased speed of the flood wave in the river system and super positioning of flood

waves from different branches.

A comparison on a catchment scale shows that there is no general quantitative dependency

between land use, river training and run-off. Too many different geomorphologic parameters

influence the run-off behaviour of the catchment. From a quantitative point of view, river

training as well as land use influences the peak and the detention-relevant volume of a flood

wave. The effects of river training depend on the length of affected river sections. The length



114 4.3. Analysis and results

of modified areas in different sub-catchments and the irregular length of different branches

also play a crucial role.

Figure 4.32: Development of the flood waves for the Scen A (Status Quo) and the natural

status Scen C

The last factor depends very much on the shape of the catchment and the different branches

of the river system. If we assume regular precipitation in the whole catchment, a proportional

elongation of both branches would mean a proportionally longer travel time for the flood

wave in the longer rivulet. Normally, the rising limb of a flood wave is steeper than the

falling one, so an equalisation would lead to a significant decrease of the peak.

The comparison of Figures A.8, A.14 and A.20 show that land use especially influences the

peak and volume of a flood wave (Scen A vs. Scen B). The changes in the river morphology

influenced the peak, but also the speed of the flood wave and therefore the superposition of

two waves at a junction. This can be seen very clearly if we compare Figures 4.33 and 4.34.

For the status quo (scenario A), the run-off leads to a nearly perfect superposition of the

flood waves from different sub-catchments (Flows of nodes 2 and 4 result in a peak in node 5,

14 and 31 in the peak at node 32, 53 and 72 in the peak at node 76). The channel structure

influenced the run-off speed and as a result, the superposition of peaks at the junctions of
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Figure 4.33: The superposition of two branches (Nodes (2,4)(14,31)(53,72)) leads to the

wave in the main branch (Nodes 5,14,32) for the Scen A

two branches. This can be explained with respect to the irregular shape of the catchment.

Especially towards the outlet, the longer branches coming from the upper or western part

of the catchment result in longer travel times than the shorter southern tributaries.

Two factors are of interest for the evaluation of floods - the peak of a flood wave and the

extent/duration and volume of a wave. The peaks are relevant for the extent of the flood

wave in the flood plain, damages and the necessary elevation of measures for flood defense

along the river, like dikes and walls. The volume and shape of a wave affects the efficiency

of detention measures.

The analysis showed that land use and river morphology influence both peak and shape.

Therefore, three measures can be identified to quantify the externality on a catchment scale:

• The flood damages of Scenario A (status quo) minus those of Scenario C (natural

situation of catchment and river).

• The costs for flood protection works for Scenario A minus those of Scenario C.



116 4.3. Analysis and results

Figure 4.34: The superposition of two branches (Nodes (2,4)(14,31)(53,72)) leads to the

wave in the main branch (Nodes 5,14,32) for the Scen C

• The costs for detention reservoirs for Scenario A minus those of Scenario C.

It is not always possible to quantify the externality with all three measures: in the Her-

zogbach catchment, no location for larger detention works are available. Therefore, it is

impossible to quantify the extent and costs of these structures. In larger cities, major

supra-regional infrastructure can also be affected. In such a case, it would be difficult to

calculate the total damages resulting from indirect and intangible damages.

At rivulets and smaller rivers, no significant flood protection systems are available. Here

especially, land use and river training seem to have a higher relevance for flood develop-

ment. The study showed that smaller events are influenced by land use and river training

and contribute to the majority of damages. “Neben den sehr seltenen Katastrophen-HW

sind jedoch die häufiger auftretenden HW geringerer Größe von Interesse, da sie meist den

Hauptbeitrag zur Schadenssumme für längere Zeitabschnitte liefern. [Besides the rare dis-

aster floods, more common floods of a smaller extent are of interest, because they provide

the main contribution to the total damage over a longer period.]” (Dyck 1995, p. 430). The
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study shows that land use and river training can significantly contribute to flood damages

in small catchments and indicate that an internalisation strategy could aid to increase the

level of flood protection, reduce the effects from land use or redraw negative developments.

Model results showed that in some areas of the catchment, a higher level of flood protec-

tion was achieved for agricultural areas than for settlements. While trained rivulets in the

agricultural section are not interrupted by bridges or piped sections, in settlements these

common structures cause backwater effects resulting in the flooding of used areas. External-

ities are responsible for over 50% of damage costs (Fig. 4.35) in the assessed villages. The

accumulated costs of high probability, low loss events contribute to the majority of damages.

The results of Scenario D show that small measures like the implementation of intermediate

crops or direct cropping could significantly reduce the extent of flooding and consequently,

flood damage costs. But the main impacts result from modifications to the river channel

for all three evaluated villages. As a consequence, the conclusion can be drawn that river

renaturalisation provides a suitable tool to reduce flood-related costs.

Out of a list of over 30 hotspots in the whole catchment, three settlements have been

evaluated. Bachling, Buchhofen and Osterhofen represent three typical forms and sizes

of urban areas in a rural landscape. Remaining hotspots, mainly small villages or single

farm estates, show similar damage potential and floodplain characteristics to the villages of

Bachling and Buchhofen. This means that only in the catchment of the Herzogbach can a

significant part of all flood damages be called externalities.

Only damages from flooding from the river system have been taken into account. The effects

of storm water run-off, such as surface run-off from sealed urban areas, and related damages

have not been evaluated. On the one hand, they are more difficult to identify, and on the

other hand the impacts of land use and landscape structures cannot be directly assessed.

The amount of run-off and its probability are difficult to model. As well, the flow paths

in the landscape and their impact on buildings and damages can only be guessed. But as

already mentioned, for the general effect of small landscape structures, it can be assumed

that the same relations as found for larger impacts exist.

Differences between results of land use scenario A and scenario B show that land use does not

only alter run-off and as a consequence peaks and volumes of flood waves in the lower reaches



of a catchment. The analysis of flood damages as well as the evaluation of technical detention

measures showed that there are significant transfers of costs from the head waters to the

lower reaches of the catchment as a result of these alterations to landscape and land cover.

Land use increases flood peaks and volumes resulting either in higher damages downstream

or in higher costs for flood detention. These higher costs can be estimated by analyzing the

difference between run-off from a pristine catchment and a catchment with the current land

use and the difference of resulting damage or mitigation costs. These costdifferentials are

the results of land use in the upper catchment and are therefore externalities of land use.
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Figure 4.35: Flood damage functions of Bachling, Buchhofen and Osterhofen
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Chapter 5

Discussion

5.1 Critical review of the methodology

The presented methodology to identify and quantify hydrological externalities of land use

combines approaches and sub-methodologies of three different fields and disciplines:

• Quantitative hydrology,

• hydraulics and flood modelling, and

• flood damage estimation.

This results in several interfaces between the different models, as well as the requirement

to use stable but simplified approaches from the different disciplines. Each transfer of data

from one model type to another can result in a loss of precision and involves simplifications.

One of the major problems is the calibration of models. The hydrologic model, in com-

bination with the hydrodynamic model, should provide sound results. Past experiences of

engineering projects with the same combination of models in other catchments, and the

possibility to compare measured data with model results, showed that a precision of 5 to 10

cm for water levels can be achieved. Experiences from these projects were transferred to the

presented study. With regards to the historical data available, it is impossible to calibrate

121
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the historical and/or alternative land use and landscape scenarios. This implies that model

results of alternative land use scenarios can only show a tendency of flood development

under the estimated determining factors.

There is always a compromise between the precision of a model structure and the availability

of precise input data. Models, like those used in this project, always reduce the complexity

of reality and express real processes as formulas using aggregated parameters as input.

Especially in small catchments, statistical data to calibrate a model is often missing as is the

historical data required to model alternative scenarios. Different types of hydrologic models,

such as physical models, could be used to better represent the different processes (DVWK

1999). But the details of modelling are also bound to more detailed data and modelling

efforts. Under today’s conditions, data gathering and model building on a catchment scale

would exceed the work load for practical studies and a broader application of the suggested

methodology. Precise models, which can physically simulate complex processes such as

infiltration, evapotranspiration and surface run-off are only available on a micro scale. The

processes are usually too complex to be modelled on a catchment scale. Hence, results

presented in this thesis can give only an indication of how human interactions changed run-

off and flood behaviour of the catchment. The historic data necessary to evaluate a previous

condition is difficult to gain and interpret. In this study, the lack of river profiles made

it difficult to accurately simulate the discharge behaviour of the river channel for historic

conditions. Therefore, the model results must be interpreted carefully. The assessment

of impacts of individual measures or the assignment of individual responsibilities to land

owners is impossible. The methodolgy can assess the accumulated impacts of all activities

in a catchment influencing run-off and flood development. The used methodology represents

a compromise between precision of modelling and manageability and data gathering and

processing and will provide a conservative estimate of the externality.

At the moment, medium and large scale hydrological river basin models are not able to deal

with the problems of detailed rural structures like trenches, drains and field structures or

data gathering would exceed the possibilities of a study. There exists too little experience

and statistical data to quantify the effects of these structures and assume their effect on

parameters used in catchment modelling on a meso scale. In the presented study it would

also be problematic to estimate the relevant parameters for different historic scenarios be-
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cause of a lack of measured and mapped data. It can be assumed that natural structures

like depressions and boundary ridges would have an additional detaining effect - whereas

technical elements, like drains and trenches will increase and accelerate run-off.

Therefore, the assessment of the spatial impacts of human actions in the flood plain and

river basin have been excluded from this study:

• Natural depressions,

• boundary ridges,

• drainages,

• trenches,

• sewers,

• field size and structure.

For the historic situation and alternative land use scenarios, only two parameters were

altered in the hydrological model:

• Distribution of land use represented by the average run-off coefficient for each sub-

catchment (CN value) in the regionalisation approach.

• Length of the river channel in the flood routing and regionalisation approach.

Further modifications of other parameters like channel roughness, profile of intersections

etc. were avoided because of the absence of detailed data. Hence, alternative scenarios for

land use were calculated conservatively and will tend to underestimate the effect of natural

landscape and river structures.

The Kalinin-Miljukov approach for flood routing proved to be a feasible and effective way of

quantifying channel run-off. Problems encountered were related to the detailed modelling of

the river channel and flood plain, and were due to the lack of historic data of river profiles.

The adopted approach of modifying the length of river channels restricts the analytical pos-

sibilities for previous channel conditions. It underestimates the detaining effect of natural
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rivulet structures. An elongation leads to a reduction of flow velocities and to increased

water level. It can be assumed that natural profiles would have a flatter channel and wider

floodplain. This would result in earlier flooding of the floodplain and additional detention.

No historic information about river profiles can be found. They are entirely modified in the

current state. Renaturalised sections are not old enough to have achieved equilibrium. Fu-

ture projects would benefit from the simulation of hydromorphological processes in addition

to the hydraulics.

The hydrologic and hydrodynamic model results for the status quo should show a realistic

picture of the current status. The other results show the minimum effect natural river

structures or land cover would have. They represent maximum peaks, volumes, discharge

and extent of flood plains which can be expected under the assumed basic conditions for

historic scenarios or land use alternatives.

