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SUMMARY

This paper reports a new numerical method based on radial basis function net-

works (RBFNs) for solving high-order partial differential equations (PDEs). The

variables and their derivatives in the governing equations are represented by inte-

grated RBFNs. The use of the integration process in constructing neural networks

allows the straightforward implementation of multiple boundary conditions and the

accurate approximation of high-order derivatives. The proposed RBFN method is

verified successfully through the solution of thin-plate bending and viscous flow

problems which are governed by biharmonic equations. For thermally driven cavity

flows, the solutions are obtained up to a high Rayleigh number of 107.

KEY WORDS: radial basis functions; approximation; multiple boundary conditions;

high order; derivatives; partial differential equations
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1 INTRODUCTION

Neural networks have found application in many disciplines: neurosciences, math-

ematics, statistics, physics, computer science and engineering [1]. The concept of

using radial basis function networks (RBFNs) to solve partial differential equations

(PDEs) was introduced by Kansa in 1990 [2]. Since then it has received much atten-

tion from the science and engineering communities. The construction of networks

can be based on a differentiation process (the direct RBFN approach - DRBFNs) [2]

or based on an integration process (the indirect RBFN approach - IRBFNs) [3]. For

a typical RBFN-based numerical method, each dependent variable and its deriva-

tives are represented by DRBFNs/IRBFNs. The governing differential equations

together with boundary conditions are then discretized by point collocation. Most

RBF publications were concerned with the solution of second-order PDEs, e.g., [4-

9]. Recently, the IRBFN method has been developed for the solution of high-order

ordinary differential equations (ODEs) without prior conversions into the equiva-

lent systems of first-order ODEs [10]. In this paper, the unsymmetric indirect RBF

collocation method is extended to solve high-order PDEs directly.

Consider problems governed by multi-harmonic equations, such as thin-plate bend-

ing and Stokes flow problems involving biharmonic equations. To solve these prob-

lems, new variables are usually introduced in order to transform the multi-harmonic

equations into the coupled sets of harmonic equations from which the conventional

low-order methods of discretization such as the boundary element methods (BEMs),

finite difference methods (FDMs) or finite element methods (FEMs) can be applied

for obtaining a numerical solution. However, the drawbacks of this transformation

are that it produces large system matrices as well as one usually needs to derive

the computational boundary conditions for new variables. All of these difficulties

can be overcome by developing high-order numerical methods to solve the governing
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multi-harmonic equations directly. In addition, the high-order methods are known

to have the capability to achieve accurate results using relatively low numbers of

degrees of freedom (DOF) or to allow the savings in computational effort and virtual

storage for a given accuracy [11].

In solving high-order PDEs in a direct manner, special attention needs to be paid

to the two important issues, namely the implementation of multiple boundary con-

ditions and the approximation of high-order derivatives. To properly implement

the multiple boundary conditions, there are a number of techniques available in

the literature, e.g., the δ-technique [12], the modified weighting matrix approach

[13], the approach of directly substituting the boundary conditions into the discrete

governing equations [14], the general approach [15] and the generalized differential

quadrature rule (GDQR) technique [16]. The basic ideas of these techniques are to

try adding “extra boundary points” to the original set of data points so that each

boundary point has only one condition (the δ-technique), reducing the number of

data points used for discretizing the governing equations in an appropriate man-

ner (the direct substitution technique) and employing the same number of unknown

variables as that of the conditions at a point (the GDQR technique), in order to form

a square system matrix. More detailed discussions can be found in [16,17]. In the

context of the numerical solution of differential equations, high-order derivatives are

undesirable in general because they can introduce large approximation error. The

use of higher-order conventional Lagrange polynomials does not guarantee to yield

a better quality (smoothness) of approximation [18].

The two important issues mentioned above can be treated effectively here by using

integrated RBFNs. In the present unsymmetric indirect RBF collocation approach,

the construction of neural networks representing the variable and its derivatives is

based on integration. The governing equations and boundary conditions are dis-

cretized by means of point collocation. The increase of a number of columns due
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to the presence of integration constants is brought into balance with the increase

of rows due to the discretization of multiple boundary conditions, and hence it can

lead to a square system matrix whatever the order of PDEs. On the other hand,

the integration process appears to be suitable for the approximation of high-order

derivatives. It can be argued as follows. Due to the lack of theory, it is very dif-

ficult to choose RBFN parameters, such as RBF widths, properly. Consequently,

some oscillation can be induced between the nodal function values when using the

RBFN interpolation scheme. This behaviour has no relation at all to that of the

true function. In practice, the oscillation has been often observed in regions near the

boundaries. It can be seen that by differentiating RBFNs, the spurious oscillations

will be strongly magnified with an increase in order of derivatives (the slope of the

curve). However, it is expected that the process of integrating RBFNs (the area

under curve) can suppress “noise”, thereby resulting in smoother approximating

derivatives.

