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Abstract

Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus

varieties around the world. Known pathotypes of E. fawcettii are based on host range; addi-

tionally, cryptic pathotypes have been reported and more novel pathotypes are thought to

exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to vir-

ulence. However, the mechanisms involved in potential pathogen-host interactions occur-

ring prior to the production of elsinochrome are unknown, yet the host-specificity observed

among pathotypes suggests a reliance upon such mechanisms. In this study we have gen-

erated a whole genome sequencing project for E. fawcettii, producing an annotated draft

assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage

of transposable elements. A small proportion of the assembly showed evidence of AT-rich

regions, potentially indicating genomic regions with increased plasticity. Using a variety of

computational tools, we mined the E. fawcettii genome for potential virulence genes as can-

didates for future investigation. A total of 1,280 secreted proteins and 276 candidate effec-

tors were predicted and compared to those of other necrotrophic (Botrytis cinerea,

Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and

Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae,

Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant

pathogens. Genomic and proteomic features of known fungal effectors were analysed and

used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378

carbohydrate-active enzymes were predicted and analysed for likely secretion and

sequence similarity with known virulence genes. Furthermore, secondary metabolite predic-

tion indicated nine additional genes potentially involved in the elsinochrome biosynthesis

gene cluster than previously described. A further 21 secondary metabolite clusters were
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predicted, some with similarity to known toxin producing gene clusters. The candidate viru-

lence genes predicted in this study provide a comprehensive resource for future experimen-

tal investigation into the pathogenesis of E. fawcettii.

Introduction

Elsinoë fawcettii Bitancourt & Jenkins, a necrotrophic fungal species within the Ascomycota

phylum (class Dothideomycetes, subclass Dothideomycetidae, order Myriangiales), is a fila-

mentous phytopathogen which causes a necrotic disease, known as citrus scab, to the leaves

and fruit of a variety of citrus crops around the world. Susceptible citrus varieties include

lemon (Citrus limon), rough lemon (C. jambhiri), sour orange (C. aurantium), Rangpur lime

(C. limonia), Temple and Murcott tangors (C. sinensis x C. reticulata), Satsuma mandarin (C.

unshiu), grapefruit (C. paradisi), Cleopatra mandarin (C. reshni), clementine (C. clementina),

yuzu (C. junos), kinkoji (C. obovoidea), pomelo (C. grandis) and Jiangjinsuanju (C. sunki) [1–

9]. Numerous pathotypes of E. fawcettii are defined by host range, including the Florida Broad

Host Range (FBHR), Florida Narrow Host Range (FNHR), Tyron’s, Lemon, Jinguel, SRGC

and SM, while cryptic and novel pathotypes are also reported [1, 3, 10]. Only the Tyron’s

pathotype (which infects Eureka lemon, Rough lemon, clementine, Rangpur lime and Cleopa-

tra mandarin) and the Lemon pathotype (which only infects Eureka lemon, Rough lemon,

Rangpur lime) have been described in Australia [2, 3, 7], however E. fawcettii has reportedly

been isolated from kumquat (Fortunella sp.), tea plant (Camellia sinensis) and mango (Mangi-
fera indica) [11], indicating a wider range of pathotypes to be present in Australia. Additional

species of Elsinoë found causing disease in Australia include E. ampelina, which causes

anthracnose to grapes [12] and two E. australis pathotypes; one which causes scab disease to

jojoba (Simmondsia chinensis) [13] and a second found on rare occasions on finger lime (C.

australasica) in Queensland forest areas [14]. Species of Elsinoë causing crop disease in coun-

tries neighbouring Australia include E. batatas, which causes large yield losses in sweet potato

crops in Papua New Guinea [15, 16] and E. pyri, which infects apples in organic orchards in

New Zealand [17]. Around the world there are reportedly 75 Elsinoë species, the majority of

which appear to be host specific [18]. While citrus scab is not thought to affect yield, it reduces

the value of affected fruit on the fresh market. Australia is known for producing high quality

citrus fruits for local consumption and export, and so understandably, there is great interest in

protecting this valuable commodity from disease.

Elsinoë fawcettii is commonly described as an anamorph, reproducing asexually. Hyaline

and spindle shaped conidia are produced from the centre of necrotic citrus scab lesions [19,

20]. Conidia are dispersed by water splash, requiring temperatures between 23.5–27˚C with

four hours of water contact for effective host infection. Therefore, disease is favoured by warm

weather with overhead watering systems or rain [21]. Only young plant tissues are vulnerable

to infection; leaves are susceptible from first shoots through to half expanded and similarly

fruit for 6 to 8 weeks after petal fall, while mature plants are resistant to disease [19]. Cuticle,

epidermal cells and mesophyll tissue are degraded within 1 to 2 days of inoculation, hyphal

colonisation proceeds and within 3 to 4 days symptoms are visible [20, 22]. After formation of

necrotic scab lesions on fruit, twigs and leaves, conidia are produced from the scab pustules

providing inoculum for further spread. Within 5 days, host cell walls become lignified separat-

ing infected regions from healthy cells, which is thought to limit internal spread of the patho-

gen [20]. The necrosis that occurs during infection is produced in response to elsinochrome, a

well-known secondary metabolite (SM) of species of Elsinoë. Elsinochromes are red or orange
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pigments which can be produced in culture [23, 24]. In aerobic and light-activated conditions,

reactive oxygen species are produced in response to elsinochromes in a non-host selective

manner, generating an environment of cellular toxicity [25]. Elsinochrome production is

required for full virulence of E. fawcettii, specifically the EfPKS1 and TSF1 genes are vital

within the elsinochrome gene cluster [26, 27]. However, two points indicate that E. fawcettii
pathogenesis is more complex than simply the result of necrotic toxin production: (I) the pro-

duction of elsinochrome appears to be variable and does not correlate with virulence [28]; and

(II) elsinochrome is a non-host selective toxin, yet Elsinoë species and E. fawcettii pathotypes

cause disease in a host specific manner. Host-specific virulence factors targeted for interaction

with distinct host proteins to overcome immune defences, prior to elsinochrome production,

could explain the observed host specificity. Candidate virulence genes may include effectors

and cell wall degrading enzymes. Effectors are secreted pathogen proteins, targeted to either

the host cytoplasm or apoplast, which enable the pathogen to evade recognition receptor activ-

ities of the host’s defence system and, if successful, infection proceeds. Resistant hosts, how-

ever, recognise pathogen effectors using resistant (R) genes which elicit plant effector-

triggered immunity and pathogenesis is unsuccessful [29, 30]. While it was previously thought

that necrotrophic fungal pathogens would use only a repertoire of carbohydrate-active

enzymes (CAZymes) or SMs to infect host plants [31], there is increased awareness of their uti-

lisation of secreted protein effectors [32–37], highlighting the importance of protein effector

identification in all fungal pathogens. Frequently shared features of effectors include; a signal

peptide at the N-terminal and no transmembrane helices or glycosylphosphatidylinositol

(GPI) anchors. Other features less frequently shared include; small size, cysteine rich, amino

acid polymorphism, repetitive regions, gene duplication, no conserved protein domains, cod-

ing sequence found nearby to transposable elements, and absence in non-pathogenic strains

[38–45]. Furthermore, some appear to be unique to a species for example the necrosis-induc-

ing protein effectors NIP1, NIP2 and NIP3 of Rhynchosporium commune [46] and three aviru-

lence effectors AvrLm1, AvrLm6 and AvrLm4-7 of Leptosphaeria maculans [47]. Others have

orthologous genes or similar domains in numerous species for example the chorismate mutase

effector, Cmu1, of Ustilago maydis [48] and the cell death-inducing effector, MoCDIP4, of

Magnaporthe oryzae [49]. Understandably, with such a large variety of potential features, effec-

tor identification remains challenging. Effectors are found in biotrophs, for example U.maydis
[50–53], hemibiotrophs, such as L.maculans [54–56], M. oryzae [57, 58], R. commune [46] and

Verticillium dahliae [59–61], necrotrophs, for example Botrytis cinerea [62, 63], Parastagonos-
pora nodorum [34, 42, 64], Pyrenophora tritici-repentis [65], Sclerotinia sclerotiorum [32] and

also the hemibiotroph/latent necrotroph Zymoseptoria tritici [66]. Genomic location has

potential to be an identifying feature of virulence genes in some species, for example pathoge-

nicity-related genes of L.maculans, including those coding for secreted proteins and genes

potentially involved in SM biosynthesis, are found at higher rates in AT-rich genomic regions

in comparison to GC-equilibrated blocks [47]. It is thought that effectors and their target host

proteins co-evolve, in a constant arms race [67], presenting genomic regions with higher levels

of plasticity as potential niches which harbour effector genes.

Another group of virulence factors likely to play a role in E. fawcettii pathogenesis are cell

wall degrading enzymes (CWDE), these are CAZymes, including glycoside hydrolases, poly-

saccharide lyases and carbohydrate esterases, which can be secreted from fungal pathogens

and promote cleavage of plant cell wall components [68–70]. Cell wall components, such as

cellulose, hemicelluloses (xyloglucan and arabinoxylan) and pectin (rhamnogalacturonan I,

homogalacturonan, xylogalacturonan, arabinan and rhamnogalacturonan II) [71], are targets

for pathogens to degrade for nutrients and/or to overcome the physical barriers presented by

their host. CWDE can include polygalacturonases, pectate lyases, and pectinesterases which
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promote pectin degradation [72–78], glucanases (also known as cellulase) which breaks links

between glucose residues [79] and xylanases which cleave links in the xylosyl backbone of xylo-

glucan [80–82].

Elsinoë fawcettii effectors and/or CWDE which interact with certain host plant cell wall

components could explain the observed host specificity of pathotypes. Computational predic-

tion of genes coding for such virulence factors can lead to many candidate effectors (CE) and

potential CWDE, leading to an overabundance of candidates which require prioritisation. This

study aimed to generate an assembly of the E. fawcettii isolate, BRIP 53147a, through whole

genome shotgun (WGS) sequencing, to identify candidate virulence genes and appropriately

shortlist these predictions to improve the focus of future experimental validation procedures.

Computational methods involving genomic, proteomic and comparative analyses enabled the

prediction and prioritisation of CE and CWDE which may be interacting with the host plant

and overcoming immune defences prior to the biosynthesis of elsinochrome. Additional genes

potentially involved in the elsinochrome gene cluster were also predicted, as were additional

SM clusters which may be impacting virulence of E. fawcettii.

