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Abstract: This paper presents a numerical approach for macro-micro multi-scale modelling of visco-elastic
fluid flows based on the Integrated Radial Basis Function Networks (IRBFNs) and the Stochastic Simulation
Technique (SST). The extra stress is calculated using the Brownian configuration fields (BCFs) technique while
the velocity field is locally approximated at a set of collocation points using 1D-IRBFNs. In this approach, the
stress is decoupled from the velocity field and computed fromthe molecular configuration directly without the
need for a closed form rheological constitutive equation. The equations governing the macro flow field are
discretised using a meshless collocation method where the IRBFN approximants improve the accuracy of the
numerical solutions by avoiding the deterioration of accuracy caused by differentiation. As an illustration of
the method, the time evolution of the planar Couette flow and the steady state Poiseuille flow are studied for
two molecular kinetic models: the Hookean dumbbell and FENEdumbbell models.

Keywords: Integrated radial basis function networks, macro-micro multi-scale method, stochastic simula-
tions, Brownian configuration fields, viscoelastic fluid.

1 Introduction

A common approach for the computation and analysis of complex fluid flows has been based on the coupling of
the system of mass and momentum conservation equations withappropriate closed form constitutive equations.
However, the disadvantage appears for some models which cannot be cast into closed form [e.g. Ottinger
(1996); Bird, Armstrong, and Hassager (1987)]. Furthermore, in many complex fluids, rheological properties
can only be captured at finer scales for the direct numerical simulation. A number of advanced numerical
methods have been developed to appropriately deal with the above issues. Among these methods, the multi-
scale methods [Engquist, Lötstedt, and Runborg (2000); Allaire and Brizzi (2005); Chu, Efendiev, Ginting,
and Hou (2008); Hou (2005); Hajibeygi, Gonfigli, Hesse, and Jenny (2008)] have attracted significant attention
for the last two decades. In this framework, the lack of information at the macroscopic level can be solved
by a multiscale strategy consisting in searching for the information on the microstructures of the fluids. The
information is then used to solve the macroscopic governingequations. This macro-micro multiscale approach
does not require closed form constitutive equations [Ottinger (1996); Laso and Ottinger (1993); Feigl, Laso, and
Ottinger (1995); Laso, Picasso, and Ottinger (1997); Hulsen, van Heel, and van den Brule (1997); Jourdain,
Lelièvre, and Bris (2002)]. The approach is an attempt to emulate the situation in real liquids, where the
full information about the stress is contained in the configuration of molecules which results from the micro-
scale deformation history. The main idea of these techniques is that the polymer contribution to the stress is
directly calculated from a large ensemble of microscopic configurations without having to derive a closed form
constitutive equation, which is a powerful feature for the modelling of materials [Ottinger (1996); Engquist,
Lötstedt, and Runborg (2000)].

Recently, the calculation of non-Newtonian flow by neural networks and stochastic simulation techniques
[Tran-Canh and Tran-Cong (2002, 2004); Tran, Phillips, andTran-Cong (2009)], which is based on a di-
rect combination of the stochastic simulations and the differentiated radial basis function networks (DRBFNs)
meshfree technique, was employed to model the hybrid systems. The present work is a further development
of this approach with the incorporation of IRBFNs (instead of DRBFNs) and subdomain collocation (i.e. 1D-
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IRBFNs) into the macro-micro approximation approach for solving non-Newtonian fluid problems. The pur-
poses of using integration as a smoothing operator to construct the approximant are to avoid the reduction
in convergence rate caused by differentiation and reduce the white noise in the approximation [Mai-Duy and
Tran-Cong (2001)].

The paper is organised as follows. Section 2 gives a short review of the governing equations of incompress-
ible non-Newtionian fluid flows using the macroscopic approach. In section 3, a macro-microscopic multi-
scale modelling is described in which a stochastic simulation technique for the computation of the polymer-
contributed stress is presented. Specifically, the coupledmacro-micro multi-scale systems for the dumbbell
models are introduced together with their non-dimensionalised forms. The discretisation of the coupled macro-
micro models is detailed in section 4 where the BCFs and the 1D-IRBFN methods are described. An algorithm
of the present procedure is presented to highlight the separate discretisations of the micro and macroscale com-
ponents as well as their interaction. The numerical examples are then discussed in section 5 with a concludion
in section 6.

2 Macroscopic governing equations for non-Newtonian fluid flows

Consider the isothermal flow of an incompressible fluid with density ρ , the system of mass and momentum
conservation equations (governing PDEs) is given by

ρ
D
Dt

(u) = −∇p+ ∇ · τ, (1)

∇ ·u = 0, (2)

wherep, u are the hydrostatic pressure and velocity field respectively; τ the stress tensor defined by

τ = τs+ τ p, (3)

whereτs = 2ηsD is the Newtonian solvent contribution;D (D = 0.5(∇u+(∇u)T)) the rate of strain tensor;ηs

the solvent viscosity;τ p the polymer-contributed stress; andD/Dt(·) the substantial derivative defined by

D
Dt

(·) =
∂
∂ t

(·)+ (u ·∇)(·). (4)

For certain macroscopic models, it might be possible to obtain a closed form constitutive equation for the
polymer-contributed stress(τ p) in the form

Dτ p

Dt
= f (τ p,∇u). (5)

In the traditional approach, the conservation equations (1) and (2) are closed with a constitutive equation such as
(5) involving the macroscopic quantities pressure, velocity and stress. In an alternative approach, the polymer-
contributed stress can be calculated by directly solving appropriate stochastic differential equations governing
the evolution of the microstructures of the polymer. Thus the coupling of the conservation equations (1) and
(2) and the equations expressing evolution of the microscopic structures forms basis for the macro-microscopic
multi-scale approach [Ottinger (1996); Bird, Armstrong, and Hassager (1987)]. Such a method is presented in
the next section.