The present unsymmetric IRBFN collocation method will be verified with the so-

lution of thin-plate bending and viscous flow problems that are governed by bi-

harmonic equations. In the simulation of natural convection flows, the resultant

matrices become much larger due to the increased number of the field variables and

the requirement of dense data densities for the simulations at high Rayleigh num-

bers. To keep the system matrix size comparable to that associated with the DRBFN

approach, the multiple spaces of IRBFN weights for each variable are converted into

the single space of nodal variable values.

The remainder of the paper is organized as follows. In section 2, RBFNs and their

two direct and indirect approaches for the approximation of a function and its deriva-

tives are reviewed. Section 3 presents IRBFNs for solving high-order PDEs without

prior conversions into the equivalent systems of low-order PDEs. In sections 4 and

5, the present IRBFN method is verified through the solution of thin-plate bending
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problems and thermally driven cavity flows that are governed by biharmonic equa-

tions. Section 6 gives some concluding remarks. Finally, the analytic forms of new

basis functions obtained from integrating RBFs are given in the appendix.

2 RADIAL BASIS FUNCTION NETWORKS

RBFNs allow a conversion of a function from low-dimensional space (e.g., 1D-3D)

to high-dimensional space in which the function will be expressed as a linear com-

bination of RBFs [1]

y(x) ≈ f(x) =
m∑

i=1

w(i)g(i)(x), (1)

where y and f are the exact and approximate functions, respectively, superscripts

denote the elements of a set of neurons, x the input vector, m the number of RBFs,

{w(i)}m
i=1 the set of network weights to be found, and {g(i)(x)}m

i=1 the set of RBFs.

According to Micchelli’s theorem, there is a large class of radial basis functions, e.g.,

multiquadrics, inverse multiquadrics and Gaussian functions, whose design matrices

(interpolation matrices, coefficient matrices) obtained from (1) are always invert-

ible, provided that the data points are distinct. This is all that is required for the

non-singularity of the design matrix, whatever the number of data points and the

dimension of the problem [1]. On the other hand, the Cover’s theorem, which can

be stated as follow “the higher the dimension of hidden space, the more accurate the

approximation will be” [1], indicates the property of “mesh convergence” of RBFNs.

Furthermore, it has been proved that RBFNs are capable of representing any contin-

uous function to a prescribed degree of accuracy (universal approximation theorem)

[19]. These important theorems can be seen to provide the theoretical basis for the

design of RBFNs to the field of numerical solution of PDEs.
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Since multiquadrics (MQ) are ranked as the most accurate among RBFs [20] and

possess exponential convergence with the refinement of spatial discretization [21,22],

this study will employ these basis functions whose form is

g(i)(x) =
√

(x − c(i))T (x − c(i)) + a(i)2, (2)

where c(i) and a(i) are the centre and width of the ith MQ basis function, respectively,

and superscript T denotes the transpose of a vector. To make the training process

simple, the centres and widths of RBFs are chosen in advance. For the former, the

set of centres is chosen to be the same as the set of collocation points, while for the

latter, the following relation is used

a(i) = βd(i), (3)

where β is a positive scalar, and d(i) is the minimum of distances from the ith center

to its neighbours. Relation (3) allows the RBF width a to be broader in the area of

lower data densities and narrower in the area of higher data densities. The network

weights are then found by minimizing the sum of squares of the difference between

actual and required outputs.

2.1 Direct approach

In the direct RBFN (DRBFN) approach, the RBFN (1) is utilized to represent the

original function y, and subsequently, its derivatives are computed by differentiating
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(1) as

y(x) ≈ f(x) =
m∑

i=1

w(i)g(i)(x), (4)

∂yk(x)

∂xk
j

≈ ∂kf(x)

∂xk
j

=
∂k
(∑m

i=1 w(i)g(i)(x)
)

∂xk
j

=
m∑

i=1

w(i)h
[k](i)
[xj ]

(x), (5)

where subscripts j denote the scalar components of a vector, and{
h

[k](i)
[xj ]

(x)
}m

i=1
=
{
∂kg(i)(x)/∂xk

j

}m

i=1
the set of newly derived basis functions in the

approximation of the kth-order derivative of a function y with respect to the xj

variable.

2.2 Indirect approach

In the indirect (IRBFN) approach, RBFNs (1) are used to represent the highest-

order derivatives of a function y, e.g., ∂ky/∂xk
j . Lower-order derivatives and the

function itself are then obtained by integrating those RBFNs as

∂ky(x)

∂xk
j

≈ ∂kf(x)

∂xk
j

=
m∑

i=1

w
(i)
[xj ]

g(i)(x), (6)

∂k−1y(x)

∂xk−1
j

≈ ∂k−1f(x)

∂xk−1
j

=

m+q1∑
i=1

w
(i)
[xj ]

H
[k−1](i)
[xj ]

(x), (7)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

y(x) ≈ f[xj ](x) =

m+qk∑
i=1

w
(i)
[xj ]

H
[0](i)
[xj ]

