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A B S T R A C T

Accurate prediction of urban air dust pollutants is essential for public health and environmental management. 
Achieving reliable predictions of the air pollution due to heavy metals existence in these areas is extremely 
important. This study for the first time develop an ensemble approach based on multivariate variational model 
decomposition (MVMD) and extreme gradient boosting (XGBoost) integrated with Bayesian optimizer of Optuna 
and different feature selection techniques to predict the spatiotemporal distribution of pollution load index (PLI) 
in Yazd urban area, Iran. For comparison, gated recurrent unit (GRU) network, adaptives neuro-fuzzy-inference 
system (ANFIS), and multilayer perceptron (MLP) models were are develpoed. Variables including meteoro
logical data, heavy metals concentration of roof dust, and distance to pollution sources were gathered. The 
seasonal data of variables were analyzed using Boruta feature selection approach (BFSA), SHapley additive 
explanations (SHAP), and Wavelet methods to identify valuable and easily accessible variables to predict PLI 
index. The results confirmed that the BFSA has high capability for selecting the most important features over 
SHAP, and wavelet techniques, that provides cost-effective input vector of Max WD, Min RH, Cd, and Zn with 
readily available variables. Morover, the XGBoost model shows high prediction accuracy for PLI in terms of R2 

=

0.90, RMSE = 0.08, and MAE = 0.06. Furthermore, by stationarity test of multivariate variational mode 
decomposition (MVMD) method applied to all input variables, the Max WD and Min RH were decompossed into 
three intrinsic mode functions (IMFs). These IMFs along with Cd and Zn were used as input vector in the XGBoost 
to create the final model for predicting temporal uncertainty and generate seasonal urban spatiotemporal maps. 
The evaluation of uncertainties demonstrated that the MVMD-XGBoost effectively captured 83.33 %, 96.67 %, 
63.33 %, and 68.97 % of observed data within the 95 % confidence interval in spring, summer, autumn, and 
winter seasons, respectively. Findings from this study allow decision-makers to reduce air pollution monitoring 
costs and enhance control measures by leveraging readily available variables.

1. Introduction

Air pollution poses a significant global threat to environmental and 
human health across various regions. Long-term exposure, particularly 
to heavy metals, is linked to severe health issues such as lung diseases, 
heart disease, lung tumors, and strokes (Wang et al., 2024). Beyond 
health, polluted air negatively impacts human performance, increases 
healthcare costs, and hinders economic activity (Tao et al., 2023). 
Highly toxic pollutants like As, Pb, and Cr present severe health risks 

(McCartor and Becker, 2010), while elevated concentrations of Zn and 
Cu contribute significantly to the toxicity of airborne particulate matter 
(PM) in urban areas (Khanal et al., 2015). The deposition of heavy 
metals in soil and water also leads to toxic consequences for land eco
systems, affecting plant growth and reducing productivity (Chen et al., 
2016). Despite considerable economic losses, global air pollution levels 
are steadily rising, especially in developing regions. Therefore, robust 
pollution monitoring and predictive modeling are essential to mitigate 
these health risks, design exposure minimization strategies, and enable 
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timely public health decisions (Tao et al., 2024).
Predicting air pollutants is challenging due to the complicated pro

cesses involved in their generation and the numerous influencing fac
tors, including weather conditions, emission levels, and urban structural 
features (Tian et al., 2014; Li et al., 2019a,b; Wu et al., 2021). Con
ventional approaches for detecting airborne heavy metals, typically 
involving laboratory-based chemical analyses, are accurate but demand 
substantial time and financial resources. The high costs and technical 
demands often render these analyses impractical, particularly in 
resource-limited regions. Consequently, there is growing interest in 
developing cost-effective methods to accurately predict heavy metal 
concentrations using readily available parameters. For instance, mete
orological data has shown great potential in estimating PM pollution 
levels, reducing dependence on costly laboratory testing, and permitting 
more frequent air quality assessments (Olawoyin et al., 2018; Leng et al., 
2018). Studies indicate that meteorological parameters, such as rainfall 
(De Nevers, 2010), temperature, and wind (Yang et al., 2020; Li et al., 
2019a,b), significantly influence air pollution dispersion and removal. 
High humidity is also positively associated with ambient PM2.5 levels 
(Tao et al., 2023). Furthermore, factors related to traffic, regional ge
ography, and time are crucial variables in air pollution research (Yang 
et al., 2024; He et al., 2022). Therefore, accurate air pollution fore
casting necessitates careful selection of key input variables, as irrelevant 
or redundant data can compromise model accuracy and computational 
efficiency (Ebrahimi-Khusfi et al., 2021). To address this, this study 
employs Boruta Feature Selection Approach (BFSA), Shapley Additive 
Explanations (SHAP), and Wavelet techniques, along with a collinearity 
test, to prioritize variables with the greatest impact on pollution pre
diction. By focusing on easily accessible, measurable, and low-cost 
variables, these methods enhance model efficiency and interpret
ability. Additionally, to overcome issues of non-stationarity and 
non-linearity often present in environmental datasets, multivariate 
variational mode decomposition (MVMD) is applied in this study. 
MVMD effectively decomposes complex datasets into simpler intrinsic 
mode functions (IMFs), providing a robust framework for handling 
intricate signal characteristics (Seifi et al., 2024). This preprocessing 
step ensures that machine learning models can more effectively capture 
underlying patterns and make reliable predictions in dynamic environ
mental systems.

Recent advancements in machine learning (ML) have revolutionized 
air pollution prediction by offering robust models capable of under
standing the complex, non-linear connections within environmental 
data (Wang et al., 2024). Evolved deep learning (DL) frameworks, such 
as the Gated Recurrent Unit (GRU), effectively handle complex data, 
improve multivariable forecasting, and provide deeper insights into 
interdependencies (Tao et al., 2023). GRUs are known for their ability to 
minimize uncertainty by extracting information through training and 
applying non-linear transformations (Kow et al., 2020). Similarly, the 
XGBoost algorithm, a decision-tree-based technique, offers superior 
prediction accuracy and reduced computational cost by iteratively 
combining weak learners and focusing on bias reduction (Chen and 
Guestrin, 2016; Ling et al., 2024; Tao et al., 2024). Wang et al. (2024)
used convolutional neural network (CNN) model to estimate the spatial 
distribution of CO concentrations in Nanjing with a resolution of 10 m. 
The model utilized variables like building height, terrain features, and 
emission data and achieved impressive accuracy (R2 > 0.8) when vali
dated against PALM simulation outputs. Leng et al. (2018) developed a 
support vector machine (SVM)-based predictive model to estimate 
heavy metal levels in PM2.5 utilizing the magnetic properties of tree 
leaves. The model demonstrated superior accuracy by achieving corre
lation coefficients above 0.7 for Fe and Pb. Results indicated higher 
pollutant levels in winter and near industrial/traffic sources. Tao et al. 
(2024) incorporated GRU and XGBoost models for time-sensitive pre
diction of NO2. The results demonstrated the model produced great 
prediction performance by 4.1 % ± 1.0 % lower root mean square error 
over XGBoost and had low spatial uncertainty. Hu et al. (2023) recently 

utilized a hybrid approach combining CNN-LSTM-GRU to forecast PM2.5 
and O3 levels. The results indicated that the proposed model achieved 
higher accuracy compared to single ML algorithms. Wang et al. (2023a,
b) used CNN-LSTM model to predict the air quality index (AQI) and O3 
and PM2.5 levels in the atmosphere. The proposed model shows high 
correlation coefficients with values more than 0.90 compared with SVM 
and random forest models. Despite advancements, significant challenges 
remain in predicting air heavy metal pollution, particularly in identi
fying and analyzing various influencing factors and addressing spatio
temporal dependencies with readily available variables. While GRU and 
XGBoost have demonstrated remarkable performance in various envi
ronmental studies, their potential in predicting spatiotemporal patterns 
of heavy metals in air dust remains relatively underexplored. Despite 
these advancements, significant challenges persist in predicting air 
heavy metal pollution, particularly in identifying and analyzing diverse 
influencing factors and addressing spatiotemporal dependencies with 
readily available variables.

