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Abstract: This paper describes a design-based study that investigates the learning of scientific 
knowledge about climate change through computational models. It addresses three 
fundamental questions about model-based learning of scientific knowledge: (a) how 
sequencing of learning activities can alter learning outcomes; (b) how students’ develop a 
complex systems’ ontology for the world through the interaction with models exhibiting 
complex dynamics; and (c) how process discovery techniques may be used to investigate 
student learning processes from log data of model use. A study design is described and 
preliminary results are presented in this paper. The design experiment used two NetLogo 
models and problem-based learning materials developed in partnership with a high school 
science teacher. In the study, three classes of year nine science students were divided into two 
groups based upon different levels of structure that was provided during learning activities 
with the model. Student responses to a pre- and post-test (N=33) were coded and scored, and 
the results show that there was significant learning about the science of climate change 
through engagement with the model, but no significant group effects. 

 
Computer modelling and scientific visualization tools are a key resource for scientists in the 21st century 
(Clement, 2000; Latour, 1987; Magnani, 1999). Greater availability and power of computers in schools has 
made it possible for students and teachers in science classes to use computer models and visualization 
techniques that are similar to or the same as those used by professional scientists (M. J. Jacobson & Wilensky, 
2006). Early research into how students might use model-based learning (MBL) to construct understandings 
about scientific phenomena has been quite encouraging (Gordin & Pea, 1995; Penner, 2001; Zhang, Liu, & 
Krajcik, 2005). However, as Stratford (1997) observed, a number of important research issues exist related to 
the pedagogical uses of MBL, such as: What do students learn about scientific phenomena when running model-
based simulations? How might modelling tools best be used in classroom settings? 

This paper presents results from the first iteration of a design-based study that is part of a four year 
federally funded project in Australia. Following the proposed by the research team conceptual design, a high 
school science teacher collaborated with the researchers to develop models and experimental materials, 
grounding them in the learning context within which they are used (Cobb, Confrey, diSessa, Lehrer, & 
Schauble, 2003). The unit focussed on enhancing students’ scientific knowledge of climate change. The first 
iteration of this study addresses three research goals. 

The first goal is to see whether we can replicate, in a different domain, existing research that suggests 
that sequencing and structure of learning activities can play a role when learning with models. Whereas the 
notion of strict discovery-learning has been largely discredited (Mayer, 2004) there is recent evidence that a 
sequence of low-structured activities followed by high structured activities can result in enhanced learning 
outcomes when compared to purely high-structured activities only (Kapur, 2006, 2008, 2010). This technique of 
productive failure (Kapur 2006) allows students to experience an initial period of less successful learning 
outcomes prior to consolidation of concepts through more highly structured activity and significant gains in 
understanding scientific knowledge and problem solving. 

Second, the understanding of some scientific phenomena requires a complex systems view (Michael J. 
Jacobson, Kapur, So, & Lee, 2010). For example, notions such as non-linearity and feedback cycles are 
important for grasping a scientific notion of the greenhouse effect (Choi & Soyoung, 2010; Shepardson, Niyogi, 
Choi, & Charusombat, 2009). It has been suggested that MBL may be an effective way for students to engage 
with this counterintuitive ontology. Thus, the second goal is to explore whether, through the use of a multi-agent 
system and models that exhibit complex dynamics, students could learn the notions of complexity better. 

Finally, when students work with computer models, a large stream of process data can be collected. 
Recently, researchers have begun to explore various process analysis techniques based on fine-grained data of 
human-computer interaction, such as data mining, for analysing online learning processes (Reimann, 2009; C. 
Romero, Ventura, Pechenizkiy, & Baker, 2010; Schulte-Mecklenbeck, Kuehberger, & Ranyard, 2011; Trčka, 
Pechenizkiy, & van der Aalst, 2011; van der Aalst, 2011). These techniques have demonstrated potential for 
discovering student learning patterns and predicting unproductive behaviours where early intervention may be 



possible. However, research is needed to investigate how these techniques might be used to assist teachers and 
students during MBL. Therefore, the third goal of the research is to provide a proof of concept for specific 
techniques that might be useful for analysis of MBL. 