(x), (8)

where subscripts [xj] denote the quantities associated with the process of integration

in the xj direction; q1, · · · , qk the numbers of nodal constants arising from the inte-

gration process (integration constants are directly captured here) (q2 = 2q1, · · · , qk =

kq1); and

H
[k−1](i)
[xj ]

=
∫

g(i)dxj, H
[k−2](i)
[xj ]

=
∫

H [k−1](i)dxj, · · · , H
[0](i)
[xj ]

=
∫

H [1](i)dxj (i = 1, 2, · · · ,m)

newly derived basis functions in the approximation of (k − 1)th-order derivative,
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(k − 2)th-order derivative, · · · , the original function y, respectively. Note that for

convenience of notation, the integration constants (unknowns) and their associated

basis functions (known polynomials) are also denoted by the notations w(i) and

H [.](i)(x), respectively, but with i > m.

The evaluation of (6)-(8) at a set of collocation points {x(i)}n
i=1 yields the following

systems of equations

f
[k]
[xj ]

(x) = G(x)w[xj ], (9)

f
[k−1]
[xj ]

(x) = H
[k−1]
[xj ]

(x)w[xj ], (10)

· · · · · · · · · · · · · · · · · ·

f[xj ](x) = H
[0]
[xj ]

(x)w[xj ], (11)

where G[xj ],H
[k−1]
[xj ]

, · · · ,H
[0]
[xj ]

are the network-design-matrices associated with the

approximation of the kth-order derivative, (k−1)th-order derivative, · · · , the original

function with respect to the xj variable, respectively; w[xj ] = {w(i)
[xj ]

}m+qk
i=1 the set

of network weights in the xj direction to be found; f[xj ] = {f[xj ](x
(i))}n

i=1; f
[1]
[xj ]

=

{∂f(x(i))
∂xj

}n
i=1; and f

[k]
[xj ]

= {∂kf(x(i))

∂xk
j

}n
i=1. For the purpose of computation, the matrices

G[xj ],H
[k−1]
[xj ]

, · · · ,H
[1]
[xj ]

will be augmented using zero-submatrices so that they have

the same size as the matrix H
[0]
[xj ]

. In the approximation of a function and its

derivatives, the IRBFN weight vectors w[xj ] with j = {1, 2, · · · } can be determined

by making use of the functional networks (11).

For convenience of presentation, the following discussions are restricted to bihar-

monic boundary value problems. However, they can be extended straightforwardly

to multi-harmonic ones, and furthermore, all of the advantageous features found in

the case of biharmonic problems can be preserved. The cross derivative ∂f 4(x)/∂x2
i ∂x2

j

can be computed by using the relevant network-design-matrices associated with the

second-order derivatives. Although the order of differentiation makes no difference
9



theoretically, due to numerical error, it will be better to take the average of the two

equivalent representations

∂4f

∂x2
i ∂x2

j

=
1

2

[
∂2

∂x2
i

(
∂2f

∂x2
j

)
+

∂2

∂x2
j

(
∂2f

∂x2
i

)]
, (12)

or in the matrix form

f,iijj =
1

2

[(
H

[2]
[xi]

(H
[0]
[xi]

)−1
)

H
[2]
[xj ]

w[xj ] +
(
H

[2]
[xj ]

(H
[0]
[xj ]

)−1
)

H
[2]
[xi]

w[xi]

]
. (13)

Expressions of f and its derivatives at point x0 in terms of network weights w[xj ] =

{w(i)
[xj ]

}m+q4

i=1 can be given by

f(x0) =
1

N

N∑
j=1

([
H

[0](1)
[xj ]

(x0), · · · , H
[0](m+1)
[xj ]

(x0), · · · , H
[0](m+q1+1)
[xj ]

(x0), · · ·
]
w[xj ]

)
,

(14)

∂f2(x0)

∂x2
j

=
[
H

[2](1)
[xj ]

(x0), · · · , H
[2](m+1)
[xj ]

(x0), · · · , H
[2](m+q1+1)
[xj ]

(x0), · · ·
]
w[xj ], (15)

∂4f(x0)

∂x4
j

=
[
g

(1)
[xj ]

(x0), · · · , 0, · · · , 0, · · ·
]
w[xj ], (16)

∂4f(x0)

∂x2
i ∂x2

j

=
1

2
(
[
H

[2](1)
[xi]

(x0), · · · , H
[2](m+1)
[xi]

(x0), · · ·
]
(H

[0]
[xi]

)−1
(
H

[2]
[xj ]

w[xj ]

)

+
[
H

[2](1)
[xj ]

(x0), · · · , H
[2](m+1)
[xj ]

(x0), · · ·
]
(H

[0]
[xj ]

)−1
(
H

[2]
[xi]

w[xi]

)
), (17)

where N is the dimension of the problem. In (14), due to numerical errors, the

approximate function f at x0 is taken to be the average of the f[xj ](x0)’s.
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3 IRBFNs for solving high-order PDEs

Indirect RBFNs are employed to represent the solution of high-order PDEs via a

point collocation mechanism. The governing equations are solved without splitting

them into the equivalent systems of low-order PDEs. New constants arising from

the integration process are used for the treatment of multiple boundary conditions.

