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Abstract: The Neutrosophic set (NS) has grasped concentration by its ability for handling 

indeterminate, uncertain, incomplete, and inconsistent information encountered in daily life. 

Recently, there have been various extensions of the NS, such as single valued neutrosophic sets 

(SVNSs), Interval neutrosophic sets (INSs), bipolar neutrosophic sets (BNSs), Refined Neutrosophic 

Sets (RNSs), and triangular fuzzy number neutrosophic set (TFNNs). This paper contains an 

extended overview of the concept of NS as well as several instances and extensions of this model 

that have been introduced in the last decade, and have had a significant impact in literature. 

Theoretical and mathematical properties of NS and their counterparts are discussed in this paper as 

well. Neutrosophic-set-driven decision making algorithms are also overviewed in detail. 

Keywords: multi attribute algorithms; decision making; neutrosophic set; literature review 

 

1. Introduction 

The Neutrosophic set (NS) originates from neutrosophy, which is a branch of philosophy that 

provides a means to imitate the possibility and neutralities that refer to the grey area between the 

affirmative and the negative common to most real-life situations [1]. Let <M> be an element, which 

can be an idea, an element, a proposition, or a theorem, etc.; with <anti M> being the opposite of 

<M>; while <neut M> is neither <M> nor <anti M> but is the neutral linked to <M>; e.g., <M> = 

success, <anti M> = loss, and <neut M> = tie game. Another example to understand this concept is to 

let <M> = voting for a candidate, we would have <anti M> = voting against, and<neut M> = blank 

vote. If <anti M> does not exist, {m<anti M> = 0}. Similarly, if <neut M> does not exist, {m<neut M> = 

0} [1]. This type of issue is an example of a Fuzzy Set (FS) and Intuitionistic Fuzzy Set (IFS) that can 

be handled by a NS with indeterminacy membership [2,3]. Therefore, for addressing many decision 

making problems that involve human knowledge, which is often pervaded with uncertainty, 

indeterminacy, and inconsistency in information, the concept of NS can be useful. Areas such as 

artificial intelligence, applied physics, image processing, social science, and topology also suffer 

from the same problems. 
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On the basis of the FS and its extended concepts (interval valued FS, intuitionistic FS, and so 

on), by accumulation an independent indeterminacy association function to the existing IFs model 

proposed by Atanassov [2], Smarandache [3] proposed the concept of NS. Several extensions and 

special cases of NSs have been proposed in the literature. These cases include the single valued 

neutrosophic sets (SVNS) [3,4], interval neutrosophic sets (INs) [5], Neutrosophic Soft Set (NSS) [6], 

INSS [7], Refined Neutrosophic Set (RNS) [8], INRS [9], IVNSRS [10], CNS [11], bipolar neutrosophic 

sets (BNS) [12], and neutrosophic cube set [13]. Recently, NSs have become a fascinating research 

topic and have drawn wide attention. Some of the most significant developments in the study of NS 

include the introduction of SVNSs and INSs. Wang et al. [14] suggested a SVNS to accommodate 

engineering and scientific problems. The authorsalso proposed INSs in which association, 

indeterminacy, and non-association are extended to interval numbers [15]. The SVNS and INS 

models are the most renowned and most ordinarily used among the neutrosophic models in 

literature. Many different characteristics of these models have been studied in the literature. These 

include decision making methods, correlation coefficients, information measures and optimization 

techniques. 

In the extent of natural science, operations research, economics, management science, military 

affairs, and urban planning, NSs have a broad application. They also can be applied todecision 

making problems when the ambiguity and complexity of the attributes make the problems 

impossible to be expressed or valued with real numbers. There were some studies of multi-criteria 

decision-making methods based on SVNS [16–27], INs [28–35],BNs [36–38], generalized 

neutrosophic soft set [39,40], neutrosophic refined set [41–44], and triangular fuzzy neutrosophic 

number set (TFNNs) [45–49]. This paper presents an overview of NSs and some of the most 

significant instances and extensions of NS, as well as the application of these models in multiple 

attribute decision-making (MADM) problems. The neutrosophic models that will be reviewed in this 

paper include theSVNS [14], INS [15], BNS [12], ReNS [31], and the aggregation of TFNS [47].The 

neutrosophic set has been also applied to various applications [50] such as e-learning [51], medical 

image denoising [52], Strogatz’s spirit [53]. 

Section 2 presents an overview of NS that includes its background and the origin of the concept, 

the formal definition of neutrosophic sets, and the motivation behind the introduction of 

neutrosophic sets. Section 3 presents an overview of several instances and extensions of 

neutrosophic sets including the definition and properties while Section 4 presents decision making 

approaches for these models. Section 5 presents the concluding remarks, followed by the 

acknowledgements and the list of references. 

2. Preliminary 

Definition 1 ([1]). Let a space of discourse be U  with a general element h U . A NSY  in U is described 

by a truth-association function ,
Y
t  an indeterminacy-association function 

Y
i and a non-association function

Y
f ，where ( ) ( ) ( ),  ,  

Y Y Y
t h i h f h , are real standard or non-standard subsets of 0,  1− +  

 so that 

− + − + − +     → → →
     

: 0,  1  ,   : 0     ,  1 ,   : ,  1 .   0  
Y Y Y
t U i U f U The sum of three independent association degrees

( ) ( ) ( ),  ,  
Y Y Y
t h i h f h , satisfies the following condition/constraint: 

( ) ( ) ( )0 sup sup sup 3
Y Y Y
t h i h f h− + + +    

Definition 2 ([14]). Let a space of discourse be U  with a general element h U . A SVNS M  in U is 

categorized by a truth association function
M

t , indeterminacy association function
M
i and non-association 

function
M

f  such that for each point h U , ( ) ( ) ( )  ,  ,  0,  1 ,
M M M

t h i h f h  i.e., their cardinality is 1. WhenU is 

continuous, a SVNS M can be stated as:  
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( ) ( ) ( ),  ,  
,   .

M M M

U

t h i h f h
M h U

h
=    

When U  is discrete, a SVNS M can be stated as:  

( ) ( ) ( )
1

,  ,  
,   .

n

i

i i

t h i h f h
M h U

h=

=    

Definition 3 ([5]). Let a space of discourse be U  with a general element h U . An INS M  in U  is defined 

as: ( ) ( ) ( )( ) ,  ,  
M M M

M h t h i h f h h U=  , where
M

t , 
M
i  and 

M
f are the truth interval association function, 

indeterminacy interval association function, and the non interval association function, respectively. For each 

point h in U , we have interval values ( ) ( ) ( )  ,  ,  0,  1
M M M

f h i h f h  , and

( )( ) ( )( ) ( )( )0 sup sup sup 3.
M M M

t h i h f h + +   

For closeness, the following notation is used to represent an interval neutrosophic value (INV):  

( ), , , , , .L U L U L Uh t t i i f f     =
     

  

Definition 4 ([12]). Let a space of discourse be U , then a BNS M  in U is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) , , , , , ,
M M M M M M

M h t h i h f h t h i h f h h U+ + + − − −=   where,  

( ) ( ) ( )  , , : 0,  1
M M M

t h i h f h U+ + + →   

( ) ( ) ( )  , , : 1,  0
M M M

t h i h f h U− − − → −   

Analogous to a BNS M , the positive association degrees ( ) ( ),
M M

t h i h+ +  and ( )M
f h+ represent the 

truth-association, indeterminate association, and non-association of an element ,h U  whereas the 

negative association degrees ( ) ( ),
M M

t h i h− −  and ( )M
f h− represent thetruth-association, indeterminate 

association, and non-association of the implicit counter-property of set M . For closeness, a BNS is denoted as

,  ,  ,  ,  ,  .pq pq pq pq pq pq pqr t i f t i f+ + + − − −=  

Definition 5 ([6]). Let a preliminary space set be U  and M T  be a set of constraints.Let the set of all 

neutrosophic subsets of U  were denoted by ( )NS U . The collection ( , )L M is named as the NSS over U , 

where L is a mapping given by : ( ).L M NS U→  

Definition 6 ([6]). Let a preliminary space set be U  and M T  be a set of constraints. Let the set of all IN 

subsets of U  were denoted by INS. The collection ( , )L M is named to be the INSS over U , where L  is a 

mapping given by : ( ).L M NS U→  

Definition 7 ([6]). Let a preliminary space set be U  and M T  be a set of constraints. Let ( )NS U  be the set 

of all neutrosophic subsets of U . A GNSS L
 over U  is defined by the set of ordered pairs. 