1.1. Research gap and motivation

Previous studies have predominantly focused on PM prediction, 
often utilizing meteorological variables while neglecting the influence of 
factors such as distance to pollution sources and potential dust sources. 
This study is motivated by the pressing need for cost-effective, efficient, 
and accurate methods to predict airborne heavy metal concentrations. 
The integration of advanced ML techniques like GRU and XGBoost, 
coupled with robust variable selection approaches such as Boruta, 
SHAP, and Wavelet analysis, offers a unique opportunity to address the 
constraints of conventional methods and propose robust techniques for 
accurate prediction. By focusing on accessible and measurable variables, 
this research aims to enhance the interpretability and computational 
efficiency of predictive models, thereby contributing to more effective 
air pollution management strategies. The study seeks to fill the gap in 
understanding and forecasting spatiotemporal patterns of heavy metal 
pollution, providing insights critical for mitigating associated health and 
environmental risks.

1.2. Research objectives

Despite advancements in pollution prediction, the use of low-cost, 
easily accessible parameters for air dust pollution monitoring and 
forecasting is especially necessary in urban locales with limited re
sources. This study aims to address these gaps by developing an ML 
framework to predict the Pollution Load Index (PLI) using optimized 
features and accessible parameters. By integrating meteorological, 
spatial, and pollution-related inputs, the current study aims to create a 
reliable and scalable framework that supports cost-effective air quality 
assessments and facilitates proactive health risk management in urban 
environments. Accordingly, this study proposes a model to examine the 
air pollution status in Yazd city, with the ability to predict the PLI 
pollution map for the upcoming season using minimal data from the 
previous three seasons. This approach assists in predicting the spatial 
pattern of seasonal PLI concentrations before each season begins. 
Therefore, GRU, XGBoost, and other ML models are employed, com
bined with BFSA and MVMD to address limitations such as data scarcity, 
uncertainty, and time constraints. The ultimate goal is to provide an 
efficient model for urban air quality management and monitoring.

2. Material and metods

2.1. Study area

To develop a model for predicting air pollutant due to heavy metals 
(using PLI), the current study chosen Yazd city, Iran, as the targeted 
research area (Fig. 1). Yazd city is located in the central part of Iran, 
between 31◦ 46′ to 31◦ 58′ north latitudes and 54◦ 16′ to 54◦ 26′ east 
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longitudes with an elevation of 1216 m, known for its unique geography 
and climate as well as its industrial importance. Due to its position in a 
desert region, Yazd city is characterized by its arid environment and 
surrounding mountains and plains, making it an important geographic 
hub. It has a warm, arid climate with an average annual temperature of 
about 19.1 ◦C. Summers can be extremely hot, often exceeding 40 ◦C, 
while winters are milder but can still be quite cold. The average relative 
humidity in Yazd is about 31 %, reflecting the arid conditions typical of 
desert regions. The city receives very little rainfall, averaging only 60.8 
mm per year, most of which falls in late fall and winter. Dominant wind 
patterns include northwesterly winds in spring and summer, south
easterly winds from November to February, and westerly winds from 
March to October. Yazd’s climatic and geographic characteristics 
significantly influence the patterns and intensity of air pollution and 
heavy metal contamination. The dry desert climate of the city experi
ences minimal rainfall, averaging about 60.8 mm per year, and low 
humidity at around 31 %. These conditions lead to dry soil and surfaces 
that are prone to generating dust. Dust particles can adsorb or transport 
heavy metals from natural sources, such as soil minerals, as well as from 
human activities. Yazd is known for its industrial activities, especially in 
the ceramic, tile, and steel industries. The Yazd Industrial Zone and the 
Iran Alloy Steel Company are located near the city, about 10 km and 30 
km away, respectively. These industries contribute significantly to the 
local economy, but also pose environmental health challenges, partic
ularly regarding heavy metal contamination of soil from industrial 
processes. Yazd’s industrial sector contributes significantly to heavy 

metal emissions by discharging particulate matter containing metals like 
lead (Pb), cadmium (Cd), zinc (Zn), and nickel (Ni) into the atmosphere. 
Industrial combustion, metallurgical processing, and construction ac
tivities emit metal-laden dust and fumes that mix with naturally sourced 
dust particles. Yazd’s basin-like topography, which is surrounded by 
mountains and plains, allows atmospheric pollutants to accumulate, 
leading to increased local exposure and environmental risks. The 
interaction between Yazd’s natural desert environment and industrial 
activities creates a complex issue of heavy metal contamination in 
airborne particulates, highlighting the need for site-specific predictive 
modeling to effectively understand and mitigate pollution impacts. The 
interaction between Yazd’s natural desert environment and industrial 
activities creates a complex issue of heavy metal contamination in 
airborne particulates, highlighting the need for site-specific predictive 
modeling to effectively understand and mitigate pollution impacts.

As observed in Fig. 2, extensive areas of barelands and saltlands are 
present in the eastern, northern, northeastern, southern, and south
western parts of the city, which are considered sources of dust genera
tion. Due to the geographical location of Yazd city and the surrounding 
barren landscapes, the frequency of dust storms around and inside Yazd 
City is relatively high. The expansive barelands and salt flats sur
rounding Yazd serve as major natural dust reservoirs. Frequent and 
strong winds, such as the northwesterly winds in spring and summer and 
the southeasterly winds in the colder months, contribute to the occur
rence of recurring dust storms in and around the city. Dust storms 
significantly increase airborne particulate matter, facilitating the 

Fig. 1. Geographical location of the study area in Iran, the distribution of heavy metal sampling points, and the spatial arrangement of road networks, building types, 
and land use categories within the city boundary.
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transport of heavy metals and spreading them over extensive areas.
Also, based on Fig. 1, numerous roads, buildings, and industrial fa

cilities suggest increased anthropogenic activities such as traffic, con
struction, and industrial operations, which contribute significantly to 
the heavy metal content in dust.

By comparing Yazd to similar regions, we strengthen the manu
script’s argument for focusing on Yazd. Like Yazd, Al Hillah has an arid 
climate with frequent dust storms from the surrounding desert land
scapes. Industrial activities such as steel manufacturing and cement 
production significantly contribute to heavy metal air pollution. In 
contrast to Yazd, pollution dispersion in Al Hillah is affected by varying 
wind patterns and is often exacerbated by environmental degradation 
linked to regional conflicts (Chabuk et al., 2021). The Atacama Desert 
region in Chile is among the driest places on Earth, where mining ac
tivities release heavy metals such as arsenic, lead, and copper into the 
air. Although both Yazd and the Atacama experience dust-related 
transport of metals, Yazd possesses a more diverse industrial base, 
including ceramics, steel, and tiles, which adds complexity to the sour
ces of pollution. The Atacama Desert’s extreme dryness and low popu
lation stand in stark contrast to the more urbanized environment of Yazd 
(González-Rojas et al., 2021). The Southwestern United States, 
including parts of Arizona and Nevada, faces industrial emissions 
alongside natural dust storms. Heavy metals from mining and smelting 
are prevalent pollutants. Topographical basin effects, like those in Yazd, 
can trap pollutants and lead to higher local concentrations. The regu
latory frameworks and mitigation measures in these U.S. regions are 
generally more advanced, providing potential models for Yazd’s envi
ronmental management (Sorooshian et al., 2024). In conclusion, Yazd 
shares key climatic and industrial pollution factors with similar regions; 
however, its unique geography, diverse industries, and specific meteo
rological patterns create distinct challenges and opportunities for 
pollution assessment and control. This highlights the need for research 
in Yazd to create reliable predictive models suited to its environmental 
context.

2.2. Data preparation

2.2.1. Dust and soil sampling
A marble dust collector was used to sample the atmospheric dust. 

Dust sampling was conducted during four seasons: fall and winter of 
2018, and spring and summer of 2019, in the city of Yazd at a height of 3 
m above ground level (on the roofs of single-story houses). To address 
the representativeness and limitations of the roof-based sampling 
method, we selected single-story rooftops at a uniform height of 3 m to 
minimize local variability and human interference. Although rooftop 
sampling may not fully capture near-surface dust dynamics, it offers a 
practical and consistent platform for long-term comparative analysis 
throughout the seasons. Samples were carefully collected at the end of 
each season and transported to the laboratory, where they were washed 
with water and reused after each sampling. Efforts were made to ensure 
that dust samples were not affected by rainfall predicted by the mete
orological organization during the year of sediment sampling. There
fore, using dual sediment traps and coordinating with meteorological 
data enhances the reliability and representativeness of the collected 
samples. In addition, surface soil was collected once from the vicinity of 
the dust sampling areas.