This study involved MBL of scientific knowledge about climate change to explore these three main 
questions. In particular, the research design involved different sequences of learning activities as students 
worked with agent-based computer models of the carbon cycle and the greenhouse effect. In addition to 
conventional pre-post test assessments of conceptual understanding of climate change and complexity 
knowledge, our analysis of students’ learning makes use of process discovery techniques involving data mining 
of log file data in conjunction with qualitative analysis of screen and web cam recordings of the interactions of 
student dyads using the computer models. 

Method 
A classroom experiment was devised, in which students from three year nine science classes were randomly 
assigned to two treatment groups: challenge and guided learning (CGL) (i.e., productive failure) and guided 
learning (GL) (i.e., non-productive failure). Both groups experienced two classroom periods of learning with 
two computational models relating to climate science (described below). 

Learning materials 
For each of the two models, three problem-based activities were prepared. The experimental design is 

summarised in Table 1. The two experimental groups (CGL and GL) differ only in the structure provided in the 
first of two activities with each model – the second activity and assessment are identical across both groups. For 
the CGL group this involved the posing of a challenging question with no instructional support, e.g., “What is 
the difference between the behaviour of visible light (yellow rays) and infrared light (red rays)?” The GL group 
had the same question but was provided additional instructional support in the form of small guiding tasks that 
structured their exploration of the models allowing to build up the ability to answer the question gradually. This 
experimental design replicates previous studies in which significant learning outcomes were found for a 
condition in which students are first exposed to “failure” before being given guidance (Kapur, 2006; S. Pathak, 
Kim, Jacobson, & Zhang, 2009). 

All activities with the models were carried out in dyads. Students completed an individual pre- and 
post-test in which their knowledge about climate science and complexity was assessed using a survey, prior to 
their activities with the two models, Figure 1. The preparation of materials was supervised by the teacher, who 
ensured that the content was relevant to the curriculum unit on climate science and who was present in the 
classroom during the study. 
 
Table 1: Instructional sequence of classroom experiment 
 

 Activity 1 (A1) Activity 2 (A2) Assessment (A3) 
Challenge and Guided 
Learning (CGL) Not Structured Structured Not Structured 

Guided Learning (GL) 
 Structured Structured Not Structured 

 
 

 
Figure 1: Experimental Sequence. 

Models 
The agent-based models of the carbon cycle and the greenhouse effect were developed within the NetLogo 
framework, a framework that has a history of successful use for learning about both earth sciences and complex 
dynamics (Levy & Wilensky, 2010b). The models were co-created by the first author and a collaborating school 
teacher with a PhD in physics, and were then verified by an earth sciences graduate. 

The carbon cycle is represented by a fixed number of carbon molecules within a closed system. Carbon 
molecules exchange at the boundaries between atmosphere, land, and ocean. Students can alter the rates of 
transfer at these boundaries as well as control the rate of release of deeply stored carbon into the atmosphere. 
Carbon moves in different regions as well as in different life forms, represented as trees (plants) and sheep 
(animals). 

Pre-test Model 2 
A1 | A2 | A3 

 

Post-test 
Dyads 

Model 1 
A1 | A2 | A3 



The greenhouse effect model allows students to explore the interaction between the sun’s energy and 
the carbon cycle. This model builds on the carbon cycle model by introducing the sun’s rays. Students can 
release carbon dioxide into the atmosphere and observe the effects over time. The output shows atmospheric 
gases and surface temperatures. The model includes parameters for the quantity of the greenhouse gasses of CO2 
and H2O and includes a parameter the Earth’s albedo or reflectiveness. Rules are specified for the interaction 
between light rays and the Earth’s surface (reflection, absorption) as well as for heat released from the Earth’s 
surface (infrared radiation) and greenhouse gases (the CO2 and H2O). The resulting complex system has the 
emergent property of “global heat” that changes based upon the proportions of solar radiation/greenhouse-
gas/reflection in the system. The simulation generates output that was calibrated to be an approximation of 
Intergovernmental Panel for Climate Change data for carbon and temperature (IPCC, 2007). 