( ) ( )( ) ( )   , : , ( ) ( ), 0,  1L L s s s M L s N U s  =     (7) 

where L  is a mapping given by : S( )L M N U P→   and    is a fuzzy set such that 

 : 0,  1 .M P → =  Here, L
 is a mapping defined by : S( ) .L M N U P →   
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For any parameter s , , ( )h M L h  is referred to as the neutrosophic value set of parameter s , i.e., 

 ( ) ( ) ( )( ) , ( ), ( ), ( ) :L s L s L sL s h t h i h f h h U=  , where  , , : 0,  1t i f U →  are the associations functions 

of truth, indeterminacy, and falsity respectively, of the element h U . For any h U  and s M , 

( ) ( ) ( )0 ( ) ( ) ( ) 3.L s L s L st h i h f h + +  L
can be stated by:  

1 2

1 2

( ) , ,..., , ( ) .
( )( ) ( )( ) ( )( )

n

n

hh h
L h s

L s h L s h L s h

 
   

=   
   

  

Definition 8 ([40]). Let a preliminary space set be U  and M T  be a set of constraints. Suppose that 

( )INS U  is the set of all INSs over U  defined over P , where P  is the set of all closed subsets of  0,  1 . A 

GINSS L overU is defined by the set of ordered pairs of the form. 

( ) ( )( ) ( )   , : , ( ) ( ), 0,  1L L s s s M L s INS U s  =      

where L is a mapping function given by : ( )L M INS U P→   and  is a fuzzy set such that

 : 0,  1 .M P → =  Here, L is a mapping defined by : S( )L M N U P →  . 

For any parameter s , , ( )s M L s is mentioned to as the interval neutrosophic value set of parameter

s , i.e.,  ( ) ( ) ( )( ) , ( ), ( ), ( ) :L s L s L sL s h t h i h f h h U=  , 

 ( ) ( ) ( )( ), ( ), ( ) : int 0,  1 .L s L s L st h i h t h U →   

with the condition 

( ) ( ) ( )0 sup ( ) sup ( ) sup ( ) 3 .L s L s L st h i h f h h U + +   ，   

The intervals ( ) ( )( ), ( )L s L st h i h , and ( ) ( )L sf h are the interval-based membership functions for the 

truth, indeterminacy and falsity for each h U , respectively. For convenience, let us denote 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ), ( )

( ) ( ), ( )

( ) ( ), ( )

L U

L s L s L s

L U

L s L s L s

L U

L s L s L s

t h t h t h

i h i h i h

f h f h f h

 =
 

 =
 

 =
 

  

then  ( ) ( ) ( ) ( ) ( ) ( )( ) , ( ), ( ) , ( ), ( ) , ( ), ( ) : .L U L U L U

L s L s L s L s L s L sL s h t h t h i h i h f h f h h U     = 
       

Definition 9 ([42]). Let a neutrosophic refined set K  is  

( ) ( ) ( ) 1 2 1 2 1 2, ( ), ( ),..., ( ) , ( ), ( ),..., ( ) , ( ), ( ),..., ( ) :m m m

i i i i i i i i iK K K K K K K K K
K h t h t h t h i h i h i h f h f h f h h U=   

where,  

     ( ) : 0,  1 , ( ) : 0,  1 , ( ) : 0,  1 , 1,2,...,q q q

i i iK K K
t h U i h U f h U q n   =  

such that  

0 sup ( ) sup ( ) sup ( ) 3, 1,2,...,q q q

i i iK K K
t h i h f h q n + +  =  for any  .h U  

Now, ( )( ), ( ), ( )q q q

i i iK K K
t h i h f h  is the truth-association sequence, indeterminacy association sequence and 

non-association sequence of the element h , respectively. The dimension of neutrosophic refinedsets K  is 

called n . 
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Definition 10 ([45]). Assume that U  is the finite space of discourse and  0,  1L  is the set of all TFN on [0, 

1]. A TFNNS K  in U is represented by:  

 , ( ), ( ), ( ) ,
K K K

K h t h i h f h h U=    

where    ( ) : 0,  1 , ( ) : 0,  1
K K

t h U L i h U L→ →  and  ( ) : 0,  1 .
K

f h U L→  

The triangular fuzzy numbers ( ) ( )1 2 3 1 2 3( ) ( ), ( ), ( ) , ( ) ( ), ( ), ( )
K K K K K K K K

t h t h t h t h i h i h i h i h= =  and 

( )1 2 3( ) ( ), ( ), ( ) ,
K K K K

f h f h f h f h=  denote the truth- association degree, indeterminacy-association degree, and 

non-association degree of h K , respectively, and  ,h U   

3 3 30 ( ) ( ) ( ) 3.
K K K

t h i h f h + +    

For notational convenience, we consider ( ) ( ) ( ), , , , , , , ,K         =  as trapezoidal fuzzy number 

neutrosophic values (TFNNVs), where 

1. 
( ) ( )1 2 3( ), ( ), ( ) , , ,

K K K
t h t h t h   =

 

2. 
( ) ( )1 2 3( ), ( ), ( ) , , ,

K K K
i h i h i h   =

 

3. 
( ) ( )1 2 3( ), ( ), ( ) , , .

K K K
f h f h f h   =

 

Definition 11 ([45]). Assume that ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1, , , , , , , ,K         = is a TFNNV in theset of real 

numbers, the score function ( )1S K  of 
1K  is 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1

1
8 2 2 2 .

12
S K         =  + + + − + + − + +    

The value of the score function of TFNNV ( ) ( ) ( )1,1,1 , 0,0,0 , 0,0,0K + =  is ( ) 1,S K + =  and value of the 

accuracy function of ( ) ( ) ( )0,0,0 , 1,1,1 , 1,1,1K − =  is ( ) 1.S K− = −  

Definition 12 ([45]). Assume that ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1, , , , , , , ,K         = is a TFNNV inthe set of real 

numbers, and the accuracy function ( )1H K  of 
1K is defined as ( ) ( ) ( )1 1 1 1 1 1 1

1
2 2 .

4
H K      =  + + − + +  

The 

difference between truth and falsity determines the accuracy function ( )  1 1,  1 .H K  −  As the difference 

increases, the more ideal the value of the TFNNV. The accuracy function ( ) 1H K − = −  for 

( ) ( ) ( )1,1,1 , 0,0,0 , 0,0,0 ,K + =  and ( ) 1H K − = −  for the TFNNV is ( ) ( ) ( )0,0,0 , 1,1,1 , 1,1,1 .K − =  

3. Reviewof Multi-Attribute Decision Making Algorithmsin Extended Neutrosophic Sets 

Several theories have been proposed such as FST [53], IFST [2], Probabilistic fuzzy theory, and 

SST [54] to handle uncertainty, imprecision, and vagueness. But, to deal with indeterminate 

information existing in beliefs system, the NS was developed by Smarandache [1]; it generalizes FSs 

and IFSs and so on. On an instance of NS, they defined the set theoretic operators and called it SVNS 

[4]. The SVNS is a generalization of the classic set, FS, IVFS, IFS and a paraconsistent set. In recent 

years a subclass of NS called the SVNS has been proposed. Multiple criteria decision‐making 

(MCDM) problems are important applications to solve single-valued neutrosophic sets. INSs were 

proposed to handle issues with a set of numbers in a real unit interval. However, aggregation 

operators and decision making methodshave fewer reliable operations for INSs. Based on the 

associated research of INSs, two operators are developed on the basis of the operations and 
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comparison approach. Therefore, applying the aggregation operators as a method for exploring 

MCDM problems was further explored. 

