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Abstract 

An automated approach (TexGen) for modeling the geometry of textile structures 

is presented. This model provides a generic approach to the description of yarn 

geometry and yarn interlacement for all types of weaving. One feature of this 

model is that the shape and size of the cross sections may change locally; this is 

exploited in the functions for interference correction, which modify the textile 

according to geometric considerations to avoid penetration of yarns. Another 

feature of this model is that it acts as a pre-processor for finite element 

simulations by generating a mesh, definition of contact, materials orientation and 

boundary conditions, thus providing an automatic procedure. This paper describes 

the modeling techniques, algorithms and concepts implemented in TexGen and 

examines the functionality of their implementation for a range of two-

dimensional/three-dimensional commercial fabrics. Comparisons between the 

images of real fabrics and modeled fabric structures confirm that the software is 

capable of modeling sophisticated fabric architectures, including twisted yarns 

with varied yarn cross sections. Accurate input measurements of fabric geometry 

are critical for successful results. The paper also discusses directions for further 

development of the approach to overcome current limitations. 

Keywords fabric geometry, modeling, simulation 

Realistic fabric geometric description is essential for modeling of the mechanical 

and physical properties of textiles and textile composites. It determines the 

accuracy of modeling results and geometric non-linear response to external 

loadings. Attempts to model textile geometry were recorded as early as 

the1930s1 and have continued up to the present time.2 There are many 

challenging aspects of modeling fabric structures, for example, even the geometry 

of relatively simple plain-weave fabrics is complicated and requires careful 

modeling to obtain accurate results. There are two major obstacles: the 
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complexity of the textile structure topology and the contact between 

yarns.3 Indeed, yarns are highly flexible and their path and cross-sectional shape 

do not, in general, fit the usually assumed single geometrical form, for example, 

an elliptical cross section. 

A traditional simplified approach is to use the idealized assumptions on yarn path 

and cross-sectional shapes in the fabric, such as Pierce’s model1 and its 

derivatives.4,5 This approach is only reasonably accurate when the yarns remain 

circular and are flexible enough for the free lengths between crossovers to be 

straight. This applies to plain weaves. Pierce’s model1 cannot be used realistically 

to describe other fabrics. There are several studies on the use of analytical 

techniques to predict fabric geometry and mechanical behaviors for specific 

fabrics. While these techniques generally resolve issues of robustness and speed, 

different equations must be formulated for each fabric architecture.6–8 

Apart from the analytical models, several commercial computational tools are 

available, such as TechText CAD, WeaveEngineer and ScotWeave. In TechText 

CAD, yarn paths are calculated based on Peirce's geometric model, and the 

program provides the basic facilities for setting up weaves and simple weft knits, 

defining yarn specifications and viewing the structures in three dimensions. The 

software has the ability to predict the uniaxial and biaxial stress–strain curves of 

fabrics for two-dimensional (2D) woven and weft-knitted fabrics based on an 

energy method using the yarn mechanical properties.9 The Weave Engineer 

software10 is dedicated to the design of three-dimensional (3D) woven textile 

structures, with both solid and hollow architectures and non-crimp composite 

reinforcements. It does not contain any features for predicting the mechanical 

properties of fabrics. The ScotWeave software is aimed primarily at industrial 

users. It contains a number of features that are valuable to weave designers, such 

as artwork designer, Dobby Designer and Jacquard Designer, rather than for 

research.11 A relatively new product, the ScotWeave Technical Weaver, is aimed 

specifically at modeling technical textiles at the mesoscopic scale. Yarn cross-

sectional shape and weave pattern can be specified to create a 3D geometrical 

model, but it does not contain any algorithms for calculating mechanical properties 

and it is limited to modeling orthogonal woven fabrics. In all these computational 

tools, yarn cross sections are considered as uniform, although the real yarns are 

normally uneven. 
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Lomov et al.12 and Verpoest and Lomov13 have developed a software package, 

WiseTex, that is capable of (i) modeling a variety of fabric structures incorporating 

physical properties of the yarns and (ii) modeling fabric physical properties, 

including resistance to tension, compression, shear and bending. However, in the 

current implementation of the model in WiseTex software, the cross sections of 

the yarns have symmetrical prescribed shape (elliptical, lenticular or rectangular). 

This leads to not-so-good definition of the yarn volumes when it comes to building 

of the finite element (FE) model of the fabric unit cell.14 

TexGen is an open source software distributed under the General Public License. 