Students interact with the models by changing the parameters and observing the effects. For example, 
in the model of the greenhouse effect shown in Figure 2, releasing CO2 into the atmosphere (by changing a 
slider, left side) leads to real-time visual feedback (in the visualisation window, right side) as well as more CO2 
molecules being present and increased incidence of re-radiation of IR light leaving Earth’s surface. This is 
displayed in the graphs of temperature and carbon (lower left) that show an increase in the former and a shift in 
the equilibrium in the latter in “real-time”. 

 

 
Figure 2: A NetLogo model of the greenhouse effect 

Instruments and Data 
The study was conducted in 2011 at an all girls high school in Australia, with three year nine (third year) classes 
and a total of 90 students (30 students each). Students completed individual pre-tests and post-tests of their 
knowledge of climate science and complexity. The pre- and post-tests consisted of 20 questions—six multiple 
choice and 14 open-ended short answer questions—that were intended to assess both declarative and conceptual 
knowledge of climate science. Students were allocated 20 minutes to complete each test.  

During the experiment, students carried out all activities with each of the two models in pairs (45 dyads 
in total). Each pair was randomly assigned to one of two conditions: (a) CGL where dyads had no structure for 
the first activity of each model; and (b) GL where dyads had a structured task for the first activity with each 
model. Students were allocated 80 minutes for working with each of the two models and completing given 
activities. Computer screen recordings were made and log files of NetLogo interactions were maintained for all 
dyads. Additional webcam audio and video recordings were made for six dyad groups (this number due to 
technical limitations). An overview of the instruments with examples of the questions is provided in Table 2 
  



 
Table 2: Overview of Research Instruments.  
 

 Description Examples 
Pre-/Post-test 
(20 mins x 2) 

• 4 short answer questions testing 
declarative knowledge about complex 
systems 

• 6 true/false questions about scientific 
knowledge 

• 6 short answer questions explaining the 
true/false responses 

• 10 short answer questions relating to 
scientific knowledge about climate 
change 

‘What does it mean to say that the carbon 
cycle is an example of a closed system?’ 
 
‘I will see the effects of climate change within 
my lifetime: true or false?’ 
‘Explain your answer’ 
 
‘Explain the greenhouse effect’ 

Activities 
(80 mins per 
model) 

• 3 activities for each model - CGL/GL 
differentiation 

‘From what you have observed in the models, 
what argument could be made for a link 
between CO2 emissions and climate 
change?’ 
 
“From what you have observed in the models, 
what argument could be made for a link 
between CO2 emissions and climate change? 
In your answer specify a time frame (days, 
weeks, months, years, decades, centuries) 
for each cause and effect relationship” 

Results 
This section presents some main results related to the three goals described before from the first year of the 
project. First we present results from the pre- and post-test as well as the activity and assessment questions that 
relate to the first two goals. Then we will illustrate and discuss our initial trial of an analytical approach for 
investigating students’ interaction with the models using hidden Markov models, that relates to the third goal. 

Students’ achievements 
Of the initial 90 students, one of the classes was used as a pilot to tune data collection technologies and 
procedure. Of the remaining 60 students only 33 completed all tasks, due to absences and technical difficulties 
due to some of the school computers unable to deal with the volume of data for logging NetLogo and screen 
captures. 

Ten short answer questions relating to scientific knowledge of climate change phenomena were coded 
using an adapted five-point knowledge integration rubric (Gerard, Spitulnik, & Linn, 2010). This coding scheme 
elucidates students’ capabilities to make connections between different elements of the phenomenon, thus was 
appropriate for investigating the depth of students understanding.  One question was discounted as students 
were not able to comprehend the language used, leaving nine questions. Initially, two coders each coded 60% of 
the results with a 20% overlap for reliability. Cohen’s Kappa on this initial 20% was 0.64. Coders met to discuss 
discrepancies and coded the remaining results so that each coder had rated all of the results. Following 
discussion of discrepancies 100% agreement was reached. 