3 Macro-microscopic multi-scale modelling

Macro-micro multi-scale models can be simulated using different techniques. Here, the BCFs-based simulation
method is used to determine the polymer-contributed stressτ p in the microscopic part of the framework.
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3.1 The BCFs-based stochastic simulation technique

This technique is one of several potential approaches for analysis of complex fluids where the non-Newtonian
character stems from the presence of micro-structures at a mesoscopic scale rather than at a real microscopic
one. In this procedure, an appropriate equation describes the evolution of the micro-structures, and the non-
Newtonian contributionτ p to the stress is deduced from the evolving microstructures.In this context, the
polymer chain is a linear arrangement of a number of non-interacting dumbbells. Each dumbbell consists of
two Brownian beads with the friction coefficientζ , which are connected together by a spring. The configuration
of a dumbbell is completely described by the length and orientation of the end-to-end vectorR connecting the
two beads [Ottinger (1996); Bird, Armstrong, and Hassager (1987)]. The state of the polymer chain is described
by the set ofR whose evolution are modelled using a stochastic differential equation (SDE) as follows [Hulsen,
van Heel, and van den Brule (1997)].

dR(t,x) =

[
−u(t,x) ·∇R(t,x)+ ∇u(t,x) ·R(t,x)− 2

ζ
F(R(t,x))

]
dt

+2

√
kBT
ζ

dZ(t), (6)

whereu is the velocity field;ζ the friction coefficient between the dumbbell and the solvent; kB the Boltzmann
constant;T the absolute temperature;Z(t) a standard multi-dimensional Brownian motion which is aWiener
process;F(R) is the internal force (also called spring force) exerted by apolymer in stateR and depends on
the kinetic model of the polymer. The coupling between the PDEs and SDE is carried out via the classical
Kramers’ expression given by [Ottinger (1996); Bird, Armstrong, and Hassager (1987)]

τ p = nd〈R⊗F(R)〉−ndkBTId, (7)

wherend is the density of dumbbells;I the identity tensor;d is the dimension of the ambient space; and⊗
the tensorial product. Withu(x) treated as a known macro field, the solution of the SDE (6) willyield R(t,x)
which are then used to calculate the polymer-contributed stress. The stress (7) is then treated as known in the
macro governing PDE (1). In SDE (6), the termu(t,x) ·∇R(t,x) accounts for the convection of Brownian con-
figuration fields by the flow. It can be seen that the existence of the convective term in this Eulerian framework
[Hulsen, van Heel, and van den Brule (1997)] is completely equivalent to the particle tracking in the traditional
Lagrangian CONNFFESSIT approach [Laso and Ottinger (1993)].

In this work, we consider the Hookean and Finitely Extensible Nonlinear Elastic (FENE) dumbbell models;
and individual polymers as non-interacting dumbbells.

3.2 A coupled macro-micro multi-scale system

Collecting the partial differential conservation equations (1)-(2), the stochastic differential BCFs equations (6)
and the Kramers’ expression (7) yields a macro-microscopicmulti-scale system as follows.

ρ
∂u
∂ t

+ ρ (u ·∇u)−η∆u+ ∇p= ∇ · τ p, (8)

∇ ·u = 0, (9)

dR =

[
−u ·∇R+ ∇u ·R− 2

ζ
F(R)

]
dt+2

√
kBT

ζ
dZ(t), (10)

τ p = nd (E(R⊗F(R))−kBTId) , (11)

whereE(·) is the expectation of(·). In the Hookean dumbbell model, the linear spring force is realistic only
for small deformations from the static equilibrium configuration. This unphysical behaviour is overcome by
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the FENE model which plays an important role in non-linear rheological phenomena. The spring forces (F) of
the Hookean and FENE dumbbell models are respectively givenby

FHookean = RH,

FFENE =
RH

1− ‖ R ‖2 /(bkBT/H)
,

where b is a non-dimensional parameter related to the maximal polymer length andH is a spring constant.

3.3 Non-dimensionalisation

Let U be a characteristic velocity;ηp = ndkBTλH the viscosity associated with the polymers;λH = ζ/4H the
relaxation time of the polymer chains andL =

√
kBT/H the characteristic length scale [Ottinger (1996); Laso

and Ottinger (1993); Jourdain, Lelièvre, and Bris (2002); Tran-Canh and Tran-Cong (2004)].

The dimensionless numbers Reynolds, Wissenberg andε are defined respectively as follows.