It has been used by researchers at the University of Nottingham and elsewhere as 

a modeling pre-processor for textiles simulation for a variety of applications in 

solid mechanics,15,16 fluid dynamics17 and thermodynamics. The objectives of this 

paper are (i) to demonstrate the modeling techniques, algorithms and concepts 

implemented in TexGen and (ii) to show the multi-functionality of the software 

when applied to commercial fabrics. For this purpose, the concepts and 

algorithms for the yarn path, cross section and unit cell modeling implemented in 

TexGen are described in the following section. The fundamental techniques and 

novel functionalities of the software are demonstrated by simulation of a variety of 

commercial fabric structures in the third section. Then FE implementation in 

TexGen is illustrated in the fourth section. An example application of TexGen 

geometric data to a mechanics modeling environment, Abaqus, to predict fabric 

mechanical properties is givenin the fifth section. In the final section, directionsfor 

further development of the software are proposed. 

TexGen fabric geometry simulations 

Yarns are the basic meaningful structural elements of interlaced fabrics. Fabric 

geometric structures are determined mainly by the central paths and cross-

sectional shape of their constituent yarns. TexGen generates the geometry of any 

textile fabric in a generic way by specifying yarn path and yarn cross sections 

independently. In this approach, TexGen allows models to be generated easily for 

any 2D and 3D textile fabric structures, for example, woven, knitted, knotted or 

non-crimp. 

Yarn path 
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In TexGen, the yarn path is represented by a spline S(u) (Bezier, natural or 

periodic cubic): 

S(u)=S0(u),u0≤u<u1S(u)=S1(u),u1≤u<u2…….S(u)=Sk−2(u)uk−2≤u≤uk−1S(u)=S0

(u),u0≤u<u1S(u)=S1(u),u1≤u<u2…….S(u)=Sk-2(u)uk-2≤u≤uk-1 

The given k points ui are called knots or control nodes. The 

vector u=(u0,…,,uk−1)u=(u0,…,,uk-1) is called a knot vector for the spline, as 

shown in Figure 1. Yarn cross-sectional geometries will be defined locally at each 

control node. 

 

Figure 1. b-splines represent yarn centerlines. 

In TexGen geometry modeling, the yarn path is usually determined by other 

parameters, such as fabric structure, yarn cross section, yarn spacing and fabric 

thickness. It is not necessary to define the yarn mid-line based on direct 

experimental measurement. In practice, the yarns are initially modeled as a 

symmetrical and constant cross section with a well-defined central line. Then the 

yarn cross section is modified locally based on experimental images. The central 

line is retained as a convenience reference line. 

Yarn cross section 

The yarn cross section is defined as the 2D shape of the yarn when cut by a plane 

perpendicular to the yarn path tangent. In TexGen, yarns are treated as solid 

volumes and the cross section is approximated to be the smallest region that 

encompasses all of the fibers within the yarn (it will generally be convex). TexGen 

models a yarn as a series of individual sections defined at each control node 

along the yarn path, as shown in Figure 2. These sections are composed of 

separate upper and lower curves to improve conformance to the geometry. The 

outline of the cross sections is defined using 2D parametric equations. Standard 
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formulae for various yarn shapes, such as the ellipse proposed by Peirce,1 the 

power ellipse4 and the lenticular proposed by Hearle and Shanahan,5 have been 

implemented in TexGen, hence these cross-sectional shapes can be assigned to 

each section of yarns accurately and easily. 

 

Figure 2. A series of sections for a yarn. 

The yarn cross section is defined as the 2D parameter equation of the form C(v). 

The ellipse form is described as  

C(v)x=w2cos(2πv)0≤v≤1C(v)x=w2cos(2πv)0≤v≤1 

C(v)y=h2sin(2πv)0≤v≤1C(v)y=h2sin(2πv)0≤v≤1 

where w is the width of the yarn cross section and h is the height of the yarn cross 

section (Figure 2). The given k points vi are called knots. 

A power ellipse is defined by  

C(v)x=w2(2πv)0≤v≤1C(v)x=w2(2πv)0≤v≤1 

C(v)y={h2sin(2πv)n0≤v≤0.5−(h2−sin(2πv))n0.5≤v≤1C(v)y={h2sin(2πv)n0≤v≤0.5-

(h2-sin(2πv))n0.5≤v≤1 

where n is power index (0,1,2….). 