In the hydrodynamic model, the results of the different hydrological scenarios can be trans-

posed very well. For all scenarios, the same landscape model was used, which means that

no additional assumptions regarding channel structure or roughness have been made. The

same applies to the calculation of flood damages.

It can be assumed that a flood under historical landscape conditions would be smaller and

lower than estimated in this study, due to the following constraints:

• Small scale landscape structures, such as hedges and ditches would decrease surface

run-off and flow velocity.

• In addition, they would result in increased infiltration, interflow and groundwater flow,

reducing the peak flow and accumulation of flood waves from different sub-catchments.

• Natural rivers would show higher river beds and lower and flatter embankments, re-

sulting in increased detention of the flood plain.

• Densely overgrown embankments would additionally reduce flow velocity and increase

the extent of the natural flood plain.

For the economic analysis of flood damages or mitigation costs only direct tangible damages

to buildings and furniture were considered. This approach provides robust data but underes-
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timates the total costs of floods. In the current case costs or damages from other categories

can be ignored because they either do not appear (e.g. interruption of production because,

interruption of infrastructure as well as damages to larger infrastructure, diseases) or are

negligible from the perspective of risk (e.g. diseases, loss of life). The results of the damage

estimation are conservative and underestimate the total damages. Under different economic

and hydrological conditions a different choice of cost categories could be more preferable.

In general, the suggested methodology can be used very well to evaluate natural detention

in the catchment from an economic and technical point of view, because it indicates very

well whether changes of landscape structures resulted in significant externalities. In the

sample catchment, this approach showed to be technically feasible. The comparison of

different land use and river scenarios evidenced significant changes in the flood behaviour of

the catchment. Because classical planning often ignores “non-technical” measures of flood

mitigation the approach to couple hydrologic and hydraulic modelling, economic analysis

and a scenario analysis, should become the basis for future planning. Other models like

erosion and diffuse pollution, sediment transport or morphology models could be integrated

as well to estimate the effects of human impacts in these areas.

5.2 Research outcomes

The selected test catchment shows significant changes in land use and landscape structures.

Historical maps indicate that in 1820, agriculture was already the dominant form of land

use and land cover in this area. The past 200 years did not show a significant increase of

agricultural areas on a catchment scale, but a change of landscape structures, agricultural

emphasis and agricultural practices. This resulted in a loss of natural flood plains, natural

detention structures and a concentration of run-off supporting crops and farming practices.

In parallel, residential areas developed towards the flood plain.

This intensification of land use had significant effects on surface run-off, discharge and the

accumulation of flood peaks from different branches of the catchment at junctions of the

river system.

The results of the hydrologic model show three effects of human interventions for the test
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catchment when the different hydrological scenarios are compared:

1. Reduced land cover increases surface run-off and therefore flood peaks and total flood

volumes.

2. Natural river structures increase the flow time of flood waves from several branches

and can reduce the probability of the super positioning of flood waves.

3. Natural flood plains store large amounts of water. In combination with decoupled

flood waves, this can reduce flood peaks.

Different effects can be seen at different points of the catchment. While in the small catch-

ments (Node 2) the effect of the river structure is lowest, the reduction or increase of flood

peaks can be traced back to the routing effect and the super positioning of flood waves

from different river segments close to the outlet of the catchment (node 76). In very small

catchments, the effect of land use on run-off and peak flow is highest for small events with

a high probability. In larger catchments, the impact of river structures should be of larger

importance.

The effects of land sealing have not been taken into account individually, because their

impacts are well understood. The distribution of land use types clearly shows that in this

catchment, the main impacts are due to agricultural land use. The city of Osterhofen could

have significant effects on the downstream situation, because it has a major storm water

system. However, its outlet flows directly to the Danube and so no effects can be found

in the tail water of the Herzogbach. The effects of sealed areas in combination with storm

water systems on run-off and flood detention in small catchments have already been proven

by others (Umweltbundesamt 2001, Croke et al. 2004, Thurston et al. 2003). Therefore,

this factor was ignored in this thesis. The consequences of sealing and storm-water run-off

from settled areas have a similar effect on the development of externalities and need to be

separately assessed in the future in a similar way. Storm water run-off in sewer systems

can lead to additional inefficiencies and partial externalities if the costs for infrastructure

investments and maintenance are not proportionally shared between causers.

As a result of the further hydrodynamic analysis, it can be concluded that changes in

surface run-off and discharge also have significant impacts on the development of floods in
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Probability Scen. A Scen. B. Scen. C Scen. D

HQ1 0.2 0.2 0.1 0.2

HQ2 0.3 0.3 0.2 0.3

HQ5 0.5 0.5 0.4 0.5

HQ10 0.7 0.7 0.5 0.7

HQ20 1.0 0.9 0.7 0.9

HQ50 1.3 1.2 0.9 1.2

HQ100 1.5 1.2 1.1 1.4

Table 5.1: Run-off at Node 2, peak values in m3/s

residential areas. In all three residential areas analysed in this case study, significant impacts

can be stated. Together with discharge, water levels and the extent of the flood increase.

The significant increase in run-off of high probability hydrological events results in more

frequent flooding of residential areas. Although these physically small events only cause

minor damages, the accumulation of these small damages over time are responsible for the

majority of total losses.

This is of relevance for the further economic considerations. Hydrologically, the effects of

natural detention in small catchments for a small but frequent event should be, in general,

large. The effect should reduce with the increasing intensity of the events. This is supported

by the results of the case study (Table 5.1). If under intensive land use small but frequent

events are responsible for the majority of damages, then land use change results in significant

externalities.

In small catchments, high probability, low loss events, which are mainly affected by land use

change from a hydrological perspective, contribute most to the accumulated damages over

time. In larger catchments, the river structure contributes most to peak flow and shape of

the flood wave. River training and the optimisation of river profiles reduced the detention

capacity of the flood plains and increased the flow velocity of flood waves from individual

branches. In the worst case, increased individual flood waves from different branches tend

to superpose at junctions as an effect of these alterations. Especially at Osterhofen, close to

the outlet this effect is significant. The flows of two branches (nodes 53 and 72) superpose

at node 76 for Scenario A and result in a significant increase (Figures 5.1(a) and 5.1(b)).
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(a) Scenario A

(b) Scenario C

Figure 5.1: Superpositioning of flood waves from different branches for Scenarios A and C
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All these effects of land use change are reflected in the economic impacts represented by

damage or mitigation costs. The amount of the externality was estimated comparing the

status quo scenario (Scenario A) with the historic land use (Scenario C). The difference of

costs of these scenarios indicates the amount of the costs which are transferred from the

head water to downstream riparians, because they are the result of land use.

From a range of possible methodologies (Umweltbundesamt 2007) two options were used to

calculate the externality in the case of land use and floods:

• Costs of damages,

• substitutional approach.

To monetise these impacts, three methods with regard to land use and flood were identified:

• Comparison of flood damages (direct and tangible damages),

• costs for technical detention to reduce peak flow,

• costs for technical flood protection.

In the presented case study, only the first and second options showed to be feasible ap-

proaches. Even the estimation of costs for detention can not be generally applied. Technical

flood protection would have been a technically feasible alternative in all three villages. Eco-

nomically, however, it is highly inefficient and difficult to plan and calculate. The high

number of intersecting buildings and the location of the villages extended along the axis of

the rivulet would have resulted in enormous planning and building costs. The estimation

of costs for technical flood detention is restricted by the availability of suitable locations for

dams, resulting in significant detention volumes.

The calculation of flood damages in residential areas is the only approach which could

be generally applied to all villages. In all three cases, the intensification of land use and

modification of the river structure resulted in significantly increased damages. The time

interval of 100 years was used to monetise costs over time, because the 100 year flood event

represents the design event for the planning of flood protection works. Because of the strong

increase of damages for low loss, high probability events in contrast to the low probability,



130 5.3. Relation to scientific and economic theory

high loss events the calculation period for the accumulation of damages is not of so much

importance. A shorter or longer time frame would only weaken or increase this effect.

An analysis in the development of land use, for example on historic maps, shows that not one

individual measure contributes to the total effect, but the accumulation of different activities

ranging from the change of farming practices on individual sites over land consolidation

projects to land use to urban development planning. With regard to the time frame in which

these developments took place, not only a spatial component, but also an inter temporal

effect must be acknowledged. Because of the probabilities of hydrological events between one

in five to one in one hundred years, and on the other hand the time frame of 50 years during

which the land use changes occurred, these externalities have not only a spatial but also an

inter temporal character. Damages did not occur during the period of land use change and

modification of river systems, but effects accumulate with the amount and extent of changes

and over time. The first reactions of the hydrological system to the changes can become

visible years and decades after the alterations have been implemented.

5.3 Relation to scientific and economic theory

The hydrological aspect of these findings is supported by other works for several catchments

(Auerswald 2002, Bormann et al. 1999, Croke et al. 2004, Lammersen et al. 2002), but can

not generally be transferred to each catchment (O’Connell et al. 2006) from a hydrological

point of view.

In literature, the statement is found that the effects of spatial measures such as infiltration or

intermediate crops are overestimated (O’Connell et al. 2006). Authors refer to the restricted

detention volume resulting only in a protection against high probability, low loss events.

Indeed the detaining effects of natural structures like higher evapotranspiration, increased

infiltration and spatial detention in depressions are limited in contrast to sealed areas or

farmland. Many authors refer to large basins and concentrate on low probability, high loss

events (100 year flood as the main design event for flood protection works). The situation in

small and medium sized catchments is different. For small catchments, short meteorologic

events are of relevance. However, for large river basins where long rain events with low and

medium rain intensity but a high precipitation volume are responsible for severe floods, the
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effects resulting from land cover and structure seem to be insignificant.

Umweltbundesamt (2007, p. 41) defines the potential costs resulting from externalities or

their internalisation as

1. Damage reduction costs

• direct costs (renovation and reconstitution)

• indirect costs (adaptation or avoidance)

• costs of prevention

2. Costs of uncompensated environmental and health damages

• costs of additional measures to reduce damages

• costs of uncompensatable damages

Compensation costs as a possible alternative or extension are also included in the method-

ology of the Umweltbundesamt. In flood protection studies, the cost comparison method

(Länderarbeitsgemeinschaft Wasser - LAWA 1998, Länderarbeitsgemeinschaft Wasser 2005,

Schmidtke 1981) is used to assess the efficiency of a flood protection project or different sce-

narios against the status quo without flood protection. Flood damages and building costs

are weighed against each other for a defined period (100 years in Germany). The scenario

with the most efficient outcome is chosen. If the building costs exceed the potential reduc-

tion of flood damages, the project can be dropped. If we assume that land use and other

human impacts increase floods, actual studies would misinterpret externalities. Instead of

seeing building costs partially as a compensation for land use change in upstream areas,

they are calculated against flood damages and included in the costs of protection scenarios,

which means accounting them on the side of the affected party. This way of calculation

violates the “polluter pays principle”.