Re=
ρUL

η
;We=

λHU
L

;ε =
ηp

η
,

whereη (η = ηo + ηp) is the total viscosity of the solution. Thus, the macro-microscopic multi-scale system
(8)-(11) is rewritten in the non-dimensionalised form as follows.

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u+ ∇p= ∇ · τ p, (12)

∇ ·u = 0, (13)

dR =

[
−u ·∇R+ ∇u ·R− 1

2We
F(R)

]
dt+

1√
We

dZ(t), (14)

τ p =
ε

We
(E(R⊗F(R))− Id) , (15)

with F = FHookean= R andF = FFENE = R
(1−‖R‖2/b)

for the Hookean and FENE dumbbell models, respectively.

4 Discretisation of the macro-micro system using the multi-scale BCF-IRBFN method

In this section, the computational techniques are described for the numerical solution of micro-scale governing
equations. The BCFs technique and the 1D-IRBFN collocationmethod are respectively presented for the
discretisation of the SDEs and PDEs in the coupled macro-micro multi-scale system. The marriage of the two
techniques to compute a macro-micro multiscale model is then presented in the overall algorithm.

4.1 Numerical solution of the SDEs

In this paper, the explicit Euler scheme is used for time dicretization of the SDE (14) for the Hookean dumbbell
model and briefly presented as follows.

R(i+1) = Ri +

[
−ui ·∇Ri + ∇ui ·Ri −

1
2We

F(Ri)

]
∆t +

√
∆t
We

Z i , (16)

whereRi = R(ti); ∆t is a fixed time step size for the stochastic process;∆Z i is normally distributed variable
with expectation 0 and variance∆t andF(Ri) is defined as before. In the case of the FENE dumbbell model, the
predictor-corrector method is employed to always satisfy the condition of a FENE dumbbell 0≤ |Qi+1| <

√
b.

More details of the method and its implementation for the Eulerian SDEs can be found in [Ottinger (1996);
Tran-Canh and Tran-Cong (2004)].

At time (i +1), the velocity, velocity gradient and configuration gradient are determined with data obtained at
time (i) using an IRBFN method which is presented in section 4.2.
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Noise reduction issue is crucial in the stochastic simulation of systems such as (14). The variance reduction
can be achieved by several techniques which are detailed in [Kloeden and Platen (1997); Gardiner (1994)]. In
this work, the control variate method is employed for the dumbbell models. Details can be found in [Ottinger,
van den Brule, and Hulsen (1997); Melchior and Ottinger (1996)], for example.

The method uses a control variate〈Rc〉 which is correlated with the random variable〈R〉, to produce a better
estimator of〈R〉. While 〈R〉 is unknown and needs to be estimated,〈Rc〉 can be calculated by a deterministic
method. The control variate reduction technique is implemented as follows. At each collocation point,M
dumbbells are assigned and numbered fromi = 1· · ·M and dumbbells having the same index in the whole
analysis domain have the same random number.

The implementation of the control variate technique for thedumbbell models can be found in, for example,
[Bonvin and Picasso (1999); Tran-Canh and Tran-Cong (2004); Tran, Phillips, and Tran-Cong (2009)] and is
not repeated here. Since dumbbells are processed at the collocation points, it is easy to incorporate the control
variate technique in the present BCF-IRBFN collocation method.

4.2 The IRBFN collocation method for solving PDEs

Consider the conservation equations (12)-(13), reproduced here for convenience,

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u+ ∇p= ∇ · τ p,

∇ ·u = 0,

whereτ p is a known function obtained from the stochastic process in the coupled macro-micro multiscale
system.

In order to solve the system of Eqs. (12)-(13), the problem domain is discretised using a set of nodal points,
called the global macro-scale grid. In this work, instead ofusing the continuity equation (13), the incompress-
ibility condition is enforced via the penalty method as follows [Feigl, Laso, and Ottinger (1995)].

p = −pe∇ ·u, (17)

wherepe is a sufficiently large penalty parameter. Equation (12) is then rewritten as

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u− pe∇(∇ ·u) = ∇ · τ p. (18)

In this paper, the 1D-IRBFN scheme is employed to approximate spatial derivatives, whereas a finite difference
technique is used for temporal discretisation.

4.2.1 Spatial discretisation

At a timet the domain under consideration is discretised using a uniform Cartesian grid. LetNx andNy be the
numbers of grid lines in thex andy directions respectively. The dependent variables and their derivatives are
approximated using a 1D-IRBFN interpolation scheme which is presented in the following sections.

a) 1D IRBFN scheme on a grid line: x and y directions

The variation of dependent variableu along anx-gridline in the IRBFN form [Mai-Duy and Tran-Cong (2007)]
starts with

∂ 2u
∂x2 =

Nx

∑
i=1

wigi =
Nx

∑
i=1

wiG
[2]
i , (19)

where{wi}Nx
i=1 is the set of RBF weights;{gi(x)}Nx

i=1 the set of Multi-quadric RBFs (MQ-RBFs) [Hardy (1971);
Franke (1982); Kansa (1990)] and given by

gi(x) =
(
(x−ci)

2−a2
i

)1/2
, (20)

where{ci}Nx
i=1 is a set of centres and{ai}Nx

i=1 a set of MQ-RBF widths [Haykin (1999)].
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The corresponding first-order derivative and function are then determined through integration as follows

∂u
∂x

=
Nx

∑
i=1

wiG
[1]
i +C1, (21)

u =
Nx

∑
i=1

wiG
[0]
i +C1x+C2, (22)

whereG[1]
i (x) =

∫
G[2]

i (x)dx, G[0]
i (x) =

∫
G[1]

i (x)dx andC1 andC2 are unknown constants of integration.

