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Abstract:  This paper presents a numerical approach for macro-mictto-svale modelling of visco-elastic
fluid flows based on the Integrated Radial Basis Function Nedsv(IRBFNs) and the Stochastic Simulation
Technique (SST). The extra stress is calculated using tvBan configuration fields (BCFs) technique while
the velocity field is locally approximated at a set of collib@a points using 1D-IRBFNSs. In this approach, the
stress is decoupled from the velocity field and computed fiftermolecular configuration directly without the
need for a closed form rheological constitutive equatiome €quations governing the macro flow field are
discretised using a meshless collocation method whereRBEN approximants improve the accuracy of the
numerical solutions by avoiding the deterioration of aacyrcaused by differentiation. As an illustration of
the method, the time evolution of the planar Couette flow dedsteady state Poiseuille flow are studied for
two molecular kinetic models: the Hookean dumbbell and FENEbbell models.

Keywords: Integrated radial basis function networks, macro-micrdtirsgale method, stochastic simula-
tions, Brownian configuration fields, viscoelastic fluid.

1 Introduction

A common approach for the computation and analysis of coxfhla flows has been based on the coupling of
the system of mass and momentum conservation equationapytiopriate closed form constitutive equations.
However, the disadvantage appears for some models whiaiotée cast into closed form [e.g. Ottinger
(1996); Bird, Armstrong, and Hassager (1987)]. Furtheamor many complex fluids, rheological properties
can only be captured at finer scales for the direct numerioallation. A number of advanced numerical
methods have been developed to appropriately deal withitbeeaissues. Among these methods, the multi-
scale methods [Engquist, Lotstedt, and Runborg (2000xiwlland Brizzi (2005); Chu, Efendiev, Ginting,
and Hou (2008); Hou (2005); Hajibeygi, Gonfigli, Hesse, amahy (2008)] have attracted significant attention
for the last two decades. In this framework, the lack of infation at the macroscopic level can be solved
by a multiscale strategy consisting in searching for thermfation on the microstructures of the fluids. The
information is then used to solve the macroscopic goveramgations. This macro-micro multiscale approach
does not require closed form constitutive equations [Q&ir{1996); Laso and Ottinger (1993); Feigl, Laso, and
Ottinger (1995); Laso, Picasso, and Ottinger (1997); Hylsen Heel, and van den Brule (1997); Jourdain,
Lelievre, and Bris (2002)]. The approach is an attempt tolatauhe situation in real liquids, where the
full information about the stress is contained in the comfitjon of molecules which results from the micro-
scale deformation history. The main idea of these techsidgi¢hat the polymer contribution to the stress is
directly calculated from a large ensemble of microscopitfigairations without having to derive a closed form
constitutive equation, which is a powerful feature for thedelling of materials [Ottinger (1996); Engquist,
Létstedt, and Runborg (2000)].

Recently, the calculation of non-Newtonian flow by neuratwmeks and stochastic simulation techniques
[Tran-Canh and Tran-Cong (2002, 2004); Tran, Phillips, amah-Cong (2009)], which is based on a di-
rect combination of the stochastic simulations and thegfitiated radial basis function networks (DRBFNSs)
meshfree technique, was employed to model the hybrid sgstdine present work is a further development
of this approach with the incorporation of IRBFNs (instedd&BFNs) and subdomain collocation (i.e. 1D-
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IRBFNS) into the macro-micro approximation approach fdvieg non-Newtonian fluid problems. The pur-
poses of using integration as a smoothing operator to amistne approximant are to avoid the reduction
in convergence rate caused by differentiation and redueevtiite noise in the approximation [Mai-Duy and
Tran-Cong (2001)].

The paper is organised as follows. Section 2 gives a shodwenf the governing equations of incompress-
ible non-Newtionian fluid flows using the macroscopic apphoaln section 3, a macro-microscopic multi-
scale modelling is described in which a stochastic simutatechnique for the computation of the polymer-
contributed stress is presented. Specifically, the coupiadro-micro multi-scale systems for the dumbbell
models are introduced together with their non-dimensieadlforms. The discretisation of the coupled macro-
micro models is detailed in section 4 where the BCFs and thREFN methods are described. An algorithm
of the present procedure is presented to highlight the apdiscretisations of the micro and macroscale com-
ponents as well as their interaction. The numerical exasmgle then discussed in section 5 with a concludion
in section 6.

2 Macroscopic governing equations for non-Newtonian fluid fiws

Consider the isothermal flow of an incompressible fluid wiémsity p, the system of mass and momentum
conservation equations (governing PDES) is given by

D
pp(w=-0p+0-T, 1)

O-u=0, 2)

wherep, u are the hydrostatic pressure and velocity field respegtivethe stress tensor defined by
T=1"+71P, ©))

wheret® = 2nsD is the Newtonian solvent contributio®, (D = 0.5(0u + (Ju) ")) the rate of strain tensorjs
the solvent viscosityrP the polymer-contributed stress; abdDt(-) the substantial derivative defined by
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For certain macroscopic models, it might be possible tointaaclosed form constitutive equation for the
polymer-contributed stregsP) in the form

DtP p
o = f(rP,0u). (5)

In the traditional approach, the conservation equatiopar{d (2) are closed with a constitutive equation such as
(5) involving the macroscopic quantities pressure, v&yaaind stress. In an alternative approach, the polymer-
contributed stress can be calculated by directly solviny@griate stochastic differential equations governing
the evolution of the microstructures of the polymer. Thuws ¢bupling of the conservation equations (1) and
(2) and the equations expressing evolution of the micrdsaipuctures forms basis for the macro-microscopic
multi-scale approach [Ottinger (1996); Bird, Armstrongdadassager (1987)]. Such a method is presented in
the next section.