The lenticular cross sectional is defined as an intersection of two circles of 

radii r1 and r2 offset vertically by distances o1 and o2, respectively. The 

parameters r1, r2, o1 and o2 can be calculated from the desired widthw, 

height h and distortion d of the lenticular section:  

r1=w2+(h−2d)24(h−2d),r2=w2+(h+2d)24(h+2d)r1=w2+(h-2d)24(h-2d),r2=w2+(h+2d)24(h+2d) 

o1=−r1+h2o2=r1−h2o1=-r1+h2o2=r1-h2 
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The lenticular section is given by  

C(v)x={r1cosθ+o10≤v≤0.5−r2cosθ+o20.5≤v≤1C(v)x={r1cosθ+o10≤v≤0.5-

r2cosθ+o20.5≤v≤1 

C(v)y={r1cosθ+o10≤v≤0.5−r2cosθ+o20.5≤v≤1C(v)y={r1cosθ+o10≤v≤0.5-

r2cosθ+o20.5≤v≤1 

where  

θ={(1−4v)sin−1(w2r1)0≤v≤0.5(−3+4v)sin−1(w2r2)20.5≤v≤1θ={(1-4v)sin-

1(w2r1)0≤v≤0.5(-3+4v)sin-1(w2r2)20.5≤v≤1 

These basic shape functions are capable of representing many real fabric cross 

sections to a certain extent. For more realistic descriptions in the case of 

asymmetric cross sections, TexGen enables a hybrid shape function to assign 

cross-section segments to different basic shape functions. The hybrid shape is 

more accurate and versatile for shape approximation. 

Yarn surface 

After the yarn path and cross section are defined, the two are brought together 

using a parametric surface formed from the yarn path S and the cross-section C:  

P(u,v)=S(u)+(C(u,v)xX′→(u)+C(u,v)yY′→(u))               

a≤u≤b   0≤v≤1P(u,v)=S(u)+(C(u,v)xX'→(u)+C(u,v)yY'→(u))               

a≤u≤b   0≤v≤1 

where X′→X'→ and Y′→Y'→ are the local coordinate axes of the yarn path. 

Yarns are usually uneven. Hence, an appropriate geometrical model should be 

able to track changes in the size and shape of yarn cross sections. In TexGen, as 

stated previously, yarn cross sections are specified at discrete positions along the 

yarn path, which allows the shape and size of the cross sections to be defined 

locally. Suppose two cross-sections A (v) and B (v) are defined, which are to be 

interpolated. The interpolated cross-section C (v) is defined as  

C(v,μ)=A(v)+(B(v)−A(v))μ  0≤v≤10≤μ≤1C(v,μ)=A(v)+(B(v)-A(v))μ  

0≤v≤10≤μ≤1 



where μ varies from 0 to 1 linearly with distance between cross-sections A (v) and B 

(v). This linear interpolation is the simplest approach to allow a smooth transition with 

continuity C0between two different cross-sectional shapes. 

Unit cell and weave pattern 

The series of individual sections (Figure 2) are lofted by the TexGen geometry 

solver to create a solid yarn volume (Figure 3(a)). This is repeated for each yarn 

in the unit cell (Figure 3(b)). A domain representing the limits of the unit cell is 

created (Figure 3(c)). The yarns are duplicated so that they extend beyond the 

limits of the domain (Figure 3(d)). Yarns are trimmed to fit inside the domain 

(Figure 3(e)). 

 

Figure 3. Generation of a unit cell. 

A single-layer woven fabric is made from one set of warp and one set of weft 

yarns. By arranging interlacement between the warp and weft yarns, different 

types of woven patterns can be obtained. A 2D binary matrix is used to represent 

these patterns. Every interlacing is represented by an element in the 2D binary 

matrix, and elements in the array can only have one of the two values: 1 and 0. ‘1’ 

means that the warp yarn is over the weft yarn at the crossover and ‘0’ indicates 

the opposite situation. Figure 4 shows a binary array and the fabric structure for a 

2/2 twill weave. 
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Figure 4. 2/2 twill weave. 

For a wide range of 3D weave patterns, a single mathematical description, such 

as the matrix system, is not an efficient approach, since yarns interlace through 

multiple layers. The primary definition of any textile in TexGen is based on 

centerlines describing yarn paths in 3D space with superimposed cross sections. 

