
1

Aggregate Flows – for Efficient Management of
Large Flows in the Internet

R. G. Addie, S. Braithwaite, J. das Gupta and J. Leis

Abstract— Considerable advantages for performance
will accrue if large flows can be identified and treated
differently in the Internet. DiffServ provides a way to
treat flows distinctly in the internet, however configuring
DiffServ requires a high level of skill and attention to
detail. We seek an approach which is inherently auto-
configuring. In this paper flows are not defined uniquely by
information in their packet headers, but instead by their
route through the local routing domain. This approach
imposes a topological structure on the collection of flow
by means of which we can judge how close two flows
are together and, where appropriate, judge two or more
flows to be part of a single larger flow. The aim is to
get closer to the collection of packets generated by a
single human request for service. For example, if a user
chooses to subdivide a request as a large number of TCP
connections, the entire aggregate would still be identified
and treated as a single flow. To reduce the complexity of
the task of flow management, we identify only flows larger
than a certain threshold, without having to deal with the
much larger number of small flows. Simulations are used to
determine how many large flows need to be found in order
to achieve significant improvements in the performance of
the Internet as a whole.

I. INTRODUCTION

There appear to be considerable advantages for
performance of networks to be obtained if large
flows can be identified and treated differently from
the remaining Internet traffic [8]. Methods for iden-
tifying flows in routers have been an active topic
of research for some time [5], [10], [12]. In this
paper a new definition of flow – attempting to match
a single user service request – is adopted and it
is shown that it is possible to identify the large
flows, flows larger (in total bytes) than a certain
threshhold, without having to deal with the much
larger number of small flows. Since the total number
of flows is very large whereas the number of large
flows is quite small, being able to identify the
large flows without having to identify the remaining
flows provides considerable advantages and may

well be the critical step in ensuring scalability of
a performance management system based on flows.

The definition of a flow is a matter for careful
consideration. We take the view in this paper that
the key features of a flow should be: (i) its path
through the local routing domain – all packets in a
flow follow the same path in the local domain; and
(ii) statistical correlation. By identifying flows by
means of their local path together with statistical
characteristics, rather than by specific details of
protocol use, the large underlying user-generated
flows can be identified despite arbitrary choices of
how these flows are implemented. For example, if
a user chooses to subdivide a request as a large
number of TCP connections, the entire aggregate
would still be identified and treated as a single flow
according to our definition.

Since the objective of identifying and treating
large flows differently is to improve overall network
performance it is clear that the behaviour of these
flows (the fact that they are large) is sufficient to
identify them. Any indirect method of identifying
flows, i.e. a method not based on their behaviour,
will only reduce the accuracy with which these
flows can be targeted. We therefore adopt this
approach as a matter of principle.

In [5], [10] and [12], for example, it is assumed
that the identity of the flow containing a packet
can be unambiguously deduced from information in
each packet. For this reason, the traditional methods
for identifying large flows are not applicable to the
definition of flow adopted here. The complexity of
the flow identification algorithm proposed here is
a modest amount of per packet processing in con-
junction with O(N) fast memory locations, where N
is the maximum number of large flows which need
to be monitored. This is similar to the algorithms
discussed in [5] and [10] except that the number of
large flows needing separate attention, and therefore
N, is smaller in the present case. This will be
discussed in more detail in Subsection IV-B.

The key performance criterion for the network
that we concentrate on in this paper is the relative
response time (RRT) delivered to flows. The RRT
of a flow is the time between the arrival of the
flow and its complete delivery to its destination,
divided by the duration which would be necessary
in an unloaded network. We argue that statistically
bounded RRT, e.g. RRT < 5 with probability 99
%, is a satisfactory form of guaranteed quality of
service (QoS). This form of guaranteed QoS is
theoretically convenient because a single measure of
performance is used for all services. This guarantee
can be provided for small flows by giving them
priority over large flows and for large flows the
problem is much easier because they operate over a
longer time scale and therefore the relative response
time criterion is much easier to meet. Low to modest
rate CBR services, such as VoIP, should be regarded
as a series of short flows, not as one large flow. It is
important that the flow identification algorithm does
not mistake a long CBR communication as a large
flow. The proposed algorithm has this property for
CBR flows below a certain rate. A CBR commu-
nication of a higher rate does risk being treated as
a large flow, which is to be expected, since such a
flow does have the potential to disrupt other flows.