These scores were scaled to a mark out of one hundred. Table 4 summarises these results. For overall 
study design, without taking into account differences between experimental conditions, there was a significant 
increase in students’ test scores. Accounting for the covariate of the instructional method, the difference 
between the pre- and post- test scores was significant, F(1,31)=9.367, p=.005, η2 =.232. 

Repeated measures ANOVA on the summed short answer responses with a between-subjects factor of 
the CGL/GL grouping shown that this grouping did not have significant effect, F(1,31) = 1.532, p = .225, η2 
=.047. Whilst this effect is not large enough to be significant, it is in keeping with the hypothesis based upon 
previous studies that the CGL group should outperform the GL group. 

The problem-based activity and assessment questions that dyads worked on were similarly coded and 
scaled (Table 5). Repeated measures ANOVA on the activity and assessment question responses with a 
between-subjects factor of the CGL/GL grouping shown that this grouping did not have significant effect, 
F(1,12) = 0.300, p = .594, η2 =.024. Whilst this effect is insignificant it again shows that the CGL group had a 
higher mean than the GL group in both models. 



Table 3: Knowledge integration coding scheme 
 
Criteria 3 2 1 0 NA 
Reasons A full response 

that includes at 
least one 
scientifically valid 
connection 

A partial response 
including at least 
one scientifically 
valid connection. 

Partial response: 
unelaborated 
connections with 
relevant features. 

Incorrect response 
or off-task 

No response 

 
Table 4: Pre- and post- test results 
 
 N Pre-Test Post-Test 
  Mean (SD) Mean  (SD) 
Challenge & guided learning 15 31.73  (15.81) 41.07  (14.38) 
Guided learning 18 34.67  (12.27) 38.89  (13.22) 
All students 33 33.33  (13.84) 39.88  (13.58) 
 
Table 5: Student scores for activity and assessment questions 
 
 N (dyads) Model 1 (Carbon Cycle) Model 2 (Greenhouse Effect) 

  Mean (SD) Mean (SD) 
Challenge & guided learning 6 61.11 (16.39) 38.89 (18.26) 
Guided learning 8 55.21 (9.90) 37.50 (18.72) 
All dyads 14 57.74 (12.85) 38.10 (17.82) 

Process Analysis 
In this section we outline an approach that we are testing for analysing the stream of data that is available from 
students engaged in MBL. In this initial test of our techniques with the aim to demonstrate possible ways to 
explore the processes of students’ interaction with NetLogo models.  

There is evidence indicating that students’ outcomes in MBL are influenced by the different 
exploration strategies that students adopt and resulting patterns of their behavior (Levy & Wilensky, 2010b). 
Educational data mining employs various algorithmic techniques on large amounts of institutional data records 
or student learning log files that are associated with online learning activities in order to discover various 
student learning patterns (A. C. Romero & Ventura, 2006; C. Romero, et al., 2010). This information then could 
be used to improve the design of software and learning materials or provide individualised feedback and support 
learners MBL activity. As a part of our initial analysis we are exploring several possible techniques to analyse 
students’ interaction patterns. The main among them are Hidden Markov Model (HMM), process mining, and 
various statistical visualisation techniques. To illustrate the potential of these techniques to detect student 
behaviour patterns, for our initial analysis we have analysed comprehensively data of one high achieving and 
one low achieving dyad from CGL group. We used the carbon cycle model. Details of this analysis has been 
presented elsewhere (Markauskaite, Jacobson, Kelly, & Southavilay, 2011). Here we will use some results to 
illustrate one of the potentially most powerful techniques – HMM (H. Jeong, G. Biswas, J. Johnson, & L 
Howard, 2010a; Southavilay, Yacef, & Callvo., 2010) - then we will illustrate the potential limitations of the 
HMM technique and will discuss future research directions. 