Materials and methods

Sequencing, assembly, gene prediction, annotation and genomic analyses

Elsinoë fawcettii (BRIP 53147a), collected from C. limon in Montville, Queensland, Australia,

was obtained from DAF Biological Collections [11]. The isolate was cultured on potato dex-

trose agar (Difco) and incubated at 23 to 25˚C for two months. Whole genomic DNA was

extracted using the DNeasy Plant Mini kit (QIAGEN) according to the manufacturer’s proto-

col. Paired-end libraries, with a mean insert size of approximately 330 bp, were prepared

according to Illumina NexteraTM DNA Flex Library Prep Reference Guide using a NexteraTM

DNA Flex Library Prep Kit and NexteraTM DNA CD Indexes. WGS sequencing was per-

formed on Illumina MiSeq platform (600-cycles) at the molecular laboratories of the Centre

for Crop Health, USQ. Assembly was performed on the Galaxy-Melbourne/GVL 4.0.0 webser-

ver [83]. Raw reads were quality checked using FastQC (v0.11.5) [84] and trimmed using

Trimmomatic (v0.36) [85] with the following parameters: TruSeq3 adapter sequences were

removed using default settings, reads were cropped to remove 20 bases from the leading end

and 65 bases from the trailing end of each read, minimum quality of leading and trailing bases

was set to 30, a sliding window of four bases was used to retain those with an average quality of

30 and the minimum length read retained was 31 bases. De novo assembly was performed in

two steps, first using Velvet (v1.2.10) [86] and VelvetOptimiser (v2.2.5) [87] with input k-mer

size range of 81–101 (step size of 2). Secondly, SPAdes (v3.11.1) [88] was run on trimmed

reads with the following parameters: read error correction, careful correction, automatic k-

mer values, automatic coverage cutoff and Velvet contigs (>500 bp in length), from the previ-

ous step, included as trusted contigs. Contigs >500 bp in length were retained. Reads were

mapped back to the assembly using Bowtie2 (v2.2.4) [89] and Picard toolkit (v2.7.1) [90] and

visualised using IGV (v2.3.92) [91]. The estimated genome size was determined using Kmer-

genie (v1.6715) [92] on Galaxy-Australia (v19.09) [93] and GenomeScope [94]. The genome

assembly was checked for completeness with BUSCO (v2.0) [95] using the Dothideomycetes

orthoDB (v10) dataset [96]. The extent and location of AT-rich regions was determined using

OcculterCut (v1.1) [97] with default parameters and mitochondrial contigs removed.

The prediction of genes and transposable elements (TE) was performed on the GenSAS

(v6.0) web platform [98], using GeneMarkES (v4.33) [99], with fungal mode, for gene predic-

tion and RepeatMasker (v4.0.7) [100], using the NCBI search engine and slow speed sensitiv-

ity, for the prediction of TE. Predicted gene models containing short exons, missing a start or
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stop codon or which overlapped a TE region were removed from the predicted proteome. The

genome was searched for Simple Sequence Repeats (SSR) using the Microsatellite Identifica-

tion tool (MISA) [101], with the SSR motif minimum length parameters being 10 for mono, 6

for di, and 5 for tri, tetra, penta and hexa motifs.

Annotation was performed using BLASTP (v2.7.1+) [102] to query the E. fawcettii pre-

dicted proteome against the Swiss-Prot Ascomycota database (release 2018_08) [103] with an

e-value of 1e-06 and word size of 3. BLAST results were loaded into Blast2GO Basic (v5.2.1)

[104], with InterProScan, mapping and annotation steps being performed with default param-

eters, except HSP-hit coverage cutoff was set to 50% to increase stringency during annotation.

Further annotation was achieved using HmmScan in HMMER (v3.2.1) [105] to query the pre-

dicted proteome against the Protein Family Database (Pfam) (release 32) [106]. GC% content

of the coding DNA sequence (CDS) of each gene was determined using nucBed from Bedtools

(v2.27.1) [107]. Predicted proteins were searched for polyamino acid (polyAA) repeats of at

least five consecutive amino acid residues using the FIMO motif search tool [108] within the

Meme suite (v5.0.2) [109]. The Whole Genome Shotgun project was deposited at DDBJ/ENA/

GenBank under the accession SDJM00000000. The version described in this paper is version

SDJM00000000. Raw reads were deposited under the SRA accession PRJNA496356.

Phylogenetic analysis

Two analyses were conducted, the first included three isolates of Elsinoë fawcettii (BRIP

53147a, DAR 70024 and SM16-1), and individual isolates of E. ampelina, E. australis, U.may-
dis, L.maculans,M. oryzae, R. commune, V. dahliae, B. cinerea, Parastagonospora nodorum,

Pyrenophora tritici-repentis, S. sclerotiorum and Z. tritici and utilised partial TEF1-α and RPB2

regions which were obtained using BLASTN (v2.7.1+) [102] on each assembly; Spizellomyces
punctatus was included as the outgroup. The second used ITS and partial TEF1-α sequences,

obtained from GenBank, of 12 E. fawcettii pathotypes, 11 closely related Elsinoë species, and

Myriangium hispanicum as the outgroup, for phylogenetic analysis with E. fawcettii (BRIP

53147a). Genome locations and GenBank accessions of all sequences are provided in S1 Table.

Sequences for each locus were aligned using MUSCLE [110] with a gap open penalty of -400,

concatenated and used to perform maximum likelihood analysis in MEGA7 [111] based on

the General Time Reversible model [112] with partial deletion of 90% and 1000 bootstrap rep-

licates. The initial tree for each maximum likelihood analysis was automatically selected using

Neighbor-Join and BioNJ on the matrix of pairwise distances estimated using the Maximum

Composite Likelihood method. A discrete Gamma distribution utilising 4 categories (+G,

parameter = 0.5348 (Fig 1) and 0.4095 (Fig 2)) was used and the rate variation model allowed

some sites to be invariable (+I, 15.4278% sites (Fig 1) and 26.6862% sites (Fig 2)). The charac-

ter matrix and tree were combined and converted to nexus format using Mesquite (v3.6) [113]

prior to TreeBASE submission (Fig 1 TreeBASE reviewer access: http://purl.org/phylo/

treebase/phylows/study/TB2:S26086?x-access-code=26e5270bba657f28e8d78a0849503953&

format=html

Fig 2 TreeBASE reviewer access: http://purl.org/phylo/treebase/phylows/study/TB2:

S26087?x-access-code=8130d199a2304fe8bd684df1cc2ebacc&format=html). E. fawcettii
(BRIP 53147a) ITS and partial TEF1-α sequences (accessions MN784182 and MN787508)

were submitted to GenBank.

Sequence information

Genome assemblies and predicted proteomes included in the comparative analysis were

obtained from GenBank. These included U.maydis (accession GCF_000328475.2, no. of
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scaffolds = 27) [114], L.maculans (accession GCF_000230375.1, no. of scaffolds = 76) [115],

M. oryzae (accession GCF_000002495.2, no. of scaffolds = 53) [116], R. commune (accession

GCA_900074885.1, no. of scaffolds = 164) [117], V. dahliae (accession GCF_000150675.1, no.

of scaffolds = 55) [118], B. cinerea (accession GCF_000143535.2, no. of scaffolds = 18) [119],

Parastagonospora nodorum (accession GCF_000146915.1, no. of scaffolds = 108) [120], Pyre-
nophora tritici-repentis (accession GCA_003231415.1, no. of scaffolds = 3964) [121], Scleroti-
nia sclerotiorum (accession GCF_000146945.2, no. of scaffolds = 37) [122] and Z. tritici
(accession GCA_900184115.1, no. of scaffolds = 20) [123]. Additionally, genome assemblies of

E. fawcettiiDAR 70024 (accession GCA_007556565.1, no. of scaffolds = 53), E. fawcettii
SM16-1 (accession GCA_007556535.1, no. of scaffolds = 1,266), E. australis Ea1 (accession

GCA_007556505.1, no. of scaffolds = 21) [124] and E. ampelina (accession GCA_005959805.1,

no. of scaffolds = 13) [125], were obtained from GenBank and gene prediction performed as

for E. fawcettii BRIP 53147a. TE were identified in each assembly, as previously described, and

predicted genes which overlapped them were similarly removed from predicted proteomes.

Sequences of experimentally verified effector proteins were obtained from the EffectorP 2.0

study [126].

Prediction of secretome and effectors

Secretome and effector prediction was performed on the predicted proteomes of E. fawcettii
and 10 fungal species known to contain effector proteins. Secretome prediction for each spe-

cies began with a set of proteins predicted as secreted by either SignalP (v4.1) [127], Phobius

[128] or ProtComp-AN (v6) [129]. This set was run through both the TMHMM Server (v2.0)

[130] and PredGPI [131] to predict proteins with transmembrane helices and GPI-anchors,

respectively. Those proteins with >1 helix or with 1 helix beyond the first 60 amino acids were

removed, as were those with “highly probable” or “probable” GPI anchors. Remaining proteins

formed the predicted secretome and were subjected to candidate effector prediction using

EffectorP (v1.0 and v2.0) [126,132].

Genomic, proteomic and known effector analyses

Sequences of 42 experimentally verified effector proteins, which showed >98% similarity to

proteins from the 10 species included in this study, and which appeared in both the predicted

secretome and candidate effector list for the respective species, were utilised in the known

Fig 1. Species comparison. (A) Maximum likelihood phylogenetic tree of E. fawcettii BRIP 53147a with recently

sequenced Elsinoë isolates and species included in the comparative study. The phylogenetic tree was inferred from a

concatenated dataset including partial TEF1α and RPB2 regions. Spizellomyces punctatus was used as the outgroup.