The cost comparison method gains more importance as a way to allocate state money for

flood protection works. In most cases, the local community is involved in these projects and

as a beneficiary it pays parts of the planning and building costs. Disregarding the externality

part of flood damages or protection costs distorts the results of cost comparison studies and

burdens the downstream communities with almost the full costs of externalities. The state
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grants land users the full right to export their social costs. Only in some cases, (e.g. separate

waste water fee for storm water run-off from sealed areas) (Kraemer et al. 2003) was this

principle reversed in the past.

Disregarding the polluters pays principle results in two forms of inefficiencies. Upstream,

there are no incentives to enforce the redevelopment of land use or river structures. Users

can follow their established usage rights, or, as farmers, they are eventually subsidised and

they fully export their costs in the form of increased flood damages or flood protection

costs as externalities. Downstream flood mitigation projects are financed by riparians and

subsidised to reduce damages and compensate the effects of upstream activities.

Therefore, an extension of the approach of tradable permits (Thurston et al. 2003) could

provide a suitable solution to handle these externalities. In relation to other studies a

reduction of surface run-off through auctions could also reduce the effects of erosion and

diffuse pollution (Cason et al. 2003, Lewis, Barham & Zimmerer 2008).

Bargaining (Cansier 1996, Mankiw 2003) about the optimum, as suggested by Coase (1960),

does not take place. One reason could be transaction costs (large and inhomogenous group

of actors) which are too large. At the moment, the state grants the land users the right to

”emit” the water from their surfaces. Downstream riparian users would have to compensate

upstream users or bear the costs (damages, mitigation) as they do now.

The case of land use and hydrological externalities is not only a case of spatial externalities.

Because of the irregularity of flood events and the changing intensity, land use affects down

stream riparians later. Modifications of hydrologically relevant structures can show their

effects years after their implementation. Damages accumulate over time. These external-

ities have also a temporal character. The second temporal effect is the accumulation of

effects in different parts of the catchment over time. While the evaluation of individual and

small alterations do not show a significant effect, the accumulation of several projects in a

catchment can become a problem for downstream riparians.

Although floods were identified as major threats to our society and economy (Merz 2006,

MunichRE 2003, Patt 2001) and the effects of land use on run-off are understood (Auerswald

2002, Bismuth et al. 1998, Bormann et al. 1999, Debene 2006, DVWK 1999, Lammersen

et al. 2002, Niehoff et al. 2002), no attempts have been made to internalise the costs of flood
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damages or mitigation costs. This may be a result of the complex process from land use

in the catchment, the transmission of this effect through surface flow and channel routing,

the effects of river training on travel time and accumulation of flood waves resulting in an

externality in the lower catchment. In contrast to other forms of water born or water bound

externalities described in literature, such as extractions and irrigation (Bella et al. 1996,

Dinar & Subrahmanian 1997, Holden & Thobani 1996, Johansson et al. 2002, Qdaisa &

Al Nassayl 2001, Ward & Pulido-Velazquez n.d.) or pollution (Kraemer et al. 2003, Lewis

et al. 2008, Spachinger et al. 2005, Wang 2001), quantitative hydrological externalities are

possibly more difficult to identify and quantify. While the ”emission” of extra surface run-

off due to altered surface conditions can not directly be called ”pollution”, it is difficult

to economically relate land use to flood damages and apply instruments to regulate or

internalise the externality. In contrast to scarcity, in the current case, water is not the good.

Land and land use are the producing and affected factor - or good - and water is only the

vector.

5.4 Research objectives

The main objective of the study was to identify the flood-related externalities caused by

land use - especially agriculture and different land management instruments such as land

consolidation and river training. Statistical data, for example of past flood events, can not

be used because the available duration of records is too short. The only way to identify

the impacts of land use on flood damages or mitigation costs is to use a combination of

hydrologic and hydrodynamic models. In addition, methods of cost estimation for flood

damages or mitigation projects must be used to economically measure the impacts. A set

of scenarios must be developed to describe different conditions of land use and the river

system.

The thesis aimed to provide guidance for the questions:

• What are the causes of external effects and misallocations?

• What are the economic costs of external effects or misallocation of rights in river

systems, and how can they be derived from technical and environmental data?
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• Based on which environmental parameters can steering mechanisms be implemented

technically?

The chosen methodology in this thesis agrees with the approach suggested by the German

Federal Environmental Agency (Umweltbundesamt 2007, p. 53) to analyse and evaluate

externalities and focuses on the first four steps:

1. Definition of objectives,

2. definition of the subject of analysis and the boundaries of the system,

3. description of impacts,

4. description of cause-effect relations,

5. allocation of economic benefit and cost categories,

6. economic interpretation of resulting changes in benefits,

7. interpretation and comparison of damages with internalised costs.

In a catchment, the development of a flood depends on the main parameters:

• Precipitation,

• geology,

• geomorphology (and consequently the catchment structure),

• land cover,

• river structure.

The human impacts on land cover and river structure are mainly related to land use and

other actions like river training and land consolidation. Hydrologic and hydrodynamic mod-

els can describe the main physical cause-effect relations within the boundaries defined by

the catchment. Depending on the type of hydrologic model, the different parameters for

land cover, catchment structure and river system can be simulated. The evaluation of small
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landscape structures on a catchment scale is generally problematic because of missing land-

scape data of past situations, missing parameters in catchment models and the necessary

large amount of work to collect the required detailed data on a catchment scale.

The results of the case study show that high probability, low loss events have a high relevance

for flood damages in small catchments, because technical flood protection is not available.

These high probability events can be influenced by non-technical measures of flood detention

in the catchment and floodplain, but also by alterations of land use and landscape structures.

As a consequence of the study, it can be stated that increased run-off as a result of land

use must be economically seen as emissions in the same way as pollution is seen. Increased

damages or costs for flood defense are therefore negative externalities. The increase of

costs is a consequence of land use resulting in increased run-off. The transfer of costs can

be identified by subtracting the costs resulting from run-off from a pristine catchement

from those of a catchment under the current state of land use. Applying the polluter pays

principles means that land users must either reduce their level of ”emission” or compensate

the cost.

The interaction of high probability, low loss events with the effects of land use has a leverag-

ing effect. In rural areas small rainfall events result in damages to buildings or infrastructure.

The Herzogbach case study shows clearly that the accumulated damages of these high prob-

ability, low loss events are responsible for the majority of costs over time.

If land use and other human impacts increase floods, classical methodologies for flood miti-

gation underestimate the effect of non-technical measures (for example the renaturalisation

of trained sections of river systems). Focusing on technical measures, renaturation and

natural detention are ignored in a technical analysis. Economic analysis, for example cost

benefit analysis, also does not value the benefit of these measures. River renaturalisation

and natural detention are interpreted as a costs, which means they are on the wrong side of

the equation. If we apply the polluter pays principle and have to interpret missing natural

detention as an emission, then it represents a benefit in the analysis.

Also, the state subsidies for flood mitigation projects must be calculated using the com-

pensation effect for upstream externalities and social welfare, for example resulting from

increased production. This results in different forms of inefficiencies. In most studies of
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flood mitigation concepts, natural measures are ignored. As a consequence, technical mea-

sures are favoured and subsidised. The externalities caused by artificial river structures or

missing natural detention are ignored and compensated through technical measures sub-

sidised by the state and financed by the downstream riparian community. This contradicts

the polluter pays principle, or in this case, better named the causer pays principle. The

altered catchment results in increased run-off. If emission is not only defined as the emis-

sion of a hazardous substance, but each form of emission of dangerous physical or chemical

effects having an impact on the environment from a technical point of view, this increase of

floods due to land use can be called an emission. In addition, other forms of state subsidised

projects such as land clearance and reallocation, agriculture in general, as well as urban

development, can still increase the level of emission and hence externalities.

The results of this study can not be directly transferred to other catchments or be upscaled

to bigger river systems. Each catchment has its characteristics, and the human impacts

on the Herzogbach basin seem to be more severe than in other basins because of the large

amount of modified river sections and the intensity of land use. One big issue is the effect of

river training and diking to protect land use in the flood plain of bigger rivers that is widely

discussed. While environmentalists say that the loss of natural detention causes higher flood

waves, some engineers mention the low effect that these restricted, uncontrolled detention

volumes have on the enormous volumes of floods. In bigger river systems, effects of river

training, levees and the superposition of flood waves due to technical intervention maybe

relevant. If actual studies show a significant decrease in flood peaks, there will be further

need to evaluate the economic consequences. These can also be referred to as unidirectional

externalities.

The evaluation shows that there is an inter-temporal as well as a spatial dimension. The

results of land consolidation, river training and intensive farming practices cause higher and

more intensive floods in downstream areas. Because of the temporal variation of precipitation

and the low probability of flood events, damages can occur years or decades after the human

impact. Another time factor is the accumulating effect of different measures. While an

individual action such as the training of a short river section will have a minor or negligible

effect, the accumulation of different impacts can significantly change the run-off regime and

discharge behaviour of a catchment or river section.
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Floods restrict land owners from adequately using their property. The owners must either

take into account the damages to property and work or avoid or reduce vulnerable uses. In

general human land use and its consequences for river structure and within the flood plain

can impact other parties in the downstream section in a lot of ways. This study confirms that

factors related to land use, like river degradation as a consequence of land clearance, also

cause problems. The increase of floods caused by activities in the upper catchment decreases

the usage value of land property or increases the damages. The human-induced part of

flood damages must be separated from natural flood development. Otherwise, externalities

resulting from land use would be ignored, or additional externalities could arise from newly

planned measures.

A major finding of this study is that the flood damages of the situation with an upstream

intervention, less the damages without an intervention, can be used to quantify the exter-

nality. Another alternative would be the estimation and difference of mitigation costs for

both scenarios. As a consequence, different instruments can be used to internalise the costs,

or steer and control the impacts of land use.

With regards to the objectives of the thesis, it can be summarized that:

• Flood damages can be partially externalities of upstream land use. Because land use

and changes to land use were, and still are, generally granted without respect to run-off

relevant considerations. The polluter pays principle is neglected with regard to this

special form of quantitative ”emission”.

• The externalities can be estimated as the average damages of floods of the status

quo of land use minus those damages resulting from floods from a pristine catchment.

A combination of hydrologic and hydrodynamic models, together with methods to

estimate flood damages, can be used. Other methods, like substitutional approaches,

only provide a weak estimate of the extent of the externality, and are bound to certain

conditions in the catchment.

• Hence, hydrologic run-off coefficients can be used to describe the impact of land cover

and could be the basis for the application of steering instruments, such as regulations,

run-off certificates, taxes or other concepts to steer or internalise the costs.
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5.5 Impacts on policy making

The effects of changes to the hydrological parameters have been shown and evaluated above.

In the following subsection, an overview is given showing the points at which an internal-

isation and avoidance strategy could start - based on these parameters as indicators and

handles. It is discussed which future developments are of relevance for the development or

reduction of negative externalities with regard to floods and how this must be interpreted

taking into account the legal situation in Germany and in some cases in Europe.