2.2.2. Heavy metal concentration measurement
The four-acid method was used to digest the dust and soil samples 

from the study area, and the measurements were performed using an 
ICP-MS instrument (PerkinElmer model) from the USA (Amr et al., 
2016). The total concentrations of the elements arsenic (As), cadmium 
(Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese 
(Mn), nickel (Ni), lead (Pb), zinc (Zn), titanium (Ti), and zirconium (Zi) 
were measured. The spatial distributions of heavy metals in air dust 
across Yazd city during the autumn, winter, spring, and summer seasons 
are given in Fig. S1–S4, respectively. Overall, the concentrations of most 
heavy metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) tend to be highest 
during autumn and winter, with reduced levels in spring and summer 
seasons. The spatial patterns of heavy metals such as Pb, Zn, and Cu 
strongly align with urban and industrial areas, which indicates a 

Fig. 2. The distribution of barelands and saltlands within and around the Yazd urban boundary.
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significant influence from human-made sources. These metals are typi
cally associated with urban and industrial activities. Seasonal changes 
also affect the distribution of these metals, with greater dispersion 
observed during summer and spring seasons and deposition occurring 
during autumn and winter seasons. Metals like Fe and Mn exhibit rela
tively stable spatial patterns across all seasons that suggest those sources 
are more consistent and likely influenced by both natural and human 
factors.

2.2.3. Meteorological data
Related meteorological data including maximum wind speed (Max 

WS), maximum wind direction (Max WD), mean wind speed (Mean WS), 
maximum temperature (Max T), minimum temperature (Min T), mean 
temperature (Mean T), mean vapor pressure (Mean VP), precipitation 
(P), maximum relative humidity (Max RH), minimum relative humidity 
(Min RH), mean relative humidity (Mean RH), total sunshine hours 
(Total SH), evaporation (Evp), mean dew point temperature (Mean 
DPT), and mean daily vapor pressure (Mean DVP) were collected from 
Iran Meteorological Organization for neighboring synoptic stations and 
Yazd city (Fig. 3). To obtain the meteorological data values at the 
sampling points, ArcMap software was utilized along with the Extract 
tools feature, which was applied based on the zoning created using the 
inverse distance weighting (IDW) interpolation method. The IDW 
method, a commonly employed spatial interpolation technique, predicts 
values for locations where data has not been collected by assigning 
weights to surrounding data points inversely proportional to their dis
tance from the target location. In this case, IDW was used to create a 
continuous meteorological data surface from available synoptic stations. 
Subsequently, the Extract tools in ArcMap were employed to extract 
precise meteorological data values corresponding to the specific 

sampling points within the Yazd city.

2.2.4. Distance to pollution source data
To calculate the variables such as the nearest distance to railways, 

roads, industrial areas, and residential zones (as D-Roads, D-Railway, D- 
Industrial, and D-Residential), ArcMap software was utilized by 
employing the Near tool. This tool is a spatial analysis function that 
determines the shortest straight-line distance from sampling points to 
the closest feature, including railway, road, industrial area, or residen
tial zone. Also, the average value of potential dust sources (P.D. Sources) 
for each sampling point is calculated using Eq. (1) for density and by 
considering the radius of the buffer area around each sampling point 
equal to 1000 m: 

Density=
SUM Area or Length

Total buffer area
× 100 (1) 

2.2.5. Assessment of pollution indices
For the total assessment of air pollution due to heavy metals, two 

indices of pollution load index (PLI) and Nemerow pollution index 
(PINemerow) are calculated in this study. The indices are calculated as 
follows (Kowalska et al., 2018): 

PLI=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PI1 × PI2 × PI3 × … × PInn

√
(2) 

PI=
Cn

GB
(3) 

Fig. 3. Location of weather stations used to extract meteorological data for sampling points.
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PINemerow =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1
n
∑n

i=1PI

)2

+ PI2
max

n

√
√
√
√
√
√

(4) 

where Cn is the heavy metal concentration in air, GB is the geochemical 
background concentration, PImax is the maximum value of PI among all 
heavy metals, and n is the number of heavy metals.

Based on the Kabata-Pendias (2011), the GB values for As, Cd, Cr, Cu, 
Mn, Ni, Pb, and Zn are considered equal to 0.67, 0.41, 59.5, 38.9, 488, 
29, 27, and 70 mg kg− 1, respectively.

2.3. Multicollinearity test on the variables

Since strong interconnections (collinearity) among predictors reduce 
the effectiveness of predictions for the target variable, a collinearity test 
on datasets is applied before selecting variables for modeling. Collin
earity can be identified using different methods. Among them, the 
Variance Inflation Factor (VIF) method has been extensively utilized to 
assess the relationship between independent variables and their influ
ence on outcomes (Gholami et al., 2020; Ebrahimi-Khusfi et al., 2021). 
The VIF is defined as follows: 

VIF=

[
1

1 − R2J

]

(5) 

where, R2J is the regression coefficient of determination of variable J. 
According to Bui et al. (2012), a VIF value greater than 10 signals a 
potential issue with collinearity.

2.4. Feature selection

The process of selecting relevant features is a fundamental step in the 
implementation of machine learning algorithms (Kursa and Rudnicki, 
2010) because it directly impacts both the performance and the inter
pretability of models. By selecting only the most relevant features, the 
model complexity is reduced, it focuses on meaningful patterns, and 
leads to improved models’ performance and interpretability. A reduc
tion in the number of features creates a simpler model that is inherently 
more interpretable than a model relying on a high-dimensional feature 
space. It allows humans to better understand why a particular prediction 
or decision was made (García and Aznarte, 2020). In addition, using 
irrelevant or redundant features can lead to overfitting, causing the 
model to behave unpredictably on new data, and reducing confidence 
and interpretability of predictions. For local predictions, selecting fea
tures based on domain knowledge ensures the model aligns with 
real-world understanding of the problem. Researchers have employed 
different approaches to select the most important features for modeling 
environmental problems. This study applied three approaches of BFSA, 
SHAP, and wavelet coherence to select important variables controlling 
air pollution due to heavy metals.

The BFSA is a strong algorithm that evaluates feature importance by 
comparing them to randomly shuffled shadow features, ensuring that 
only statistically significant variables are kept for predictive modeling 
(Kursa and Rudnicki, 2010). The SHAP framework provides a clear 
interpretation of how each variable impacts model predictions, aiding in 
understanding the factors influencing PLI (Lundberg and Lee, 2017; 
Zhou et al., 2021). Zhou et al. (2021) compared traditional methods, 
such as Principal Component Analysis (PCA), with modern approaches 
like SHAP, concluding that SHAP provides superior interpretability and 
performance in identifying key variables. SHAP offers model-agnostic 
feature importance scores that are interpretable, even when dealing 
with nonlinear interactions. Park et al. (2022) pointed out the limita
tions of Tree-based Feature Importance (Tree-FI) and recommended 
using SHAP to address variable correlation issues. BFSA and SHAP take 
into consideration feature dependencies and the specific contexts of the 

model (Mahesswari and Maheswari, 2024). Moreover, wavelet coher
ence analysis greatly improves traditional feature selection by providing 
a dynamic and detailed approach to examining relationships between 
variables. Unlike traditional methods that often rely on static correla
tions or statistical metrics, wavelet coherence captures 
phase-synchronized relationships between pollution indices and pre
dictor variables, tracking their evolution across both time and frequency 
domains. This dual perspective is especially effective for time-series 
data, where relationships can fluctuate over time or appear differently 
across various scales, including short-term diurnal cycles and 
longer-term seasonal trends. Wavelet coherence provides insights into 
the frequency domain, interpreted as the investment horizon, and re
veals the persistence of temporal relationships and coherence patterns 
(Szczygielski et al., 2024).

The choice of BFSA, SHAP, and Wavelet coherence was made due to 
their effectiveness in managing nonlinear relationships, interpretability, 
and robust assessment of feature importance, which are essential for 
predicting air quality. These methods were applied separately, and their 
selected features were compared to ensure that the most robust subset 
was retained for modeling.