It has been shown in a related work in prepara-
tion at the same time as this paper that if traffic
takes the form described in Section III, statistically
guaranteed RRT (relative response time) can be
provided by adequately dimensioning links so long
as either the shortest job first (SJF) or Fair Queueing
(FQ) queue disciplines are used across flows in all
routers. We shall see in Section V that the SJF
queue discipline appears to deliver significantly bet-
ter RRT performance than FQ. The SJF discipline
is impractical, however there is a range of queue
disciplines intermediate between SJF and FQ which
are implementable and approach the performance of
SJF. The discpline x-SJF/FQ treats flows longer than
x (in bytes) according to the SJF discipline, and the
remaining flows according to FQ. Flows shorter than
x are given priority over flows longer than x. We
shall see in Section V that for a reasonably large
value of x, the x-SJF/FQ queue discpline delivers
performance similar to SJF.

In Section II, the overall framework by means
of which this work contributes to an architecture
for guaranteeing quality of service in the Internet is
described. In Section III, a traffic model, similar to

the widely used M/G/∞ traffic model discussed in
[11], [13], is described and key features discussed.
In Section IV, the algorithm for identifying large
flows is described and its complexity analysed. In
Section V, simulations which demonstrate the ap-
propriate size of flow to single out and how this size
of flow may be identified is investigated. Difficulties
and issues in regard to implementing the proposed
queueing algorithm, and a specific implementation
which has already been completed, are discussed
in Section VI. Finally, conclusions are drawn in
Section VII.

II. NETWORK CONTEXT

The motivation for this paper is to formulate
and justify an architecture for guaranteed quality
of service. The quality of service philosophy under
consideration is characterised as follows:

(i) quality of service in the Internet is compro-
mised, at present, by unpredictable perfor-
mance in access networks (core networks can
deliver statistically guaranteed performance al-
ready);

(ii) performance in the Internet can be statistically
guaranteed by ensuring that RRTs have a well-
defined probability distribution with variance
tending to zero as utilization reduces;

(iii) the FQ and SJF queueing disciplines can en-
sure that RRT has a well-defined probability
distribution with variance tending to zero with
utilization – as required in the previous con-
dition;

(iv) the SJF queueing discipline is significantly
better than the FQ discipline in achieving low
relative response time.

(v) there is a definition of flow in the Internet
which is adequate for guaranteeing flow-level
performance and in which flows can be iden-
tified sufficiently quickly in routers that flow-
based AQM’s can be practically and scalably
implemented, and provide an adequate approx-
imation to the SJF discipline.

Research already published supports some of
the above, with the notable exceptions of (v). In
particular, (i) is strongly supported by [4] and [6].

Hypothesis (ii) is highly plausible and a simple
proof can be given directly if we assume the stan-
dard deviation forms a scale parameter of the distri-
bution of RRT. Suppose we wish to bound network

2

performance to be less than ε with probability δ.
This requirement can be achieved, by chosing the
standard deviation which meets this standard and
then choosing the maximum utilization consistent
with this setting for standard deviation.

Hypothesis (iii) is addressed in [1]. Hypothesis
(v) is the subject of this paper. Hypothesis (iv)
remains for future work although strong evidence
for it is also provided in Section V.

It follows from these six hypotheses that quality
of service can be statistically guaranteed, in the In-
ternet, by setting utilization at appropriate levels in
each link and using either FQ or SJF to decide how
to treat flows at each router in access networks. It
should be noted that although SJF probably cannot
be scalably implemented, there is a compromise
queue discipline, x-SJF/FQ, which is SJF for the
large (> x) flows and FQ for the remaining, which
can be implemented scalably and which, we shall
see in Section V achieves most of the benefits of
SJF.

The role of this paper is mainly to demonstrate
hypothesis (v), that there is a definition of flow
which is closer to matching user generated requests
and which allows large flows to be efficiently iden-
tified and separated from other flows. The definition
of this paper is a step in the right direction to
matching user-generated flows more closely in the
sense that users’ flows do not neatly map onto
atomic TCP connections, but rather to collections
of TCP connections,

The way this more user-friendly definition of
flow is effected is to successively refine the traffic
passing through the router into categories, sub-
categories, sub-sub-categories, and so on, in such
a way that at each stage only a moderate proportion
of the categories under consideration need further
attention.

