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Abstract

Pressure on water resources in Australia necessitates improved application of water

to irrigated crops. Cotton is one of Australia’s major crops, but is also a large water

user. On-farm water savings can be achieved by irrigating via large mobile irrigation

machines (LMIMs), which are capable of implementing deficit strategies and varying

water application to 1 m2 resolution. However, irrigation amounts are commonly held

constant throughout a field despite differing water requirements for different areas of a

crop due to spatial variability of soil, microclimate and crop properties.

This research has developed a non-destructive cotton plant dimensional measurement

system, capable of mounting on a LMIM and streaming live crop measurement data to

a variable-rate irrigation controller. The sensor is a vision system that measures the

cotton plant attribute of internode length, i.e. the distance between main stem nodes

(or branch junctions) on the plant’s main stem, which is a significant indicator of plant

water stress.

The vision system consisted of a Sony camcorder (deinterlaced image size 720 × 288

pixels) mounted behind a transparent panel that moved continuously through the crop

canopy. The camera and transparent panel were embodied in a contoured fibreglass

camera enclosure (dimensions 535 mm × 555 mm × 270 mm wide) that utilised the

natural flexibility of the growing foliage to firstly contact the plant, such that the top

five nodes of the plant were in front of the transparent panel, and then smoothly and

non-destructively guide the plant under the curved bottom surface of the enclosure. By
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forcing the plant into a fixed object plane (the transparent panel), reliable geometric

measurement was possible without the use of stereo vision. Motorisation of the camera

enclosure enabled conveyance both across and along the crop rows using an in-field

chassis.

A custom image processing algorithm was developed to automatically extract intern-

ode distance from the images collected by the camera, and comprised both single frame

and sequential-frame analyses. Single frame processing consisted of detecting lines cor-

responding to branches and calculating the intersection of the detected lines with the

main stem to estimate candidate node positions. Calculation of the ‘vesselness’ func-

tion for each pixel using the Hessian matrix eigenvalues determined whether the pixel

was likely to belong to a stem (i.e. a curvilinear structure). Large areas of connected

high-vesselness pixels were identified as branches. For each branch area, centre points

were determined by solving the second order Taylor polynomial in the direction per-

pendicular to the line direction. The main stem was estimated with a linear Hough

transform on the branch centre points within the image. Lines were then fitted to the

centre points of other branch segments using the hop-along line-fitting algorithm and

these lines were selectively projected to the main stem to estimate candidate node po-

sitions. The automatically-identified node positions corresponded to manual position

measurements made on the source images.

Within individual images, leaf edges were erroneously detected as candidate nodes

(‘false positives’) and contributed up to 22% of the total number of detected candi-

date nodes. However, a grouping algorithm based on a Delaunay Triangulation mesh

of the candidate node positions was used to remove the largely-random false positives

and to create accurate candidate node trajectories. The internode distance measure-

ment was then calculated as the maximum value between detected trajectories which

corresponded to when the plant was closest to the transparent panel.

From 168 video sequences of fourteen plants, 95 internode lengths were automatically

detected at an average rate of one internode length per 1.75 plants for across row mea-

surement, and one internode length per 3.3 m for along row measurement. Comparison
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with manually-measured internode lengths yielded a correlation coefficient of 0.86 for

the automatic measurements and an average standard error in measurement of 3.0 mm

with almost zero measurement bias.

The second and third internode distances were most commonly detected by the vi-

sion system. The most measurements were obtained with the camera facing north or

south, on a partially cloudy day in which the sunlight was diffused. Heliotropic effects

and overexposed image background reduced image quality when the camera faced east

or west. Night time images, captured with 850 nm LED illumination, provided as

many measurements as the corresponding daytime measurements. Along row camera

enclosure speeds up to 0.20 m/s yielded internode lengths using the current image pro-

cessing algorithms and hardware. Calculations based on field programmable gate array

(FPGA) implementation indicated an overall algorithm run-time of 46 ms per frame

which is suitable for real-time application.

It is concluded that field measurement of cotton plant internode length is possible using

a moving, plant-contacting camera enclosure; that the presence of occlusions and other

foliage edges can be overcome by analysing the sequence of images; and that real-time

in-field operation is achievable.
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Chapter 1

Introduction

Agriculture accounted for an estimated 65% of Australia’s water consumption in 2004-

05, with the largest water users being the pasture and cotton industries (Australian

Bureau of Statistics, 2006). Water use efficiency has the potential to be improved

through precision agriculture, an area of technological advance which aims to reduce

resource wastage and increase yields in agriculture by accounting for the variability

of yield-affecting factors throughout a field. The most commonly adopted precision

agriculture technologies are grid sampling, variable-rate application for fertiliser, yield

monitoring and yield mapping (Zhang et al., 2002). However, spatial variation of

water and nutrient requirements may be achieved for large mobile irrigation machine

(LMIM) irrigation through use of sensors, controls and decision making tools (Evans

et al., 1997b).

There is a wide range of environmental sensing alternatives applicable to precision

agriculture. Ultimately, the condition of the plant is an indicator of appropriateness

of water (and nutrient) supply. Automating visual assessment of plant condition, to

provide sensing information which would enable spatially varied irrigation, is possible

using machine vision.

1
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1.1 The Australian cotton industry

Cotton accounted for 16.2% of Australian irrigation water use (17535 GL at an appli-

cation rate of 6.4 ML/ha) in 2004-05 (Australian Bureau of Statistics, 2008). Cotton

was selected as the most suitable crop to study for the following reasons:

• There is strong support for the cotton industry in southern Queensland, and par-

ticularly from the Cooperative Research Centre for Irrigation Futures (CRC IF)

and the National Centre for Engineering in Agriculture (NCEA).

• The cotton industry is presently a large user of LMIM irrigation in Australia and

is expected to increase adoption of LMIMs in the future.

• Cotton is an economically viable crop of national significance.

• The cotton plant has a complex structure that presents many sensing alternatives

including some that may be applicable to other crops.

1.2 Infield variability considerations

The spatial and temporal variability of crop factors in a field has been appreciated for

centuries (Zhang et al., 2002). These factors include yield distribution, field topography,

soil properties, crop health and growth, weed and disease infestation, and management

practices such as fertiliser application and irrigation pattern (Zhang et al., 2002). Bram-

ley & Hamilton (2004) report that in any given year, yield variation within Australian

vineyards is typically in the order of ten-fold.

Sadler et al. (2000a) speculate that water is a pertinent resource for precision manage-

ment since yield is highly correlated with water application in water-limited situations,

and that further evidence is given by:

• the lack of correlation between yield and fertility for many crops;
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• the spatial variability of crop temperature (and hence, water stress) that is indi-

cated by remote sensing images; and

• the known spatial variability of soil properties, including water holding capacity.

From investigations of canopy temperature and soil moisture content in a corn field,

Sadler et al. (2000b) reported that management zones less than ten metres in size may

be required to account for spatial variation.

Variation in plant stress indicators due to cultivar is expected to be minimal, since

different cotton cultivars follow the same growth and development patterns but under

varying heat unit (Appendix A) or timing requirements (Khan, 2003; Oosterhuis, 1990).

1.3 Variable-rate irrigation for large mobile irrigation

machines (LMIMs)

Large mobile irrigation machines (LMIMs) consist of a series of towers which move

concurrently in a field, applying water via sprinklers suspended from the gantry between

the towers (also known as spans, Figure 1.1). There are two types which are centre

pivots and lateral moves. The main difference between lateral moves and centre pivots

is that lateral moves traverse a field whereas centre pivots are fixed at one end, causing

the towers to rotate around the fixed axis (Figure 1.2). Common dimensions are listed

in Table 1.1. A single pass of the machine may be 12 to 36 hours, thus the LMIM

operates during the day and night.
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Figure 1.1: Five spans of a large mobile irrigation machine (LMIM) (here, a centre
pivot).

(a) (b)

Figure 1.2: Plan view representation of a field irrigated by an LMIM, where the

solid black line represents the LMIM and the arrow represents the LMIM’s direc-

tion of travel: (a) lateral move; and (b) centre pivot.

Table 1.1: Common dimensions for large mobile irrigation machines (LMIMs) in
Australia (applicable to both centre pivots and lateral moves, from Foley & Raine
(2001)).

Dimension Value
LMIM length Typical: 400 m

Maximum: 500 m, but 1000 m possible
Span length Minimum: 30 m

Maximum: 60 m
NB. Maximum centre pivot tower speed (m/min) = (Centre pivot length) × 2π/(Time for one pass)

Maximum lateral move tower speed (m/min) = (Length of field)/(Time for one pass)
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At present just four percent of Australia’s irrigated cotton area is irrigated by LMIMs

(Foley & Raine, 2002). However, this proportion is expected to increase in the future

(Raine & Foley, 2002) as farmers opt for the potential water, labour and capital sav-

ings offered by LMIMs. LMIMs have higher water use efficiency than surface irrigation

(Raine & Foley, 2002). However, further water savings are possible since traditionally

water discharge from a LMIM is held constant for an entire field despite spatial varia-

tions in crop water requirements (Sadler et al., 2000a) caused by soil profile, crop type,

plant health or the existence of natural waterways on the field. Increased adoption of

LMIMs has emphasised a requirement for research of tools and methods to improve the

water efficiency of these machines (Foley & Raine, 2001).

Considerable work is reported in the literature towards development of variable-rate

applicators for LMIMs (Sadler et al., 1997a; King & Wall, 1998; Perry & Pocknee, 2004).

Variable-rate application may be achieved by a combination of pulsed duty cycles of

individual or groups of sprinklers and/or by varying the travel speed of the LMIM.

In 2001, a partnership between researchers at the University of Georgia and the Aus-

tralian company Farmscan saw the release of a variable-rate irrigation controller for

centre pivots (Computronics Corporation Ltd., 2002), and the release of the world’s first

variable-rate centre pivot machine using this technology (Hobbs & Holder LLC, 2005).

The Farmscan system allows irrigation management zones and water application rates

to be specified via predefined maps that are uploaded to the variable-rate controller.

The predefined maps are based on crop aerial images, yield maps, soil surveys and the

farmer’s knowledge of the field (Computronics Corporation Ltd., 2002).

The Farmscan system uses a map-based approach for managing variability. However,

Evans et al. (1997b) suggest that for variable-rate irrigation under LMIMs to be prac-

tical on a large scale, a sensor-based approach for soil or plant properties is required to

be developed. Presently ‘on-the-go’ sensors for monitoring field variability are limited

by expense or accuracy, or are not available (Zhang et al., 2002).

Many researchers and manufacturers have attempted to develop on-the-go soil sensors
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for soil properties, but the sensors have common limitations of expense and impractical-

ity for on-the-go measurements (Adamchuk et al., 2004). Soil moisture (i.e. volumetric

water content) is conventionally estimated as an indicator of the amount of water

available to the crop. However, due to soil heterogeneity, meteorology and plant phys-

iological factors, soil moisture is not necessarily an accurate indicator of plant water

stress (Jones, 2004).

An alternative view is that the plant is the best indicator of water availability and stress,

since plants automatically integrate the atmospheric and soil factors that affect plant

water status (Kramer & Boyer, 1995). Plant-based methods of determining irrigation

requirements have been reported in the literature for laboratory, glasshouse and field

conditions but not for non-destructive on-the-go measurements at high spatial resolu-

tion in the field. Hence, plant-based methods of determining irrigation requirement is

a particular area of research difficulty and need, particularly to enable the application

of variable-rate irrigation.

In principle, a LMIM can be used as a sensing platform that provides regular access

to all regions of the field. Data for each crop row may be collected if the implemented

sensors have a collective field of view (FOV) of all crop rows or if the sensors have the

capability to traverse each span (Figure 1.3).

The sensors potentially have time to traverse the span and maintain high spatial res-

olution (i.e. high number of effective sensor measurements per unit area in the field)

due to the relatively slow speed of a LMIM during irrigation (the maximum speed for a

lateral move or the outer towers of a centre pivot may be 2–3 m/min). Multiple sensing

systems may need to be implemented to increase sensed area in the field.

In developing the sensing system for LMIMs, the sensing system should not be restricted

to use only on LMIMs. The sensing system may be used as an evaluative tool (for

example, for identifying spatial variability) when mounted on some other ground-based

vehicle that has access to crop areas in a field (e.g. Figure 1.4). Use of different vehicles

and travel directions to convey the sensing system lead to a range of travel speeds
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(e.g. Table 1.2) and plant densities (Figure 1.5) to consider.

(a)

(b)

Figure 1.3: Conceptual arrangements of sensors mounted on an LMIM: (a) small

field of view (FOV) sensors that could either traverse span or be mounted in an

array; and (b) large FOV sensors. Conceptual FOV indicated by yellow tint.
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B C

A

Figure 1.4: Pictorial top view representation of potential sensing system con-

veyance on a tractor (label A) or on a span of an LMIM (labels B and C). Yellow

boxes indicate a conceptual sensing system. See Table 1.2 for further description

of labels A–C.

Table 1.2: Sensing system travel speed and plant density for various methods of
conveyance.

Sensing system Travel speed of sensing Typical plant Figure 1.4
conveyance method system spacing reference
On tractor in direction Equivalent to tractor 10–16 plants/m A
of crop row speed (20 km/h typical) along row
On LMIM in direction Equivalent to LMIM 10–16 plants/m B
of crop row speed (2–3 m/min typical) along row
On LMIM perpendicular Governed by independent 1 plant/m C
to crop row propulsion mechanism of across row

sensing system across rows
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(a) (b)

Figure 1.5: Typical plant spacing in a cotton field: (a) 10–16 plants per metre

along the row; and (b) one plant per metre across the row.

1.4 Machine vision

Machine vision is potentially a suitable technology for detecting plant stress by non-

contact measurement of plant characteristics, and especially plant architecture. Ma-

chine vision systems recover useful information about objects from two-dimensional

projections of a scene (Jain et al., 1995). However, there is a wide array of machine

vision instrumentation and sensing alternatives. These include the use of active or pas-

sive sensors and the ability to measure reflectances in the visible and non-visible bands

of the electromagnetic spectrum.

1.4.1 Passive versus active vision sensors

Vision sensors may be passive (e.g. cameras) or active (e.g. ultrasonic or laser ranging

devices). Passive sensors are entirely dependant on the suitability of ambient illumina-
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tion and return colour information for a scene. They may generate depth information

from stereoscopic images. Active sensors are less sensitive to changes in ambient light-

ing conditions. They implicitly return depth information for a scene and by analysis of

reflected beams may return colour information. Depth information is useful for deter-

mining actual dimensions of objects (e.g. stem diameter, leaf area or internode length).

However, the task of active sensor image interpretation retains all the difficulties as-

sociated with interpreting images from passive sensors (Jain et al., 1995). Table 1.3

contains a comparison of passive and active vision sensors.

Table 1.3: A comparison of passive and active vision sensors.

Active sensor Passive sensor
Example imaging radar (laser or acoustic) camera
Scene capture acquires data for a scene by a pro-

cess of scanning
acquires data for an entire scene
simultaneously

Effect of ambi-
ent environmen-
tal conditions

functions effectively in day and
night conditions, but ambient day-
light (for a laser sensor) and acous-
tic noise (for an acoustic sensor)
must be overcome

requires an external light source,
hence the quality of sunlight or ar-
tificial light influences data

Colour and tex-
tural data

using panchromatic illumination,
may obtain colour and textural in-
formation by analysis of reflected
beams

colour and textural information
may be obtained

Distance data gives a depth map using stereoscopic images (multi-
ple cameras/two consecutive im-
ages/optics to split single image)
and a calibration process, may ob-
tain a depth map

1.4.2 Spectral reflectance

Spectral reflectance is the ratio of reflected to incoming radiation and is used in both

remote sensing and machine vision applications (e.g. quality assessment in the food

industry). Remote sensing may be used to obtain vegetation indices. Vegetation indices

are empirical formulae designed to emphasise the spectral contrast between the red and

near-infrared regions of the electromagnetic spectrum, for the purpose of producing

quantitative measures of plant biomass and vegetative health (Gibson & Power, 2000).
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Table 1.4 contains examples of common vegetation indices.

Table 1.4: Vegetation indices (Source: Gibson & Power (2000)).
Vegetation index Formula
Normalised difference
vegetation index (NDVI,
often used as an index of
biomass)

(near infrared − visible red) / (near infrared + visible red)

Difference vegetation in-
dex (DVI)

(near infrared − visible red)

Soil adjusted vegetation
index (SAVI)

(near infrared − red) / ((near infrared + red + L)×(1 + L)),
where L is a correction factor for the amount of vegetation cover

Another application of spectral reflectance is for determining the non-visible optical

properties of various plant features for the purpose of distinguishing plant features in

machine vision applications. In a cotton crop (and particularly for identifying fruit

retention or plant mapping procedures) the spectral differences between bolls, squares1

and stems may potentially be used to differentiate the plant materials. Stems and

bolls have a higher moisture content than leaves, so have lower reflectance at water-

absorbing wavebands such as 970 nm (Kondo & Ting, 1998). Hence, a differential

two-waveband near infrared system may enable differentiation of stems and fruit from

leaves despite tonal similarities, as in the cucumber-harvesting robot of van Henten et al.

(2002). However, the system developed by van Henten et al. (2002) was in a glasshouse

environment under controlled and unstressed crop conditions, in contrast to the cotton

crop environment, where moisture content and water stress levels are highly variable

and would be expected to have an effect on the plant material’s spectral characteristics.

Colaizzi et al. (2003) developed a spectral reflectance and infrared thermometer sensing

system on a track on a linear move span to deliver spectral images at high spatial

resolution. Sadler et al. (2002) also mounted arrays of infrared thermometers on spans

of a centre pivot to map canopy temperature during a dry run of the machine, thus

demonstrating use of the LMIM solely as a data gathering platform. However, in

practice growers are unlikely to conduct dry runs of the LMIM during the peak irrigation

period due to time constraints.
1A glossary of cotton terminology is provided in Appendix A.
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The implementations of both Sadler et al. (2002) and Colaizzi et al. (2003) have been

used for mapping spatial variation in the field rather than real-time assessment of site-

specific crop water stress. Similarly, the infrared thermometry system developed by

Peters & Evett (2004) had utility only for timing an irrigation event under centre pivot

irrigation.

1.5 Research aim

The aim of this research is to develop a crop condition sensing system to determine in

real-time, water stress in a cotton crop irrigated by a large mobile irrigation machine.

The ultimate goal of such a sensing system is its use on a variable-rate LMIM, that is,

a LMIM capable of variably adjusting water discharge, at high spatial resolution, in

response to actual crop water stress for the purpose of increasing water use efficiency.

A LMIM so equipped, and with the support of a decision-making framework, has the

potential to become an intelligent learning system, as historical, present and predictive

field data are accumulated and compared to optimise water application.

In the context of this research, the desired spatial resolution is defined to be equivalent

to one effective sensor measurement for each sprinkler (where there is one sprinkler for

each row and row spacing is one metre) at one-metre intervals in the direction of travel

of the machine. Hence, the target spatial resolution for sensor measurements is one

square metre.

1.6 Hypothesis and approach

The hypothesis of this research is that non-destructive measurements of significant

plant parameters can be made automatically and conveniently with respect to field

irrigation machinery operation.
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LMIM irrigation of a cotton crop has been selected as an appropriate target application

to assess the viability and utility of using the growing plant as an ‘irrigation sensor’.

Under commercial conditions, LMIM irrigation is characterised by high-frequency ap-

plication of water (typically once every few days) and is therefore potentially amenable

to real-time sensing and control. Maximising the potential for real-time sensing and

control (by maximising temporal and spatial frequency of irrigation) leads to the fol-

lowing additional LMIM operating requirements for the sensing system:

• The system must be applicable for use during the peak irrigation period, in which

a LMIM pass of a particular plant may occur every three to four days and the

LMIM is in use nearly continuously throughout the day and night. The peak

irrigation period for cotton coincides with a crop age of four months (significant

ground cover) to the end of the season.

• The LMIMs may be installed with low energy precision application (LEPA) sys-

tems. LEPA is a high-efficiency system which applies water directly to the soil

and may be spatially varied at one-square metre resolution (Figure 1.6). LEPA is

the highest precision application system for LMIMs and is the basis of the target

spatial resolution for the sensing system.

The choice of plant metric/s to measure and automate should be agronomically-driven

by cotton industry standards rather than by current technological standards, i.e. the

primary driver for research direction taken is agronomy rather than technology. It is

considered more valuable to choose a significant plant attribute to measure than to

select a less significant plant attribute which may potentially present a simpler sensing

solution.

The desire to measure plant attributes at high spatial resolution means multiple sensors

are required to be deployed in the field. Industry adoption of the devised sensing

techniques is also desirable. Hence, cost per sensor is an appropriate consideration for

the present research application and it is desirable to develop a sensing system that

operates in natural daylight conditions.
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Figure 1.6: LEPA sock connected to a sprinkler and applying water directly to the
ground. Compare with Figure 1.1 where a mist of applied water is visible above
the canopy being irrigated.

In summary, consideration of the operation of an LMIM in a cotton field under commer-

cial conditions leads to the following guidelines for the sensing system’s performance:

• Conveyance speed of sensing system: 2 to 3 m/min (0.03 to 0.05 m/s) to 20 km/h

(5.6 m/s)

• Plant density: 10 to 16 plants/m along row and 1 plant/m across row

• Spatial resolution of plant measurements: 1 m2

• Daily operating hours: up to 24 h continuous

These conditions contribute to the design, development and evaluation processes of the

sensing system throughout the thesis.
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1.7 Dissertation chapter outline

This dissertation contains eight chapters addressing the development and testing of the

vision-based sensor.

• The aim of this project is to develop a sensor that aids in irrigation decisions.

Therefore, Chapter 2 describes plant-based methods of inferring irrigation re-

quirement and identifies cotton plant internode length as a significant indicator of

water stress. Internode length is visually-assessable by a human which suggests

that internode length measurement may potentially be automated using machine

vision. Chapter 2 also contains a literature review of machine vision applications

for plants which reveals that generally, machine vision measurement of plant pa-

rameters in the field is restricted to whole-plant attributes (e.g. plant height).

The literature review leads to formulation of the research objectives.

• A mobile infield machine vision system is required to identify internode length of

individual plants in an outdoor environment of densely-populated plants. Chap-

ter 3 contains the design of a mobile enclosure which non-destructively forces

individual plants against a transparent panel. A camera mounted behind the

transparent panel views the plants in a fixed object plane which enables reli-

able single-camera geometric measurement. Apparatus for automatic infield con-

veyance of the camera enclosure is also reported in Chapter 3.

• Automated internode length detection from video imagery required identification

of green stems from a background of green foliage. Chapter 4 evaluates image

processing techniques for automatic main stem node identification in individual

video frames including colour thresholding and edge and line detection. The

‘vesselness’ measure (a function of the eigenvalues of the Hessian matrix) was

found to be most effective for detecting lines corresponding to branches. However,

other foliage edges were also incorrectly identified as branches and these ‘false

positives’ contributed to the set of detected nodes.

• True nodes were consistently identified in sequential frames whereas false posi-
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tive nodes were largely random in nature. Therefore, sequential frame analysis

in Chapter 5 was necessary to remove false positive candidate nodes and pro-

vide reliable internode length measurement. Candidate nodes were successfully

grouped into node trajectories using a method based on Delaunay Triangulation.

• Automated internode length measurement results are provided in Chapter 6

for a range of environmental and operating conditions. Natural daylight condi-

tions were found to significantly influence the vision system’s performance. The

system performed most reliably in partially cloudy conditions (diffused sunlight)

with the camera facing either north or south. The vision system’s night time per-

formance was found to be as reliable as its performance under favourable daylight

conditions.

• Chapter 7 considers system design and operation in the context of a real-time

environment, i.e. with the camera enclosure mounted on an irrigation machine or

some other ground-based vehicle. A conceptual FPGA-based analysis of software

execution time is included.

• Final conclusions for the research are provided in Chapter 8. Recommended

further work includes extension of the vision system to measure other significant

plant attributes such as nodes above white flower.



Chapter 2

Literature review

2.1 The measurement requirement – plant responses to

water stress

Using the plant as a water stress sensor potentially involves sensing plant water status or

plant vegetative and reproductive growth. The sensed plant attributes may be useful as

absolute measurements or as differential measurements. Differential measurements may

be obtained from comparisons with previous LMIM passes or other plants. Appendix A

contains definitions of plant growth and physiology terms.

2.1.1 Plant water status/leaf water potential

Plant water status indicates the force that moves water within a plant and may be

expressed as plant water potential (Kramer & Boyer, 1995) and estimated by leaf

water potential (Huck & Klepper, 1977). Direct measurement of leaf water potential

is labour intensive and unsuitable for automation (Jones, 2004). Hence, investigations

of indirect measurement of plant water potential via plant properties such as change

in leaf thickness, leaf growth rate and leaf temperature have been reported in the

17
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literature (Table 2.1). Stem diameter changes have been investigated as a possible

indirect measurement of leaf water potential for decades (Klepper et al., 1971; Huck &

Klepper, 1977).

Table 2.1: Plant water status measures.
Traditional measurement

Feature techniques References
Stem/fruit diameter, Linear variable displacement Lu & Neumann (1999),
leaf growth rate, leaf transducers or strain gauges Yatapanage & So (2001),
thickness that are continuously clamped Goldhamer & Fereres (2004)

to the specimen (including
commercial devices)

Leaf angle Manual observation, Meyer & Walker (1981),
inclinometer Ehleringer & Hammond (1987),

Jones (2004)

Spectral response Portable spectroradiometer at Gausman et al. (1971),
the canopy or plant level, under Jackson & Ezra (1985),
field and laboratory conditions Bowman (1989)

Leaf temperature Infrared thermometers or Jones et al. (2002),
thermal imagery for non- Sadler et al. (2002),
contact measurement Colaizzi et al. (2003)

Leaf angle is an indicator of visible leaf wilting, which is often considered a belated

stress response (Jones, 2004). Leaf angle has added significance in the cotton variety

Gossypium hirsutum which is heliotropic (Lang, 1973; Ehleringer & Hammond, 1987),

that is the leaves track the sun and maintain an average angle of 40 degrees with the

sun’s rays, except during drought conditions (Oosterhuis, 1990). Gossypium hirsutum

accounts for 90% of the world’s cotton production (Cantrell, 2005).

Leaf water potential and related plant water status measures are affected by meteo-

rological conditions and therefore undergo diurnal variation. The effect of the diurnal

variation must be considered when comparing multiple plant water status measure-

ments. Techniques suggested in the literature include:

1. Considering measurements in the context of the daily cycle, by predicting the

specific influence of the diurnal variation (e.g. (Peters & Evett, 2004) for canopy

temperature) or by normalising observed transient changes against maximum
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daily changes. The second alternative was implemented by Goldhamer & Fereres

(2004) for trunk diameter measurements and by Kacira et al. (2002) for projected

plant area measurements.

2. Comparing measurements from the same time or under the same meteorological

conditions each day. For example, comparing leaf water potential measurements

taken predawn or at solar noon.

3. Comparing measurements with a continuously-monitored ‘reference’ specimen.

This technique was recommended by Moriana & Fereres (2002) for stem diameter

values, by Jones et al. (2002) for thermal imaging of grapevines and by Peters &

Evett (2004) for canopy temperature.

Technique 1 may be implemented if enough information about the diurnal variation is

known. Implementation of Technique 2 is possible in the LMIM application environ-

ment if irrigations are timed such that the LMIM passes over each area at the same

time every day. However, Technique 3 requires reference plants to be selected and ad-

ditional instrumentation to be installed in the field, which may be undesirable over a

large spatial area.

2.1.2 Vegetative growth

Vegetative growth is the most sensitive indicator of the onset of water stress and in-

dicators include plant height, leaf area index and projected plant area (Table 2.2).

From Table 2.2, research towards the automation of field measurement of whole-plant

attributes such as plant height and biomass has been reported in the literature. In-

ternode length is a sub-plant attribute and reports of research towards automated field

measurement were not found in the literature.

Cotton plants follow a structured growth and development pattern in which a new node

develops on the main stem every two to three days. Internode length in cotton is highly

influenced by environmental stresses, whereas node development is largely independent
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Table 2.2: Plant vegetative growth measures.
Traditional measurement

Feature techniques References
Plant height Ultrasonic or infrared beams, laser Tumbo et al. (2002),

rangers Geiger (2004),
Schumann & Zaman (2005)

Leaf area index Manual allometric techniques, Breda (2003),
hemispherical photography, radiation Jonckheere et al. (2004)
interception (including commercial
devices)

Internode length Manual observation Oosterhuis (1990),
Hearn (1994)

Biomass Machine vision, remote sensing Bjurstrom & Svensson (2002),
Praat et al. (2004)

Top- or side- Machine vision Casady et al. (1996),
projected plant Murase et al. (1997),
area Kacira et al. (2002)

of stress (Hearn, 1994). The distance between consecutive nodes on the main stem

indicates amount of vegetative growth. An internode length becomes fixed (i.e. ceases

to elongate) below the fourth node. Hence, for cotton the distance between the fourth

and fifth main stem nodes of a plant is used as an indicator of the amount of stress

that the plant has experienced in a time period eight to twelve days earlier. Internode

length measurement is part of a plant-based water stress monitoring regime for cotton

suggested for growers by organisations including the Australian Cotton Cooperative

Research Centre (Milroy et al., 2002).