2.4.1. BFSA method
To separate influential factors from less important ones, the BFSA 

algorithm works based on selection criteria. The algorithm removes 
variables step by step, focusing on those statistically shown to be less 
relevant than random probes (Gholami et al., 2021). The approach en
hances system reliability by minimizing the impact of correlations and 
unpredictable fluctuations through the application of additional 
randomness (Ebrahimi-Khusfi et al., 2021). The algorithm consists of 
eight essential steps including (1) adding multiple copies of all variables 
to extend the information system, (2) shuffling the newly included at
tributes to eliminate their correlations with PLI, (3) implementing a 
random forest algorithm to compute Z-score, (4) identifying the highest 
Z-score from the shadow variables and keeping all variables that 
outperform it, (5) performing an equality analysis for variables whose 
importance remained undetermined in the previous step, (6) removing 
variables with lower importance and keeping variables with higher 
Z-scores, (7) removing shadow variables, and (8) repeating the evalua
tion steps until the importance of every attribute is finalized (Gholami 
et al., 2021).

2.4.2. SHAP method
The SHAP uses cooperative game theory and produces Shapley 

values to ensure fair distribution of feature importance (Aldrees et al., 
2024). Multiple steps are to be performed for implementing SHAP 
analysis. (1) A reference distribution is first created to analyze the 
model’s behavior, which is commonly generated using training data 
samples. (2) By taking into account every potential feature combination, 
different sets of feature coalitions are constructed. (3) Shapley values are 
calculated by analyzing the model’s predictions across all possible 
feature combinations to quantify the average contribution of each 
feature to the overall prediction. SHAP values indicate the importance of 
each feature, with positive values denoting a favorable impact and 
negative values reflecting an adverse influence. (4) SHAP values are 
visualized by drawing a plot to recognize the most important variables.

2.4.3. Wavelet coherence method
Wavelet coherence analysis is a method used to determine the time- 

frequency regions where two signals exhibit the strongest relationship or 
coherence. When applied for feature selection, it highlights the features 
that exhibit a strong correlation with PLI, across various temporal scales. 
Significant coherence values in wavelet coherence plots often imply a 
notable relationship between the feature and the target variable (Seifi 
et al., 2021). In signal processing, coherence between two time series x 
(t) and y(t) is defined as (Boya and Ardila-Rey, 2020): 
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Cxy(f)=

⃒
⃒
⃒Wxy

f

⃒
⃒
⃒
2

Wx
f Wy

f
(6) 

Wxy
f =X(f).Y*(t) (7) 

where f represents the frequency, Wx
f and Wy

f are the power spectral 
densities (PSDs) of x(t) and y(t), respectively, X(f) and Y (t) are the Fast 
Fourier Transform (FFT) of x(t) and y(t), respectively. The asterisk (*) 
symbol is utilized to indicate the complex conjugate operator.

The continuous wavelet transform (CWT) is a mathematical tool 
characterized by a zero-mean function that is localized across both the 
time and frequency domains. The process involves breaking down a time 
series into a series of translated and expanded iterations of itself using a 
convolution operation with a mother wavelet function. This approach 
enables the analysis of the series at various scales while retaining its 
temporal dynamics. The Morlet wavelet is a popular choice as the 
mother wavelet in CWT applications (Boya and Ardila-Rey, 2020).

Fig. 4. The schematic diagram of (a) XGBoost, (b) GRU (Chen et al., 2024), (c) ANFIS (Dehghani et al., 2019), and MLP models.
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2.5. Machine learning models

The XGBoost algorithm is an optimized and upgraded version of the 
gradient boosting decision tree (GBDT). This approach utilizes a series of 
decision trees, progressively refining the model by incorporating a new 
regression tree at each step. The new tree is trained to address the errors 
between the predicted and actual values of PLI to enhance the model’s 
predictive accuracy. Since the primary aim of prediction is to ensure that 
the estimated value of PLI closely aligns with those observed, two pa
rameters of generalization and regularization should be optimized. The 
regularization factor measures tree complexity and enhances the 
model’s stability through simplification (Li et al., 2022). The schematic 
diagram of Fig. 4a illustrates the structure of the XGBoost model. The 
flowchart demonstrates that the input data is processed to build a series 
of decision trees that form the model’s structure. Trees are iteratively 
trained to minimize errors from prior iterations, and their predictions 
are combined to produce the final output. By optimizing both the 
generalization and regularization parameters, XGBoost effectively en
hances predictive accuracy.

The GRU architecture is based on LSTM and an optimized network 
structure while delivering similar performance outcomes. In comparison 
to the LSTM architecture, the GRU framework employs just two gate 
mechanisms, namely the update and reset gates. Based on Fig. 4b, the 
input at the current time step is provided to the GRU cell, which interacts 
with the previous hidden state of Ht-1 to compute the updated hidden 
state of Ht. After obtaining input variables, the reset gate determines 
how much of the information from the previous state should be ignored 
(Li et al., 2021). This mechanism enables the GRU to adjust its memory 
dynamically and respond to evolving patterns in the input sequence. The 
reset gate involves the hidden state, a critical element in retaining sig
nificant information from earlier time steps while discarding irrelevant 
data (Chen et al., 2022). In the next step, the update gate determines 
what past information is incorporated into the present moment and must 
be retained. This gate enhances the GRU model’s ability to identify and 
understand complex patterns in data. The next step focuses on deriving 
the candidate hidden state, which integrates new information into the 
memory. Finally, the GRU model calculates the current hidden state that 
is considered as the output (Seifi et al., 2024).

The ANFIS is a hybrid model that combines artificial neural networks 
(ANN) with fuzzy logic to address linguistic uncertainty. ANFIS employs 
the structure of a fuzzy inference system with three key components: (1) 
"if-then" fuzzy rules, (2) a database for membership functions, and (3) an 
inference mechanism. In this study, the Sugeno-type ANFIS model is 
implemented due to its efficiency. ANFIS operates through a five-layer 
network structure where inputs pass through fuzzification, rule appli
cation, normalization, and defuzzification layers to produce an output. 
Each rule is represented with a Gaussian membership function and pa
rameters optimized to improve the prediction of the system by finding 
optimal membership parameters (Dehghani et al., 2019) (Fig. 4c).

The MLP is a type of ANN that operates using interconnected layers 
of neurons. These layers include an input layer, one or more hidden 
layers, and an output layer. Each neuron processes incoming signals 
using weighted connections and applies an activation function to pro
duce output signals. In the study, the MLP uses a ReLU (Rectified Linear 
Unit) activation function in the hidden layers and a linear activation 
function in the output layer to process input data. Training the MLP 
involves backpropagation to adjust weights and biases, minimizing the 
error between predicted and actual outputs (Fig. 4d). However, standard 
backpropagation can converge slowly or become stuck in local optima, 
so an optimization algorithm is integrated to enhance performance.

The Optuna algorithm is an efficient and flexible hyperparameter 
optimization framework used to enhance the performance of applied 
models.

The models were developed and implemented in Python, utilizing its 
comprehensive libraries and tools for computational modeling and 
analysis.

2.6. Managing non-stationary data by MVMD

In this study, the Augmented Dickey-Fuller (ADF) test is used to 
assess the stationarity of the time series data. The test helps identify 
whether the data exhibits unit roots, which are indicative of non- 
stationary behavior. If non-stationarity is detected, the data is pre
processed or decomposed using the MVMD method to extract Intrinsic 
Mode Functions (IMFs), which represent the underlying oscillatory 
modes suitable for further analysis and modeling. The MVMD extends 
the VMD version to handle multichannel data for concurrent decom
position. The MVMD is helpful to solve the problem of adaptive selection 
of mode parameters using scale segmentation and offers mode separa
bility to avoid any predefined wavelet filter bank boundaries. The 
MVMD process focuses on progressively optimizing each IMF by esti
mating its core frequencies and corresponding bandwidths. To apply the 
MVMD method for a set of input variables, the extracted modes must 
accurately reconstruct the original signal while minimizing their total 
bandwidth (Seifi et al., 2024). These conditions are defined through 
specific equations (Wang et al., 2023a,b): 

X(t)=
∑K

k=1

Uk(t), t = 1, 2.., n (8) 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

min
{
uk,d
}
, {wk}

{
∑K

k=1

∑D

d=1

⃦
⃦∂t
[
uk,d
+ (t)e− jwkt]⃦⃦2

2

}

subject(to)
∑K

k=1

uk,d(t) = xd(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9) 

where uk,d
+ (t) represents the extracted modes, K denotes the total number 

of modes, x corresponds to the variable associated with different chan
nels, w indicates the frequency component, and ∂t signifies the partial 
derivative with respect to time.