In constructing system/interpolation matrices, the increase of rows due to the dis-

cretization of multiple boundary conditions is brought into balance with the increase

of columns due to the presence of integration constants, and hence it can lead to a

square system of equations whatever the order of DEs.

The detailed implementation of IRBFNs for the solution of high-order ODEs was

reported previously in [10]. In present work that deals with high-order PDEs, two

versions of indirect RBFNs are employed. The first version uses the IRBFN for-

mulation directly in terms of network weights, while in the second version, the

formulation is expressed in terms of nodal variable values. The following is con-

cerned with biharmonic equations governing thin-plate problems and viscous flows.

However, the formulations can be extended to solve multi-harmonic equations in a

straightforward manner.
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4 THIN-PLATE PROBLEMS

4.1 Governing equations

In this section, the deflection and free vibration of thin rectangular plates are con-

sidered. The governing equations can be written as

∇4v = F (x), (deflection) (18)

∇4v = Ω2v, (free vibration) (19)

and the boundary conditions are given by

v = 0,
∂v

∂n
= 0 for a clamped edge, (20)

v = 0,
∂2v

∂n2
= 0 for a simply supported edge, (21)

where x is the position vector of a point in the domain of interest, v the deflection/the

mode shape function, Ω the frequency, F the forcing term, and n the direction

normal to the edge.

4.2 IRBFN formulation

The rectangular domain of interest is discretized as shown in Figure 1. It is different

from the 1D-IRBFN analysis that there exist two RBF networks representing the

variable v here. These functional networks need to be enforced to be identical,

resulting in a constraint equation v[x1](x) = v[x2](x). The IRBFN formulation can

be written as

SSE1 + SSE2 + SSE3 → 0, (22)
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where SSE1, SSE2 and SSE3 are the sums of squared errors which are employed

to ensure that IRBFNs satisfy the governing equation, the identical representa-

tions of the original function (i.e., v[x1](x) = v[x2](x)), and the boundary condi-

tions, respectively. Let nip and nbpj denote the number of interior points and

the number of boundary points on the plate edge normal to the xj direction, re-

spectively. It can be seen that the direct matrix obtained from (22) will have the

number of rows as [(nip + 2nbp1 + 2nbp2) + (nip) + (4nbp1 + 4nbp2)] that corre-

sponds to SSE1, SSE2 and SSE3, respectively, and the number of columns as

[(nip + 2nbp1 + 4nbp1) + (nip + 2nbp2 + 4nbp2)] that corresponds to the network

weights in the x1- and x2- directions, respectively. Hence, the formulation (22)

directly results in a square system matrix.

4.3 Numerical examples

A number of examples are presented in this section to demonstrate the effectiveness

of the present method. In all following test cases, the width of the ith RBF (a(i))

is simply chosen to be the minimum distance from the ith centre to neighbouring

centres (β = 1). The accuracy of numerical solution produced by an approximation

scheme can be measured via the norm of relative errors of the solution as follows

Ne =

√∑n
i=1 [ve(x(i)) − v(x(i))]

2∑n
i=1 ve(x(i))2

, (23)

where n is the number of collocation points, x(i) the ith collocation point, v and ve

the calculated and exact solutions, respectively. Another important measure is the

convergence rate of the solution with the refinement of spatial discretization

Ne(h) ≈ γhα = O(hα) (24)
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in which h is the centre spacing, and α and γ are the exponential model’s parameters.

Given a set of observations, these parameters can be found by the general linear least

squares technique.

4.3.1 Benchmark test problem

Consider a typical benchmark test problem [23] governed by the homogeneous bi-

harmonic equation (i.e., F (x1, x2) = 0). The exact solution is given by

v =
1

2
x1 (sin x1 cosh x2 − cos x1 sinh x2) . (25)

The rectangular domain of interest is taken to be [−2, 2]×[−2, 2]. Eight uniform den-

sities, namely 5×5, 7×7, · · · , 19×19 data points, are employed to study convergence.

Two different types of boundary conditions, namely {v; ∂v/∂n} and {v; ∂2v/∂n2},
are considered (Figure 1). All boundary data are nonzero.

Boundary conditions given in terms of v and ∂v/∂n

Figure 2 shows that the present method yields high accuracy and high rates of

convergence. The obtained solutions converge apparently as O(h5.3) and O(h4.6) for

v and its Laplacian u (u = ∇2v), respectively, where h is the centre spacing. At

the highest density of 19× 19 data points, the error norms are 5.8× 10−7 for v and

4.8 × 10−5 for u.