Collocating equations (19), (21) and (22) at a set of grid points {xi}Nx
i=1 yields the following set of algebraic

equations

∂̃ 2u
∂x2 = G̃[2]w̃, (23)

∂̃u
∂x

= G̃[1]w̃, (24)

ũ = G̃[0]w̃, (25)

where

G̃[2] =




G[2]
1 (x1) G[2]

2 (x1) · · · G[2]
Nx

(x1) 0 0

G[2]
1 (x2) G[2]

2 (x2) · · · G[2]
Nx

(x2) 0 0
...

...
. . .

...
...

...

G[2]
1 (xNx) G[2]

2 (xNx) · · · G[2]
Nx

(xNx) 0 0




,

G̃[1] =




G[1]
1 (x1) G[1]

2 (x1) · · · G[1]
Nx

(x1) 1 0

G[1]
1 (x2) G[1]

2 (x2) · · · G[1]
Nx

(x2) 1 0
...

...
. . .

...
...

...

G[1]
1 (xNx) G[1]

2 (xNx) · · · G[1]
Nx

(xNx) 1 0




,

G̃[0] =




G[0]
1 (x1) G[0]

2 (x1) · · · G[0]
Nx

(x1) x1 1

G[0]
1 (x2) G[0]

2 (x2) · · · G[0]
Nx

(x2) x2 1
...

...
. . .

...
...

...

G[0]
1 (xNx) G[0]

2 (xNx) · · · G[0]
Nx

(xNx) xNx 1




,

w̃ = (w1,w2, · · · ,wNx,C1,C2)
T ,

ũ = (u1,u2, · · · ,uNx)
T ,

d̃ku
dxk =

(
dku1

dxk ,
dku2

dxk , · · · , dkuNx

dxk

)T

,

whereui = u(xi) with i = (1,2, · · · ,Nx).

Owing to the presence of integration constants of the IRBFN based approximation, one can beneficially intro-
duce in the algebraic equation system additional constraints such as nodal derivative values (more details can
be found in [Mai-Duy and Tran-Cong (2007)]). Thus, the algebraic equation system (25) can be reformulated
as follows. (

ũ
f̃

)
=

[
G̃[0]

L̃

]
w̃ = C̃w̃,

where f̃ = L̃w̃ are additional constraints. The conversion of the network-weight space into the physical space
yields

w̃ = C̃−1
(

ũ
f̃

)
, (26)
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C̃−1 is the conversion matrix. By substituting (26) into (19) and(21), the second and first-order derivatives ofu
will be expressed in terms of nodal variable values as follows.

∂ 2u
∂ 2x = D2xũ+k2x,
∂u
∂x = D1xũ+k1x,

(27)

whereD1x andD2x are known vectors of lengthNx; andk2x andk1x scalars and determined bỹf . Applying (27)
at each and every collocation point on the gridline yields

∂̃ 2u
∂ 2x = D̃2xũ+ k̃2x,

∂̃u
∂x = D̃1xũ+ k̃1x,

(28)

whereD̃2x andD̃1x are known matrices of dimensionNx×Nx; andk̃2x andk̃1x are known vectors of lengthNx.

Similarly, along ay-gridline, the values of the second and first order derivatives ofu in the IRBFN form at all
collocation points can be expressed by

∂̃ 2u
∂ 2y = D̃2yũ+ k̃2y,

∂̃u
∂y = D̃1yũ+ k̃1y,

(29)

whereD̃2y andD̃1y are known matrices of dimensionNy×Ny; andk̃2y andk̃1y are known vectors of lengthNy.

b) 1D-IRBFN scheme on2D computational domain

The second and first order and cross derivatives ofu with respect tox andy over the whole domain can be
expressed using Kronecker tensor products as

∂̂ 2u
∂x2 =

(
D̃2x⊗ Iy

)
û+ k̂2x = D̂2xû+ k̂2x, (30)

∂̂u
∂x

=
(
D̃1x⊗ Iy

)
û+ k̂1x = D̂1xû+ k̂1x, (31)

∂̂ 2u
∂y2 =

(
Ix⊗ D̃2y

)
û+ k̂2y = D̂2yû+ k̂2y, (32)

∂̂u
∂y

=
(

Ix⊗ D̃1x

)
û+ k̂1y = D̂1yû+ k̂1y, (33)

∂̂ 2u
∂x∂y

=
1
2

(
D̂1xD̂1y + D̂1yD̂1x

)
û+ k̂2xy, (34)

whereD̂2x, D̂1x, D̂2y, D̂1y andD̂2xy are known matrices of dimensionNxNy×NxNy; k̂2x, k̂1x, k̂2y, k̂1y k̂2xy known
vectors of lengthNxNy; û = (u(1),u(2), . . . ,u(NxNy))T ; ⊗ the tensorial product; andIx andIy the identity matrices
of dimensionNxNx andNyNy, respectively.