A fully developed internode should be greater than 50 mm (McKenzie, 1998), with

smaller internode lengths indicating moisture stress and internode lengths greater than

70 mm indicating excessive vegetative growth. Field observation of internode lengths

for the present research ranged from typically 15 to 110 mm (Figure 4.8, Chapter 4),

with internodes less than 50 mm typically corresponding to internode positions that

were not yet fully elongated. The upper bound of 110 mm indicates excessive vegetative

growth in the observed plants.
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Average internode length for the entire plant may be obtained by dividing the plant

height by the number of nodes (Johnson Hake et al., 1996). This quantity is also known

as the plant’s height to node ratio. Since an internode length is fully expanded after

the fourth node position, an estimate of the average length of the top five internodes

may be obtained by dividing the change in plant height for a particular time period by

the number of 3-day intervals in that time period (where a new node develops on the

plant’s main stem on an average of every 3 days) (Landivar et al., 1996). Stabile (2005)

reported that the average of the top five internode lengths estimated by this method

was found to be more sensitive to moisture stress than height to node ratio and with

a potentially shorter time constant for response to water stress than consideration of

the fourth-to-fifth internode only. Therefore, the precise measurement of the top five

internode lengths has potential use in cotton irrigation scheduling and automation of the

measurement has potential extension into the measurement of other plant parameters

such as those included in plant mapping (next section).

2.1.3 Plant mapping (reproductive growth)

Development of a cotton plant follows a standard pattern, and to optimise yield, a

balance between vegetative and reproductive growth is required. Mild stress in cot-

ton causes the highest reproductive growth, whereas low stress encourages vegeta-

tive growth and high stress reduces boll setting (Oosterhuis, 1990). Cotton plant

mapping (Table 2.3) is a potential irrigation scheduling tool which incorporates both

vegetative and reproductive growth, and has been researched extensively in Arkansas

(Oosterhuis, 1990). Cotton plant mapping involves frequently recording the positions

of squares and bolls on a growing plant to diagnose plant health, but may be reduced

to a few key indicators such as nodes above white flower (NAWF) and height to node

ratio (Oosterhuis, 1990).

Comparison of sampled NAWF and heat unit data with a target development curve

(Appendix A) allows cotton crop health to be diagnosed and a management strategy

to be implemented. Field measurements are made manually for a recommended total
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of 40 plants, once or twice every week throughout the season (University of Arkansas

Division of Agriculture, 2005).

Table 2.3: Plant mapping/reproductive growth measures.
Traditional measurement

Feature techniques References
NAWF, height to Manual observation Oosterhuis (1990),
node ratio, number of Bourland et al. (1997),
squares set and shed Teague et al. (1999)

2.1.4 Discussion

Methods of detecting plant water stress based on plant water status, vegetative and re-

productive growth have been presented. Plant water status measures require knowledge

of the current meteorological conditions in order to be applied to irrigation manage-

ment. Plant water status measures such as change in stem diameter and projected plant

area also require comparison with historical values of the same plant specimen. There-

fore, in the LMIM application environment, the sensing platform would be required to

locate the same plant specimen on every pass of the LMIM. In contrast, vegetative and

reproductive growth measures integrate previous stress levels to serve as a meaningful

stress indicator on an individual plant basis. Hence, temporal comparisons of a sam-

ple area within a crop need not necessarily involve the location of exact specimens for

comparison.

In addition to considerations for the sensing system implementation, monitoring of both

vegetative and reproductive growth in cotton crop management is necessary to ensure

that the balance between vegetative and reproductive growth is maintained. Plant

mapping is achieved traditionally by labour intensive manual sampling techniques and

no reports of possible automation of the techniques were found in the literature. Au-

tomation of internode length measurement would potentially enable large-scale quan-

tification of vegetative growth in a cotton crop. Sensing node positions for the purpose

of internode length measurement may also potentially lead to a measurement technique

for other node-based cotton plant properties such as nodes above white flower.
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Sensed plant data (e.g. internode length) is anticipated to be most usefully employed in

an irrigation application in temporal and/or spatial field comparisons, rather than in

comparison with crop models. A spatial comparison may entail observation of intrafield

variation, whereas a temporal variation may involve comparing internode length growth

rates for a sample crop area over a series of irrigations with varying irrigation amounts.

2.2 Applied machine vision for imaging plants and plant

structures

Attributes of internode length and plant mapping are significant crop development in-

dicators for agronomists and automation of the measurements is potentially achievable

using machine vision. However, the design of a vision system for the measurement of

plant attributes will be affected by many factors, such as the scale of the plant measure-

ment (i.e. leaf- or canopy-level) and the measurement environment (e.g. a laboratory

or in the field). The use of shape, range, texture and spectral properties of plants in

machine vision systems are reported in the literature. Not all vision system and image

processing solutions are automated, but they provide relevant considerations in the

design and application of a vision system for plants.

Amongst the variety of plant-based vision systems available, the following major mea-

surement categories have been identified and hence, form the outline of this literature

review:

• plant sensing in agricultural fields;

• plant sensing in greenhouses, laboratories and factories (usually includes robotic

post-actions such as automatic harvesting or sorting);

• plant sensing of specific morphological features; and

• plant sensing to develop 3D plant models.
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2.2.1 Plant sensing in agricultural fields

Vision systems developed for measuring plants in agricultural fields are typically re-

quired to analyse spatial patterns at the field scale and at high resolution. The goal of

such analyses includes yield prediction/monitoring or evaluation of crop management

practices.

The magnitude of information required in measuring all plants within a field implies

complete automation of the sensing task. However, the outdoor agricultural envi-

ronment presents complexities that make automation challenging. These complexities

include variable natural lighting, wind-induced foliage movement, and occlusion and

obscuration of plant features by foliage from neighbouring plants and background ma-

terial. Automated machine vision sensing of individual plants under field conditions

is therefore typically limited to early stage crops (where neighbouring plants are too

small to be touching) or to whole-plant characteristics such as plant biomass for more

mature canopies.

2.2.1.1 Young crops

Projects such as corn seedling population sensing for the purpose of determining optimal

plant spacing and evaluating the uniformity of seeding machines have been conducted in

the USA (Shrestha & Steward, 2003; Shrestha & Steward, 2005). Shrestha & Steward

(2005) used a camera to collect top view images of the corn plants which were then

segmented from the background soil. Pixels were grouped to form estimated projected

foliage cover for individual plants, with roundness and area of segmented objects used

to separate plants from weeds.

Segmenting foliage from background soil (in top view images) is an important first

step in the automated image processing task of young crops. However, objects and

their backgrounds often exhibit common intensities which reduces the effectiveness of

a monochrome threshold (Tian & Slaughter, 1998). Ewing & Horton (1999) evaluated
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three colour models for segmenting a young corn canopy from background soil and

speculated that diffuse lighting from cloudy days may provide better illumination of

leaves which would otherwise be in shadow on a clear day. Tian & Slaughter (1998)

developed a self-learning segmentation algorithm which had superior performance in

poor lighting (i.e. overcast conditions). Steward et al. (2004) subsequently developed

a ‘truncated ellipsoid’ model of colours expected to be associated with green leaves

under a range of outdoor lighting conditions which Shrestha & Steward (2005) used to

automatically separate corn leaves from the background.

Automatic exposure settings of ‘point and shoot’ digital cameras are capable of pro-

viding maximum separation of RGB component colours and excellent visual quality

(Meyer et al., 2004) resulting in correct classification of images featuring exclusively

plant (i.e. foliage), soil or residue (i.e. stubble) material under a range of illumination

conditions. Noh et al. (2005) performed further colour calibration of foliage by includ-

ing a reference board in the field of view of the image, which was painted with colours of

known reflectance for comparison with the foliage. This permitted nitrogen deficiency

to be estimated under a range of lighting conditions.

2.2.1.2 Mature crops

In mature crops, segmenting the plant pixels of interest from the background is still

an important first step for image processing tasks. In vineyards, the leaf orientation

(i.e. the orientation of a tangent plane to the leaf) is generally vertical so an on-the-go

downward-facing camera is not as useful for determining canopy properties. However,

a developed vineyard canopy is particularly suited to on-the-go machine vision mea-

surement with sideways-facing cameras due to the spacing between rows, which enables

a camera and backing board to fit comfortably on either side of the canopy, such that a

side view of the foliage can be obtained. Such a system was implemented by Praat et al.

(2004), with biomass being estimated by counting green vine pixels and discounting the

distinctly-coloured background board. Row spacing enabled observation of the shad-

ows of individual rows cast onto the ground at solar noon (Williams & Ayars, 2005).
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Shadow pixels were counted (with a manual threshold on pixel intensity) as an indi-

cation of canopy biomass. Bjurstrom & Svensson (2002) extended vision sensing of

vineyard canopies to the leaf-level by developing algorithms based on shoot colour to

perform shoot counting.

For skyward-facing cameras, such as in hemispherical photography for leaf area index

(LAI) estimation (Jonckheere et al., 2004), foliage is required to be separated from

background sky and clouds. LAI measurements are typically collected for crop de-

velopmental stages up to closed canopy, so foliage in collected imagery is frequently

overlapping and automation of the segmentation task involves methods such as auto-

matic thresholding and edge detection (Ishida, 2004; Nobis & Hunziker, 2005).

For small plants, an on-the-go vision system consisting of a lightproof cover can be

mounted on the back of a tractor or on a mobile robot, in order to control lighting

conditions of the plants under the cover during imaging in the field (e.g. Edan et al.

(2000) and Hemming & Rath (2002)). Implementing an on-the-go infield vision system

with controlled lighting is more difficult for individual larger plants. In a developed

rice canopy, Casady et al. (1996) manually positioned a portable frame and shroud

about each plant to segment foliage pixels and measure biomass. However, Tarbell &

Reid (1991) transported mature individual corn plants from the field to a laboratory in

order to compare foliage colour with colour charts and to measure leaf area from plant

silhouettes on a light stage.

Active sensors are not affected by variation in ambient lighting and find common appli-

cation in developed canopies. Geiger (2004) used an array of infrared emitters on either

side of a cotton row to measure cotton plant height on-the-go. The data was used to

generate maps of change in canopy height. Tumbo et al. (2002), Wei & Salyani (2004)

and Schumann & Zaman (2005) used laser scanning and ultrasound to estimate the

volume of trees in a citrus orchard. Other applications of laser scanning includes the

estimation of the lean angle and volume of standing trees (Hyyppa et al., 2001; Theis

et al., 2004).
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2.2.1.3 Canopy topography

Two- and three-dimensional imagery-based canopy visualisations have been used to

visually assess crop status at the field scale. Image mosaicing or sequencing involves a

moving camera capturing top view images (for example) of a crop row and then auto-

matically identifying where consecutive images ‘stitch’ together, using matching algo-

rithms. Over a large area, a single high-resolution image of the field can be accumulated

(Kise & Zhang, 2006). Three-dimensional maps of canopy structure were obtained by

Rovira-Mas et al. (2005) using aerial stereoimages captured from a remote-controlled

helicopter with GPS. The change in scene elements caused by wind undermines match-

ing applications such as mosaicing.

2.2.1.4 Multispectral imaging

Potential multispectral imaging technologies for detecting plant water stress include

using visible, IR, NIR, UV and microwave radiation (Takakura et al., 2002). Bacci

et al. (1998) showed that in a growth chamber, colorimetric techniques could be used

to detect plant stress and Carter & Miller (1994) found that herbicide-induced stress

could be detected with colour and narrowband digital imagery. Leinonen & Jones

(2004) combined visible and thermal imaging to identify regions of interest in a thermal

image of plants (e.g. by isolating plant from soil pixels). Chaerle et al. (2003) has also

used time-lapse thermal, fluorescence and video imaging of leaves to detect herbicide

damage.

2.2.2 Plant sensing in greenhouses, laboratories and factories

Applications of machine vision systems in controlled indoor environments (e.g. green-

houses, laboratories and factories) include automatic irrigation management, fruit har-

vesting and flower grading. The greenhouse environment removes many of the vari-

ables that complicate outdoor agricultural machine vision systems. Under green-
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house/laboratory conditions, lighting and positioning of free-standing individual plants

may be controlled, so the drawbacks of variable natural sunlight, irregular spacing/

location of plants and complicated image backgrounds may potentially be overcome.

The ability to control the environmental conditions in an automated greenhouse irri-

gation system means that small changes in intricate plant geometric relationships can

be detected on a continuous time scale and attributed to a particular cause (such as

water stress). Canopy changes due to induced stresses can also be isolated by signal

processing from plant diurnal movement and growth. Irrigation scheduling systems

have been developed using leaf tip tracking for wilt detection (Seginer et al., 1992)

(manual system), change in side projected area (Murase et al., 1997) and change in

top projected area (Kacira & Ling, 2001; Kacira et al., 2002). In these applications,

the plant parameter of interest is isolated from a binary image in which the plant

is segmented from the background. These systems tend to focus on detecting small

differences in geometry (leaf inclination, canopy architecture) rather than analysing

foliage spectral/hue properties. Techniques devised for automated greenhouse systems

have potential application in sustainable biosystems for space (e.g. research to develop

automatic irrigation and management systems for crops on space missions (Fleisher

et al., 2006)).

Identifying the onset of water stress using petiole wilt detection in a vine canopy was

evaluated by Waksman & Rosenfeld (1997). The average petiole angle was extracted

from greyscale vine images using line detection techniques and results from images with

the light source in different positions were combined in order to reduce occlusion by

shadows. Kurata & Yan (1996) calculated the average incline angle of rachis (the central

axis of compound leaves) lines in tomato plants to estimate water potential. Waksman

& Rosenfeld (1997) also studied colour distribution in plant leaves to identify paleness

and hence, the onset of stress. Shimizu & Heins (1995) observed variation in stem

elongation rate of a single-shooted plant using an automatic system that captured the

silhouettes of the side and front views of a plant simultaneously with a mirror.

Machine vision is typically one of a suite of sensors employed in automatic moni-
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toring of plants in greenhouses. Other sensors include infrared thermometers, load

cells, anemometers and photosynthesis meters (van Henten & Bontsema, 1995; Ehret

et al., 2001; Prenger et al., 2005). Vision systems are not necessarily restricted to direct

plant measurements and have been used to assist deployment of other sensors. Kim &

Ling (2001) developed a conceptual machine vision system for automatic robotic posi-

tioning of an infrared thermometer to enable temperature measurement of individual

leaves within a canopy.

A major industry in the Netherlands is cut flowers and a shortage in unskilled labour

makes automation of cutting flowers desirable. In this industry, flower stalks are re-

quired to be identified prior to harvest. Noordam et al. (2005) considered methods of

locating a cutting position on a rose stem and compared the use of stereo imaging, laser

triangulation, x-ray imaging and reverse volumetric intersection, a variation of the pro-

cess of using multiple angles to identify the 3D outer contour of an object (Hemming,

Golbach & Noordam, 2005). Occlusions by leaves and stems were found to be limiting

to the laser triangulation technique and to identifying correspondences in the stereo

imaging system. However, the reverse volumetric intersection technique in conjunction

with the Hough transform was promising for identifying stems. Thin leaves were com-

pletely invisible in the x-ray images, but stems could be occluded by other stems and

there are severe safety regulations regarding the use of x-ray imaging. Gerberas have

less foliage around the desired cutting position so Kawollek & Rath (2005) used the

expected constant width of stem regions to identify stems from multiple views of the

plant.

Robotic harvesting of fruit in greenhouses consists of design options relevant to plant-

based machine vision systems. A differential two-waveband infrared vision system was

designed and tested that made use of the spectral differences in fruit and leaves at 850

and 970 nm to identify cucumbers on a vine (van Henten et al., 2002). This spectral

difference also occurs between stems and leaves (Kondo & Ting, 1998). Hemming et al.

(2005) used an air blower system to distinguish leaves, fruit and stems in a canopy on

a distinctly-coloured background. Leaves were identified as those objects which moved
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with the air stream, while fruit and stems remained relatively still. Additional image

processing enabled selective harvesting of only ripe or mature fruit by modeling the

fruit size or volume.

Machine vision has been used commercially to grade plant cuttings in the geranium

(Simonton, 1990), sugar cane (Wang et al., 1998) and forestry (Wilhoit et al., 1994)

industries. The imaging environment is typically an assembly-line. Features of plant

cuttings such as flower size and stem-to-leaf area ratio are measured by identifying flow-

ers, leaves, petioles and stems. Both colour and binary shape relationships (e.g. smaller

width indicating stems) can be used (Humphries & Simonton (1993), Singh & Monte-

merlo (1997)). Wang et al. (1998) identified sugarcane shoots using the Hough trans-

form and Zhang et al. (1998) graded tobacco leaves using a colour transformation that

simulated human colour vision.

2.2.3 Plant sensing of specific morphological features

2.2.3.1 Leaf description and species identification

Automatic leaf shape analysis and identification is used in site-specific pesticide applica-

tion, biological growth analysis and biodiversity databasing. The soil/foliage segmenta-

tion methods and issues described in Section 2.2.1 also apply to automatic segmentation

of outdoor crop seedlings in species identification applications. The approach for clas-

sification of crop and weed typically involves the recognition of leaf shape, colour or a

combination of both.

Tang et al. (2000) described segmentation of green weeds using visible colour under nat-

ural lighting conditions. Alternatively, significant discriminatory wavelengths between

weeds and crop can be used in a classification model to achieve recognition (e.g. Vrindts

& de Baerdemaeker (1997), Wang et al. (2001)). Tang et al. (2003) achieved differenti-

ation between broadleaf and grass weeds using Gabor wavelets and an artificial neural

network. Leaf extraction from background soil has also been investigated using genetic
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algorithms (Neto, Meyer & Jones, 2006) and Elliptic Fourier leaf shape analysis (Neto,

Meyer, Jones & Samal, 2006). McDonald & Chen (1990) considered the use of mor-

phological operators applied to leaf images for discriminating plant species. Texture

analysis of plant top views permitted plant identification by image texture properties

such as homogeneity, structuredness and brightness (Shearer & Holmes, 1990).

Shiraishi & Sumiya (1996) used leaf properties such as colour, aspect ratio and circu-

larity for leaf identification. However, Du et al. (2007) identified that environmental

factors caused leaf colour to be of low reliability for species identification, so they only

investigated shape features in the development of an automatic classifier. Their method

was intended for biodiversity studies in plant populations and required detachment of

the leaf from the plant so that a clear image of the leaf could be obtained.

In the laboratory environment, leaves were automatically segmented from the back-

ground soil using a colour transformation (Chien & Lin, 2002). Automatic leaf shape

analysis also has application in biology, e.g. plant morphology studies (Kaminuma

et al., 2004). Insitu sensing and modeling of leaf shape in vegetable seedlings has suc-

cessively used Bezier curves (Chi et al., 2002) and the elliptical Hough transform (Chien

& Lin, 2002) to identify leaves that were partly occluded.

2.2.3.2 Fruit development and yield monitoring

Early vision systems for agriculture involved automation of fruit identification for har-

vesting, possibly because fruit was distinctly coloured and thus distinguishable from

foliage (Tian & Slaughter, 1998). Jimenez et al. (2000) reported that vision systems

based on shape were less sensitive to hue changes (e.g. variation in target object colour),

but that shape analysis algorithms were more time-consuming. Jimenez et al. (2000)

also recommended that techniques were required to be developed to reduce total oc-

clusion rates of fruit to improve feasibility of automatic systems.

Vision systems that sense fruit may be used in conjunction with yield mapping algo-
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rithms. Dunn et al. (2006) developed a GPS-enabled vision system to count fallen nuts

in a macadamia plantation, and the parent tree was estimated by identifying the woody

trunks of neighbouring macadamia trees using a near infrared filter. Adamsen et al.

(2000) used digital images to count coloured pixels belonging to flowers in a crop, for

the purpose of assessing plant growth and potential yield estimation.

2.2.4 Generation of 3D plant models

Plant modeling has recently become popular for the purpose of generating realistic-

looking images and for agronomic purposes such as simulating and visualising the effect

of particular physiological stresses on the plant. With the advent of L-systems (Room &

Hanan, 1995), complex plant structures and plant development rules can be represented

effectively in a computer model, enabling simulation of individual plants and whole

fields. Plant topography and geometry is traditionally input by either the manual

operation of mechanical articulated arms with electromagnetic or acoustic sensors to

detect arm joint 3D-world positions or by using laser scanners to generate point clouds

of plant material surfaces (Room & Hanan, 1995).

Stereoimaging has also been investigated as potentially capable of automatically digi-

tising 3D plant structure. Ivanov et al. (1995) generated a 3D reconstruction of a maize

canopy using stereoimages. However, in this case leaves were removed to collect pho-

tographs necessary for the reconstruction algorithm and the method was inappropriate

for routine or field measurement.

Chien et al. (2004) and Chien & Lin (2005) used three mutually perpendicular views

(two sides and one top) of vegetable seedlings in a greenhouse to measure 3D plant

structure including leaf area, leaf number and internode length. This enabled the

generation of continuous growth curves under various conditions. The top view provided

the most information but the side views permitted correction to leaf area estimation

where leaves were tilted.

Non-destructive stereoimaging approaches include that of Takizawa et al. (2005), who
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measured height, width and area of individual leaves of a pot plant using an auto-

matic binocular system, and graphically reconstructed plants with Delaunay Triangu-

lation. Quan et al. (2006) captured images of a plant from multiple viewpoints and

correspondences between images were manually identified. Pan et al. (2004) created

a semi-automated stereoscopic matching algorithm in which salient structures such as

leaves were automatically identified by image processing and finer detail was input by a

human operator. Andersen et al. (2005) generated 3D reconstructions of young wheat

plants automatically from stereoimages. However, machine vision techniques suitable

for automatic digitising of the 3D structure of mature plants have not been found in

the literature.

2.3 Development of research objectives

On-the-go infield sensing of geometric crop plant parameters is currently limited to

leaf shape identification and biomass estimation in the foliage of small plants, or plant

height and biomass estimation in fully developed canopies. The desire to measure cot-

ton plant internode length and potentially other topological features in maturing field

plants will require the design of a robust outdoor machine vision system that achieves

detailed stem structure sensing. These systems have so far only been reported for auto-

mated greenhouse systems on a limited number of crops under controlled lighting and

environmental conditions. Hence, the specific objectives of this project are:

1. Develop a robust monitoring platform for non-destructive machine vision sensing

of individual cotton plants under commercial conditions.

2. Develop an image processing algorithm for the identification of internode length

and other plant geometric properties.

3. Evaluate the performance of the machine vision system under a range of crop and

environmental conditions expected in commercial application.

4. Assess the potential to use the machine vision system for real-time control of

irrigation application.



Chapter 3

Infield measurement system for

cotton plant geometry

3.1 Fixed object plane geometry measurement

Machine vision sensing of plant geometric and topological attributes (e.g. internode

length) requires access to individual plants in a developing crop canopy. This neces-

sitates the design of an apparatus that enables each plant to be isolated, or at least

discriminated from neighbouring plants. However, typical plant spacing in a cotton

crop is one plant per metre across a row and 10–16 plants per metre down the row.

Therefore, to simplify image capture and processing, an apparatus design that was able

to operate (at least initially) across the row was considered preferable.

The natural flexibility of the plant’s growing main stem was incorporated into the

apparatus design concept (Figure 3.1). The conceptual apparatus featured a board

mounted in front of a camera/s, which moved along the crop canopy. As the board

moves through the canopy, it pushes over the flexible top of the plant such that only

one plant is between the board and the camera at any time. Thus the captured images

include only one plant, which can then be analysed to identify desired plant attributes.

34
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Multiple cameras may potentially be installed on the infield measurement system, de-

pending on the range of plant attributes that may be extracted from images collected

with cameras featuring different settings such as optical filters, view angle or resolution.

Direction
of travel
of LMIM

Camera/s

Backing
board

Side view of platform in row Front view of platform in row

Figure 3.1: Initial concept for vision system apparatus. This concept evolved into
the system displayed in Figure 3.2.

The design was further developed with the camera mounted inside an enclosure behind

a transparent front panel (Figure 3.2). This design prevents other foliage from coming

between the target plant and the camera. The camera enclosure firstly contacts the

plant and then smoothly and non-destructively guides the plant under the smooth,

curved bottom surface of the enclosure (Figure 3.3). Across-row motion of the camera

enclosure is depicted in these figures but the camera enclosure may also move along the

row, where the plants are more closely packed, in a similar fashion.

Further consideration of this design revealed another attractive feature. By forcing the

plant into a fixed object plane (the transparent panel), reliable 2D geometric measure-

ments could be obtained without the use of binocular vision.

Sections 3.2 to 3.6 discuss the development of the camera enclosure apparatus for infield

vision sensing of cotton plant internode length. This is followed by manual (Section 3.7)

and automated (Section 3.8) implementations of camera enclosure conveyance and a

cost estimate for parts required to manufacture the camera enclosure unit (Section 3.9).
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Camera
enclosure

Camera

Direction of enclosure
movement (across
cotton row)

Transparent
window

Plant
specimen

0
.9

m

Figure 3.2: Moving image capture apparatus.

Before contact:

Camera has constant
velocity towards
stationary plant

After contact:

...

Plant has sliding
motion down front
window

...and is guided under the
smooth curved surface of
the camera enclosure

Figure 3.3: Motion of the plant with respect to the camera enclosure as the camera
enclosure approaches, contacts and moves over the plant.
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3.2 Camera enclosure designs and manufacturing

process

The design of the camera enclosure evolved over four versions (Marks 1 to 4) throughout

the research (Figure 3.4, Table 3.1). Marks 1 and 2 were for preliminary evaluations

and Marks 3 and 4 were used in the 2005/06 and 2006/07 trial seasons, respectively.

The enclosures were constructed of fibreglass. The moulds consisted of chipboard

cutouts for the two sides. Sheets of 0.6 mm galvanised mild steel were shaped and

nailed to the side edges to form the curved parts of the top and bottom surfaces (Fig-

ure 3.5). The back surfaces of the enclosures were removable panels that allowed access

to the interior of the enclosure (Figure 3.4). Mounting bolts were built into either side

of the camera enclosure.

The front glass window (safety glass, 6 mm thick) was held in place in Marks 1 and 2

by internal aluminium brackets along the top and bottom edges of the window opening

and in Marks 3 and 4 was set in a wooden frame spanning the front of the enclosure.

The wooden frame was screwed in place for Mark 3, but for Mark 4 was hinged to

allow access to the lighting wiring inside the camera enclosure. In each of the camera

enclosures, a SI scale was affixed to the glass panel to enable interpretation of pixel

measurements at the window surface. Marks 3 and 4 featured artificial illumination at

the front window and the interior space under the window was used to store a 12V lead-

acid battery to power the lights. The camera used in each enclosure was a Sony DV

camcorder (model TRV19E) with wide angle lens (camera settings for this application

are discussed in Section 4.2 in Chapter 4).
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Camera

All dimensions in mm.

Glass window

Mirror

Door edge

Mounting bolt
10x1.5 mm
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(a) (b)

(c) (d)

Figure 3.4: Vertical section view of camera enclosure designs, with lines projected
between the camera and window indicating the camera’s focal path and field of
view: (a) Mark 1; (b) Mark 2; (c) Mark 3; and (d) Mark 4 (without sun visor).

Table 3.1: Feature dimensions of camera enclosure prototypes.
Mark Window area Working Focal length* Enclosure Enclosure
no. (mm × mm) distance (mm) (mm) depth (mm) mass (kg)
1 180 × 175 135 2.5 265 5
2 190 × 220 202 3.6 265 5
3 405 × 205 356 3.0 270 6
4 405 × 205 554 4.6 270 7

*calculated with equations of Section 3.5.3 using Sony camcorder specifications
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(a) (b) (c)

Figure 3.5: Stages of manufacture of fibreglass camera enclosure (Mark 3):
(a) mould constructed of chipboard and aluminium; (b) fibreglassed shell with
wooden frame containing halogen globes at front; and (c) back view of (b) show-
ing mounted camera. The glass window has not yet been mounted in these images.

3.3 Camera enclosure Marks 1 and 2: preliminary designs

Mark 1 featured a flat surface from the bottom of the window to the front edge of the

enclosure base (Figure 3.4(a)). The plant motion induced by Mark 1 was observed on

glasshouse-grown cotton plants and used to identify desirable enclosure shape features.

A pronounced curve originating at the base of the window and continuing to the back

of the camera enclosure was deemed necessary to provide support for the plant as it

moved smoothly under the enclosure.

A smoothly-curved enclosure base was included in the design of Mark 2 (Figure 3.4(b)).

The glass window of Mark 2 was approximately square (Table 3.1) and the camera was

mounted to capture images in landscape orientation. However, the window was not

sufficiently tall to enable the image capture of the top five nodes of the plant in a single

frame. There was no damage observed to the plants as a result of contact with the

camera enclosure.
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3.4 Camera enclosure Mark 3: apparatus for 2005/06

fieldwork

Mark 3 was an elongated camera enclosure (Figure 3.4(c)) in which the top five nodes

of a cotton plant in front of the enclosure could be viewed simultaneously through

the window. The camera was mounted on its side so that the captured images were in

portrait orientation, which allowed the top of the plant to be visible in a single captured

frame. The purpose of this modification was to simplify the image processing.