3 Macro-microscopic multi-scale modelling

Macro-micro multi-scale models can be simulated usingedkifit techniques. Here, the BCFs-based simulation
method is used to determine the polymer-contributed strégsthe microscopic part of the framework.



3.1 The BCFs-based stochastic simulation technique

This technique is one of several potential approaches falysis of complex fluids where the non-Newtonian
character stems from the presence of micro-structures asasnopic scale rather than at a real microscopic
one. In this procedure, an appropriate equation descriteeswvolution of the micro-structures, and the non-
Newtonian contributiont® to the stress is deduced from the evolving microstructulesthis context, the
polymer chain is a linear arrangement of a number of norrastang dumbbells. Each dumbbell consists of
two Brownian beads with the friction coefficieqif which are connected together by a spring. The configuration
of a dumbbell is completely described by the length and tatén of the end-to-end vect® connecting the
two beads [Ottinger (1996); Bird, Armstrong, and Hassaf)@87)]. The state of the polymer chain is described
by the set oR whose evolution are modelled using a stochastic diffeséatjuation (SDE) as follows [Hulsen,
van Heel, and van den Brule (1997)].

dR(t,x) = | —u(t,x) - OR(t,x) + Ou(t,x) - R(t,x) — ?F(R(t,x)) dt

+2, /%dzm, (6)

whereu is the velocity field;{ the friction coefficient between the dumbbell and the sdiventhe Boltzmann
constant;T the absolute temperaturg{t) a standard multi-dimensional Brownian motion which igvaener
processF(R) is the internal force (also called spring force) exerted Ipolymer in stateR and depends on
the kinetic model of the polymer. The coupling between thé&eRRnd SDE is carried out via the classical
Kramers’ expression given by [Ottinger (1996); Bird, Arnastg, and Hassager (1987)]

° = ng(R®F(R)) — ngksT1d, (7)

whereny is the density of dumbbelld; the identity tensord is the dimension of the ambient space; and
the tensorial product. With(x) treated as a known macro field, the solution of the SDE (6) yiélld R(t, x)
which are then used to calculate the polymer-contributezkst The stress (7) is then treated as known in the
macro governing PDE (1). In SDE (6), the teutt,x) - OR(t,x) accounts for the convection of Brownian con-
figuration fields by the flow. It can be seen that the existeit¢eeoconvective term in this Eulerian framework
[Hulsen, van Heel, and van den Brule (1997)] is completelyiedent to the particle tracking in the traditional
Lagrangian CONNFFESSIT approach [Laso and Ottinger (1993)

In this work, we consider the Hookean and Finitely Extersidbnlinear Elastic (FENE) dumbbell models;
and individual polymers as non-interacting dumbbells.

3.2 A coupled macro-micro multi-scale system

Collecting the patrtial differential conservation equatdl)-(2), the stochastic differential BCFs equations (6)
and the Kramers’ expression (7) yields a macro-microsconpitti-scale system as follows.

au

pE+p(u-Du)—nAu+Dp:D-rp, (8)
0-u=0, (9)

dR = —u-DR+Du-R—§F(R)] dt+2\/gd2(t), (10)
P = ng (E(R® F(R)) — kgT1d), (11)

whereE(-) is the expectation of-). In the Hookean dumbbell model, the linear spring force &is&c only
for small deformations from the static equilibrium configtion. This unphysical behaviour is overcome by



the FENE model which plays an important role in non-lineaoibgical phenomena. The spring force$ ¢f
the Hookean and FENE dumbbell models are respectively diyen

I:Hookean = RH,
RH

FRENE = TR/ (bkeT/H)

where b is a non-dimensional parameter related to the mapiohgmer length andH is a spring constant.

3.3 Non-dimensionalisation

Let U be a characteristic velocity, = ngkeTAn the viscosity associated with the polymeks; = { /4H the
relaxation time of the polymer chains ahd- /kgT /H the characteristic length scale [Ottinger (1996); Laso
and Ottinger (1993); Jourdain, Leliévre, and Bris (2002gnFCanh and Tran-Cong (2004)].

The dimensionless numbers Reynolds, Wissenberg and defined respectively as follows.

pUL,

Re= T,We: AH—U;s: ul:

L n

wheren (n = no+ np) is the total viscosity of the solution. Thus, the macro+mscopic multi-scale system
(8)-(11) is rewritten in the non-dimensionalised form atofes.

)

Reaa—?+Re(u-Du)—(l—£)Au+Dp: 0-1P, (12)
0.u=0, (13)
dR = |—u-OR+0u-R— == F(R) | dt+ ——dz(t) (14)
- 2We vWe ’
€
p_ & _
1P = T (E(R®F(R) ~1d), (15)

with F = Frookean= R andF = Frene = for the Hookean and FENE dumbbell models, respectively.