All boundary conditions are directly imposed on the IRBFN approximations, and the governing equations are
forced to be satisfied locally on each and every gridline. Further details of the method will be described through
the numerical examples in section 5.

4.2.2 Time discretisation

For transient problems, the fully implicit Euler method is employed for the temporal discretisation.

4.3 Algorithm of the present procedure

The present multi-scale macro-microscopic method can now be described in a more detailed algorithm as
follows and the implementation will be expressed in the illustrative examples
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(a) Generate a set of collocation points. Start with a given initial condition for the first iteration (velocity
field, molecular configurations) together with the given boundary conditions of the problem. In the present
work, the initial conditions are zero initial velocity field, and initial molecular configurations sampled from
equilibrium Gaussian distribution (e.g. [Tran-Canh and Tran-Cong (2002, 2004)]);

(b) AssignM dumbbells to each collocation point. All dumbbells at a collocation point having the same index
constitute a configuration. Hence, there is an ensemble ofM configuration fieldsRi (i = 1· · ·M). Since
all the dumbbells having the same index receive the same random numbers, there is a strong correlation
between dumbbells in a configuration. The control variatesR̂i associated with the configuration fieldsRi

are created [Bonvin and Picasso (1999); Tran-Canh and Tran-Cong (2004)];

(c) Solving the macro PDEs for the velocity field using the 1D-IRBFN collocation method described in section
(4.2);

(d) Solving the micro SDEs for the polymer configuration fields using the method presented in section (4.1).
As mentioned in step (a), in order to ensure strong correlation within a configuration field, all the dumbbells
of the same index have the same random numbers. For each configuration fieldRi , a corresponding control
variate is determined (see Tran-Canh and Tran-Cong (2004) for details);

(e) Determine the polymer contribution to stress by taking the ensemble average of the polymer configurations
at each collocation pointxi , using Eq. (15);

(f) With the stress field just obtained, solve the macro governing equations (12)-(13) for the new velocity field
using the 1D-IRBFN method described in section (4.2);

(g) Terminate the simulation when either the desired time orconvergence is reached. The latter is determined
by a convergence measure (CM) for the velocity field, defined by

CM(u) =

√√√√∑N
1 ∑d

i=1

(
un

i −un−1
i

)2

∑N
1 ∑d

i=1(u
n
i )

2
≤ tol (35)

whered is the number of dimensions;tol a preset tolerance;ui the i-component of the velocity at a collo-
cation point;N the total number of collocation points andn the iteration number.

(h) Return to step (d) for the next time step of the microscopic process until steady state or a given time is
reached.

5 Numerical examples

The present method is verified with the simulation of the start-up planar Couette flow of Hookean and FENE
dumbbell fluids and the steady state planar Poiseuille flow ofHookean dumbbell fluids.

5.1 Start-up planar Couette flow using the dumbbell models

This problem was earlier studied by [Laso and Ottinger (1993); Mochimaru (1983); Tran-Canh and Tran-Cong
(2002, 2004)], and it is used here to verify the present method for the Hookean and FENE dumbbell models.
The problem is defined in Fig. 1. For timet < 0, the fluid is at rest. Att = 0, the lower plate starts to move
with a constant velocityV = 1. No-slip condition is assumed at the walls.

From the characteristics of the start up Couette flow problemand a dumbbell model of polymer, the macro-
micro system of equations (12)-(15) is rewritten as follows[Jourdain, Lelièvre, and Bris (2002)].

Re
∂u
∂ t

(t,y)− (1− ε)
∂ 2u
∂y2 (t,y) =

∂τ p

∂y
(t,y), (36)

dP(t,y) =

(
− 1

2We
FP(R(t,y))+

∂u
∂y

(t,y)Q(t,y)

)
dt+

1√
We

dV(t), (37)
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dQ(t) = − 1
2We

FQ(R(t,y))dt +
1√
We

dW(t), (38)

τ p(t,y) =
ε

We
(E(P(t,y)Q(t)) , (39)

whereu andτ p are thex-component of the velocity and the shear stressτ p
xy of the flow, respectively; (P, Q) and

(V,W) the components of a processR and two independent Brownian motions, respectively of a configuration
of dumbbell at locationy; and (FP,FQ) are two components of the forceF(R).

The stochastic differential equations (37)-(38) are givenby

dP(t,y) =

(
− 1

2We
P(t,y)+

∂u
∂y

(t,y)Q(t,y)

)
dt+

1√
We

dV(t), (40)

dQ(t) = − 1
2We

Q(t)dt +
1√
We

dW(t), (41)

for the Hookean dumbbell model, and

dP(t,y) =

(
− 1

2We
· P(t,y)
1− ‖ R ‖2 /b

+
∂u
∂y

(t,y)Q(t,y)

)
dt+

1√
We

dV(t), (42)

dQ(t) = − 1
2We

· Q(t,y)
1− ‖ R ‖2 /b

dt+
1√
We

dW(t), (43)

for the FENE dumbbell model, where‖ R ‖2= P2(t,y)+Q2(t,y) andb is defined as before.