Land clearance and land consolidation have been mainly responsible for the hydrological

effects investigated in this project. We know that different political and societal interests

have caused these developments, for example the need for food, and independence of food

production after World War II and during the Cold War. But further significant develop-

ments can also be expected in the future. The expansion of cities parallels the increasing

need for agricultural land. Land is a restricted resource, and land use optimization will still

be a major topic in the future. The conflicting interests of food production and renewable

energies will increase the demand for arable land and result in an intensification of agricul-

ture. Already these conflicting interests clash. World wide land clearance and consolidation

are going on. In Germany, it is progressing with a restricted intensity and includes measures

of nature conservation and habitat development. But often, run-off detaining actions are

ignored in this process. The results of this project seem to make it necessary to check the

efficiency of this state subsidised instrument. The case study showed that the accumulation

of different developments in the catchment results in negative externalities like increasing

flood damages.

Land use change is a process on a catchment scale that happens over generations and

establishes usage rights. This means that future usage right allocation and land use planning

must be more foresighted. A problem for project evaluation is caused by the spatial and

inter-temporal effects of human impacts. In the Herzogbach catchment, land use changes

and the modification of rural structures is a result of several land clearance projects over

the past 100 years. The results of this study show that significant hydrological consequences

and externalities do not result from any one project. They are the consequences of an

accumulation of different activities and projects over time. Therefore, the assessment of
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hydro engineering works, land use planning and urban development must be extended in

the future and take into account inter-temporal, accumulating and supra-regional effects.

It is impossible to make individual riparian land owners directly responsible for the impacts

on river structures. As part of land clearance projects, parcels of land are reorganised on

a larger scale. Structures such as boundary ridges and the shapes of fields are rearranged,

and ownership is reallocated to achieve an optimised structure and ownership situation. In

the past negative effects on a supra regional level have not been taken into account. Land

clearance projects of the 60’is and 70’is as a subsidised measure and policy instrument had

negative impacts on run-off and floods. As a result, it can be stated that the tools for

individual project assessment failed.

Mitigating or reducing the negative impacts of current activities is an important objective

of flood risk management. The internalisation of externalities in the water sector is not

only for environmental protection, but also, from a resource point of view, an economic

necessity. The project results show clearly that land use can cause significant externalities

in a catchment. This indicates that there can be a need for internalisation instruments

in the field of land use and its impacts on flood development in some catchments. The

study describes which relevant factors and parameters can be used as success indicators or

handles of an internalisation strategy. Urban development and land sealing impacted the

run-off situation, as well as agriculture. Therefore, different instruments and approaches

are described to internalise the external costs of land use in Germany and other developed

countries.

In general, instruments for an internalisation or to reduce or restrict externalities can be

divided into:

• Command and control strategies,

• legal regulations and definition of limits (e.g. emission standards),

• taxes, fees and subsidies to set incentives,

• voluntary self-limitation and bargaining (Coase theorem).

Different approaches can be used to control and steer the effects of land use on run-off and
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flood development:

• Operational instruments, like land clearance projects to allocate land property and

land usage rights to optimise land use from a run-off perspective,

• integration of run-off relevant parameters in existing legal instruments or sectoral

policies, like farming subsidies or urban land use planning,

• development of new instruments, like run-off certificates or run-off permissions.

Wallacher’s (1999) approach to integrate natural sciences, engineering, economics, ethics,

theological, social and political sciences in the development of a water management frame-

work goes far beyond most ideas mentioned in literature. Before such a holistic approach

can be started, a lot of interfaces between the individual disciplines must be assessed. An

approach similar to that described in this thesis fills the gap between environmental sciences

and economics.

Bernauer (2002) gives more integrated countries which are already bound by other contracts

or trade exchange a better chance of being cooperative in their basin management. This

also means that these countries have better legal and administrative basis on which to

handle externalities within their borders. To avoid the additional transaction costs of an

internalisation strategy, existing instruments can be used to influence the behaviour or regain

the costs. In Germany, a lot of regulations and instruments are used in environmental politics

- but also different sectors of planning and governance that could be used to implement

water related objectives with regard to externalities. Evaluating actual policies shows a lot

of areas, where an internalisation strategy could be implemented by changing regulations or

governmental instruments. The use of regulative instruments to internalise externalities of

land use is bound to certain framing conditions:

• Existence of a land register to assign and get information about property rights,

• distinct land usage rights,

• land use planning as a planning and control instrument.
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The knowledge of property rights like ownership (cadaster or land register), and especially

usage rights, is the main basis to installing control instruments for land use. Because land

provides different environmental functions in different parts of the catchments, it is necessary

to have planning and to use the right systems - either to deny special forms of use or to

grant them. Regular market policies to control land use and its distribution would ignore

environmental and morphological functions (Nicholas 1999).

Despite regulations also incentive and market based mechanisms could be ap-

plied. Thurston et al. (2003) suggests a system of tradable run-off permits to

internalize and steer the run-off from impervious areas. But also he emphasizes

the necessity of framing conditions to apply a certificate based approach: “Since

property rights at the parcel level are well delineated, runoff information at the

parcel level makes allowance trading a technically feasible management alterna-

tive. Making the standard assumption that property owners facing explicit costs

for managing runoff from their properties will be cost minimisers, we can predict

the effects of changes in allowance prices and land use” (Thurston et al. 2003, p.

411)

This means that a strong legal and administrative basis must be available to establish, for

example, a market to trade run-off permissions, but also to apply regulations.

Holden & Thobani (1996) provide the following suggestions for the implementation of water

markets, which can be taken as guidelines for the implementation of other policies as well:

1. Stakeholder participation,

2. establishment of rules for the initial allocation of rights,

3. setting up and strengthening water user associations,

4. protection against monopolies.

The policy making process must respect the existence of different reasons and interests

held by stakeholders in the development of policies. The stakeholders’ views represent

ecological as well as technical criteria such as cost recovery, redistribution of income or
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economical development (Dinar & Subrahmanian 1997, p. vii). Controlling the impacts of

an internalisation strategy relies on the available forecast of behaviour, as mentioned above.

The choice of instruments may depend on the existing legal framework. In developed coun-

tries, a strong legal basis exists and is enforced. This offers the possibility to use the full

bandwidth of instruments. Through land use planning and the allocation of land usage

rights, land use can directly be controlled. But also existing agricultural subsidies or fees

for waste water discharge can be used to influence user behaviour. Last but not least, state

driven or subsidised land clearance or land consolidation projects can also be influenced.

For Germany, a set of solutions to internalise the costs of surface run-off or set incentives to

draw back existing mis-developments could contain:

• Adding new criteria to the cross compliance catalogue for farming subsidies to enforce

the use of sustainable farming techniques like intermediate crops or direct cropping,

• implementing a separate waste water fee for sewage and storm water run-off to enforce

local detention and infiltration techniques instead of piped run-off,

• integrating river development and the building of small scale detention structures like

grassed water ways in land consolidation and allocation projects.

In the project area, different instruments could be applied as an adaptation of existing

regulations to decrease the impact of land use, internalise the costs of flood protection and

set incentives to change inefficient techniques.

One possibility to influence the majority of surfaces in the catchment would be a change in

agricultural practices and plot structures. In European agriculture, the conditions defined by

the cross compliance requirements of European subsidies could be used to define best practice

that includes retaining effects. At the moment, criteria for livestock breeding and the use

of fertilzers are the ones mainly defined. The reduction of erosion is an abstract objective

defined in this regulation. A clarification of best practices for the reduction of erosion and

surface run-off would bring benefits for both objectives. Run-off, but also erosion, are mainly

influenced by physical structures. The use of intermediate crops or direct cropping would

reduce erosion as well as run-off. This could provide additional benefits for water quality

and the reduction of maintenance costs for river structures.
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Existent field structures also lead to a loss of flood plains and natural river structures. En-

vironmental and water management criteria for state subsidised land consolidation projects

would have a controlling effect. For these types of measures, a cost-benefit analysis and

impact assessment would help to define the need for action. State subsidies could then be

bound to positive externalities regarding run-off and floods resulting from the project.

Next to regulations or the modification of existing subsidies also more market oriented

approaches could be used to such as splitted waste water fees or their extension as run-off

certificates.

In Germany, the standard fee for waste water is based on the metered fresh-water con-

sumption of a household or consumer. Waste water is charged equivalent to the consumed

fresh-water to compensate the costs for sewer-system and waste water treatment. Some

cities applied a new type of fee that also includes the equivalent costs resulting from storm

water run-off from sealed areas. The separate waste water fee splits the costs for waste water

services into the two parts:

1. Waste-water and

2. storm-water.

Waste-water is still calculated by the fresh water equivalent. In addition, a fee is charged

based on the extent of sealed areas connected by the consumer to the sewer-system. The

main idea behind this fee separation was to set an incentive either to unseal areas or install

measures to infiltrate storm water or retain it in ponds or reservoirs. The fast growth of

some urban areas and total sealed areas offered only two possibilities: either to improve the

existing infrastructure and substitute smaller pipes, reduce the effects resulting from sealed

areas (e.g. infiltration) or reduce the extent of sealed areas.

In some parts of Germany, this instrument is still not implemented. Because of its dense

population, Germany has a high percentage of sealed surfaces. The general consequences of

sealing on surface run-off and flood development have been mentioned above and have been

shown by different authors (Umweltbundesamt 2001, Niehoff et al. 2002).

Separate waste water fees can be used to reduce or regain infrastructural costs. However,

they can also be implemented to reduce surface run-off by setting an incentive for unsealing
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and regaining the costs of externalities. The system of separate waste water fees could be

extended to all surfaces in the catchment. “One criterion that might be widely acceptable

as a basis for the initial distribution of allowance endowments could be the runoff volume

that would exist if the land were in its original, pristine condition, ...” (Thurston et al. 2003,

p. 412). The separate fee could be applied on a catchment scale. Hydrological run-off co-

efficients could be used to estimate the effects of different use types and surface structures.

In combination with the size of a land parcel, this approach would allow water emissions

rights to be assigned. In contrast to a separate waste water fee, a certificate market would

also allow an upper limit of water emissions to be set on a catchment scale.

In general, run-off permissions/certificates as a special form of emission rights could be used

to control the total water emissions in a catchment. Allowances could be based on the

size of the parcel and the hydrologic run-off coefficient and use type. On a municipality

level, these allowances could be traded between land owners. On a catchment scale, dif-

ferent municipalities could use this system to avoid upstream-downstream effects between

communities.