The branch length indicates the number of nucleotide substitutions per site, bootstrap values are shown at nodes and

the isolate analysed in this study is denoted with asterisk (�). (B) Comparison of gene classifications among the

proteomes of 11 fungal pathogens. Genes were categorised using orthoMCL group IDs, or proteinortho if no group

was assigned. Genes were considered; (I) core if they were shared by all 11 species; (II) “other” if they were shared by at

least two species, but not all; (III) unique if they were found in only one of the 11 species.

https://doi.org/10.1371/journal.pone.0227396.g001
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effector analysis. The following analyses were performed on the proteome/genome of each spe-

cies. Results relating to the 42 known effectors were compared to results of all proteins from

each species. Length of the intergenic flanking region (IFR) was determined as the number of

bases between the CDS of two adjacent genes. Genes were labelled as gene-dense if the IFR on

each side was less than 1500 bp, genes on a contig end were not included among gene-dense

labelled genes. Genes with IFR greater than or equal to 1500 bp were labelled as gene-sparse

genes. SM clusters were predicted by passing genome assemblies and annotation files through

antiSMASH fungal (v4.2.0) [133] using the Known Cluster Blast setting. Core, unique and

other genes for each species were determined by grouping proteins into ortholog groups using

the orthoMCL algorithm [134] followed by ProteinOrtho (v5.16b/v6.0.14) [135] on remaining

unclassified genes. For the purposes of CE prioritisation, each Elsinoë proteome was compared

Fig 2. Maximum likelihood phylogenetic tree of E. fawcettii isolates and closely related species. The phylogenetic tree was inferred from a concatenated dataset

including ITS and partial TEF1-α regions.Myriangium hispanicum was used as the outgroup. The branch length indicates the number of nucleotide substitutions per

site, bootstrap values are shown at nodes, host in parentheses, new isolate described in the current study denoted with asterisk (�) and type strains are in bold.

https://doi.org/10.1371/journal.pone.0227396.g002

PLOS ONE Genome mining of Elsinoë fawcettii; prediction and prioritisation of candidate virulence genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0227396 May 29, 2020 7 / 33

https://doi.org/10.1371/journal.pone.0227396.g002
https://doi.org/10.1371/journal.pone.0227396


individually to the proteomes of the 10 fungal species included in the study during ortholog

classification. Core genes were those shared by all species included in the comparison, unique

genes were found in only one species and other genes were those shared by at least two species,

but not all. Additionally, ortholog classification, using the method described above, was per-

formed on the five species of Elsinoë together, to determine potential E. fawcettii- and isolate-

specific genes. GC% content of the CDS of each gene was determined as described above, Q1

and Q3 values were determined for each species using R [136]. HmmScan [105] of all protein

sequences against the Pfam database [106] was performed as described above. Genomic AT-

rich region identification was performed using OcculterCut (v1.1) [97] as described above. For

genomes with identified AT-rich regions, the distance between genes and their closest AT-rich

region edge was determined using Bedtools closestBed [107], as was the distance between

genes and the closest TE.

Prioritisation of candidate effectors

CE of each species were prioritised using an optimised scoring system based on the analysis of

known effectors in 10 fungal species. All were scored out of at least four points, corresponding

to one point allocated for each of the following conditions: (I) not labelled as gene-dense; (II)

no involvement in predicted SM clusters; (III) labelled as either unique to the species or allo-

cated to the same orthoMCL group as a known effector; and (IV) GC% of CDS was either

below the Q1 value or above the Q3 value of the respective species. For species with genomes

which had >2% TE coverage or >25% AT-rich region coverage, CE were scored out of five

points. Those genomes which had both >2% TE and>25% AT-rich region coverage, CE were

scored out of six points. Hence, all candidate effectors were scored out of n (four, five or six)

points, those CE which obtained a score of n or n-1 points were labelled as prioritised CE. P-

values, to test overrepresentation of SP and CE among E. fawcettii, were determined using the

one-tailed Fisher’s exact test in R [136].

Prediction of other virulence genes

SM clusters were predicted using antiSMASH fungal (v4.2.0) [133] as described above.

CAZymes were predicted by passing the predicted proteomes through the dbCAN2 meta

server [137] and selecting three tools including HMMER scan against the dbCAN HMM data-

base [138], Diamond [139] search against the Carbohydrate-Active enZYmes (CAZy) database

[140] and Hotpep query against the Peptide Pattern Recognition library [141]. Predicted

CAZymes were taken as those with positive results for at least two out of the three tools. Poten-

tial pathogenesis-related proteins were identified by querying the predicted proteomes against

the Pathogen Host Interactions Database (PHI-base) (v4.6, release Oct 2018) [142] using

BlastP (v2.7.1) [102] analyses with an e-value of 1e-06 and a query coverage hsp of 70%, those

results with >40% similarity were retained. Prioritised candidate CWDE were shortlisted from

the predicted CAZymes to those which were predicted as secreted and obtained hits to plant

associated fungal pathogenicity-related genes in PHI-base which showed evidence of reduced

virulence in knockout or mutant experiments.

Results and discussion

Genome assembly and features

The genome assembly of E. fawcettii (BRIP 53147a), deposited at DDBJ/ENA/GenBank (acces-

sion SDJM00000000), was sequenced using paired-end Illumina WGS sequencing technology.

Assembly of reads produced a draft genome 26.01 Mb in size with a coverage of 193x (Table 1)
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and consisted of 286 contigs greater than 500 bp in length, with an N50 of 662,293 bp, a mean

contig length of 90,948 bp and an overall GC content of 52.3%. The estimated genome size

based on k-mer counts of trimmed reads was 27.25–27.28 Mb, indicating approximately 4.7%

of the genome may be missing from the current assembly. Running the assembly against the

Dothideomycetes orthoDB (v10) [96] showed 94.2% of complete single copy genes were found

in the E. fawcettii assembly, indicating a high degree of coding DNA sequence completeness.

The genome of E. fawcettii is comparable in size to other fungal genomes, including Eurotium
rubrum (26.21 Mb) [143], Xylona heveae (24.34 Mb) [144] and Acidomyces richmondensis
(29.3 Mb) [145], however it is smaller than the average Ascomycota genome size of 36.91 Mb

[146]. When analysed against the 10 fungal species included in this comparative analysis (B.

cinerea, L.maculans,M. oryzae, Parastagonospora nodorum, Pyrenophora tritici-repentis, R.

commune, V. dahliae, S. sclerotiorum, U.maydis and Z. tritici), the E. fawcettii assembly is the

second smallest, after theU.maydis assembly at 19.6 Mb. It is comparable in size to two E. faw-
cettii genomes recently published, being 26.65 Mb (SM16-1) and 26.32 Mb (DAR 70024)

[124]. TE identification, by analysis against Repbase (release 18.02) [147], showed a coverage

of only 0.37%, indicating a low proportion of the E. fawcettii genome is represented by cur-

rently known TE, this is a likely contributor to its comparatively small genome size. This low

TE coverage may also be the result of a fragmented genome [148]. It is possible, should long

read sequencing of this isolate be completed in the future, TE coverage may appear higher.

The E. fawcettii genome has less predicted gene models than the average Ascomycota

genome of 11129.45 [146]. Gene prediction produced 10,080 gene models, which is compara-

ble to the number of genes predicted for the recently published E. fawcettii genomes, specifi-

cally 10,340 (SM16-1) and 9930 (DAR 70024) genes [124]. A total of 5,636 (55.91%) genes

were annotated, while 4,444 (44.09%) were labelled as coding for hypothetical proteins. The

average gene length was 1,573 bp with an average of 2.35 exons per gene, there were 3,280 sin-

gle exon genes. The mean GC content of CDS was 54.7%, which was 2.4% higher than the

overall GC content and showed a wide variation in range, with the lowest scoring gene at

44.29% GC and the highest being 71.53%, thus exposing a spectrum on which genes may be

differentiated. Hmmscan [105] analysis of the predicted proteome against the Pfam database

Table 1. Features of Elsinoë fawcettii (BRIP 53147a) genome assembly.

General Features

Assembly length (bp) 26,011,141

Coverage 193x

Number of contigs 286

Mean GC content (%) 52.3

N50 (bp) 694,004

Mean contig length (bp) 90,948

Minimum contig length (bp) 501

Maximum contig length (bp) 2,345,732

Coverage of interspersed repeats (bp) 95,654 (0.37%)

Coverage of short simple repeats (bp) 6868 (0.026%)

Number of predicted gene models 10,080

Number of contigs containing predicted genes 141

Mean gene length (bp) 1,573

Mean number of exons per gene 2.35

Number of genes containing a polyAA repeat 1,073

Mean GC content of CDS (%) 54.7

https://doi.org/10.1371/journal.pone.0227396.t001
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[106] revealed a high proportion (70.1% = 7,069) of genes with at least one hit to a Pfam

model. The same analysis performed on the proteomes of the 10 fungal species included in the

comparative analysis gave results ranging from 48.6% for S. sclerotiorum, with the lowest pro-

portion of Pfam hits, to 74.9% for U.maydis with the highest, and a mean of 62.1% over the 11

species (S2 Table).

Phylogenetic analysis showed all species included in this comparative study are distinct

from one another, with only the three E. fawcettii isolates being closely related (Fig 1A). Analy-

sis of orthologous genes among E. fawcettii and the 10 comparative species (other Elsinoë spe-

cies not included) indicated 3,077 (30.5%) of the predicted genes of E. fawcettii were core

genes, finding hits through OrthoMCL or ProteinOrtho in all 11 species (S2 Table). There

were 4,874 (48.4%) E. fawcettii genes found in at least one other species but not all and were

therefore labelled as “other” genes. Lastly, the remaining 2,129 (21.1%) were found in only the

E. fawcettii proteome, 140 of these, however, obtained a hit to an orthoMCL group and were

therefore set aside and not considered as unique proteins in subsequent analyses, leaving 1,989

(19.7%) genes presumed to be Elsinoë-specific and therefore potentially involved in either

Elsinoë- or E. fawcettii-specific pathogenesis pathways. The comparative analysis among the

core, unique and other genes of the 11 species (S2 Table) (Fig 1B) indicated that U.maydis was

set apart from the other species by showing the lowest proportion of “other” genes and the

highest proportion of unique genes, this was expected as U.maydis was the only biotroph and

Basidiomycete among the group, and is seen separated from the Ascomycota clade in the phy-

logenetic analysis (Fig 1A). E. fawcettii showed a below average percentage of unique genes

which may be expected due its smaller than average sized genome and proteome. When com-

paring predicted genes of E. fawcettii (BRIP 53147a) to those of E. ampelina, E. australis and

two E. fawcettii isolates (Table 2), 75.70% (7,631) of genes were labelled as core genes, indicat-

ing the majority of genes appeared in all five isolates. A further 12.37% (1,247) were classed as

accessory, being found in more than one species, but not all five isolates. E. fawcettii-specific

genes, found in at least two E. fawcettii isolates, accounted for 10.72% (1081), while E. fawcettii
BRIP 53147a-specific genes made up 1.2% (121) of genes. The results of Table 2 indicated that

the predicted gene repertoire of E. fawcettii isolates BRIP 53147a and DAR 70024 were closely

aligned, with isolate SM16-1 set apart with a higher proportion of unique genes. As SM16-1 is

classified as the FBHR pathotype and DAR 70024 as the Tyron’s pathotype, SM16-1 therefore

has the ability to infect a wider variety of host plants [3], these additional unique genes of E.

fawcettii SM16-1 may contribute to its greater host range.