By employing the Lagrange function, the constraints are embedded 
into Eq. (9) and then the alternate direction method of multipliers 
(ADMM) as an optimization algorithm is applied for solving Lagrange 
function. After that, the modes and frequencies are computed as follows: 

ûn+1
k,d (w)=

x̂d(w) −
∑

i∕=k
ûi,d(w) +

λ̂
n

dw
2

1 + 2α(w − wk)
2 (10) 

wn+1
k =

∑

d

∫∞

0

w
⃒
⃒
⃒ûn+1

k,d (w)

⃒
⃒
⃒
2
dw

∑

d

∫∞

0

⃒
⃒
⃒ûn+1

k,d (w)

⃒
⃒
⃒
2
dw

(11) 

where x̂d(w), λ̂d(w), ûn+1
k,d (w), ûi,d(w) are the Fourier transforms,

After generating IMFs, they use as inputs into different models of 
GRU, XGBoost, ANFIS, and MLP.

2.7. Models evaluation criteria and diagrams

The performance of different models evaluated using several statis
tical evaluation criteria including root mean square error (RMSE), the 
coefficient of determination (R2), mean square error (MSE), and mean 
absolute error (MAE). The equations of these criteria are given as 
follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
PLIob

i − PLIpr
i
)2

√
√
√
√ (12) 
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MAE=
1
N
∑N

i=1

⃒
⃒
(
PLIpr

i − PLIob
i
)⃒
⃒ (14) 

MSE=
1
N
∑N

i=1

(
PLIpr

i − PLIob
i
)2 (15) 

Taylor diagram combines three critical metrics of standard deviation 
(SD), centered root mean square difference (RMSD), and R2 into a single 
visualization. It offers a graphical assessment of how well model pre
dictions align with observed data.

The performance and uncertainty of the best model in predicting PLI 
in different seasons is evaluated by Monte Carlo uncertainty method. 
The uncertainty is quantified using the 95PPU (95 % prediction uncer
tainty) bounds, defined by the 97.5 % and 2.5 % percentiles, and the 
degree of uncertainty (dx) is used to assess the goodness of fit and 
robustness of the models (Seifi et al., 2020). 

dx =
1
k
∑k

i=1
(XU − XL)i (16) 

d − factor =
dx

σx
(17) 

95PPU(%)=
Count(Q\XL ≤ Q ≤ XU)

n
× 100 (18) 

where k represents the total number of samples, σx denotes the standard 
deviation of the PLI, and dx signifies the mean distance between the 
upper and lower bounds.

2.8. Model overview and development

The methodology of this study integrates MVMD, a strong ML model 
(XGBoost), Optuna optimization, and feature selection techniques 
(BFSA, SHAP, and Wavelet Coherence) into a cohesive framework to 
predict the spatiotemporal distribution of PLI. Each component has a 
specific role, and their combined use greatly enhances the accuracy, 
efficiency, and cost-effectiveness of predictions. Feature selection in
volves identifying the most relevant variables for predicting PLI. This 
approach decreases model complexity and data collection costs while 
improving both interpretability and performance. MVMD preprocesses 
selected non-stationary variables through feature selection to improve 
model performance by decomposing them into stationary IMFs. The 
decomposed input variables are fed into the XGBoost, GRU, MLP, and 
ANFIS models to predict PLI, utilizing their capability to model complex, 
non-linear relationships and their computational efficiency. Optuna 
optimizes hyperparameters for ML/DL models to improve their predic
tive performance and efficiency.

The model framework comprises several fundamental steps outlined 
below. 

Step 1. Data preparation: The dataset, including heavy metal con
centration and meteorological variables, is collected. Also, datasets 
of nearest distance to railways, roads, industrial areas, and residen
tial zones, and potential dust sources are calculated.

The Pearson correlation coefficient heatmap and hierarchical clus
tering are used to determine how strongly two variables are related in a 
linear way (Fig. 5). It helps to determine strong relationships between 
variables and find out which features are too similar. From Fig. 5, 
meteorological variables like temperature (Mean T, Max T, Min T), 
relative humidity (Mean RH, Max RH, Min RH), and wind speed (Mean 
WS) tend to group together because they’re closely linked. Their high 
positive correlations indicate that these factors are often influenced by 
seasonal shifts and atmospheric conditions. This cluster of weather- 

Fig. 5. The correlation heatmap combined with hierarchical clustering.
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related variables might also show negative correlations with some pol
lutants. For instance, higher wind speeds are often associated with lower 
pollutant levels that reduce air pollution due to dispersion. Pollutants 
like heavy metals, including Pb, Cd, Zn, and Cu, tend to cluster together 
because they often come from similar sources or behave alike in the 
environment. Metals like Pb, Zn, and Cu frequently show strong positive 
correlations, which suggests they likely originate from similar sources 
such as industrial emissions, vehicle traffic, or waste burning. Variables 
of D-industrial, D-residential, and factors like D-road and D-railways, 
often cluster together. When these factors show positive correlations 
with pollutants, it suggests that specific types of land use contribute 
more to pollution. For instance, a strong link between D-industrial and 
heavy metals like Zn and Cu would indicate that industrial activities are 
a major source of these pollutants in the area. Moderate correlations 
between specific pollutants and land-use variables, or weaker links be
tween pollutants and meteorological factors, suggest that these re
lationships aren’t straightforward. They’re likely influenced by a mix of 
factors working together or changing under different conditions that a 
simple correlation analysis might not fully capture. In the presented 
correlation matrix, it is evident that PLI has stronger correlations with 
other variables compared to PINemerow. This indicates that PLI provides 
more information than PINemerow about the impact of environmental and 
climatic factors or the concentration of heavy elements on air dust 
pollution. Hence, the PLI is used as the target value of predicting models. 

Step 2. Multicollinearity test: VIF test is applied on datasets to 
remove variables with strong collinearity. Collinearity relationships 
between the independent variables are represented in Fig. 6. The 
findings indicated that almost all of the variables exhibited a mod
erate level of collinearity. This is because the VIF values fell within 
the range of greater than 1 and up to 5 (1 < VIF ≤5). These results 
suggest that while some correlation exists between the variables, it is 
not excessively strong. Then, all variables are used for the feature 
selection process. The variables of D-Residential and Ni had the 
lowest and highest VIF values, respectively. Although all VIF values 
are less than 5, there is a high correlation between many variables, 
such as Mean WS and Total SH variables. This suggests a strong 
interrelationship between variables that may influence the model 
performance. These findings necessitate careful consideration of 

these predictors during feature selection to avoid redundancy and 
enhance model interpretability.

Step 3. Feature selection: Three procedures of BFSA, SHAP, and 
wavelet coherence are applied to select the most important variables 
for predicting PLI.

There are 36 features that could produce 236-1 input vector (com
binations), which significantly complicates the modeling process. Thus, 
the use of the feature selection method was crucial to reduce the 
complexity and identify the most informative features. Table 1 illus
trates the optimal combination of variables utilized for predicting PLI, 
identified through BFSA, SHAP, and wavelet coherence analyses. Ac
cording to BFSA and by applying all variables as inputs, the combination 
of Min RH, Cd, Cr, Cs, Ni, Pb, Zn, Ti, Zr variables has been confirmed to 
predict PLI. For this input vector, the Z-score of Zn is calculated equal to 
2.39 that had the highest value among other variables. Therefore, the Zn 
variable is the most important parameter for predicting PLI. In this 
section, we applied the XGBoost model to determine the accuracy of the 
selected input vector for predicting PLI. The model was optimized using 
the Optuna framework, a powerful and flexible tool designed for 
hyperparameter optimization to enhance model performance. As seen 
from Table 1, the first selected input vector using BFSA (Min RH, Cd, Cr, 
Cs, Ni, Pb, Zn, Ti, Zr) showed high accuracy with R2 and RMSE equal to 
0.91 and 0.07, respectively, in the testing phase. The evaluated criteria 
in the training phase are provided in Table S1. Since one of the primary 
objectives of this study is to select an input vector using the minimum 
necessary variables to have a cost-effective characteristic for collecting, 
some variables were removed from the BFSA input, and alternative input 
combinations were evaluated. The input vector, including Max WD, Min 
RH, Cd, and Zn variables, created the best performance (R2 = 0.90, 
RMSE = 0.08, MAE = 0.06) for predicting PLI. The findings indicate that 
Max WD demonstrated a stronger explanatory power for PLI variations 
compared to other meteorological variables, as observed in all input 
vectors.