“Renaturation, alternative agricultural methods and similar sustainable techniques provide

additional positive effects like a reduction of surface erosion on agricultural sites or reduced

bed and embankment erosion. To solve or reduce the effects of floods in all areas protection

can only be financed, if solutions solve different problems. The mentioned techniques help

to reduce erosion, sediment delivery and better the water quality. From the economic point

of view the theory of externalities supports these implementations to partially compensate

the negative effects of land use.” (Dorner, Spachinger & Metzka 2005, p. 30)

As we have seen on the sample of water-related land use externalities, the economic valuation

of externalities needs a broader scientific and environmental understanding of human actions

and environmental reactions. Especially the impacts of actions over different scales must

still be developed. While the demonstrated effects of land use and river development on

flood behaviour can be stated for general in smaller catchments, their dependencies in bigger

catchments or international river basins is not always clear. Another aspect is the individual

characteristic of each river basin, and for bigger basins, even changing conditions within the

basin.
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Most measures to reduce externalities or internalise the costs on a local scale in a small

catchment, would lead to no negative reaction on a larger scale. It can be assumed that

reduced surface run-off, increased natural detention in the catchment and the flood plain of

rivulets would also have positive effects in larger areas, as they would lead to for example

improved water quality and reduction of sediments. As a consequence, it can be stated that

there is a need to set up new or modify existing instruments to either reduce human impacts

or partially internalise these costs.

As we have seen above, not only the direct use of water, but also the side effects of other

human actions affect water and water bodies indirectly. The effects of both direct and indi-

rect actions must be taken into account when valuing the use of water and strengthening its

protection. “The changes in land use and the human impacts to soil have also consequences

for the hydrological cycle. Sealing, compaction and missing natural cover reduce the infil-

tration and retention capacity of our landscape. Rivers and rivulets have been straightened

to improve land use in the flood plains. The peaks of flood waves in small catchments in-

creased and in parallel settlements in the flood plain developed and the potential damage

grew. The use of technical measures of flood control may work along streams or for areas

with high vulnerability. But due to financial and technical aspects the high standards of

flood control can’t be established in all areas based on these techniques. Sustainable land

use on agricultural sites and in settlements can help to amend surface run-off and reduce

flood risks especially in small catchments.” (Dorner, Spachinger & Metzka 2005, p. 27)

In relation to water, Wallacher (1999, p. 165) states: “Diese Ressourcen werden in der

Produktion als Faktoren eingesetzt, deren Ertrag gemessen wird, ohne sie als Kapital zu

bewerten. Die Erträge werden privatisiert, während soziale und ökologische Kosten des

Naturgebrauchs externalisiert werden, d.h. die gesamte menschliche Gemeinschaft belasten.

Wenn diese als Kapital bewertet würden, käme deren Schonung schon aus ökonomischen

Gründen eine wichtige Bedeutung zu.” [These resources are used as factors for production,

whose revenues are measured without valuing them (the resources) as capital. Revenues are

privatised, whereas social and ecological costs are externalised, stressing the whole human

society. Valuing them as capital, would make their protection of importance from an eco-

nomic perspective.]. But he even goes beyond the level of an internalisation strategy and

asks for an ethical discussion of the value of water and normative societal regulations to
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restrict the misuse.

Existing systems of usage rights and use structures established over the last decades, resulted

in externalities and societal inefficiencies. Often, land owners and land users refer to grown,

established and granted rights. Applying the polluter pays principle to the water sector

means that in small catchments, but also larger areas, land users would have to compensate

either flood damages or the costs of flood protection works. It is unrealistic to avoid all

forms of “emissions”. It must also be weighed between different and often conflicting societal

interests. For example:

1. Growth of energy crops as renewable resources vs. reduction of erosion.

2. Intensification of agriculture for food production vs. renaturalisation of sites and

development of filter strips.

3. Urban and infrastructural development vs. unsealing and infiltration.

Leaving the scale of small catchments behind, problems resulting from unidirectional ex-

ternalities can be found in international river basins as well. In regions where water is

scarce, the effects of upstream-downstream externalities, like water retention for irrigation

and hydro-power, have already been addressed. In Europe, different forms of water-related

externalities can also cause problems on a catchment scale. Major engineering works in

upstream areas, the Danube for example, reduce the bed-load and cause erosion in down-

stream areas. The nutrient transport from upstream agricultural areas to the Danube delta

and Black Sea endangers fishery and habitats. Also, the flood increasing effect of levees and

river corrections is in this discussion.

Sadoff & Grey (2002) show that co-operation in international river basins can bring four

types of benefits to all participants in the common management process:

1. Ecological benefits to the river,

2. production benefits from the river due to improved and more efficient management of

common resources,

3. reduction of political tensions because of the river, and



4. economic or social benefits beyond the river, as co-operation along the river can have

a catalytic function for other forms of cooperation.

But it means that upstream countries and municipalities, but also individual land users,

have to accept restrictions on land use and other forms of impacts on the water bodies to

reduce externalities in downstream areas. Also, upstream countries can “profit” because

actions will result in reduced externalities within their country.

In addition, the conclusion must be drawn that a system of static or permanent land property

and usage rights reduces the ability of a society under land use pressure to react to risks

and developments. Land and soil provide different functions, as shown in this project from

a hydrological perspective. From an economic point of view, land, soil and their functions

can be seen as a scarce resource. The optimization of land use and, therefore, the optimised

allocation of land must be an objective of future policies. A rejecting attitude of individuals

or groups of individuals and the disregard of negative societal impact can inhibit necessary

developments. Land property rights restrict the ability of a society to react in the short-term

on mis-developments in the distribution of land use. The social responsibility of property

must be transferred also to land use and usage rights. The first approaches to land use

optimization can be seen in the irrigation water allocation projects using tradable water

abstraction allowances. To avoid over-abstraction and especially regional over-abstraction,

for example in infertile upper catchments, water markets have been established. These

markets can, firstly, restrict the total amount of abstracted irrigation water and, secondly,

have a steering function to enable more productive areas or producers to bid and pay for

the resource.
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Chapter 6

Conclusions

6.1 The externality problem

More than 2,000 years of human land use altered our landscape. During the past 50 years

urban development, land consolidation and land clearance, as well as river training and

hydraulic engineering works, significantly modified the catchments and influenced the hy-

drological behaviour of our catchments. Due to the situation of our river systems linking

different land users from upstream to downstream, upstream alterations can have negative

impacts on downstream users. From an economic perspective, these influences can be seen

as externalities of upstream land use.

These externalities can be negative and are worth analysing from an economic viewpoint for

different reasons because:

• The costs of human actions are not integrated into the economic equation of the

producer, but assigned over time to other people.

• Externalities may have inter-temporal effects. The negative effects can be delayed and

occur as economic costs to future generations.

• Minor externalities of different individual polluters or causers can accumulate over

time and on a catchment scale.

149
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As a working hypothesis, it was assumed that the extent of flood damages is influenced by

land use in the upstream areas. Therefore, flood damages would be a function of hydrological

parameters such as surface characteristics, catchment and river structure, and land use.

Anthropogenic impacts in the upper catchment could result in negative economic effects,

such as increased flood damages or additional costs for flood protection, which can be seen

as externalities of upstream land use.

The main questions, that follow are:

1. Can externalities, for example flood damages, be directly linked to land use and human-

induced changes to hydrology and river morphology, and so quantified using hydrolog-

ical models?

2. Can externalities be assigned to identified causers or polluters, or at least alternatively

be made a requirement to specified user groups?

3. Can natural effects of flood development be split from anthropogenic ones?

4. Are the external costs significant and worth analysing?

The hypothesis addressed in this project was that land use in the upper catchment can

have significant negative impacts in the lower catchment, which must be seen as negative

externalities of land use. A key question to be answered was how these externalities can be

quantified and which scientific parameters of land use (for the description of hydrological

systems) can be used to draw conclusions about the economic effects of changes to this

system.

6.2 Modelling approach, findings and contributions to

the field of research

The presented thesis is one of the first research projects assessing externalities related to

land use and flood development. Individual authors already indicated in the past that land

use and other human impacts could alter the hydrological behaviour of a catchment. While

the effects of land use on hydrology have sufficiently been proven, the externality effect
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was only stated (Thurston et al. 2003). This thesis presents for the first time an integrated

methodology that allows an estimate of the existence and extent of flood related externalities

of land use and other anthropogenic impacts on landscape.

The hypothesis addressed in this project was that land use from a hydrological perspective

results in significant external effects. The development of a conceptual framework based on

technical and ecological parameters, as well as the idea of a hydrological scenario analysis

used in this study, was a necessary first step to identify the mechanisms of land use and

externalities and provide the necessary handles for an internalisation strategy.

An internalisation strategy as well as the identification of externalities, needs measurable

parameters to define a behavioural change as an objective or impacts as a cause and to

quantify the resulting welfare or externalities. Therefore, different techno-environmental

parameters were identified:

• Type of land use and land cover,

• changes in the landscape. Especially small structures such as boundary ridges, drains

and depressions,

• changes of the river structure (sinuosity, elevation of floodplain, buildings like levees).

Depending on the type of landscape and land use, also other factors such as structure of the

sewage system and intersecting buildings like weirs or dams can have additional effects.

To estimate the extent and amount of the externality, it was necessary to develop a concept

for a hydrological scenario analysis. The parameters can be used to hydrologically simulate

different scenarios of land use, which can be compared from a technical and economic point of

view. This scenario analysis is the key to identifying the extent and amount of the externality.

The hydrological status quo is compared to different alternatives of land use, river structure

and flood protection. Two general economic concepts to measure the externality can be

used and were applied to this hydrological problem:

• Comparison of damage functions and

• costs for compensation through technical flood protection.
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Parameters to technically quantify the extent of an externality or to measure the technical

impact of the internalisation strategy are:

• Change in peaks of the flood wave [m3/s] (hydrologic parameter),

• change of volume of the flood wave [m3] (hydrologic)

• delay of individual flood waves and avoided super positioning [h] resulting in a reduc-

tion of peaks [m3/s] (hydrologic),

• changes in the water level [cm] (hydrodynamic),

• changes in the extent of the flood plain [m2] (hydrodynamic),

• changes of flow path and flow velocity [m/s] (hydrodynamic),

• changes of the affected areas by type (building, farmland, ...) [m2] (hydrodynamic).

To achieve this, it was necessary to couple a hydrodynamic model with the hydrological

model to calculate the effects of different hydrological scenarios in the flood plain.

As the final step, the externality (or the effect of the internalisation strategy), must be

quantified in financial terms. For this, relevant cost or damage functions affected by floods

were identified as:

• Changed flood damages: difficult to assess, because indirect and intangible damages

must be estimated and will cause extensive work if larger areas are surveyed.

• Changed costs for technical detention: in combination with hydrological models easy

to assess, if areas for potential detention structures are available.

• Changed in situ protection costs: difficult to estimate, because it causes high planning

efforts for different planning scenarios.

Using this approach the transfer of costs from upstream land users to downstream riparians

can be assessed comparing two land use scenarios from a hydrological and hydrodynamic
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perspective. Subtracting the resulting damage or cost functions for flood damages or mit-

igation costs indicates the amount of the resulting externality. Comparing the scenario of

the current land use with a pristine catchment indicates amount of the externality.