The overall GC content of E. fawcettii was 52.3%. However, when taking AT-rich regions

into consideration, 98.97% of the genome had an average GC content of 52.8%, while the

remaining 1.03% consisted of AT-rich regions with an average GC content of 33.8%. AT-rich

regions are sections of DNA that are scattered throughout the genome and have a significantly

higher AT content compared to adjacent GC equilibrated blocks [97]. The presence of AT-

rich regions in genomes varies widely, for example Sclerotinia sclerotiorum does not show evi-

dence of AT-rich regions [149], while 36% of the L.maculans genome is covered by AT-rich

regions which have an average GC content of 33.9% [47]. AT-rich regions are thought to

Table 2. Summary gene classifications among five Elsinoë species.

Classification E. fawcettii BRIP 53147a E. fawcettii DAR 70024 E. fawcettii SM16-1 E. australis Ea-1 E. ampelina YL-1

Core 75.70% 74.79% 73.08% 80.35% 75.21%

Accessory 12.37% 12.96% 12.34% 9.67% 12.58%

E. fawcettii-specific 10.72% 10.84% 8.16% N/A N/A

Unique 1.20% 1.26% 6.43% 9.98% 12.21%

https://doi.org/10.1371/journal.pone.0227396.t002
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develop in, and nearby to, regions containing TE repeats, through Repeat-Induced Point

mutation (RIP), a mechanism used to inhibit the destructive actions of TE against an organ-

ism’s genome. Through a fungal genome defence mechanism causing cytosine to thymine

polymorphisms, a TE repeat sequence is inhibited from further movement and potential

destruction of necessary genes. This same type of polymorphism can also occur in genes

nearby to TE regions [150–153], potentially providing numerous genomic locations with

increased plasticity scattered throughout the genome. While RIP occurs during the sexual

phase it has also been observed in asexual fungi and is thought to indicate a species reproduc-

tive history or potential [154]. AT-rich regions are present within the E. fawcettii genome,

however the extent of their coverage in the present assembly is low, 59 regions with an average

GC content of 33.8% cover only 1.03% of the genome. Sixteen regions are found overlapping

TE, while four are found within 2 Kb of a TE region, meaning 33.9% of the AT-rich regions

potentially represent RIP-affected regions. The remaining 66.1%, found either >2Kb away or

on a contig that does not contain a predicted TE region, are potentially RIP-affected regions

where the TE is no longer recognisable. The AT-rich regions of E. fawcettii are not scattered

evenly throughout the genome, instead 29/59 (49.2%) are situated at the end of a contig and

15/59 (25.4%) cover the entire length of a contig, specifically contigs not containing genes.

Two further AT-rich regions were located between the end of a contig and the beginning of

the first gene and so were grouped with those located at the end of a contig. The remaining 13

regions (22.0%) were situated within a contig with genes residing on both sides. Hence, the

majority either made up the end of a contig which contained genes or filled entire contigs

which did not contain genes, meaning it is likely that the sequence of many E. fawcettii AT-

rich regions contain sections of such low complexity that contig breaks result, a hypothesis

which could be tested in the future using long read sequencing technology. Eight predicted

genes at least partially overlap these regions and 57 are located within 2 Kb, a finding which

has potential significance as AT-rich regions have been known to harbour effector genes in

fungal pathogens [155, 156]. There was a large range of diversity of AT-rich region coverage

among the fungal pathogens analysed in the current study; S. sclerotiorum, Pyrenophora tritici-
repentis,M. oryzae and U.maydis showed no AT-rich regions; V. dahliae (1.5%), B. cinerea
(4.9%), Parastagonospora nodorum (6.6%) and Z. tritici (17.3%) showed lower degrees of AT-

rich coverage; while R. commune (29.5%) and L.maculans (37%) showed the greatest extent.

These levels of AT-rich coverage did not appear to correlate with pathogen classification as

necrotrophic, hemibiotrophic or biotrophic, nor as host-specific or broad-host range patho-

gens. The genomic location of AT-rich regions was, however, further included in the known

effectors and candidate effectors analyses.

Identification and analysis of SSR in the E. fawcettii genome located 400 regions covering

6,868 bp (0.026%), 164 (41%) of which were contained within a predicted gene. Furthermore,

polyAA repeats, of at least five identical and adjacent residues, were identified within 1,073

predicted protein sequences. The presence of repetitive sequences has been noted in fungal

effectors [33, 45, 157] and implicated in the function and evolution of pathogenicity-related

genes of other plant-associated microorganisms [158]. Hence, SSR- and polyAA-containing

proteins were retained for cross-referencing against candidate effectors.

Phylogenetic analysis of partial ITS and TEF1-α regions of E. fawcettii (BRIP 53147a) in

comparison with other E. fawcettii isolates and closely related Elsinoë species (Fig 2) indicates

E. fawcettii (BRIP 53147a) closely aligns with the E. fawcettii clade. Substitutions appearing in

the Jingeul pathotype isolates are not seen in isolate BRIP 53147a. One G to A substitution in

the TEF1-α region sets isolate BRIP 53147a apart from the other E. fawcettii isolates (S3

Table), a base which is at the 3rd position of a Glu codon and hence does not result in a transla-

tional difference. This substitution in the BRIP 52147a isolate appeared with a high degree of
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confidence, 100% of sequence reads aligned back to the assembly and a coverage of 241x, at

this point, agreed with the substitution. While it is thought that isolate BRIP 53147a belongs to

either the Lemon or Tyron’s pathotype, the only two pathotypes reported in Australia [2, 3, 7],

it is yet to be determined which or if it constitutes a new pathotype of its own. Aside from the

one base substitution in the TEF1-α region, there would be some expected differences

throughout the genomes of the E. fawcettii BRIP 53147a isolate and the other E. fawcettii iso-

lates due to differences in collection details, such as geographical location, year and host speci-

ficity. Specifically, isolate BRIP 53147a was collected in Montville, Queensland in 2009, while

the other Australian isolates, DAR 70187 and DAR 70024, belonging to the Lemon and Tyr-

on’s pathotypes, were collected 15 years earlier in Somersby and Narara in NSW, respectively

[7], both a distance of almost 1000 km away. Several isolates from Fig 2 have been tested for

host pathogenicity leading to the designation of specific pathotypes [3], as opposed to relying

on only sequence data and thus illustrating the importance of experimental validation prior to

pathotype or species classification. For example, Jin-1 and Jin-6 are classified as the Jingeul

pathotype, SM3-1 as FBHR, S38162 as FNHR, CC-132 as SRGC, DAR 70187 and CC-3 as the

Lemon pathotype, and DAR 70024 as Tyron’s pathotype [3]. Host specificity experimentation

for the E. fawcettii BRIP 53147a isolate is a suggested future step, as is the whole genome

sequencing and analysis of further E. fawcettii isolates for comparison. The comprehensive

host pathogenicity testing of 61 E. fawcettii isolates and their subsequent classification into six

pathotypes [3] coupled with genomic sequencing data analysis would provide a wealth of

knowledge of potential host-specific pathogenicity-related genes and mutations.

Prediction of secretome and effectors

A total of 1,280 genes (12.7% of the proteome) were predicted to code for secreted proteins

(SP) in the E. fawcettii (BRIP 53147a) genome (Table 3). Using the discovery pipeline outlined

in Fig 3, classically secreted proteins with a detectable signal peptide were predicted by either

SignalP and/or Phobius providing 1,449 proteins, while ProtComp identified a further 120 as

potential non-classically secreted proteins. Of these 1,569 proteins, 186 were removed as they

were predicted to contain transmembrane helices, an indication that while targeted for secre-

tion, the protein likely functions while situated in the cell membrane. A further 103 were

removed as they contained a predicted GPI anchor, also suggesting they associate with the cell

membrane to perform their function, leaving a total of 1,280 proteins identified as likely SP.

To enable comparison of the species’ predicted secretomes and CE, the same prediction pipe-

line (Fig 3) was used on the proteomes of 14 further fungal species included in the analysis

(Table 3), essentially utilising additional Elsinoë genomes and genomes which contain known

protein effectors for comparison. The proportion of predicted SP in the E. fawcettii proteome

was similar to that of other necrotrophic fungal pathogens, which ranged from B. cinerea at

11.3% to Parastagonospora nodorum at 13.9%.

Known effectors were frequently identified by the CE pipeline (Fig 3), with 43/45 (95.6%)

correctly predicted as being secreted and 42/45 (93.3%) also predicted as effectors (Table 3).

This high proportion of predicted effectors is due to 23 being utilised as positive training data

for EffectorP (v2), the unbiased sensitivity and specificity of EffectorP (v2) is reportedly 84.5%

and 82.8%, respectively [126]. Those known effectors which were tested but not identified as

SP included Vdlsc1 (V. dahliae) and MoCDIP2 (M. oryzae). Vdlsc1 lacks an N-terminal signal

peptide and is unconventionally secreted [159], however it was not identified as a non-classi-

cally secreted protein. MoCDIP2 was removed as it obtained a GPI-anchor hit. Additionally,

Eff1-1 (U.maydis) was predicted as secreted but not as a candidate effector, Eff1-1, along with

MoCDIP2, are both known false negatives of EffectorP 2.0 [126].
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The total number of CE identified for E. fawcettii (BRIP 53147a) was 276, meaning only

21.6% of SP gained CE classification, this was the lowest proportion out of all 11 species ana-

lysed (Table 3). This may be explained by the potential favouring of EffectorP towards SP of

species on which it was trained. To further investigate this potential, results of EffectorP for

the 11 species were compared to the results of an alternate candidate effector search; SP with a

protein length less than the species’ median and with no Pfam hit other than to that of a

known effector (S4 Table). While this second method resulted in the identification of a higher

number of CE for each species, E. fawcettii still obtained the lowest proportion of CE out of

predicted SP. It also highlighted the advantage of using EffectorP to narrow down an extensive

catalogue of SP, as opposed to identifying CE based on arbitrary features. However, the CE

predicted by EffectorP still range in the hundreds (Table 3), it was therefore beneficial to fur-

ther shortlist candidates for prioritisation. To achieve this, known effectors which were cor-

rectly predicted as both SP and as CE (Table 3) were retained for further analysis to generate

an optimised prioritisation scoring system. In the current study, positive results from either

version of EffectorP (1.0/2.0) [126,132] formed the CE set, while this provided a larger group

Table 3. Predicted Secreted Proteins (SP), Candidate Effectors (CE) and known effectors.

