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Abstract. This research explores the applicability of machine learning (ML) al-

gorithms in addressing key challenges in manufacturing planning and control 

(MPC), with a specific focus on capacity requirement planning (CRP) and sched-

uling. To effectively train ML algorithms, a discrete-event simulation (DES) 

methodology is employed to construct a system model, generating synthetic data 

through simulations across diverse scenarios. The proposed framework's efficacy 

is empirically evaluated through three distinct case studies, involving sequential, 

parallel, and shared facility layouts. The sequential and parallel layouts assess 

overall feasibility and capacity requirements planning, while the shared facility 

layout investigates scheduling within a more complex flexible manufacturing 

system. The research findings provide compelling evidence supporting the utili-

zation of synthetic data for training ML models, facilitating efficient resolution 

of facility scheduling challenges in manufacturing. 
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1 Introduction 

The utilization of ML approaches has gained significant traction in solving diverse 

manufacturing and supply chain problems, consistently delivering satisfactory results. 

However, a major obstacle in the application of ML techniques to manufacturing lies 

in the requirement for substantial amounts of training data, which is often scarce or not 

readily available. To address this challenge, computer simulation offers a viable solu-

tion by generating synthetic data that can be employed to train ML models effectively. 

Particularly, DES has been extensively utilized in solving shop floor problems, making 

it a promising gateway for synergizing simulation and machine learning techniques. By 

leveraging DES as a means to generate synthetic data, the fusion of simulation and ML 

holds potential for advancing manufacturing research and implementation. 



2 Literature Review 

Dogan & Birant (2021) classified ML-related studies in industrial engineering into five 

areas: quality control, condition and operations monitoring, demand forecasting, and 

production scheduling. While Kang et al. 2020 literature review suggests that ML adop-

tion is widely researched in quality control and condition monitoring, Fahle et al. 2020 

review revealed a lack of research papers on assistance systems and learning factory 

training concepts. As a result, this review focuses on these latter two areas. 

 

Compared to traditional methods, Bajari et al. (2015) demonstrated that supervised ML 

models produce more accurate forecasts. Furthermore, Dou et al. (2021) findings sug-

gest that deep learning outperforms other approaches, and incorporating multiple fac-

tors improves forecast accuracy. Additionally, Wiyanti et al. (2021) found that deep 

learning shows promising results compared to several other models using RMSE as a 

performance metric. 

 

One major obstacle to implementing machine learning techniques in manufacturing is 

the requirement for massive amounts of data to train the ML model (Wuest et al., 2016), 

which is typically not widely available. However, the discrete event simulation tech-

nique can generate synthetic data that can be used to train an ML learning model. For 

example, Pfeiffer et al. (2016) used a DES model to generate synthetic data and used 

an ML framework to select tuning parameters that improve accuracy and robustness for 

multi-model based prediction of manufacturing lead times in the scheduling field. Sim-

ilarly, Silva et al. (2017) examined the use of artificial neural networks to predict ca-

pacity in simulated supply chains in the field of supply chain management, while Gyulai 

et al. (2014) used ML to determine cost-efficient configurations of reconfigurable pro-

duction lines across various products. However, the application of ML with DES-

generated data in MPC framework has yet to be thoroughly studied. 

 

Previously, the authors developed a generic framework that generates synthetic data via 

DES (Chan et al., 2022), resulting in three publicly available datasets corresponding to 

different manufacturing layouts: sequential, parallel, and shared facility layouts. This 

paper expands beyond data generation and focuses on leveraging the synthetic data to 

train ML models for facility scheduling. The primary objective is to evaluate the per-

formance of these trained ML models. The effectiveness of the proposed framework 

will be assessed by measuring the accuracy achieved by the trained ML models, while 

efficiency will be evaluated in terms of the time required for data generation and train-

ing processes. 

3 Methodology 

This research employs a systematic approach to achieve its objective of developing a 

comprehensive framework that facilitates synthetic data generation, machine learning 



(ML) model training, and evaluation. As shown in Figure 1, the proposed methodology 

includes a series of steps, which will be further discussed below. 

 

 
Figure 1. Proposed Research Methodology 

 

The research methodology begins with the initial step of defining the layout and de-

mand behavior of a manufacturing system, which helps determine the complexity of 

the manufacturing scheduling problem. Three system layouts from simple to complex 

were designed and experimented with in this study. Based on the defined manufacturing 

layout, a DES model that mimics the behavior and dynamics of the actual manufactur-

ing system is built using ARENA software. The simulation models are then utilized to 

generate manufacturing process data, leveraging the advantages of DES in providing 

clear and usable data by eliminating process interruptions and external interventions. 

This makes the data suitable for feature selection and the application of machine learn-

ing (ML) techniques for schedule generation. 