R
(1-[R[[%/b)

4 Discretisation of the macro-micro system using the multscale BCF-IRBFN method

In this section, the computational techniques are destifitvethe numerical solution of micro-scale governing
equations. The BCFs technique and the 1D-IRBFN collocatimthod are respectively presented for the
discretisation of the SDEs and PDEs in the coupled macroenmuilti-scale system. The marriage of the two
techniques to compute a macro-micro multiscale model is phesented in the overall algorithm.

4.1 Numerical solution of the SDEs

In this paper, the explicit Euler scheme is used for timeeadization of the SDE (14) for the Hookean dumbbell
model and briefly presented as follows.

1 | At
R(i+l) =R+ [—uj-OR;+ Uu; - Rj — WeF(Ri)] At + V\—/ezi, (16)

whereR; = R(tj); At is a fixed time step size for the stochastic procéss;is normally distributed variable
with expectation 0 and varianég andF(R;) is defined as before. In the case of the FENE dumbbell moael, th
predictor-corrector method is employed to always satisédondition of a FENE dumbbell @ |Q; 1| < v/b.
More details of the method and its implementation for theeah SDEs can be found in [Ottinger (1996);
Tran-Canh and Tran-Cong (2004)].

At time (i + 1), the velocity, velocity gradient and configuration gradiere determined with data obtained at
time (i) using an IRBFN method which is presented in section 4.2.



Noise reduction issue is crucial in the stochastic simohatf systems such as (14). The variance reduction
can be achieved by several techniques which are detaildédoeden and Platen (1997); Gardiner (1994)]. In
this work, the control variate method is employed for the bbell models. Details can be found in [Ottinger,
van den Brule, and Hulsen (1997); Melchior and Ottinger @R%or example.

The method uses a control varigf:) which is correlated with the random varialge), to produce a better
estimator of(R). While (R) is unknown and needs to be estimaté®;) can be calculated by a deterministic
method. The control variate reduction technique is implete@ as follows. At each collocation poiri]
dumbbells are assigned and numbered fiom1---M and dumbbells having the same index in the whole
analysis domain have the same random number.

The implementation of the control variate technique for doenbbell models can be found in, for example,
[Bonvin and Picasso (1999); Tran-Canh and Tran-Cong (2004, Phillips, and Tran-Cong (2009)] and is
not repeated here. Since dumbbells are processed at theat@h points, it is easy to incorporate the control
variate technique in the present BCF-IRBFN collocationhrodt

4.2 The IRBFN collocation method for solving PDEs
Consider the conservation equations (12)-(13), repratibeee for convenience,
Ju
Reﬁ +Re(u-0u)— (1—€)Au+Op=0-1P,
O-u=0,

where TP is a known function obtained from the stochastic proces$éndoupled macro-micro multiscale
system.

In order to solve the system of Egs. (12)-(13), the problemmala is discretised using a set of nodal points,
called the global macro-scale grid. In this work, insteadsihg the continuity equation (13), the incompress-
ibility condition is enforced via the penalty method asdalk [Feigl, Laso, and Ottinger (1995)].

p= 7pe[|'u) (17)

wherepe is a sufficiently large penalty parameter. Equation (12héntrewritten as
7}
Rea—?+Re(u-Du)—(1—£)Au—peD(Du) —0.7P. (18)

In this paper, the 1D-IRBFN scheme is employed to approx@rspttial derivatives, whereas a finite difference
technique is used for temporal discretisation.

4.2.1 Spatial discretisation

At a timet the domain under consideration is discretised using a imifoartesian grid. Lel, andNy be the
numbers of grid lines in thg andy directions respectively. The dependent variables and tegivatives are
approximated using a 1D-IRBFN interpolation scheme whighresented in the following sections.

a) 1D IRBFN scheme on a grid line: x and y directions

The variation of dependent variahlelong anx-gridline in the IRBFN form [Mai-Duy and Tran-Cong (2007)]
starts with

aZu N Ny 2
e = i;Wigi = i;WiGi , (19)

where{w; }'¥ is the set of RBF weightsigi (x) }1, the set of Multi-quadric RBFs (MQ-RBFs) [Hardy (1971);
Franke (1982); Kansa (1990)] and given by

g% = ((x—c)2—a)"?, (20)

where{c;};*, is a set of centres anjg }i'\':xl a set of MQ-RBF widths [Haykin (1999)].



The corresponding first-order derivative and function hemtdetermined through integration as follows

ou_ &gl
a—i;WK;i +C]_, (21)

Ny
u= lei Gi[o] +Cix+Cy, (22)
i=

WhereGi[l] x)=J Gi[z] (x)dx, Gi[o] x)=/ Gi[l] (x)dxandC; andC, are unknown constants of integration.
Collocating equations (19), (21) and (22) at a set of gridwm{xi}i'\il yields the following set of algebraic
equations

2u -
Z 2 _cleg
a2~ W (23)
du  ~
2 _ clllg
ax S W (24)
where , . )
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whereu; = u(x) withi = (1,2,--- | Ny).