In this section, only the time discretisation of the Hookeandumbbell SDEs is described, and that for the FENE
dumbbell model is similarly obtained. The discretisation of equations (36), (40)-(41) and (39) are carried out
through two interlaced processes of different scales as follows.

5.1.1 Discretisation of the micro-scale stochastic governing equation

Eqs (40)-(41) are discretised using the Euler explicit scheme in time withM = 1000 realizations of each random
process as follows.

Ph
i+1, j =

(
1− ∆t

2We

)
Ph

i, j +

(
∂u j

∂y

)h

i+1
Qh

i ∆t +

√
∆t
We

∆Vh
i, j , (44)

Qh
i+1 =

(
1− ∆t

2We

)
Qh

i +

√
∆t
We

∆Wh
i , (45)

wherei and j are for the time and space discretisations, respectively;h (1≤ h≤ M) stands for the realisation
of random processes; and∆Vh

i, j and∆Wh
i are standard normal random variables. The velocity field of the flow

at the timesti is either given by the initial conditions or the solution of the macro-scale process which was
previously determined using the 1D-IRBFN method. It is worthy of note thatQh are independent of their
positiony, owing to the simple geometry of problem.

The stressτ p is then calculated using the coupling equation (39) as follows.

(τ p)i+1, j =
ε

We
1
M

M

∑
h=1

Ph
i+1, jQ

h
i+1. (46)

The stresses(τ p)i+1, j at the timeti+1 and collocation pointsy j are employed in the right hand side of the
governing equation (36) for the discretisation of the macroprocess as described in (5.1.2).
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5.1.2 Discretisation of the macro-scale governing equation

Applying the full implicit method for time discretisation of the macro-governing equation (36) yields

Re
ui+1−ui

∆t
− (1− ε)

∂ 2ui+1

∂y2 =
∂ (τ p)i

∂y
,

or

βui+1−α
∂ 2ui+1

∂y2 =
∂ (τ p)i

∂y
+ βui, (47)

where∆T is uniform time step;β = Re/∆t; α = 1− ε ; andui+1 = u(y, ti+1) with u0 = u(y,0).

Since it is a 1D problem, the time discrete equation (47) is then spatially discretised using equation (29) (section
4.2). The spatial domain (0≤ y≤ 1) is discretised usingNy uniform collocation points.T is the final time when
the flow has reached its steady state.

• Initial conditions
u(0,0) = V = 1; u(0,y) = 0 ∀y 6= 0. (48)

• Dirichlet boundary conditions

u(t,0) = V = 1 ∀t > 0; u(t,L) = 0 ∀t > 0. (49)

The parameters of the problem are: Wissenberg numberWe= 0.5, Reynolds numberRe= 0.1 and the ratio
ε = 0.9.

Using the time step∆t = 10−2 for both macro and micro processes, a coarse spatial discretisation∆y = 0.05
(Ny = 21) and number of dumbbellsN = 1000 at each collocation points, results by the 1D-IRBFNs collocation
method are in good agreement with ones obtained from a macroscopic approach (Finite Difference Method)
using Oldroyld-B model.

Figs. 2 and 3 show time evolutions of the velocity and shear stress respectively at four locationsy = 0.2, 0.4,
0.6 and 0.8. Fig. 4 describes the evolution of the velocity profile, which shows that velocity exhibits undershoot
and overshoot before reaching the steady state att = 1.

Using a coarser number of collocation points (Ny = 11,∆t = 0.01) and (Ny = 15,∆t = 0.01), the results showed
that the present method is able to produce a very high degree of accuracy using a relatively coarse grid.

The problem is also solved for the FENE dumbbell model using the present method with the following chosen
physical parameters:ηo = ηN + ηp = 1,ρ = 1.2757,λH = 49.62,ηN = 0.0521 as done in [Laso and Ottinger
(1993); Tran-Canh and Tran-Cong (2002, 2004)], whereηo, ηN, ηp, ρ , ηH andρN are defined as before.

The corresponding Wissenberg, Reynolds numbers and the ratio ε are given by

Re= ρVL
ηo

= 1.2757; We= λHV
L = 49.62 and ε =

ηp

ηo
= 0.9479.

For this case, the Predictor-Corrector method is employed to discretise the SDEs (42)- (43) as mentioned in
section 4.1. Fig. 5 describes the evolution of the velocity profile, which shows that velocity overshoot is pretty
clear. Figs 6 and 7 show the time evolution of the velocity andshear stress, respectively at four locations
y = 0.2, y = 0.4, y = 0.6 andy = 0.8, using 21 collocation points. The results also show that velocity reaches
the steady state sooner than the shear stress. The numericalsolutions by the present method confirm a very
good agreement with the results of other methods where finer meshes or collocation points [Laso and Ottinger
(1993); Tran-Canh and Tran-Cong (2004)] were used.