In our initial analysis we used the HMM constructing algorithm adapted from Jeong et al. (2010b). On 
the basis of sequences of student interactions with Netlogo models recorded in log files, the algorithm extracted 
HMMs consisting of hidden states that depict how students interact with the models. Student activities or 
actions are equivalent to the use of controls on the model interface: Setup button, Go button (that initiates Start 
and Stop of the simulation), Speed control, Fossil Fuel Use control; and Tracking CO2 Molecule control. The 
HMM shows the composition and the percentage of activities in each state as well as transitioning probabilities 
among these states. Students’ activities within individual states and likelihoods with which they move from one 
state to another together depict students’ overall behaviour pattern.  

Therefore, each HMM is made up of a set of states and transitions: the behaviour probabilities 
associated with each state and the transition probabilities between the states. For example, the HMM in Figure 3 
shows that the high achieving dyad in State D (Fossil Fuel and Speed) explored the model by controlling the 
simulation in two distinct ways: by changing the amount of fossil fuel use 61% of the times (14 actions in total) 
and by changing modelling speed 39% of the time (9 actions in total). The link form one state to another and the 
percentage associated with the link indicate how likely it is that the certain state will be followed by another. 
For example, the HMM in Figure 3 shows that the likelihoods that the pair from State A, in which the students 
set up the simulation, would transition to other three states (B, C and D) were different. Specifically, the 



students transitioned to State B and started the exploration by pressing Start or Switch on CO2 tracking buttons 
with a likelihood of 20%; moved on to State D and further explored the model by changing fossil fuel use and 
modeling speed with a likelihood of 70%; or moved to State C and stopped the model with a likelihood 10%.  

Overall, the HMM model for the high achieving dyad was composed from five states (Figure 3). Three 
simple states were associated with model control: Setup (State A); Stop (State C) and Stop Tracing of a CO2 
molecule action (State E). Two composite states were associated with the model exploration: one combined start 
simulation and initiate tracing of a CO2 molecule actions (State B); another was composed from the control of 
the fossil-fuel use and speed control (State D).  

 
Figure 3: Hidden Markov Model of the high achieving dyad 

 
The model depicted that the high achieving pair very often moved from the initial model setup (State A) to the 
control of the main model parameters and speed (State D), with the transition probability as high as 70%. The 
transition probability between the model manipulation (State D) and Start (State B) was also relatively high 
(48%). In contrast, the likelihoods of transition between Setup (State A) and Start (State B) and Setup (State A) 
and Stop (State C) were as low as 20% and 10% respectively. This suggested that the dyad after resetting the 
model (State A) often initially configured the main model parameters and only then started exploration of the 
model by switching on CO2 tracking or pressing Start (State B). The HMM also indicated that these students 
relatively often explored the model by running and pausing it, with the transition probabilities between Start 
(State B) and Stop (State C), and vice versa, ranging between 47% and 50%.  

The HMM for the low achieving pair depicted that these students interacted with the model differently. 
The model was composed from 4 states only (Figure 4). Two simple states and one composite state were similar 
to the states in the HMM for high achieving students: Setup (Sate A); Stop (State C) and model manipulation 
(State D). One further simple state was formed from Start action (State B) only. The transitions indicated that 
the dyad’s behavior pattern can be characterized by two dominant moves between the three basic control 
buttons: Setup, Start and Stop. The transition probabilities between Setup (State A) and Start (State B); and 
between Start (State B) and Stop (State C) were as high as 65% and 70%, respectively. All other students’ 
transitions among a range of states had medium or low probabilities, suggesting that the exploration was less 
systematic. In contrast to the high achievers’ HMM, the transition probability from the initial Setup (State A) to 
the model manipulation (State D) was only 10%. This result suggested that these students rarely setup the main 
parameters after resetting the model, but rushed to start the simulation (State B). Nevertheless, this dyad 
sometimes also manipulated some model parameters (State D). The students relatively often stopped the 
simulation (State C), changed the parameters (State D) and resumed (State B). What was distinctive to this dyad 
is that it never attempted to track an individual CO2 molecule. This was indicative that these students unlikely 
engaged in a qualitative exploration of the agents depicted in the carbon cycle model.  