Species Total

proteins�
SP (% of

total)

CE (% of

SP)

Known effectors correctly predicted as SP and CE Known effectors not

predicted as SP and CE

Necrotrophs:

Elsinoë fawcettii BRIP

53147a

10,080 1,280

(12.7%)

276

(21.6%)

-

Elsinoë fawcettii DAR

70024

10,223 1,291 274 -

Elsinoë fawcettii
SM16-1

10,519 1,393 317 -

Elsinoë australis 9,253 1,091 235 -

Elsinoë ampelina 9,804 1,167 270 -

Botrytis cinerea 11,481 1,294

(11.3%)

285

(22.0%)

NEP1

Parastagonospora
nodorum

15,878 2,206

(13.9%)

932

(42.2%)

Tox1, ToxA

Pyrenophora tritici-
repentis

10,771 1,298

(12.1%)

388

(29.9%)

ToxB

Sclerotinia
sclerotiorum

13,770 1,707

(12.4%)

692

(40.5%)

SsSSVP1

Zymoseptoria tritici 11,936 1,514

(12.7%)

597

(39.4%)

Zt6, AvrStb6

Hemibiotrophs:

Leptosphaeria
maculans

12,337 1,883

(15.3%)

787

(41.8%)

AvrLM6, AvrLM11, AvrLM4-7

Magnaporthe oryzae 12,236 2,263

(18.5%)

1055

(46.6%)

SPD10, Msp1, BAS1, SPD4, SPD2, MoCDIP3, MoCDIP4, AVR-Pik,

MoCDIP1, Bas107, BAS2, BAS3, BAS4, Avr-Pita1, Bas162, MoHEG13,

SPD7, MC69, AvrPi9, AvrPiz-t, SPD9, MoCDIP5

MoCDIP2

Rhynchosporium
commune

12,100 1,510

(12.5%)

509

(33.7%)

NIP1, NIP2, NIP3

Verticillium dahliae 10,441 1,407

(13.5%)

413

(29.4%)

PevD1, VdSCP7 Vdlsc1

Biotroph:

Ustilago maydis 6,692 856

(12.8%)

256

(29.9%)

Pit2, Pep1, See1, Cmu1, Tin2 Eff1-1

�Not including gene models which overlap a predicted TE region

https://doi.org/10.1371/journal.pone.0227396.t003
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for subsequent prioritisation, it removed potential user discrimination based on arbitrary fea-

tures. EffectorP 1.0 has previously been shown to predict effectors with a shorter average

sequence length compared to version 2.0 and, additionally, selecting only CEs predicted by

both versions’ favours proteins with a higher cysteine content [126]. By utilising a CE set pre-

dicted by either version potentially allows greater variety of CE prediction.

Known effector analysis

A total of 42 known effectors from 10 fungal species were analysed for; (I) gene density; (II)

GC content; (III) involvement in SM clusters; (IV) uniqueness; (V) distance to the closest TE;

and (VI) distance to the closest AT-rich regions (Table 4). Results were compared to those of

all predicted genes from each of the same 10 species (S5 Table). Features observed at a higher

rate among the known effector group compared with each species’ proteome were used to

prioritise CE using a point allocation system. (I) Genes were labelled as gene-dense if the IFRs

on both sides were less than 1500 bp. The proportions of gene-dense genes ranged from

17.66% (Pyrenophora tritici-repentis) to 70.23% (L.maculans) (S5 Table) with a mean of

49.4%, in contrast to 9/42 (21.4%) known effectors (Table 4). This provided grounds to allocate

one point to each known effector which was not labelled as gene-dense. (II) GC content of the

CDS of each gene was determined and median values calculated for each species, revealing the

GC percentage of 32/42 (76.2%) known effectors fell either below the Q1 value or above the Q3

value for the respective species. When compared to an expected 50% in the upper and lower

quartiles, this provided reason for the allocation of one point to known effectors should they

fall in these two quartiles. (III) No overlap was observed between known effectors and the pre-

dicted SM clusters within each species, giving strong reason for the allocation of one point to

known effectors that were not included in SM clusters. (IV) Analysis of gene classification

(core, unique or other) for each known effector highlighted that 41/42 (97.6%) were either

unique to the species (31/42) or were assigned an orthoMCL group ID of a known effector

Fig 3. Pipeline for the discovery of the predicted secretome and candidate effectors. The secretome search started with the predicted proteins of a species, proteins

were predicted as secreted using at least one of three tools, proteins with predicted transmembrane helices or GPI-anchors were removed. Candidate effectors were

predicted using EffectorP (v1.0 and v2.0). The number of proteins shown for the predicted proteome, secretome and effectome refers to the Elsinoë fawcettii BRIP

53147a genome.

https://doi.org/10.1371/journal.pone.0227396.g003
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Table 4. Features of known fungal effectors used to guide candidate effector prioritisation.

Effector Gene density

class

CDS GC

%

Within SM gene

cluster

Ortholog

class

Distance to

TE

Distance to AT-rich

region

Total possible points (n
points)

Points

scored

Necrotrophic:

Botrytis cinerea:

NEP1 Sparse >Q3 No OtherA 16,435 N/A 5 5

Parastagonospora nodorum:

Tox1 <Q1 No Unique N/A N/A 4 4

ToxA Sparse <Q1 No Unique N/A N/A 4 4

Pyrenophora tritici-repentis:
ToxB <Q1 No Unique N/A N/A 4 4

Sclerotinia sclerotiorum:

SsSSVP1 Sparse Q2
B No Unique 8,521 N/A 5 4

Zymoseptoria tritici:
Zt6 DenseB >Q3 No CoreA 14,100 N/A 5 4

AvrStb6 Sparse >Q3 No Unique 3,166 N/A 5 5

Hemibiotrophic:

Leptosphaeria maculans:
AvrLM6 <Q1 No Unique 3,766 0 6 6

AvrLM11 Sparse <Q1 No Unique 2,467 0 6 6

AvrLM4-7 Sparse <Q1 No Unique 891 0 6 6

Magnaporthe oryzae:
SPD10 DenseB Q2

B No Unique 8,747 N/A 5 3C

Msp1 DenseB >Q3 No OtherA 39,744B N/A 5 3 C

BAS1 Sparse <Q1 No Unique 249 N/A 5 5

SPD4 <Q1 No Unique 1,038 N/A 5 5

SPD2 DenseB >Q3 No Unique 17,554 N/A 5 4

MoCDIP3 Sparse >Q3 No Unique 168 N/A 5 5

MoCDIP4 Sparse >Q3 No OtherA 238 N/A 5 5

AVR-Pik Sparse <Q1 No Unique 442 N/A 5 5

MoCDIP1 Sparse >Q3 No OtherA 68,564B N/A 5 4

Bas107 <Q1 No Unique 7,541 N/A 5 5

BAS2 DenseB Q2
B No OtherB 4,583 N/A 5 2 C

BAS4 Sparse Q2
B No Unique 3,898 N/A 5 4

BAS3 Q2
B No Unique 12,126 N/A 5 4

Avr-Pita1 <Q1 No OtherA 299 N/A 5 5

Bas162 <Q1 No Unique 8,604 N/A 5 5

MoHEG13 <Q1 No Unique 5,888 N/A 5 5

SPD7 <Q1 No Unique 8,963 N/A 5 5

MC69 Sparse >Q3 No OtherA 18,884 N/A 5 5

AvrPi9 DenseB >Q3 No OtherA 5,031 N/A 5 4

AvrPiz-t Q2
B No Unique 465 N/A 5 4

SPD9 Q2
B No Unique 3,433 N/A 5 4

MoCDIP5 DenseB >Q3 No OtherA 5,123 N/A 5 4

Rhynchosporium commune:
NIP3 Q2

B No Unique 32,352B 1,368 6 4 C

NIP1 Sparse >Q3 No Unique 2,611 1,814 6 6

NIP2 Sparse >Q3 No Unique 1,860 6,572 6 6

Verticillium dahliae:

(Continued)
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(10/42). In contrast, the proportion of unique genes for each species was much lower, ranging

from 11.9% (B. cinerea) to 33.7% (S. sclerotiorum), with an average of 25.4%. The proportion

of genes allocated an orthoMCL of a known effector was similarly low at less than 0.3% for all

species. Thus, a point was allocated to known effectors that were either unique to the species

or obtained the same orthoMCL ID of a known effector. (V) Those genomes with>2% TE

coverage also showed a high proportion of known effectors in the close vicinity of TE. Specifi-

cally, 29/32 (90.6%) known effectors from Z. tritici, S. sclerotiorum, B. cinerea, R. commune, L.

maculans andM. oryzae were within 20 Kb of a TE region, compared to an average of 47.1% of

genes within 20 Kb of a TE for the same six species. This led to the allocation of one point for

known effectors less than 20 Kb from a TE for species with>2% TE coverage. (VI) Lastly, of

the genomes analysed, only those consisting of>25% AT-rich regions, being R. commune and

L.maculans, were found to have a noticeable association between the location of known effec-

tors and AT-rich regions. The distance of all known effectors to the closest AT-rich region, of

these two species, were found to be less than the Q1 value for each species. Hence, known effec-

tors with these specifications, in species with>25% AT-rich region coverage, were allocated

one point. It can be seen that depending on the degree of TE and AT-rich region coverage,

each species’ known effectors may be scored out of four, five or six points, henceforth referred

to as “n points”. Over the 10 species with known effectors which were analysed, Table 4 illus-

trates a total of 38/42 (90.5%) known effectors obtained n or n-1 points, revealing a process

which could be used to prioritise the many CE predicted for the E. fawcettii genome.

Prioritisation of candidate effectors

CE were prioritised using the method described above for the analysis of known effectors. The

three E. fawcettii isolates, E. ampelina, E. australis, Parastagonospora nodorum, Pyrenophora
tritici-repentis, V. dahlia and U.maydis each had <2% TE coverage and<25% coverage of

AT-rich regions, their CE were therefore scored out of four points. Z. tritici, S. sclerotiorum, B.

cinerea andM. oryzae had >2% TE coverage but<25% coverage of AT-rich regions and so

were scored out of five points. Only the assemblies of R. commune and L.maculans showed

>2% TE and>25% AT-rich regions, and as such their CE were scored out of six points. By

using n or n-1 points as an acceptable score for CE prioritisation, CE of the 15 pathogens

Table 4. (Continued)

Effector Gene density

class

CDS GC

%

Within SM gene

cluster

Ortholog

class

Distance to

TE

Distance to AT-rich

region

Total possible points (n
points)

Points

scored

PevD1 >Q3 No OtherA N/A N/A 4 4

VdSCP7 Q2
B No Unique N/A N/A 4 3

Biotrophic:

Ustilago maydis:
Pit2 <Q1 No Unique N/A N/A 4 4

Pep1 Sparse Q2
B No Unique N/A N/A 4 3

See1 DenseB <Q1 No Unique N/A N/A 4 3

Cmu1 DenseB >Q3 No Unique N/A N/A 4 3

Tin2 <Q1 No Unique N/A N/A 4 4

A Allocated the same orthoMCL group ID as a known effector
B Possible point not allocated
C Less than n-1 points scored

https://doi.org/10.1371/journal.pone.0227396.t004
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could be reduced, by 31.96% - 77.13% (average 54.39%) (S6 Table), with species that were

scored out of more points achieving higher reductions.