The control nodes along a yarn path are created around a yarn circumference at 

interlacing points. These nodes help avoid yarn intersections and capture local 

waviness. As illustrated in Figure 5, eight virtual control nodes with decimal 

indices are created on the weft yarn circumference at potential contact locations 

(i, j, k) with binder yarns. More nodes can be easily inserted for finer yarn path 

control. The nodes are now assigned by index to individual yarns. In this way, a 

yarn can be defined to take any possible path to form complex weaves. A 

complicated mathematical formulation for 3D weave patterns is avoided here. 

APython script is written as an automated generator for 3D weave in TexGen. The 

generator is mainly used for modeling orthogonal and angle inter-lock 
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reinforcement structures. The set of input data required are yarn spacing, number 

of layers and cross sections of weft, warp and binder yarns. These data can be 

measured for real fabrics. Additional information to complete the geometric model 

is the control node list for binder yarns to describe various interlacing styles. 

 

Figure 5. Index scheme for control nodes of binder yarn path. 

Application of TexGen to simulate commercial fabrics 

Geometric measurements 

In this section, a variety of commercial fabrics provided by industrial partners are 

modeled and simulated with TexGen. The fabrics’ specifications are given 

in Table 1. In order to model their internal structure, it is necessary to make a 

number of measurements on fabric samples. Based on the manufacturers’ 

specifications (Table 1), all fabric structures are considered to be unbalanced, that 

is, the warp and weft have different geometric and material properties, and hence 

the two systems yarns are measured and modeled separately. The set of input 

data required for modeling fabrics in TexGen are yarn width, yarn heights (fabric 

thickness), yarn spacing and cross-sectional shape. The yarn cross sections were 

cut using a laser beam razor blade and the cross-section images were obtained 

with a scanning electron microscope (SEM) or light microscopy (LM). The images 

were imported to the software ImageJ20 for further analyses. In ImageJ, the yarn 

cross-section images were fitted with an ellipse, lenticular section or with a power 

ellipse, and the shape closest to the real yarn cross sections was chosen. Figure 

6 shows two typical cross sections and their elliptical approximations for weft 

yarns in fabric A. The larger axis (yarn width) and shorter axis (yarn height), as 

well as yarn cross-section area, were obtained in ImageJ. The yarn spacing was 

calculated from the yarn sett, which is very close to the measured average yarn 

spacing. The fabric thickness was measured using the Kawabata Evaluation 
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System for Fabrics (KES-F)21 at a pressure of 0.05 KPa. The measured fabric 

geometric parameters to be used in the models are given in Table 2. 

 

Figure 6. Elliptical approximation to weft yarn cross sections for fabric A. 

 

Table 1. Fabric specifications 

 

Table 1.Fabric specifications 

 

a 

There are 136 filaments within a yarn. 

3D: three-dimensional 

View larger version 

 

Table 2. Input data for unit cell geometry simulation in 

TexGen (mm) 

 

Table 2.Input data for unit cell geometry simulation in TexGen (mm) 
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View larger version 

Geometric modeling 

The LM image and TexGen model of fabric A is shown in Figure 7. From yarn 

cross-section image analysis, lenticular and elliptical cross sections were 

assigned to the warp yarn and weft yarn, respectively, along the yarn length. The 

yarn width and height are modeled as constant. 

 

Figure 7. Fabric A, unit cell geometry, light microscopy (LM) image (a), modeled unit 

cell (b), elliptical cross section for weft yarn (c)and lenticular cross section for warp 

yarns (d) (top: LM image, bottom: TexGen model). 

Fabric B, a tightly packed nylon filament fabric for vehicle airbags, is presented 

in Figure 8(b). The challenge of modeling this fabric is that the warp yarns are 

overlapped and their cross sections are uneven. To start with, the paths of the 

yarns are described by specifying discrete points (control nodes) and a Bezier 

interpolation function was used (Figure 8(a)) as described in the Yarn 

path section. More nodes can be easily inserted for finer yarn path control. An 

initial model was created with the warp yarn defined as a power ellipse (n = 1.3), 

with constant width and height corresponding to the average width and height as 

measured from the experimental images. A more realistic model was then 

developed by inserting extra nodes along the yarn path with different elliptical 

geometries (widths 0.44–0.48 mm) asobserved in the images. The result is shown 

in Figure 8(a). The modeled fabric shows excellent correlation with SEM images 

(Figures 8(b–c)). It is worth noting that the modeled contacts between yarns are 
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realistic and interference free (Figure 8(d)) for such a tight fabric, which is 

essential for mechanical analysis. 