These results indicated that the model exploration strategies adopted by two dyads were different. The 
HMM for the high achieving dyad depicted that their exploration can be characterized by the interaction with 
the model, systematic control of the parameters and model tracking behaviours. It also suggested that these 
students combined qualitative and quantitative explorations depicted by State D and State B, respectively. Their 
dominant interaction behaviour can be broadly called “Setup-Configure-Start/Follow” pattern. The HMM for 
the less successful dyad depicted more passive students’ interaction with the model and more surface 
exploration behaviors. Their dominant behaviour pattern can be broadly called “Setup-Start-Stop.” This was 



followed by the manipulation of model parameters as they go, which was not very indicative to a strategic 
behavior. 
 

 
Figure 4: Hidden Markov Model of the low achieving dyad 

 
In order to triangulate the HMM results we used other core process visualization and statistical 

techniques to explore student interactions and constructed interaction graphs (Figure 5 and Figure 6). The 
graphs depict dyads’ interactions with the carbon cycle models during the experimental period. The vertical axis 
represents the time line; the horizontal axis shows the total number of various model control actions taken from 
the beginning of the session. 

 

 
Figure 5: Interaction graph of the high achieving dyad. 

 
The interaction graph for the high achieving dyad confirms that the students actively explored model during the 
entire experimental sequence by often using here main simulation controls and parameters: fossil fuel use, speed 
and tracking CO2 molecule. It also depicts that during the first half of the session students changed the fossil 
fuel rates and speed that are indicative to the quantitative exploration and tracked the CO2 molecule, which is 
indicative to the qualitative exploration, simultaneously. This reaffirms that the students’ combined qualitative 
and qualitative exploration. However it also reveals that there were some noticeable changes in the student 
behaviour over time. For example, the students changed CO2 tracking setting during the first half of the session 
only. This was followed by a shorter, but a noticeable period when students actively controlled the fossil fuel 
use. At the end of the session they interacted with the model simply pausing and resuming the simulation 
without changing its settings.  

Similarly the interaction graph for the low achieving dyad generally reaffirmed the pattern depicted by 
the HMM. It showed that these students interacted with the model much longer, but their interaction was often 
limited to Setup, Start, and Stop actions. The interaction graph further revealed noticeable changes in the student 
behaviour during the session. For example, for more than half of the session the students changed, admit also 
rarely, only the fossil fuel use values. This was followed by a short interval when students started to change and 
manipulated only speed. After, they proceeded to changing the two parameters simultaneously. This additional 



information provides useful insights into the potential and limitations of HMM which are elaborated in the next 
section.  

 

 
Figure 6: Interaction of the low achieving dyad 

Discussion and concluding insights 
The results indicate that students achieved significant learning gains and during the experiment they learnt about 
climate change. The difference between treatment groups was present, with the expected result that the CGL 
group outperformed the GL group, but statistically not significant. This does not replicate the significant 
learning gains associated with students learning about the physics of electricity using NetLogo agent-based 
models that had a similar experimental design (S. A. Pathak, Kim, Jacobson, & Zhang, 2011). 

Even though there was significant overall learning by the end of the study, the overall post-test scores 
were only 40 out of a possible 100 points. This suggests the students still seemed to have a relatively weak 
overall understanding about the climate change and complexity content that was the focus of the study. A 
possible reason for the lack of group differences is that simply varying the degree of structure provided during 
the initial learning activities for each of the two models followed by similar structured worksheets was not 
sufficient for learning conceptually very challenging knowledge about climate systems. More recent research by 
Kapur (2010) suggests that successful productive failure learning approaches require an elicitation phase in the 
initial low structure activity to activate resources of the learner’s prior knowledge related to the domain, 
followed by a consolidation phase in which the teacher helps the learners see links between their generated 
knowledge resources and the canonical ways of solving the problem using expert formalisms. Our ongoing 
research will adopt this strategy of elicitation and consolidation in using similar agent-based climate change 
models. 