Maji [6] presented the notion of NSS. On NSS some definitions and operations have been 

introduced. Some properties of this notion have been established. F Karaaslan [55] constructed a DM 

method and a GDM method by using these new definitions. Broumi [40] introduced the notion of 

GINSS. An application of GINSS in the DM problem was also presented. The notion of BNS with its 

operations was presented by Deli et al. [12]. The BNSs score, made up of certainty and accuracy 

functions, was also proposed by them. To aggregate the BN information, the authors developed the 

BNWA operator and BNWG operator. The 
wA  and 

wG  operators were based on accuracy, score, 

and certainty functions. Mondal et al. [41] proposed and studied some properties of the cotangent 

similarity measure of NRS. Broumi et al. [56] proposed correlation measure of NSs and IF multi-sets. 

To construct the decision method for medical diagnosis by using a neutrosophic refined set, A. 

Samuel et al. [42] proposed a new approach (cosecant similarity measure). A technique to diagnose 

which patient is suffering from what disease was also developed. TFNNS was developed by Biswas 

et al. [45]. Then, the TFNNWAA operator and TFNNWGA operator were defined to cumulate 

TFNNs. Some of their properties of the proposed operators had also established by them. The 

operator shave been used to MADM the problem and aggregate the TFNN based rating values of 

each alternative over the attributes. There has been a substantial amount of work done on 

neutrosophic sets and their extensions. Table 1 presents a comprehensive summary of existing 

works related to neutrosophic sets as well as the instances and extensions of neutrosophic sets. 

Table 1. Summary of works related to neutrosophic sets and its extensions. 

No. Type of Neutrosophic Model Literature 

(a) Neutrosophic based models  

1. Wang et al. (2005)—interval neutrosophic sets. 

2. Wang et al. (2010)—single valued neutrosophic sets. 

3. Bhowmik, Pal (2010)—intuitionistic neutrosophic set 

and its relations. 

4. Maji (2013)—neutrosophic soft set. 

5. Broumi and Smarandache (2013)—intuitionistic 

neutrosophic soft set. 

6. Sahin, Kucuk (2014)—generalised neutrosophic soft 

set. 

7. Broumi, Sahin, Smarandache (2014)—extended the 

GNSS model to INSs to introduce the generalized 

interval neutrosophic soft set (GINSS) model. 

8. Broumi, Deli and Smarandache (2014)—neutrosophic 

parameterized soft set. 

9. Broumi, Smarandache and Dhar (2014)—rough 

neutrosophic set. 

10. Al-Quran and Hassan (2016)—fuzzy parameterized 

single valued neutrosophic soft expert set. 

11. Ali, Deli and Smarandache (2016)—neutrosophic 

cubic set. 

12. Karaaslan (2017)—possibility neutrosophic soft set 

(PNSS) and an accompanying PNSS based decision 

making method. 

(b) 

Neutrosophic based decision 

making methods for SVNS, 

INS and SNS 

1. Maji (2012)—a new decision making method based 

on NSS; applied it in an object recognition problem. 

2. Broumi and Smarandache (2013)—introduced 

several similarity measures between NSs based on 

type 1 and type 2 geometric distance and extended 

Hausdorff distance. 



Symmetry 2018, 10, 314 7 of 28 

3. Broumi and Smarandache (2013)—introduced 

several new correlation coefficients for INSs. 

4. Ye (2013)—correlation coefficients for SVNSs. 

5. Chi and Liu (2013)—an extended TOPSIS method 

based on INSs. 

6. Ye (2014)—correlation coefficients for SVNS and INS 

to solve MADM. 

7. Broumi and Smarandache (2014)—a new cosine 

similarity measure on interval valued neutrosophic 

sets (IVNSs). 

8. Ye (2014)—MADM method based on simplified 

neutrosophic sets (SNSs). 

9. Ye and Zhang (2014)—similarity measures for 

SVNSs. 

10. Biswas, Pramanik and Giri (2014)—a MADM 

method to deal with single valued neutrosophic 

assessments using entropy based grey relational 

method. 

11. Ye (2014)—similarity measures between INSs based 

on the relationship between distance and similarity 

measures between INSs. 

12. Peng et al. (2014)—aggregation operators for SNSs 

and applied in MCGDM problems. 

13. Ye (2014)—a cross-entropy measure for SVNSs 

14. Biswas, Pramanik and Giri (2014)—a TOPSIS method 

for SVNSs to solve MAGDM problems. 

15. Sahin and Karabacak (2015)—an inclusion measure 

based decision making method for INSs. 

16. Ye (2015)—extended TOPSIS method for MAGDM 

based on single valued neutrosophic linguistic 

numbers 

17. Sahin and Liu (2015)—maximizing deviation method 

for SVNSs. 

18. Zhang et al. (2015)—a weighted correlation 

coefficient based on integrated weight for INSs. 

19. Ye (2015)—several improved cross-entropy measures 

for SVNSs and INSs. 

20. Liu and Wang (2016)—a prioritized OWA operator 

for INSs. 

21. Deli and Subas (2016)—a ranking method for single 

valued neutrosophic numbers. 

22. Huang (2016)—several new formulae for the 

distance measures between SVNSs. 

23. Ye (2016)—dimension root similarity measure of 

SVNSs. 

24. Ye and Fu (2016)—a similarity measure based on 

tangent function for SVNSs. 

25. Zhang et al. (2016)—constructed a decision making 

method based on the single valued neutrosophic 

multi-granulation rough sets. 

26. Tian et al. (2016)—a decision making method based 

on the cross-entropy measure for INSs. 
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27. Karaaslan (2017)—correlation coefficient for single 

valued neutrosophic refined soft sets. 

28. Peng and Liu (2017)—three decision making 

methods for neutrosophic soft sets. 

29. Ye (2017)—several new similarity measures for 

SVNSs that are based on the cotangent function. 

30. Thanh, Ali and Son (2017)—a new recommender 

system together with a clustering algorithm based on 

SVNSs. 

31. Ye and Du (2017)—three types of information 

measures for INSs, namely the distance, similarity 

and entropy measures. 

32. Zhang, Li, Sangaiah and Broumi (2017)—an interval 

neutrosophic multigranulation rough set over two 

universes. 

33. Ali, Son, Thanh and Nguyen (2017)—a recommender 

system based on neutrosophic sets and a decision 

making algorithm. 

34. Huang, Wei and Wei (2017)—extended the VIKOR 

method for INSs. 

(c) Bipolar neutrosophic set 

1. Deli et al. (2015)—a weighted average operator and 

weighted geometric operator for bipolar 

neutrosophic sets (BNSs). 

2. Ulucay, Deli and Sahin (2016)—similarity measures 

between BNSs. 

3. Dey, Pramanik and Giri (2016)—an extended TOPSIS 

method based on BNSs. 

4. Ali, Son, Deli and Tien (2017)—bipolar neutrosophic 

soft sets (BNSSs) and some aggregation operators. 

(d) Refined neutrosophic sets 

1. Broumi and Smarandache (2014)—a similarity 

measure for neutrosophic refined sets. 

2. Mondal and Pramanik (2015)—a similarity measure 

for neutrosophic refined sets that is based on 

cotangent function. 

3. Deli, Broumi, Smarandache (2015)—neutrosophic 

refined sets in medical diagnosis. 

4. Broumi and Smarandache (2015)—extended 

Hausdorff distance and similarity measures for 

neutrosophic refined sets. 

5. Broumi and Deli (2016)—several correlation 

coefficients for neutrosophic refined sets. 

6. Chen, Ye, Du (2017)—vector similarity measure 

based on refined SNSs. 

7. Samuel and Narmadhagnanam (2017)—improved 

algorithm based on neutrosophic refined sets. 

8. Alkhazaleh and Hazaymeh (2018)—a similarity 

measure between n-valued refined neutrosophic soft 

sets. 

(e) 
Triangular fuzzy/trapezoidal 

neutrosophic sets 

1. Biswas, Pramanik and Giri (2014)—a decision 

making method based on cosine similarity measure 

and trapezoidal fuzzy neutrosophic numbers. 

2. Ye (2015)—trapezoidal neutrosophic sets and a 
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weighted arithmetic averaging operator and a 

weighted geometric averaging operator. 

3. Biswas, Pramanik and Giri (2016)—triangular fuzzy 

neutrosophic set (TrFNS), and weighted averaging 

arithmetic operator and weighted geometric 

aggregation operator. 