The curvature in the base of Mark 3 mimicked the shape of Mark 2. Artificial illu-

mination in Mark 3 was provided by halogen globes (6 × 10 W) that were equally

distributed along the vertical edges of the window. The globes were mounted outside

the window to prevent light reflections inside the camera enclosure from degrading the

image. However, visual inspection of typical imagery demonstrated that this illumina-

tion was washed out by sunlight (Figure 4.1 in Chapter 4).

3.5 Camera enclosure Mark 4: apparatus for 2006/07

fieldwork

Mark 3 field data from the 2005/06 cotton growing season was used to develop the image

processing algorithms (Chapters 4 and 5). However, by the 2006/07 cotton season,

algorithm development was continuing and ongoing camera enclosure modifications

were expected to potentially enhance the quality of the captured images. Hence, the

following design modifications were incorporated into Mark 4 for the 2006/07 cotton

season and are discussed in the following sections:

• increased focal length by folding the light path through mirrors (hence, the

streamlined camera enclosure shape in Figure 3.4(d));

• near infrared LED illumination for night-time sensing;

• implementation of a narrow depth of field (DOF) via a second camera with a

custom lens; and
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• addition of a sun visor to the front of the camera enclosure.

3.5.1 Extending the focal length with mirrors

Mark 4 of the camera enclosure featured mirrors to extend the focal length of the

imaging system, a factor conducive to the achievement of a narrow DOF and to reduced

geometrical distortion. A two-mirror system was used so that the sensed image was a

non-inverted representation of the scene.

The design constraints for the two-mirror system were:

• the largest mirror size that could be sourced conveniently was 300 mm square;

and

• for compatibility with the Mark 3 camera enclosure, the desired window height

was 405 mm.

The following three dimensions could be varied:

• the horizontal distance between the bottom mirror and the window;

• the vertical distance between the two mirrors; and

• the horizontal distance between the camera and the top mirror.

A design was chosen to meet the given constraints. The lengths of the top and bottom

mirrors were 92 mm and 245 mm, respectively. Both mirrors were 245 mm wide to fit

comfortably inside the camera enclosure, allowing space for supporting brackets. The

mirrors increased the vision system’s working distance between the camera and the

window from 356 mm for Mark 3, to 554 mm for Mark 4 (Table 3.1).
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3.5.2 LED array illumination

The 2006/07 fieldwork included an evaluation of the vision system under a range of

operating conditions, including night time. Therefore, a LED illumination scheme

featuring white and near infrared LEDs was devised to replace the halogen globes of

Mark 3 (Figure 3.6). The scheme consisted of a LED array mounted along the top and

bottom edges of the camera enclosure window with each array holding a row of 850 nm,

940 nm and white LEDs. The LEDs were siliconed into an acrylic base (Figure 3.7).

Appendix B contains electronic circuit details for the LED implementation.

The different LED types were individually operated by separate power switches. Iso-

lated circuits for powering different wavelengths of illumination were considered more

convenient than manually fitting filters to the camera. The LED wavelengths of 850

and 940 nm were selected because they allowed comparison of reflectances in the near

infrared spectrum (i.e. water absorbing bands, Section 1.4.2) and were conveniently

sourced online (Appendix B).

A comparison of the white LED (Mark 4) and halogen (Mark 3) lighting systems

is included in Table 3.2. By inspection of images captured in comparable daylight

conditions (e.g. Figure 6.3(b) for white LEDs and Figure 6.4(b) for halogen globes in

Chapter 6), both halogen and white LED lighting systems were washed out at the

centre of the image in daylight conditions. However, the white LED system cast more

light onto plants in front of the window (i.e. at the horizontal edges of the window) than

did the halogen system and caused reflections along the horizontal edges of the window

area. The difference in incident light on the plants outside the window between lighting

systems is believed to be principally the result of the white LEDs being positioned inside

the camera enclosure. Further evaluation results for the lighting systems are provided

in Chapter 6.
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(b)

(c)(a)

Figure 3.6: LED illumination for camera enclosure Mark 4: (a) camera enclosure
in field; (b) power switches for each light source; and (c) three rows of LEDs, with
top, middle and bottom rows corresponding to white, 850 nm and 940 nm LEDs,
respectively. Images (b) and (c) are enlarged from the outlined regions in (a).

Figure 3.7: One row of LEDs installed in the hinged front window of Mark 4.
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Table 3.2: Comparison of implemented white LED and halogen lighting systems.
Lighting system Halogen White LED
Number of globes 6 36
Power of each globe 10 W 0.15 W
Luminous flux per globe 140 lm 1.15 lm
Colour temperature 3000◦K 7000◦K

(‘warm white’, i.e. yellow glow) (‘cool white’, i.e. blue hue)
Globe positioning on Evenly distributed along outside Evenly distributed along inside
camera enclosure of vertical edges of window of horizontal edges of window

3.5.3 Lensing for a narrow depth of field (DOF)

An attractive feature of the camera enclosure measurement concept was that the foliage

was forced into a fixed object plane. The images obtained by this method were expected

to be further enhanced by implementing a narrow DOF, in which the region immediately

behind the window was in focus and the background further behind the window was

out of focus. In this case, image processing techniques (e.g. edge detection) could be

tuned to have a reduced sensitivity to the blurry background and hence increase the

confidence in feature detection at the fixed object plane.

An additional camera was mounted in the enclosure next to the Sony camcorder

for the purpose of implementing a narrow DOF. The second camera was a Prosilica

(www.prosilica.com) firewire camera (model EC750C, 1/3-inch CMOS image sensor,

752 × 480 pixels), fitted with a Tamron (www.tamron.com) varifocal, manual iris lens.

The size of the lens was calculated using equations for DOF, with parameters illustrated

in Figure 3.8. The equation for the near and far bounds relative to the imaging plane,

DN and DF respectively, on the DOF is (Larmore, 1965):

DN =
sf2

f2 + Nc(s − f)
(3.1)

DF =
sf2

f2 − Nc(s − f)
(3.2)
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where f = focal length (mm);

N = f-stop number (e.g. 1, 1.4, 1.8, 2, 2.8, ...);

s = lens-to-object distance (mm) (Table 3.1); and

c = circle of confusion, a parameter that specifies the amount of

blurring (mm).

The values f and c are calculated from:

f = (sensor size) × (working distance) ÷ (field of view) (3.3)

c = 0.025 ÷
(

35 mm equivalent lens focal length
actual lens focal length

)
(3.4)

s

D
F

D
N

Out of
focus

In
focus

Figure 3.8: DOF parameters in camera enclosure.

In the present application, DF refers to the region of sharpness outside the camera

enclosure. A suitable value for DF was calculated by substituting different values for

N into Equation 3.2. The required Tamron lens size was calculated to be f = 6.2 mm

with N = 1, to give a DF value of 27 mm. This is the minimum theoretical DF for the

possible range of N values. However, a small DOF implies but does not guarantee the

extent of blurriness in background objects (Larmore, 1965).

Altering the f-stop number (N) for DOF adjustment changes the aperture diameter

and the amount of incident light on the image sensor. Hence, the shutter speed was
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required to be decreased to compensate for the increased amount of incoming light

caused by decreasing the f-stop number and decreasing the DOF (Section 6.4.4).

Field images were captured simultaneously with the Sony camcorder and the Prosilica

firewire camera. Inspection of images captured with the narrow DOF (e.g. typical

images displayed in Figure 6.7 of Chapter 6) revealed that the background was indeed

more blurred than the window area, but the effect was not pronounced. This was

believed to be because the image background was physically close to the window.

3.5.4 Sun visor and shroud

Variations in sunlight conditions observed during 2005/06 fieldwork with Mark 3 led

to the development of a sun visor for Mark 4 (Figure 3.9(a)), in an effort to create

more uniform images irrespective of sunlight conditions. Visual inspection of imagery

collected with the sun visor revealed no particular reduction in the amount of sunlight

incident on the plants. This was expected as the sun visor did not cast a shadow much

larger than the shadow already cast by the camera enclosure as it contacted the plant.

The sun visor was not sufficiently expansive to block the sun at low angles or to soften

the intensity of the sunlit background.

Covering the sun visor with a black cloth shroud (Figure 3.9(b)) was not practical for

field use, since the shroud was prone to becoming caught in the canopy and affecting

image capture (Figure 3.9(c)).

3.5.5 Other possible modifications

Other Mark 4 modifications that were considered but not evaluated were: an additional

low-resolution camera facing perpendicular to the window surface, for the purpose

of measuring the offset of the main stem from the window (for potential geometric

correction); and an air blower system with air outlets at the window for ruffling foliage

and reducing occlusion of the stems by the foliage.
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(a) (b) (c)

Figure 3.9: Sun visor and shroud for camera enclosure: (a) sun visor mounted
on camera enclosure; (b) shrouded sun visor; and (c) captured image from the
enclosure, with the shroud caught in front of the plant.

3.6 Required degrees of freedom for camera enclosure

conveyance

The following dynamic movements were necessary to the camera enclosure’s position

and orientation during field measurements (Figure 3.10):

• traversal, the horizontal displacement of the camera enclosure with respect to

the plant, to convey the enclosure across or along the crop rows;

• pitch, the up/down angle of enclosure rotation around the horizontal axis, which

affects how the contacting plant rests against the front window (typically held

constant for a single set of canopy measurements, Figure 3.11);

• yaw, the rotation about the enclosure’s vertical axis, which affects whether the

plant bends under the camera enclosure or shears across the enclosure window

(Figure 3.12); and

• height adjustment as required for different crop sizes.



CHAPTER 3. INFIELD MEASUREMENT SYSTEM FOR COTTON PLANT
GEOMETRY 48

Traversal

Yaw

Height

Pitch

Figure 3.10: Required degrees of freedom for quad-axis drive system from which
the camera enclosure is suspended.

�p=0
O
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O

Figure 3.11: Side view of camera enclosure illustrating pitch angle φp.

Traversal

�y<90
O

�y=180
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�y=0
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Traversal Traversal

(a) (b) (c)

Figure 3.12: Top view of camera enclosure illustrating effect of yaw angle φy:

(a) 0◦: enclosure pushes over plant; (b) < 90◦: enclosure shears past plant; and

(c) 180◦: camera enclosure faces opposite direction to (a).
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The camera enclosure was suspended from a quad-axis drive system and gantry for

movement across the plants in the field. The following two sections discuss manual and

automated implementation of the enclosure’s conveyance.

3.7 Manual conveyance of camera enclosure (2005/06

fieldwork)

The manual quad-axis drive system was implemented by suspending the camera enclo-

sure from sliding door rollers and matching sliding door rail (Figure 3.13). This allowed

the camera enclosure to be pulled along the rail across the plants. Between the sliding

door rollers and camera enclosure was a pin joint that enabled rotation of the camera

enclosure about its yaw axis. The sliding door rail (3 m) spanned an effective operating

length of one row width (1 m) and was supported on either end by a pair of star posts,

pin-jointed at the top to form an A-frame (Figure 3.14). The camera enclosure height

was adjusted by opening or closing the base of the A-frames, or via the worm drive on

the vertical rods on either side of the camera enclosure.
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Worm drive for
height adjustment

Pin joint for pitch
adjustment

Pin joint for yaw
adjustment

Sliding door rollers
in sliding door rail

Figure 3.13: Mechanical joints for camera enclosure’s manual conveyance.

Figure 3.14: Manually moved camera enclosure in a cotton crop.
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3.8 Automatic conveyance of camera enclosure (2006/07

fieldwork)

A four-wheeled chassis supporting a camera enclosure boom which spanned three cot-

ton crop rows was designed and constructed to allow for automatic movement of the

camera enclosure (Figure 3.15; major dimensions in Appendix B). The automatic con-

veyance of the camera enclosure imitated an envisaged operation of the vision system

where the camera enclosure may be mounted from a boom of a centre pivot or sprayer.

While the manual apparatus was placed individually about each plant, the automatic

apparatus spans multiple rows and hence, may need to deal with variations in plant

height and position from row to row. It is anticipated that further system development

(e.g. adaptive camera enclosure height) will cater for row to row variations.

Figure 3.15: Automatic conveyance of camera enclosure in a cotton crop.



CHAPTER 3. INFIELD MEASUREMENT SYSTEM FOR COTTON PLANT
GEOMETRY 52

3.8.1 Automated quad-axis drive system

Windscreen wiper motors (12V) were used to motorise the traversal, yaw and height

adjustments of the quad-axis drive system (Figure 3.16), as well as the chassis’ propul-

sion along the crop rows. The pitch joint was not motorised since this adjustment was

only required once per data collection session.

Yaw rotation motor

Boom limit switch

Chain drive for yaw
rotation

Pin joint for pitch
rotation

Height adjustment
motor

Steel pipe housing
worm drive for height

adjustment

Chain drive for boom
traversal

Boom traversal
motor

Belt on worm drive
shaft for height motor

Figure 3.16: Mechanical joints for camera enclosure’s automatic conveyance. A
mechanical drawing of the drive system is included in Appendix B.



CHAPTER 3. INFIELD MEASUREMENT SYSTEM FOR COTTON PLANT
GEOMETRY 53

The traversal movement was implemented using a pair of 200 mm trolley wheels that

moved along a 50 mm steel channel (two lengths of angle steel welded together to make

a U cross-section). Anti-skid tape (as commonly used on steps) was applied to the inner

bottom surface of the boom rail to prevent the wheels from slipping. Worm drives on

either side of the camera enclosure were used to adjust the camera enclosure’s height

via two pulleys and a belt. The yaw rotation was implemented with a bicycle chain.

The propel motor was geared 4:1 using a standard-sized bicycle chain and sprockets.

Limit switches were necessary for the yaw and boom traversal motors, so that the

camera enclosure remained on the boom, and accurately turned to face the opposite

direction without overshooting and causing twisting and breakage of electrical wiring.

3.8.2 Control panel for chassis motors

Operator control of the motors was implemented via a panel of electrical switches

(manual motor control) or alternatively via software on a PICAXE microcontroller

(automatic motor control) (Figure 3.17), with the control signals being input to H-

bridge motor drivers (Appendix B). The microcontroller implemented an algorithm

which sequentially activated the motors such that the camera enclosure traversed across

the boom, turned around, and then waited while the chassis advanced down the row

for a few metres (Table 3.3). A block diagram of the motor control electronic circuit is

in Figure 3.18 and a schematic circuit diagram is included in Appendix B. The system

was powered by a 12V car battery with solar panel charging. An external monitor

with camera output next to the control panel permitted a live preview of the camera

enclosure’s view.

Each motor had independent settings for automatic and manual control. This enabled

flexibility in apparatus movement during data collection. For example, if the ‘propel’

motor was in manual OFF mode while the other motors were in automatic (program)

mode, the camera enclosure traversed back and forth over the same plants without the

chassis advancing down the row.
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Manual motor controls
Top row: auto/fwd/off/rev

Bottom row: speed

Electronic circuits box

Monitor for camera
output

Figure 3.17: Electrical control panel for chassis motors.

Table 3.3: PICAXE program steps.
PICAXE program to control camera enclosure conveyance in automatic
(program) mode

The camera enclosure’s initial position is the left end of the boom, facing the right
end, as in Figure 3.15.

1. Activate ‘traversal’ motor until boom limit switch (right end) is activated.

2. Activate ‘yaw’ motor until rotational limit switch (clockwise) is activated.

3. Activate ‘propel’ motor for specified time, corresponding to x metres.

4. Activate ‘traversal’ motor until boom limit switch (left end) is activated.

5. Activate ‘yaw’ motor until rotational limit switch (counterclockwise) is activated.

6. Activate ‘propel’ motor for specified time, corresponding to x metres.

7. Return to Step 1.
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Boom limit switch
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- clockwise (SW4)
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#1 (IC2)
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Figure 3.18: Block diagram of motor control circuit for automated conveyance of
the camera enclosure. The bracketed symbols refer to electronic component labels
of the schematic circuit diagram in Figure B.4 of Appendix B.

3.8.3 Transport of chassis

The chassis was designed to fit in a standard trailer to enable convenient road transport

between the workshop and trial sites. A 12V, 680 kg winch was bolted to the front of

the trailer and was used to pull the chassis onto the trailer (Figure 3.19). The camera

enclosure remained suspended from the boom during road transport but was securely

tied down to prevent swaying.

Compactness of the chassis was achieved by designing the outer lengths of the boom to

be removable. The boom lengths that spanned the outer two crop rows were joined by

hinges and highfield levers onto the chassis, which enabled removal of the boom ends

during transport and storage of the chassis.

The boom height was adjustable to be either raised or lowered via a pair of hydraulic

jacks (each 1850 kg, 165 mm) on the back vertical posts of the chassis. The boom was

required to be in the raised position for data collection at the trial site. The lowered

boom position was used for transport and storage of the chassis, since the combined
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height of the trailer and chassis was designed to fit under a 2.1 m garage door when

the boom was lowered.

Winch to pull chassis
onto trailer

Boom ends removed

Mudguards

Hydraulic jacks and
boom raised

Electrical wires tied to
spring-based aerial post

(a)

Camera enclosure
and chassis tied to

trailer

Hydraulic jacks and
boom lowered

Electrical wires post
tied down

(b)

Figure 3.19: Chassis road transport by trailer: (a) chassis being winched onto
trailer; and (b) chassis loaded onto trailer.
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3.9 Cost estimate for camera enclosure

An overall cost estimate for the hardware required to manufacture the camera enclosure

and quad-axis drive system are provided (Table 3.4, labour not included). Those parts

that are considered necessary for mounting a single camera enclosure on a large mobile

irrigation machine (LMIM) are included. Hence, cost estimates for the automated

chassis are not included.

The costs are indicative only and are not representative of a commercial product. The

large-scale manufacture of the unit would be expected to reduce the cost of component

parts.

Table 3.4: Cost estimate for camera enclosure hardware as at January 2007.

Estimated
Component cost
Camera 800 AUD
Quad-axis drive system (windscreen wiper motors, steel,
wheels, bicycle sprockets and chains) 200 AUD
Electronics for motor control 300 AUD
Enclosure (fibreglass and glass window) 200 AUD
Embedded image processing hardware 2000 AUD

Total 3500 AUD



Chapter 4

Image processing for a single

frame

4.1 Introduction

The cotton plant structural parameter of internode length has been identified as a de-

sirable measurand for cotton water stress (Chapter 2) and cotton plant images were

collected using a custom built infield machine vision system (Chapter 3). However,

automatic measurement of internode length requires discrimination of plant features

such as leaves and stems from collected field images (see a typical image in Figure 4.1).

This is complicated in field images since green and red stems are required to be dis-

criminated from green leaves, and since in any particular frame, there are leaves and

stems from neighbouring plants as well as the target plant (plant spacing along cotton

crop rows is 10 to 16 plants per metre). Therefore, the image processing is required

to account for leaf edges and branches of neighbouring plants, and also occlusion of

essential points of geometry by plant foliage such as leaves.

This chapter begins with an overview of the image sequences used in the image pro-

cessing evaluations (Section 4.2) and a discussion of geometric measurement from main

58
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Figure 4.1: A typical full-scale deinterlaced image for analysis.
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stem node positions (Section 4.3). A description of the standard image processing

techniques considered for automated detection of nodes follows (Section 4.4). These

techniques (i.e. thresholding, edge detection and matched filtering) were then evaluated

(Sections 4.6 to 4.8) but found to be not viable for real-time identification of nodes in

outdoor imagery. However, the ‘vesselness’ function of the Hessian matrix eigenvalues

was found to be effective (Section 4.9). Once branch segments of the plants are reliably

extracted, line-fitting techniques to yield accurate node localisation on the main stem

are discussed (Sections 4.11 and 4.12.2), and the efficacy of the overall method is

considered (Section 4.13).

4.2 Evaluation image sequences

Several data sets of cotton plant video footage were collected with the machine vision

system, under a variety of field and environmental conditions. The apparatus con-

figurations tested were the camera enclosure approach and yaw angles1 (Figure 6.1),

camera enclosure speed and illumination, and the agronomic factor evaluated was crop

variety (Chapter 6). To enable verification of the measurement technique, the top

five internode lengths (Figure 4.2) of the plants that were automatically measured by

the camera enclosure were manually measured in the field (using a ruler). Internode

lengths ranging from 12 to 115 mm were observed. Manual measurements were also

made of plant height (using a tape measure), stem diameters of the top five internodes

(using calipers), nodes above white flower, retention of first-position fruit on the top

five nodes, number of fruiting branches and plant spacing.

A Sony TRV19E camcorder (www.sony.com.au) with a wide angle lens and 1/4-inch

image sensor was used to collect the video images. Interlaced image size was 720 × 576

pixels. Deinterlacing the image produced pixel dimensions of 720 × 288 pixels, which

corresponds to a frame aspect ratio of 5:2. The images were RGB with 8-bit colour

depth. Hence, each image pixel was represented by 256 shades each of red, green and
1the angle of rotation about the camera enclosure’s vertical axis
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Node 1
Internode 0-1

Highest unfurled
leaf, size >30 mm
diameter Node 2

Internode 1-2

Node 3

Internode 2-3

Node 4

Internode 3-4

Node 5

.
.
.

Internode 4-5

Node 0

Figure 4.2: Diagrammatic representation of node numbering on a plant, with the
vertical black line representing the plant’s main stem.

blue colour levels.

Deinterlaced image resolution at the transparent panel was found to be 1.0 pixels/mm

in the horizontal direction and 0.6 pixels/mm in the vertical direction (with the camera

mounted in ‘portrait’ orientation and hence, a vertical raster scan). This was calculated

by comparing pixel locations of window scale marks in the image (Figure 4.1). The

camera settings were left in automatic mode, except for focus which was set manually

to the window scale marks. Zoom was adjusted such that the window area extended

to the vertical image boundaries. The barrel distortion apparent in the sample image

was found to be minimal (less than 0.5 mm, found by evaluating the scale for different

vertical slices of the image). The video was recorded onto DV tape, and then down-

loaded via the camera’s firewire port into the video editing software Adobe Premiere,

in which the video was divided into clips corresponding to a single pass of the camera

enclosure over a single plant and digitised in AVI format. The Microsoft DV (PAL)

codec was used at the 100% quality setting to create the AVI files from the camera’s

DV output signal. These files were then post-processed in custom image processing

software written in Borland Delphi version 6. AVI-to-bitmap conversion was achieved

in the software using the VideoLab 2.2.1 component library for Delphi (downloaded

from Mitov Software, www.mitov.com).

Inspection of acquired imagery from different times of day and different camera enclo-
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sure approach angles revealed that illumination of the target plant varied throughout

a video sequence, and also varied as a result of the camera enclosure approach angle

with respect to the solar angle. The amount of image contrast was low when the sun

was behind the camera, and high when the sun was above or in front of the camera.

However, typically branches oriented towards the camera enclosure fell into the camera

enclosure’s shadow when the camera enclosure was contacting the plant. By visual

inspection, the halogen lighting evident in Figure 4.1 (at intervals along the window

scale as discussed in Chapter 3) was largely ineffectual in the natural daylight.

The video data set used for algorithm development was for plant rows which were

oriented east-west, such that the camera was perpendicular to the sun’s direction (Data

Set 1 of Table 6.1)(Figure 4.3). The video recording occurred in the mid-afternoon hours

of 2 to 3pm, for plants (cultivar: ‘Sicot 80B’) ten weeks after planting. The principal

source of illumination was natural sunlight, which was softened by cloud cover for the

duration of video recording. This data set was selected since in these images the stems

were easily visually discernible, and there were no hard shadows evident in images.

N

Direction
of sun’s rays
(afternoon)

Figure 4.3: Plan view of the crop rows (east-west), the direction of the afternoon
sun’s rays and the camera and its optical axis.

Image processing techniques on a sample image from each of four sample sequences

(labeled Sample Images 1 to 4) from the selected data set (Figure 4.4) are demonstrated
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in the discussion of this chapter. These sequences (labeled Image Sequences 1 to 4)

were chosen for the following reasons:

• Image Sequence 1 featured many visible dark branches (red and green);

• Image Sequence 2 featured a significant occlusion by a leaf;

• Image Sequence 3 featured a branch that protruded away from the camera

enclosure at the centre of the image and hence contained both light and dark

significant branches; and

• Image Sequence 4 contained light and dark stems (red and green) and a branch

from another plant in the bottom half of the image.

The algorithm developed in this chapter (and extended to sequential frames in Chap-

ter 5) is evaluated in Chapter 6 for video data sets containing different plant varieties

and lighting conditions.

(a) (b) (c) (d)

Figure 4.4: Sample images from video sequences used for evaluating image pro-

cessing techniques, cropped from original size for display purposes. Images (a)–(d)

represent Sample Images 1 to 4 from Image Sequences 1 to 4, respectively. Im-

age (d) corresponds to Figure 4.1.
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4.3 Verification of measurements obtained with manual

node identification

Plant geometry was manually measured from collected imagery so that the effective-

ness and accuracy of automated measurement could be evaluated. As discussed in

Chapter 3, the image capture apparatus (i.e. the camera enclosure) enabled geometric

measurement of the cotton plant to be made without binocular vision. This was because

the transparent panel at the front of the camera enclosure became a fixed object plane

when the plant contacted the panel. Therefore, the equation derived below calculates

‘apparent internode length’ (i.e. internode length as seen by the camera at an arbitrary

time instant in the sequence) from the pixel location of the nodes (as illustrated in

Figure 4.5).

4.3.1 Internode length calculation

Let ∆xpx and ∆ypx be the horizontal and vertical pixel distances, respectively, between

adjacent nodes P1 and P2 (in this example, nodes 4 and 5 of Figure 4.5(a)). To calculate

the distance between points P1 and P2 in millimetres, ∆xpx and ∆ypx are substituted

with ∆xmm and ∆ymm, respectively, where ∆xmm = ∆xpx·xres and ∆ymm = ∆ypx·yres,

and xres and yres are the horizontal and vertical image resolutions, respectively. Then

the apparent internode distance L is given by:

L =
√

(∆xpx · xres)
2 + (∆ypx · yres)

2 . (4.1)

Alternatively L is given by the following, in which ∆xpx is substituted with ∆ypx tan θ,

and θ is as defined in Figure 4.5:

L = ∆ypx

√
(xres · tan θ)2 + yres

2 . (4.2)

The origin of the coordinate system used for image processing is illustrated in the top

left corner of Figure 4.5(a), and is equivalent to (x,−y) of a conventional Cartesian
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4

5

P1

P2

Δxpx

y

x

Δxmm

P2 P2

P1 P1

Δypx Δymm L

θ

(a) (b) (c)

Figure 4.5: Calculation of apparent internode distance from a single frame:
(a) nodes 4 and 5 (black circles) labeled on a sample image; (b) triangle from
boxed region of (a) labeled for geometric analysis (pixels); and (c) triangle from (b)
converted into millimetres to enable calculation of the internode length L.

system (in which y points up), but is common for image processing coordinate systems.

The window scale marks of Figure 4.5(a) are similarly annotated, with 1 to 18 (cm)

from left to right in the horizontal direction, and 1 to 38 (cm) from top to bottom

in the vertical direction. However, for illustrative purposes, graphs of node position

(e.g. Figure 4.6) are plotted relative to the bottom of the image such that the bottom

of the y-axis represents the direction closest to the ground.

Figure 4.6 shows a graph of node positions over time for a typical image sequence, in

which the camera enclosure approached, contacted and moved over the target plant.

The node positions in this graph were obtained using a simple software application

written in Borland Delphi Version 6, which allowed the user to visually assess the

position of nodes and click points (with a cursor) on each frame of a video clip, storing
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the coordinates of all the clicked points. For the purpose of illustrating apparent node

position as the camera enclosure approached the plant, the y-coordinate of identified

nodes relative to the bottom of the image was then graphed for each time step in

Microsoft Excel (Figure 4.6(a)).

Node positions in Figure 4.6(a) move down the image as a result of the plant sliding

down and then beneath the camera enclosure (Figure 3.3 in Chapter 3). Not all nodes

remain visible for the whole sequence, because the enforced motion of the plant caused

transient occlusions as leaves moved into and out of the camera’s line of sight to the

node. The effect of perspective is also evident with the apparent distance between

adjacent nodes increasing as the camera enclosure approached the plant (Figure 4.7).

Logically, this apparent distance will increase to some maximum which coincides with

the time instant when the plant is closest to the window (i.e. in contact with the glass), a

fixed object plane. Hence, the maximum distance between successive node trajectories

for an entire sequence of images is taken as the true internode distance for each plant.

In a distribution of measurements for a particular length L this technique will unavoid-

ably favour measurements with positive random error. This issue is considered further

in Section 6.3.