The case study showed that land use can have a significant impact from an economic point

of view and result in externalities for downstream riparian land owners and users. With

regards to the geomorphology, land use structure and other parameters, not all suggested

methods can be applied to estimate the amount of the externality. The calculation of flood

damages was restricted to direct tangible damages in the case study. Technical detention to

compensate the effect of land use can only be used if sufficient storage capacity is available

at suitable locations in the catchment. Also, the comparison with measures of technical

flood protection is restricted by the availability of technically feasible solutions.

The estimation of hydrologically relevant land use externalities can only be achieved us-

ing integrated modelling approaches. Because of the long term measurements necessary to

quantify the outcomes, only hydrologic and hydrodynamic models can provide data of the

potential impacts and compare different scenarios of land use and landscape. The methodol-

ogy applied in the study can also be used to control the impacts of internalisation policies and

forecast environmental outcomes. Impacts of policies on behaviour and practices would be

necessary as input data. To control the outcomes, either different scenarios of development

can be assumed or results from economic, or social models could be used. Market-based

internalisation strategies could be especially evaluated through this coupling of models.

The study indicates that the external effects of human actions on other parties using a

catchment and a river system are significant and should be managed. The extent of external

effects shown for the quantitative hydrology of the catchment indicates that internalisation

of external costs or regulation is necessary and could provide a contribution to flood risk

management on a catchment scale. The necessary next step for externalities - options for

regulation, internalisation and transaction costs must be weighed against each other and be

compared with other economic and social impacts of such an approach.
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6.3 Implications for future policies

Different impacts in the past have led to the development of externalities in river basins.

“The most significant human interventions in the hydrological cycle have been made over

the last decades.” (Scheidleder et al. 1996, p. 5). Actions to avoid externalities in the

future, therefore, must start at different levels:

• Scenario analysis for projects to estimate supra-regional and accumulative effects re-

lated of runoff and floods,

• impact assessment of new policies affecting land use,

• better integration of environmental objectives in land use planning and land clearance

projects,

• assessment of natural detention in flood mitigation studies.

In general, the following technical and environmental counter measures could be applied to

reduce the hydrological impacts of land use:

• Application of sustainable farming techniques such as direct cropping or intermediate

crops (Auerswald 2002),

• renaturalisation of run-off relevant landscape structures like ditches for example into

grassed waterways (Fiener & Auerswald 2003),

• methods for local rain water detention and infiltration in urban storm water manage-

ment (Sieker & Klein 1998),

• renaturation of river sections and

• redevelopment of the natural flood plain (Umweltbundesamt 2001).

Of course, these suggested instruments can only achieve a significant result if they are applied

on a large scale that is representative of the catchment. The effectiveness depends very much

on the local climatic and hydrologic conditions and the size and structure of the catchment,

as mentioned above.
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Land consolidation and land clearance have been identified as major reasons for the nega-

tive changes in the landscape that are causing externalities. In Germany for example, these

instruments were established as state driven and legally based processes for land use optimi-

sation, and can also provide the solution. To re-establish natural landscape structures and

re-organise the floodplain on a larger scale, it is necessary to reallocate land and land use,

as well as to acquire areas for these structures. Land consolidation can be an instrument

to achieve this. Hence, instruments for an economic assessment of the status quo and an

evaluation of land use externalities must be necessary preconditions before a project of land

consolidation can start.

Today’s technical assessment practices still focus mainly on the local effects of a measure.

The accumulation of effects because of a set of measures in the same catchment, are not

quantified. Classical cost-benefit analysis of individual measures tends to underestimate the

externality effect, because they often only take into account the effects of a local measure

on a local scale. As a consequence, cumulative effects are not assessed.

Therefore, it is necessary to develop assessment tools that include general tendencies, which

could lead to the accumulation of effects. An individual activity has not only to be reviewed

using the status quo of the surrounding, but also future scenarios, trends and potential or

intended activities in the area of interest. For assessments in river basin management, the

hydrologic catchment would provide the spatial frame for such an analysis.

But on a political level, new assessment instruments are also necessary. Umweltbundesamt

(2007, p. 8) sees economic assessment as an important instrument to develop sustainable

solutions in the future and avoid or reduce externalities. The subsidies for renewable energies

provide a current example of this. In areas around the test catchment, environmental policies

tend to foster and subsidise the implementation of biomass energy and influence agricultural

practices. As a consequence, subsidised biomass production increases the cultivation of

maize and influences surface run-off and soil erosion - with all its negative impacts for

flood development and water quality. But also other policy fields, such as agricultural

policies in general, urban development, land programmes and plans and building codes, can

influence run-off relevant parameters. In addition to technical impact assessments policy

results assessments are necessary to evaluate the general environmental impacts of political

decisions.
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“ Die Bauwerke in und an den Flüssen - insbesondere die Staubauwerke - und jede Land-

nutzung in potentiellen Überschwemmungsgebieten schließen stets ein Hochwasserrisiko ein.

Es ist nach technischen und ökonomischen, ökologischen, sozialen und letztlich politischen

Gesichtspunkten zu entscheiden, welches HW-Risiko akzeptiert werden kann.” [Buildings in

and at rivers - especially detaining structures - and land use in potential flood plains always

include a flood risk. From a technical, economic, ecological, social and finally political stand

point, it is necessary to decide which flood risk can be accepted.] (Dyck 1995, p. 430). This

also includes the evaluation of competing land uses and its upstream-downstream relations.

Past river training in rural areas intended to make farmland available and protect crops

against floods. As a consequence, downstream riparians have to bear the extra costs for

flood protection or damages.

But not only land users or land owners have to rethink their activities with regard to

externalities. Also in engineering practice, a rethinking of established concepts for flood

protection is necessary.

Future projects must take river renaturalisations and spatial measures into account as part

of a long term mitigation strategy. For this, (external) costs and benefits must be assessed

as a part of a cost-comparison and cost-benefit study. The used methodology could be

generally applied to identify the costs of land use and river training. In addition, other

benefits resulting from spatial measures - such as reduced erosion and ground water recharge

- should be taken into account as additional benefits.

In flood mitigation projects, measures in the catchment such as changes of land use, small

detention structures, etc., are often not evaluated. Samples from Bavaria show that either

the effect of these spatial measures is underestimated and not taken into account, or planners

are not able to quantify either the effect of spatial measures (Dorner, Spachinger, Lenz &

Metzka 2005a) or compare their efficiency to technical buildings like reservoirs or levees.

Taking the results of this study, spatial measures in particular should be assessed because of

the double dividend. The negative effects caused by river training and land clearance in past

years could be compensated. As a second benefit, the costs for technical flood protection

infrastructure could be saved or reduced. In addition, other side effects like erosion reduction

and better water quality increase the benefit.
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The avoidance of flood-related externalities can also carry additional benefits because of

erosion protection, reduction of diffuse pollution, reduced infrastructural costs for sewage

infrastructure, protection or extension of habitats or reduced maintenance costs for technical

structures.

In the Herzogbach catchment the transfer of costs from land users in the upper catchment to

riparians downstream showed to be significant. Therefore further actions must be evaluated

from an economic or social perspective either

• to regulate land use and reduce the externality,

• compensate the costs and damages e.g. through governmental transfers,

• subsidize the use of detaining agricultural techniques and renaturalisation,

• or use market oriented approaches to establish ”emission´´ levels e.g. through the

trading of certificates.

In the test catchment regulations could establish easily first results. Scenario D shows that

a change in land use practices would result in a significant reduction of flood peaks and

costs. This could be achieved e.g. by defining standards for sustainable farming. A second

approach would be the use of established subsidy programmes for land reallocation and

river development to establish new structures or re-establish natural detention structures

in the landscape. A third approach would be a system of tradable run-off permissions

on a catchment scale. The compensation of costs represents the current approach, where

flood damages are partially and costs for technical flood protection on a community level

are fully subsidized by the state. The current approach must be seen very critical. In

smaller catchments this approach often fails if two or more communities situated in the

same catchment can not agree to build jointly a protection systems, which is often the

only effective approach for flood protection. This results in additional costs or the flood

protection project is dropped. As mentioned above this approach is also critical regarding

the current approach used in cost benefit analysis because technical solutions are preferred

in contrast to natural detention. The individual use of one of the other three alternative

approaches would result in the reduction or partial avoidance of externalities, but not in a

balanced and comprehensive internalisation. While land use in relation to land cover and
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river training both contribute to the problem only a combination of different approaches

would result in a balanced internalisation strategy.

From a technical point of view and based on the findings of the case study a suitable solution

would be the regulation of agricultural practices (use of intermediate crops) in combination

with subsidies for river renaturalisation in the first step. This would quickly achieve first

results without large preparations or administration. Both relevant factors (river training

and land cover) resulting in externalities would be covered. To achieve a full reduction of

externalities or a compensation of remaining external costs a system of run-off certificates

based on run-off coefficients for different land covers would be an adequate second step

to provide a long term perspective. Revenues of the certificate trading could be used to

compensate remaining external costs.

6.4 Opportunities for future research

The results of the study show clearly that there is a need for further research in the field

of water-related economics. Three major fields need to be covered to gain a better under-

standing of environmental processes and economic effects:

1. How, and up to which extent, do changes in the landscape - like shapes of fields and

boundary ridges - affect run-off (on a catchment scale)?

2. Which other types of water related externalities like erosion and diffuse pollution arise

as a result of human activities in the catchment?

3. How would water-related internalisation strategies affect other sectoral policies?

4. Did the benefits of past land clearance projects cover the costs of resulting externalities,

and how will this problem be handled in the future?

Besides the quantitative side of surface and channel run-off, other related processes are also

of interest and need to be assessed. Erosion and diffuse pollution both depend on precip-

itation and land use. Both affect water quality and, therefore, may reduce the welfare of

downstream riparians. Also, hydro power, although a carbon dioxide neutral form of energy
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production, has ecological impacts. Power plants and their technical infrastructure, like

weirs and reservoirs, block the bed load and can increase erosive processes in the down-

stream water courses. As a barrier for fish migration, they affect the quality of habitats and

upstream areas. From a water management perspective, there is a strong need to quantify

ecological and economic dependencies on a catchment scale. Economic studies are mainly

focused on administrative borders. Applying methods and instruments of environmental

economics to the water sector means using the relevant physical and environmental borders

of rivers and their catchment.

Also other economic questions in relation to water seem to be unsolved. In technical and

environmental literature, water is always referred to as a public good. But depending on the

section within the hydrologic cycle, the good’s character can change from public to private.

Precipitation on a land parcel makes water a private good for the owner of the parcel. He

may exclude others through detention measures while the use of the resource is rivaled for

example for irrigation and as potable water. For the development of internalisation and

control instruments, a better understanding of the physical character of water is needed to

assess its economic implications.