The process analysis is an ongoing research theme in this research. We aim to find key patterns of 
students’ interaction with the models, and find ways to predict ‘on-the-fly’ inefficient strategies and scaffold 
learners. A current limitation is that the algorithm that we used to construct the HMMs has a local maxima 
problem and the log data files are relatively small. In our study, we followed the work developed by (Jeong, et 
al., 2010a; Southavilay, et al., 2010) and executed the algorithm one hundred times with random initializations 
(by sampling the initial parameter values from uniform distributions). HMMs were constructed when these 
executions converged to the same configuration. A better solution is needed to execute this algorithm if we are 
to use the HMM for providing feedback to students and teachers in real time. Further, the HMM algorithm 
applied to the student learning logs identifies patterns that are directly rooted in students’ technical fine-grained 
actions and constructs only one model for the entire interaction sequence. Two key challenges need further 
exploration and solution.  

First, as we illustrated above, students’ behaviour patterns may change during their interaction with the 
model. For example, we expect that one of possible reasons for the change in student interactions depicted in the 
timelines (Figure 5 and 6) were change between the three activities associated with each model. As some 
evidence from other studies show (Levy & Wilensky, 2010a; McElhaney & Linn, 2011), while students tend to 
apply similar strategies when they interact with different models, nevertheless their interaction patterns are not 
fixed and students, particularly successful learners, may adapt flexibly their interaction strategies to the goals 
when the goals change (i.e., depending in the questions, the goals might change when students complete one 
activity or answer a question and move to the other). The analytical techniques should be flexible enough to 
identify such macro level changes (i.e., shifts between stages) in student exploration strategies initially and then 
construct interaction patterns for each stage separately.  



Second, when modeling is based on the raw log data, it directly links students’ activities to the 
students’ technical fine-grained interactions with the model via the interface (i.e., roughly speaking “button 
click” is equal to student activity). These “technical actions” are likely not identical to the “meaning actions” 
that are associated with the students’ intentions and conscious behavior. Drawing on the evidence from 
cognitive research, we can expect that “meaning actions” are likely to be more abstract “chunks” of common 
sequences of student behavior (i.e., clusters of common strings of “technical actions”). Mining techniques are 
needed for identifying “meaning actions” in student logs initially. Then these “meaning actions” could be used 
for constructing further student interaction models.  

To addresses the first challenge we are currently working on two goals. First, we aim to have the logs 
that resulted from the students’ interaction with the activity worksheets integrated with the NetLogo log files. 
This integration will allow us to track at least those changes in students’ strategies that may happen due to the 
shifts between activities and take into account these changes in identifying students’ exploration patterns. 
Second, in order to gain deeper insight into how students performed their activities, we are also exploring 
possibilities to incorporate process mining techniques, particularly in the initial exploratory stage of the analysis 
(Trčka, et al., 2011; van der Aalst, 2011). To address the second challenge, we plan to utilize a hidden Markov 
model clustering algorithm (Shih, Koedinger, & Scheines, 2010) and explore other similar techniques. By 
clustering and learning HMMs rather than just one for each student group, we can discover different strategies 
that students employed and to use those strategies to predict learning outcomes. This combination of techniques 
could allow a good fit between automatically identified behavior patterns to students’ conscious behavior.  

In terms of the theoretical issues highlighted at the start of this paper, these results are encouraging for 
the continuation of this design-based research. They indicate that significant learning of scientific knowledge 
about climate change is occurring from interaction with the models and suggest that whilst not significantly, the 
CGL group is outperforming the GL group. Future research will explore whether more significant results and 
enhanced learning gains are possible through productive failure approaches that involve teacher led elicitation 
and consolidation phases of learning that involve the use of the agent-based models of climate change systems. 
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