There may be a perception that this hypothesis
has been well addressed in existing work, e.g. [5],
[10], [12], including existing software in routers.
However, there are two strong reasons for reserving
judgement in this regard and therefore tackling this
issue with considerable vigour: (i) work undertaken
in parallel with this paper [1] now strongly sug-
gests that the benefits of accurately identifying and
controlling large flows is considerable; (ii) if we
are to rely on the identification of large flows to a
considerable degree in router queue management, it
is essential to have the right definition.

III. THE TRAFFIC MODEL

The traffic model used here is that all packets in
the Internet are contained in flows, the arrival times
of which form a Poisson process. Flow lengths, e.g.
X , have the Pareto distribution

P(X > t) =

{(t
δ

)−γ
, t > δ,

1, otherwise.

We do not expect this model to be literally true,
but the important features of real traffic are present.
In particular, the true distribution of flow lengths
is probably not exactly the Pareto distribution, but
the important feature of heavy tails is present in
real traffic and is well modelled by the Pareto
distribution. Also, the correlation in byte flows in
real networks introduced by the flow structure of
this model does appear to explain a considerable
amount of the correlation in real networks [9].

IV. THE ALGORITHM

The main part of the algorithm is continuous
measurement, by means of token buckets, of certain
aggregates of flows, identified by the path along
which they are routed. Packets are routed to an
appropriate token bucket in exactly the same way
that they are routed to the next hop along their
path, and so we will call it a routing table. The
entries in this token bucket routing table change
dynamically, however, depending upon the current
conditions. The procedure for updating this token
bucket routing table is the complex part of the
algorithm, although the computational load of this
aspect should not be too large since it only applies
when an aggregate flow makes a transition from
being classified as not containing a large flow to
containing one, or conversely.

The algorithm deals always with aggregates of
flows. Individual flows might be obtained, eventu-
ally, by this algorithm, if necessary, by a process
of successive subdivision of aggregates into smaller
and smaller aggregates. The subdivision is on the
basis of the path followed. A large aggregate is
defined as the packets following a certain short path
during their traversal of the Internet. A subaggre-
gate is formed by lengthening this common path.
This action of lengthening or shortening the path
corresponding to an aggregate flow is represented
in Figure 1 by the node labelled “Update RT”.

3

At each step in this process of refinement, we
need to identify whether the aggregate contains a
large flow, as defined by a threshhold. This mea-
surement is made by a token bucket tailored for the
purpose.

Packet Arrives

“Routing table” is
used to map packet
to aggregate flow.

Aggregate flow's token
bucket is adjusted for time

passed and for packet arrival

Was
Underflow?

If not yet atomic,
then split

aggregate flow
into two

aggregate flows.

Overflow and
was elephant?

Reclassify
aggregate flow
as mouse and

recursively
merge flows as
far as possible.

Schedule Packet
according to
classification

Yes

No

No

Yes

 Initialise
resulting token

bucket to half full.

 Initialise
resulting token

bucket to half full.

Classify as
elephant

aggregate flow

Fig. 1. The per-packet algorithm

A simplified flow chart of the per-packet aspect of
the algorithm is shown in Figure 1. This is expressed
below in more detail:-

1) Data Structure:
• There is a ”routing table” with masks and

values to match. A mask of length N bits will
have an associated value of N significant bits.

• One may be able to split an aggregate flow with
a mask of length N into two aggregate flows of
length N+1. The two resulting values will then
differ only in the (N+1)th bit.

• There is a point beyond where an aggregate
flow is said to be atomic and cannot be further
split.

• It is possible to merge two entries of length
N+1 that have values that differ only in the
last bit. The resulting entry has length N.

• Each entry in the routing table is associated
with a record for an aggregate flow.

• Each aggregate flow has a token bucket asso-
ciated with it.

• Each aggregate flow can be classified as mouse
or as elephant.

• Packets that are being processed can be classi-
fied as mouse or as elephant.

2) Initialization: Initially there is only one ag-
gregate flow encompassing the IP domain of the
router, and this aggregate flow has the classification
of mouse.

3) For each packet arrival:
• Check the source (or destination) IP address

against our routing table and find the matching
aggregate flow record. This is done by bitwise
ANDing the IP address with the mask and then
comparing the result with the value. The first
match is always accepted.

• Request the token (or tokens) from the token
bucket and add the appropriate amount of to-
kens for the time that has passed since this
token bucket was last touched.

• IF this is an aggregate flow with the classifica-
tion of elephant THEN

– Set the classification of the packet to ele-
phant.