 

Figure 8. Fabric B, b-splines represent yarn centre-lines and modelled warp yarn 

surface with varied cross sections (a), SEM image (b), TexGen model with uneven 

yarn cross-sections (c), lenticular cross-section for warp yarns (d) (top: SEM image, 

bottom: TexGen model). 

Interesting features can be observed from fabric C (Figure 9(a)): warp yarns are 

crimped and their cross sections are uneven; weft yarns are straight and their 

cross sections are almost uniform. Based on image analysis, the warp yarn cross 

sections were modeled as power ellipses (n = 0.75) and yarn width varied from 

0.17 to 0.20 mm using the interpolation algorithm (Figures 9(b–c)). Weft yarns 

were modeled as straight with circular constant cross sections (Figure 9(d)). 

 

Figure 9. Fabric C, scanning electron microscope (SEM) image of the highly 

unbalanced fabric (a), TexGen model of fabric C (b), SEM image of warp yarn cross 

section ((c), top), simulated warp yarn cross section as power ellipse with varied yarn 

cross sections ((c),bottom), SEM image ((d), top) and modeled circular weft yarn 

cross section ((d), bottom). 

It is clear that the twill weave structure is much less uniform than the plain weave. 

The principal difficulty with modeling twill weave is that yarns deflect due to side 

crimp forces.22Figure 10(a) (top) shows a side view of the unit cell SEM image of 

fabric D; the non-symmetrical structure of the twill weave gives bending and 

contact forces causing the yarns to rotate and deflect. To reflect this feature, the 

unit cell geometry is modeled by rotating the yarns to a certain angle in the 
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TexGenmodeler, as show in Figure 10(a) (bottom). This rotation enables the yarn 

path to be fairly smooth without penetrating the adjacent/neighboring yarns. In 

addition, the yarn cross sections are defined locally along the yarn length and 

hybrid ellipse andlenticular sections are assigned to the yarns, as observed inthe 

LM images. In this example, this results in a variable yarn height along the length 

of the yarn, as seen in Figure 10(b). Figure 10(c) shows a comparison of the unit 

cell model with the actual textile. 

 

Figure 10. Fabric D, LM image of yarn cross-sections (a, top); TexGen model with 

deflected yarns (a, bottom); Yarn cross-section varies along yarn length (b, upper: 

LM image; bottom: TexGen model); 2/1 twill weave unit cell (e, left: SEM images, 

right: TexGen model). 

Figures 11 and 12 show two 3D woven carbon fiber structures used as composite 

reinforcement. The TexGen model for the angle inter-lock Fabric E is based on 

averaged microscopic measurement of cross sections from a composite panel. 

Elliptical and power elliptical shapes are used to approximate the cross sections 

for weft and warp yarns. As clearly shown in Figure 11, binder yarns push surface 

weft yarns through the thickness direction to form flat top and bottom planes. This 

local crimping feature is captured in the TexGen model by adjusting the 

coordinates of local nodes. For fabric F, the TexGen model is based on micro-

computed tomography (µCT) measurement of dry fabric without compaction, as 

shown in Figure 12. The orthogonal weave has distinctive cross sections of 

surface layer weft yarns. Hybrid cross sections in TexGen were used to represent 

the semi-ellipse shape of these yarns. The parameter n for the power ellipse 

(Equation (5)) was determined by curve fitting the measured shape from µCT 

images. As demonstrated in Figures 11 and 12, TexGen is capable ofdescribing 

these different binder paths closely compared with fabric cross-section images. 
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Figure 11. Fabric E angle inter-lock carbon fiber. (a), (b) Weft and warp views of the 

TexGen model. (c), (d) Microscopic images of weft and warp cross sections. 

 

Figure 12. Fabric F orthogonal three-dimensional carbon fiber. (a) Weft and warp 

views of the TexGen model. (b) Micro-computed tomography images of 

corresponding weft and warp cross sections. 