4.3.2 Verification against physical measurements

The previous section provided a methodology for measuring internode length from

the video imagery collected by the infield camera enclosure. Figure 4.8 shows that

internode lengths calculated by this manual screen-based method (using 30 sequences

in the control data set) have a correlation coefficient (R2) of 0.97 when compared

with internode lengths physically-measured on plants. The mean absolute error of

measurements is 4.0 mm. Standard error in screen-based measurements was calculated

for each physical internode length for which more than three readings were measured

on-screen from the replicate video sequences. The standard error ranged from 0.7 mm to

2.6 mm, with an average of 1.4 mm. This compares with the uncertainty of the screen-



CHAPTER 4. IMAGE PROCESSING FOR A SINGLE FRAME 67

(a) (b)

Figure 4.6: Manual node identification from imagery: (a) graph of manually iden-
tified node positions for each frame of a typical image sequence; and (b) nodes
identified (in numbered circles) for frame 38 of the sequence in (a).

based measurement of ±1
2 pixel = ±0.3 mm and the uncertainty of the physically-

measured values in the field of ±0.5 mm.

There is no obvious bias in the regression line graphed in Figure 4.8 since by visual in-

spection the screen-based measurements appear to be symmetrically distributed above

and below the regression line. The regression equation has a slope parameter of less

than one and a constant parameter of less than zero, which indicates that the screen-

based method has a tendency to underestimate the physical measurement. This was

judged to be caused by the plant’s main stem not contacting the fixed object plane, but

being held a distance off the transparent panel by other branching. This explanation

was verified by field observations of the camera enclosure contacting and moving over

the plant.
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(a)

(b)

(c)

(d)

Figure 4.7: Apparent internode distances in imagery by manual identification of
nodes, for image sequence of Figure 4.6.
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Figure 4.8: Internode length measurements by manual on-screen and physical
methods, with a least squares regression line. Each point corresponds to a unique
internode length measurement.

4.4 Approaches for automated node identification from

imagery

Automated calculation of internode lengths from imagery requires identification of

nodes (branch junctions). Two properties of node appearance have been identified

that may be used to detect nodes with automated image processing:

1. Nodes visible on the main stem may be identified using the localised increase in

main stem width and the presence of a branch junction on the main stem.

2. Nodes with adjoining branches partially visible may be identified using line-

finding algorithms, since branches are significant curvilinear structures (compared

to leaves). Accurate node estimation results from accurate projection of detected

branch segments on to the main stem. This property also enables estimation of

the position of nodes that are occluded on the main stem.
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Both properties of node appearance require accurate identification of the main stem.

The main stem generally appeared as the most salient near-vertical line in images, if the

main stem was not occluded by other plant foliage. However, other branches were less

prominent and less constrained in orientation. Hence, the steps for identifying nodes

are broadly described as follows:

1. Estimate main stem and reconstruct possible branches, thence estimating inter-

section of branches with main stem (single frame analysis – this chapter).

2. Assign node numbers to branch junctions and track nodes to find internode dis-

tance (sequential frame analysis – Chapter 5).

Node detection via basic image processing techniques such as thresholding, edge detec-

tion and line detection are considered in the following sections. Adequate results for

node detection were not achieved using many of these techniques. However, Section 4.9

discusses the eigenvalues of the Hessian matrix method of line detection, which was

found to be effective at extracting curvilinear structures from the field images.

Typical results are shown in the following sections for image processing techniques which

were considered of sufficient promise to code and evaluate by application to the field

images. Other techniques, such as matched filtering, were investigated theoretically

only and not coded if the algorithm was considered too expensive in developmental

resources or in run-time computational requirement in relation to the expected results.

4.5 Preprocessing of field images

Preprocessing steps were necessary to prepare the images for stem detection. This

included determining and isolating the ‘window area’ and removing interlacing effects.

Due to the speed at which the enclosure moved through the canopy (0.10 to 0.30 m/s),

interlacing effects were observed in the captured footage. Deinterlacing processes in-

volve discarding either the set of odd or even lines of the image and then (usually)
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restoring the image to its original size using interpolation. In the present case, ac-

quired imagery was deinterlaced by simply separating the image into odd or even lines

only. The resizing step was omitted since resizing does not improve the resolution of

the data, and the distorted aspect ratio of the image does not influence the effectiveness

of image processing.

The images used for algorithm development were collected with the camera oriented

in portrait to maximise the amount of main stem present in the image. However, the

camera’s native image orientation was landscape. Therefore, the downloaded images

were rotated 90◦ so that the image was portrait and the plant appeared upright during

the image processing steps.

Acquired imagery contained both ‘window’ and ‘non-window’ areas. The non-window

area of the image contained features that could influence further image processing

results, such as the window scale marks, electrical wiring and the textured fibreglass

surface of the box interior. The box interior was painted flat black so that there was a

significant difference in intensity between the window area and box interior. The image

was separated into window and non-window area using the following steps (Figure 4.9):

1. Contrast enhancement was performed to produce an image in which the non-

window area was close to black and the window area was white. However, some

white areas existed in the non-window area due to reflections of objects in the

box, and some black areas existed in the window area due to shadows in the

foliage. Hence, a threshold was applied to convert the image to binary, with black

representing the non-window area and shadowed areas of the captured scene.

2. A flood fill with a seed point near the image boundary selected all connected

pixels of similar intensity. A single solid region corresponding to the non-window

area was selected, which was not connected to any other dark objects in the

window scene. This step of the mask processing could only occur when the

window area featured no shadow areas close to the border.
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(a) (b) (c)

(d) (e)

Figure 4.9: Mask generation process: (a) input image from camera enclosure;
(b) contrast enhancement; (c) non-window pixels (in grey) separated from window-
area pixels (in black) by flood fill operation; (d) morphological operation to remove
gaps; and (e) mask applied to input image.
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3. Mathematical opening2 was performed for the purpose of removing small white

areas in the non-window region of the image. This produced a solid black region

in the image that represented the non-window area. A mathematical dilation was

then performed so that the mask extended to include the window scale (which

was too light to be included in the mask thus far).

The mask generated by this process was applied to all subsequent images. Hence, the

mask only needed to be created once per video capture session.

4.6 Colour processing and thresholding

The images used for algorithm development were in 24-bit RGB format (Section 4.2).

This potentially enabled tonal information to be used to differentiate between leaves and

stems, providing such differences exist in the visible wavebands. In situations where

intensity or tonal differences exist between objects of interest and other non-useful

background information, thresholding may be used to isolate the objects of interest.

The desired outcome of successful thresholding for the cotton plant imagery was to

isolate stem pixels from leaf and background pixels.

4.6.1 Global thresholding

For the purpose of comparison, thresholding results for a cotton plant image from

a glasshouse environment are included. In the glasshouse image, there was significant

tonal difference between the plant and background that enabled thresholding to segment

the plant in the image. Thresholding may be used on a greyscale image, or on a

transform of the three colour components of an RGB image such as the ‘excess green’

criterion ExG, which is effective at discriminating green plant matter from background

soil (Woebbecke et al., 1995) and is given by ExG = 2G − R − B, where R, G and B

2Mathematical opening is one of a series of morphological operators (Serra (1982), Jain et al. (1995))
which searches for and transforms (e.g. dilates, erodes) a predefined shape in a binary image.
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are the red, green and blue pixel intensities, respectively. The excess green criterion

successfully discriminated between the plant and background in the glasshouse image

(Figure 4.10). Furthermore, discrimination is achieved between stems and exposed top-

of-leaf areas, which by visual inspection was a different shade of green to the bottom-

of-leaf areas present in this image.

The excess green criterion was effective for the non-green background present in the

glasshouse. However, this was not the case in the field images, where the target plants

have a background of green foliage. Figure 4.11 contains the four sample images of

Figure 4.4 thresholded based on the excess green transformation. This figure demon-

strates that the criterion was not effective at discriminating between stems and leaves,

or stems and background material.

Figure 4.12 contains the sample field images and their corresponding red, green and blue

colour channels (each 8-bit), to enable visual assessment of the potential for colour to be

used to segment stems in the cotton plant field imagery. By visual inspection, the blue

image provided the least contrast between both leaves and stems, and the foreground

and background material. The red image provided contrast between foreground and

background material and some contrast difference between leaves and stems. However,

the green image appears to provide the largest contrast between foreground stems

and other material. Therefore, the green channel was used in the remaining image

processing evaluations.

Spectral analysis of stem and leaf matter may potentially enable identification of

significant wavelengths to discriminate between the two plant materials (Kondo &

Ting, 1998). Hyperspectral image analysis featuring a range of significant wavelengths

may potentially be used to differentiate leaves and stems based on narrowband re-

flectance ratios. A possible solution is demonstrated in van Henten et al. (2002), where

a multiple-camera, two-wavelength system is employed in a glasshouse to enable dis-

crimination of plant materials by relative rather than absolute reflectances. A prelim-

inary spectral analysis of cotton plant materials was conducted (Appendix C) for the

purpose of identifying potential discriminatory wavelengths. However, this approach
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(a) (b)

(c) (d)

(e)

Figure 4.10: Segmentation of a glasshouse image based on the ‘excess green’ crite-
rion of Woebbecke et al. (1995): (a) original image; (b) greyscale image of excess
green value, scaled between 0 and 255; and (c)–(e) excess green value from im-
age (b) thresholded at: (c) 20; (d) 40; and (e) 60.
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(a) (b) (c) (d) (e)

Figure 4.11: Excess green transformation of Sample Images 1 to 4, in rows 1 to 4
respectively. For each row: (a) input image; (b) greyscale image of excess green
value, scaled between 0 and 255; and (c)–(e) excess green value from image (b)
thresholded at: (c) 20; (d) 40; and (e) 60.
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(a) (b) (c) (d)

Figure 4.12: RGB channels of Sample Images 1 to 4, in rows 1 to 4 respectively,
where the three separate channels are rendered to grayscale to permit comparison.
For each row: (a) input image; (b) red channel; (c) green channel; and (d) blue
channel.
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was not pursued further due to the overriding factor that in outdoor environments and

in the absence of shading, ambient sunlight would prevent uniform illumination of the

plant and hence, prevent consistent reflectance measurements within the image area.

4.6.2 Adaptive thresholding

A uniform image intensity threshold was identified (Section 4.6.1) as ineffectual for

whole-image discrimination of stems and leaves. However, some images exhibited high

contrast between the node and the localised background, such as the upper nodes visible

in Sample Images 2 and 3 (Figure 4.4). In these images, the high contrast was caused

by the target plant in front of the window falling into the camera enclosure’s shadow,

whilst the foliage behind the plant was illuminated by sunlight. The high contrast

potentially enabled localised thresholding about the main stem to segment the node

from the background. Successful segmentation of stems from background could enable

shape analysis on the foreground to identify whether a branch junction (or node) is

present, or whether the stem area is a straight line without joints (and hence no node

present). However, this method is only suitable for nodes that are visible in the window

area (i.e. the method does not detect nodes that are occluded by foliage).

Four square (side 40 pixels) regions of interest were examined along the main stem of

Sample Image 1 (identified in Figure 4.13), for which intensity histograms are shown

in Figure 4.13(a). In the thresholded images of Figure 4.13(c), black is foreground

and white is background, where foreground was ideally stems and background was

other foliage. Although an automatically-selected threshold was not coded for this

evaluation, the threshold intensity was manually chosen to coincide with the ‘valley’ in

the histogram shape (e.g. as described in Sezgin & Sankur (2004)). The valley occurs at

the union of two normally-distributed intensity populations, which assumes that stems

and background form two distinct populations in the sample squares analysed. This

seemed a reasonable assumption since stems often appear dark on a background of a

distinct (lighter) intensity, such as for the upper nodes of Sample Images 2 and 3.
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Figure 4.13: Adaptive thresholding of Sample Image 1 (on the left). For each of
the Squares 1 to 4 along the main stem, (a)–(c) is a study of adaptive thresholding
as follows: (a) histogram of green channel for sample square; (b) detail of sample
square; and (c) image (b) thresholded at an intensity value that was manually
chosen to coincide with a valley in the histogram.
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None of the four sample squares from Sample Image 1 accurately segmented the stems

from the background (Figure 4.13). Square 3 showed a true branch junction being seg-

mented in the thresholded image, although some background material was also included

in the detected stem area. In Square 1, the stems were too bright to be detected (and

no clear valley is evident in this histogram). Square 2 shows stems and background

foliage being detected as foreground stems and Square 4 has low contrast and a partial

occlusion which prevented stems from being effectively segmented.

The adaptive thresholding process based on histogram shape was evaluated on the other

sample images of Figure 4.4, and similar results for inaccurate segmentation of stems

were obtained. Some stem areas were identified correctly, such as for the higher nodes

of Samples Images 2 and 3, but a consistent problem was the false classification of

shadowed areas of background foliage as foreground stems, as was the case for Square 2

of Figure 4.13. Therefore, it was concluded that the adaptive thresholding method was

not effective for general node detection due to the overlap in intensities exhibited by

nodes and other foliage behind the main stem.

4.7 Edge detection

Although plant stems had variable tonal properties in acquired images, their shape was

consistently long, smooth and curvilinear, which potentially enabled edge detection to

be used to detect stem edges. An edge is a significant local change in image intensity

(Jain et al., 1995) and the profile of an edge point approximates a step function for

sharp edges, or a ramp function for soft edges (Figure 4.14(a) and (b)). A line is a

type of edge where the image intensity changes from a background value, to the edge

value, and then returns to the background value within a short distance. Line profiles

are represented in Figure 4.14(c) and (d) and are considered further in Section 4.8.

Parallel edge detection operators evaluate the local image gradient of every pixel to

determine whether that pixel is an edge point. Common edge detector results (Fig-
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(a) (b)

(c) (d)

Figure 4.14: Edge profile descriptors in one dimension: (a) step; (b) ramp; (c) top
hat (or bar); and (d) roof.

ure 4.15, algorithm details in Appendix D) demonstrated that both branch edges and

edges caused by randomly-oriented leaf edges yielded strong responses. This limits the

applicability of edge detection for identifying branches. However, a prominent response

to the main stem was obtained for the vertical edge detector and adaptive thresholding

(Figure 4.15(c) and (d)).

Another type of edge detection is edge following, which is a sequential edge detection

process where edges are followed, pixel by pixel, from an initial point until the edge fails

some local gradient strength criterion. This method was judged to be inappropriate

for the plant images because, as was apparent in the adaptive thresholding discussion

of Section 4.6.2, there is overlap and variation in the intensity levels of stem and leaf

pixel areas which is likely to prevent edges between stems and background foliage from

being accurately followed.

4.8 Line detection

In the preceding sections, automatic thresholding and edge detection were discounted

as methods of identifying branches in images. This led to the consideration of line

detection strategies. A line is a type of edge in which the change in image intensity

associated with the edge returns to its original level, as is the case for the stems in
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(a) (b) (c) (d) (e)

Figure 4.15: Common edge detectors applied to Sample Images 1 to 4, in rows 1
to 4 respectively. For each row: (a) input green channel image; (b) Sobel horizontal
edges; (c) Sobel vertical edges; (d) edges by adaptive thresholding; and (e) Canny
edge detection with w = 8, tlow = 30 and thigh = 150 (Appendix D.1.3).
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the cotton plant images. Other comparable computer vision applications which require

detection of lines in images are as follows (Figure 4.16):

• Roots in soil (rhizotron) images (Bakic, 1996). Occlusions may be caused by soil

particles and a large range of root widths may be required to be detected.

• Blood vessels in medical images (Chanwimaluang & Fan, 2003).

• Roads in aerial mapping images (Steger, 1996). These images may feature occlu-

sions caused by shadows and vehicles on the road.

In these applications, lines of interest in a single image may have varying width, inten-

sity, contrast and length, and may also be subject to occlusion by other image features.

Hence, these applications were deemed to be visually similar to the detection of stems

in plant images.

A technique commonly-used to extract blood vessels from biomedical images is matched

filtering (e.g. Chanwimaluang & Fan (2003)). The technique also finds application in

the automated extraction of roots from soil images (Zeng et al., 2006). This process

involves applying a series of Gaussian masks to the image, one mask for each expected

orientation and width of line to be detected. A complete network of lines may poten-

tially be detected. However, the processing may take several minutes per image as was

not considered appropriate for this application. Another technique commonly encoun-

tered in biomedical image analysis is the eigenvalues of the Hessian matrix method.
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(a) (b)

(c) (d)

Figure 4.16: Vision applications where line detection is required (reproduced from
published literature as follows): (a) roots in soil images (Bakic, 1996); (b) vessels in
medical images (Chanwimaluang & Fan, 2003); (c) roads in aerial images (Steger,
1996); and (d) the present application of stems in cotton plant images (McCarthy
et al., 2007).
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4.9 Line detection using eigenvalues of the Hessian matrix

A method of extracting curvilinear structures from an image involves calculating the

eigenvalues of the Hessian matrix H, which is the square matrix of second-order partial

derivatives for a given function (Magnus & Neudecker, 1999):

H =

⎡⎣ Ixx Ixy

Ixy Iyy

⎤⎦ (4.3)

where Iab = ∂2I
∂a∂b for each image pixel. For the current application, the function I is

the pixel’s intensity or greyscale value.

The eigenvalues of H, denoted by λ1 and λ2, can be used to extract the principal

direction in which the local second order structure of the image features can be de-

composed and detect tubular (3D) or curvilinear (2D) structures in an image (Frangi

et al., 1998). The image second-order derivatives are computed by convolving the image

with derivatives of a Gaussian kernel with standard deviation σ (as per Steger (1996)).

Multiple convolutions of an image with masks at different orientations are not required

(in contrast to matched filtering in Section 4.8) and lines of different widths may be

targeted by varying the standard deviation σ of the smoothing filter, with larger σ

values causing wider lines to be detected. Successful applications of the eigenvalues

of the Hessian matrix include enhancement of blood vessels in medical images (Sato

et al., 1997; Frangi et al., 1998; Hladuvka & Groller, 2002) and automated extraction

of roads from aerial mapping images (Steger, 1996).

Iteration through values of σ on the sample images and visual inspection of results re-

vealed that σ = 1.2 yielded a strong response to branches. Figure 4.17(b) demonstrates

the maximum Hessian matrix eigenvalue for Sample Images 1 to 4. However, both stem

and leaf edges have been detected in these images. Thresholding the magnitude of the

eigenvalues reduced noise and removed weak responses, limiting the response of leaf

frontage areas (for example, compare the response of leaf areas in Figure 4.17(b) to
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other areas of the image). However, as the threshold is increased (Figure 4.17(c)–(e)),

valid stem pixels as well as leaf edges were eliminated.

4.10 The ‘vesselness’ measure

Whilst line saliency (i.e. conspicuousness) is related to the magnitude of the Hessian

matrix eigenvalues (as used in Steger (1996)), criteria based on some other function

of the Hessian matrix eigenvalues can be used to classify image pixels as either ‘tube-

like’ or ‘blob-like’ (Table 4.1) (Sato et al., 1997; Frangi et al., 1998). Figure 4.18

demonstrates the input images transformed using the ‘vesselness’ measure Vo of Hessian

matrix eigenvalues, as described in Frangi et al. (1998). The vesselness is a measure of

the likelihood of the pixel belonging to a blood vessel in Frangi et al. (1998), or (here)

a plant stem.

Table 4.1: Possible patterns of Hessian matrix eigenvalues λ1 and λ2 in 2D,
with N=noisy; L=low; H=high; +/– indicating eigenvalue sign; and |λ1| ≤ |λ2|.
(Source: Frangi et al. (1998))

λ1 λ2 Image structure
N N noisy, no preferred direction
L H– tubular structure (bright)
L H+ tubular structure (dark)
H– H– blob-like structure (bright)
H+ H+ blob-like structure (dark)

According to Frangi et al. (1998), the vesselness measure consists of two criteria, the

‘blobness’ measure RB, and the ‘second order structureness’ S. The blobness RB is

given by the ratio of the Hessian matrix eigenvalues λ1/λ2 and has a relatively low

value for tubular (rather than blob-like) structures. The second order structureness,

which gives a low response where there is low image contrast or no image structure, is

calculated using the Frobenius matrix norm ||H||F of the Hessian matrix H,

S = ||H||F =
√∑

j≤D

λj
2 (4.4)

where D is the dimension of the image (here D = 2).
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(a) (b) (c) (d) (e)

Figure 4.17: Hessian matrix eigenvalues of Sample Images 1 to 4, in rows 1 to 4
respectively. For each row: (a) input green channel image; (b) magnitude of the
maximum Hessian matrix eigenvalue for σ = 1.2, scaled to intensities between 0
and 255; and (c)–(e) Hessian matrix eigenvalues from image (b) thresholded at:
(c) 0; (d) 20; and (e) 50. Note image (b) is hard to see on paper but renders well
in the electronic version of the image.
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The RB and S measures are combined into the following vesselness expression, in which

β and c are thresholds which control the filter’s sensitivity to RB and S, respectively:

Vo =

⎧⎨⎩ exp
(
−RB2

2β2

) (
1 − exp

(
− S2

2c2

) )
if λ2 > 0;

0 otherwise.
(4.5)

The vesselness images of Figure 4.18 show that stem pixels were prominent compared to

other foliage pixels, with decreasing RB value. In Figure 4.18(b), the image consisted of

mainly disjointed pixels that were more concentrated around stem areas and some leaf

edges. In Figure 4.18(c) more background pixels were accentuated but the pixels that

were part of leaf and stem edges formed connected regions, whilst in Figure 4.18(d)

many stem, leaf and background foliage edges were apparent and joined in a single

connected region. Of the three images, Figure 4.18(c) was of most use since stems

formed continuous regions. The vesselness value was then thresholded (Figure 4.19) to

remove pixels of low vesselness which otherwise randomly connected stem regions with

other edges. The threshold was selected so that stems formed continuous regions that

were disconnected from other image features (Figure 4.19(c)) which potentially enables

the use of a size filter on connected components to isolate stem regions.

A single stem appeared as two parallel lines (e.g. Figure 4.19(b)) when the shadowing

befalling a wide stem caused the stem to resemble a pair of dark lines (when compared

to the intensity of the background foliage). From visual inspection of image processing

results, this did not cause a problem for the vesselness function since the pixels that were

identified as branch centrepoints were not based exclusively on the vesselness measure

but also involved a secondary calculation which was the line centrepoint algorithm of

Steger (1996) (Section 4.11.1).

4.10.1 Extracting branches from vesselness image

The thresholded vesselness image has been identified (Figure 4.19(c)) as useful for ac-

centuating branch areas, where branches coincided with large connected regions of ‘on’

pixels. However, background noise and the smaller-area edges form smaller connected
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(a) (b) (c) (d)

Figure 4.18: Vesselness measure of Sample Images 1 to 4, in rows 1 to 4 respectively.
For each row: (a) input green channel image; and (b)–(d) vesselness measure for
σ = 1.2 and maximum Hessian matrix eigenvalue exceeding 20, with the vesselness
coefficients S = 3000 and RB at a value of: (b) 0.001; (c) 0.01; and (d) 0.1.
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(a) (b) (c) (d)

Figure 4.19: Thresholded vesselness measure of Sample Images 1 to 4, in rows 1
to 4 respectively. For each row: (a) input green channel image; (b) vesselness
measure from Figure 4.18(b); and (c) and (d) vesselness from (b) thresholded at:
(c) 0.01; and (d) 0.1.
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regions in these images. Therefore, a size filter was used to isolate the larger areas. The

effect of increasing the size filter from 10 to 100 pixels is demonstrated in parts (c)–(e)

of Figures 4.20 and 4.21. In this evaluation, using a size filter of 50 pixels eliminated

much of the unwanted lines while not eliminating many true branches.

4.10.2 Vesselness response for non-branch features

The discussion so far has focused on detection of stems, which are ‘tube-like’ structures

according to the terminology of Table 4.1. On the other hand, leaf areas are ‘blob-

like’ structures which yield low Hessian eigenvalues compared to stem pixels. The

vesselness measure yielded strong responses to both stem and leaf edges, but leaf edges

were generally smaller than stem areas hence were eliminated using a size filter.

4.11 Fitting lines to branch segments

Branch orientation was required to be estimated from the extracted branch segments so

that node position could be calculated from an accurate intersection between the branch

and the main stem. This introduced the requirement for lines to be fitted to the branch

segments. Fitting a line model to a curvilinear image feature allows a representation

of the image feature that is concise, accurate and effective for subsequent processing

(Jain et al., 1995). The potential for fitting straight lines and quadratics to extracted

branches is considered in Section 4.11.3.

The vesselness response to branches was several pixels wide (reflecting the original

feature’s saliency; Figures 4.20(d) and 4.20(d)) but with coarse edges that did not

match the branch shape in the original image. This diminished the accuracy of any lines

fitted to the vesselness branch segments. Therefore, although the vesselness image was

effective at detecting branch segments, the vesselness image was expected to introduce

inaccuracies in the estimation of branch centreline and orientation and an alternative

method for extracting centrelines was required.
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4.11.1 Determining line centre points

Accurate estimation of branch centreline was achieved using the method of Steger

(1996), in which the pixel’s Hessian matrix eigenvalues and second directional deriva-

tives determine whether the pixel lies at the centre of an arbitrarily-oriented line profile,

for a specified σ value. The method is as follows. Line centre points exhibit a char-

acteristic 1D line profile in the direction n̂˜ perpendicular to the line (Figure 4.22). At

the centre of the line profile, the first directional derivative in the direction n̂˜ should

become zero and the second directional derivative should be of large absolute value. A

zero crossing detector for the image derivatives may be used to find this point to single

pixel accuracy, but for sub-pixel accuracy, a second degree Taylor polynomial can be

used to find the centre point.

I

n^
~

Figure 4.22: Gaussian line profile.

In the 1D case, the second degree Taylor polynomial p is:

p (x) = I + I ′x + 1
2I ′′x2 (4.6)

where I is the pixel’s intensity, and I ′ and I ′′ are the locally estimated first and second

image derivatives on n̂˜ , respectively. For this Taylor polynomial, the required first

derivative p′ (x) = 0 occurs when x = −I ′/I ′′.

In two dimensions, the direction perpendicular to the line is given by n̂˜ = (nx, ny), the

unit eigenvector corresponding to the eigenvalue of maximum absolute value. The zero

crossing position (cx, cy), to sub-pixel accuracy, is given by:

(cx, cy) = (tnx, tny) (4.7)
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where t is the solution to the first derivative of the second-order, two-dimensional Taylor

polynomial:

t = − Ixnx + Iyny

Ixxn2
x + 2Ixynxny + Iyyn2

y

. (4.8)

A pixel is a line centre point if the zero crossing occurs within the current pixel, i.e.

(cx, cy) ∈
[
−1

2
,
1
2

]
×
[
−1

2
,
1
2

]
, (4.9)

Figure 4.23 shows that according to the differential geometry of a standard line profile,

potential line centre points occurred throughout the captured image area. Since only

centre points belonging to significant curvilinear structures were desired, line centre

points were only required to be calculated for pixels which were deemed to be part of a

salient line, e.g. for pixels which had a maximum Hessian matrix eigenvalue exceeding

some threshold (as in Steger (1996)), or for pixels which belonged to large areas that

exhibited vesselness, i.e. the branch pixels of Figure 4.20(d) and 4.21(d). Therefore,

the centre points corresponding to branches were isolated by performing a logical AND

operation on the centre points and vesselness images (Figures 4.20(d) and 4.21(d)).

This yielded an image in which ‘on’ pixels corresponded to the centre points of detected

branch segments (Figures 4.20(f) and 4.21(f)).

4.11.2 Main stem identification via the Hough transform

Once the stem and branch centre points were extracted from the input image, the main

stem was required to be identified. The Hough transform (Duda & Hart, 1972) was

applied to the branch centrepoints of the previous section to estimate the main stem.

The Hough transform uses a voting technique to identify strong linear features in an

image and is effective even in the presence of large amounts of noise (Jain et al., 1995).
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(a) (b) (c) (d) (e)

Figure 4.23: Line centre points of Sample Images 1 to 4, in rows 1 to 4 respectively.

For each row: (a) input green channel image; and (b)–(e) pixels corresponding to

line centre points, for σ values as follows: (b) 0.5; (c) 1.0; (d) 1.2; and (e) 1.5.
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Each ‘on’ pixel, at position (x, y) in the image, contributes a vote to an element (rn, θn)

of an accumulator array of size r by θ entries, with rn and θn given by:

rn =
√

x2 + y2 (4.10)

θn = tan−1
(y

x

)
(4.11)

where r spans 0 to the image diagonal length. In this application, where a near-vertical

main stem was desired, the range of θ was chosen such that the Hough line search space

was within ±30◦ of the vertical.

Variables r and θ form a parameterised representation of the line, with r representing

the perpendicular distance to the line (from the origin) and θ representing the angle to

the normal of the line. Representation of the line in the (r, θ) domain enables a finite

state space for the line’s parameters. In the slope-intercept domain the range of values

for the slope of the line is infinite. This approach assumed that the main stem was

close to vertical, was partly visible and was the single most significant linear structure

in the edge map.

To reduce the likelihood of the main stem estimate ‘jumping’ to another significant

line during the sequence (e.g. another branch or another plant’s main stem), for each

frame fk the size of the Hough parameter space was limited to θk−1 ± 5◦ and rk1 ± 15

pixels, where θk−1 and rk−1 represent the Hough parameters for the previous frame

fk−1. These criteria were based on visual evaluation and were found to be effective

in the sample image sequences. Typical results for main stem detection are shown in

Figures 4.20(h) and 4.21(h).

4.11.3 Line-fitting algorithms for branch centre points

Branch segments of Figures 4.20(f) and 4.21(f) were generally approximately straight

lines with some curvature exhibited in the vicinity of the main stem. Therefore, the

branch segments were fitted with straight lines rather than quadratics or some other

curve model because an accurate fit was required near the node and the accuracy of
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the fit elsewhere on the branch was unimportant.