4. Some Typical Decision Making Methodson Extended Neutrosopic Sets 

4.1. Single Valued Neutrosophic Set (SVNS) 

Algorithm 1 

For rating the importance of measures and substitutes and to combine the opinions of each 

decision maker into one common opinion, a SVNS centered weighted averaging operator is used. 

For Multi Criteria Decision Making (MCDM) problems, TOPSIS method was extended by Boran et 

al. [57]. With SVNS informationthe notion of the TOPSIS method for Multi Attribute Group Decision 

Making (MAGDM) problems wasextended by Biswas, Pramanik, and Giri [16]. Different domain 

experts in MAGDM problems provide the information regarding each substitute with respect to 

each parameter and take the form of SVNS. The TOPSIS method can be defined by the following 

procedures. Let the set of alternatives be ( )1 2, ,..., aM M M M= , the set of criteria be ( )1 2, ,..., bN N N N= , 

and the performance ratings { 1,2,..., }efJ j f b= =  be { },  1,2,..., ,   1,2,..., .efG g e a f b= = =  In the following 

steps the TOPSIS procedure is obtained. 

Step 1. The DM is normalized with the normalized value ij

Nd : 

• For benefit criteria (the better is larger), ( )
( )

.
efN

ef

g g
g

g g

−

+ −

−
=

−

where max ( )f e efg g+ =  and 

min ( )f e efg g− =  where fg +
 is the wanted or chosen level, and fg −

 is thepoorest level. 

• For cost criteria (the better is smaller), ( )
( )

N

ef f ef

f f

g g g

g g

−

− +

= −

−
. 

Step 2. Calculation of weighted normalizeddecision matrix. 

The modifiedratings are calculated as follows in the weighted NDM:
N

ef f efj j g=  for 

 1,2,...,   and   1,2,..., ,e a f b= =  where fj  is the weight of the f criteria s.t 0fj  for 1,2,...,b f=  

and 
1

1.
b

ff
j

=
=  

Step 3. Determination of positiveand negative ideal solutions: 

  ( ) ( ) 1 2 1 2, ,..., max , min 1,2,...,b ef ef
ff

PIS M m m m m f Q m f Q f b+ + + += = =   =   

and 

  ( ) ( ) 1 2 1 2, ,..., min , max 1,2,...,b ef ef
f f

NIS M m m m m f Q m f Q f b− − − −= = =   =   

where 
1Q  is the benefit criteria and 

2Q  is the cost type criteria. 

Step 4. Compute the separation measures for each alternative, e.g., for PIS: 

( )
2

1

,    1,2,..., .
b

e ef f

f

g m m e a+ +

=

= − =   
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Similarly, for the NIS the separation values are 

( )
2

1

,    1,2,..., .
b

e ef f

f

g m m e a− −

=

= − =   

Step 5. For alternative 
eM  withrespect to M + , the relative closeness coefficient is: 

,  1,2,..., .e
e

e e

G
N e a

G G

−

+ −
= =

+
  

Step 6. The alternatives ranking: Based on the relative closeness coefficient for an alternative 

with respect to the ideal alternative, the larger the value of 
eN  indicates the better alternative 

eM . 

TOPSIS Method for MADM with SVN Information 

With n  alternatives and m  attributes a MADM problem is considered. Let a discrete set of 

alternatives be ( )1 2, ,..., aM M M M= , and the set of attributes be ( )1 2, ,..., bN N N N= . The 

decision maker provided the rating which is performance of alternative 
eM against attribute 

eN . 

DM also assume that the weight vector 
1 2{ , ,..., }bT t t t=  assigned for the attributes

( )1 2, ,..., bN N N N= . The values related with the alternatives in the following decision matrix the 

MADM problems can be presented. 

 
ef a b

G g


= =
 

 
1N
 2N

 
… bN

 

1M
 11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

b

b

a a ab

g g g

g g g

g g g

 
 
 
 
 
   

2M
 

… 

aM
 

Step 1. The best significant attribute is determined.  

Generally, in decision making problems there are many criteria or attributes; some of them are 

important and others may not be so important. For any decision making scenario it is critical that the 

proper criteria or attributes are selected. With the help of expert opinions, or another technically 

sound technique, the best significant attributes may be taken. 

Step 2.With SVNSs the decision matrix was constructed. 

For a MADM problem, the rating of each substitute w r to each attribute is supposed to be 

stated as SVNS. In the following decision matrix for MADM problems, the neutrosophic values 

related with the substitutes can be represented as: 

, ,s

ef ef ef efN a ba b
G g t i f


= =  

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , ... , ,

, , , , ... , ,

... ... ... ...

, , , , ... , ,

b b b

b b b

a a a a a a ab ab ab

t i f t i f t i f

t i f t i f t i f

t i f t i f t i f

 
 
 
 
  
 

 

… 

aM  
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In , , ,ef ef efN a b
G t i f


= , ,ef ef eft i f  denote the degree of the truth-association value, the 

indeterminacy-association value, and the non-association value of substitute 
eM  with respect to 

attribute 
fN  satisfying the following properties: 

1. 0 1;0 1;0 1;ef ef eft i f       

2. 0 3;ef ef eft i f + +   for 1,2,...,e a=  and 1,2,...,f b= . 

The neutrosophic cube are best illustrated by Dezert [58], proposed the ranking of each 

alternative with respect to each of the attributes. The vertices of the neutrosophic cube are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,0,0 , 0,0,0 , 0,0,1 , 0,1,0 , 1,1,0 , 0,1,1 , 1,0,1  and 1,1,1 .The ratings are divided into three categories 

as classified by the neutrosophic cube: 1. highly acceptable neutrosophic ratings, 2. tolerable 

neutrosophic rating, and 3. unacceptable neutrosophic ratings. 

Definition 13. Highly Acceptable Neutrosophic Ratings: Area of highly acceptable neutrosophic ratings Y  

for decision making is represented by the sub-cube ( ) of a neutrosophic cube ( )  (i.e.,  ). The 

following eight points are the defined vertices of ( ) ( ) ( ) ( ) ( ) ( ) ( ): 0.5,0,0 , 1,0,0 , 1,0,0.5 , 0.5,0,0.5 , 0.5,0,0.5 , 1,0,0.5 , 1,0.5,0.5

and ( ): 0.5,0.5,0.5  for MADM, Y contains all the grades of the substitutes measured with an above average 

truth-association, below average indeterminacy-association rating, and below average falsity-association 

rating. In the decision making process,Y makes a significant contribution and can be defined as , ,ef ef efi fY t=

, where 0.5 1,  0 0.5ef eft i     and 0 0.5eff   for 1,2,...,e a=  and 1,2,..., .f b=  

Definition 14. Unacceptable Neutrosophic Ratings: The rankings that are categorized by a 0% association 

degree, 100% indeterminacy degree, and 100% non-association degree is defined by the area  of unacceptable 

neutrosophic ratings O . Thus, the set of all rankings whose truth-association value is zero can be considered as 

the set of unacceptable ratings , , ,ef ef efO t i f=  where 0,  0 1ef eft i=    and 0 1eff  for 1,2,...,e a=  and 

1,2,..., .f b=  In the decision making process, O should not be considered. 

Definition 15. Tolerable Neutrosophic Ratings: Tolerable neutrosophic rating area ( ) = 

( ) =   can be determined by excluding the area of highly acceptable ratings and unacceptable 

ratings from a neutrosophic cube. The tolerable neutrosophic rating ( )R  with a below average 

truth-association degree, above average indeterminacy degree, and above average non-association degree are 

considered in the DM process. By the following expression , ,ef ef efR t i f= where 0 0.5,  0.5 1ef eft i     and 

0.5 1eff   for 1, 2,...,e a=  and 1, 2,...,f b= , R can be defined. 