5.2 Steady state Planar Poiseuille flow

The planar Poiseuille problem and coordinate system are described in Fig. 8 where only half of the fluid domain
needs to be considered, owing to symmetry. For this problem,the characteristic length is chosen to be half of
the gap between the two parallel plates.
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In this example, the Hookean model is considered. The fluid parameters are chosen as in [Feigl, Laso, and
Ottinger (1995); Tran-Canh and Tran-Cong (2004)]: the relaxation time isλH = 1, the total viscosityη0 =
ηN + ηp, the density of fluidρ = 1 and the ratio between the viscosity of solvent and polymerηN/ηp = 1.
Thus, the corresponding Reynolds, Wissenberg numbers and the ratioε =

ηp

ηo
are given by

Re= ρ〈u〉a
ηo

= 2
3

ρVa
ηo

= 2
3; We= λH

〈u〉
a = 2

3λH
V
a = 2

3; andε =
ηp

ηo
= 0.5.

5.2.1 Coupled macro-micro governing equations for the Poiseuille flow

Together with the stochastic equations of the Hookean dumbbell model, the coupled macro-micro governing
equations developed from Eq (18) for the case of steady fluid flow are given by

Re

(
u

∂u
∂x

+v
∂u
∂y

)
−α

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
−Pe

(
∂ 2u
∂x2 +

∂ 2u
∂x∂y

)
=

∂τ p
xx

∂x
+

∂τ p
yx

∂y
, (50)

Re

(
u

∂v
∂x

+v
∂v
∂y

)
−α

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
−Pe

(
∂ 2v
∂x2 +

∂ 2v
∂x∂y

)
=

∂τ p
xy

∂x
+

∂τ p
yy

∂y
, (51)

dR =

[
−u ·∇R+ ∇u ·R− R

2We

]
dt+

1√
We

dZ(t), (52)

τ p =
ε

We
(E(R⊗R)− Id), (53)

whereα = ηN
ηo

=
ηo−ηp

ηo
= 1− ε ; (u,v) are two components of velocity fieldu. For the Hookean dumbbell

(Oldroyd-B) model, the creeping Poiseuille flow problem hasan analytical solution given by

τ p
xx = 3(1−α)We

(
∂u
∂y

)2

; τ p
xy = (1−α)

∂u
∂y

; τ p
yy = 0. (54)

The analytical solution is used to judge the quality of the following numerical simulation.

5.2.2 Boundary conditions

The macroscopic boundary conditions are given in dimensionless form as follows.

• Dirichlet boundary condition

- On the wall (Γ4): u(x,y) = 0 andv(x,y) = 0.

- At the inlet (Γ1) and outlet sections (Γ3), the flow is fully developed Poiseuille where the velocity profile
is parabolic:u(x,y) = (1−y2); v(x,y) = 0.

- On the centreline (Γ2): v(x,y) = 0.

• Neumann boundary condition

- On the centreline (Γ2): ∂u
∂y = 0.

5.2.3 Discretisation of the problem using the present method

While the SDEs are discretised using the explicit Euler scheme (see section 4.1) with 1000 dumbbells at each
collocation point and micro time step size∆t = 0.01, the conservation equations (50)-(51) are solved using the
1D-IRBFN method.

It can be seen that the RHS’s of the conservation equations are known and obtained from the solution of the
SDE (52) and the coupling equation (53). Furthermore, the first derivatives of stresses in the RHS are also
approximated using the IRBFN method.

The non-linear convective terms(u ·∇)u in (50)-(51) are linearized using a Picard-type iterative procedure as
follows: keep the derivatives as unknown, i.e.(u ·∇)u is represented by(ui ·∇)ui+1 and the current estimate of
velocity field as a known (the initial zero-value velocity field for the first iteration).

Using a uniform Cartesian grid of 25×25 collocation points and making use of equations (30)-(34), the macro-
governing equations (50)-(51) are forced to satisfy at the interior points, the boundary points on the wall (Γ4),
the inlet and outlet. The Neumann condition onΓ2 is enforced by adding one additional equation to the system.
The Dirichlet conditions are introduced at the boundariesΓ1, Γ2, Γ3 andΓ4.
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5.2.4 Results and discussion

The obtained result shows that the parabolic velocity profile is accurately recovered in the whole domain as
expected (Fig. 9). The figure describes the velocity profile on the middle planex = 0.5 with respect toy for
the steps 11, 12 and 20. While the solution obtained for the velocity field quickly reaches the steady state after
few iterations, shear stress and the first normal stress difference require about 200 iterations to reach the steady
state. Fig. 10 shows the evolution of polymer shear stress and the first normal stress difference through several
steps at the middle planex = 0.5 with respect toy.

The convergence measures (CM) for the shear stress and the first normal stress difference are around 10−3 -
10−4 and show that results obtained by the present method are in good agreement with the analytical solution
given by Eq. (54).