– IF token bucket has overflowed THEN
∗ Set the classification of the aggregate

flow as mouse.
∗ Set the classification of the packet to

mouse.
∗ Recursively aggregate mouse flows as

far as possible.
∗ Initialize the resulting token bucket to

half full.
– ELSE IF the token bucket has under-

flowed AND the flow aggregate can be
split THEN

4

∗ Split the aggregate flow into two aggre-
gate flows.

∗ Initialize the resulting token buckets to
half full.

• ELSE
– Set the classification of the packet to

mouse.
– IF the token bucket has underflowed

THEN
∗ Set the classification of the aggregate

flow as an elephant.
∗ Set the classification of the packet to

elephant.
∗ IF the flow aggregate can be split THEN
· Split the aggregate flow into two ag-

gregate flows.
· Initialize the resulting token buckets

to half full.
∗ ELSE
· Initialize the token bucket to half full.

A. Token Bucket Parameters

Identifying whether a flow aggregate contains a
large flow will be achieved by means of a token
bucket . Selection of the parameters of these token
buckets needs to be robust and stable, i.e. small
errors in the choice of parameters will not critically
affect the outcome. A typical situation is depicted
in Figure 2. When the node is located in the middle
of its routing domain a network which includes
a tree on both sides of the node would be nec-
essary, however this additional complexity can be
neglected to simplify the discussion here without
compromising the argument. The only large flow
aggregate in this case is the aggregate of flows on
the uppermost path of the network shown. The token
bucket parameters must be selected to identify when
a large flow becomes small, and conversely.

In order to set the token bucket parameters we
need to know what typical rates of arrival of bytes
should be for each aggregate flow, both when it
contains a large flow, and when it does not. In the
former case, the rate depends upon how many large
flows are active for this outgoing path.

A fundamental assumption of the traffic model is
that long term fluctuations of traffic level are mainly
due to large flows. Traffic due to short flows should
not cause an overload of an outgoing link. Denote

Fig. 2. Typical configuration of large and short flow routing

the capacity normally required by the short flow
traffic by CS and the total capacity on the link by
C. There should therefore be a significant capacity,
CL = C−CS say, which is effectively reserved for
the large flows. When an undetected large flow is
present, a significant proportion of CL will be used
by this large flow. This additional traffic will show
up in the bytes enqueued as short flow traffic and
in the token bucket for the aggregate flow which
has changed state from short to large. These events
should trigger an update of the token bucket routing
table, as indicated in Figure 1.

In the case when a large flow becomes small, the
traffic flow on the path in question will, likewise,
drop from αCS + βCL to αCS, where α is the
expected proportion of short flow traffic on this
path, and β is the proportion of long flow traffic
on this path. If there are currently N long flows, an
appropriate value of β is 1

N .

B. Complexity

The algorithm of this paper is not strictly compa-
rable to most existing algorithms, since it deals with
aggregates of flows rather than with specific flows.
The algorithm of [10] has processing time of order
O(1), per packet, and also makes use of N memory
locations, where N is the desired number of large
flows. The first algorithm of [5] similarly has time
complexity O(1) per packet and space complexity
O(1) per large flow.

The per packet processing of the present algo-
rithm is again O(1) per packet and in fact it is
necessary to take an action in connection with every
packet. The number of memory locations referenced
by the algorithm is proportional to the number of
aggregates of flows being monitored at any one
time. Since the number of aggregates of flows is

5

expected to be O(1) times the desired number of
large flows, the complexity should be superficially
similar to the other algorithms.

As discussed in [5], the space complexity of these
algorithms is critical to their effectiveness because if
a large quantity of memory is required this memory
will need to be of lower cost and therefore lower
speed, which will reduce processing capacity. Deal-
ing with aggregate flows is an advantage because
there are many fewer aggregate flows than end-to-
end flows. In fact we need to consider the space
complexity of the algorithm relative to the total
network size, measured by total connected hosts.