Definition 16. The fuzzification of SVNS ( ) ( ), ( ), ( )
K K K

K h t h i h f h h Y=   can be defined as a 

method of mapping K  into fuzzy set  ( )
K

P h h h Y=   i.e., :g K P→  for h Y . From the 

notion of neutrosophic cube, the illustrative fuzzy association degree  
1

( ) 0,  1
P

h   of the vector tetrads 

( ) ( ), ( ), ( )
K K K

h t h i h f h h Y  is defined. The root mean square of1 ( ), ( )
K K

t h i h−  and ( )
K

f h  for all 

h Y  can be obtained by determining it. Therefore, the correspondent fuzzy membership degree is defined 

as;  

( ) 
2

2 21 1 ( ) ( ) ( ) / 3
( ) for  

0,                                                                 
P

K K K
t h i h f h

h h Y R

h O




− − + +

=   
  

 (1) 

Step 3. The weights of decisionmakers are determined.   
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Let us assume that the group of f  decision makers has their own decision weights. Thus, in a 

committee the importance of the DMs may not be equal to each other. Let us assume that the 

importance of each DM is considered with linguistic variables and stated by NNs. Let the rating of 

the l th DM can be demarcatedfor a NN , ,
l l l l

M t i f= . Then, the weight of the l th DM can be 

written as:  

( ) ( ) ( ) 
( ) ( ) ( ) 

2 2 2

2 2 2

1

1 1 ( ) ( ) ( ) / 3

1 1 ( ) ( ) ( ) / 3

l l l

l
f

l l ll

t h i h f h

t h i h f h



=

− − + +

=
 
− − + + 

 


 and  
1

1
f

ll


=
=  

Step 4. Based on DM assessments the aggregated SVNS matrix can be constructed. 

Let ( )( ) ( )l l

ef
a b

G g


=  be the SVN decision matrix of l th decision maker and
1 2( , ,..., )T

f
   = be 

the weight vector of decision maker suchthat each  0,  1
l

  . In a GDM method, all the specific 

assessments need to be joined into a group opinion to make an aggregated neutrosophic DM. Ye [22] 

proposed the SVNWA aggregation operator, which is obtained by using this aggregated matrix for 

SVNSs as follows: 

( )ef a b
G g


=  

where 

( )(1) (2) ( ) (1) (2) ( )

1 2, ,..., ...f f

ef ef ef ef ef ef eff
g SVNSWA g g g g g g   = =     

    ( ) ( ) ( )( ) ( ) ( )

1 1 1

1 1 , , .
l l l

f f f
f f f

ef ef ef

l l l

t i f
  

= = =

= − −    
 

Therefore, the ANDM is well-defined as follows: 

, ,ef ef ef efa b a b
G g t i f

 
= =  

where , ,ef ef efG t i f=  is the aggregated element of NDM G  for  1,2,...,e a=  and 1,2,..., .f b=  

Step 5. The weight of the attribute is determined. 

DMs may feel that all features are not equally important in the DM process. Thus, regarding 

attribute weights, every DM may have a unique view. To get the grouped opinion of the picked 

attribute all DM views on the importance of each attribute must be aggregated. Let  
(1) (2) ( )( , ,..., )v f

b b bl
   =  be the NN assigned to the attribute 

fN by the l the DM. By using the SVNWA 

aggregation operator [59], the combined weight  1 2, ,..., bT t t t=  of the attribute can be determined by 

Equation (2) 

( )(1) (2) ( ) (1) (2) ( )

1 2, ,..., ...f f

f f f f f f ff
t SVNWA t t t t t t   = =     

( ) ( ) ( )( ) ( ) ( )

1 1 1

1 1 , ,
l l l

f f f
f f f

f f f

l l l

t i f
  

= = =

= − −    
(2) 

 1 2, ,..., bT t t t= where, , ,f f f ft t i f= for 1,2,...,f b= . 

Step 6. Aggregation of the weighted neutrosophic DM. 

In this portion, to create the AWN decision matrix, the attained weights of the attributes and 

aggregated neutrosophic DM needs to be combined and integrated. The multiplication Formulae (2) 

of two neutrosophic sets can be obtained by using the AWNDM, which is defined as follows: 
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 , ,f f f ft t t tt

ef ef ef ef
a b a b

G T G t t i f
 

 = = =  

Here, the aggregated weighted neutrosophic decision matrix tG  have an element 

, ,f f ft t tt

ef ef ef
a b

G t i f


=  for  1,2,...,e a=  and 1,2,..., .f b=  

Step 7. For SVNSs the RPIS and the RNIS is determined. 

With respect to the alternative 
eM for the attribute fN  let  , ,ft

ef ef ef efN a ba b
G t t i f


= =   be a 

SVNS-based decision matrix, where ,  ef eft i  and eff are the association degree, indeterminacy 

degree, and non-association degree of valuation. 

In practice, two multi attribute decision making problem attribute types exist: benefit type 

attribute (BTA) and cost type attribute (CTA) exist. 

Definition 17. Let the BTA and the CTA are 
1J  and 

2J  respectively. 
N

Q+
is the RNPIS and 

N
Q−

is the 

RNNIS. Then 
N

Q+
 can be defined as follows: 

1 2, ,...,t t t

aN
Q g g g+ + + + =     

where , ,t t t t

f f f fg t i f+ + + +=  for 1,2,...,f b= , and 

 ( )  ( ) 1 2max , minf ft tt

f ef ef
ee

t f J t f J + =    

 ( )  ( ) 1 2min , maxf ft tt

f ef ef
f e

f J i f J + =    

 ( )  ( ) 1 2min , maxf ft tt

f ef ef
f f

f f J f f J + =    

N
Q−

 can be defined by 
1 2, ,...,t t t

aN
Q g g g− − − − =   , where , ,t t t t

f f f fg t i f− − − −=  for 1,2,...,f b= , and 

 ( )  ( ) 1 2max , minf ft tt

f ef ef
ef

t t f J t f J− =    

 ( )  ( ) 1 2min , maxf ft tt

f ef ef
e e

i i f J i f J− =    

 ( )  ( ) 1 2min , maxf ft tt

f ef ef
e e

f f f J f f J− =    

Step 8. From the RNPIS and the RNNIS, the distance value of each alternative for SVNSs is 

determined.  

From the RNPIS , ,t t t

f f ft i f+ + +  for 1,2,..., ,    1,2,...,e a f b= = the normalized Euclidean 

distance measure of each alternative , ,f f ft t t

ef ef eft i f  can be written as follows: 

( ) ( ) ( ) 
2 2 2

1

1
( , ) ( ) ( ) ( ) ( ) ( ) ( ) .

3

f f f f

b
t t t te t t t t

Eu ef f ef f f f ef f f f ef f f f

f

G g g t h t h i h i h f h f h
b

+ + + + +

=

= − + − + −  

Similarly, from the RNNIS - - -, ,t t t

f f ft i f  the normalized Euclidean distance measure of each 

alternative , ,f f ft t t

ef ef eft i f  can be written as: 
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( ) ( ) ( ) 
2 2 2

1

1
( , ) ( ) ( ) ( ) ( ) ( ) ( ) .

3

f f f f

b
t t t te t t t t

Eu ef f ef f f f ef f f f ef f f f

f

G g g t h t h i h i h f h f h
b

− − − − −

=

= − + − + −

 

Step 9. For SVNSs the relative closeness coefficient to the NIS is determined. 

With respect to the NPIS 
N

Q+ the relative closeness coefficient for each alternative 
eM is as 

defined below: 

-

*

- -

( , )

( , ) ( , )

f

f f

te t

Eu ef f

e t te t e t

Eu ef f Eu ef f

G g g
N

G g g G g g

−

+ −
=

+
,  

where 
*0 1.eN   

Step 10. Ranking the alternatives 

Larger values of *

eN reflect better alternative 
eM for 1,2,...,e a= , according to the relative 

closeness coefficient values. 

4.2. Interval Neutrosophic Set 

Advantage 

The interval-based belonging structure of the INS permits users to record their hesitancy in 

conveying values for the different components of the belonging function. This makes it more fit to be 

used in modeling the uncertain, unspecified, and inconsistent information that are commonly found 

in the most real-life scientific and engineering applications. 

Algorithm 2 

An Extended TOPSIS Method for MADM Based on INSs 

Let a discrete set of alternatives be ( )1 2, ,..., aM M M M= , the set of attributes be ( )1 2, ,..., bN N N N= , 

the weighting vector of the attributes be ( )1 2, ,..., bT t t t=  and meet 
1

1,  0,
b

f f

f

t t
=

= 
 where ft is 

unknown for a MADM problem. Suppose that 
ef

a b
Y h


 =  

 is the decision matrix, where 

( ), , , , ,L U L U L U
ef ef ef ef ef ef efh t t i i t t     =      

 taking the form of the INVs for substitute 
aM  with respect to 

feature *

bN . 