Finite element implementation in TexGen 

Mesh generation 

A simple mesh generator has been implemented in TexGen to discretize 

yarns.16 TexGen meshes yarns in two steps. The first is to mesh the cross 

sections in two dimensions, ensuring that the cross-section meshes are 

compatible. It is then simply necessary to link adjacent cross-section meshes 

together to form 3D elements. 
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Figure 13(a) shows an elliptical cross section meshed using this technique. Note 

that the four corners of thegrid contain triangular elements rather than 

quadrilateral elements. This is to avoid having highly distorted elements, which 

are undesirable in numerical simulations. 

 

Figure 13. Cross section meshed with simple mesh generation technique (a). 

Meshed yarn in TexGen using hexahedral elements (continuum three-dimensional 

eight-node brick elements) for the yarn main body and wedge elements (continuum 

three-dimensional six-node tetrahedral elements) for the edges (b). 

A number of equi-spaced meshed cross sections arecreated along the length of 

the yarn path and the number of columns and rows are the same for each cross 

section along the length of the yarn. Consecutive cross sections are linked 

together to form 3D volume elements. In order to link two cross sections together, 

the meshes must be compatible, that is, each element from one cross section 

must map to an element on theother cross section. In this way, pairs of triangles 

can be linked together to form six-noded wedge elements and pairs of 

quadrilaterals can be linked together to formeight-noded hexahedral elements, as 

shown in Figure 13(b). 

The advantage of the unit cell mesh generated by TexGen is that it ensures that 

the degrees of freedom of each node lying on the boundary of the unit cell are 

linked to the degrees of freedom of a corresponding node on the opposite side of 

the unit cell. In essence these pairs of nodes represent identical positions in 

theunit cell and as such cannot have different displacements or slope. This is 

important for the application of periodic boundary conditions to the unit cell in 

order to represent the repeating nature of fabrics. 

Material orientation 

Since yarns are highly anisotropic, an important point is to ensure the stress and 

strain components will be defined in the local orientation. A local (Gauss-point 

level) orthogonal coordinate system is defined for material properties. TexGen 
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defines material orientation for each element, as shown in Figure 14. In this 

manner, the mechanical constitutive behavior of yarns is fully defined at each 

element. Hence all stresses, strains andstate variables are defined with respect to 

local material axes and these axes rotate with material deformation. 

 

Figure 14. TexGen orientation vectors. 

Contact algorithm 

TexGen creates an upper and lower surface for eachyarn and defines contacts 

between the lower and upper surface of two yarns when they are directly or 

potentially in touch with each other using master and slave contact techniques for 

FE analysis (Figure 15). 

 

Figure 15. An upper and lower surface was created for each yarn. Corresponding 

upper and lower surfaces at crossover regions define a contact pair of surfaces 

using master and slave contact techniques for finite element analysis. 

Periodic boundary conditions 

Fabric unit cell modeling is based on the assumption that fabric deformation is 

uniform at the macro scale. Periodic boundary conditions are applied to replicate 

its repeating nature. 

In order to ensure the individual unit cells can beassembled as a continuous 

physical body, the displacements in the neighboring cells must be continuous. 
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TexGen applies the following nodal displacement-difference constraint equations 

for the boundary conditions to meet this requirement:  

U1=xB−xAU1=xB-xA 

U2=yB−yAU2=yB-yA 

U1 and U2 are displacement differences between two opposite node sets A and B 

(Figure 16). xAand xB are displacements in the x direction for node sets A and B, 

respectively; yA and yB are displacements in the y direction for the two node sets. 

 

Figure 16. Nodal displacement periodic boundary constraints. 

Application of TexGen to commercial fabric mechanical modeling 

In this section, fabric A was selected as an example of using TexGen geometrical 

models as inputs to the standard FE analysis package Abaqus, implicit to predict 

its mechanical properties. 

Mechanical model of the yarns 

Yarns were modeled as continuum orthotropic solid bodies. The longitudinal 

direction is defined by the subscript 11, which is parallel to fibers; the transverse 

plane is described by the directions 22 and 33, which arecharacterized by a plane 

of isotropy at every point in the material. 