Applying the method outlined in Fig 4 to the CE of E. fawcettii led to the prioritisation of

120 CE, a reduction of 56.5%, for future experimental validation. This is a comparable reduc-

tion to that of the other necrotrophic pathogens (Fig 5, S6 Table), for which six out of seven

known effectors were retained within the shortlisted CE. Features of the 120 CE of E. fawcettii
(BRIP 53147a) (S7 Table) indicated many were small in size, had a high GC content, had a

high proportion of cysteine residues and were more likely to be classified as gene-sparse. The

median protein length was 180 aa, compared to 409 aa for all E. fawcettii predicted genes. The

mean GC content was 57.05% and the mean cysteine content was 2.9%, compared to 54.16%

and 1.2%, respectively for all predicted genes of E. fawcettii. The high proportion (18.3%) of

gene-sparse genes among prioritised CE was expected, as CE which were not classified as

gene-dense were favoured during the prioritisation process, however high proportions of

gene-sparse genes were also observed among the SP and CE (Table 5). Specifically, 4.0% of all

E. fawcettii (BRIP 53147a) predicted genes were classed as gene-sparse, 72.6% as gene-dense

and the remaining 23.4% classed as neither. In comparison, 4.8% of SP (p = 0.09548) and 8.3%

of CE (p = 0.00082) were classed as gene-sparse, potentially indicating a preference for gene-

sparse locations by CE and proteins likely secreted by the pathogen. PolyAA repeat-containing

proteins were not overrepresented among the prioritised CE, only six (5.0%) were found to

contain five or more consecutive amino acids, compared to 10.6% of all proteins. Additionally,

no CE were found to contain SSR suggesting that diversity of E. fawcettii effector sequences is

not being generated through an increased mutational rate related to short repetitive sequences.

Furthermore, the prioritised CE were found scattered throughout the genome over 45 of the

141 gene-containing contigs and did not appear to cluster together. While AT-rich regions

were not taken into consideration during the prioritisation of E. fawcettii CE, due to a low AT-

rich coverage of 1.03%, it should be noted that a higher proportion of CE were found among

genes on the end of a contig, and significantly more SP and CE were located within 2 Kb of an

AT-rich region, than expected. Out of the 252 genes found at the end of a contig 14 (5.6%,

p = 0.00947) were CE, compared to 2.7% out of all E. fawcettii proteins. Additionally, of the 57

genes found within 2 Kb of an AT-rich region (including those found to overlap an AT-rich

region), 12 (21.1%, p = 0.05148) were SP and six (10.5%, p = 0.00449) were CE (S7 Table). This

suggests that genomic regions near contig breaks, such as sequences of low complexity or

Fig 4. Candidate effector prioritisation features and points. The candidate effectors (CE) of all genomes analysed

were scored using features shown in the blue box. Additional features were considered for CE from genomes with

>2% TE coverage (red box) and>25% AT-rich region coverage (green box).

https://doi.org/10.1371/journal.pone.0227396.g004
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regions under-represented by short read sequencing technology, and AT-rich regions may be

indicators within the E. fawcettii genome of nearby effector genes. Interestingly, SP and CE

were not overrepresented among genes found within 2 Kb of a predicted TE region, of the 120

genes found in these regions 12 (10%) were SP and 3 (2.5%) were CE, both slightly less than

their proportions across the whole genome. This suggested while potential effector genes are

more likely to be found near AT-rich regions, a nearby predictable TE region was not neces-

sary. Thus, E. fawcettii, a necrotrophic pathogen not considered at first thought to utilise pro-

tein effectors to increase virulence, shows a subtle, yet intriguing, pattern of CE near AT-rich

regions, at contig ends and in more gene-sparse locations. This potentially points towards a set

of virulence-related genes being maintained in specific genomic locations and therefore sug-

gesting their potential significance.

Fig 5. Comparison of numbers of secreted proteins, candidate effectors and prioritised candidate effectors among 15 fungal pathogens. Secreted proteins and

candidate effectors were predicted using the pipeline in Fig 3. Prioritised candidate effectors were determined using features shown in Fig 4.

https://doi.org/10.1371/journal.pone.0227396.g005

Table 5. Gene density classification of Elsinoë fawcettii (BRIP 53147a) predicted proteins.

Classification All predicted proteins Secreted proteins Candidate effectors Prioritised candidate effectors

Gene-sparse 4.0% 4.8% 8.3% 18.3%

Gene-dense 72.6% 68.5% 64.5% 35.0%

Neither 23.4% 26.7% 27.2% 46.6%

https://doi.org/10.1371/journal.pone.0227396.t005
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While analysing proteins using the features mentioned above can shortlist CE, awareness of

limitations should be considered. For example, only prioritising CE which are unique to a spe-

cies, or obtain the same orthoMCL hit as a known effector, limits the identification of novel

effectors which may be utilised by multiple species. Hence, a blast search of E. fawcettii CE

against CE of the 10 other fungal pathogens was conducted and indicated 16 (5.8%) E. fawcettii
CE had >70% similarity to at least one candidate effector of another species (S7 Table). Five of

these 16 proteins were prioritised CE, one of which had 72.9% similarity to MoCDIP1 (M. ory-
zae), a known effector which is expressed in planta and induces host cell death [49], thus

highlighting this CE for further investigation. Cross referencing the E. fawcettii (BRIP 53147a)

CE with PHI-base showed 7.2% (20) obtained a hit with>40% similarity, the majority (17/20)

of which were core genes found among the Elsinoë species studied (S7 Table), indicating a sub-

set of CE which may be of benefit to multiple pathogens.

Prediction and prioritisation of cell wall degrading enzymes

Further potential pathogenicity-related genes of E. fawcettii which deserve attention include

CWDE. The E. fawcettii (BRIP 53147a) proteome showed 378 (3.75%) predicted CAZymes (S8

Table), comparable to the proportion of CAZymes seen in the other 10 pathogen genomes,

which ranged from 2.8% (S. sclerotiorum) to 4.3% (V. dahliae) (S2 Table). Of the total E. faw-
cettii CAZymes, 203 (53.7%) were also predicted as secreted, highlighting numerous potential

CWDE secreted by the pathogen and targeted for interaction with host carbohydrates. It

would be beneficial to compare these potential CWDE with transcriptomic data once available,

however, currently they can be cross-referenced against the Pfam database. Analysis of the 203

potential CWDE revealed frequently appearing Pfam hits to pectate lyase and pectinesterase

(19 hits), the glycosyl hydrolases family 28 of pectin-degrading polygalacturonases (11 hits)

and the glycosyl hydrolases family 43 of hemicellulose-degrading beta-xylosidases (10 hits).

Hemicellulose- and pectin-degrading enzymes target plant cell wall components including

xyloglucans and pectin’s, respectively [68], both found in high proportions in the primary cell

wall, potentially revealing an arsenal of CWDE of E. fawcettii which are targeted towards

young plant tissues. Polygalacturonases break bonds between polygalacturonic acid residues,

thereby degrading pectin, while beta-xylosidases hydrolyse xylan, a hemicellulose component

of the cell wall. It is possible that the CWDE of E. fawcettii have the ability to degrade compo-

nents of a growing cell wall, however as the host cell wall matures, the E. fawcettii CWDE rep-

ertoire becomes less effective, perhaps explaining why only young plant tissues are susceptible

to citrus scab. The 203 potential CWDE were also cross-referenced against PHI-base, resulting

in the prioritisation of 21 proteins which had similarity to known virulence factors of plant

pathogens (Table 6, S8 Table), thus highlighting candidate virulence genes of E. fawcettii for

future experimental investigation. Among these 21 proteins were 14 predicted pectin-degrad-

ing enzymes, including two with similarity to polygalacturonase genes, specifically pg1 (53.7%)

and pgx6 (66.4%) of Fusarium oxysporum which have been shown to reduce pathogen viru-

lence when both are mutated simultaneously [74]; two showed similarity (61.6% and 41.8%) to

the PecA polygalacturonase gene of Aspergillus flavus, a CWDE which primarily degrades pec-

tin, and has been shown to improve pathogen invasion and increase spread during infection

[73]; one with similarity to the pectin methylesterase Bcpme1 gene of B. cinerea [78]; four with

similarity (45.7% - 63.5%) to PelA and PelD, two pectate lyase virulence factors of Nectria hae-
matococca [75]; and a further five obtained a pectate lyase Pfam hit, of which four showed sim-

ilarity (40.3% - 53.5%) to the Pnl1 pectin lyase gene of citrus pathogen Penicillium digitatum
[76] and one with 58.4% similarity to PelB pectate lyase B gene of Colletotrichum gloeospor-
ioides, seen to affect virulence on avocado [77]. A further five prioritised candidate CWDE,
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classed as hemicellulose-degrading enzymes, showed similarity (46.7% - 61.6%) to the endo-

1,4-beta-xylanases (glycosyl hydrolase families 10 and 11) ofM. oryzae, the knockdown of

which is seen to reduce pathogenicity [80]. The remaining two prioritised CWDE, classed as

cellulose-degrading enzymes, showed 51.9% and 52.9% similarity to the Glu1 glucanase gene,

a known virulence factor of wheat pathogen Pyrenophora tritici-repentis [79]. The similarities

seen between these predicted secreted CAZymes and known virulence factors provides a col-

lection of likely CWDE of E. fawcettii for future investigation. Unlike SP or CE, predicted

CWDE of E. fawcettii were not overrepresented among genes found at the contig end or within

2 Kb of an AT-rich region (S8 Table). There was some crossover between CE and CWDE, with

three E. fawcettii (BRIP 53147a) proteins being labelled as both prioritised CE and prioritised

CWDE, thus providing some CE with potential carbohydrate-interacting functions.