Owing to the presence of integration constants of the IRB&dEH approximation, one can beneficially intro-

duce in the algebraic equation system additional constraimnch as nodal derivative values (more details can
be found in [Mai-Duy and Tran-Cong (2007)]). Thus, the algébequation system (25) can be reformulated

as follows.
uy_
£ )=

where f = LW are additional constraints. The conversion of the netweelght space into the physical space

yields
W:6—1< %) (26)

w=Cw,
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C-lis the conversion matrix. By substituting (26) into (19) 48d), the second and first-order derivativesiof
will be expressed in terms of nodal variable values as falow

2%u _ ~

where %, and Zs, are known vectors of lengtRy; andky, andkay scalars and determined By Applying (27)
at each and every collocation point on the gridline yields

azu = Doli+ kox,
= @b(u + k]_x,

(28)

where_@zX and_@lx are known matrices of dimensidty x Ny; andEzx andElx are known vectors of lengtny.
Similarly, along ay-gridline, the values of the second and first order deriestiofu in the IRBFN form at all
collocation points can be expressed by

% = ézyﬁ-i-Ezy,

IR (29)
U = Znyli+kay,

whereZ,, and 71, are known matrices of dimensidty x Ny; andky andkyy are known vectors of lengti,.
b) 1D-IRBFN scheme on2D computational domain

The second and first order and cross derivatives with respect tax andy over the whole domain can be
expressed using Kronecker tensor products as

a2u
axz — (Zox@ly) 0+ ko = P+ (30)
(% ® |y) (4 kix = Z1x0+ Ka., (31)

dzu R ~ .

3y2 (Ix ® @2y> U+ 2y = Doy0+ Koy, (32)
- (IX @ Tix) O+ kay = Gyli+ hay, (33)

dzu 1

Sy = 2 (PTry+ Dy D) G+ iy, (34)

whereZa, D1y, Doy, T1y and Ty are known matrices of dimensidixNy x NyNy; Koy, Kix, Koy, K1y kaxy known
vectors of lengtiNgNy; 0= (uM u@ ... uUNN)T: & the tensorial product; ang andly the identity matrices
of dimensionN,N, andNyNy, respectively.

All boundary conditions are directly imposed on the IRBFMm@ximations, and the governing equations are
forced to be satisfied locally on each and every gridlinetHaurdetails of the method will be described through
the numerical examples in section 5.

4.2.2 Time discretisation

For transient problems, the fully implicit Euler method mpoyed for the temporal discretisation.

4.3 Algorithm of the present procedure

The present multi-scale macro-microscopic method can newddscribed in a more detailed algorithm as
follows and the implementation will be expressed in thestilative examples



(a) Generate a set of collocation points. Start with a givetial condition for the first iteration (velocity
field, molecular configurations) together with the givenmary conditions of the problem. In the present
work, the initial conditions are zero initial velocity figldnd initial molecular configurations sampled from
equilibrium Gaussian distribution (e.g. [Tran-Canh andriFCong (2002, 2004)]);

(b) AssignM dumbbells to each collocation point. All dumbbells at a@cdition point having the same index
constitute a configuration. Hence, there is an ensembl obnfiguration fieldsR; (i = 1---M). Since
all the dumbbells having the same index receive the samenamiimbers, there is a strong correlation
between dumbbells in a configuration. The control vari&eassociated with the configuration fielBs
are created [Bonvin and Picasso (1999); Tran-Canh and Caag (2004)];

(c) Solving the macro PDEs for the velocity field using the [HBFN collocation method described in section
(4.2);

(d) Solving the micro SDEs for the polymer configuration fgelesing the method presented in section (4.1).
As mentioned in step (a), in order to ensure strong coraglatithin a configuration field, all the dumbbells
of the same index have the same random numbers. For eachuratifig fieldR;, a corresponding control
variate is determined (see Tran-Canh and Tran-Cong (2004)etails);

(e) Determine the polymer contribution to stress by takimgensemble average of the polymer configurations
at each collocation poing, using Eq. (15);

(f) With the stress field just obtained, solve the macro goivey equations (12)-(13) for the new velocity field
using the 1D-IRBFN method described in section (4.2);

(g) Terminate the simulation when either the desired timeoowergence is reached. The latter is determined
by a convergence measufeN]) for the velocity field, defined by

N d n_n-1)2
CM(u)\l 21 ?;E(du‘ (u:)lz ) < tol (35)
1 2i=1\Y

whered is the number of dimensionspl a preset tolerancej thei-component of the velocity at a collo-
cation point;N the total number of collocation points andhe iteration number.

(h) Return to step (d) for the next time step of the microscqpopcess until steady state or a given time is
reached.

5 Numerical examples

The present method is verified with the simulation of thetaiprplanar Couette flow of Hookean and FENE
dumbbell fluids and the steady state planar Poiseuille floWwarfkean dumbbell fluids.