The SHAP method was performed on the data, and the results, SHAP 
values (Fig. S5), showed that the SHAP values of Zn were calculated in 
the range of − 0.21 to 0.16. For each variable, the average absolute SHAP 
value reflects its overall importance in the model. The average SHAP 

Fig. 6. VIF values to determine multicollinearity among independent variables in the dataset.
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values for Zn, Ni, Ti, Fe, and Max WD were calculated as 0.11, 0.027, 
0.025, 0.021, and 0.02, respectively. To select the optimal input vector, 
different combinations of variables were tested using SHAP. The com
bination of Max WD, Zn, Ni, Ti, and Fe was determined to be the best 
(Table 1). This implies that these variables, when used together, resulted 
in the best performance of the model, as assessed by SHAP. The highest 
accuracy of the SHAP input combinations was achieved using Max WD, 
Zn, Ni, Ti, Fe, which is lower than the accuracy of the combination 
selected by the BFSA method.

Based on the color intensity (with warmer colors indicating higher 
coherence) in the wavelet coherence plots (Fig. S6), many variables, 
including Total SH, Fe, D-Roads, D-Railway, and D-Industrial, showed 
high coherence with PLI over significant time intervals and frequency 
ranges that make them strong candidates for prediction. Also, variables 
such as Mean RH, Evaporation, and Ti exhibit moderate coherence that 
suggests some importance for predicting PLI. In spite of BFSA and SHAP, 
the wavelet coherence method indicates the importance of spatial and 
industrial factors. Among wavelet coherence input combinations, Total 
SH, Mean RH, Evaporation, Fe, Ti, D-Roads, D-Railway, and D-Indus
trial, achieved the highest accuracy, although it was still lower than the 
accuracy obtained with the best combination selected by the BFSA 
method.

Overall, the BFSA method showed its strength in systematically 
eliminating irrelevant variables and led to the selection of the optimal 
feature set. While SHAP offered valuable insights into feature impor
tance, its selected combinations did not achieve the same level of per
formance with BFSA. Wavelet coherence analysis, while effective in 
identifying relationships across time and frequency domains, yielded 
lower overall accuracy metrics for this dataset. Therefore, after 
comparing the results, the combination of Max WD, Min RH, Cd, Zn was 
found to be the best feature set with minimum required variables. This 
selection was justified by its superior performance compared to other 
combinations. Subsequent evaluations were conducted using this 
optimal feature set. 

Step 4. XGBoost model training and testing: In this step, the XGBoost 
model optimized using Optuna was used to compare the results of 
different variable combinations. The datasets are split randomly into 
70 % for the training and the remaining 30 % for testing. The best 
combination was chosen in this step.
Step 5. Develop comparing models: GRU, ANFIS, and MLP models 
were developed for model training, involving the Optuna optimiza
tion of hyperparameters for the best variable combination selected 
from step 4. The optimal values of the models’ parameters are given 
in Table 2.

Step 6. Evaluation of models: The results of the XGBoost model for 
the best variable combination selected from step 4 were compared 
with GRU, ANFIS, and MLP models from step 5 using goodness-of-fit 
key criteria such as MAE, MSE, RMSE, and R2, as well as error box 
plot, Taylor diagram, and heatmap plot. The best model for pre
dicting PLI was selected from this step.
Step 7. Managing non-stationary data: Variables in the best input 
combination are examined for stationarity, and if necessary, pro
cessed using the MVMD method to produce IMFs. The non-stationary 
variables are recognized using ADF test.

Table 1 
The best feature combinations of variables based on BFSA, SHAP, and wavelet coherence techniques.

Method Input variables Selected variables R2 RMSE MSE MAE

BFSA All meteorological, heavy metals, and distance 
parameters

Min RH, Cd, Cr, Cs, Ni, Pb, Zn, Ti, Zr 0.91 0.07 0.05 0.006

All meteorological, Cd, and distance parameters Max WD, Min T, Min RH, Cd 0.72 0.13 0.09 0.02
All meteorological, Zn, Ni, and distance 
parameters

Max WD, Min RH, Zn, Ni 0.71 0.14 0.09 0.02

All meteorological, Cd, Zn, and distance 
parameters

Max WD, Min RH, Cd, Zn 0.90 0.08 0.06 0.006

All meteorological, Cd, Pb, and distance 
parameters

Max WD, Min T, Min RH, Cd 0.75 0.13 0.09 0.02

All meteorological, Cd, Cr, and distance 
parameters

Max WD, Min T, Cd, Cr 0.84 0.10 0.08 0.01

All meteorological, Cd, Cs, and distance 
parameters

Max WD, Min RH, Cd, Cs 0.79 0.12 0.08 0.01

All meteorological, Cd, Ni, and distance 
parameters

Max WD, Min T, Cd, Ni 0.84 0.10 0.03 0.001

All meteorological, Cd, Ti, and distance 
parameters

Max WD, Min T, Min RH, Cd, Ti 0.83 0.11 0.08 0.01

All meteorological, Cd, Zr, and distance 
parameters

Max WD, Min T, Min RH, Cd, Zr 0.84 0.10 0.08 0.01

All meteorological, Cd, Zr, Ni, and distance 
parameters

Max WD, Min T, Precipitation, Cd, Zr, Ni 0.86 0.09 0.07 0.01

All meteorological, Cd, Zn, Ni, and distance 
parameters

Max WD, Cd, Zn, Ni 0.88 0.09 0.06 0.008

SHAP All meteorological, heavy metals, and distance 
parameters

Zn 0.51 0.18 0.12 0.03
Zn, Ni 0.64 0.15 0.10 0.02
Zn, Ni, Ti 0.79 0.11 0.09 0.01
Zn, Ni, Ti, Fe 0.84 0.10 0.08 0.01
Max WD, Zn, Ni, Ti, Fe 0.86 0.09 0.07 0.01

Wavelet coherence 
analysis

All meteorological, heavy metals, and distance 
parameters

Total SH, Fe, Ti, D-Roads, D-Railway, D-Industrial 0.75 0.13 0.10 0.02
Total SH, Mean RH, Evaporation, Fe, Ti, D-Roads, D-Railway, 
D-Industrial

0.88 0.08 0.07 0.007

Table 2 
Optimal values of the models’ parameters.

Model Parameter values

GRU Learning rate:0.0074, Number of layers:4, Number of neurons of the first 
layer: 444, Number of neurons of the second layer: 17, number of 
epochs:200

MLP Learning rate:0.0018, Number of hidden layers:2, Number of neurons of 
the first layer:497, Number of neurons of the second layer:403, Batch 
size:32

XGBoost Learning rate:0.0251, Max depth:3, Subsample:0.5437, 
Colsample_bytree:0.9031, L1 regularization:1.4342E-07, L2 
regularization:4.01626E-08

ANFIS Learning rate:4.35E-05, alpha:0.0115
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Step 8. Incorporating MVMD with the best model: The best model 
chosen from step 6 was then proceeded using MVMD by applying 
non-stationary data, and two models were compared.
Step 9. Creating spatial maps: The best model for predicting PLI was 
chosen in the testing phase of step 8 applied for creating spatial 
observed and predicted PLI maps in different seasons. In addition, 
the temporal uncertainty analysis is done for predicting in different 
seasons.

The conceptual flowchart illustrating the PLI prediction model is 
depicted in Fig. 7.

3. Results and discussion

3.1. Evaluate the performance of other models against XGBoost for the 
best combination

The results of the proposed models for predicting PLI for the best 
input combination (Max WD, Min RH, Cd, Zn) are given in Table 3. The 
models were optimized using the Optuna algorithm for hyperparameter 
tuning. XGBoost model demonstrated the best performance on the 
testing set by achieving the lowest RMSE (0.08), MSE (0.06), and MAE 

(0.006). The GRU model followed with a strong performance (R2 = 0.77, 
RMSE = 0.12). In contrast, the ANFIS model showed weaker perfor
mance for predicting PLI with higher errors of RMSE = 0.17 and MAE =
0.13. The MLP model outperformed the ANFIS model and achieved a 
good performance with an R2 value of 0.74 during the testing phase.