Prediction of secondary metabolite clusters

Much research surrounding E. fawcettii has focused on the SM elsinochrome, which contrib-

utes to the formation of necrotic lesions [25–28]. Analysis of the E. fawcettii (BRIP 53147a)

genome assembly enabled the prediction of further genes potentially involved in the elsino-

chrome gene cluster than previously described, as well as the prediction of additional SM clus-

ters throughout the assembly. In total, there were 22 predicted SM clusters, involving 404

(4.0%) genes (Table 7, S9 Table). Comparing this to the results of the 10 comparative species

showed that the number of predicted SM clusters varies widely among the pathogens, from 13

clusters (U.maydis) to 53 clusters (M. oryzae) (Fig 6). This wide variety among fungal species,

Table 6. Predicted function of prioritised candidate cell wall degrading enzymes of Elsinoë fawcettii.

Gene accession PHI-base hit Similarity (%) Top Pfam hit

Predicted pectin-degrading enzymes:
KAF4548260 PGX6 Fusarium oxysporum (PHI:4880) 66.39 Glycosyl hydrolases family 28 (GH28)

KAF4556463 PG1 F. oxysporum (PHI:4879) 53.69 GH28

KAF4550523 PECA Aspergillus flavus (PHI:88) 61.64 GH28

KAF4547067 PECA A. flavus (PHI:88) 41.80 GH28

KAF4547800 BCPME1 Botrytis cinerea (PHI:278) 47.97 Pectinesterase

KAF4549166 PelD Nectria haematococca (PHI:180) 47.27 Pectate lyase (PL)

KAF4552448 PelD N. haematococca (PHI:180) 63.45 PL

KAF4550092 PelA N. haematococca (PHI:179) 46.38 PL

KAF4548090 PelA N. haematococca (PHI:179) 45.69 PL

KAF4549258 PNL1 Penicillium digitatum (PHI:3226) 53.46 PL

KAF4556657 PNL1 P. digitatum (PHI:3226) 44.74 PL

KAF4555488 PNL1 P. digitatum (PHI:3226) 41.70 PL

KAF4556483 PNL1 P. digitatum (PHI:3226) 40.33 PL

KAF4549223 PELB Colletotrichum gloeosporioides (PHI:222) 58.40 PL

Predicted Hemicellulose-degrading enzymes:
KAF4552838 Endo-1,4-beta-xylanase Magnaporthe oryzae (PHI:2204) 61.56 Glycosyl hydrolase family 10 (GH10)

KAF4550100 Endo-1,4-beta-xylanase M. oryzae (PHI:2204) 57.69 GH10

KAF4555167 Endo-1,4-beta-xylanase M. oryzae (PHI:2208) 46.67 GH10

KAF4547778 Endo-1,4-beta-xylanase I M. oryzae (PHI:2214) 58.87 Glycosyl hydrolases family 11 (GH11)

KAF4556368 Endo-1,4-beta-xylanase I M. oryzae (PHI:2213) 56.72 GH11

Predicted Cellulose-degrading enzymes:
KAF4547532 GLU1 Pyrenophora tritici-repentis (PHI:3859) 52.89 Cellulase—glycosyl hydrolase family 5 (GH5)

KAF4552889 GLU1 P. tritici-repentis (PHI:3859) 51.93 Cellulase–GH5

https://doi.org/10.1371/journal.pone.0227396.t006
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Table 7. Predicted Secondary Metabolite (SM) gene clusters of Elsinoë fawcettii.

Cluster

#

SM class Genomic location (number of genes

involved)

Similarity to known SM biosynthetic gene clusters

Known SM cluster gene (GenBank accession) Similarity

(%)

E. fawcettii GenBank

accession

1 T1PKS SDJM01000001, 641093:686753 (15

genes)

Elsinochrome A/B/C:

EfHP1 hypothetical protein (ABZ82009.1) 97 KAF4556313

ESC reductase (ABZ01830.1) 100 KAF4556314

Transcription factor (ABZ01831.1) 98 KAF4556315

Polyketide synthase (ABU63483.1) 99 KAF4556316

ESC prefoldin protein subunit 3 (ABZ01833.1) 100 KAF4556317

ECT1 transporter (ABZ82008.1) 70 KAF4556318

2 terpene-

T1PKS

SDJM01000001, 1100227:1205433 (43

genes)

PR toxin:

Short-chain dehydrogenase/reductase SDR

(CDM31317.1)

54 KAF4556505

Aristolochene synthase (CDM31315.1) 60 KAF4556513

FAD-binding, type 2 (CDM31316.1) 42 KAF4556518

3 other SDJM01000002, 204508:248496 (18

genes)

4 other SDJM01000002, 1497538:1541073 (22

genes)

5 terpene SDJM01000003, 564086:586459 (10

genes)

6 terpene SDJM01000003, 907579:930486 (11

genes)

7 other SDJM01000004, 582204:627436 (23

genes)

8 other SDJM01000006, 282237:328303 (19

genes)

9 other SDJM01000006, 329430:373960 (19

genes)

10 other SDJM01000006, 783514:830534 (17

genes)

11 terpene SDJM01000007, 20929:44027 (11 genes)

12 T1PKS SDJM01000007, 199413: 248702 (25

genes)

Trypacidin:

Putative toxin biosynthesis regulatory protein AflJ

(EAL89340.1)

43 KAF4553274

Hypothetical protein (EAL89347.1) 72 KAF4553277

Putative metallo-beta-lactamase domain protein

(EAL89338.1)

57 KAF4553279

Putative polyketide synthase (EAL89339.1) 59 KAF4553280

Pestheic acid:

PtaD (AGO59044.1) 57 KAF4553277

PtaB (AGO59041.1) 63 KAF4553279

PtaA (AGO59040.1) 59 KAF4553280

13 NRPS SDJM01000008, 153859:208507 (21

genes)

14 other SDJM01000009, 468080:512558 (18

genes)

15 NRPS SDJM01000015, 163571:217225 (15

genes)

16 terpene SDJM01000020, 268495:289017 (9

genes)

(Continued)
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in particular an overrepresentation of SM clusters among hemibiotrophs and necrotrophs has

been seen before [160]. From the comparative analysis, it appears E. fawcettii has a lower vari-

ety of secondary metabolite clusters compared to the other necrotrophs and hemibiotrophs,

particularly for Type I polyketide synthase (T1PKS) clusters. Blast analysis of the previously

determined E. fawcettii elsinochrome cluster [27] against the E. fawcetti proteome indicated

high similarities in amino acid sequence for six genes of the predicted T1PKS SM cluster 1 (S9

Table). Specifically, the predicted core biosynthetic gene of cluster 1 (accession KAF4556316)

showed 98.6% similarity to the E. fawcettii polyketide synthase (EfPKS1) gene (accession

ABU63483.1). An additional predicted biosynthetic gene (accession KAF4556314) had 99.6%

Table 7. (Continued)

Cluster

#

SM class Genomic location (number of genes

involved)

Similarity to known SM biosynthetic gene clusters

Known SM cluster gene (GenBank accession) Similarity

(%)

E. fawcettii GenBank

accession

17 T1PKS SDJM01000025, 66786:116804 (18

genes)

18 T1PKS SDJM01000028, 107087:155682 (17

genes)

Cercosporin:

Polyketide synthase (AAT69682.1) 53 KAF4548432

Cercosporin toxin biosynthesis protein

(ABC79591.2)

52 KAF4548433

Oxidoreductase (ABK64184.1) 41 KAF4548434

O-methyltransferase (ABK64180.1) 61 KAF4548436

Oxidoreductase (ABK64182.1) 60 KAF4548439

19 T3PKS SDJM01000034, 15555:58185 (18 genes)

20 NRPS SDJM01000035, 41518:95090 (22 genes)

21 NRPS SDJM01000037, 59764:106480 (19

genes)

22 other SDJM01000059, 16530:45727 (15 genes)

https://doi.org/10.1371/journal.pone.0227396.t007

Fig 6. Comparison of numbers of predicted secondary metabolite gene clusters among 11 fungal species. Numbers

of SM gene clusters, shown on the x axis, are divided into SM types; (I) Type I Polyketide synthase (T1PKS); (II)

terpene; (III) non-ribosomal peptide synthetase (NRPS); and (IV) other, which contains all clusters identified by

antiSMASH as either Type 3 Polyketide synthase (T3PKS), terpene-T1PKS, indole-T1PKS-NRPS, T1PKS-NRPS,

indole-T1PKS, T1PKS-terpene-NRPS, indole, siderophore, lantipeptide, T3PKS-T1PKS or other.

https://doi.org/10.1371/journal.pone.0227396.g006
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similarity to the E. fawcettii ESC reductase (RDT1) gene (accession ABZ01830) and the pre-

dicted transport-related gene (accession KAF4556318) showed 70.3% similarity to the E. faw-
cettii ECT1 transporter (ECT1) gene (accession ABZ82008). Additional genes within the E.

fawcettii SM cluster 1 obtained hits to the E. fawcettii elsinochrome cluster [27], specifically

KAF4556317, KAF4556315 and KAF4556313 had high (97.4% - 100%) similarity to PRF1 pre-

foldin protein subunit 3 (accession ABZ01833.1), TSF1 transcription factor (accession

ABZ01831.1) and EfHP1 coding a hypothetical protein (accession ABZ82009.1). Hence, SM

cluster 1 contains the two genes, EfPKS1 and TSF1, which have been shown to be essential in

elsinochrome production, as well as four genes (RDT1, PRF1, ECT1 and EfHP1) also thought

to be involved in elsinochrome biosynthesis [26, 27]. SM cluster 1 appears to lack four genes,

being OXR1, EfHP2, EfHP3 and EfHP4, which have all been reported to code for hypothetical

proteins and not thought to be involved in biosynthesis [27]. However, to further investigate

these omissions, BLAST analysis querying the nucleotide sequences of the elsinochrome clus-

ter [27] against the contigs of the E. fawcettii genome assembly indicated regions with high

similarities (99.3% - 99.7%) consistent with the location of predicted SM cluster 1 on contig

SDJM01000001. The CDS of all four gene regions, however, were found to overlap with either

each other or with other predicted genes. As no overlapping genes were predicted by Gene-

Mark-ES on this isolate, it is thought the use of alternate gene model prediction programs

between the studies may be a contributing factor for these differences. Further investigation

through future transcriptomics analyses of E. fawcettiimay provide resolution. Interestingly,

SM cluster 1 consisted of an additional nine genes to the elsinochrome cluster previously

described [27], all of which lay in a cluster adjacent to ECT1. Several of these additional genes

obtained Pfam hits such as the THUMP domain, peptidase M3, Apolipoprotein O, Gar1/Naf1

RNA binding region and Endonuclease/Exonuclease/phosphatase family, suggesting these

additional neighbouring proteins may perform functions such as RNA binding and modifica-

tion, peptide cleavage, lipid binding and intracellular signalling, thus providing further genes

for future investigation into the elsinochrome biosynthesis pathway.