Flood protection is often referred to as a public good. From an economic point of view,

flood protection measures are, in most cases, a public investment. But the good character

depends on the type of protected uses and areas. If levees protect residential areas, they are

a private good or club good, because only land owners in the protected area benefit from

the protection effect. Only in the case of major public infrastructures protected through

levees, or valleys protected through large reservoirs, the status as a public good seems to

be a given. The argument for flood defense measures is to make valuable areas available for

more intensive uses. But ongoing state subsidies for flood protection works could lead to

misallocation of land use and set the wrong incentives. People building on cheap land in a

protected former flood plain are subsidised by the state.

In general new methodologies for project assessment are necessary. To avoid future exter-

nalities, resulting from hydro-engineering projects, rural and urban development, as well as

other forms of land use, the effects of these measures need to be quantified in technical and

economic terms. Environmental and technical models are needed to simulate different sce-

narios and make predictions about the impacts. Cost-benefit and cost-comparison studies
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must be extended and externalities be taken into account. This means that environmental,

physical and economic methods and knowledge must be combined to establish new combined

and integrated management and evaluation instruments to deal with oft mentioned water

crises and to protect the water resource.

The thesis argues that the effects of land use often cause water crisis in a catchment. It is

equally true that they represent a crisis in land use. Through the hydrological cycle, water

and land are closely bound together. Every action will show its effects downstream. The

presented effects of land use on water bodies are only one segment of an integrated river

basin assessment. Consequences of surface sealing, farming, land clearance and hydraulic

engineering on groundwater recharge and quality, surface water quality, erosion and sediment

delivery, river morphology, bed load and habitat conditions have not been within the scope

of this study. In most of these cases, environmental and scientific cause-effect chains are

well understood. Like in the case of flood development and economic analysis of floods,

the missing link is the relation between the human intervention and resulting economic

consequences from an environmental economic perspective.

To solve land, soil and water problems, it is also necessary to deal with the economic activ-

ities behind the use of resources and the interaction of temporal and spatial externalities.

In the water sector, future scientific effort is needed to assess the effects of land use and

hydraulic engineering works on erosion and sediment management, soil degradation, bed

load management and water quality.

There is a need for further studies - for example a cost-benefit analysis of the land consol-

idation instrument - first to assess its economic benefit, and second, to improve the whole

structure and make it more efficient from a social point of view.

The presented methodology provides an approach to identify and quantify land use exter-

nalities from a quantitative hydrological perspective. From an economic point of view, the

project stalls where a cost-benefit analysis would be necessary to weigh benefits of land

use against the described impacts or compare the status quo with different internalisation

strategies. For a better understanding of the local situation and the implications for policy

making, the results open the field for research in economics, politics and social sciences to

reflect and study the cause-effect relations from their perspective. It will be necessary in the



future to investigate different strategies of internalisation of the economic costs of human ac-

tions in a catchment. Internalisation strategies could provide significant assistance towards

preventing environmental degradation and the prevention or mitigation of flood damages.

The broad application of environmental techniques and changes in farming practices on a

national level also requires a review of current policies and an evaluation of impacts in other

sectors - including an economic impact assessment and cost-benefit-analysis. This would

go beyond the scope of this thesis and needs to be evaluated by other disciplines, such as

economics, agricultural sciences and political sciences.

In general, it can be stated that there is a need for further studies in the field of “hydro-

economics” with regard to flood economics. Physical aspects of water-related externalities

are not well described in literature, except for the problem of water scarcity and rival water

use. The economic understanding of the resource water is very little. Most hydrological pro-

cesses and use types known to be of economic relevance are technically well understood, but

have rarely been monitored and highlighted from an economic point of view. The protection

of our water resources is not only an environmental, but also an economic task. Hydro-

economics, as a combination of environmental and engineering knowledge with economics,

could provide the right instruments to increase the environmental and economic efficiency

of our activities.

Results of the project ILUP - Integrated Land Use Planning and River Basins Management

(Dorner, Spachinger & Metzka 2008) and other research in the field of river basin manage-

ment (Cason et al. 2003, Wang 2001, Moss 2004), indicate that also other problems need

to be reviewed from an environmental economics-perspective. The problems in quantitative

hydrology referred to in this work are not the only externality situation in a catchment

resulting from land use. Water quality, erosion and sediments are additional points that

need to be analysed. Rivalry in the river system between different stakeholder groups such

as fisheries, tourism and the recreation industry, as well as farming, require an integrated

environmental, technical and economic evaluation of activities and their impacts.
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Bormann, H., Diekkrüger, B. & Hauschild, M. (1999), ‘Impacts of landscape management

on the hydrological behaviour of small agricultural catchments’, Phys. Chem. Earth

(B) 24(4), 291 – 296.

Bradbrook, K., Waller, S. & Morris, D. (2005), ‘National floodplain mapping: Datasets and

methods’, Natural Hazards 36(1), 103–123.

Brouwer, R. & Hofkes, M. (2008), ‘Integrated hydro-economic modelling: Approaches, key

issues and future research directions’, Ecological Economics 66, 16–22.

Cansier, D. (1996), Umweltökonomie, 2 edn, Lucius & Lucius, Stuttgart.

Cason, T. N., Gangadharan, L. & Duke, C. (2003), ‘A laboratory study of auctions for reduc-

ing non-point source pollution’, Journal of Environmental Economics and Management

46, 446–471.

Chiew, F. H. S., Stewardson, M. J. & McMahon, T. A. (1993), ‘Comparison of six rainfall-

runoff modelling approaches’, Journal of Hydrology 147(1-4), 1–36.

Coase, R. H. (1960), ‘The problem of social cost’, The Journal of Law and Economics 3(1), 1.

Correia, F. N., Rego, F. C., Saraiva, M. D. G. & Ramos, I. (1998), ‘Coupling GIS with

hydrologic and hydraulic flood modelling’, Water Resources Management 12(3), 229–

249.



References 165

Croke, B. F. W., Merritt, W. S. & Jakeman, A. J. (2004), ‘A dynamic model for predic-

tion hydrological response to land cover changes in gauged and ungauged catchments’,

Journal of Hydrology 291(1-2), 115–131.

de Roo, A., Odijk, M., Schmuck, G., Koster, E. & Lucier, A. (2001), ‘Assessing the effects

of land use changes on floods in the meuse and oder catchment’, Phys. Chem. Earth

(B) 26(7-8), 593–599.

Debene, A. (2006), Modellierung anthropogener Eingriffe auf das Hochwasser-

abflussgeschehen in der Mesoskala, PhD thesis, Universität für Bodenkultur Wien.

Deutscher Wetterdienst (2005), KOSTRA-DWD-2000 - Starkniederschlagshöhen für
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Appendices

A.1 Principles of hydrology

Water exists in three different phases on our planet: ice, liquid water and vapour, in lakes,

rivers, the sea, as groundwater, glacier or snow cover, moist air, precipitation and clouds.

The phase changes depending on the location of the water in the hydrological cycle. “The

hydrologic cycle describes the movement of water in all its states of aggregation from pre-

cipitation, over, evapo-transpiration, infiltration, surface run-off, from the surface over the

rivers to the sea. Human actions like agriculture, settlements, infrastructure influence this

cycle and increase, especially in small catchments, the flood peaks. The development of

floods is highly dependant on surface structures, soil type and land cover. In densely settled

areas the percentage of sealed surface is the important factor. In rural regions the type of

fruits and plant cover influences mainly the run-off.” (Dorner, Spachinger & Metzka 2005,

p. 27) Water is transformed by weather processes or using the energy of the sun. It is

transported and stored in each of these phases.

Within a river catchment the hydrological process can be written in the form

N = A + V +−∆S
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N: Average height of precipitation

A: Average run-off

V: Evaporation

∆S: Storage in or release from the catchment

Annual water balance of the German Federal Republic between 1931 and 1960 N = 837 mm,

V = 519 mm, A = 318 mm (Maniak 1993, p. 2).

The hydrological cycle starts with evaporation of water e.g. at the open sea, but also

over humid continental areas. As water dust it is transported as clouds. Under certain

conditions it condensates and starts to rain. Depending on the local climate a lot or most of

the precipitation already gets lost as evaporation. It covers the surface of plants and trees

or the soil, where it mainly gets lost as vapor through evaporation. Also plants loose water

in form of transpiration. These combined losses of evaporation and transpiration, mainly

depending on land cover and plants, are called evapotranspiration.

Other parts of the precipitation infiltrate into the soil. There it either runs-off in the upper

layer as the so called interflow or infiltrates to deeper zones, where it fills the groundwater

layers. Ground water is an important storage, and influenced by water transport through

different layers, by capilarity and along the decline. This transport is called ground water

run-off.

The excess water that does not evaporate or infiltrate is stored in natural depressions or

builds the surface run-off. Surface run-off later unions with ground water run-off and inter-

flow in rivulets and rivers.

Snow and ice is a special form of precipitation, which in a first step builds a natural storage

as snow cover or glaciers. In addition it can also store big amounts of precipitation in its

porous structure. In contrast it can also release big amounts of water during the melting

period in spring and early summer.

All these processes and the individual amount of water getting lost or remaining in each

step, depends on the local situation. Main factor is the local climate, which does not only

influence the amount of precipitation, but also of evaporation. Infiltration rate, interflow and

ground water very much depend on the geology, soil types and soil structure. Land cover,
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especially size and types of plants, layers of the local plant colonies and effects of roots on

the soil structure very much influence the detention and losses ranging from transpiration

via evaporation to infiltration.

“The average annual precipitation in Bavaria is 940 mm. About 530 mm evaporate again

and only 410 mm are relevant for the earth bound water cycle as infiltration or surface

run-off. Evaporation and transpiration are highly dependent on land structure and land

cover. Infiltration is influenced by soil type and compaction. But also land cover influences

infiltration because of breaking the energy of falling raindrops and preventing silting and

plugging of pores and micropores. Surface flow, interflow and ground water flow are the

main soil bound processes of water transport. Surface flow is influenced by land structures

like gullies, depressions, that also provide detention capacity, but also by land cover, because

dense vegetation and root penetration influence the flow velocity. Therefore the earth bound

part of the hydrologic cycle can be said to be a complex system with deep interrelations

between soil, plants and morphological structures.” (Dorner, Spachinger & Metzka 2005, p.

27)

In our times especially this factor was influenced by human activities. In Central Europe

land clearance started in the roman period and reached its peak in mideaval times. Large

forrest areas got lost and were transformed to arable land. Big land reallocation projects

started in the early 20ies century AD. Farm and field structures were resized to fit the

needs of a new mechanised agriculture. Large sites were drained, rivers restructured to

optimize field structures and sizes. Since the 1950ies the spreading of urban areas, sealing

for infrastructure and industrial areas is a new trend. All these developments decreased the

land cover and, therefore, the available surface for evaporation and detention on the wide

spread surface. Sealed surfaces reduce the infiltration capacity nearly to zero.