The orthotropic behavior of the yarn is described using a 3D stiffness matrix 

containing nine independent constants:  

[ɛ11ɛ22ɛ33ɛ23ɛ13ɛ

12]=[1E11−ν12E11−ν13E11000−ν12E111E22−ν23E22000−ν13E11−ν23E221E330000001G230000001G13

0000001G12][σ11σ22σ33σ23σ13σ12][ɛ11ɛ22ɛ33ɛ23ɛ13ɛ12]=[1E11-ν12E11-

ν13E11000-ν12E111E22-ν23E22000-ν13E11-

ν23E221E330000001G230000001G130000001G12][σ11σ22σ33σ23σ13σ12] 
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where E11, E22, E33, ν12, ν13, ν23, G12, G13 and G23 are Young’s moduli, Poisson’s 

ratios and the shear moduli ofthe yarn material, respectively. εij and σijσij are the 

microscopic strain and stress field solutions within the yarns. 

The yarn is transversely isotropic, hence: 

E22=E33,ν12=ν13,G12=G13E22=E33,ν12=ν13,G12=G13 

G23=E332(1+ν23)G23=E332(1+ν23) 

A Poisson’s ratio of 0.4 for both longitudinal (ν12) and transverse (ν23) directions of 

the yarns was selected based on measured data.23 

The yarn transverse-longitudinal shear behavior, G12G12, is governed mainly by 

the sliding of fibers relative to each other. A constant value G12=30G12=30 MPa, 

obtained from the measured initial yarn tensile stress–strain curve, was used in 

this study. 

The longitudinal stiffness, E11, is a function of strain ϵ11, and the transverse 

stiffness, E33, is a function of strain ϵ33, due to yarn tensile and compression non-

linear mechanical response. The non-linear elastic constitutive 

relationships E11 and ϵ11, E33 and ϵ33 are taken from physically measured yarn 

tensile and compression data. 

Figure 17 presents the experimentally determined stress and strain relationship in 

the longitudinal direction for warp and weft yarns. Initially, warp and weftyarns 

have identical properties before weaving (Table 1). After weaving, the warp yarns 

have a smaller cross-section area and higher fiber volume fraction dueto their 

smaller yarn spacing and higher tension during the weaving process. As a result, 

the constitutive behaviors are different for the warp and the weft yarns, as shown 

in Figure 17. 
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Figure 17. Measured yarn tensile behavior. 

The constitutive behavior of yarn in the transverse direction is characterized using 

Equation (14).16 The parameters, a and b, in Equation (14), are determined by 

curve fitting experimental data for warp/weft yarn compressions using a power 

law, Equation (15).24 The compression measurements were carried out using 

theKES-F on single yarns:  

E33(ɛ33)=σ33ɛ33=−a[Vf0eɛ33]b+a(Vf0)bɛ33E33(ɛ33)=σ33ɛ33=-a[Vf0eɛ33]b+a(Vf0)bɛ33 

p=aVfbp=aVfb 

where Vf0Vf0 is the initial fiber volume fraction for yarns. The values of Vf0Vf0 are 

57.7% and 45.0% for the warp and the weft yarns, respectively. From least squares 

curve fitting of the experimental yarn compression data, a = 0.0416, 0.0654 and b = 

13.08, 9.3607 were obtained for the warp and the weft yarns, respectively, as shown 

in Figure 18. 
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Figure 18. Measured warp yarn (a) and weft yarn (b) compression behavior (bold 

lines) and power law fit (faint lines). 

The mechanical constitutive yarn models are programmed as a user-defined 

material subroutine (UMAT) in ABAQUS/Standard, an implicit FE code. The 

curves in Figure 17 are approximated in a piecewise linear manner to provide 

input data into theUMAT. 

The geometric model of the fabric unit cell and theconstitutive material model for 

yarns are both interfaced with a mechanics modeling environment, ABAQUS, 

through a Python script. The details of the modeling techniques can be found in 

Lin et al.17,18 Anaverage experimentally measured friction coefficient of 0.5 is used 

to define yarn sliding relative to one another. The material non-linearity and 

contact non-linearity, as well as geometric non-linearities, which are the 

characteristic features of fabric mechanics problems, are taken into account in the 

model. 