Denote total network size by H, end-to-end flows
by Ne and aggregate flows by Na. For the moment,
let us assume that the threshhold above which a
flow is declared to be large is fixed. If routing
domains increase in size at all as the total network
increases, it is certainly at an order below 1, hence
Na ∼ O(Hν) for ν � 1. On the other hand, as the
total network increases in size, we expect each host
to be in communication with more and more hosts
and each router to have to deal with more flows,
hence Ne ∼ O(Hµ) for 1≥ µ� ν

As the number of flows increases the proportion
we need to deal with as large will not stay the
same, but will in fact reduce. This is because the
choice is governed by the criterion that we reduce
the standard deviation of the short flow traffic to
less than CL/3. As the network increases, the stan-
dard deviation of the short flow traffic increases
in proportion to

√
H. This makes it significantly

easier to monitor and control large flows, or large
aggregate flows. Furthermore simulations indicate
that the number of aggregate flows which need to
be monitored is quite modest and readily achievable.

In summary, we expect space complexity of the
algorithm of this paper to be Na ∼O(Hν/2) whereas
algorithms which deal with end-to-end flows will
have space complexity Ne ∼ O(Hµ/2), in which
0 < ν � µ < 1. Moreover, experiments in the next
section indicate that Na � 100 in a typical router,
ensuring that the proposed algorithm should not
place undue processing strain on the router.

V. SIMULATION EXPERIMENTS

A number of simulation experiments, using a
Poisson aggregate of Pareto distributed flow lengths,
have been conducted, with a view to identifying

an appropriate threshhold for the definition of a
large flow and how many such flows will need to
be monitored. The Poisson-Pareto model exhibits
the statistical features of Internet traffic which are
relevant to this particular issue. Results from some
of these simulations are shown in Figure 3. This
particular figure applies to flows of length 1-2. Note
that the SJF and s-SJF/FQ curves are indistinguish-
able in this graph.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2.25 3.375 5.0625 7.59375

P
{R

T
<x

}

Fair queueing 1-2
SJF 1-2

1-SJF/FQ 1-2
10-SJF/FQ 1-2

100-SJF/FQ 1-2

Fig. 3. Comparison of SJF and FQ

This figure shows the RRT for similar experi-
ments in which various queue discplines at a router
are simulated. The queue disciplines include SJF,
FQ, 1-SJF/FQ, 10-SJF/FQ and 100-SJF/FQ. The
other parameters of these simulations are: γ = 1.1,
δ = 0.01 (the length of the smallest flow), λ = 10
(the arrival rate of new flows is 10 per second). The
occupancy (proportion of busy time) of this system
is approximately 0.75.

The message from these experiments is that:
(a) There is a significant difference in the RRT

which can be delivered by a router which imple-
ments SJF, relative to one which implemenets
FQ. This is clear from Figure 3. The figure
shows the estimated probability distribution of
RRT provided, for flows of lengths 1-2, un-
der these two and other queue disciplines, as
recorded in a simulation over 20,000 seconds.

(b) Most of advantage of SJF are achieved by
x-SJF/FQ, which only finds and treats flows
longer than x according to the SJF discipline,
for values of x sufficiently large to ensure that
the queue discipline can be practically imple-
mented.

The number of long bursts which need to be
monitored turns out to be very low. For example,
when the 100-SJF/FQ discipline is used, the average

6

number of long bursts at any time is 0.85 over a
simulation of length 200,000 seconds. Also, the rate
at which changes of state occur is also very low. A
plot of the number of flows of length 100 or more in
a simulation of 20,000 seconds is shown in Figure
4.

Fig. 4. The number of long flows over time

VI. IMPLEMENTATION

An implementation of an algorithm similar to
the one described above in broad features has been
undertaken [3]. This work demonstrates the feasibil-
ity of implementing the proposed algorithm. This
was an implementation of a Mice and Elephants
queuing discipline, where mouse packets were given
absolute queuing priority over elephant packets.
The overall dropping probability was determined by
ARED [7], and mouse packets were given immunity
to dropping.

The implemented algorithm keeps records of each
active flow according to the properties in the packet
headers. The proposed algorithm differs from the
implemented algorithm in that it will benefit the
mouse flows without requiring a large amount of
computer memory in order to track individual IP
flows. To do this, the proposed algorithm needs to
keep a token bucket routing table. The implemented
algorithm uses bytes since the beginning of a flow as
a measure of flow length. The proposed algorithm
uses a token buckets in order to classify flows as
small or large.

The development was carried out on Linux be-
cause of the ready availability of the source code.
In Linux, queueing disciplines run in the Linux

kernel itself, which can be a daunting place for code
development. Code in the Linux kernel enjoys no
protection from errors, and it is not convenient to
retrieve debugging information from there.