The Hough transform was considered but not adopted for identifying branch lines since

candidate branches were identifiable in the Hough space only when the branch was

long and straight. However, branches that were curved yielded a similar response in

the linear Hough space to other curved foliage edges (such leaf edges). Therefore, the

linear Hough transform was not suitable for discerning the range of branch geometries

expected to be encountered in cotton plant images. Instead a line-fitting algorithm

called the ‘hop-along’ method (Jain et al., 1995) was implemented. The hop-along

algorithm steps along an ordered edge list (i.e. an edge list in which the coordinates

follow the curve end-to-end), and either appends edges to the existing calculated line

if the edge points follow the same direction, or starts a new line if there is a significant

change in the direction of the edge points. Hence, a curve is represented as a sequence

of straight lines joined end-to-end. Results of applying the hop-along algorithm to

the branch centre points of Figures 4.20(f) and 4.21(f) are shown in Figures 4.20(g)

and 4.21(g), respectively.

4.11.4 Choosing lines to project to the main stem

Not all lines detected corresponded to branches (Figures 4.20(g) and 4.21(g)). The

detected lines were required to be filtered so that lines that obviously did not correspond

to branches were not projected to the main stem to form candidate nodes.

The simplest valid criterion to apply was based on line length, since true branch lines

are expected to be longer than erroneous or noisy lines. In addition, true branches

were expected to be detected in the vicinity of the main stem, so a criterion was added

to prevent short, distant lines from forming candidate nodes, by discarding those lines

that were projected over three times their own length to the main stem. The results of

application of these criteria are shown in Figures 4.20(h) and 4.21(h), in which black

circles denote candidate node positions obtained by projecting filtered lines to the main

stem estimate (dash-dot line). Even in this image, false positive candidate nodes were
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detected, and further rules were defined to remove lines which were responses to the

main stem and lines with a slope that fell with respect to the main stem.

Conditions for determining whether a line was used to form a candidate node are listed

below (and pseudocode in Appendix D.2.1). A line is projected to the estimated main

stem to form a candidate node if the line meets all of the following seven conditions:

(i) is longer than a threshold length;

(ii) does not cross over the main stem (since in this case the line does not originate

at the main stem);

(iii) has an incline which is greater than a threshold angle (±15◦) to the main stem

incline (For two reasons: firstly, if the branch and main stem line estimates are

close to parallel, their geometric intersection is likely to overshoot the true node

position; and secondly, this rule aims to remove branch lines that correspond to

the main stem, so that such branch lines are not projected to the main stem

estimate to form candidate nodes);

(iv) has an angle of < 90◦ to the main stem upward direction (so that the branch rises

with respect to the main stem);

(v) is not connected to another similar-sloped line that is closer to the main stem

(since the lines are likely to belong to a single branch, and only one line is required

to be projected to the main stem);

(vi) has a length that is no shorter than 1
3 of the total length of the line projected to

the main stem (to reduce the occurrence of small erroneous lines at a relatively

large distance from the main stem being projected to the main stem); and

(vii) intersects with the estimated main stem within the image bounds.

These rules were applied to filter the lines used to generate candidate nodes. Fig-

ures 4.20(i) and 4.21(i) display the line segments that remained after application of

these rules to the sample images. Application of these rules found that the rules erred
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on the side of false positive prevention and as a result some true positives may be er-

roneously discarded (on average 6% of true positives were eliminated per frame while

90% of false positives were eliminated by these rules), particularly for rules (i) and (iii).

4.12 Summary of single frame algorithm

4.12.1 Algorithm for control data set

The following original algorithm was developed based on the work reported in the

previous sections to extract node positions from individual frames. The algorithm was

used to identify nodes in Images Sequences 1 to 4. Internode length measurement from

candidate node positions in successive frames is discussed in the next chapter.

Algorithm for node identification (per frame)

1. The image is preprocessed.

2. The image derivatives are calculated by convolving the image’s green channel

with derivative of Gaussian kernels (σ).

3. The Hessian matrix eigenvalues and vesselness function are calculated for each

image pixel (thresholds for λ1 and λ2, RB, S).

4. A size filter is applied to the connected components of the vesselness image (pixel

count threshold).

5. Centre points for components resulting from Step 4 are calculated.

6. Lines are fitted to the centre points using hop-along algorithm.

7. The main stem is estimated using the Hough transform on the centre points.

8. Lines are projected to the main stem to identify candidate nodes.
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4.12.2 Algorithm for night time infrared images

Images were also collected at night with near infrared illumination. This produced

images in which the vegetation in front of the camera enclosure appeared bright and

other foliage and background material appeared dark (Figure 4.24(a)). The algorithm

developed thus far only detected dark lines. Hence, either the algorithm or the input

image needed to be modified so that the algorithm could analyse images in which

foliage appeared lighter than the background. This was achieved by implementing the

following two extra preprocessing steps for the night time infrared images:

1. Invert the green channel of the image (Figure 4.24(b)).

2. Adjust the image contrast (Figure 4.24(c)).

The remaining line detection steps remained unchanged (Figures 4.24(d) and (e)).
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(a) (b) (c) (d) (e)

Figure 4.24: Image processing steps for night time near infrared images, for illu-

mination at 850 nm (row 1) and 940 nm (row 2). For each row: (a) input green

channel image; (b) inverted green channel; (c) intensities in the range (50, 255)

stretched to the range (0, 255); (d) size filter on vesselness image; and (e) fitted

lines.
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4.13 Single frame algorithm evaluation

4.13.1 Results

Typical candidate node detection results for Image Sequences 1 to 4 are displayed in

Figures 4.25 and 4.26. In individual frames, both correct and incorrect (‘false positive’)

nodes were detected, with correctness (or otherwise) determined by visual frame-by-

frame inspection. There were a large number of falsely identified nodes evident in the

plots, with approximately 22% of detected nodes being false positives (Figures 4.25

and 4.26). However, several node trajectories were consistently detected.

The top two or three nodes were generally not detected as a result of the adjoining

branches being too short to be detected. Longer branches were overlooked when the

branch was sunlit (e.g. node 4 of Image Sequence 3) or near-parallel to the main stem

(e.g. node 5 of Image Sequence 2). Bright branches were not detected because the

current automated node identification process only targets dark lines. However, node

positions were estimated for node 4 of Image Sequence 2 despite the node being occluded

for the second half of the sequence. The scatter and multiplicity of individual candidate

nodes (e.g. node 4 of Image Sequence 1 and node 3 of Image Sequence 3) were identified

to be caused by non-homogeneously-sloped lines being projected to the main stem, due

to the nodes adjoining branch and petiole both being projected to the main stem, or

curved branches being detected as a series of disjointed line segments (Figure 4.27).

Clearly, the existence of false positives between correctly identified adjacent nodes and

the multiple responses to single nodes prevent the reliable automated measurement of

internode length at the individual frame level. However, the accumulation of candidate

node positions for a whole video sequence (e.g. Figures 4.25 and 4.26) enables the

observation that overall, the trend in candidate node positions for the whole video

sequence follows the positioning of the manually identified node trajectories (i.e. true

nodes were generally reliably detected over multiple frames). This potentially enables

a time sequence of candidate nodes to be used to improve confidence in candidate node
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detection for individual frames. The use of trajectory tracking across successive frames

is investigated in Chapter 5.

Figure 4.27: Typical node identification results on Sample Image 1. Left: Input

green channel image. Right: Automatically detected candidate nodes (white discs

labeled in descending order A–I). A is an inaccurate projection to the main stem;

B, C, D and E are multiple responses to a single node; F and G are accurate

projections to the main stem; and H and I are false positives. The main stem

deviates from a straight line at the top of the image.

4.13.2 Analysis of erroneous node omission

The three major sources of erroneously-omitted candidate nodes in the current algo-

rithm were identified as follows.

Nodes adjoined only by bright/sunlit branches. The Hessian eigenvalues yielded

distinct responses for dark and light lines (as evident in Table 4.1). Only dark

lines were targeted in the line identification step, since the plant generally falls

into shadow when contacting the transparent panel. However, branches appeared

light if they protruded away from the transparent panel and hence did not fall

into shadow. Further algorithm development or shading of the camera enclosure

(such that all branches in front of the window appear dark) could refine the line

identification process.
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Short branches. Size filters were used throughout the image processing as a measure

to reduce the incidence of false positives, but this caused some false negatives.

Hence, identification of false positives by criteria other than size alone is required.

Branches near-parallel to main stem. Estimating a node position from the geo-

metric intersection of the main stem with a branch of similar incline was likely

to result in overshooting of the true node position. Hence, branches near-parallel

to the main stem were automatically omitted from estimating candidate nodes.

Further algorithm development consisting of branch shape modeling close to the

main stem is expected to overcome this limitation.

4.14 Conclusions

This chapter has evaluated potential techniques for the automated identification of

internode length from video imagery collected from a moving, infield camera enclosure.

Manual (screen-based) identification of nodes in collected imagery yielded standard

errors of 1.4 mm in internode length measurement, which verified the viability of using

the fixed object plane at the front of the camera enclosure for geometric measurement.

Automatic identification of internode length was considered for four image sequences

captured from the camera enclosure. Techniques evaluated for automatic node identifi-

cation on single frames included colour and shape analysis. The excess green criterion

was not effective at isolating foreground stems from other foliage since the stems and

other foliage were all green in colour. However, by visual inspection, the green channel

of collected images provided the most contrast between foreground stems and other

material. Hence, the green channel was used in the remaining image processing evalua-

tions. The use of colour information to extract nodes from imagery was further tested

using adaptive thresholding about the main stem. However, this method was not effec-

tive due to the overlap in intensities exhibited by nodes and other foliage behind the

main stem.
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Edge detectors were found to be of limited applicability for node detection because

both branch edges, and edges caused by randomly-oriented leaf edges, yielded strong

responses. However, line detection via the vesselness transformation was identified

as useful for accentuating branch pixels because the vesselness response to branches

consisted of large connected regions of ‘on’ pixels, whereas the vesselness response to

leaf areas was a more sparse and disconnected distribution of pixels. Hence, a size filter

could be used to discriminate branch pixels from the leaf pixels.

Nodes adjoined by long, shadowed branches were reliably detected using the derived

method. However, the existence of false positives between correctly identified adjacent

nodes and the multiple responses to single nodes prevented the reliable measurement of

internode length at the individual frame level. Therefore the potential to extract node

trajectories from sequential images for internode length measurement was evaluated

and is reported in Chapter 5.
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(a)

(b)

Figure 4.25: Automatically detected nodes for: (a) Image Sequence 1; and (b) Im-
age Sequence 2.
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(a)

(b)

Figure 4.26: Automatically detected nodes for: (a) Image Sequence 3; and (b) Im-
age Sequence 4.



Chapter 5

Node tracking across sequential

frames

5.1 Introduction

The preceding chapter discussed the detection of candidate nodes in individual frames

of a video sequence. However, the process was susceptible to detection of false nodes for

which no reliable scheme to exclude them could be devised. Hence, reliable internode

length measurement from a single image was not possible. Sequential image analysis

was therefore evaluated as a technique to identify candidate nodes as either transient

false positives or true nodes.

In principle, the nature of the tracking algorithm for nodes on a plant is not complex

if true nodes are reliably detected and the false nodes (‘false positives’) are relatively

few. In the absence of wind or other external forces, the plant is a stationary object

that undergoes predictable movement when it comes into contact with the moving

camera enclosure. Sequential images are available at 1
25 s intervals, hence each frame

will (normally) be quite similar to its predecessor. Clearly, the node positions remain

fixed with respect to the main stem. Hence, the tracking algorithm does not need to

109



CHAPTER 5. NODE TRACKING ACROSS SEQUENTIAL FRAMES 110

account for random or unpredictable motion and may incorporate some pre-emption

or extrapolation for node trajectories. However, algorithms developed for single frame

node detection (Chapter 4) typically yielded reliable true node detection but with a

high false positive rate. This error rate is expected to be reduced by the tracking across

sequential frames which should also substantially reduce noise.

The following three characteristics of the single frame processing results (Section 4.13)

are pertinent to tracking in this application:

1. True nodes were generally reliably detected over multiple frames.

2. False positives occurred at largely random locations within each frame, and did

not reappear over a large number of sequential frames.

3. A true node may have yielded multiple responses within a single frame, and these

needed to be recognised as multiple responses to a single node (as described in

Figure 4.27).

Options for forming node trajectories are discussed in the following sections. These

are:

1. tracking individual branches or petioles (i.e. line segments) by active contour

models and matching line parameters (Section 5.2);

2. tracking candidate node positions including pre-emption of node position (Sec-

tion 5.3); and

3. grouping candidate nodes into trajectories based on morphological dilation and

data point mesh spacing (Section 5.4).

The most success was obtained by grouping candidate nodes (Section 5.4). Finally,

this chapter presents the algorithm used to calculate internode length from detected

candidate node trajectories (Section 5.5).
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5.2 Tracking line segments

5.2.1 Active contour (or snake) model

The active contour model is an iterative method of contour tracking, in which a contour

(snake) attaches to a feature in an image and then minimises an ‘energy’ function of

the contour, based on an initial estimate of the feature’s position. The snake’s energy

components are (Kass et al., 1987):

• image energy Eimg (�v) such as image intensity or edges, or any transformation

of the image which yields a strong response to the features of interest;

• internal energy Eint (�v) such as geometric constraints on snake length and

smoothness (analogous to elastic and bending forces, respectively); and

• external energy Eext (�v) such as spring forces which define the contour’s attrac-

tion/repulsion to prescribed regions of the image.

The input image is usually blurred so that sharp edges become graduated, which assists

the snake in ‘latching’ onto the feature. Convergence of the contour occurs when the

contour points change by some suitably negligible amount from one iteration to the

next. Noisy pixels in the image energy function (i.e. strong response to features not

of interest, or weak response to features of interest) can potentially cause the snake

to behave unreliably, such as settling on an unexpected contour, or failing to converge

on any particular image feature in which case the snake may iterate indefinitely. In

standard edge detection results, where both stem and leaf edges yield strong responses,

there is potentially a lot of noise when the active contour model is required to converge

onto stem edges alone.

The snake’s total energy E is described mathematically as follows:

E (�v) = Eimg (�v) + Eint (�v) + Eext (�v) (5.1)

where the vector �v contains the contour points.
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The values for Eimg (�v) are taken from an input image (e.g. edges or vesselness), and

Eext (�v) is set to zero because there is no predefined region of interest in the image.

The internal energy is defined as (for example in Laptev et al. (2000)):

Eint (�v) =
1
2

∫ 1

0

(
α (s)

∣∣∣∣∂�v (s, t)
∂s

∣∣∣∣2 + β (s)
∣∣∣∣∂2�v (s, t)

∂s2

∣∣∣∣2
)

ds (5.2)

where α is a first-order elasticity function and affects the snake length;

β is a second-order bending function and affects the snake smoothness;

s is the normalised distance along the snake’s length; and

t is the current iteration number of the snake’s position (Kass et al., 1987).

The internal energy of the snake can be discretised to:

Eint (i) = αi
|vi − vi−1|2

h2
+ βi

|vi−1 − 2vi + vi+1|2
h4

(5.3)

where h is the discretisation step size and i is the step number along the snake’s length.

Figures 5.1 and 5.2 demonstrate iterations of an active contour model on a sample

image. The input image (or image forces function) is required to exhibit a strong

response to the principal feature (i.e. stem edges). Hence, the input image used in

this evaluation was the vesselness image of Figure 4.18(d), blurred with a Gaussian

filter (σ = 1) and scaled between 0 and 255. Constant bending (α) and elasticity (β)

coefficients were empirically chosen so that the resulting contour had smooth curvature

and evenly spaced points.

Active contour models may be used to track features in video sequences, since a con-

tour’s final position in one frame may be used as the initial estimate of the contour’s

position in the next frame. Figure 5.1 shows iterations of a manually-chosen initial

contour of arbitrary points offset to the left of the manually-discerned main stem. The

contour points were contrained to move towards the bottom right of the image, a simpli-

fication that did not affect the evaluation of the contour’s ability to settle on significant

image features. The contour settled onto the main stem despite a small occlusion in

the main stem, five contour points from the bottom of the contour. Automation of
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contour initialisation is expected to be achievable by using line segment endpoints and

interpolated line points, identified automatically by an image processing algorithm such

as that described in Chapter 4.

However, Figure 5.2 is an example of the contour failing to converge on the expected

image feature. Whilst this final contour was not grossly erroneous (it did partly con-

verge onto the expected contour), such small contour deviations were not necessarily

predictable or typical. Therefore, whilst the active contour technique did show promise,

further algorithm development was not pursued since reliable operation of the snake

could not be guaranteed using the basic implementation adopted.

(a) (b) (c)

Figure 5.1: Active contour model iterations for main stem segment of vesselness
transformation of Sample Image 1 (Figure 4.4), with filled circles indicating con-
tour points: (a) initial contour; (b) after 5 iterations; and (c) final position of
snake, after 17 iterations, which closely matches main stem.

5.2.2 Matching line parameters

For tracking of points such as candidate nodes, the pixel is parameterised with its x-

and y-coordinates. Tracking of line segments, such as candidate branches, requires
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(a) (b) (c)

Figure 5.2: Active contour model iterations for branch segment of vesselness trans-
formation of Sample Image 1, with filled circles indicating contour points: (a) ini-
tial contour; (b) after 5 iterations; and (c) final position of snake, after 19 itera-
tions, which does not follow expected branch contour.

extra parameters. Deriche & Faugeras (1990) demonstrate that a line segment’s mid-

point, length and perpendicular distance to the origin constitute the minimum param-

eters required to match line segments from one frame to the next, and if necessary a

noise-removing filter (such as the Kalman filter, described below) is applied to each

parameter. Figure 5.3 shows typical results for matching line segments from frame-to-

frame, where line segments across frames were declared to be matched if the difference

in parameters of both line segments was below a threshold.

In the sample images of Figure 5.3, frequent inaccurate matching of lines was evident

since line segment parameters were not predictably inconsistent across frames, despite

the line segments forming quite reliable candidate node positions. This was because

individual branches were frequently detected as a series of smaller disjointed lines, with

variation from one frame to the next in both the number and location of joints. Similar

results were obtained for the other sample images of Figure 4.4.
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Noise filtering on a feature’s position may potentially be used to improve tracking

results by estimating variation in detected feature position. A commonly-used filter is

the Kalman filter, which is a recursive time-domain filter that assumes there are noise

components in both the true and measured positions of an object (Kalman, 1960).

Another definition of the Kalman filter is an optimal estimator of the true states of

a dynamical process given measurements of those states corrupted with additive zero-

mean Gaussian noise (Corke, 2008). The line segment tracking method of Deriche

& Faugeras (1990) uses the Kalman filter to improve accuracy in predicting the next

frame’s value for each line parameter. However, since reconstructing disjointed lines

into whole branches was an unnecessary complexity for measuring a plant’s internode

length, further development of this method was not pursued.

5.3 Tracking candidate node positions

Tracking algorithms involve finding a match for detected features over a sequence of

frames based on continuity in the feature’s motion, i.e. by assuming there are small

changes in the feature’s position and velocity from one frame to the next. Jain et al.

(1995) describe algorithms where smooth trajectories are iteratively searched for within

the set of data points. However, the method does not specifically cater for multiple

responses to features of interest within a single frame.

Mery & Filbert (2002) describe an algorithm based on the hypothesis that true data

points could be reliably tracked while noisy points could not. Their method could

reliably track feature points on a fixed-path object from image sequences with up

to 500 noisy points per frame. However, their application was in an assembly-line

environment where the plane of motion of the object was exactly known and employed

in their algorithm implementation.

In the present application, the hypothesis that only correctly identified points can be

tracked is valid (Section 4.13), and a priori knowledge of the camera enclosure travel
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(a) (b) (c) (d)

Figure 5.3: Matching of line segments detected in Image Sequence 1 (Figure 4.4),
based on minimising parameter differences in successive frames: (a) frame 29;
(b) frame 30 (which corresponds to Sample Image 1); (c) frame 31; and
(d) frame 32.

speed (Figure 5.4), plant spacing and current node positions could potentially be com-

bined to enable prediction (i.e. pre-emption) of node positions in future frames. How-

ever, it was anticipated that the accumulation of positional uncertainty ensuing from

inaccurate node identification and prediction could be avoided by grouping candidate

nodes at the end of a whole sequence, as described in the next section. Hence, the

techniques of this section’s discussion were not implemented in code.
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Before contact:

Camera has constant
velocity towards
stationary plant

After contact:

Plant has sliding
motion down front
window

v

v

n/c

n/c

Figure 5.4: Velocity of the plant nodes with respect to the camera (vn/c) before
and after the camera enclosure contacts the plant.

5.4 Grouping candidate node positions

Grouping1 candidate nodes is distinguished here from matching, since in this section

node trajectories are formed by considering clustering1 patterns in the candidate node

data for the whole sequence. Potential for applying grouping algorithms existed be-

cause from visual inspection of detected nodes for a sequence (such as the graphs of

Figures 4.25 and 4.26), nodes were detected reliably throughout an image sequence with

sparse false positives. The techniques described below were applied to the candidate

node data accumulated for the whole image sequence. The candidate node positions

were stored as pixel y-coordinate y versus frame number t (both integer).

5.4.1 Morphological dilation

Node trajectories were formed by grouping a candidate node with any other candidate

node within thresholds ±∆t and ±∆y in distance. The process was implemented

using a morphological dilation (Serra, 1982) such that each candidate node position

(represented as a pixel in y-t space) was replaced with a rectangle of size 2∆t × 2∆y

1The terms ‘grouping’ and ‘clustering’ are used with their general English meanings rather than
with any form of specific mathematic definition.
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(left-aligned and vertically-centred on the pixel). The resulting connected components

formed node trajectories.

The formation of continuous node trajectories required that the threshold ±∆t be large

enough to span multiple frames with occlusions, while ±∆y was required to be large

enough to exceed frame-to-frame vertical node movement. The value of ±∆y typically

ranged from 1 to 15 pixels, depending on how close the camera enclosure was to the plant

and how fast the camera enclosure was moving. Further work could potentially have

enabled calculation of the value of ±∆y as a function of camera enclosure travel speed

and distance between the camera and the plant, in much the same way as pre-emption

of node positions (Section 5.3) was expected to operate. However, a limitation of the

method was that the thresholds were sensitive to plant-to-plant variations in geometry,

such as the length of occlusions and the proximity of false positive candidate nodes to

true positive candidate nodes. This caused the automatic trajectory extraction to be

unreliable across multiple plants and hence the method was not suitable for automatic

measurement in the field.

5.4.2 Data point mesh spacing

Plots of candidate nodes automatically detected from image sequences typically fea-

tured a dataspace in which there were regions of both closely-packed and sparsely-

distributed candidate nodes (e.g. Figure 5.5(a) and (b) for Image Sequence 1). The

groups of closely-packed nodes were visually discernible and typically occurred around

manually identified node trajectories (Figure 5.5(a)). Hence, automatic grouping of

closely-packed candidate nodes was a potential method of forming candidate node tra-

jectories. An algorithm that has been developed to mimic the human behaviour of

visual grouping is described in Papari & Petkov (2005), where a ‘group’ of points in

a set is described as a subset containing points that are much closer geometrically to

each other than to the other points in the set. The method of Papari & Petkov (2005)

evaluates the relative closeness of data points by computing edge lengths of a Delaunay

Triangulation (Preparata & Shamos, 1985) of the data points.
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Delaunay Triangulation is a meshing method that is commonly used in finite element

analysis and function interpolation. For the current application, the set S of data points

x for the meshing was given by the candidate nodes for the sequence. A Delaunay

Triangulation for the candidate nodes of Image Sequence 1 is shown in Figure 5.6(a).

Papari & Petkov (2005) define a length criterion for determining geometric closeness

of data points as follows. For a mesh line between data points p and q, the function

ξ (p, q) is the length pq normalised with the distance d (p, q) between p and p’s nearest

connected neighbour x, i.e.:

ξ (p, q) =
d (p, q)

min
x∈S

{d (p, x)} (5.4)

This same calculation is repeated for the q endpoint of the line, i.e. ξ (q, p). The length

criterion is a threshold on the geometric mean of ξ (p, q) and ξ (q, p). Groups identified

by this method are illustrated in Figure 5.6(b), which by visual inspection corresponded

well to the true node trajectories.

The aspect ratio for visual representation of node position versus frame number was

important for the automatic grouping algorithm, as it was for visual perception of

trajectory membership across an image sequence. Graphs of node y-position versus

frame number with equal vertical and horizontal scales were skewed in the vertical

direction, since y-coordinates were in the range 1 to 700 while frame number only ranged

from 1 to typically 80. This makes separate node trajectories difficult to discern visually.

Figure 5.7 shows the Delaunay Triangulation for the candidate node data with different

aspect ratios, where the triangles are elongated horizontally for the lower scaling factors

on node y-position. Hence, before computing the Delaunay Triangulation of the data

points, the node y-coordinates were scaled by 80÷ 700 ≈ 1
9 to yield more proportioned

data ranges. This is comparable with the aspect ratio of the graphs in Figure 5.5,

where the node y-coordinates were scaled by 1
13 relative to the x-axis.
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Sparsely-distributed
candidate nodes

Closely-packed candidate
nodes about manually
identified node trajectory

(a)

(b)

Figure 5.5: Automatically detected nodes for Image Sequence 1: (a) automatically
detected nodes superimposed on manually detected nodes; and (b) automatically
detected nodes.
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(a)

(b)

Figure 5.6: Automatic grouping of candidate nodes for Image Sequence 1: (a) De-
launay Triangulation of automatically detected nodes of Figure 5.5(b); and (b) can-
didate node grouping according to the method of Papari & Petkov (2005).
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5.5 Calculation of internode length from node trajectories

The final step in calculating internode length was to generate an automatic process to

identify the maximum distance between adjacent node trajectories. A smooth, contin-

uous, single-pixel-thick trajectory was formed for each node group (identified by the

process of Section 5.4.2) by replacing the detected candidate nodes in each frame with

a single average detected node position. The average node position was then smoothed

across the whole sequence to form candidate node trajectories, using a passive (i.e. gain

between zero and one) low pass filter of the form (also known as an exponential moving

average):

ysmooth [t] = α · ysmooth [t − 1] + (1 − α) · y [t] (5.5)

where ysmooth [t] is the smoothed node position at time t;

y [t] is the averaged node position at time t; and

α is a smoothing factor between zero and one, chosen to yield smooth looking

trajectories (α = 0.2).

Adjacent nodes determinations (Figure 5.8) were required to be identified from the

data space y-t of smoothed node positions. Stylised node trajectories corresponding to

Image Sequences 1 to 4 are included in Figure 5.9 (based on node detection results of

Figures 4.25 and 4.26). Grey-shaded regions of Figure 5.9 indicate frames for which

candidate node data is available for adjacent candidate node trajectories, thus enabling

internode measurements between those adjacent candidate node trajectories.

The algorithm steps for determining maximum internode distance between adjacent

node trajectories is explained below with reference to Figure 5.9. Pseudocode for the

process is included in Appendix D.2.2.

1. Each pair of adjacent node determinations in adjacent frames formed a vertical

trapezium with width ∆t = 1 in y-t space (Figure 5.8). Stepwise progression

through node positions for the complete image sequence yielded trapeziums with

common properties which could then be grouped to form the regions A–F of

Figure 5.9. ‘Successive’ node trajectories were separated from non-successive
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(a) (b)

(c)

Figure 5.7: Delaunay Triangulation of candidate node data points of Image Se-
quence 1 for different y-scales, with a relative x-scale of 1: (a) 1; (b) 1

4 ; and (c) 1
9 .

The triangulations are rendered into square images in this figure.
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trajectories by removing those trapeziums which featured a longer vertical edge

than the neighbouring trapeziums. In Figure 5.9 trapeziums corresponding to ad-

jacent but not successive pairs of node trajectories are represented with a hatched

fill.

2. The maximum ∆y for each grey-shaded region of Figure 5.9 corresponds to the

maximum internode distance between each pair of detected successive node tra-

jectories. These maximum ∆y values were used in Equation 4.1 to calculate

internode distance in millimetres.

5.6 Conclusions

Node trajectories were required to be formed from candidate node positions to enable

internode distance measurement for an image sequence. However, line segment tracking

was found to introduce unnecessary complexity to the node trajectory identification

task, whilst candidate node tracking was expected to introduce positional errors into

identified node trajectories.

A grouping algorithm that made use of the high concentration of candidate nodes

detected close to the position of true node trajectories was adopted (Papari & Petkov,

2005). This method was successful at identifying node trajectories in Image Sequences 1

to 4. Regions of overlap between adjacent detected node trajectories were successfully

determined for Image Sequences 1 to 4 using a stepwise process. The algorithm’s

performance at measuring internode distance is evaluated in the next chapter.
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Node trajectory +1n

t

Figure 5.8: Trapezium in y-t space representing adjacent nodes detected at times

t and t + 1.
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Figure 5.9: Graphical representation of the algorithm used to distinguish pairs of
successive node trajectories from pairs of non-successive node trajectories. The
shaded regions labeled with the letters A–F correspond to frames common to
adjacent node trajectories. The labels 1–5 correspond to detected trajectories.