5.1 Start-up planar Couette flow using the dumbbell models

This problem was earlier studied by [Laso and Ottinger (J9®®chimaru (1983); Tran-Canh and Tran-Cong
(2002, 2004)], and it is used here to verify the present niefbothe Hookean and FENE dumbbell models.
The problem is defined in Fig. 1. For tinhe< O, the fluid is at rest. At =0, the lower plate starts to move

with a constant velocity = 1. No-slip condition is assumed at the walls.

From the characteristics of the start up Couette flow prokdeh a dumbbell model of polymer, the macro-
micro system of equations (12)-(15) is rewritten as follgdaurdain, Lelieévre, and Bris (2002)].

2 P
Reg_ltj(tvy)_(l_g)z—ylzj(t’y) :da—ry(t’y)v (36)
4P(ty) = (- peF(RIY) + SAYIQY) ) dt gV @)



10

dQ(t) = ——eFQ(R(t,y))dt + —=dW(t), (38)

whereu andtP are thex-component of the velocity and the shear strghsf the flow, respectively;R, Q) and
(V,W) the components of a proceRsand two independent Brownian motions, respectively of digaration
of dumbbell at locatiory; and ¢, Fg) are two components of the forég€R).

The stochastic differential equations (37)-(38) are givgn

AP(ty) = - el 69) + 5o E¥QALY) ) di —avi), (40)
1 1
dQ(t) = —mQ(t)dH- \/—WedW(t), (41)

for the Hookean dumbbell model, and

4P(tY) = (s TR 75+ 3y WY ) dt AV, @2)
dot) = ——= QY4 L g, (43)

2We 1- [R|2 /b ' We

for the FENE dumbbell model, whefleR ||2= P2(t,y) + Q?(t,y) andb is defined as before.

In this section, only the time discretisation of the Hookdambbell SDEs is described, and that for the FENE
dumbbell model is similarly obtained. The discretisatidrequations (36), (40)-(41) and (39) are carried out
through two interlaced processes of different scales &siisl

5.1.1 Discretisation of the micro-scale stochastic goirggrequation

Eqgs (40)-(41) are discretised using the Euler explicit sohé time withM = 1000 realizations of each random

process as follows.
At dui \"
Ph 1- PN+ (=2 hAt ,/ ALy 44
I+l] ( Me> <ay>i+1 | + W 1] ( )

At
Q= (1- e &+ e (45)

wherei and j are for the time and space discretisations, respective{§;< h < M) stands for the realisation
of random processes; am\ilif‘j andAW" are standard normal random variables. The velocity fielthefiow

at the timegd; is either given by the initial conditions or the solution betmacro-scale process which was
previously determined using the 1D-IRBFN method. It is ugrof note thatQ" are independent of their
positiony, owing to the simple geometry of problem.

The stresgP is then calculated using the coupling equation (39) asvalo

0 g 1M
(T )l+lj _VTeM z I+leI+1 (46)

The stresse$tP); ;1 ; at the timet;;; and collocation pointy; are employed in the right hand side of the
governing equation (36) for the discretisation of the mamaxress as described in (5.1.2).
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5.1.2 Discretisation of the macro-scale governing equatio

Applying the full implicit method for time discretisatiorf the macro-governing equation (36) yields

Uir1— Uy d%uip1  9(TP);
R —(1-— =
At (1-¢) ay? oy ’
or , ;
o4y d(1P);
Bu. -l 0T gy (47)

ay2 oy
whereAT is uniform time stepf = Re/At; a = 1— ¢; andu;1 = u(y, ti11) with ug = u(y,0).
Since itis a 1D problem, the time discrete equation (47)as patially discretised using equation (29) (section

4.2). The spatial domain @y < 1) is discretised usinbjy uniform collocation pointsT is the final time when
the flow has reached its steady state.

* |nitial conditions
u(0,0) =V =1, ul0,y)=0  Vy#0. (48)

» Dirichlet boundary conditions

ut,0)=V=1 vt>0;, utL)=0 Vt>0. (49)

The parameters of the problem are: Wissenberg numhes 0.5, Reynolds numbeRe= 0.1 and the ratio
e=0.09.

Using the time step\t = 102 for both macro and micro processes, a coarse spatial distieh Ay = 0.05
(Ny = 21) and number of dumbbellé = 1000 at each collocation points, results by the 1D-IRBFNiscation
method are in good agreement with ones obtained from a n@pizsapproach (Finite Difference Method)
using Oldroyld-B model.

Figs. 2 and 3 show time evolutions of the velocity and sheaasstrespectively at four locatiogs= 0.2, 0.4,
0.6 and 08. Fig. 4 describes the evolution of the velocity profile, gfhshows that velocity exhibits undershoot
and overshoot before reaching the steady stdte-dt.

Using a coarser number of collocation poirlt & 11,At = 0.01) and {\y = 15,At = 0.01), the results showed
that the present method is able to produce a very high defiaeoracy using a relatively coarse grid.

The problem is also solved for the FENE dumbbell model udiegoresent method with the following chosen
physical parameters), = NN+ Np = 1,0 = 1.2757,A4 = 49.62,ny = 0.0521 as done in [Laso and Ottinger
(1993); Tran-Canh and Tran-Cong (2002, 2004)], whgsen, Np, P, N1 andpy are defined as before.