Boundary conditions given in terms of v and ∂2v/∂n2

Similarly, accurate results and high rates of convergence are obtained for this type

of boundary conditions (Figure 3). The convergence rates are of O(h5.0) and O(h4.3)

for v and u, respectively, where h is the centre spacing. At the finest density of

19 × 19, the norms of relative errors are 2.5 × 10−5 for v and 4.7 × 10−5 for u.
14



4.3.2 Thin-plate bending problems

Simply supported thin rectangular plates under sinusoidal load

A function F (x1, x2) on the right hand side of (18) is given by

F (x1, x2) =
q0

D
sin

πx1

a
sin

πx2

b
, (26)

where q0 represents the intensity of the load at the centre of a plate, a and b the

lengths of the plate edges, and D = Eh3/12(1 − ν2) the flexural rigidity in which

E the modulus of elasticity, ν Poisson’s ratio, and h the thickness of a plate. The

bending moments in the x1- and x2- directions are given by

Mx = −D

(
∂2v

∂x2
1

+ ν
∂2v

∂x2
2

)
, (27)

My = −D

(
∂2v

∂x2
2

+ ν
∂2v

∂x2
1

)
. (28)

Analytical solutions can be found in [24]. The following parameters are used

a = b = 200cm, h = 10cm, ν = 0.3, E = 2.1 × 106kg/cm2 and q0 = 0.5kg/cm2.

Three uniform discretizations of 4×4, 6×6 and 8×8 are employed. With relatively

low numbers of DOF, very accurate results are obtained. For example, at the highest

density of 8 × 8, error-norms are 1.2 × 10−6 and 5.8 × 10−5 for the deflection and

bending moments, respectively. Convergence with spatial refinement is very fast,

e.g., up to O(h10.1) for v and O(h9.3) for Mx and My.

Clamped thin rectangular plates under a uniform load

Consider a plate of dimension [−a/2, a/2] × [−b/2, b/2] with built-in edges. The
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results of deflection at the centre and bending moment at (x = a/2, y = 0) for the

ratio b/a varying from 1.0 to 2.0 with an increment of 0.1 are shown in Table 1

together with the analytical results. With only coarse data density of 11 × 11, the

computed results agree well with the analytical results [24].

4.3.3 Plate vibration problems

To further verify the present unsymmetric IRBFN collocation method, the free vi-

bration of simply supported plates is considered here. The IRBFN discretization of

(19) results in the following system of algebraic equations for the unknown vector

of network weights

Aw = Ω2Bw, (29)

Cw = 0, (30)

where A and B are the matrices obtained from discretizing the governing equations,

and C the matrix obtained from two sources, namely the discretization of boundary

conditions and the condition of unity for two functional networks associated with

the x1- and x2- directions (v[x1](x) = v[x2](x)). To obtain natural frequencies Ωi, the

system (29)-(30) needs to be modified as follows

[A1,A2]{w1;w2} = Ω2[B1,B2]{w1;w2}, (31)

[C1,C2] {w1;w2} = 0, (32)

By solving (32), the subset w2 will be expressed as

w2 = −C2
−1C1w1 (33)
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Substitution of (33) into (31) yields

(
A1 − A2C2

−1C1

)
w1 = Ω2

(
B1 − B2C2

−1C1

)
w1 (34)

from which the natural frequencies can be found by using the QZ algorithm. The

subset w2 contains the network weights associated with the interior points and the

integration constants.

Consider a simply supported square plate of a unit size. Three discretizations of

7 × 7, 9 × 9 and 11 × 11 data points are employed. The results of the natural

frequency for the first five modes are tabulated in Table 2. The solutions obtained

by the differential quadrature method [17] and by the Rayleigh-Ritz method [25] are

also included for comparison. All results are in good agreement. It is found that

using a low density of 7 × 7 is able to yield accurate results, where the maximum

error relative to the the Rayleigh-Ritz solutions is 0.4%.

5 NATURAL CONVECTION FLOWS

Heat transfer by natural convection in an enclosed cavity has received a great deal of

attention in recent years due to its wide applications in engineering. This problem

is known to provide a good means of testing and validating numerical methods.

5.1 Governing equations

Consider the two-dimensional, steady-state, laminar, buoyancy-induced flow of an

incompressible fluid of density ρ and viscosity μ. With the employment of Boussinesq

approximation, i.e., the fluid is assumed to have constant properties except for the
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generation of buoyant force, the dimensionless governing equations in terms of a

stream function φ and a temperature T can be written as

∇4φ − ∂T

∂x1

=
Ra

Pr

[
∂φ

∂x2

(
∂3φ

∂x3
1

+
∂3φ

∂x1∂x2
2

)
− ∂φ

∂x1

(
∂3φ

∂x2
1∂x2

+
∂3φ

∂x3
2

)]
, (35)

∇2T = Ra

(
∂φ

∂x2

∂T

∂x1

− ∂φ

∂x1

∂T

∂x2

)
. (36)

The independent dimensionless parameters appearing in the equations (35)-(36) are

the Rayleigh number (Ra) and the Prandtl number (Pr). More details can be found

in [26].