The boxplots of the absolute error distributions for four models 
(GRU, ANFIS, XGBoost, and MLP) during the training phase and the 
testing phase are given in Fig. 8. XGBoost consistently exhibited the 
lowest absolute error in both training and testing phases, which makes it 
the most accurate and robust model in this comparison. GRU and MLP 
showed moderate performance, while ANFIS demonstrated the widest 
error spread and the most outliers, especially during the testing phase. 
The Taylor diagram for training and testing phases (Fig. 9) illustrates the 
comparative performance of GRU, ANFIS, XGBoost, and MLP based on 
their correlation, standard deviation, and RMSD relative to the observed 
data. The observed points are best approximated by the XGBoost model, 
demonstrating its superior capacity to understand and predict complex 
data trends. The GRU and MLP models are positioned closely together. 
The XGBoost is located between R lines 0.99 and 1, STD lines of 0.30 and 
0.35, and under RMSD line of 0.04 in the training phase, and between R 
lines 0.95 and 0.96, STD lines of 0.20 and 0.30, and RMSD lines of 0.04 
and 0.08 in the testing phase. Fig. 10 illustrates the correlation between 

Fig. 7. Flowchart of modeling process for predicting PLI.
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observed and predicted PLI values across various models during the 
testing phase. Furthermore, normalized density values are used to color 
the scatter plot. A high degree of correlation between observed and 
predicted PLI in the XGBoost framework. For this model, the ‘hot spots’ 
are concentrated between 1.5 and 1.9 of PLI. The color spectrum for 
GRU and MLP models suggests slightly overpredicting and under
predicting the PLI. The high values of PLI are accurately correlated and 
correctly predicted by XGBoost, GRU, and MLP models. There are big 
‘hot spot’ in ANFIS heatmap.

Overall, the XGBoost model emerges as the most effective model for 
predicting the spatiotemporal pattern of PLI, particularly when applied 
to a well-chosen input feature set. This superior performance can be 
attributed to several inherent characteristics and advantages of the 
XGBoost algorithm, which make it particularly well-suited for this 
application. The relationship between air dust pollutants and meteoro
logical or environmental features (e.g., wind direction, humidity, and 
heavy metal concentrations) is highly non-linear and complex (Figs. 5 
and 6). XGBoost is a gradient boosting framework that builds decision 
trees sequentially. It surpasses at modeling non-linear interactions be
tween features and PLI by creating highly flexible decision boundaries. 

This allows it to capture the intricate dependencies in urban PLI data 
more effectively than simpler models like ANFIS or MLP. Li et al. (2022)
represented that the XGBoost algorithm has a superior ability to capture 
the spatial and temporal variations in PM2.5 and O3 pollutant concen
trations, outperforming the Weather Research and Forecasting model 
coupled with Chemistry (WRF-Chem) model and other statistical algo
rithms like support vector regression (SVR), linear regression (LR), de
cision tree regression (DTR), and random forests (RF) particularly in 
urban areas.

Also, modeling PLI requires not only accurate predictions on training 
data but also the ability to generalize to unseen testing data, as the 
spatiotemporal patterns of PLI can vary significantly across regions and 
time. XGBoost includes built-in regularization techniques that reduce 
overfitting and improve generalization performance. This ensures that it 
performs well on both training and testing datasets. In this study, the 
XGBoost model demonstrated a higher processing speed compared to 
other models. XGBoost is highly optimized for speed and scalability. It 
uses parallel computing and efficient memory utilization, enabling it to 
process large datasets much faster than traditional models like ANFIS or 
MLP.

Table 3 
Performance of the models in predicting the spatiotemporal pattern of PLI.

Models Train Test

R2 RMSE MAE MSE R2 RMSE MAE MSE

XGBoost 0.98 0.03 0.02 0.001 0.90 0.08 0.06 0.006
GRU 0.89 0.09 0.06 0.01 0.77 0.12 0.09 0.01
ANFIS 0.70 0.14 0.11 0.02 0.51 0.18 0.13 0.03
MLP 0.92 0.07 0.06 0.01 0.74 0.13 0.08 0.02

Fig. 8. Distribution of models’ prediction error.

Fig. 9. The position of models’ prediction against observed value using Taylor diagram.
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The GRU model consistently showed lower performance than 
XGBoost, which indicates their limited ability to handle the complexities 
of spatial PLI data. This discrepancy arises due to the fundamental dif
ferences in how the two models handle data, their limitations, and the 
specific characteristics of PLI prediction. PLI data often contains non- 
stationary patterns and noise due to environmental fluctuations, mea
surement errors, and the interaction of multiple factors. GRUs are 
designed for sequential modeling and assume temporal dependencies. 
They struggle with non-stationary signals and are less effective at 
capturing noise. XGBoost, on the other hand, is a tree-based model that 
can handle non-stationary and noisy data better, as it isolates feature 
interactions and splits data hierarchically. Song et al. (2023) proposed a 
novel hyperparameter optimization XGBoost model for accurately pre
dicting the spatial variability of PM2.5 concentrations. The research used 
Himawari-8 satellite-derived aerosol optical depth (AOD) data to map 
PM2.5. The tree-structured Parzen estimator-XGBoost (TPE-XGBoost) 
approach outperformed grid search (GS) and random grid search (RGS) 
optimization algorithms and shows high prediction accuracy (R2 values 
of 89.37 % in January to 83.68 % in April 2020).

In addition, with a limited number of data points and high- 
dimensional features, models can easily overfit during training. GRUs 
are prone to overfitting, especially when dealing with noisy or small 
datasets. Despite regularization techniques, their recurrent structure 
may memorize noise in the data rather than generalizing patterns 
effectively. XGBoost incorporates strong regularization techniques, 
column subsampling, and tree pruning, which help prevent overfitting 
and ensure better generalization to testing data. Also, GRUs require 
more time and computational resources for training, especially when 
handling large datasets or long sequences. This often results in less 
frequent hyperparameter tuning and suboptimal model configurations. 
The slower training process of GRUs can limit their ability to achieve 
optimal performance, particularly for spatiotemporal data. Tao et al. 
(2019) applied a deep learning-based model combining convolutional 
neural networks (1D ConvNets) and bidirectional GRU neural networks 
to forecast short-term air pollution by focusing on PM2.5. The proposed 
model demonstrates improved prediction accuracy and lower error rates 
compared to BGRU, GRU, LSTM, and SVR. Chang et al. (2023) used 
combined W-BiLSTM(PSO)-GRU and XGBoost to enhance accuracy, 

stability, and robustness in predicting air pollutants (PM2.5, PM10, SO2, 
CO, NO2, and O3). Wavelet decomposition was employed to distinguish 
the low-frequency components from the high-frequency components 
within the time series of air quality indicators. The proposed model 
achieved R2 values exceeding 0.94 and low error rates (MAE <0.02, 
RMSE <0.03).

3.2. Transforming non-stationary data into stationary data using MVMD

The stationarity of input variables for the best combination of Max 
WD, Min RH, Cd, Zn was assessed using the ADF test, as shown in 
Table 4. The ADF test evaluates the null hypothesis that data is non- 
stationary against the alternative hypothesis of stationarity. The crit
ical values at 1 %, 5 %, and 10 % significance levels are provided, and 
the stationarity of each variable is determined based on whether the 
ADF test statistic is less than the critical value at a chosen significance 
level. For variables such as Max WD and Min RH, the ADF statistics do 
not exceed the critical value at any significance level. Additionally, their 
p-values are above 0.05, indicating the presence of non-stationary 
behavior. These variables require transformation to achieve statio
narity before they can be effectively used in modeling. Features such as 
Zn with stationary behavior demonstrate stability over time, which 
makes them directly useable in predictive models. The MVMD process 
was implemented for extracting 3, 4, 5, and 6 IMFs of each variable. The 
results of MVMD-XGBoost models’ accuracy against XGBoost in the 
testing phase are presented in Fig. 11. As seen, the ensemble model of 
MVMD-XGBoost accuracy with three IMFs was more than XGBoost, 
which exhibits the benefits of integrating MVMD preprocessing with 
XGBoost. MVMD enhances prediction accuracy by transforming raw 

Fig. 10. The relationship between observed PLI and model predictions examined using density scatter diagrams and linear regression.

Table 4 
The ADF test results for investigating stationarity in input data.

Variable ADF Statistic p-value Stationarity

Max WD − 1.45 0.55 ×

Min RH − 0.43 0.90 ×

Cd − 7.36 ~0 ✓
Zn − 5.08 1.5 × 10− 5 ✓
Critical value: (1 %) = − 3.49, (5 %) = − 2.88, (10 %) = − 2.58
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data into well-structured components, filtering noise, and isolating 
meaningful features to achieve better performance and more reliable 
predictions in complex and spatiotemporal datasets such as PLI of air 
dust. The RMSE values of models with more IMFs generally increased 
due to complexity and high dimensionality. The decomposing IMFs for 
non-stationary variables are given in Fig. 12.