Chapter 6

Evaluation of performance

6.1 Introduction

Image processing algorithms for automatic internode length measurement have thus far

been evaluated on images from the four sequences described in Chapters 4 and 5. How-

ever, other data sets were collected with varying environmental and agronomic factors,

and apparatus configurations. This chapter presents an evaluation of the performance

of the system under a range of conditions and identifies some current limitations of use

of the measurement technique.

6.2 Field data collection

The machine vision system was used to collect video footage of cotton plants during

crop flowering of the 2005/06 and 2006/07 Australian cotton growing seasons. Sys-

tem repeatability was evaluated by collecting three replications of video sequences for

every treatment. Treatments included camera enclosure orientation (‘Orientation’ in

Table 6.1) and speed for along row operation (which comprised greater plant density

than across row operation). The different data sets are listed in Table 6.1. Apparatus

126
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calibration between data sets consisted of verifying the height and pitch angle of the

camera enclosure (as described in Section 3.6). A damp cloth was used to clean dust

from the window at the front of the camera enclosure before data collection.

Table 6.1: Data sets for evaluation of the measurement technique.
Data Number Age
Set of plants Cultivar (WAP*) Date (Season) Evaluation
1 14 Sicot 80B 10 08-02-06 (2005/06) Orientation
2 16 Sicot 289B 11 21-02-06 (2005/06) Orientation
3 10 Sicot 71B 9 30-01-06 (2005/06) Orientation
4 10 Deltapine 408B 9 30-01-06 (2005/06) Orientation
5 13 Sicot 608B 11 02-02-07 (2006/07) Speed, night, depth

of field
*weeks after planting

6.2.1 Fieldwork for 2005/06 season

Data Sets 1 to 4 were collected with a different cotton cultivar featured in each data

set (Table 6.1). The following camera enclosure orientation test was carried out on

each data set with the manually conveyed camera enclosure, using natural lighting,

an enclosure travel speed of 0.30 m/s and the Sony camcorder (Chapter 3) for image

capture:

1. Camera enclosure orientation (Figure 6.1)

• camera enclosure approach angles of 0◦ and 180◦, with yaw angle of 0◦

• camera enclosure approach angles of 0◦ and 180◦, with yaw angle of 45◦

6.2.2 Fieldwork for 2006/07 season

Data Set 5 was collected using the automatically conveyed camera enclosure. The

following operational tests were undertaken:

1. Day/night and illumination for camera enclosure approach angles of both 0◦ and

180◦ (Sony camcorder)

• daytime natural sunlight illumination



CHAPTER 6. EVALUATION OF PERFORMANCE 128

• daytime illumination using white LEDs

• night time illumination using white LEDs

• night time illumination using 850 nm LEDs

• night time illumination using 940 nm LEDs

2. Narrow depth of field for camera enclosure approach angles of both 0◦ and 180◦

(Prosilica firewire camera)

3. Camera enclosure speeds of 0.10, 0.20, 0.25 and 0.30 m/s along 30 m of the row

(Sony camcorder; Figure 6.1)

(a)

(b)

Across row

aw angle = 0
nclosure

angle = 180

(Angle 180 )

O

O

O

Camera enclosure

y
Camera e
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Parallel to/
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Parallel to/
along row
(speed tests)

Across row
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angle = 0

(Angle 0 )
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O
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Figure 6.1: Tested camera enclosure orientations: (a) across and along row, with
yaw angle of 0◦; and (b) across row, with yaw angle of 45◦. Angle 0◦, Angle 180◦,
Shear 135◦ and Shear 315◦ are labels for the orientation treatments.
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6.3 Overall system performance

The measurement technique is evaluated on Data Set 1 as an overall indication of system

performance because the algorithm was developed using frames from this data set and

hence, should be most favourable for measurement. From the 168 video sequences of

the fourteen plants, 95 internode lengths were automatically detected which equates to

an average measurement rate of one internode length per 1.75 plants. The 95 internode

length measurements and their corresponding manual measurements (as described in

Section 4.2) are graphed in Figure 6.2. The 95% confidence interval on the regression

equation yields the following, which is not significantly different from y = x at the 0.05

level of significance:

y = −0.5 (±6.3) + 1.006 (±0.085) x. (6.1)

Figure 6.2: Comparison of internode length measurement by automatic image
processing and manual field measurement (regression line shown).

The 95 automatic internode length measurements were obtained across a total of 39

physical internodes. Of those 39 internodes, 17 yielded automatic measurements for
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≥3 replications, i.e. 17 internodes were usable for standard error calculations. The

standard errors on each of those 17 internodes ranged from 1.1 mm to 5.7 mm, with

an average of 3.0 mm. Absolute errors ranged from 0.1 mm to 27.4 mm, with a mean

absolute error of 6.9 mm and a median of 5.3 mm. The detection rate on any particular

plant varied from zero to three internode lengths using the current algorithm.

Automatically measured values for internode length were not significantly different from

the manually measured values, despite the field observation that some plants did not

completely flatten against the transparent panel at the front of the camera enclosure.

The number and quality of measurements varied between replicates primarily as a result

of leaves causing occlusion of the main stem for some replicates and not for others. This

was determined from visual inspection of the video. There is no bias in the distribution

of measurements due to the best estimate of the internode distance being taken as the

maximum distance between detected node trajectories (Section 5.5).

The overall system results indicated that the variation in both detection rate and

measurement accuracy between replicates was high. However, the effect of different

treatments was expected to be more identifiable from variation in the number of mea-

surements made, rather than from variation in the quality of those measurements.

Therefore, number of measurements made was identified as an appropriate dependent

variable for subsequent evaluations.

6.4 Evaluation of apparatus operational factors

6.4.1 Camera enclosure orientation versus internode position

In Data Set 1, three replications of video data were collected for each plant with a

camera enclosure approach angle of 0◦ or 180◦, for yaw angles of either 0◦ or 45◦

(Table 6.2). An analysis of variance (Gomez & Gomez, 1984)(Table 6.3) on this data

showed that there was a significant (P≤0.05) difference in the number of internode
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lengths detected with respect to different internode positions (i.e. Internode 0-1, 1-

2, ..., 4-5, Figure 4.2) and a significant (P≤0.10) interaction between the internode

position detected and camera enclosure orientation. However, there was no significant

difference in the number of internode lengths detected for different camera enclosure

orientations. This suggests that the camera’s orientation relative to the sun’s position

during data collection of Data Set 1 had no effect on the number of measurements made

by the vision system and that the shearing versus bending motion of the plant induced

by the camera enclosure orientation did not influence node detection in the imagery.

Comparison of the mean number of internode lengths detected (Table 6.4) showed that

the most commonly detected internode positions were Internodes 2-3 and 3-4. By

inspection of analysed images, these internode positions were commonly adjoined by

long petioles or branches that were readily detected by the image processing algorithms.

At the other end of the scale, the least-detected internode positions were Internodes

4-5 and 0-1. By inspection of analysed images, Internode 0-1 was frequently occluded

by the node’s adjoining leaf, since the node’s petiole was comparatively short and

theadjoining leaf was physically closer to the main stem. Node 5 commonly fell out-of-

frame, which precluded Internode 4-5 from being automatically measured. A different

camera enclosure design would be required to enable lower within-canopy movement

to view the lower internodes, because of the more rigid branching structure closer to

the ground. There was no interaction between number of internode lengths detected

and camera enclosure orientation for Internodes 0-1, 1-2 and 4-5 (Table 6.5). However,

camera enclosure orientation did impact on the number of measurements detected at

Internodes 2-3 and 3-4 (Table 6.5).

Mean absolute errors of internode length measurement for the different camera enclosure

orientations and internode positions are presented in Table 6.6. Quality of measure-

ment is considered for camera enclosure orientation treatments to determine whether

the shearing rather than bending motion of the plant associated with varying camera

enclosure orientations (as described in the discussion of the camera enclosure yaw an-

gle in Section 3.6) affected the fixed object plane assumption. The missing data in
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Table 6.2: Number of internode lengths detected for different camera enclosure
orientations (Figure 6.1) and different internode positions for Data Set 1, with
three replications.

Internode Number of internode lengths
position Replicate Angle 0◦ Angle 180◦ Shear 135◦ Shear 315◦

Internode 0-1 I 1 1 0 0
II 0 2 0 0
III 0 0 0 0

Internode 1-2 I 1 4 2 2
II 1 0 1 1
III 1 2 0 0

Internode 2-3 I 6 2 3 1
II 4 4 4 3
III 2 5 1 1

Internode 3-4 I 2 0 3 3
II 6 1 2 2
III 3 0 2 1

Internode 4-5 I 3 0 2 2
II 1 2 2 2
III 0 0 1 0

Table 6.3: Analysis of variance for the detected internode position and camera
enclosure orientation (‘Orientation’) treatments.

Source of Sum of Degrees of Mean Critical f
variation squares freedom square Computed f 5% 10%
Internode position 47.67 4 11.92 8.03** 2.61 2.09
Orientation 7.65 3 2.55 1.72ns 2.84 2.23
Interaction 33.93 12 2.83 1.91* 2.00 1.71
Error 59.33 40 1.48
Total 148.58 59
** = significant at 5% level, * = significant at 10% level, ns = not significant.

Table 6.6 prevented an analysis of variance for interaction effects between all camera

enclosure orientations and internode positions. However, an analysis of variance for

all orientation treatments of Internode 2-3 (Table 6.7) and for three of the orientation

treatments for Internodes 2-3 and 3-4 (Table 6.8) revealed no significant differences in

mean absolute error in internode length measurements between treatments. Hence, the

measurement system did not yield significantly different accuracies for the shearing and

bending motions of the camera enclosure over the plant.
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Table 6.4: Least significant differences for all possible pairs of detected internode
positions.

Internode Mean number of
position internode lengths*†

Internode 2-3 3.00
Internode 3-4 2.08
Internode 1-2 1.25
Internode 4-5 1.25
Internode 0-1 0.33

*Averaged across four camera enclosure orientations and three replications.
†Any two means connected by the same vertical line are not significantly different at the
1% level of significance.

Table 6.5: Least significant differences for comparing pairs of camera enclosure
orientation means at the same internode position.

Internode Mean number of internode lengths*†

position Angle 0◦ Angle 180◦ Shear 135◦ Shear 315◦

Internode 0-1 0.33a 1.00a 0.00a 0.00a

Internode 1-2 1.00a 2.00a 1.00a 1.00a

Internode 2-3 4.00a 3.67ab 2.67ab 1.67b

Internode 3-4 3.67a 0.33b 2.33bc 2.00c

Internode 4-5 1.33a 0.67a 1.67a 1.33a

*Averaged across three replications.
†Superscripts indicate significant differences (P≤0.1) across rows.

Table 6.6: Mean absolute errors in internode lengths measured for different camera
enclosure orientations and different internode positions for Data Set 1, with three
replications.

Internode Mean absolute error in internode lengths (mm)
position Replicate Angle 0◦ Angle 180◦ Shear 135◦ Shear 315◦

Internode 0-1 I 4.00 11.90 - -
II - 4.55 - -
III - - - -

Internode 1-2 I 1.20 6.83 5.20 13.07
II 13.40 - 11.20 3.00
III 7.40 1.80 - -

Internode 2-3 I 7.13 8.95 7.20 10.70
II 4.30 13.83 7.50 2.93
III 6.20 4.50 2.60 2.00

Internode 3-4 I 7.00 - 5.47 3.17
II 8.74 11.40 2.95 4.37
III 6.68 - 5.25 8.20

Internode 4-5 I 2.37 - 9.70 4.55
II 19.60 7.10 7.90 0.40
III - - 13.40 -
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Table 6.7: Analysis of variance for all the camera enclosure orientation (‘Orienta-
tion’) treatments of Internode 2-3 (Table 6.6).

Source of Sum of Degrees of Mean Critical f
variation squares freedom square Computed f (5%)
Orientation 27.95 3 9.32 0.69ns 4.07
Error 108.45 8 13.56
Total 136.40 11

ns = not significant.

Table 6.8: Analysis of variance for the Angle 0◦, Shear 135◦ and Shear 315◦

orientation (‘Orientation’) treatments of Internodes 2-3 and 3-4 (Table 6.6).

Source of Sum of Degrees of Mean Critical f
variation squares freedom square Computed f (5%)
Internode position 0.09 1 0.09 0.01ns 4.75
Orientation 8.77 2 4.39 0.62ns 3.89
Interaction 5.93 2 2.97 0.42ns 3.89
Error 85.05 12 7.09
Total 99.84 17

ns = not significant.

6.4.2 Illumination – day versus night

Data Set 5 featured video collected in daylight with and without artificial lighting,

and at night with visible and near infrared (850 and 940 nm) lighting. The number

and position of internode lengths detected for different lighting conditions (Figure 6.3)

are displayed in Table 6.9. An analysis of variation (Table 6.10) shows there was

a significant difference in the number of internode lengths detected with respect to

different lighting conditions, but there was no interaction between lighting conditions

and camera enclosure orientation. Natural afternoon sunlight and 850 nm night time

illumination yielded the most number of measurements (Table 6.11).

The number of internode lengths detected at 940 nm and with white LEDs, day or

night, were not significantly different. The white LED illumination was not as effective

at producing internode length results at night time as the 850 nm illumination. By

inspection of analysed images, the white LED illumination did not produce uniform

illumination of the plant in front of the camera enclosure, due to leaves casting shad-

ows on branches. On the other hand, the 850 nm illumination was more effective at
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(a) (b) (c) (d) (e)

Figure 6.3: Images of a single plant from Data Set 5, showing different lighting
sources: (a) afternoon sunlight; (b) white LEDs in daylight; (c) 850 nm LEDs at
night; (d) 940 nm LEDs at night; and (e) white LEDs at night. Top row: Camera
enclosure approach angle of 0◦; bottom row: camera enclosure approach angle of
180◦.

illuminating the plant in front of the transparent panel with high contrast from the

background. The 940 nm imagery had lower contrast than the 850 nm imagery. This

was most likely due to the lower CCD image sensor spectral sensitivity at the higher

wavelength.
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Table 6.9: Number of internode lengths detected for different lighting conditions
and camera enclosure orientations (‘Orientation’) at day and night for Data Set 5,
with three replications.

Number of internode lengths
White 850 nm 940 nm White

Afternoon LEDs in LEDs LEDs LEDs
Orientation Replicate sunlight daylight at night at night at night
Angle 0◦ I 7 1 2 1 1

II 2 1 5 2 3
III 4 2 6 2 2

Angle 180◦ I 1 1 5 1 2
II 5 2 3 2 1
III 2 3 9 4 0

Table 6.10: Analysis of variance for the detected internode position, camera en-
closure orientation (‘Orientation’) and lighting treatments as set out in Table 6.9.

Source of Sum of Degrees of Mean Critical f
variation squares freedom square Computed f (5%)
Orientation 0.00 1 0.00 0.00ns 4.35
Illumination 53.53 4 13.38 4.41* 2.86
Interaction 9.67 4 2.42 0.77ns 2.86
Error 60.67 20 3.03
Total 123.87 29

* = significant at 5% level, ns = not significant.

6.4.3 Illumination – shadow and sun angle effects

The vision system was trialed on five cotton cultivars to determine whether the crop

cultivar caused significant differences in measurement system performance. However,

extra variables of time of day and crop row direction also affected this evaluation, since

the cotton rows of Data Sets 1 and 5 were oriented east-west, and north-south for Data

Sets 2 to 4 (Table 6.12). Therefore, the camera was either facing or turned away from

the sun in Data Sets 2 to 4, while in Data Sets 1 and 5 the camera was always perpen-

dicular to the sunlight direction. The average number of internode lengths detected for

each data set are displayed in Table 6.13 and typical images in Figure 6.4. An analysis

of variance is set out in Table 6.14.

Data Set 1 featured soft cloud cover and a camera direction perpendicular to the sun-
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Table 6.11: Least significant differences for all possible pairs of illumination con-
ditions.

Illumination Mean number of
condition internode lengths*†

850 nm LEDs at night 5.00
Afternoon sunlight 3.50
940 nm LEDs at night 2.00
White LEDs in daylight 1.67
White LEDs at night 1.50

*Averaged across two camera enclosure orientations and three replications.
†Any two means connected by the same vertical line are not significantly different at the
10% level of significance.

light and yielded the most number of internode measurements. However, Data Sets 2

and 3 were both collected around solar noon. These sets yielded the least number of

internode measurements (Table 6.15) with the image background appearing overex-

posed compared to the foreground, regardless of the camera direction. Data Set 4 was

captured in the morning. In this case, the sequences captured with the camera facing

west (i.e. sun behind the camera) yielded more results than when the sun was in front

of the camera (Table 6.16).

Table 6.12: Daytime data collection hours and camera direction for Data Sets 1
to 5.

Data Camera direction
Set Time of day (Angle 0◦/Angle 180◦) Cultivar
1 2.00–3.00pm North/south Sicot 80B
2 12.00–1.00pm East/west Sicot 289B
3 1.30–2.30pm East/west Sicot 71B
4 8.30–9.30am East/west Deltapine 408B
5 3.00–4.00pm North/south Sicot 60B
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(a) (b) (c) (d) (e)

Figure 6.4: Images from Data Sets 1 to 4, showing different sunlight conditions
and varieties: (a) Data Set 1; (b) Data Set 2; (c) Data Set 3; (d) Data Set 4; and
(e) Data Set 5. Top row: Camera enclosure approach angle of 0◦; bottom row:
camera enclosure approach angle of 180◦.
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Table 6.13: Average number of internode lengths detected for different sunlight
conditions and camera enclosure orientations (‘Orientation’), with three replica-
tions.

Average number of internode lengths detected per plant
Data Set Data Set Data Set Data Set Data Set

Orientation Replicate 1 2 3 4 5
Angle 0◦ I 0.93 0.38 0.10 0.40 0.54

II 0.86 0.13 0.00 0.10 0.15
III 0.43 0.13 0.00 0.10 0.31

Angle 180◦ I 0.50 0.13 0.40 0.40 0.08
II 0.64 0.06 0.10 0.50 0.38
III 0.50 0.06 0.10 0.60 0.15

Table 6.14: Analysis of variance for sunlight condition and camera enclosure ori-
entation (‘Orientation’) treatments.

Source of Sum of Degrees of Mean Critical f
variation squares freedom square Computed f (5%)
Orientation 0.00 1 0.00 0.00ns 4.35
Sunlight condition 1.07 4 0.27 11.18* 2.87
Interaction 0.28 4 0.07 2.97* 2.87
Error 0.48 20 0.02
Total 1.83 29

* = significant at 5% level, ns = not significant.

Table 6.15: Least significant differences for all possible pairs of sunlight conditions.

Sunlight Mean number of
condition internode lengths*†

Data Set 1 0.64
Data Set 4 0.35
Data Set 5 0.27
Data Set 2 0.15
Data Set 3 0.12

*Averaged across two camera enclosure orientations and three replications.
†Any two means connected by the same vertical line are not significantly different at the
5% level of significance.

Table 6.16: Least significant differences for comparing pairs of camera enclosure
orientation means for the same sunlight condition.

Sunlight Mean number of internode lengths*†

condition Angle 0◦ Angle 180◦

Data Set 1 0.74a 0.55a

Data Set 2 0.21a 0.08a

Data Set 3 0.03a 0.20b

Data Set 4 0.20a 0.50b

Data Set 5 0.33a 0.20a

*Averaged across three replications.
†Superscripts indicate significant differences (P≤0.5) across rows.
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The cotton varieties tested were heliotropic (Section 2.1.1). This may have reduced

the number of automatic internode length measurements for the north-south oriented

rows as the sun was behind the camera and the leaves tended to be facing the camera

rather than be randomly oriented and hence, caused more stem occlusions (stylised

representation in Figure 6.5 and photograph in Figure 6.6). However, on the opposite

side of the plant, detection rates were still not as high as for Data Set 1 (camera facing

north/south) since the plant’s background was overexposed from the sun being in front

of the camera. Internode length detection was less successful in sunlight conditions in

which stem regions were frequently washed out by bright or overexposed background

canopy (e.g. Figure 6.4(b) to (d)). However, the variation in sunlight conditions pre-

vented conclusions to be drawn about varietal differences in system performance. Under

natural lighting conditions, the best results were obtained on partially cloudy days, such

that the sunlight was diffused, with the camera facing north or south.

6.4.4 Depth of field (DOF)

A narrow DOF was hypothesised to yield more internode length results than an in-

finite DOF system by rendering the background foliage less salient than the in-focus

foreground, thus reducing false positive candidate node detection. In Data Set 5, a

narrow DOF was achieved by increasing the camera’s aperture and compensating the

increased amount of incoming light with a shorter exposure time (Chapter 3). The ex-

posure time was chosen such that contrast was discernible within the darker foreground

foliage, without the brighter background canopy washing out the darker parts of the

image. This trade-off resulted in an image in which the foreground foliage still appeared

dark (Figure 6.7(b)), but was overcome to an extent by adjusting the image contrast

(Figure 6.7(c)). However, by visual inspection of Figure 6.7(c), the images still lacked

the contrast between foreground and background that is apparent in Figure 6.7(a).
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Movement away from sun
(east/west, depending
on time of day)

Leaves facing sun
and camera

Shadow cast
by camera
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Movement towards sun
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on time of day)

Leaves facing sun
and away from camera

Camera

Shadow cast
by camera
enclosure

(b)

Figure 6.5: Stylised representation of shadow and heliotropism effects of sun po-
sition when the camera faces: (a) away from the sun; and (b) towards the sun.

Figure 6.6: Photo of Data Set 2 canopy, showing leaves oriented towards the sun.
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(a) (b) (c)

Figure 6.7: Images captured simultaneously of a single plant from Data Set 5,
showing effect of a narrow depth of field: (a) image captured from Sony DV
camcorder (CCD image sensor), with infinite depth of field; (b) image captured
from Prosilica firewire camera (CMOS image sensor), with lensing for a narrow
depth of field; and (c) contrast enhanced version of image (b).

The foreground of the narrow DOF image appears blurry because during lens setup,

a focus distance was chosen to accentuate a difference in sharpness between the fore-

ground and background (which is apparent in Figure 6.7(c)). It was observed that

when the lens was adjusted such that the foreground plant was sharp and in focus, the

background was not noticeably more blurred than the foreground. This suggests that

the distance between the foreground and background in the present vision system is

too small to obtain a noticeable DOF effect when the foreground is in focus.
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Application of the image processing algorithms to the contrast enhanced narrow DOF

images yielded internode length results that were significantly less reliable than the

infinite DOF system (Table 6.17). This may be due to the reduced image contrast of

the narrow DOF images.

Table 6.17: Number of internode lengths detected for different depth of field con-
ditions and camera enclosure orientations (‘Orientation’) for Data Set 5 (daytime),
with three replications.

Number of internode lengths
Orientation Replicate Infinite DOF Narrow DOF
Angle 0◦ I 7 2

II 2 1
III 4 0

Angle 180◦ I 1 0
II 5 2
III 2 0

6.4.5 Enclosure travel speed

The effect of speed with the camera enclosure travelling parallel to the row direc-

tion (Figure 6.1) was evaluated on Data Set 5 by calculating the mean absolute error

and number of internode length measurements for different speeds (Table 6.18). The

number of plants detected refers to the number of plants for which internode length

measurements were automatically detected. The range of speeds evaluated correspond

to expected speeds for various operation modes of the sensing system, i.e. on an LMIM

or some other ground-based vehicle such as a tractor (Figure 1.4 in Section 1.3).

At the highest internode length detection rate (0.10 m/s travel speed), the machine vi-

sion system detected internode lengths for plants on an average 3.3 m apart (Table 6.18).

This average distance between plants increased to 15 m at a camera enclosure speed

of 0.25 m/s, and at 0.30 m/s the camera enclosure was moving too fast to detect any

internode length measurements. An analysis of variance showed that the travel speed

of 0.30 m/s obtained significantly inferior results (P≤0.5) to the other speeds. The

image processing algorithm required a minimum of 10 frames to form a node trajectory
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(at 25 frames per second, this is equivalent to 0.4 seconds). However, by observation of

the image processing results for the images collected at 0.25 and 0.30 m/s, the nodes

were rarely detected for more than 10 sequential frames.

Average plant spacing along a row is approximately 0.1 m so the maximum internode

length detection rate is once per thirty-third plant, even at the slowest tested travel

speed of the camera enclosure. However, the expected fastest speed of a LMIM tower

is 2–3 m/min, or 0.03–0.05 m/s, which is less than half the slowest tested speed of

the camera enclosure. Hence, decreasing the camera enclosure travel speed to match

that of an irrigation machine (even for tractor-mounted operation) would be expected

to increase the number of internode length measurements obtained by the automatic

system.

Table 6.18: Internode length results for different camera enclosure speeds along
row for 30 m for Data Set 5.

Number Average distance Number of Mean
Speed along of plants between detected internode lengths absolute
row (m/s) Replicate detected plants (m) detected error (mm)

0.10 I 12 2.6 15 5.6
II 11 2.8 12 6.1
III 8 3.7 11 7.2

0.20 I 7 4.1 11 7.2
II 8 3.4 13 8.9
III 11 2.4 18 5.2

0.25 I 2 15.0 2 10.5
II 2 15.0 2 9.4
III 1 - 1 8.9

0.30 I 0 - 0 -
II 0 - 0 -
III 0 - 0 -

6.5 Evaluation of agronomic factors

6.5.1 Crop size and cultivar

Video footage of different cotton varieties was collected for the purpose of evaluating

varietal differences in image processing results (Section 6.4.3). However, the sunlight
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variation between data sets prevented direct cultivar-specific conclusions from being

drawn. Other manual comparisons of the data sets enabled identification of varietal

differences which may influence image processing results under controlled lighting con-

ditions (Table 6.19).

Table 6.19: Differences identified between plants of evaluated cotton varieties.

Data Average plant Ground Reported
Set Cultivar height (mm) cover Stem colour growth habit*
1 Sicot 80B 907 90% Green/red Vigorous
2 Sicot 289B 753 80% Green Vigorous
3 Sicot 71B 589 50% Green Compact
4 Deltapine 408B 739 70% Green/red Compact
5 Sicot 60B 592 65% Green/red Compact
*From cotton variety guides published by CSD (2007) and Deltapine (2007).

Stem colour was a function of crop age and/or crop size, since young stems were green,

turning red with exposure to the sun. Compact varieties have a more determinate

growth habit and more bolls, while vigorous varieties have a more indeterminate or

rank (excessive vegetative) growth habit.

6.6 Conclusions and potential improvements

The evaluations presented in this chapter have led to the following conclusions:

• automatically measured values for internode length were not significantly different

from the values manually measured on the plants and did not exhibit measurement

bias despite the maximum distance between detected node trajectories being used

as the best estimate for internode distance;

• Internodes 2-3 and 3-4 were most commonly detected by the automatic system;

• night time infrared images provided as many internode length measurements as

the corresponding daytime measurements (in favourable sunlight conditions);

• sunlight perpendicular to the camera yielded significantly more measurements

than sunlight in front or behind the camera; and
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• camera enclosure speeds up to 0.20 m/s along the crop row yielded internode

length measurements with the current image processing algorithms and hardware.

However, slowing the travel speed significantly increased the number of internode

measurements obtained.

The most significant factors limiting the number of internode measurements obtained

were found to be the sunlight angle and intensity. Hence, ideally the camera enclosure

should be modified to effectively block out the sunlight and enable internode length

measurement under artificial illumination regardless of the ambient sunlight. The cam-

era should be oriented to avoid facing heliotropic leaves to reduce occlusion of stems.



Chapter 7

Real-time implementation

7.1 Rationale

The vision system has been shown to measure internode length successfully in the

field (Chapter 6). However, the vision system is intended (Section 2.3) to sense the

plant condition for real-time irrigation control, i.e. whilst mounted on a large mobile

irrigation machine (LMIM), from which some control action could be decided upon

and transmitted to the relevant nozzles of the irrigation machine. Hence, acceptable

real-time performance is required to meet this objective.

Other potential applications of the measurement capacity developed include identifica-

tion of crop deficiencies and disease, ground truthing of other remotely sensed data and

to assist the autonomous placement of other plant sensors. In each case, the require-

ments for on-the-go operation of the vision system encompass automatic conveyance of

the camera enclosure, real-time software execution and integration with post-processing

or management actions. This chapter provides a theoretical evaluation of the potential

for real-time implementation of the vision system under potential operating conditions.
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7.2 Automated conveyance of camera enclosure

Autonomous mechanical operation of the vision system has been demonstrated using

the infield apparatus for automated conveyance of the camera enclosure across the

plant rows (Chapter 3). Across row movement of the camera enclosure was evaluated

for this research because plant spacing across rows was considerably less dense than

along the row. A single camera enclosure travelling at 0.30 m/s across the rows (e.g.

when mounted on the LMIM gantry) would travel 36 m in 2 minutes (a typical time-

frame for an LMIM movement of 1 m). Hence, the camera enclosure would not be

expected to travel an entire LMIM span and maintain a measurement spatial resolu-

tion of 1 m2. The camera enclosure speed evaluation (Section 6.4.5) established that

along row measurement was also possible.