 

To train the ML models, MATLAB's Neural Network fitting and Regression Learner 

tools are employed, specifically designed for predicting continuous target values. In the 

case of the first and second simulation layouts, the Neural Network fitting tool is used 

to investigate overall feasibility, focusing on predicting process utilization. However, 

this paper skips the analysis of the first two layouts and focuses on the more complex 

flexible manufacturing system. For the last layout, we explored five main groups of ML 

algorithms, resulting in a total of 16 ML models that were empirically tested. The five 

groups, ranging from simple linear regression to cubic Support Vector Machines 

(SVM) with the aim of evaluating the performance of various ML algorithms using the 

same synthetic dataset. The algorithm exhibiting the best performance in terms of both 

Root Mean Square Error (RMSE) and training time is selected for further development 

of a production schedule. 

 

The machine learning algorithms and sub-types evaluated include: 

• Artificial Neural Network: MATLAB Neural Network Tool 

• Support Vector Machine (SVM): Linear SVM, Quadratic SVM, Cubic SVM, 

Coarse Gaussian SVM, Medium Gaussian SVM, Fine Gaussian SVM 

• Regression Tree: Coarse Tree, Medium Tree, Fine Tree 

• Ensemble Tree: Boosted Tree, Bagged Tree 

• Linear Regression: Regular Linear Regression, Stepwise Linear Regression, 

Robust Linear Regression, Interaction Linear Regression 



The performance of the trained models is assessed based on two criteria: RMSE and 

training time. These metrics serve as indicators of the models' accuracy and efficiency. 

The resulting ML models are then employed to predict target values using previously 

unseen data, and the obtained results are cross validated with the simulation data using 

inferential statistical tests. Finally, the MATLAB code representing the developed ML 

models is compiled and saved for future use. This code can predict process utilization 

and generate a production schedule for manufacturing processes. 

 

The proposed framework is highly versatile, making it suitable for implementation 

across various layouts of manufacturing facilities. Moreover, it exhibits scalability, em-

powering it to effectively handle complex manufacturing processes that involve numer-

ous internal and external production variables. However, due to the differences in fea-

tures and target values among layouts, a separate ML model must be trained for each 

specific case. 

 

While this approach offers several advantages, there are also limitations to consider. 

For instance, obtaining live data from industrial companies typically results in unstruc-

tured data with numerous outliers and missing values, necessitating rigorous pre-pro-

cessing to ensure accuracy. Moreover, the reliance on licensed software, such as 

MATLAB, during the machine learning (ML) process restricts the seamless integration 

of the resulting model code with ERP software applications. However, ML models can 

be implemented in programming languages like Python, utilizing libraries such as 

Scikit-learn and TensorFlow, allowing for seamless integration of the ML process into 

business operations. Overall, this approach provides a time-saving technique for testing 

hypotheses regarding the effectiveness of ML in generating schedules within the do-

mains of MPC and SCM. 

4 Case Study – Shared Facility Scheduling 

The flexible manufacturing system layout, initially proposed by Slack et al. (2013) and 

utilized in the authors' previous study on synthetic data generation using DES (Chan et 

al., 2022), incorporates increased complexity in the manufacturing process. The manu-

facturing site produces four distinct SKUs (Stock Keeping Unit), each with unique pa-

rameters including demand, weight, type, and processing time at different stations. The 

layout is shown in Figure 2 below. 

 

 
Figure 2. Flexible Manufacturing System Layout 



 

A forklift is used to transport parts in batches between stations. The batch size is deter-

mined by the total weight and a maximum carrying capacity of two tonnes. Each part 

is assigned a specific weight at the start of the simulation, with four constant values 

corresponding to different SKU types, as shown in Table 1. To simulate the forklift 

operations, distance values between stations are incorporated in ARENA, along with 

stochastic travel times. Loading and unloading times at each station remain constant, 

but there may still be instances of part queuing due to the assumption of infinite-sized 

storage. 

Table 1. SKU Parameters 

 

Part type Weight (kg) Cell route Processing time (seconds) 

Mean (µ) Std. Dev (σ) 

SKU1 1.5 Cell 1 25 0.1 

SKU2 2.5 Cell 1, Cell 2, Cell 3 15 0.1 

SKU3 4.0 Cell 3, Cell 4 23 0.1 

SKU4 4.5 Cell 1, Cell 2, Cell 4 17 0.1 

     

The model starts with the uncoiled coils, used to produce blanks at the blanking station. 

These blanks are then loaded onto a forklift and transported to the pressing station, 

where they are unloaded and assigned to the appropriate press based on their SKU type. 

Following the pressing process, the parts are sent to the assembly station, which com-

prises four cells dedicated to processing different SKUs along predetermined routes. 

The selection of cells is determined primarily by cell availability. If a required cell is 

not available, the part awaits until the designated cell becomes free. The processing 

times for each SKU are specified in Table 1. 