A.2 Principles of economics

“Most goods in our economy are allocated by markets, where buyers pay for

what they receive and sellers are paid for what they provide. Prices provide

the necessary signals for these goods to guide the decisions of both buyers and

sellers.” (Mankiw 2003, p. 223)
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Demand and supply determine prices in a market. If the price of a good rises, the demand

falls, when the price falls, the demand rises. The basic assumptions for a theoretic market

are: it is a perfectly competitive market with a lot of buyers and sellers, so no individual

can influence the price using his market power. Outcomes of market actions only affect

participants of that market. All costs of goods or services are included in the price calculation

of the seller. On such a market supply and demand are closely bound together, because they

and their balance define the prices for goods available on the market.

The demand depends on the willingness to pay for a good. This potential price expresses

the value consumers or purchasers allot the good. Factors that influence the willingness to

pay are the income, prices of related goods, substitutes - alternatives or complements - the

number of buyers, expectations about the future and especially the will or necessity to own

the good. The demand on a market is a sumfunction of the demands of all individuals in

a market. The higher the price for a good is, the lower the demand will be, because only

individuals are able to pay the price or all individuals are only willing to buy a small amount

of the good. The cheaper the good becomes the higher demand will be.

“The quantity supplied of any good or service is the amount that sellers are willing and able

to sell.” (Mankiw 2003, p. 71). Supply can also be described as a function. The supply

side depends on the possibility to produce a number of this good for a certain price. The

economy of scales normaly allows to produce more of the good for a cheaper price, while the

production of a small number of this good or individualised productions causes high costs

per product.

Depending on the market (product, persons, ...) different types of linear, quadratic or more

complex mathematical functions describe this supply and demand as a curve. The intersec-

tion of these curves of supply and demand is the market price. A number of consumers or

investors are willing to pay a price for a certain amount of this good, while another number

of producers/factores is willing to offer this amount for the same price. For this single point,

the so called equilibrium price and equilibrium quantity, the market is in balance.

The supply function very much depends on the cost function for the production of the

good, while the cost function depends on other market prices for the production factors like

resources, labour, capital, ground and knowledge and in addition the bargain. If we reduce
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the price for one factor also the price for the produced good on the market should fall.

If we in contrast now presume that manufacturers use one resource without paying for it a

lower market price establishes. A bigger amount of the good can then be sold on the market

and will be produced. “When goods are available for free of charge, however, the market

forces that normally allocate resources in our economy are absent.” (Mankiw 2003, p. 223).

In economies markets have the function to allocate resources. Labour, goods, money and

natural resources are allocated by markets.

“In any economic system, scarce resources have to be allocated among competing

uses. Market economies harness the forces of supply and demand to serve that

end. ... prices in turn are the signals that guide the allocation of resources”

(Mankiw 2003, p. 84)

Prices set an important signal, because they indicate how important a resource is. “Thus, in

market economies, prices are the mechanism for rationing scarce resources” (Mankiw 2003,

p. 84). Those consumers who need the resource most have the highest willingess to pay. The

allocation of goods and resources normally garantuees, that all economic costs are included

in the market price. Because the supplier would only produce and sell a good, if he could

regain all his costs.

The market allocation maximizes the total surplus of buyers and sellers. Macroeconomic

theory measures the efficiency of a society by welfare. The optimum allocation of resources

is said follow the Pareto principle. It says that a situation is optimal if no actor can optimise

his welfare without reducing the welfare of another actor.

Two factors can change this efficiency. If not all economic costs, like assumed above, are

included in the development of the supply situation on the market, inefficiencies can arise.

Also government policies can influence the market situation. Taxes, regulations or price

ceilings either influence demand or supply curve and move it, so the equilibrium changes.

Normally this is a side effect of governmental actions, because their intended effect is to gain

money for public purposes or restrict market forces e.g. through social policies. Instruments

like taxes and regulations can also be used directly to control a market and regulate market

inefficiencies.
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A.3 Catchment parameters
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Figure A.1: Catchment parameters: Input parameters for the hydrologic model for the

status quo of land use and river structure (node 1- 35, subcatchments A1 - A16)
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Figure A.2: Catchment parameters: Input parameters for the hydrologic model for the

status quo of land use and river structure (node 38- 67, subcatchments A17 - A31
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Figure A.3: Catchment parameters: Input parameters for the hydrologic model for the

status quo of land use and river structure (node 69- 92, subcatchment A32 - A41 and total

catchment
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A.4 Hydrologic model results

The following figures are the graphic representation of the hydrologic model results. For

node 2 - inlet to Bachling, node 32 inlet to Buchhofen and node 76 inlet to Osterhofen.

Bachling - Node 2
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Figure A.4: 100 year floods for different precipitation patterns for scenario A at node 2

Figure A.5: 100 year floods for different precipitation patterns for scenario B at node 2
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Figure A.6: 100 year floods for different precipitation patterns for scenario C at node 2

Figure A.7: 100 year floods for different precipitation patterns for scenario D at node 2
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Figure A.8: Maximum 100 year flood wave at node 2 resulting from a 2h precipitation

Figure A.9: Maximum flood waves at node 2 for the different probabilities for hydrological

scenario A
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Buchhofen - Node 32
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Figure A.10: 100 year floods for different precipitation patterns for scenario A at node 32

Figure A.11: 100 year floods for different precipitation patterns for scenario B at node 32
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Figure A.12: 100 year floods for different precipitation patterns for scenario C at node 32

Figure A.13: 100 year floods for different precipitation patterns for scenario D at node 32
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Figure A.14: Maximum 100 year flood wave at node 32 resulting from a 2h precipitation

Figure A.15: Maximum flood waves at Node 32 for the different probabilities for hydrological

scenario A
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Osterhofen - Node 76
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Figure A.16: 100 year floods for different precipitation patterns for scenario A at node 76

Figure A.17: 100 year floods for different precipitation patterns for scenario B at node 76
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Figure A.18: 100 year floods for different precipitation patterns for scenario C at node 76

Figure A.19: 100 year floods for different precipitation patterns for scenario D at node 76
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Figure A.20: Maximum 100 year flood wave at node 76 resulting from a 2h precipitation

Figure A.21: Maximum flood waves at node 76 for the different probabilities for hydrological

scenarios A



194 A.5. Hydrodynamic model results

A.5 Hydrodynamic model results

The following figures are graphic representations of hydrodynamic simulations. They show

the extent and in some cases the water depth of floodings of different probabilities. Different

levels of blue indicate increasing water depth with increasing darkness in levels of 0.01 - 0.10

m, 0.1 - 0.8 m, 0.1 - 0.8 m, 0.8 - 2.1 m.

Bachling
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Figure A.22: Flood plain in Bachling for the scenario A for a 100 year flood event. Buildings

and borders of property are indicated in black.
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Figure A.23: Flood plain in Bachling for the scenario B for a 100 year flood event. Buildings

and borders of property are indicated in black.
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Figure A.24: Flood plain in Bachling for the scenario C for a 100 year flood event. Buildings

and borders of property are indicated in black.
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Figure A.25: Flood plain in Bachling for the scenario D for a 100 year flood event. Buildings

and borders of property are indicated in black.
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Figure A.26: Flood plain in Bachling: Comparison of the scenarios A (red), B (yellow) and

C (green) for 10 year flood event. Buildings and borders of property are indicated in black.
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Figure A.27: Flood plain in Bachling: Comparison of the scenarios A (red), B (yellow) and

C (green) for 20 year flood event. Buildings and borders of property are indicated in black.
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Figure A.28: Flood plain in Bachling: Comparison of the scenarios A (red), B (yellow) and

C (green) for 50 year flood event. Buildings and borders of property are indicated in black.
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Figure A.29: Flood plain in Bachling: Comparison of the scenarios A (red), B (yellow) and

C (green) for 100 year flood event. Buildings and borders of property are indicated in black.
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Buchhofen
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Figure A.30: Flood plain in Buchhofen for the scenario A for a 100 year flood event. Build-

ings and borders of property are indicated in black.
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Figure A.31: Flood plain in Buchhofen for the scenario B for a 100 year flood event. Build-

ings and borders of property are indicated in black.
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Figure A.32: Flood plain in Buchhofen for the scenario C for a 100 year flood event. Build-

ings and borders of property are indicated in black.
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Figure A.33: Flood plain in Buchhofen for the scenario D for a 100 year flood event. Build-

ings and borders of property are indicated in black.
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Figure A.34: Flood plain in Buchhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 2 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.35: Flood plain in Buchhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 5 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.36: Flood plain in Buchhofen: Comparison of the scenarios A (red), B (yellow)

and C (green)C for 10 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.37: Flood plain in Buchhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 20 year flood event. Buildings and borders of property are indicated in

black.



212 A.5. Hydrodynamic model results

Figure A.38: Flood plain in Buchhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 50 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.39: Flood plain in Buchhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 100 year flood event. Buildings and borders of property are indicated in

black.
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Osterhofen
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Figure A.40: Flood plain in Osterhofen for the scenario A for a 100 year flood event.

Buildings and borders of property are indicated in black.
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Figure A.41: Flood plain in Osterhofen for the scenario B for a 100 year flood event. Build-

ings and borders of property are indicated in black.
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Figure A.42: Flood plain in Osterhofen for the scenario C for a 100 year flood event. Build-

ings and borders of property are indicated in black.
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Figure A.43: Flood plain in Osterhofen for the scenario D for a 100 year flood event.

Buildings and borders of property are indicated in black.
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Figure A.44: Flood plain in Osterhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 2 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.45: Flood plain in Osterhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 5 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.46: Flood plain in Osterhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 20 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.47: Flood plain in Osterhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 50 year flood event. Buildings and borders of property are indicated in

black.
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Figure A.48: Flood plain in Osterhofen: Comparison of the scenarios A (red), B (yellow)

and C (green) for 100 year flood event. Buildings and borders of property are indicated in

black.
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A.6 Flood damage functions

The tables and figures are the results of mapping of buildings and the resulting damage

estimations based on standard water depth - damage functions for detached houses and

functional farm buildings.

Table: Flood damages based on affected buildings and water depth.

Beamchart: Damages per flood event for floods with a 1, 2, 5, 10, 20, 50 and 100 year recurrence interval.

Graphs: Damage function of cumulated damages over a 100 year period as damages per year and event.

Table A.1: Overview of the presentation of flood damages as tables and charts

Bachling
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Figure A.49: Flood damages and damage function for Bachling scenario A
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Figure A.50: Flood damages and damage function for Bachling Scenario B



Appendix A. Appendices 227

Figure A.51: Flood damages and damage function for Bachling Scenario C
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Figure A.52: Flood damages and damage function for Bachling Scenario D
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Buchhofen
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Figure A.53: Flood damages and damage function for Buchhofen Scenario A
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Figure A.54: Flood damages and damage function for Buchhofen Scenario B
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Figure A.55: Flood damages and damage function for Buchhofen Scenario C
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Figure A.56: Flood damages and damage function for Buchhofen Scenario D
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Osterhofen
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Figure A.57: Flood damages and damage function for Osterhofen Scenario A
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Figure A.58: Flood damages and damage function for Osterhofen Scenario B
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Figure A.59: Flood damages and damage function for Osterhofen Scenario C
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Figure A.60: Flood damages and damage function for Osterhofen Scenario D
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