The prediction accuracy of three models of GRU, MLP, and ANFIS 
based on decomposed signals of input variables, i.e., MVMD_GRU, 
MVMD_MLP, and MVMD_ANFIS, by using three IMFs in comparison 
with MVMD_XGBoost, is depicted in Table 5. Notably, the R2 value for 
the testing set of all three MVMD_GRU, MVMD_MLP, and MVMD_ANFIS 
remains lower than MVMD_XGBoost. The consistent outperformance of 
MVMD_XGBoost across all metrics (R2, RMSE, MAE, MSE) suggests this 
model can effectively handle nonlinear relationships between IMF 
components and PLI.

3.3. Predicting seasonal PLI using MVMD-XGBoost

As mentioned in the previous section, the ensemble model of MVMD- 
XGBoost demonstrated the best performance compared to other models 
for predicting PLI; therefore, this model was used to generate spatial 
maps for different seasons (Fig. 13). Overall, the predicted maps 
demonstrate a strong alignment with the observed maps to capture the 
general patterns and spatial variability in all seasons. In spring and 
summer, the predicted maps slightly overestimate the high PLI values. In 
autumn, while the model captures the general spatial trend, it un
derestimates the peak values observed in the central regions. For winter, 
the predicted map shows the closest agreement with the observed map 
and accurately represents the spatial distribution and range of values. 
These results highlight the model’s effectiveness in reproducing seasonal 
spatial patterns, with minor limitations in capturing extremes.

Fig. 11. Performance of MVMD-XGBoost models against XGBoost in the 
testing phase.

Fig. 12. Extracting IMFs using MVMD.
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To assess the level of pollution based on the PLI, a classification was 
recorded as denotes perfection (PLI <1), only baseline levels of pollution 
(PLI = 1), and deterioration of air quality (PLI >1) (Kowalska et al., 
2018). As seen from observed maps, the PLI values across all seasons are 
consistently above one (PLI >1), which indicates a deterioration in air 
quality in the study area. The highest pollution levels are observed in 
autumn, with a maximum PLI value of 2.75, particularly concentrated in 
the central regions. Spring and summer exhibit moderate pollution 
levels, with slightly lower PLI ranges compared to autumn. Winter maps 
show a more uniform distribution of PLI values, with no extreme peaks 
but consistent air quality deterioration throughout the region. There
fore, decision-makers can focus on reducing pollution during autumn, 
where the highest PLI values are observed, and implement additional 
monitoring during autumn and winter. Especially, they can perform 
their decisions in hotspot regions identified in the maps (e.g., central and 
northern regions in autumn) to reduce localized pollution.

To gain better insights into the model’s predictions, a temporal un
certainty analysis was also conducted (Fig. 14). The temporal uncer
tainty analysis for spring reveals that the predicted PLI values fall within 
the 95PPU for 83.33 % of the observed data points, with a d-factor of 
1.57. The predicted trend closely follows the observed values, although 
minor deviations are evident in some peaks and troughs. This indicates 
that the model performs well in capturing the overall variability of PLI 
during spring, with acceptable uncertainty levels and good coverage 
probability. In summer, the predictive model exhibits the highest 
coverage probability of 96.67 %, with a d-factor of 1.14. The predicted 
PLI values show minimal deviation throughout the sample index. The 
narrower uncertainty bounds in this season demonstrate the model’s 
strong predictive performance and reliability for summer PLI 

estimation. The autumn analysis shows the lowest coverage probability 
of 63.33 %, with a d-factor of 1.01, reflecting relatively higher deviation 
between observed and predicted values. Although the predicted PLI 
generally follows the trend of the observed data, several observed points 
lie outside the uncertainty bounds, particularly for higher values. This 
suggests that the model underestimates extreme values of PLI in autumn, 
indicating a need for further refinement to improve performance in this 
season. For winter, the model demonstrates a coverage probability of 
68.97 % with the highest d-factor of 2.81. While the predicted values 
capture the general trend of observed PLI, the wider uncertainty bounds 
highlight greater variability in predictions. Peaks and troughs in the 
observed data are less accurately captured that suggest challenges for 
predicting air dust pollution in winter due to complex environmental or 
anthropogenic factors influencing PLI.

4. Research limitations and prospects

A key limitation is the dependence on data solely from Yazd city, 
which may limit the wider relevance of the conclusions. However, 
Yazd’s specific environmental context, characterized by its arid climate, 
diverse industrial activities, and unique geography, makes it an ideal 
case study for developing and testing predictive models suited to these 
conditions. Expanding this research to additional regions is a valuable 
next step; however, it requires access to extensive, high-resolution, and 
continuous datasets.

The roof-based sampling method used in this study has limitations. 
One major concern is its inability to fully capture near-surface dust 
dynamics, which are essential for evaluating human exposure to air 
pollutants at ground level. Its limitations indicate that it should be 

Table 5 
Performance of the models based on the decomposed input variables in the prediction of spatiotemporal patterns of PLI.

Models Train Test

R2 RMSE MAE MSE R2 RMSE MAE MSE

MVMD_XGBoost 0.99 0.001 0.001 0.00 0.94 0.06 0.05 0.00
MVMD_GRU 0.90 0.08 0.06 0.01 0.66 0.16 0.11 0.02
MVMD_ANFIS 0.75 0.13 0.10 0.02 0.53 0.17 0.13 0.03
MVMD_MLP 0.94 0.06 0.05 0.004 0.75 0.12 0.09 0.01

Fig. 13. Spatial map of predicted PLI using MVMD-XGBoost in different seasons.
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combined with additional sampling strategies in future research to 
achieve a more thorough understanding of atmospheric dust pollution.

In addition, expanding the temporal scope of datasets and inte
grating satellite-derived pollution data, such as aerosol optical depth 
from MODIS, could improve the model’s spatial-temporal resolution, 
especially in areas with limited ground monitoring networks.

While the current ML framework shows promise, exploring alterna
tive ML/DL techniques and advanced parameter optimization methods 
could further improve predictive accuracy.

By addressing these limitations, future studies can improve the 
reliability and scalability of airborne heavy metal index predictions, 
ultimately supporting precision environmental monitoring, data-driven 
policy formulation, and sustainable land-use planning in dust-prone 
regions. Future work could investigate how the model adjusts to 
climate change scenarios, such as shifting wind patterns and increasing 
temperatures. This would enable predictions of PLI under future envi
ronmental conditions and support long-term urban resilience planning.

5. Conclusion

This study introduces a novel machine-learning framework to predict 
the spatiotemporal distribution of the PLI using cost-effective and 
readily accessible data. Three categories of datasets, including meteo
rological variables, heavy metal concentrations of roof dust, and dis
tance to pollution sources, were used. By integrating advanced feature 
selection techniques such as Boruta, SHAP, and wavelet coherence with 
models like GRU, ANFIS, MLP, and XGBoost, the research highlights the 
effectiveness of BFSA and XGBoost for capturing complex relationships 
in air dust pollution. The optimal input combination, including Max WD, 
Min RH, Cd, and Zn, achieved superior predictive accuracy (R2 = 0.90, 

RMSE = 0.06) without imposing heavy computational demands. In 
addition, the incorporation of MVMD for handling non-stationary vari
ables further enhanced model robustness and was used for temporal 
uncertainty analysis across seasons. The findings indicate notable sea
sonal fluctuations in PLI, with the highest pollution levels observed 
during autumn and winter, and show uniform distribution. It was 
evident that specific actions are required during high pollution periods, 
with particular attention to hotspots like the central parts of Yazd.

The temporal uncertainty analysis further validates the reliability of 
the proposed MVMD-XGBoost model, particularly for spring and sum
mer predictions. Decision-makers can use the findings of this study to 
implement cost-efficient monitoring strategies and develop practical 
measures to mitigate air pollution. This research not only bridges the 
gap in using low-cost meteorological and environmental variables for air 
dust heavy metal pollution prediction but also sets the stage for future 
studies to explore scalable solutions for urban air quality management in 
resource-limited settings. The proposed methodology provides a repli
cable framework for enhancing air pollution prediction and advancing 
environmental health strategies.
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