 

The final station, paint and quality, simulates two conveyors with a capacity of 3,600 

parts each, operating simultaneously. Additionally, a quality control station is included 

in the process (Harun & Cheng, 2012). The paint conveyors encompass multiple pro-

cesses, such as primer coating, painting, and furnace drying. In this simulation model, 

a significant volume of synthetic data was generated to capture and store crucial raw 

data without omitting any key information that may be needed in the future ML stage. 

5 Experimental Results 

5.1 Feature Selection and Machine Learning Model Training 

The simulation model generated numerous features, and improving training efficiency 

and model performance relies on selecting the right set of key features and excluding 

redundant features. For example, in the shared facility, the ML model only requires one 

but not both of the highly correlated features, such as station utilization or waiting time 



for predictions. However, essential information including total finished parts per SKU 

and specific SKU combinations processed by assembly cells is necessary. Pearson's 

correlation analysis of the reduced feature set demonstrated a strong positive correlation 

between the total number of finished parts and their respective assembly cells (Table 

2). 

Table 2. Pearson’s correlation for the last layout 

 
Target 

values 

Predictors Target 

values 

Predictors 

 SKU1 SKU2 SKU3 SKU4  SKU1 SKU2 SKU3 SKU4 

Cell1 

SKU2 -0.348 0.992 -0.172 -0.311 

Cell4 

SKU3 -0.282 -0.275 1.000 -0.311 

Cell2 

SKU2 -0.338 0.992 -0.185 -0.321 

Cell1 

SKU4 -0.782 -0.225 0.370 0.626 

Cell3 

SKU2 0.048 0.646 -0.793 0.102 

Cell2 

SKU4 0.354 -0.644 0.035 0.576 

Cell3 

SKU3 -0.283 -0.282 1.000 -0.305 

Cell4 

SKU4 0.276 0.103 -0.880 0.573 

 

In our experiments, we studied various algorithms while focusing on a single target 

value – the number of SKU2 processed by Cell1 (Cell1 SKU2). The training results of 

the machine learning models are provided in Table 3. 

 

Table 3. Summary of the machine learning models’ performance 

 

Algorithm RMSE 

Training 

time (sec) Algorithm RMSE 

Training 

time (sec) 

ANN 81.271 47.00 Medium Tree 85.654 51.21 

Linear Regression 82.465 28.26 Coarse Tree 84.895 45.93 

Interaction Linear 81.351 33.85 Linear SVM n/a n/a 

Robust Linear 82.466 33.01 Quadratic SVM 81.340 91858.00 

Stepwise Linear 82.465 31.05 Cubic SVM n/a n/a 

Ensemble Boosted Tree 478.75 276.02 Fine Gaussian SVM n/a n/a 

Ensemble Bagged Tree 84.366 430.93 Medium Gauss SVM 81.799 143140.0 

Fine Tree 86.309 66.52 Coarse Gaussian SVM 81.432 164000.00 

 

The study found that using ANN produced the best performance, with an RMSE of 

81.27, although it took almost two times longer to complete compared to linear regres-

sion. The RMSE means that predicting values for Cell1 SKU2 within a range of 7446 

to 15306 units per day will result in an error of around 0.74% of the mean value, which 

is very accurate. It is noteworthy that the algorithm's exceptional performance can be 

attributed to its flexibility and capability in capturing complex relationships within 

manufacturing data. This stems from its layered structure and the incorporation of nu-

merous parameters. This flexibility allows ANNs to fit a wide range of data patterns, 

which proves advantageous in scenarios where relationships are intricate and not easily 

captured by simpler algorithms such as Linear Regression or Tree-based methods. 



 

Some training sessions for linear, cubic, and fine Gaussian SVMs were interrupted after 

exceeding 100 hours due to technical and time constraints. It was also observed that 

longer training times did not necessarily improve model performance.  

 

Ease of use and greater flexibility provided by the Neural Network fitting has predeter-

mined which algorithm has the potential to be used further. In Table 4 are summarized 

results of ANN application. The parameters of the ANN are similar to those given in 

the Table 3: the number of predictors is four (the total number of finished SKU1, SKU2, 

SKU3, SKU4), the number of target values is one (eight models have been trained) and 

the number of samples is 605620. 

 

Table 4. ANN training results for the eight target values 

 

Target value ML model performance 

SKU type Cell index RMSE % error of the mean value Training time, (sec) 

SKU2 

Cell1 81.301 0.743% 69 

Cell2 23.366 0.585% 143 

Cell3 100.498 3.504% 121 

SKU3 
Cell3 6.308 0.138% 101 

Cell4 6.316 0.575% 24 

SKU4 

Cell1 301.662 7.065% 7 

Cell2 163.401 1.538% 22 

Cell4 305.941 4.854% 70 

 

The ANN has performed well in terms of RMSE and training time. For instance, Cell3 

SKU3 achieved an RMSE of approximately 6, which is only 0.13% of the mean error. 