The domain of interest here is a square cavity of a unit size. Non-slip boundary

conditions (φ = 0, ∂φ/∂n = 0) are applied along all the walls. The left and right

vertical walls are kept at temperatures 1 and 0, respectively, while the horizontal

walls are insulated (∂T/∂n = 0). The thermally driven cavity flow contains no sin-

gularities which makes it more realistic than the lid driven cavity flow problem [27].

A Boussinesq fluid of the Prandtl number of 0.71 is considered. The benchmark

solutions for this problem can be found in [28] for 103 ≤ Ra ≤ 106 and in [29] for

Ra ≥ 106. The former used second-order, finite central difference approximations

and a Richardson extrapolation scheme, while the latter employed a pseudo-spectral

Chebyshev algorithm with increasing the spatial resolution up to a 128× 128 poly-

nomial expansion.

5.2 IRBFN formulation

In the simulation of natural convection flows, the obtained system matrices are much

larger due to the increased number of the field variables and the requirement of dense

data densities for the simulations at high Rayleigh numbers. To keep the system

matrix size comparable to that associated with the DRBFN approach, the multiple
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spaces of IRBFN weights for each variable (φ and T ) need to be converted into

the single space of nodal variable values. All given derivatives on the boundaries

are treated here by taking them into account in the conversion process as follows.

Consider the field variable φ. The process of converting the multiple spaces of

network weights {w(i)
[xj ]

}n+q4

i=1 with j = {1, 2} into the single space of the nodal variable

values {φ(i)}n
i=1 is based on the following sum of squared errors

n∑
k=1

(
n+q4∑
i=1

H
[0](i)
[xj ]

(x(k))w
(i)
[xj ]

− φ(x(k))

)2

+

2nbpj∑
k=1

(
n+q3∑
i=1

H
[1](i)
[xj ]

(x(k))w
(i)
[xj ]

− ∂φ(x(k))

∂xj

)2

→ 0,

(37)

where n is the number of collocation points (also centres) including corner points,

nbpj the number of boundary points on the cavity edge normal to the xj direction,

and q3 and q4 the numbers of nodal integration constants. The first term is the

functional network representing the variable φ over the whole domain, while the

second term represents the given Neumann boundary conditions ∂φ/∂xj along two

boundaries normal to the xj direction. After solving (37) using the general linear

least squares technique [18], the network weights will be expressed in terms of the

nodal variable values

w[xj ] = C−1
[xj ]

φ, (38)

where C[xj ] is the conversion matrix associated with the xj direction. Like the

approach previously presented for thin-plate problems, the increased number of

columns due to the integration constants is offset by the increased number of rows

due to the boundary conditions in the construction of conversion matrices C[xj ].

Expressions of φ and its derivatives at point x0 in terms of φ = {φ(i)}n
i=1 will be
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expressed as

φ(x0) =
1

2

2∑
j=1

([
H

[0](1)
[xj ]

(x0), · · · , H
[0](m+1)
[xj ]

(x0), · · ·
]
C−1

[xj ]
φ
)

, (39)

∂φ2(x0)

∂x2
j

=
[
H

[2](1)
[xj ]

(x0), · · · , H
[2](m+1)
[xj ]

(x0), · · ·
]
C−1

[xj ]
φ, (40)

∂4φ(x0)

∂x4
j

=
[
g

(1)
[xj ]

(x0), · · · , 0, · · ·
]
C−1

[xj ]
φ, (41)

∂4φ(x0)

∂x2
i ∂x2

j

=
1

2
(
[
H

[2](1)
[xi]

(x0), · · · , H
[2](m+1)
[xi]

(x0), · · ·
]
(H

[0]
[xi]

)−1
(
H

[2]
[xj ]

C−1
[xj ]

φ
)

+
[
H

[2](1)
[xj ]

(x0), · · · , H
[2](m+1)
[xj ]

(x0), · · ·
]
(H

[0]
[xj ]

)−1
(
H

[2]
[xi]

C−1
[xi]

φ
)
). (42)

Similarly, the multiple spaces of network weights {w(i)
[xj ]

}n+q2

i=1 with j = {1, 2} for

the field variable T can be converted into the single space of nodal variable values

{T (i)}n
i=1. The IRBFN representations for φ and T are substituted into the governing

equations (35)-(36). By discretizing the governing equations at a set of interior

points and then imposing the given Dirichlet boundary conditions, a square system

of algebraic equations will be obtained. The dimension of the system matrix is

only 2nip × 2nip in which nip is the number of interior points. It can be seen that

by making use of all given derivatives on the boundaries in conversion processes,

one can produce a square system of algebraic equations whatever the order of the

governing PDEs.