The problem is also solved using coarser grids of collocation points: (11× 11) and (15× 15). The results
showed that the present method is able to produce a high degree accuracy using a relatively coarse grid, how-
ever insufficient number of dumbbells at each collocation point will result in oscillatory behaviours even with
variance reduction method. For example, when the number of dumbbells at each collocation point is reduced
to 500, oscillatory behaviour sets in. The present results are also compared with those obtained by the BCF-
DRBFN method [Tran-Canh and Tran-Cong (2004)]. It can be seen that the proposed BCF-1D-IRBFN method
outperforms the BCF-DRBFN method regarding convergence (see Tab. 1).

Although further investigations are required, the preliminary results have shown that while the proposed BCF-
1D-IRBFN method have significantly improved the accuracy ofthe velocity because it avoids the deterioration
of accuracy caused by differentiation in both SDEs and PDEs.The improvement of the shear stress is more
modest due to the stochastic nature of the microscopic stress calculation.

6 Conclusion

This paper reports the development of a macro-micro multi-scale method for the computation of visco-elastic
fluid flows using a combination of the 1D-IRBFN method and the Eulerian stochastic simulation technique. The
advantages of the present approach include (i) to obviate the need for a closed form constitutive equation as well
as particle tracking for micro-scale processes; (ii) to yield a meshless discretisation of governing equations; (iii)
to improve the approximation accuracy by avoiding the reduction in convergence rate caused by differentiation;
and (iv) to reduce the white noise in the approximation via the use of integration as a smoothing operator to
construct the approximants. The method is verified with standard test problems, namely the start up Couette
flow and the planar Poiseuille flow problems.

Acknowledgement: This work was supported by the Australian Research Council.
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Table 1:CM for the velocity field and shear stress obtained by the BCF-DRBFN [Tran-Canh and Tran-Cong
(2004)] and BCF-1D-IRBFN methods for several grid sizes at the step 220 after reaching the steady state, using
1000 dumbbells at each nodal point and micro-time step size∆t = 0.01.

Grid BCF-DRBFN BCF-1D-IRBFN
u τxy u τxy

11×11 7.6E−4 3.6E−3 5.7E−5 1.8E−3
15×15 4.5E−4 3.5E−3 1.3E−5 1.1E−3
25×25 5.1E−5 2.1E−3 2.5E−6 3.4E−4

Figure 1: Start-up planar Couette flow problem: the bottom plate moves with a constant velocityV = 1, the top
plate is fixed; no slip boundary conditions apply at the fluid-solid interfaces. The collocation point distribution
is only schematic.
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Figure 2: Start-up planar Couette flow problem (Fig. 1) usingthe Hookean dumbbell model: the parameters of
the problem are number of dumbbellsN = 1000, number of collocation pointsM = 21,∆t = 0.01, Wissenberg
NumberWe= 0.5, Reynolds numberRe= 0.1 and the ratioε = 0.9. The time evolution of the velocity at
locationsy = 0.2, y = 0.4, y = 0.6 andy = 0.8.
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Figure 3: Start-up planar Couette flows using the Hookean model: the parameters are shown in Fig. 1 and the
caption of Fig. 2. The evolution of shear stress at the locationsy = 0.2, y = 0.4, y = 0.6 andy = 0.8 with
respect to time.
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Figure 4: Start-up planar Couette flow problem using the Hookean dumbbell model: the parameters of the
problem are shown in Fig. 1 and the caption of Fig. 2. The velocity profile with respect to locationy at
different times.
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Figure 5: Start-up planar Couette flow problem (Fig. 1) usingthe FENE dumbbell model: the parameters of the
problem are number of dumbbellsM = 1000, number of collocation pointsNy = 21, ∆t = 0.01, Re= 1.2757;
We= 49.62, ε = 0.9479 andb = 50. The velocity profile with respect to locationy at different times.
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Figure 6: Start-up planar Couette flow problem using the FENEdumbbell model: the parameters of the problem
are shown in Fig. 1 and the caption of Fig. 5. The time evolution of the velocity at locationsy = 0.2, y = 0.4,
y = 0.6 andy = 0.8.
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Figure 7: Start-up planar Couette flow problem using the FENEdumbbell model: the parameters of the problem
are shown in Fig. 1 and the caption of Fig. 5. The time evolution of shear stress at the locationsy= 0.2, y= 0.4,
y = 0.6 andy = 0.8.
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Figure 8: Steady planar Poiseuille flow problem: a) Parabolic inlet velocity profile; non-slip boundary condi-
tions applied at the fluid-solid interfaces. b) The collocation point distribution is only schematic.
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Figure 9: Steady state planar Poiseuille flow problem using the Hookean dumbbell (Oldroyd-B) model: The
velocity profiles on the middle planex = 0.5 with respect toy are denoted by⋄ for the step 11, ‘o’ for step 12,
dash-line for step 20, respectively.
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Figure 10: Steady state planar Poiseuille flow problem usingthe Hookean dumbbell model: the polymer shear
stress and the first normal stress difference on the middle planex= 0.5 with respect toy for several initial steps.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Approximated solution

Analytical solution

Φ1

τyx

y

Figure 11: Steady state planar Poiseuille flow problem usingthe Hookean dumbbell model: comparison of the
shear stress and the first normal stress difference on the middle planx = 0.5 with the analytical results; the
approximated solution is denoted by ’⋄’ and the analytical solution by dashed line.