On these conditions, the steps involved in determining the ranking of the alternatives built on 

the algorithm is presented as follows: 

Step 1. Standardized decision matrix. 

In common, there are 2 kinds of features: the BT and the CT. For BTAs, higher attribute values 

indicate better alternatives. For CTAs, higher attribute values indicate worse alternatives. 

We need to convert the CT to a BT in order to remove the effect of the attribute type. Assume 

the identical matrix is stated by 
ef a b

R r


 =    where ( ), , , , ,L U L U L U

ef ef ef ef ef ef efr t t i i t t     =      
. 

Then we have 

 

 

     

     

ef ef

efef

if the attributes f is BT

if the

r

attributes f is CT

h

r h

 =


=

 

where h  is the complement of h . 

Step 2. Calculate attribute weights. 

We need to define the attribute weights because they are completely unknown. For MADM 

problems Wang [59] proposed the maximizing deviation process to define the feature weights with 
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numerical information. Following the principle of this method is termed. If an attribute has a small 

value for all of the substitutes, then this attribute has a very small effect on MADM problem. In this 

case, in ranking of the substitutes the attribute will only play a small role. Further, the attribute has 

no effect on the ranking results if the attribute values, for all substitutes are equal. Conversely, such a 

feature will show a significant part in ranking the substitutes if the feature values for all substitutes 

under a feature have clear changes. For a given attribute if the attribute values of all substitutes have 

small deviations, we can allot a small weight for the feature; otherwise, the feature that makes higher 

deviations should be allotted a larger weight. With respect to a specified feature, if the feature values 

of all substitutes are equal, then the weight of such a feature may be set to zero. 

The deviation values of substitute 
eM to all the other alternatives under the fN  can be defined 

for a MADM problem as ( ) ( )
1

, ,
a

ef f ef lf f

l

G t g r r t
=

=  then  

( ) ( ) ( )
1 1 1

,
a a a

f f ef f ef lf f

e e l

G t G t g r r t
= = =

= =   

denotes the total deviation values of all substitutes to the other substitutes for the attribute fN . The 

value of ( ) ( ) ( )
1 1 1 1

,
a b a a

f f f f ef lf f

e f e l

G t G t g r r t
= = = =

= =  , represent the deviation of all features for all 

alternatives to the other alternatives. The augmented model is created as follows: 

( ) ( ) ( )
( ) ( )

1 1 1

1 1 1 1 2

1

max ,

,

. , 0, 1,2,...,

b a a

f ef lf f
a b a a

f e l

f f f f ef lf f b
e f e l

f f

f

G t g r r t

G t G t g r r t

s t t t f b

= = =

= = = =

=


=


= = = 

  =




 



 

Then, we obtain  

( )

( )

1 1

2

1 1 1

,

,

a b

ef lf

e l
f

b a a

ef lf

f e l

g r r

t

g r r

= =

= = =

=



 

Furthermore, based on this model we can obtain the normalized attribute weight: 

( )

( )

1 1

1 1 1

,

,

a b

ef lf

e l
f

b a a

ef lf

f e l

g r r

t

g r r

= =

= = =

=



 

Step 3. To rank the alternatives use the extended TOPSIS process. 

The finest substitute should have the shortest distance to the PIS and the extreme distance to the 

NIS. This is the basic principle of TOPSIS. The finest solution is that for which each attribute value is 

the best one of all alternatives in the PIS (labeled as O + ). Similarly, the nastiest solution for which 

each attribute value is the nastiest value of all alternatives is the NIS (labeled as O − ). Using the 

extended TOPSIS the steps of ranking the alternatives are presented as follows. 
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1. Compute the weighted matrix 

( )

1 11 2 12 1

1 21 2 22 2

1 1 2 2

...

...
,

... ... ... ...

...

b b

b b

ef a b

a a b ab

t r t r t r

t r t r t r
Y y

t r t r t r



 
 
 = =
 
 
 

 

 

where 
.. .. .. .. .. ..

, , , , , .L U L U L U
ef ef ef ef ef ef efy t t i i f f

      
=        

      

 

2. The PIS and NIS is determined. 

We can define the absolute PIS and NIS according to the definition of INV, which is shown below. 

     ( )
     ( )

1,1 , 0,0 , 0,0

0,0 , 1,1 , 1,1

f

f

y

y

+

−

 =


=

  1, 2,...,f b=   

Alternatively, we can pick the virtual PIS and NIS from all alternatives by picking the finest values 

for each attribute. 

.. .. .. .. .. ..

.. .. .. .. .. ..

max ,max , min ,min , min ,min

min ,min , max ,max , max ,max

L U L U L U

f ef ef ef ef ef ef
e e e ee e

L U L U L U

f ef ef ef ef ef ef
e e e e e e

y t t i i f f

y t t i i f f

+

−

       
=       

       


      
=       

      

 

3. Compute the distance between the alternative eM  and PIS/NIS. 

The distance between the alternative eM  and PIS/ NIS is described as follows: 

1

1

( , )

( , )

b

e ef f

f

b

e ef f

f

g g y y

g g y y

+ +

=

− −

=


=



 =







  1,2,...,e a=   

4. The relative closeness coefficient is calculated as follows: 

( 1,2,..., )e
e

e e

g
RCC e a

g g

+

− +
= =

+
 

5. Rank the alternatives. 

To rank the alternatives the relative nearness coefficient is utilized. The smaller
eRCC is, the better 

alternative 
eM  is. 

4.3.Bipolar Neutrosophic Set 

Algorithm 3 

TOPSIS Method for MADM with Bipolar Neutrosophic Information 

To address MADM problemsunder a bipolar neutrosophic environment, an approach based on 

TOPSIS method is utilized. Let be a discrete set of x possible substitutes be

 1 2, ,..., , ( 2)aM M M M a=  , a set of features under consideration be  1 2, ,..., , ( 2)bN N N N b=   

and the unknown weight vector of the features be  1 2, ,...,
T

bT T T T=  with 0 1fT   or 

1

1
b

f

f

T
=

=
. 
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The ranking of the performance value of alternative ( 1,2,..., )eM e a=  with respect to the predefined 

feature ( 1, 2,..., )fN f b=  is presented by the DM, and they can be stated by BNNs. Therefore, using 

the following steps the suggested method is obtained: 

Step 1. Construction of decision matrix with BNNs. 

The ranking of the presentation value of alternative ( 1,2,..., )eM e a=  with respect to the feature 

 1 2, ,..., , ( 2)bN N N N b=  is stated by BNNs and they can be obtained in the decision matrix

a b

efr


. Here, , , , , ,f f f f f fe
t t t t t tt

ef ef ef ef ef ef efr t i f t i f
+ + + − − −

= . 

Step 2. Determination of weights of the attributes. 

The weight of the attribute fN  is defined as shown below: 

( )

( )

* 1 1

.

1 1 1

,

,

a a

ef kf

e k
f

b a a

ef kf

f e k

z r r

T

z r r

= =

= = =

=

 
 
 



 

 
(3) 

and the normalized weight of the feature fN  is defined as shown below : 

( )

( )

* 1 1

.

1 1 1

,

,

a a

ef kf

e k
f

b a a

ef kf

f e k

z r r

T

z r r

= =

= = =

=

 
 
 



 

 
(4) 

Step 3. Construction of weighted decision matrix. 

By multiplying the weights of the features and the accumulated decision matrixis obtained by 

the accumulated weighted decision matrix  

f

a b a b

t

ef ef efr t r
 

 =   

, , , , ,f f f f f fe
t t t t t tt

ef ef ef ef ef ef efr t i f t i f
+ + + − − −

= with  , , , , , 0,1f f f f f ft t t t t t

ef ef ef ef ef eft i f t i f
+ + + − − −

 ,

1,2,..., ;  1,2,...,e a f b= = . 

Step 4. Classify the BNRPIS and BNRNIS. 