In present work, the non-linearity of the resultant discretized system is handled by

using trust region methods that retain two best features: rapid local convergence

of the Newtonian iteration method and strong global convergence of the Cauchy

method [30].
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5.3 Numerical results

The width of the ith RBF (a(i)) is simply chosen to be the minimum distance from

the ith centre to neighbouring centres (β = 1). A number of uniform densities,

namely 11 × 11, 21 × 21, 31 × 31, 41 × 41, 51 × 51 and 57 × 57 data points, are

employed to study this problem for a wide range of the Rayleigh number from 103 to

107. The natural convection flow is solved as steady flow problem. In the following

simulations, the initial solutions are chosen to be zero-solutions (the condition of

fluid at rest) if Ra = 103 and lower-Ra-number solutions if Ra > 103. The sizes

of the system matrices obtained here are smaller than those yielded through the

case of introducing a new variable (the vorticity ω = ∇2φ). For example, with a

density of 31 × 31 points, the present matrix size is 58 × 58, while it is 87 × 87 in

the case of using the stream function, vorticity and temperature formulation. The

dimensionless velocity in the present non-dimensional scheme is related to the one

in [28] according to

Ra(uj)present = (uj)benchmark.

Some important measures associated with this type of flow are

• Maximum horizontal velocity (u1)max on the vertical mid-plane and its loca-

tion,

• Maximum vertical velocity (u2)max on the horizontal mid-plane and its loca-

tion,

• The average Nusselt number throughout the cavity, which is defined as

Nu =

∫ 1

0

Nu(x1)dx1, (43)

Nu(x1) =

∫ 1

0

(u1T − ∂T

∂x1

)dx2. (44)
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Integrals (44) and (43) are computed using Simpson rule. Results of (u1)max,

(u2)max, their positions and Nu for Ra = {104, 105, 106, 107} are displayed in Ta-

bles 3-6, respectively, where finer densities are used for higher Ra values. In all

cases, the errors relative to the benchmark solutions consistently reduce with an

increase in data density, indicating “mesh convergence”.

The successful simulations of natural convection flow at Ra = 107 using relatively

coarse densities (21×21, · · · , 57×57) demonstrate the effectiveness of the proposed

methods. As can be seen from Figure 4, velocity boundary layers significantly

increase in strength with an increasing Rayleigh number.

General results for flow at Ra = 107 in the form of stream function, vorticity and

temperature contour plots are displayed in Figure 5. Each plot draws 21 contour

lines whose values vary uniformly from the minimum to maximum values. The

temperature, vorticity and stream function fields are skew-symmetric with regard

to the geometric centre of the cavity (centro-symmetric).

6 CONCLUDING REMARKS

Two versions of indirect RBFNs are developed for the numerical solution of high-

order PDEs. In the first version, the IRBFN formulations are written directly in

terms of network weights, while in the second version, they are expressed in terms

of nodal variable values. The first version is more straightforward to implement, but

produces much larger system matrices than the second version. The emphasis here

is placed on the advantages of using integration in constructing neural networks with

regard to the implementation of multiple boundary conditions (straightforwardly)

and the approximation of high-order derivatives (accurately). The present unsym-

metric IRBFN collocation method is verified successfully through the solution of

22



thin-plate bending problems and natural convection flows which are governed by

biharmonic equations. Accurate results and high rates of convergence are achieved.

APPENDIX

The following are new basis functions obtained from integrating MQ-RBFs by using

MATHEMATICA.

H
[3](i)
[xj ]

=
(xj − c

(i)
j )

2
A +

C

2
B, (45)

H
[2](i)
[xj ]

=

(
(xj − c

(i)
j )2

6
− C

3

)
A +

C(xj − c
(i)
j )

2
B, (46)

H
[1](i)
[xj ]

=

(
(xj − c

(i)
j )3

24
− 13C(xj − c

(i)
j )

48

)
A +

(
C(xj − c

(i)
j )2

4
− C2

16

)
B, (47)

H
[0](i)
[xj ]

=

(
C2

45
− 83C(xj − c

(i)
j )2

720
+

(xj − c
(i)
j )4

120

)
A+

(
4C(xj − c

(i)
j )3

48
− 3C2(xj − c

(i)
j )

48

)
B, (48)

where

r = ‖x − c(i)‖, A =
√

r2 + a(i)2,

B = ln
(
(xj − c

(i)
j ) +

√
r2 + a(i)2

)
, C = r2 − (xj − c

(i)
j )2 + a(i)2.
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Table 1: Clamped rectangular plates of dimension [−a/2, a/2]× [−b/2, b/2] under a
uniform load q, 11× 11 data points: deflections at the centre and bending moments
at (x1 = a/2, x2 = 0). The computed solutions are in good agreement with the
analytical solutions [24].

v/(qa4/D) × 102 Mx/(qa
2) × 10

b/a IRBFN analytical IRBFN analytical

1.0 0.1265 0.126 -0.5138 -0.513
1.1 0.1507 0.150 -0.5813 -0.581
1.2 0.1724 0.172 -0.6392 -0.639
1.3 0.1911 0.191 -0.6871 -0.687
1.4 0.2068 0.207 -0.7259 -0.726
1.5 0.2196 0.220 -0.7565 -0.757
1.6 0.2300 0.230 -0.7802 -0.780
1.7 0.2382 0.238 -0.7982 -0.799
1.8 0.2446 0.245 -0.8116 -0.812
1.9 0.2495 0.249 -0.8214 -0.822
2.0 0.2533 0.254 -0.8283 -0.829
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Table 2: Free vibration, simply supported plate, [0, 1] × [0, 1]: natural frequencies.
The present results agree well with those obtained by the DQ method [17] and the
Rayleigh-Ritz (R-R) method [25]. By regarding the results from the R-R method
as exact solutions, it can be seen that the errors (%) consistently reduce with an
increase in data density.