The corresponding Wissenberg, Reynolds numbers and tbesrate given by

Re= % =1.2757; We= )‘HTV =4962and €= % = 0.9479.
For this case, the Predictor-Corrector method is emplogediscretise the SDEs (42)- (43) as mentioned in
section 4.1. Fig. 5 describes the evolution of the veloaitfife, which shows that velocity overshoot is pretty
clear. Figs 6 and 7 show the time evolution of the velocity ahdar stress, respectively at four locations
y=0.2,y=0.4,y= 0.6 andy = 0.8, using 21 collocation points. The results also show thhtcity reaches
the steady state sooner than the shear stress. The nunsafigéidns by the present method confirm a very
good agreement with the results of other methods where fieshes or collocation points [Laso and Ottinger
(1993); Tran-Canh and Tran-Cong (2004)] were used.

5.2 Steady state Planar Poiseuille flow

The planar Poiseuille problem and coordinate system aritled in Fig. 8 where only half of the fluid domain
needs to be considered, owing to symmetry. For this probieencharacteristic length is chosen to be half of
the gap between the two parallel plates.
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In this example, the Hookean model is considered. The fluidmaters are chosen as in [Feigl, Laso, and
Ottinger (1995); Tran-Canh and Tran-Cong (2004)]: thexaian time isAy = 1, the total viscosityno =
NN + Np, the density of fluidp = 1 and the ratio between the viscosity of solvent and polymefr, = 1.

Thus, the corresponding Reynolds, Wissenberg numbersherratioc = % are given by

We:)\H%> =2t =2 ande= n—" =0.5.

5.2.1 Coupled macro-micro governing equations for the &dilke flow

Together with the stochastic equations of the Hookean dethbiodel, the coupled macro-micro governing
equations developed from Eq (18) for the case of steady flowd dire given by

du du d%u  d% d%u 9% ot  dTx
Re(“a—”ay> a <W+a—yz) - (W +—axay) = ox oy (50)

v ov v 9% 0%v  9%v oty Ity
Re(“a—x”a—y) - (axz * 0y2) (W* axay) = x oy (1)

R 1
dR = |—-u-OR+0Ou-R— =—— | dt+ ——dZ(t), 52
- | 020 (52)
€
P _

P = o (ER®R) —Id), (53)
whereq = I = 1= — 1 _ ¢+ (u,v) are two components of velocity fieldl For the Hookean dumbbell
(Oldroyd-B) model the creeping Poiseuille flow problem hasanalytical solution given by

u\? Jdu
=3(1l—a)We|l — | : P=(1-a)=—; P =0. 54

The analytical solution is used to judge the quality of tHefeing numerical simulation.

5.2.2 Boundary conditions
The macroscopic boundary conditions are given in dimetessrform as follows.

* Dirichlet boundary condition
- On the wall (4): u(x,y) = 0 andv(x,y) = 0.
- Atthe inlet ("1) and outlet sectiond @), the flow is fully developed Poiseuille where the velocitgfie
is parabolicu(x,y) = (1—-y?); Vv(x,y) =0
- Onthe centrelmel’(z). v(x,y) = 0.

* Neumann boundary condition
- On the centrelinel(): g—; =0.

5.2.3 Discretisation of the problem using the present nttho

While the SDEs are discretised using the explicit Euler sehésee section 4.1) with 1000 dumbbells at each
collocation point and micro time step siae= 0.01, the conservation equations (50)-(51) are solved ukiag t
1D-IRBFN method.

It can be seen that the RHS’s of the conservation equatiankrenwn and obtained from the solution of the
SDE (52) and the coupling equation (53). Furthermore, ttst dierivatives of stresses in the RHS are also
approximated using the IRBFN method.

The non-linear convective ternta - O)u in (50)-(51) are linearized using a Picard-type iterativecedure as
follows: keep the derivatives as unknown, ita- O)u is represented bfu; - 0)uj1 and the current estimate of
velocity field as a known (the initial zero-value velocitylfidor the first iteration).

Using a uniform Cartesian grid of 2625 collocation points and making use of equations (30);(@%¥) macro-
governing equations (50)-(51) are forced to satisfy at tierior points, the boundary points on the walk),

the inlet and outlet. The Neumann conditionlonis enforced by adding one additional equation to the system.
The Dirichlet conditions are introduced at the boundalrigd », 'z andl 4.
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5.2.4 Results and discussion

The obtained result shows that the parabolic velocity mrafilaccurately recovered in the whole domain as
expected (Fig. 9). The figure describes the velocity profiléhe middle planex = 0.5 with respect toy for

the steps 11, 12 and 20. While the solution obtained for thecitg field quickly reaches the steady state after
few iterations, shear stress and the first normal stresréifte require about 200 iterations to reach the steady
state. Fig. 10 shows the evolution of polymer shear stregshanfirst normal stress difference through several
steps at the middle plane= 0.5 with respect tg.

The convergence measur&\) for the shear stress and the first normal stress differerecaraund 10° -
10~% and show that results obtained by the present method areoih agreement with the analytical solution
given by Eq. (54).