However, accuracy varies across SKUs. 

 

Table 5. Normality test results and 95% tolerance interval  

 

Data source Normality 

test, p-value  

T-Test’s 

p-value 

Data source Normality 

test, p-value 

T-Test’s  

p-value 

Cell1 SKU2 original 0.126 0.969 Cell4 SKU3 original 0.008 0.996 

Cell1 SKU2 predicted 0.202  Cell4 SKU3 predicted 0.008  

Cell2 SKU2 original 0.135 0.925 Cell1 SKU4 original 0.079 0.953 

Cell2 SKU2 predicted 0.369  Cell1 SKU4 predicted 0.121  

Cell3 SKU2 original 0.815 0.703 Cell2 SKU4 original 0.799 0.906 

Cell3 SKU2 predicted 0.844  Cell2 SKU4 predicted 0.027  

Cell3 SKU3 original 0.011 0.989 Cell4 SKU4 original 0.319 0.919 

Cell3 SKU3 predicted 0.010  Cell4 SKU4 predicted 0.021  



 

The resulting machine learning models were utilized to predict previously unseen data 

from the 3000-sample dataset used to study time dependency. The predicted schedule 

was cross-validated using a t-test. All values except for the number of SKU2 processed 

by Cell3, both original and predicted, followed a Gaussian distribution. Therefore, the 

central limit theorem was applied to Cell3 SKU2. The results of the normality test in 

Table 5 indicate that the samples are normally distributed, allowing for inferential sta-

tistical tests to be employed. 

 

The T-Test has been employed; the null hypothesis has been established in the follow-

ing way: the mean of the original dataset is similar to the mean of the predicted dataset. 

The p-values in Table 5 show that there is not enough evidence to reject the null hy-

pothesis. Hence, referring to the initial primary hypothesis of the research it can be 

concluded that the ANN is capable of creating shared facility scheduling based on the 

demand values. 

6 Discussions and Conclusion 

The machine learning models that were trained have successfully completed the tasks 

assigned to them. The algorithms used in machine learning have demonstrated high 

reliability in making predictions. During the case study, errors ranged between 0.14% 

to 7% of the mean number of processed SKUs by a specific cell. In most cases, the time 

required to complete the training process was between 0 and 120 seconds. The results 

were confirmed through a t-test, which proved the primary hypothesis that machine 

learning can be applied for manufacturing planning and control tasks, specifically ca-

pacity requirements planning and finite scheduling. The importance of feature selection 

was demonstrated, and the correlation between target values and predictors was applied 

to corresponding performance of the machine learning model, showing the relationship 

between the accuracy of predictions and coefficients of correlation. The higher the de-

gree of correlation between target values and predictors, the more accurate the result. 

While adopting the ANN algorithm, we recommend considering several factors: 

• Model Complexity and Flexibility: Artificial Neural Networks are highly flex-

ible and capable of capturing complex relationships in data due to their layered 

structure and numerous parameters. This flexibility allows ANNs to fit a wide 

range of data patterns. 

• Feature Learning: ANNs can automatically learn relevant features from data, 

reducing the need for manual feature engineering. This is especially useful 

when dealing with high-dimensional or unstructured data, as ANNs excel in 

extracting meaningful representations. 

• Non-linearity: Many real-world problems exhibit non-linear relationships 

among variables. ANNs, with their activation functions and hidden layers, can 

effectively model these non-linearities, contributing to their superior perfor-

mance over linear methods like Linear Regression. 



• Computational Resources and Training Time: Training times required for dif-

ferent algorithms vary significantly. While ANNs may have outperformed 

other algorithms, they often require longer training periods and greater com-

putational resources. This trade-off between performance and training time/re-

sources should be thoughtfully considered in practical applications. 

While ANNs have shown impressive performance in these research cases, they may not 

be the best choice for all situations. Factors such as the nature of the problem, dataset 

size, resource availability, interpretability requirements, and others can influence the 

suitability of alternative algorithms. Comprehensive experimentation and exploration 

of different algorithms are advised to attain optimal results, as demonstrated in this 

research. 

 

The results demonstrated throughout the research showed that the proposed framework 

is feasible and its implementation can be further studied at an industrial project. It has 

been demonstrated that the utilization of DES to generate synthetic data is a fast and 

reliable approach, which can be used in the initial stages of machine learning algorithms 

implementation to perform MPC tasks in the industrial stage, particularly to replace 

time consuming data collection at the shop floor. Moreover, the machine learning al-

gorithms has also demonstrated high degree of reliability of the results, providing rapid 

support in decision making process. 
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