Step 5. From BNRPIS and BNRNIS the distance of each substitute is calculated. 

Step 6. Evaluate the relative closeness coefficient of each substitute ( ) 1, 2,...,eM e a=  by taking 

into consideration the BNRPIS and BNRNIS. 

Step 7. Rank the substitutes. 

Rank the substitutes according to the descending order of the substitutes. The substitute with 

the largest value of the relative closeness coefficient is the best substitute for the problem. 

4.4. Refined Neutrosophic Set 

Using a tangent function, a neutrosophic refined similarity measure was proposed by Mondal 

and Pramanik [41] and they applied it to MADM. Other notable works in this area are due to 

Pramanik et al. [43], who applied the neutrosophic refined similarity measure in a (MCGDM) 

problem related to teacher selection. Nadaban and Dzitac [60] on the other hand, presented an 

overview of the research related to the TOPSIS method based on neutrosophic sets, and the 

applications of TOPSIS methods in neutrosophic environments [43]. 

Advantage 
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A neutrosophic refined set can be applied to further physical MAGDM problems in RN 

environments, such as engineering, a banking system project, and organizations in the IT sectors. For 

MAGDM in a RN environment, this proposed approach is a new path that has the potential to be 

explored further. 

Algorithm 4 

TOPSIS Approach for MAGDM with NRS [31] 

Step 1. Let us consider a group of s decision makers 1 2( , ,..., )sG G G  and t attributes

1 2( , ,..., )
t

N N N  

Step 2. Conversion of neutrosophic weight to real values.  

The s  decision makers have their own neutrosophic decision weight 
1 2( , ,..., )st t t . A 

neutrosophic number is represented by , , .k k k kt   =  Using Equation (5), the equivalent crisp 

weight can beobtained: 

( ) ( ) ( )( )

( ) ( ) ( )( ) 

2 2 2

2 2 2

1

1 1 / 3

1 1 / 3

k k k
c

k s

k k k

k

t i f
t

t i f
=

− − + +
=

− − + +
 (5) 

where 
1

0,  1.
s

c c

k k

k

t t
=

 =  

Step 3. Construction of ADM. 

The ANDM can be created as follows: 

1 2

1 11 12 1

2 21 22 2

1 2

f

f

f

e e e ef

N N N

M g g g

M g g g

M g g g
 

 

Step 4.Description of weights of attributes 

On allattributes in a DM scenario, DMs would not like to place identical importance. Thus, 

regarding the weights of feature, each DM would have different opinions. By the aggregation 

operator for a specific attribute, all DM views need to be aggregated for a grouped opinion. The 

weight matrix can be written as follows: 
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1 2

1 11 12 1

2 21 22 2

1 2

f

f

f

e e e ef

N N N

M t t t

M t t t

M t t t
 

 

Here 
, ,ef ef ef eft t i f=

. 

For the attribute fN the aggregated weight is defined as follows: 

1 1 1

, , , , , 1,2,,.., .
s s s

f ef ef ef f f f

e e e

t t i f t i f f g
= = =

= = =     

Step 5. Construction of AWDM. 

The AWND matrix can be made as: 

1 2

1 1 11 1 12 1 1

2 2 21 2 22 2 1

1 1 2 2

f

f

f

e e e f ef

N N N

M t g t g t g

M t g t g t g

M t g t g t g
 

 

Step 6. RPIS and RNIS. 

Step 7. Determination of distances of each substitute from the RPIS and the RNIS. 

Use the normalized Euclidean distance. 

Step 8. Calculation of relative closeness coefficient. 

Step 9. Ranking of alternatives. 

The best substitute is the one for which the nearness coefficient is the lowermost. 

Aggregation operator [45] 

There are h  alternatives in the present problem. The aggregation operator [45] functional to 

the neutrosophic refined set is defined as follows: 

( ) ( ) ( )1 2

1 1 1

( , ,..., ) , ,
e e e

a a a
t t t

k k k

a ef ef ef

e e e

P G G G t i f
= = =

=     

( ) ( ) ( )
1 1 1

, , ,
e e e

a a a
t t t

k k k

kf ef ef ef

e e e

g t i f
= = =

=     or , ,kf kf kf kfg t i f=  

where 1,2,..., ;  1,2,...,e a f b= = . 

Aggregation of Triangular Fuzzy Neutrosophic Set [45] 
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The SVNS model has attracted the attention of many researchers since it was first introduced by 

Wang et al. [4]. Since its inception, the SVNS model has been actively applied in numerous diverse 

areas such as engineering, economics, medical diagnosis, and MADM problems. For MADM the 

aggregation of SVNS information becomes a significant research topic in terms of SVNSs in which 

the rating values of substitutes are stated. Aggregation operators of SVNSs usually taking the form 

of mathematical functions are commonly used to fuse all the input individual data that are typically 

interpreted as the truth, indeterminacy, and the non-association degree in SVNS into a single one. In 

MADM problems, application of SVNS has been extensively studied. 

However, the truth-association, indeterminacy-association, and non-association degrees of 

SVNS cannot be characterized with exact real numbers or interval numbers in uncertain and 

complex situations. Moreover, rather than interval number, a TFN can effectively manage fuzzy 

data. Therefore, in decision making problems for handling incomplete, indeterminacy, and 

uncertain information a combination of a triangular fuzzy number with SVNS can be used as an 

effective tool. In this regard, Ye [48] defined a TFNS and developed TFNNWAA operators, and 

TFNNWGA operators to solve MADM problems. The process for ATFIF information and its 

application to DM were presented by Zhang and Liu [46]. However, decision making problems that 

involve indeterminacy cannot address their approach. Thus, a new method is required to handle 

indeterminacy. 

4.5. Triangular Fuzzy Number Neutrosophic Set 

The TFNNS model introduced by Biswas [45] combines triangular fuzzy numbers (TFNs) with 

SVNSs to develop a triangular fuzzy number neutrosophic set (TFNNS) in which the truth, 

indeterminacy, and non-association functions are expressed in terms of TFNs. 

Aggregation of Triangular Fuzzy Number Neutrosophic Sets 

Definition 18. Suppose thata collection of real numbers are ( ): Re Re
n

T →  and ( 1,2,..., )fa f b= . The 

weighted averaging operator
fTA is defined as 

1 2

1

( , ,..., )
b

f f f f

f

TA a a a t a
=

=
, where Re is the set of real numbers, 

1 2( , ,..., )T

bt t t t= is the weighted vector of ( 1,2,..., )fA f b=  such that  0,1   ( 1, 2,..., )ft f b =  and 
1

1.
b

f

f

t
=

=  

Triangular Fuzzy Number Neutrosophic Arithmetic Averaging Operator 

Definition 19. Suppose that a collection of TFNNVs in the set of real numbers is

( ) ( ) ( ), , , , , , , ,   ( 1,2,..., )f f f f f f f f f fK f b        = = , and let : bTFNNWA  → . The 

triangular fuzzy number neutrosophic weighted averaging (TFNNWA) operatordenoted by

( )1 2WA , ,..., bTFNN M M M  and is defined as: 

( ) ( )
=

=    = 
1 2 1 1 2 2 1

ˆ ˆ ˆ ˆ, ,..., ,..., ,
b

b b b f ff
TFNNWA M M M t M t M t M t M  

where  0,1ft   is the weight vector of ( 1,2,..., )fM f b=  such that 
1

1.
b

f

f

t
=

=  

In specific, if (1/ ,1/ ,...,1/ ) ,Tt f f f=  then the operator reduces to the TFNNA operator: 

( ) =   1 2

1 2 1 1 1
ˆ ˆ ˆWG , ,..., ... .btt t

bt
TFNN M M M M M M  
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Triangular Fuzzy Number Neutrosophic Geometric Averaging Operator 

Definition 20. Suppose that a collection of TFNNVs in the set of real numbers is 

( ) ( ) ( ), , , , , , , ,   ( 1,2,..., )f f f f f f f f f fK f b        = = , and let : .aTFNNWG  → The 

TFNNWG operator isdenoted by ( )1 2WG , ,...,w bTFNN M M M  and is defined as

( ) ( )1 2

1 2 1 2
1

ˆ ˆ ˆ, ,..., ... ,b b

b
t tt t

w b b f
f

TFNNWG M M M M M M M
=

=    =   where  0,  1ft  is the exponential 

weight vector of ( 1,2,..., )fM f b=  such that 
1

1.
b

f

f

t
=

= In particular, if (1/ ,1/ ,...,1/ ) ,Tt f f f=  then the 

( )1 2WG , ,...,w bTFNN M M M operator reduces to the TNFG operator denoted as 

( ) ( )
1

1 2 1 2
ˆ ˆ ˆW , ,..., ... .f

f fTFNN A M M M M M M=     

Advantage 

The triangular fuzzy number neutrosophic values of the aggregation operator have been 

studied. However, to deal with uncertain information, this number can be used as an operative tool. 