The problem is also solved using coarser grids of collooagioints: (11x 11) and (15< 15). The results
showed that the present method is able to produce a highalagoeiracy using a relatively coarse grid, how-
ever insufficient number of dumbbells at each collocatiomtpwill result in oscillatory behaviours even with
variance reduction method. For example, when the numbeumbbells at each collocation point is reduced
to 500, oscillatory behaviour sets in. The present resuéisalso compared with those obtained by the BCF-
DRBFN method [Tran-Canh and Tran-Cong (2004)]. It can be et the proposed BCF-1D-IRBFN method
outperforms the BCF-DRBFN method regarding convergenee Tab. 1).

Although further investigations are required, the pretiamy results have shown that while the proposed BCF-
1D-IRBFN method have significantly improved the accuracthefvelocity because it avoids the deterioration

of accuracy caused by differentiation in both SDEs and PDHE& improvement of the shear stress is more
modest due to the stochastic nature of the microscopicsstadsulation.

6 Conclusion

This paper reports the development of a macro-micro ma#tiesmethod for the computation of visco-elastic

fluid flows using a combination of the 1D-IRBFN method and teEan stochastic simulation technique. The

advantages of the present approach include (i) to obviatedld for a closed form constitutive equation as well
as particle tracking for micro-scale processes; (ii) téd/@emeshless discretisation of governing equations; (iii)
to improve the approximation accuracy by avoiding the rédadn convergence rate caused by differentiation;

and (iv) to reduce the white noise in the approximation vitke of integration as a smoothing operator to
construct the approximants. The method is verified withddaah test problems, namely the start up Couette
flow and the planar Poiseuille flow problems.
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References

Allaire, G.; Brizzi, R. (2005): A multiscale finite element method for numerical log@nization. Multiscale
Modeling & Simulationvol. 4, pp. 790-812.

Bird, R. B.; Armstrong, R. C.; Hassager, O.(1987): Dynamics of polymeric liquids, \.2lohn Wiley &
Sons:New York.

Bonvin, J.; Picasso, M.(1999): Variance reduction methods for connffessit-likaidations. Journal of
Non-Newtonian Fluid Mechanicsol. 84, pp. 191-215.

Chu, J.; Efendiev, W.; Ginting, V.; Hou, T. Y. (2008): Flow based over-sampling technique for multiscale
finite element methodsAdvances in Water Resourcesl. 31, pp. 599-608.

Engquist, B.; Lotstedt, P.; Runborg, O.(2000): Multiscale Methods in Science and Engineering: Lecture
Notes in Computational Science and Engineering V.Sgringer:Berlin.

Feigl, K.; Laso, M.; Ottinger, H. C. (1995):  The connffessit approach for solving a two dimemaio
viscoelastic fluid problem.Macromoleculesvol. 28, pp. 3261-3274.



14
Franke, R. (1982): Scattered data interpolation: tests of some msthddhthematics of Computatiowol.
38, pp. 181-200.

Gardiner, C. W. (1994). Handbook of Stochastic Methods for Physics, chemistry @chatural Sciences
Springer:Berlin.

Hajibeyqi, H.; Gonfigli, G.; Hesse, M. A.; Jenny, P.(2008): Iterative multiscale finite-volume method.
Journal of Computational Physicsol. 227, pp. 8604—-8621.

Hardy, R. L. (1971):  Multiquadric equations for topography and otheedgular surfaces. Journal of
Geophysical Researchol. 76, pp. 1905-1915.

Haykin, S. (1999): Neural networks: A comprehensive foundatibvew Jersey:Prentice Hall.

Hou, T. Y. (2005): Multiscale modelling and computation of fluid flownternational Journal for Numerical
Methods in Fluidsvol. 47, pp. 707-719.

Hulsen, M. A.; van Heel, A. P. G.; van den Brule, B. H. A. A.(1997): Simulation of viscoelastic flow using
brownian configuration fieldsJournal of Non-Newtonian Fluid Mechanjogl. 70, pp. 79-101.

Jourdain, B.; Leliévre, T.; Bris, C. L. (2002): Numerical analysis of micro-macro simulations offymeric
fluid flows: a simple caseMathematical Models and Methods in Applied Sciengek 12, pp. 1205-1243.

Kansa, E.(1990): Multiquadrics-a scattered data approximatiorestd with applications to computational
fluid-dynamics-i: Surface approximations and partial ehives estimates.Computers & Mathematics with
Applications vol. 19, pp. 127-145.

Kloeden, P. E.; Platen, E(1997): Numerical solution of stochastic differential equatioi@pringer:Berlin.

Laso, M.; Ottinger, H. C. (1993): Calculation of viscoelastic flow using moleculardals: the connffessit
approach. Journal of Non-Newtonian Fluid Mechanjosl. 47, pp. 1-20.

Laso, M.; Picasso, M.; Ottinger, H. C.(1997): 2-d time-dependent viscoelastic flow calculatiemg
connffessit. AIChE Journa) vol. 43, pp. 877-892.

Mai-Duy, N.; Tran-Cong, T. (2001): Numerical solution of Navier-Stokes equationsigsnultiquadric
radial basis function networksinternational Journal for Numerical Method in Fluidsol. vol. 37, pp. 65-86.