IRBFN DQ R-R

Ω 7 × 7(error) 9 × 9(error) 11 × 11(error) 12 × 12(error)

Ω1 19.7403(0.005) 19.7398(0.003) 19.7395(0.001) 19.7392(0.000) 19.7392
Ω2 49.2892(0.119) 49.3533(0.010) 49.3528(0.009) 49.3495(0.003) 49.3480
Ω3 49.2892(0.119) 49.3533(0.010) 49.3528(0.009) 49.3495(0.003) 49.3480
Ω4 78.6314(0.412) 78.9386(0.023) 78.9584(0.002) 78.9589(0.002) 78.9568
Ω5 98.3690(0.331) 98.7330(0.037) 98.7256(0.030) 98.4154(0.284) 98.6960
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Table 3: Natural convection flow, Ra = 104.

Data density Characteristic values

(u1)max (error %) x2 (u2)max (error %) x1 Nu (error %)

11 × 11 16.330(0.93) 0.823 19.778(0.82) 0.119 2.242(0.04)
21 × 21 16.209(0.19) 0.823 19.653(0.18) 0.118 2.244(0.04)

Benchmark 16.178 0.823 19.617 0.119 2.243
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Table 4: Natural convection flow, Ra = 105.

Data density Characteristic values

(u1)max (error %) x2 (u2)max (error %) x1 Nu (error %)

11 × 11 32.58(6.19) 0.856 59.71(12.9) 0.075 4.127(8.67)
21 × 21 34.99(0.74) 0.854 68.93(0.49) 0.065 4.532(0.28)
31 × 31 34.86(0.37) 0.854 68.78(0.27) 0.065 4.526(0.15)

Benchmark 34.73 0.855 68.59 0.066 4.519
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Table 5: Natural convection flow, Ra = 106.

Data density Characteristic values

(u1)max (error %) x2 (u2)max (error %) x1 Nu (error %)

11 × 11 65.31(1.05) 0.900 107.14(51.1) 0.061 5.840(33.6)
21 × 21 61.59(4.70) 0.857 198.62(9.45) 0.040 8.153(7.35)
31 × 31 64.62(0.01) 0.850 218.86(0.22) 0.037 8.782(0.20)

Benchmark 64.63 0.850 219.36 0.037 8.800
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Table 6: Natural convection flow, Ra = 107.

Data density Characteristic values

(u1)max (error %) x2 (u2)max (error %) x1 Nu (error %)

21 × 21 129.2(13.0) 0.908 390.8(44.0) 0.031 11.203(32.1)
31 × 31 132.1(11.0) 0.909 561.4(19.6) 0.024 14.075(14.8)
41 × 41 139.1(6.3) 0.895 648.8(7.2) 0.022 15.628(5.4)
51 × 51 144.7(2.6) 0.884 683.9(2.1) 0.021 16.264(1.5)
57 × 57 146.7(1.2) 0.880 692.9(0.8) 0.021 16.422(0.6)

Benchmark 148.5 0.879 699.1 0.021 16.523
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Figure 1: Biharmonic problem: geometry definition, boundary conditions and dis-
cretization. Legends ◦: boundary point and �: interior point. The domain is simply
represented by the set of discrete points.
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Figure 2: Biharmonic problem, domain [−2, 2]× [−2, 2], boundary conditions v and
∂v/∂n: accurate results and high rates of convergence are achieved. The solutions
converge apparently as O(h5.3) (solid line) and O(h4.6) (dashed line) for v and u,
respectively, where h is the centre spacing. At the highest density of 19× 19, error-
norms are 5.8 × 10−7 for v and 4.8 × 10−5 for u.
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Figure 3: Biharmonic problem, domain [−2, 2]× [−2, 2], boundary conditions v and
∂2v/∂n2: accurate results and high rates of convergence are achieved. The solutions
converge apparently as O(h5.0) (solid line) and O(h4.3) (dashed line) for v and u,
respectively, where h is the centre spacing. At the highest density of 19× 19, error-
norms are 2.5 × 10−5 for v and 4.7 × 10−5 for u.
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Figure 4: Natural convection flow, 57 × 57: velocity profiles along the centre lines
for various Rayleigh numbers. The velocity boundary layers significantly increase in
strength with an increasing Rayleigh number.
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a) stream function

b) vorticity

c) temperature

Figure 5: Natural convection flow, Ra = 107: contour plots of stream function,
vorticity and temperature for the two densities 31×31 (left) and 57×57 (right). The
successful simulation of flow at Ra = 107 using only 31×31 data points demonstrates
the effectiveness of the proposed method.
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