Algorithm 5 

Application of TFNNWA and TFNNWG operators to multi attribute decision makingin which 

 1 2, ,..., aM M M M= is the set ofn possible substitutes and  1 2, ,..., bN N N N= is the set of features. 

Assume that (1/ ,1/ ,...,1/ )Tt f f f=  is the normalized weights of the features, where ft  denotes 

the importance degree of the feature ( )   ( 1,2,..., )ef f
a b

U h M f b


= =  such that 0ft   and 
1

1
b

f

f

t
=

=
 for

( 1,2,..., ).f b= The ratings of all alternatives ( 1,2,..., )eM e a=  with respect to the features 

( 1,2,..., )vM v y=  have been presented in aTFNNV based decisionmatrix ( ) .uv
x y

U h


=  

Based on the TFNNWA and TFNNWG operators, for solving MADM problems we develop a 

practical approach. In this approach, the ratings of the alternatives over the attributesare expressed 

with TFNNVs (Figure 1). 
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Figure 1. Framework for the proposed multiple attribute decision-making (MADM) method. 

Application of the TFNNWA Operator 

Step 1. Aggregate the rating values of the substitute ( ), , ,uY u i ii iii iv=  defined in the u-th row of 

decision matrix 4 5( )efk k =  with the TFNNWA operator. 

Step 2. The aggregated rating values uh  matching to the substitute
uY  are computed using 

Equation (6) which is as defined below: 

( ) ( )
=

=    = 
1 2 1 1 2 2 1

ˆ ˆ ˆ ˆ, ,..., ,..., ,
b

f f f f ft f
TFNNWA M M M t M t M t M t M  (6) 

Step 3. By Equations (7) and (8) the score and accuracy values of alternatives ( ), , ,uY u i ii iii iv=  

are determined, both of which are defined below: 

( ) ( ) ( )1 1 1 1 1 1 1

1
2 2

4
H K      =  + + − + +    (7) 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1

1
8 2 2 2

12
S K         =  + + + − + + − + +    (8) 
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Step 4. In Table 2, according to the descending order of the score and accuracy values the order 

of the substitutes ( ), , ,uY u i ii iii iv=  is determined and is shown. 

Table 2. Aggregated rating values of score and accuracy values. 

Alternative Score Values of ( )1S K  Accuracy Values of ( )1H K  

iY  0.7960 0.5921 

iiY  0.8103 0.6247 

iiiY  0.6464 0.1864 

ivY  0.6951 0.3789 

Therefore, following is the ranking order of the alternatives presented: 

.ii i iv iiiY Y Y Y  

Step 5. The highest ranking order is the best medical representative. In this example, iiY would 

be the best candidate for the position of medical representative. 

Utilization of TFNNWG Operator 

Step 1. By means of Equation (6) 

( ) ( )w1 w2 w wq

1 2 1 2
1

ˆ ˆ ˆWG , ,..., ... ,
m

m

w m m q
q

TFNN A A A A A A A
=

=    =   (9) 

All the rating values of the alternatives ( ), , ,uY u i ii iii iv=  for the u-th row of the decision 

matrix 4 5( )uvk k =  are aggregated.  

Step 2. In the Table 3, corresponding to the alternative uY  the aggregated rating values pu  are 

shown. 

Table 3. Rating values of the aggregated triangular fuzzy number neutrosophic set (TFNN). 

Aggregated Rating Values 

( ) ( ) ( )1     0.6654,0.7161,0.7667 , 0.1643,0.2144,0.2626 , 0.1142,0.1643,0.2144u  

( ) ( ) ( )2     0.6998,0.7502,0.8002 , 0.1485,0.1986,0.2486 , 0.0984,0.1485,0.1986u  

( ) ( ) ( )3     0.4472,0.4975,0.5477 , 0.3292,0.3795,0.4299 , 0.2789,0.3292,0.3795u  

( ) ( ) ( )4     0.5291,0.5804,0.6316 , 0.2707,0.3214,0.3721 , 0.2202,0.2707,0.3215u  

Step 3. We will put the Table 2 values in Equations (5) and (6) and the score and accuracy values 

of substitutes ( , , , )uY u i ii iii iv=  are computed. The results obtained in Table 4 are shown below. 

Table 4. Score and Accuracy values of rating values. 

Alternative Score Value ( )pS u  Accuracy Values ( )pA u  

iY  0.7791 0.5518 

iiY  0.8010 0.6016 

iiiY  0.5962 0.1683 



Symmetry 2018, 10, 314 24 of 28 

ivY  0.6627 0.3096 

Step 4. According to the descending order of the score and accuracy values the order of 

alternatives ( , , , )uY u i ii iii iv=  has been determined. Following is the ranking order of the 

alternatives presented: 

ii i iv iiiY Y Y Y  

Step 5. The highest ranking order is the best medical representative. In this example, 
iiY would 

be the best candidate for the position of medical representative. 

5. Conclusions 

In this paper, we gave an overview of a neutrosophic set, its extensions, and other hybrid 

frameworks of neutrosophic sets, fuzzy based models soft sets, and the application of these 

neutrosophic models in (MADM) problems. Further, the theoretical properties of the neutrosophic 

set with its other counterparts have been discussed. Based on the various instances of neutrosophic 

sets, decision making algorithms have been reviewed, and the utility of these algorithms have been 

demonstrated using illustrative examples. Aside from the general neutrosophic set, other instances 

and extensions of neutrosophic sets that were reviewed in this paper include the SVNS, INS, BNS, 

GINSS, and RNS. 

The decision maker provides the information that is often incomplete, inconsistent, and 

indeterminate in real situations. For actual, logical, and engineering application, a single-valued 

neutrosophic set (SVNS) is more accurate, because it can handle all of the above information. SVNS 

was presented by Wang et al. [14], which is an illustration of NS. The classic set, FS, IVFS, IFS and 

paraconsistent set are the generalization of the SVNS. The INS was presented by H. Wang [15], 

which is an instance of NS. The classic set, FS, IVFS, IFS, IVFIS, interval type-2 FS and paraconsistent 

set are the generalized form of INS. Accuracy, score and certainty functions of a BNS was presented 

by Deli et al. [12] in which Aw and Gw operators were suggested to aggregate the bipolar 

neutrosophic information. Then, according to the values of accuracy, score, and certainty, functions 

of alternatives are ranked to choose the most desirable one(s). 

A soft set was first introduced by Molodtsov [54]. In a decision making problem, they defined 

some operations on GNSS and presented an application of GNSS. The GNSS was extended by Sahin 

and Küçük [39] to the situation of IVNSS. In dealing with some decision making problems they also 

gave some application of GINSS. Some basic properties of a neutrosophic refined set were firstly 

defined by Broumi et al. [61]. A neutrosophic Refined Set (NRS) with a correlation measure was 

proposed. In a neutrosophic refined set, Surapati et al. [41] developed a MCGDM model and offered 

its use in teacher selection. In more basic form the tangent similarity function has been presented. To 

other GDM problems, the suggested method can also be applied under refined neutrosophic set 

environment. 

For dealing with the vagueness and imperfectness of the DMs assessments, the triangular 

neutrosophic fuzzy number was used. To solve the MADM problem under a neutrosophic 

environment, aggregation operators were proposed. Finally, with medical representative selection, 

the efficiency and applicability of the recommended method has been clarified. In other DM 

problems, the proposed approach can be also applied to personnel selection, medical diagnosis, and 

pattern recognition [62–93]. 
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