Simulation set up 

Simulations were carried out on this fabric to mimic theuse of standard equipment 

for textile testing, the KES-F testing principle.21 In compression modeling, two 

compression platens were created using rigid elements with steel properties (E = 

200 GPa and Poisson’s ratio = 0.3).The unit cell was placed between the two 

platens. The lower platen was fully constrained. Compression was applied at a 

constant displacement rate of the upper platen. Node sets were generated at the 

ends of each yarn. Tie constraints were applied to the node sets using a master–

slave surface approach to implement periodic boundary conditions. In tensile 
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modeling, the same displacments were applied to the opposite boundaries of the 

unit cell, ensuring the individual unit cells can be assembled as a continuous 

physical body. In the KES-F bending test, the fabric is subjected to pure bending 

under uniform curvature. Simulation was performed by setting the central line of 

the unit cell on a fixed support and two ends of the unitcell were subjected to the 

same displacement in the vertical direction. In essence, yarns are considered to 

be elastic beams deflected under uniform curvature. In the KES shear tester, a 

rectangular piece of fabric is clamped along two opposite edges and is free on the 

other two edges. On this specimen, a tension is imposed along the clamped sides 

of the fabric in the horizontal direction. 

Modeling results 

Figure 19 gives the modeled deformed unit cell under the four principal loadings: 

tension, compression, shear and bending. Comparison between the predicted 

mechanical properties and experimental data shows that the model is able to 

represent the fabric mechanical behavior, as seen in Figure 20. The model 

provides an excellent fit for the warp direction in tension; the tensile forces are 

slightly underestimated for the weft direction (Figure 20(a)). The predicted 

compression pressures are slightly greater than the experimental data (Figure 

20(b)). The predicted shear forces are slightly different from the experimental data 

(Figure 20(c)). Small errors in sample configuration during experiments, such as 

yarn misalignments and local yarn bending at the clamped edges, could be 

possible reasons for this. Thediscrepancy between the predicted bending 

behavior and measured data can be explained by the fact that the yarns are 

modeled as solid bodies, which cannot characterize fiber slipping within the yarns 

during bending deformation (Figure 20(d)). Accurate geometric modeling, 

physically measured yarn mechanical data used as inputs to constitutive material 

models and correct FE implementation are key requirements to achieve this level 

of accuracy in predicted mechanical behavior. 
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Figure 19. Modeled deformed plain weave unit cell in tension (a), compression (b), 

shear(c) and bending (d). 

 

Figure 20. Experimental data versus finite element (FE) predictions for tension (a), 

compression (b), shear (c) and bending (d). 

Discussion and conclusions 

In this paper we have presented the fundamental techniques for creating 

geometric models for 2D and 3D fabrics in TexGen. One particular feature of this 

software is that it is able to model varied and hybrid yarn cross sections and it 

ensures a realistic contact surface between yarns without interpenetration for all 

types of weaving. In addition, TexGen has automated functions to discretize the 

model, assign material orientations andproperties to elements, define periodic 

boundary conditions and export the model to external analysis software in several 

data formats. All of this functionality provides a solid foundation for a priori 

prediction of physical properties of textiles and textile composites. The example of 

the pre-processed fabric geometrical model in TexGen as inputs to the standard 

FE analysis package Abaqus to predict fabric mechanical properties shows that 
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TexGen geometry modeling in conjunction with Abaqus mechanical prediction can 

be a powerful tool for engineers and designers. By using these modeling 

techniques, they could efficiently design new materials and new fabric structures 

to accelerate the fabric development process and foster innovation. 

However, the software is still in development. There are two potential routes for 

improving the capabilities of the model. 

The TexGen geometric solver computes a spatial placement of all yarns in a 

fabric repeat based on measured fabric geometry data for a given weave 

structure. Ideally, it should be possible to predict the geometry of any fabric 

without knowing the yarn path and cross-sectional shape, given information about 

the yarn mechanics and the manufacturing process for a given weave structure. 

The geometry of a woven structure in the relaxed state is determined by the 

equilibrium of forces of the warp and weft interaction, caused by the necessity to 

accommodate the topology of contacts between yarns in a weave. The bending of 

yarns necessary to maintain this topology creates transversal forces in yarn 

intersections. The latter leads to yarn compression and flattening and, in the case 

of non-symmetry of contact conditions (twill weaves), to local deflection (resisted 

by friction between yarns) of yarns from ideal straight directions prediscribed by 

tension of the warp and weft on a loom. Therefore, a realistic fabric geometric 

model can be achieved by minimizing the total strain energy from yarn bending, 

compression and tensile deformations. A new feature within TexGen is under 

development, which describes a realistic topology and position of yarns by 

applying an energy minimization technique based on a simplified yarn mechanical 

model.25 

Alternatively, it should be able to read the 2D digital images of fabric structures 

and convert the 2D images to 3D fabric structures. 
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