Mai-Duy, N.; Tran-Cong, T. (2007): A collocation method based on one-dimensional mtérpolation
scheme for solving pdes.nternational Journal of Numerical Methods for Heat & Flukow, vol. 26, pp.
426-447.

Melchior, M.; Ottinger, H. C. (1996): Variance reduced simulations of polymer dynamic¥ournal of
Chemical Physicsvol. 105, pp. 3316-3331.

Mochimaru, Y. (1983): Unsteady-state development of plane couette flowissoelastic fluids.Journal of
Non-Newtonian Fluid Mechanicsol. 12, pp. 135-152.

Ottinger, H. (1996): Stochastic processes in Polymeric Flui@pringer:Berlin.

Ottinger, H. C.; van den Brule, B. H. A. A.; Hulsen, M. A. (1997): Brownian configuration fields and
variance reduced connffessifournal of Non-Newtonian Fluid Mechanjogol. 70, pp. 255-261.

Tran, C. D.; Phillips, D. G.; Tran-Cong, T. (2009): Computation of dilute polymer solution flows using
bcf-rbfn based method and domain decomposition technid@erea Autralia Rheology Journalol. 21, pp.
1-12.

Tran-Canh, D.; Tran-Cong (2004): Meshless simulation of dilute polymeric flows usbrgwnian configu-
ration fields. Korea Autralia Rheology Journabol. 16, pp. 1-15.



15

Tran-Canh, D.; Tran-Cong, T. (2002): Computation of viscoelastic flow using neural neks@nd stochastic
simulation. Korea Autralia Rheology Journavol. 14, pp. 161-174.



16

Table 1:CM for the velocity field and shear stress obtained by the BCBER [Tran-Canh and Tran-Cong
(2004)] and BCF-1D-IRBFN methods for several grid sizehatstep 220 after reaching the steady state, using
1000 dumbbells at each nodal point and micro-time step/size0.01.

Grid BCF-DRBFN BCF-1D-IRBFN

u

Txy

u

Txy

11x11
15x 15
25x 25

7.6E -4
4.5E -4
51E-5

3.6E-3
35E-3
21E-3

57E-5
13E-5
25E-6

18E-3
1.1E-3
3.4E 4
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Figure 1: Start-up planar Couette flow problem: the bottoatepmoves with a constant velociy= 1, the top
plate is fixed; no slip boundary conditions apply at the flsidid interfaces. The collocation point distribution

is only schematic.
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Figure 2: Start-up planar Couette flow problem (Fig. 1) usirgHookean dumbbell model: the parameters of
the problem are number of dumbbeNs= 1000, number of collocation pointd = 21, At = 0.01, Wissenberg
NumberWe= 0.5, Reynolds numbeRe= 0.1 and the ratice = 0.9. The time evolution of the velocity at
locationsy =0.2,y=0.4,y= 0.6 andy = 0.8.

0 0.2 0.4 0.6 0.8 1

Figure 3: Start-up planar Couette flows using the Hookeanemndide parameters are shown in Fig. 1 and the
caption of Fig. 2. The evolution of shear stress at the looaty = 0.2, y = 0.4, y = 0.6 andy = 0.8 with
respect to time.
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Figure 4: Start-up planar Couette flow problem using the laokdumbbell model: the parameters of the
problem are shown in Fig. 1 and the caption of Fig. 2. The vslqwofile with respect to locatioly at
different times.

0.2 0.4 0.6
y

Figure 5: Start-up planar Couette flow problem (Fig. 1) ushegFENE dumbbell model: the parameters of the
problem are number of dumbbel4 = 1000, number of collocation pointd, = 21, At = 0.01, Re= 1.2757,
We=49.62, ¢ =0.9479 andb = 50. The velocity profile with respect to locatigrat different times.
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Figure 6: Start-up planar Couette flow problem using the FEMEbbell model: the parameters of the problem
are shown in Fig. 1 and the caption of Fig. 5. The time evolutibthe velocity at locationg = 0.2,y = 0.4,

y=0.6 andy = 0.8.

o ¢
|

=

0 10 20 30 40
t

Figure 7: Start-up planar Couette flow problem using the FENabbell model: the parameters of the problem
are shown in Fig. 1 and the caption of Fig. 5. The time evolutibshear stress at the locations 0.2,y = 0.4,

y=0.6 andy = 0.8.
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Figure 8: Steady planar Poiseuille flow problem: a) Paraholet velocity profile; non-slip boundary condi-
tions applied at the fluid-solid interfaces. b) The collamafpoint distribution is only schematic.
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Figure 9: Steady state planar Poiseuille flow problem usiegHookean dumbbell (Oldroyd-B) model: The
velocity profiles on the middle plane= 0.5 with respect toy are denoted by for the step 11, ‘o’ for step 12,
dash-line for step 20, respectively.
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Figure 10: Steady state planar Poiseuille flow problem uiegHookean dumbbell model: the polymer shear
stress and the first normal stress difference on the middleegl= 0.5 with respect tg for several initial steps.
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Figure 11: Steady state planar Poiseuille flow problem ufiagHookean dumbbell model: comparison of the
shear stress and the first normal stress difference on thélemidanx = 0.5 with the analytical results; the
approximated solution is denoted by and the analytical solution by dashed line.