An additional predicted SM cluster deserving of further investigation was SM cluster 2, a

terpene-T1PKS, located 415,394 bp from the elsinochrome SM cluster 1 on contig

SDJM01000001. This cluster shows sequence similarity to three proteins within the PR toxin

biosynthetic gene cluster, namely aristolochene synthase (accession CDM31315.1) with 60%

similarity to KAF4556513, short-chain dehydrogenase/reductase (accession CDM31317.1)

with 54% similarity KAF4556505 and the type 2 FAD-binding protein (accession

CDM31316.1) with 42% similarity to KAF4556518. The PR toxin is produced by the saprobe

Penicillium roqueforti, a known contaminant of silages [161], while the mechanisms of its likely

role in plant degeneration are unknown [162], PR toxin is seen to induce necrosis in human

intestinal epithelial cells and monocytic immune cells [163] and exhibits mutagenic activity

towards rats [164]. Thus, indicating the potential production of a toxin by E. fawcettii with

DNA-binding capabilities. Another predicted SM gene cluster of interest was the T1PKS SM

cluster 12. Three genes of cluster 12 (KAF4553277, KAF4553279 and KAF4553280) showed

similarity to multiple known biosynthetic genes clusters; including the pestheic acid biosyn-

thetic gene cluster of Pestalotiopsis fici [165] thought to function as a plant growth regulator

[166] and the Trypacidin biosynthetic gene cluster of Aspergillus fumigatus, which produces a

SM toxic to human lung cells [167]. Lastly, SM cluster 18 is predicted to code for five proteins

with sequence similarity to those of the cercosporin biosynthetic gene cluster of Cercospora
nicotianae [168]. Specifically, KAF4548432 (53% similarity to polyketide synthase, accession

AAT69682.1), KAF4548433 (52% similarity to cercosporin toxin biosynthesis protein, acces-

sion ABC79591.2), KAF4548434 (41% similarity to oxidoreductase, accession ABK64184.1),

KAF4548436 (61% similarity to O-methyltransferase, accession ABK64180.1) and
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KAF4548439 (60% similarity to oxidoreductase, accession ABK64182.1). Cercosporin, similar

to elsinochrome, is a fungal toxin which promotes the generation of reactive oxygen species in

the presence of light, killing plant cells [169]. Cercosporin produced by C. nicotianae has been

shown to cause necrotic lesions on tobacco leaves [170] and is also produced by the apple path-

ogen Colletotrichum fioriniae [171]. While it has been shown that elsinochrome production is

important for full virulence by E. fawcettii [26, 27], biosynthesis of further SMs, such as cluster

2, 12 or 18, may be beneficial to pathogenesis by potentially disrupting host plant signalling,

causing additional necrosis or inhibiting competing microbes.

Analysis of the distances between predicted SM genes and TE indicated no TE were in the

close vicinity of SM cluster 1 (elsinochrome), the closest TE to the edge of the cluster was

199,748 bp or 77 genes away. This lack of association was seen among all E. fawcettii predicted

SM clusters, with seven clusters predicted on contigs without identified TE (S9 Table). Of

those clusters which did lie on contigs with TE, genes were an average distance of 236,556 bp

away, suggesting recent activity of known TE was unlikely to be involved in the formation of

E. fawcettii SM clusters. The closest AT-rich region to SM cluster 1 was a distance of 90,363

bp, while this was less than the mean distance (257,863 bp), this indication of potential TE deg-

radation by RIP is still quite distant. In contrast to multiple SP and CE seen in the close vicinity

of AT-rich regions, there were no genes from predicted SM clusters within 2 Kb of an AT-rich

region, suggesting genes involved in SM production may benefit from residing in more stable

genomic regions.

Conclusion

The WGS sequencing, genome mining and comparative analyses conducted in this study illus-

trates the potential that exists within the genome of E. fawcettii for virulence factors such as

protein effectors and CWDE. The identification of these potential pathogenicity-related genes

is a first step in determining further mechanisms utilised by E. fawcettii in addition to elsino-

chrome production, thus enabling this pathogen to defeat plant immune strategies in a host-

specific manner. This study provides predicted virulence genes for future experimental investi-

gation of E. fawcettii pathogenesis pathways, as well as establishing a comprehensive genomic

resource for use in future studies to determine improved methods of control and screening of

this pathogen.

Supporting information

S1 Table. GenBank accessions and genomic locations for RPB2, ITS and TEF1-α sequences

included in the phylogenetic analyses with elsinoë fawcettii isolate (BRIP 53147a).

(DOCX)

S2 Table. Comparison of predicted gene classifications among elsinoë fawcettii and 10

other species; pfam hits, predicted CAZymes and core/unique/other genes.

(XLSX)

S3 Table. Sequence alignment of partial ITS and TEF1-α regions of elsinoë fawcettii (BRIP

53147a) in comparison with other isolates of E. fawcettii and closely related elsinoë species.

(TXT)

S4 Table. Comparison of results of EffectorP predicted candidate effectors and alternate

candidate effector search among 11 species.

(XLSX)
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22. Chung KR. Elsinoë fawcettii and Elsinoë australis: the fungal pathogens causing citrus scab. Molecu-

lar Plant Pathology. 2011; 12(2):123–35.

23. Weiss U, Ziffer H, Batterham T, Blumer M, Hackeng W, Copier H, et al. Pigments of Elsinoë species:
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104. Conesa A, Götz S, Garcı́a-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: A universal tool for

annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21

(18):3674–6. https://doi.org/10.1093/bioinformatics/bti610 PMID: 16081474

105. Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search

procedure. BMC Bioinformatics. 2010; 11(1). https://doi.org/10.1186/1471-2105-11-431 PMID:

20718988

106. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families

database: Towards a more sustainable future. Nucleic Acids Research. 2016; 44(1):D279–D85.

https://doi.org/10.1093/nar/gkv1344 PMID: 26673716

107. Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Current protocols in bioinfor-

matics. 2014; 47(1):11.2. 1–.2. 34.

108. Grant CE, Bailey TL, Noble WS. FIMO: Scanning for occurrences of a given motif. Bioinformatics.

2011; 27(7):1017–8. https://doi.org/10.1093/bioinformatics/btr064 PMID: 21330290

109. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: Tools for motif dis-

covery and searching. Nucleic Acids Research. 2009; 37(2):W202–W8. https://doi.org/10.1093/nar/

gkp335 PMID: 19458158
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PLOS ONE Genome mining of Elsinoë fawcettii; prediction and prioritisation of candidate virulence genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0227396 May 29, 2020 31 / 33

https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1093/molbev/msw054
http://www.ncbi.nlm.nih.gov/pubmed/27004904
http://www.mesquiteproject.org2018
http://www.mesquiteproject.org2018
https://doi.org/10.1038/ncomms1189
http://www.ncbi.nlm.nih.gov/pubmed/21326234
https://doi.org/10.1371/journal.pgen.1002230
http://www.ncbi.nlm.nih.gov/pubmed/21876677
https://doi.org/10.1111/mpp.12682
http://www.ncbi.nlm.nih.gov/pubmed/29569316
https://doi.org/10.1038/nmeth.1701
http://www.ncbi.nlm.nih.gov/pubmed/21959131
https://doi.org/10.1016/j.jmb.2004.03.016
https://doi.org/10.1016/j.jmb.2004.03.016
http://www.ncbi.nlm.nih.gov/pubmed/15111065
http://www.softberry.com/berry.phtml?topic=fdp.htm&no_menu=on
http://www.softberry.com/berry.phtml?topic=fdp.htm&no_menu=on
https://doi.org/10.1006/jmbi.2000.4315
http://www.ncbi.nlm.nih.gov/pubmed/11152613
https://doi.org/10.1186/1471-2105-9-392
http://www.ncbi.nlm.nih.gov/pubmed/18811934
https://doi.org/10.1371/journal.pone.0227396


132. Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, et al. EffectorP: predicting

fungal effector proteins from secretomes using machine learning. New Phytologist. 2016 Apr; 210

(2):743–61.

133. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. AntiSMASH 4.0—improvements

in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research. 2017; 45(1):

W36–W41. https://doi.org/10.1093/nar/gkx319 PMID: 28460038

134. Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, et al. Using OrthoMCL to assign proteins to

OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Current protocols in bioinfor-

matics. 2011; 35(1):6.12. 1–6. 9.

135. Steiner L, Findeiß S, Lechner M, Marz M, Stadler Peter F, Prohaska Sonja J. Proteinortho: Detection

of (Co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011; 12(1):124. https://doi.org/10.

1186/1471-2105-12-124 PMID: 21526987

136. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria https://www.R-project.org/2018.

137. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. DbCAN2: A meta server for automated

carbohydrate-active enzyme annotation. Nucleic Acids Research. 2018; 46(1):W95–W101. https://

doi.org/10.1093/nar/gky418 PMID: 29771380

138. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. DbCAN: A web resource for automated carbohydrate-

active enzyme annotation. Nucleic Acids Research. 2012; 40(1):W445–W51. https://doi.org/10.1093/

nar/gks479 PMID: 22645317

139. Buchfink B, Xie C, Huson D, H. Fast and sensitive protein alignment using DIAMOND. Nature Meth-

ods. 2014; 12(1). https://doi.org/10.1038/nmeth.3176 PMID: 25402007

140. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active

enzymes database (CAZy) in 2013. Nucleic Acids Research. 2014; 42(1):D490–D5. https://doi.org/10.

1093/nar/gkt1178 PMID: 24270786

141. Busk PK, Pilgaard B, Lezyk MJ, Meyer AS, Lange L. Homology to peptide pattern for annotation of car-

bohydrate-active enzymes and prediction of function.(Report). BMC Bioinformatics. 2017; 18(1).

https://doi.org/10.1186/s12859-017-1625-9 PMID: 28403817

142. Urban M, Cuzick A, Rutherford K, Irvine A, Pedro H, Pant R, et al. PHI-base: A new interface and fur-

ther additions for the multi-species pathogen-host interactions database. Nucleic Acids Research.

2017; 45(1):D604–D10. https://doi.org/10.1093/nar/gkw1089 PMID: 27915230
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