7.3 Real-time software execution

The final image processing algorithm (Chapters 4 and 5) had an unoptimised execu-

tion time of approximately 400 ms per frame on an Intel Celeron 1.40 GHz processor,

using the high level programming language Borland Delphi 6.0 on a Windows XP op-

erating system. However, the software had a significant graphical user interface (GUI)

component. Removal of the GUI and optimised executable code would be expected

to reduce the code execution time per frame, such that frame processing rate would

approach the capture rate of 25 frames per second (fps). Further speed improvements

may be achieved by using an operating system optimised for real-time applications and

by parallel processing.

Conventional embedded systems based on microprocessors are limited because the CPU

structure means that instructions are executed sequentially (Nelson, 2000). Giusto et al.

(2001) indicates methods of estimating real-time software execution for CPU-based

embedded systems. Vision systems can be accelerated using field programmable gate

arrays (FPGAs)(Figure 7.1) which consist of programmable logic that runs in parallel.
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FPGA implementations of image processing algorithms exploit parallelisms and achieve

speed improvements of 8 to 800 times over CPU systems (Draper et al., 2003).

An itemised list of the image processing steps for candidate node detection is displayed

in Table 7.1, with labels a–c (as applicable) indicating processes that can occur con-

currently under each step. The FPGA execution speeds were estimated by summing

together the execution times for constituent operations of each of the image processing

steps and using time estimates from the sources listed. Hence, an approximate total

execution time for the algorithm, given by summing the maximum execution time for

each step in Table 7.1, is 46 ms which corresponds to a frame rate of 21 fps.

Figure 7.1: Conceptual diagram of an FPGA. The LUT (lookup table) contents
and grid lines are reprogrammable. The IO pins are connected to external sources
such as memory chips or image buffers. Source: Draper et al. (2003).
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Table 7.1: Image processing steps for individual frames (Section 4.12).

Estimated FPGA
Description of required execution time per frame

Image processing step* operations (ms)** and reference
1. For each pixel, calculate partial second-order derivatives:

a. Gaussian kernel Gx′y′ 5 × 5 kernel convolution 20 (Draper et al., 2000)
b. Gaussian kernel Gx′′ As for Step 1.a. As for Step 1.a.
c. Gaussian kernel Gy′′ As for Step 1.a. As for Step 1.a.

2. For each pixel, calculate vesselness and location of centre point:
a. Calculate vesselness Fixed mathematical

operations 3 (Draper et al., 2000)
b. Calculate centre points As for Step 2.a. As for Step 2.a.

3. For each pixel, identify branch segments:
a. Connected components

and shape properties Bounding box, area 10 (Amir et al., 2005)
4. For centre points in each shape (branch segment), fit lines:

a. Fit lines Fixed mathematical
operations and
conditional branching 3 (Draper et al., 2000)

b. Calculate Hough Fixed mathematical
transform parameters operations 10 (Tagzout et al., 2001)

5. For each line, estimate a candidate node position:
a. Calculate node positions Fixed mathematical

operations and
conditional branching 3 (Draper et al., 2000)

* Labels a–c indicate sub-components which can occur concurrently under each step.
** Based on 30 MHz clock.

7.4 Interfacing with post processing and control actions

7.4.1 Variable-rate irrigation control

The vision sensor may be used with a variable-rate centre pivot or lateral move irriga-

tion machine to vary water output in response to sensed plant irrigation requirements.

Such a variable-rate system would potentially require data from a variety of other envi-

ronmental sensors (e.g. soil moisture sensors, remote sensing images and meteorological

conditions) and would need a decision support system to integrate the data and deter-

mine the irrigation amount as described in Section 1.5 (also Smith et al. (2007) and

McCarthy et al. (2008)).

Using the IEEE 802.15.4 wireless standard (with a transmission rate of 250 kb/s) and
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transmitting a 50-byte data packet consisting of internode distance and GPS data, the

vision sensor system would be able to log internode length data to a central database.

This data would be used by the decision support system to calculate the irrigation

amount and issue a command for a particular irrigation amount to be applied at the

appropriate GPS location. Table 7.2 sets out the estimated execution times for these op-

erations. This analysis suggests that the camera enclosure must be physically mounted

such that the acquired images are at least six seconds ahead of the variable-rate irriga-

tion application.

Table 7.2: Estimated post processing execution time for steps required to generate
variable-rate irrigation command.

Estimated
execution

Step Process time (ms)
1 Time for one pass of camera enclosure over plant (across row) 3000
2 Wireless transmission of each data packet (internode distance

and GPS data) from imaging system 2
3 Decision support system accesses database and calculates

irrigation amount 1000
4 Wireless transmission of command for irrigation amount to 2

irrigation machine 2
5 Variable-rate nozzle response time 2000

Total estimated time for control sequence 6004 ms

7.4.2 Other potential post processing and control applications

The vision system is capable of infield identification of sub-plant features and the

potential identification of topological positions of plant structures. This has possible

uses beyond irrigation control including (Chapter 8):

• Use as part of a sensor for nutrient deficiencies for the purpose of variable-rate

nutrient application. If the system identifies leaves at specific locations on a plant,

the addition of a second imaging device (Camera 2 of Figure 7.2) with differing

spectral characteristics will permit identification of symptomatic discolouration

of individual leaves associated with nutrient deficiencies. In this case, test dis-

colouration patterns could be stored on-board such that external database access

is not required.
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• Automatic guidance for sensors (e.g. infrared thermometers) which require precise

placement to target individual leaves. Placement of the sensor to the required

mechanical position may take of order one or two seconds which would permit its

use for real-time sensing and control application.

• Correlation between ground-based plant growth measurements (taken with the

automated vision system) and management zones identified in remote sensing

images to enable a physiological interpretation and/or ground truthing of the

remotely sensed images.

Camera 1
Image

buffer 1

Camera 2
Image

buffer 2

FPGA

Image processing Post processing and control

Post
processing

Variable-rate
irrigation control

History

Other sensory input

1

(etc.)

FPGA2

Figure 7.2: Conceptual block diagram of real-time imaging system (left hand side)
and associated variable-rate irrigation control (right hand side). (Camera 2, Image
buffer 2, etc. indicate potential system expansion, if required.)

7.5 Conclusions

The estimated frame rate for algorithm execution on a FPGA implementation was

21 fps. Although this does not meet the standard video frame rate of 25 fps, reducing the

video frame rate and travel speed of the camera enclosure (as suggested in Section 6.4.5)

would provide a margin for computational requirements. Hence, it is concluded that

integration of the sensing system with a real-time irrigation controller is achievable.



Chapter 8

Conclusions and further work

A vision sensing system has been designed and evaluated for on-the-go measurement of

cotton plant internode length. The data from this sensor can be used to indicate crop

water stress and is suitable for potential integration with an automatic variable-rate

irrigation controller on a LMIM.

In this chapter, Sections 8.1 to 8.3 describe the conclusions from this research with

respect to the objectives set out in Section 2.3. Section 8.4 contains recommendations

for further development of the research.

8.1 Plant-based vision sensing of cotton

Objective 1. Develop a robust monitoring platform for non-destructive machine vision

sensing of individual cotton plants under commercial conditions.

AND

Objective 2. Develop an image processing algorithm for the identification of internode

length and other plant geometric properties.

Field measurement of internode length was achieved (Chapter 5) using a moving, plant-
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contacting camera enclosure (Chapter 3). The enclosure was effective at manipulating

foliage such that the main stem and branches became visible as the enclosure moved

over the plant. The maximum distance between node trajectories was found to correlate

strongly with conventional manual measurements of internode length (Chapter 6). The

presence of occlusions and other foliage edges between successive main stem nodes pre-

vented reliable internode length measurement in individual frames (Chapter 4), but was

overcome by analysing candidate node positions in a sequence of images (Chapter 5).

8.2 Practical implementation of infield vision sensing of

individual plants

Objective 3. Evaluate the performance of the machine vision system under a range of

crop and environmental conditions expected in commercial application.

Internodes 2-3 and 3-4 were most frequently detected by the vision system (Chapter 6).

These internode lengths are useful from a plant physiology viewpoint, since younger

internodes are still growing and responding to plant stresses, whereas Internodes 4-5

and older have ceased growing and are a purely historical indication of plant stress.

The number of internode lengths measured by the automatic image processing algo-

rithms was influenced by the ambient lighting conditions (Chapter 6). Favourable

sunlight conditions (diffused sunlight perpendicular to the camera) resulted in an aver-

age of one internode length per plant being automatically detected. Night time infrared

imagery performed as well as the preferred daylight conditions (Section 6.4.2).

Automated conveyance of the camera enclosure across the plant rows was achieved

using a quad-axis motorised drive system (Chapter 3). Along row sensing was less

reliable at automatic internode length detection than measurements across the rows

(Section 6.4.5) but this is expected to be improved by reducing the camera enclosure

speed to reflect the maximum LMIM speed (2–3 m/min).
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8.3 Application to irrigation management

Objective 4. Assess the potential to use the machine vision system for real-time control

of irrigation application.

The system detected one internode length per 1.75 plants for across row measurements

(at an enclosure speed of 0.30 m/s), and one internode length per 3.3 m for along

row measurements (at an enclosure speed of 0.10 m/s) (Section 6.4.5). However, the

detection rate on any particular plant varied from zero to three internode lengths using

the current algorithm. Average plant spacing along the row is 10 plants/m so to achieve

a measurement spatial resolution of 1 m2 for across row measurements the vision system

operation could be modified to measure more plants in each row. This could be achieved

by multiple passes of the camera enclosure or by increasing the width of the camera

enclosure and transparent panel to measure more than one plant per crop row per

sequence.

The vision system’s ability to measure the rate of plant growth and the onset of water

stress was not evaluated because variations in daylight conditions prevented individ-

ual plants from being measured on multiple days. However, with additional imaging

devices and image processing algorithms, other plant-based water stress/growth indi-

cators such as nodes above white flower are potentially measurable using the camera

enclosure (Section 8.4.1). The automatic internode length algorithm was also shown to

be able to be run in real-time at 21 frames per second making it suitable for on-the-go

measurement in conjunction with an irrigation machine.

8.4 Recommended further work

8.4.1 Potential approach for measurement of nodes above white flower

The number of nodes above white flower (NAWF) is a significant parameter for assessing

cotton plant growth. It typically ranges from eight or nine at the start of the cotton
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flowering season, to five or six nodes at cutout (Oosterhuis, 1990). To assess the NAWF,

an additional camera would need to be installed into the camera enclosure to view

those (lower) nodes that are above the white flower but that are currently not able

to be viewed by the primary camera, i.e. nodes 7–10 in the sample image sequences

Chapter 4. The additional camera would not be required to measure precise geometry,

but rather node positions, since the unit of measurement for nodes above white flower

is number of nodes.

Machine vision detection of a cotton plant’s flowers requires colour or shape detection

or both. Due to the variable position and orientation of both flowers and leaves, shape

is not necessarily a reliable property to distinguish the two structures. Similarly, stan-

dard RGB image sensor channels are not guaranteed to differentiate flowers from leaves

since both plant materials may appear overexposed in all channels in direct sunlight.

However, preliminary field investigations found that a red filter was effective at differ-

entiating yellow flowers from both sunlit and shaded green leaves from plant top views

(Figure 8.1), since green leaves have a high green and low red reflectance while yellow or

white flowers have a high green and high red reflectance. Hence, a simple threshold on

a red-filtered image is expected to yield candidate white flowers for individual frames.

This suggests that an additional (low resolution) camera would also be required to

specifically obtain red images for flower detection, since the node detection algorithm

uses the green channel of the image.

The image processing algorithm for flower detection would be expected to be similar to

the node detection algorithm, where candidate flowers are detected in individual frames

and then accepted or rejected at the sequential image analysis stage. Since only first

position flowers are required to be detected, only the image area surrounding the main

stem need be searched for white flowers. Node ‘ownership’ of flowers could be obtained

by comparing candidate flower trajectories with candidate node trajectories.
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(a) (b)

Figure 8.1: Top view of a cotton plant with yellow flowers, captured simultaneously
with narrow band filters of: (a) 940 nm; and (b) 670 nm. The circular panel at
the top left is a white reference and the bright regions of image (b) correspond to
white flowers on the cotton plant.

8.4.2 System enhancement

The following recommendation is considered high priority for regular research use of

the vision system in its present configuration.

• Design a hood and lighting scheme for daytime operation of the camera enclosure

to improve performance of the image processing algorithms under a range of

sunlight conditions.

Potential research and development areas to increase the node detection rate of the

vision system are below.

• Increase the width of the camera enclosure to enable measurement of more than

one plant per row for across row measurements. For example, increase the width

of camera enclosure Mark 4 (Table 3.1 in Section 3.2), but maintain the enclosure’s

vertical section geometry (Figure 3.4(d)) and use a wider angle camera lens for

video acquisition. Modification of the image processing algorithm is expected to

be necessary to detect and track multiple plants in a single video sequence.



CHAPTER 8. CONCLUSIONS AND FURTHER WORK 158

• Incorporate algorithms for adaptive height control of the camera enclosure so that

plants of different size or age may be automatically measured in the field. For the

present research the height of the camera enclosure was manually adjusted for

different plant sizes (Section 3.7 and 3.8). However, the automated infield chassis

had motorised height control (Section 3.8).

• Investigate potential algorithm developments such as modeling of plant structure

to reduce node detection computation for each frame and colour clustering meth-

ods such as that described in Neto, Meyer & Jones (2006) to segment vegetation

pixels corresponding to different plant materials (Meyer, 2008).

• Investigate techniques by which node positions from the top of the plant are au-

tomatically counted or identified. This may potentially be achieved by improving

node detection rates so the top five nodes are reliably detected or by relating

internode position to some other plant physiological factor such as the size of the

node’s subtending leaf.

Other research opportunities to extend the vision system’s field use include the follow-

ing.

• Evaluate any modifications/enhancements to the vision system in different cotton

cultivars and operating conditions, including day, night and dawn/dusk.

• Investigate the vision system’s applicability to other field crops.

• Investigate the extent to which the contact between the camera enclosure and the

plant affects plant growth characteristics.

• Examine methods for automatic cleaning of the apparatus, in particular the win-

dow at the front of the camera enclosure, to enable extended periods of field

use.
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8.4.3 Post-processing considerations

Potential applications for the vision system in precision agriculture are listed below.

• Compare automatic internode length measurements with aerial or satellite im-

agery (for example) to investigate spatial variability of plant water stress for

irrigation management.

• Integrate the vision system with a LMIM and real-time controller to demonstrate

application for irrigation control under field conditions.



References

Adamchuk, V., Hummel, J., Morgan, M. & Upadhyaya, S. (2004), ‘On-the-go soil sen-

sors for precision agriculture’, Computers and Electronics in Agriculture 44(1), 71–

91.

Adamsen, F., Coffelt, T., Nelson, J., Barnes, E. & Rice, R. (2000), ‘Method for us-

ing images from a color digital camera to estimate flower number’, Crop Science

40, 704–709.

Amir, A., Zimet, L., Sangiovanni-Vincentelli, A. & Kao, S. (2005), ‘An embedded

system for an eye-detection sensor’, Computer Vision and Image Understanding

98, 104–123.

Andersen, H., Reng, L. & Kirk, K. (2005), ‘Geometric plant properties by relaxed

stereo vision using simulated annealing’, Computers and Electronics in Agriculture

49, 219–232.

Australian Bureau of Statistics (2006), Water Account, Australia 2004-2005, ABS Cat-

alogue No. 4610.0, Commonwealth of Australia.

Australian Bureau of Statistics (2008), Water Use on Australian Farms 2005-2006,

ABS Catalogue No. 4618.0, Commonwealth of Australia.

Bacci, L., Vincenzi, M. D., Rapi, B., Arca, B. & Benincasa, F. (1998), ‘Two methods

for the analysis of colorimetric components applied to plant stress monitoring’,

Computers and Electronics in Agriculture 19, 167–186.

160



REFERENCES 161

Bakic, V. (1996), The MR-RIPL 2.0 user’s guide. Viewed 26 October 2006,

http://rootimag.css.msu.edu/MR-RIPL/MR-RIPL-2.0_guide_HTML.

Bjurstrom, H. & Svensson, J. (2002), Assessment of grapevine vigour using image

processing, Electrical engineering, Linkoping University. Master’s thesis.

Bourland, F., Oosterhuis, D., Tugwell, N., Cochran, M. & Danforth, D. (1997), In-

terpretation of cotton growth curves generated by COTMAN, Special report 181,

University of Arkansas Agricultural Experiment Station, Fayetteville, Arkansas.

Bowman, W. (1989), ‘The relationship between leaf water status, gas exchange,

and spectral reflectance in cotton leaves’, Remote Sensing of the Environment

30(392), 249–255.

Bramley, R. & Hamilton, R. (2004), ‘Understanding variability in winegrape production

systems: 1. Within vineyard variation in yield over several vintages’, Australian

Journal of Grape and Wine Research 10, 32–45.

Breda, N. (2003), ‘Ground-based measurements of leaf area index: a review of meth-

ods, instruments and current controversies’, Journal of Experimental Botany

54(392), 2403–2417.

Cantrell, R. (2005), ‘The world of cotton’, Pflanzenschutz-Nachrichten Bayer 58(1), 77–

92.

Carter, G. & Miller, R. (1994), ‘Early detection of plant stress by digital imaging within

narrow stress-sensitive wavebands’, Remote sensing and environment 50, 295–302.

Casady, W., Singh, N. & Costello, T. (1996), ‘Machine vision for measurement of rice

canopy dimensions’, Transactions of the ASAE 39(5), 1891–1898.

Chaerle, L., Hulsen, K., Hermans, C., Strasser, R., Valcke, R., Hfte, M. & van der

Straeten, D. (2003), ‘Robotized time-lapse imaging to assess in-planta uptake of



REFERENCES 162

phenylurea herbicides and their microbial degradation’, Physiologia Plantarum

118(4), 613–619.

Chanwimaluang, T. & Fan, G. (2003), An efficient blood vessel detection algorithm for

retinal images using local entropy thresholding, in ‘Proceedings of the 2003 IEEE

International Symposium on Circuits and Systems, Bangkok’.

Chi, Y., Chien, C. & Lin, T. (2002), ‘Leaf shape modeling and analysis using geometric

descriptors derived from Bezier curves’, Transactions of the ASAE 45(6), 175–185.

Chien, C. & Lin, T. (2002), ‘Leaf area measurement of selected vegetable seedlings

using elliptical Hough transform’, Transactions of the ASAE 45(5), 1669–1677.

Chien, C. & Lin, T. (2005), ‘Non-destructive growth measurement of selected vegetable

seedlings using orthogonal images’, Transactions of the ASAE 48(5), 1953–1961.

Chien, C., Wang, C., Yeh, C. & Lin, T. (2004), Plant seedling measurement and graph-

ical reconstruction using multiple orthogonal-view images, in ‘Proceedings of the

2nd International Symposium on Machinery and Mechatronics for Agriculture and

Biosystems Engineering’.

Colaizzi, P., Barnes, E., Clarke, T., Choi, C., Waller, P., Haberland, J. & Kostrzewski,

M. (2003), ‘Water stress detection under high frequency sprinkler irrigation with

water deficit index’, Journal of Irrigation and Drainage Engineering 129(1), 36–

43.

Computronics Corporation Ltd. (2002), Farmscan, Bentley, Western Australia. Viewed

3 March 2005, http://www.farmscan.net.

Corke, P. (2008). Science Leader, Sensor Network Systems, CSIRO, pers. comm. 11

October.

CSD (2007), Cotton Seed Distributors Variety Guide. Viewed 10 March 2008,

http://www.csd.net.au.

Das, V. (2004), Photosynthesis, Science Publishers, Inc, Enfield, New Hampshire.



REFERENCES 163

Deltapine (2007), Deltapine Australia Products. Viewed 10 March 2008,

http://www.deltapine.com.au.

Deriche, R. & Faugeras, O. (1990), ‘Tracking line segments’, Lecture Notes in Computer

Science 427, 259–268.

Draper, B., Beveridge, J., Bohm, A., Ross, C. & Chawathe, M. (2003), ‘Accelerated im-

age processing on FPGAs’, IEEE Transactions on Image Processing 12(12), 1543–

1551.

Draper, B., Najjar, W., Bohm, W., Hammes, J., Rinker, B., Ross, C., Chawathe,

M. & Bins, J. (2000), Compiling and optimizing image processing algorithms for

FPGAs, in ‘Fifth IEEE International Workshop on Computer Architectures for

Machine Perception’, pp. 222–231.

Du, J., Wang, X. & Zhang, G. (2007), ‘Leaf shape based plant species recognition’,

Applied Mathematics and Computation 185, 883–893.

Duda, R. & Hart, P. (1972), ‘Use of the Hough transformation to detect lines and

curves in pictures’, Communications of the ACM 15(1), 11–15.

Dunn, M., Billingsley, J. & Bell, D. (2006), ‘Vision based macadamia yield assessment’,

Sensor Review 26, 312–317.

Edan, Y., Rogozin, D., Flash, T. & Miles, G. (2000), ‘Robotic melon harvesting’, IEEE

Transactions on Robotics and Automation 16(6), 831–834.

Ehleringer, J. & Hammond, S. (1987), ‘Solar tracking and photosynthesis in cotton

leaves’, Agricultural and Forest Meteorology 39, 25–35.

Ehret, D., Lau, A., Bittman, S., Lin, W. & Shelford, T. (2001), ‘Automated monitoring

of greenhouse crops’, Agronomie 21(1), 403–414.

Evans, R., Benham, B. & Trooien, T., eds (1997a), National Irrigation Symposium:

Proceedings of the 4th Decennial Symposium, American Society of Agricultural

Engineers, Phoenix, Arizona.



REFERENCES 164

Evans, R., Buchleiter, G., Sadler, E., King, B. & Harting, G. (1997b), Controls for

precision irrigation with self-propelled systems, in Evans et al. (1997a), pp. 322–

331.

Ewing, R. & Horton, R. (1999), ‘Quantitative color image analysis of agronomic im-

ages’, Agronomy Journal 91, 148–153.

Fleisher, D., Rodriguez, L., Both, A., Cavazzoni, J. & Ting, K. (2006), Advanced life

support systems in space, in ‘CIGR Handbook of Agricultural Engineering Volume

VI Information Technology’, pp. 339–354.

Foley, J. & Raine, S. (2001), Centre pivot and lateral move machines in the Australian

cotton industry, Publication 1000176/1, National Centre for Engineering in Agri-

culture, USQ, Toowoomba.

Foley, J. & Raine, S. (2002), ‘Overhead irrigation in the Australian cotton industry’,

The Australian Cottongrower 23(1), 40–44.

Frangi, A., Niessen, W., Vincken, K. & Viergever, M. (1998), ‘Multiscale vessel en-

hancement filtering’, Lecture Notes in Computer Science 1496, 130–137.

Gausman, H., Allen, W., Escobar, D., Rodriguez, R. & Cardenas, R. (1971), ‘Age

effects of cotton leaves on light reflectance, transmittance, and absorptance and

on water content and thickness’, Agronomy Journal 63, 465–469.

Geiger, D. (2004), Extending the utility of machine based height sensors to spatially

monitor cotton growth, Biological and agricultural engineering, Texas A & M

University. Master’s thesis.

Gibson, P. & Power, C. (2000), Introductory Remote Sensing: Digital Image Processing

and Applications, Routledge, London.

Giusto, P., Martin, G. & Harcourt, E. (2001), Reliable estimation of execution time

of embedded software, in ‘Proceedings of the Conference on Design, Automation

and Test in Europe’, IEEE Press, pp. 580–589.



REFERENCES 165

Goldhamer, D. & Fereres, E. (2004), ‘Irrigation scheduling of almond trees with trunk

diameter sensors’, Irrigation Science 23(1), 11–19.

Gomez, K. & Gomez, A. (1984), Statistical Procedures for Agricultural Research, John

Wiley & Sons.

Hearn, A. (1994), The principles of cotton water relations and their application in

management, in G. Constable & N. Forrester, eds, ‘Challenging the Future: Pro-

ceedings of the world cotton research conference’, CSIRO, Australia, p. 66.

Hemming, J., Golbach, F. & Noordam, J. (2005), Reverse volumetric intersection (RVI),

a method to generate 3D images of plants using multiple views, in ‘Computer-

Bildanalyse in der Landwirtschaft’.

Hemming, J. & Rath, T. (2002), ‘Image processing for plant determination using the

Hough transform and clustering methods’, Gartenbauwissenschaft 67(1), 1–10.

Hemming, J., van Henten, E., van Tuijl, B. & Bontsema, J. (2005), A leaf detection

method using image sequences and leaf movement, in van Straten et al. (2005),

pp. 765–772.

Hladuvka, J. & Groller, E. (2002), ‘Exploiting the Hessian matrix for content-based

retrieval of volume-data features’, The Visual Computer 18, 207–217.

Hobbs & Holder LLC (2005), Hobbs & Holder, Ashburn, Georgia. Viewed 13 March

2005, http://www.betterpivots.com.

Huck, M. & Klepper, B. (1977), ‘Water relation of cotton. II. Continuous estimates

of plant water potential from stem diameter measurements’, Agronomy Journal

69, 593–597.

Humphries, S. & Simonton, W. (1993), ‘Identification of plant parts using color and

geometric image data’, Transactions of the ASAE 36(5), 1493–1500.

Hyyppa, J., Kelle, O., Lehikoinen, M. & Inkinen (2001), ‘A segmentation-based method

to retrieve stem volume estimates from 3-d tree height models produced by laser

scanners’, IEEE Transactions on Geoscience and Remote Sensing 39(5), 969–975.



REFERENCES 166

Ishida, M. (2004), ‘Automatic thresholding for digital hemispherical photography’,

Canadian Journal of Forest Research 34(11), 2208–2216.

Ivanov, N., Boissard, P., Chapron, M. & Andrieu, B. (1995), ‘Computer stereo plotting

for 3-D reconstruction of a maize canopy’, Agricultural and Forest Meteorology

75, 85–102.

Jackson, R. & Ezra, C. (1985), ‘Spectral response of cotton to suddenly induced water

stress’, International Journal of Remote Sensing 6(1), 177–185.

Jain, R., Kasturi, R. & Schunck, B. (1995), Machine Vision, McGraw-Hill, Inc, Sydney.

Jimenez, A., Ceres, R. & Pons, J. (2000), ‘A survey of computer vision methods for

locating fruit on trees’, Transactions of the ASAE 43(6), 1911–1920.

Johnson Hake, S., Kerby, T. & Hake, K. (1996), Cotton production manual, Division

of Agriculture and Natural Resources. ANR Publication 3352.

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M. & Baret, F.

(2004), ‘Review of methods for in situ leaf area index determination Part I. theo-

ries, sensors and hemispherical photography’, Agricultural and Forest Meteorology

121(1–2), 19–35.

Jones, H. (2004), ‘Irrigation scheduling: advantages and pitfalls of plant-based meth-

ods’, Journal of Experimental Botany 55(407), 2427–2436.

Jones, H., Stoll, M., Santos, T., de Sousa, C., Chaves, M. & Grant, O. (2002), ‘Use of

infrared thermography for monitoring stomatal closure in the field: application to

grapevine’, Journal of Experimental Botany 53(378), 2249–2260.

Kacira, M. & Ling, P. (2001), ‘Design and development of an automated and non-

contact sensing system for continuous monitoring of plant health and growth’,

Transactions of the ASAE 44(4), 989–996.

Kacira, M., Ling, P. & Short, T. (2002), ‘Machine vision extracted plant movement for

early detection of plant water stress’, Transactions of the ASAE 45(4), 1147–1153.



REFERENCES 167

Kalman, R. (1960), ‘A new approach to linear filtering and prediction problems’, Trans-

actions of the ASME - Journal of Basic Engineering 82, 35–45.

Kaminuma, E., Heida, N., Tsumoto, Y., Yamamoto, N., Goto, N., Okamoto, N., Kon-

agaya, A., Matsui, M. & Toyoda, T. (2004), ‘Automatic quantification of mor-

phological traits via three-dimensional measurement of Arabidopsis’, The Plant

Journal 38, 358–365.

Kass, M., Witkin, A. & Terzopoulos, D. (1987), ‘Snakes: active contour models’, In-

ternational Journal of Computer Vision 1(4), 321–331.

Kawollek, M. & Rath, T. (2005), Machine vision for three-dimensional modelling of

Gerbera jamesonii for automated robotic harvesting, in van Straten et al. (2005).

Khan, U. (2003), ‘Monitoring the growth and development of cotton plants using main

stem node counts’, Asian Journal of Plant Sciences 2(8), 593–596.

Kim, Y. & Ling, P. (2001), ‘Machine vision guided sensor positioning system for leaf

temperature assessment’, Transactions of the ASAE 44(6), 1941–1947.

King, B. & Wall, R. (1998), ‘Supervisory control and data acquisition system for site-

specific center pivot operation’, Applied Engineering in Agriculture 14(2), 135–144.

Kise, M. & Zhang, Q. (2006), Reconstruction of a virtual 3D field scene from ground-

based multi-spectral stereo imagery, ASAE Meeting Paper No. 063098, ASAE,

Sacramento, California, ASAE.