The development was achieved by means of
a queuing discipline development environment [2]
which duplicated Linux’s queueing discipline inter-
faces so that queuing discipline code destined for
the Linux kernel could be developed in user space.
Thus, the development of the code was rendered
much easier than it otherwise could have been.

VII. CONCLUSION

This paper has investigated some critical issues in
relation to the concept of providing a guarantee of
QoS by ensuring that long flows are treated differ-
ently from short ones in routers. This concept is very
attractive because it potentially establishes a method
whereby a guarantee of QoS can be provided with-
out a new Internet network architecture, and without
tagging packets with class of service labels. The
proposed method relies on the fact that the benefits
of treating longer flows with lower priority than
shorter ones are so great, for all flow lengths, that
assigning quality of service on the basis of need
becomes unnecessary. However, for this approach
to work we probably need a different concept of
flow than has been used in the literature up to now.
It is important that the flow concept adopted errs
by overaggregating flows together rather than by
potentially make overfine distinctions. The errors
from overaggregation can be addressed by other
mechanisms. However, a definition of flow which is
too technical, and which therefore subdivides user
requests artificially, will potentially be ineffective
in the critical goal of protecting short user requests
from the degradation caused by other flows.

The simulations undertaken in this work, results
of some of which are presented here, demonstrate
the number of flows which need to be monitored is
quite small and that an efficient and scalable queue
discipline exists which can undertake the necessary
monitoring and control.

REFERENCES

[1] R. G. Addie and M. Zukerman. Use of the dense poisson pareto
process to demonstrate guaranteed flow performance. Technical
report, University of Southern Queensland, 2006.

[2] Stephen Braithwaite. Creating new linux queuing disciplines
howto. June 2005. URL: http://www.sci.usq.edu.au/
staff/braithwa/MastProj/howto.html.

7

http://www.sci.usq.edu.au/staff/braithwa/MastProj/howto.html
http://www.sci.usq.edu.au/staff/braithwa/MastProj/howto.html

[3] Stephen Braithwaite. Implementation of aqms on linux made
easy. accepted for presentation at the Open Source Develop-
ment Conference, 2006.

[4] Jin Cao and Kavita Ramanan. A Poisson limit for buffer
overflow probabilities. In Proceedings of IEEE INFOCOM
2002, volume 2, pages 994–1003, 2002.

[5] C. Estan and G. Varghese. New directions in traffic mea-
surement and accounting: Focusing on the elephants, ignoring
the mice. ACM Transactions on Computer Systems (TOCS),
21(3):270–313, August 2003.

[6] Do Young Eun and Ness B. Shroff. The impact of aggregation
in simplifying network analysis. In Proceedings of INFOCOM
2002, New York, NY, Jun 2002.

[7] S. Floyd, R. Gummadi, , and S. Shenker. Adaptive red, an
algorithm for increasing the robustness of red’s active queue
management. ACM SIGMETRICS Performance Evaluation
Review, 3, June 2001. URL: http://www.icir.org/floyd/
papers/adaptiveRed.pdf.

[8] Liang Guo and Ibrahim Matta. The war between mice and
elephants. Technical Report 2001-005, Computer Science
Department, Boston University, MA 02215, 7 2001. cite-
seer.nj.nec.com/guo01war.html.

[9] Nicolas Hohn, Darryl Veitch, and P. Abry. Cluster processes,
a natural language for network traffic. IEEE Transactions
on Signal Processing, Special Issue on Signal Processing in
Networking, 51(8):2222–2249, 2003.

[10] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags.
ACM Transactions on Database Systems, 28(1):51–55, March
2003.

[11] N. Likhanov, B. Tsybakov, and N. D. Georganas. Analysis
of an ATM buffer with self-similar (“fractal”) input traffic. In
Proceedings of IEEE INFOCOM 1995, pages 1–15, April 1995.

[12] K. Chen M. Charikar and M. Farach-Colton. Finding frequent
items in data streams. Theoretical Computer Science, pages
3–15, 2004.

[13] M. Mandjes. A note on queues with M/G/∞ input. Operations
Research Letters, 28(5):233–242, 2001.

8

http://www.icir.org/floyd/papers/adaptiveRed.pdf
http://www.icir.org/floyd/papers/adaptiveRed.pdf

	Introduction
	Network Context
	The Traffic Model
	The Algorithm
	Data Structure
	Initialization
	For each packet arrival

	Token Bucket Parameters
	Complexity

	Simulation Experiments
	Implementation
	Conclusion
	References