Klepper, B., Browning, V. & Taylor, H. (1971), ‘Stem diameter in relation to plant

water status’, Plant Physiology 48, 683–685.

Kondo, N. & Ting, K. (1998), ‘Robotics for plant production’, Artificial Intelligence

Review 12(1–3), 227–243.

Kramer, P. & Boyer, J. (1995), Water Relations of Plants and Soils, Academic Press,

San Diego.

Kurata, K. & Yan, J. (1996), ‘Water stress estimation of tomato canopy based on

machine vision’, Acta Horticulturae 440, 389–394.



REFERENCES 168

Landivar, J., Cothren, J. & Livingston, S. (1996), Development and evaluation of the

average five internode length technique to determine time of mepiquat chloride

application, in ‘Proceedings of the Beltwide Cotton Conferences’, Vol. 2, National

Cotton Council, Memphis, Tennessee, pp. 1153–1156.

Lang, A. (1973), ‘Leaf orientation of a cotton plant’, Agricultural Meteorology 11, 37–

51.

Laptev, I., Mayer, H., Lindeberg, T., Eckstein, W., Steger, C. & Baumgartner, A.

(2000), ‘Automatic extraction of roads from aerial images based on scale space

and snakes’, Machine Vision and Applications 12(1), 23–31.

Larmore, L. (1965), Introduction to Photographic Principles, 2nd edn, Dover Publica-

tions, Inc., New York.

Leinonen, I. & Jones, H. (2004), ‘Combining thermal and visible imagery for estimating

canopy temperature and identifying plant stress’, Journal of Experimental Botany

55(401), 1423–1431.

Lu, Z. & Neumann, P. (1999), ‘Water stress inhibits hydraulic conductance and leaf

growth in rice seedlings but not the transport of water via mercury-sensitive water

channels in the root’, Plant Physiology 120, 143–151.

Magnus, J. R. & Neudecker, H. (1999), Matrix Differential Calculus With Applications

in Statistics and Econometrics, 2nd edn, John Wiley & Sons.

McCarthy, A., Raine, S. & Hancock, N. (2008), Towards evaluation of adaptive con-

trol systems for improved site-specific irrigation of cotton, in ‘Irrigation Australia

National Conference’, Melbourne.

McCarthy, C., Hancock, N. & Raine, S. (2007), On-the-go machine vision sensing of

cotton plant geometric parameters: first results, in J. Billingsley & R. Bradbeer,

eds, ‘Mechatronics and Machine Vision in Practice’, Springer.

McDonald, T. & Chen, Y. (1990), ‘Application of morphological image processing in

agriculture’, Transactions of the ASAE 33(4), 1345–1352.



REFERENCES 169

McKenzie, D., ed. (1998), SOILpak for cotton growers, 3rd edn, NSW Agriculture.

Mery, D. & Filbert, D. (2002), ‘Automated flaw detection in aluminum castings based

on the tracking of potential defects in a radioscopic image sequence’, IEEE Trans-

actions on Robotics and Automation 18(6), 890–901.

Meyer, G. (2008). Science Leader, Sensor Network Systems, CSIRO, pers. comm. 15

September.

Meyer, G., Hindman, T., Jones, D. & Mortensen, D. (2004), ‘Digital camera operation

and fuzzy logic classification of uniform plant, soil, and residue color images’,

Transactions of the ASAE 20(4), 519–529.

Meyer, W. & Walker, S. (1981), ‘Leaflet orientation in water-stressed soybeans’, Agron-

omy Journal 73(6), 1071–1074.

Milroy, S., Goyne, P. & Larsen, D. (2002), Cotton information sheet: irrigation schedul-

ing of cotton, Technical report, Australian Cotton Cooperative Research Centre.

Moriana, A. & Fereres, E. (2002), ‘Plant indicators for scheduling irrigation of young

olive trees’, Irrigation Science 21(2), 83–90.

Murase, H., Nishiura, Y. & Mitani, K. (1997), ‘Environmental control strategies based

on plant responses using intelligent machine vision technique’, Computers and

Electronics in Agriculture 18(2), 137–148.

Nelson, A. (2000), Implementation of image processing algorithms on FPGA hardware,

Electrical engineering, Vanderbilt University. Master’s thesis.

Neto, J., Meyer, G. & Jones, D. (2006), ‘Individual leaf extractions from young canopy

images using Gustafson-Kessel clustering and a genetic algorithm’, Computers and

Electronics in Agriculture 51(1–2), 68–85.

Neto, J., Meyer, G., Jones, D. & Samal, A. (2006), ‘Plant species identification using

Elliptic Fourier leaf shape analysis’, Computers and Electronics in Agriculture

50(2), 121–134.



REFERENCES 170

Nobis, M. & Hunziker, U. (2005), ‘Automatic thresholding for hemispherical canopy-

photographs based on edge-detection’, Agricultural and Forest Meteorology

128(2), 243–250.

Noh, H., Zhang, Q., Han, S., Shin, B. & Reum, D. (2005), ‘Dynamic calibration and

image segmentation methods for multispectral imaging crop nitrogen deficiency

sensors’, Transactions of the ASAE 48(1), 393–401.

Noordam, J., Hemming, J., van Heerde, C., Golbach, F., van Soest, R. & Wekking,

E. (2005), Automated rose cutting in greenhouses with 3D vision and robotics:

analysis of 3D vision techniques for stem detection, in van Straten et al. (2005).

Oosterhuis, D. (1990), Growth and development of a cotton plant, in ‘Nitrogen Nu-

trition in Cotton: Practical Issues’, Cooperative Extension Service, University of

Arkansas.

Pan, Z., Hu, W., Guo, X. & Zhao, C. (2004), An efficient image-based 3D reconstruction

algorithm for plants, in ‘The 2004 International Conference on Computational

Science and its Applications’, Assisi, Italy, pp. 751–760.

Papari, G. & Petkov, N. (2005), ‘Algorithm that mimics human perceptual grouping

of dot patterns’, Lecture Notes in Computer Science 3704, 497–506.

Perry, C. & Pocknee, S. (2004), ‘Precision irrigation controls to optimize water appli-

cation’, International Water & Irrigation 24(3), 20–23.

Peters, R. & Evett, S. (2004), ‘Modeling diurnal canopy temperature dynamics us-

ing one-time-of-day measurements and a reference temperature curve’, Agronomy

Journal 96, 1553–1561.

Praat, J., Bollen, F. & Irie, K. (2004), New approaches to the management of vineyard

variability in New Zealand, in ‘The 12th Australian Wine Industry Technical Con-

ference, Managing Vineyard Variation (Precision Viticulture)’, Australian Wine

Industry, Melbourne, pp. 24–30.



REFERENCES 171

Prenger, J., Ling, P., Hansen, R. & Keener, H. (2005), ‘Plant response-based irrigation

control system in a greenhouse: system evaluation’, Transactions of the ASAE

48(3), 1175–1183.

Preparata, F. P. & Shamos, M. I. (1985), Computational Geometry: An Introduction,

Springer.

Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J. & Kang, S. (2006), ‘Image-based plant

modeling’, ACM Transactions on Graphics 25(3), 599–604.

Raine, S. & Foley, J. (2002), ‘Comparing systems for cotton irrigation’, The Australian

Cottongrower 23(4), 30–35.

Room, P. & Hanan, J. (1995), Virtual cotton: a new tool for research, management and

training, in ‘Challenging the Future: Proceedings of the World Cotton Research

Conference I’, CSIRO, Melbourne, pp. 40–44.

Rovira-Mas, F., Zhang, Q. & Reid, J. (2005), ‘Creation of three-dimensional crop maps

based on aerial stereoimages’, Biosystems Engineering 90(3), 251–259.

Sadler, E., Bauer, P., Busscher, W. & Millen (2000b), ‘Site-specific analysis of a

droughted corn crop: II. Water use and stress’, Agronomy Journal 92, 403–410.

Sadler, E., Camp, C., Evans, D. & Millen, J. (2002), ‘Corn canopy temperatures

measured with a moving infrared thermometer array’, Transactions of the ASAE

45(3), 581–591.

Sadler, E., Camp, C., Evans, D. & Usrey, L. (1997a), A site-specific irrigation system

for the southeastern USA coastal plain, in Evans et al. (1997a), pp. 337–344.

Sadler, E., Evans, R., Buchleiter, G., King, B. & Camp, C. (2000a), Design consid-

erations for site-specific irrigation, in ‘Proceedings of the 4th Decennial National

Irrigation Symposium’, Phoenix, Arizona, pp. 304–315.

Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S. & Kikinis, R.

(1997), ‘3D multi-scale line filter for segmentation and visualization of curvilinear

structures in medical images’, Lecture Notes in Computer Science 1205, 213–222.



REFERENCES 172

Schumann, A. & Zaman, Q. (2005), ‘Software development for real-time ultrasonic

mapping of tree canopy size’, Computers and Electronics in Agriculture 45(1), 25–

40.

Seginer, I., Elster, R., Goodrum, J. & Reiger, M. (1992), ‘Plant wilt detection by

computer-vision tracking of leaf tips’, Transactions of the ASAE 35(5), 1563–1567.

Serra, J. (1982), Image Analysis and Mathematical Morphology, Academic Press, Lon-

don.

Sezgin, M. & Sankur, B. (2004), ‘Survey over image thresholding techniques and quan-

titative performance evaluation’, Journal of Electronic Imaging 13(1), 146–165.

Shearer, S. & Holmes, R. (1990), ‘Plant identification using color co-occurrence matri-

ces’, Transactions of the ASAE 33(6), 2037–2044.

Shimizu, H. & Heins, R. (1995), ‘Computer-vision-based system for plant growth anal-

ysis’, Transactions of the ASAE 38(3), 959–964.

Shiraishi, M. & Sumiya, H. (1996), ‘Plant identification from leaves using quasi-sensor

fusion’, Transactions of the ASME 118(3), 382–387.

Shrestha, D. & Steward, B. (2003), ‘Automatic corn plant population measurement

using machine vision’, Transactions of the ASAE 46(2), 559–565.

Shrestha, D. & Steward, B. (2005), ‘Shape and size analysis of corn plant canopies

for plant population and spacing sensing’, Applied Engineering in Agriculture

21(2), 295–303.

Simonton, W. (1990), ‘Automatic geranium stock processing in a robotic workcell’,

Transactions of the ASAE 33(6), 2074–2080.

Singh, S. & Montemerlo, M. (1997), Recent results in the grading of vegetative cuttings

using computer vision, in ‘Proceedings of the IEEE-RSJ International Conference

on Intelligent Robots and Systems Innovative Robots for Real-World Applications’.



REFERENCES 173

Smith, R., Raine, S., McCarthy, A. & Hancock, N. (2007), Managing spatial and tem-

poral variability in irrigated agriculture through adaptive control, in ‘Challenge

Today, Technology Tomorrow’, Society Engineering in Agriculture National Con-

ference, Adelaide.

Stabile, M. (2005), Site-specific strategies for cotton management, Master’s thesis,

Texas A & M University.

Steger, C. (1996), ‘Extracting curvilinear structures: a differential geometric approach’,

Lecture Notes in Computer Science 1064, 630–641.

Steward, B., Tian, L., Nettleton, D. & Tang, L. (2004), ‘Reduced-dimension clustering

for vegetation segmentation’, Transactions of the ASAE 47(2), 609–616.

Tagzout, S., Achour, K. & Djekoune, O. (2001), Hough transform algorithm for FPGA

implementation, in ‘IEEE Workshop on Signal Processing Systems’, pp. 384–393.

Takakura, T., Shimomachi, T. & Takemasa, T. (2002), Non-destructive detection of

plant health, Acta Horticulturae 578, International Society for Horticultural Sci-

ence, pp. 303–306.

Takizawa, H., Ezaki, N. & Mizuno, S. (2005), Measurement of plants by stereo vi-

sion for agricultural applications, in ‘Proceedings of the Seventh IASTED Internal

Conference: Signal and Image Processing’.

Tang, L., Tian, L. & Steward, B. (2000), ‘Color image segmentation with genetic

algorithm for in-field weed sensing’, Transactions of the ASAE 43(4), 1019–1027.

Tang, L., Tian, L. & Steward, B. (2003), ‘Classification of broadleaf and grass weeds

using Gabor wavelets and an artificial neural network’, Transactions of the ASAE

46(4), 1247–1254.

Tarbell, K. & Reid, J. (1991), ‘A computer vision system for characterizing corn growth

and development’, Transactions of the ASAE 34(5), 2245–2255.

Teague, T., Vories, E., Tugwell, N. & Danforth, D. (1999), Using the COTMAN system

for early detection of stress: Triggering irrigation based on square retention and



REFERENCES 174

crop growth, in ‘Proceedings of the 1999 Cotton Research Meeting and Summaries

of Cotton Research in Progress’, University of Arkansas Agricultural Experiment

Station, Fayetteville, Arkansas, pp. 46–55.

Theis, M., Pfeifer, N., Winterhalder, D. & Gorte, B. (2004), ‘Three-dimensional recon-

struction of stems for assessment of taper, sweep and lean based on laser scanning

of standing trees’, Scandinavian Journal of Forest Research 19(6), 571–581.

Tian, L. & Slaughter, D. (1998), ‘Environmentally adaptive segmentation algorithm for

outdoor image segmentation’, Computers and Electronics in Agriculture 21, 153–

168.

Tumbo, S., Salyani, M., Whitney, J., Wheaton, T. & Miller, W. (2002), ‘Investigation

of laser and ultrasonic ranging sensors for measurements of citrus canopy volume’,

Applied Engineering in Agriculture 18(3), 367–372.

University of Arkansas Division of Agriculture (2005), COTMAN, Fayetteville,

Arkansas. Viewed 12 March 2005, http://www.uark.edu/depts/cotman/.

van Henten, E. & Bontsema, J. (1995), ‘Non-destructive crop measurements by image

processing for crop growth control’, Journal of Agricultural Engineering Research

61, 97–105.

van Henten, E., Hemming, J., van Tuijl, B., Kornet, J., Meuleman, J., Bontsema, J.

& van Os, E. (2002), ‘An autonomous robot for harvesting cucumbers in green-

houses’, Autonomous Robots 13(3), 241–258.

van Straten, G., Bot, G., van Meurs, W. & Marcelis, L., eds (2005), Proceedings of the

International Conference on Sustainable Greenhouse Systems, Acta Horticulturae

691, International Society for Horticultural Science.

Vrindts, E. & de Baerdemaeker, J. (1997), Optical discrimination of crop, weed and soil

for on-line weed detection, in J. Stafford, ed., ‘Precision Agriculture 1997, Volume

II: Technology, IT and Management’, BIOS Scientific Publishers Limited, Oxford,

pp. 533–544.



REFERENCES 175

Waksman, A. & Rosenfeld, A. (1997), ‘Assessing the condition of a plant’, Machine

Vision and Applications 10(1), 35–41.

Wang, N., Zhang, N., Dowell, F., Sun, Y. & Peterson, D. (2001), ‘Design of an op-

tical weed sensor using plant spectral characteristics’, Transactions of the ASAE

44(2), 409–419.

Wang, Z., Heinemann, P., Sommer III, H., Walker, P., Morrow, C. & Heuser, C. (1998),

‘Identification and separation of micropropagated sugarcane shoots based on the

Hough transform’, Transactions of the ASAE 98, 4105–1535.

Wei, J. & Salyani, M. (2004), ‘Development of a laser scanner for measuring tree

canopy characteristics: Phase 1. Prototype development’, Transactions of the

ASAE 47(6), 2101–2107.

Wilhoit, J., Kutz, L., Fly, D. & South, D. (1994), ‘PC-based multiple camera ma-

chine vision systems for pine seedling measurements’, Transactions of the ASAE

10(6), 841–847.

Williams, L. & Ayars, J. (2005), ‘Grapevine water use and the crop coefficient are

linear functions of the shaded area measured beneath the canopy’, Agricultural

and Forest Meteorology 132, 201–211.

Woebbecke, D., Meyer, G., Von Bargen, K. & Mortensen, D. (1995), ‘Color indices for

weed identification under various soil, residue, and lighting conditions’, Transac-

tions of the ASAE 38(1), 259–269.

Yatapanage, K. & So, H. (2001), ‘The relationship between leaf water potential and

stem diameter in sorghum’, Agronomy Journal 93(6), 1341–1343.

Zeng, G., Birchfield, S. & Wells, C. (2006), ‘Detecting and measuring fine roots in

minirhizotron images using matched filtering and local entropy thresholding’, Ma-

chine Vision and Applications 17, 265–278.

Zhang, J., Sokhansanj, S., Wu, S., Fang, R., Yang, W. & Winter, P. (1998), ‘A trans-

formation technique from RGB signals to the Munsell system for color analysis of

tobacco leaves’, Transactions of the ASAE 19, 155–166.



REFERENCES 176

Zhang, N., Wang, M. & Wang, N. (2002), ‘Precision agriculture – a worldwide overview’,

Computers and Electronics in Agriculture 36(2–3), 113–132.



Appendix A

Glossary

The following terms are relevant to plant stress and cotton growth and development,

followed by a generic diagram of cotton plant structure (Figure A.1).

Allometry. The study of the change in proportions of parts of an organism as a result

of growth.

Biomass. The total mass of living matter in a given unit volume of environmental

area.

Boll. Cotton: The name given to cotton’s fruit.

Cutout. Cotton: The end of vegetative growth that generally coincides with nodes

above white flower (NAWF) equal to five or six; plant then focuses on boll devel-

opment.

Dendrometer. An instrument to measure tree diameter.

Growth rate. Change in height with respect to change in number of main stem nodes.

Heat units. Cotton: Also day-degrees or DD; a cumulative linear function of daily

minimum and maximum temperatures used to express cotton’s development (start-

ing at planting) in terms of temperature; significant because cotton’s development

is strongly influenced by temperature.
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Heliotropism. The adjustment of leaf angle and leaf azimuth to the changes in the

position of the solar beam (Meyer & Walker, 1981). Paraheliotropism indicates

leaf movement to minimise sunlight interception while diaheliotropism indicates

leaf movement to maximise sunlight interception (Das, 2004).

Internode length. Distance between successive nodes on a branch or stem. Agronomists

use the distance between the fourth and fifth nodes as an indicator of water stress.

If the fourth-to-fifth internode length is greater than approximately 70 mm the

plant is exhibiting too much vegetative growth.

Leaf area index (LAI). The ratio of the total one-sided green leaf area per unit

ground surface area; defines the area that interacts with solar radiation.

Leaf water potential. A measure in megaPascals (MPa) of the amount of tension

a leaf is applying on its water content, with more negative tensions indicating

higher stress.

Lint. Cotton: Cotton fibres.

Node. Position at which a branch or leaf develops on the main stem.

Nodes above white flower (NAWF). Cotton: The number of main stem nodes

above the highest first-position (closest to main stem) white flower. As vege-

tative growth decreases, flowering progresses up the plant and NAWF decreases,

hence NAWF is an indicator of both vegetative and reproductive growth.

Shedding. Cotton: A process by which a cotton plant drops fruit; this may be a result

of the plant adjusting its fruit load to match the quantity of resources available

(susceptibility varies with fruit age), or the process may be the result of factors

such as insect damage.

Square. Cotton: A fruiting bud.

Target development curve. The desired value of a particular crop attribute plotted

throughout the crop’s growth. A comparison of measured crop data and the target
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development curve may be used to draw conclusions about the crop’s performance

and aid in management decisions.

Nodes
White
flower

Internode
length

Figure A.1: A cotton plant with significant attributes labeled and partially defoli-
ated for ease of visualising the branching structure. Each node on the main stem
and on each branch would usually have a subtending leaf.



Appendix B

Field apparatus implementation

details

This appendix comprises the sections listed below.

Appendix B.1 lists component values for the circuit implementation of the LED il-

lumination of camera enclosure Mark 4 (Section 3.5.2).

Appendix B.2 contains overall dimensions of the automated infield chassis (Sec-

tion 3.8).

Appendix B.3 illustrates the mechanical implementation of the translational and ro-

tational degrees of freedom for the automated infield chassis (Section 3.8).

Appendix B.4 contains a schematic circuit diagram for motor control on the auto-

matic infield chassis (Section 3.8.2).
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B.1 LED illumination for camera enclosure Mark 4

The circuit diagram for the LED illumination is in Figure B.1(a), where the blocks

denoted ‘top’ and ‘bottom’ refer to the two separate LED arrays on the top and bottom

horizontal edges of the camera enclosure window, respectively. The circuit diagram in

Figure B.1(b) represents the connections required for each group of three LEDs in an

array. Six such circuits were required to be connected in parallel to generate an array of

18 LEDs. Table B.1 displays the component values for the white, 850 nm and 940 nm

LEDs, as well as a reference website for supply of the LEDs.

Only one type of LED circuit was activated at a time for standard operation of the

camera enclosure (via power switches SW1–SW3, which feature in Figure 3.6(b)).

12V

SW1 SW2 SW3

Array of 18
850 nm LEDs

(top)

Array of 18
940 nm LEDs

(top)

Array of 18
850 nm LEDs

(bottom)

Array of 18
940 nm LEDs

(top)

Array of 18
white LEDs

(top)

Array of 18
white LEDs

(bottom)

(a)

12V

LED1

LED2

LED3

LED

LED

V

I

R

(b)

Figure B.1: Schematic electrical circuit for LED illumination: (a) connections for
all three types of LEDs; and (b) part of an individual LED array.

Table B.1: Electronic component values for LED arrays.

LED VLED ILED R
type (V) (mA) (Ω) LED specifications Supplier
White 3 50 60 5 mm, 20◦, 12000 mcd www.goodwillsales.com
850 nm 2 100 60 5 mm, 14◦ www.allthings.com.au
940 nm 2 100 60 5 mm, 20◦ www.allthings.com.au
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B.2 Overall dimensions of automated infield chassis
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B.3 Overall dimensions of quad-axis drive system for

automated infield chassis
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B.4 Motor control circuit for camera enclosure conveyance
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Appendix C

Spectral differences in plant

materials

A preliminary investigation of plant spectral properties was conducted to determine the

potential for discriminating stems and other cotton plant foliage based on narrowband

spectral differences. This approach was not pursued as discussed in Section 4.6.1, but

the spectral responses are included here for reference.

Stems and fruit have a higher moisture content than leaves, and as such exhibit a

lower reflectance in the water absorption wavelengths around 970 nm (Figure C.1).

Hyperspectral data (Figure C.2) was collected at the cotton field site using an ASD

FieldSpec Handheld Spectrometer (www.asdi.com) for 30 samples each of big and small

bolls, flowers, leaves and stems. By comparison with the results in Figure C.1, cotton

stems and bolls exhibit characteristic stem and fruit curves including the water ab-

sorption band at 970 nm (however some cotton plant stems had a red tinge which is

evident in the graph). The near infrared reflectance properties of the cotton plant ma-

terials potentially enable a differential two-waveband vision system (850 and 970 nm,

for example) to differentiate stems and leaves.
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Figure C.1: Spectral response (300–2500 nm) of plant materials. Source: Kondo
& Ting (1998).

Figure C.2: Spectral response (325–1075 nm) of cotton plant materials.



Appendix D

Algorithm details

This appendix contains details of edge detection algorithms evaluated for the task of

node detection and pseudocode listings for processes in the developed algorithm.

Appendix D.1 describes the Sobel, adaptive thresholding and Canny methods of edge

detection that were evaluated in Section 4.7.

Appendix D.2 contains excerpt pseudocode listings for the automatic node and node

trajectory detection algorithms. Appendix D.2.1 describes the process that se-

lectively projects line segments to the identified main stem to contribute a can-

didate node position (Section 4.11.4) and Appendix D.2.2 describes the process

that identifies adjacent regions of detected node trajectories to enable calculation

of internode distances (Section 5.5).
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D.1 Edge detection algorithms

D.1.1 Sobel edge operator

The Sobel edge operator is the magnitude of the gradient of a pixel. The horizontal and

vertical convolution masks that calculate the pixel’s horizontal and vertical gradients

(sx and sy, respectively) from a 3 × 3 neighbourhood centred on the pixel are:

sx =

⎡⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎥⎦ (D.1)and sy =

⎡⎢⎢⎢⎣
1 2 1

0 0 0

−1 −2 −1

⎤⎥⎥⎥⎦

D.1.2 Edges by adaptive thresholding

Adaptive thresholding flags a pixel as a non-background pixel (i.e an edge pixel) if the

pixel’s intensity is greater than the average intensity of the pixel’s n×n neighbourhood

(where n is a positive integer).

D.1.3 Canny edge detection

An outline of the algorithm for Canny edge detection is as follows (from Jain et al.

(1995)):

1. Smooth the image with a Gaussian filter of window size w.

2. Compute the gradient magnitude and orientation using finite-difference approxi-

mations for the partial derivatives.

3. Apply nonmaxima suppression to the gradient magnitude.

4. Use the double thresholding algorithm (denote thresholds as tlow and thigh) to

detect and link edges.
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D.2 Pseudocode for processes in the node and node

trajectory detection algorithms

D.2.1 Filtering the lines that are used to obtain candidate nodes

In the following pseudocode, lines detected from the hop-along algorithm are filtered to

determine which lines will be used to form candidate node positions (Section 4.11.4).

The line’s start and end points, length and orientation are stored in memory and are

used for evaluating the criteria listed below. ‘Discard’ is implemented simply as an

array which contains a flag for each detected line indicating whether the line has failed

any of the criteria tested.

for all line segments that have not been discarded

// keep only long lines

if current line does not exceed a length threshold then

discard current line

go to next line segment

end if

// remove extra lines that are obviously part of the same branch

if angle between current line and previous line is less than a

threshold, and the lines have an end point in common then

discard top-most line

if top-most line is current line then

go to next line segment

end if

end if

// remove lines that are possibly responses to the main stem

if angle between current line and main stem is less than a

threshold then
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discard current line

go to next line segment

end if

// remove lines that cross over the main stem

if both ends of the current line extend beyond a threshold distance

on either side of the main stem then

discard current line

go to next line segment

end if

// only keep lines that form an acute angle when intersected with

// the main stem

if bottom end of current line is further from the main stem than

the top end of the current line then

discard current line

go to next line segment

end if

// project the line to the main stem to obtain candidate node

find the simultaneous solution to the current line and the main

stem

// remove lines that form candidate nodes outside the image area

if the solution lies outside the image area then

discard current line

go to next line segment

end if

// remove lines that need to be projected a long distance to the

// main stem
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if the distance between the solution and the current line end point

exceeds a threshold then

discard current line

go to next line segment

end if

// save the candidate node position, it passes all the tests

store solution

next

D.2.2 Identifying successive trajectories from smoothed node

positions

Following the grouping of candidate node positions into node trajectories, each group

of nodes was smoothed into a single y-coordinate for each frame number. Regions of

common frames between adjacent node trajectories were required to be identified from

this information.

A pair of node positions occurring in the same frame and belonging to adjacent trajec-

tories are represented as trapeziums in which the left edge of the trapezium corresponds

to the first frame (and node y-coordinates) in which the pair of adjacent nodes were

detected, and the right edge of the trapezium corresponds to the last frame (and node

y-coordinates) in which the pair of adjacent nodes were detected (Section 5.5). The

maximum and final heights of the trapezium are updated whenever the right edge of

the trapezium is updated.

The following pseudocode achieves the task of returning the frame numbers and node

y-coordinates of successive node trajectories.

// group a sequence of vertically-aligned candidate node positions into

// trapeziums (or regions of overlap between adjacent trajectories)

for all frame numbers from start of sequence to end
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for all pixel y-coordinates from top of image to bottom

if a node position is found then

store point

increment y-coordinate until another node position is found

if another node position is found then

for all adjacent trajectories already detected

if end points of already detected adjacent

trajectories align with current pair of node

positions then

set the current pair of node positions to be

the new end points of the already detected

adjacent trajectories

end if

next

if no aligned adjacent trajectories were found then

set the current pair of node positions to be a new

adjacent trajectory

end if

end if

end if

next

next

// remove thin trapeziums (adjacent trajectories that only span a

// small number of frames)

for all trapeziums

if width of trapezium is less than a threshold then

discard trapezium

end if

next
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// remove trapeziums that correspond to adjacent trajectories that are

// already represented

for all trapeziums that have not been discarded

for all other trapeziums that have not been discarded

if the current trapezium shares a vertical edge with another

trapezium then

discard the taller trapezium

end if

next

// remove adjacent trajectories that only occur at the end of the

// sequence

if the trapezium is located within a threshold number of frames

of the end of the sequence then

discard trapezium

end if

next

sort trapeziums in order of ascending minimum y-coordinate

// now need to find a series of vertically-aligned trapeziums since

// some horizontally-displaced trapeziums may have been detected,

// i.e. group series of detected internode positions that occur within

// a specified number of frames of each other

for all trapeziums that have not been discarded

for all trapezium groups already assigned

if current trapezium is aligned vertically with trapezium

group then

add current trapezium to trapezium group

end if

if no aligned trapezium groups were found then

set the current trapezium to be part of a new trapezium

group
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end if

next

next

// use left-most trapezium group (earliest occurring series of

// adjacent node trajectories) to calculate internode lengths

use the maximum heights of the trapeziums in the left-most trapezium

group for internode length calculations


