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ABSTRACT 

Electroencephalography (EEG) is one of the most important signals recorded from 

humans. It can assist scientists and experts to understand the most complex part of the 

human body, the brain. Thus, analysing EEG signals is the most preponderant process 

to the problem of extracting significant information from brain dynamics. It plays a 

prominent role in brain studies. The EEG data are very important for diagnosing a 

variety of brain disorders, such as epilepsy, sleep problems, and also assisting 

disability patients to interact with their environment through brain computer interface 

(BCI). However, the EEG signals contain a huge amount of information about the 

brain’s activities. But the analysis and classification of these kinds of signals is still 

restricted. In addition, the manual examination of these signals for diagnosing related 

diseases is time consuming and sometimes does not work accurately. Several studies 

have attempted to develop different analysis and classification techniques to categorise 

the EEG recordings.  

The analysis of EEG recordings can lead to a better understanding of the cognitive 

process. It is used to extract the important features and reduce the dimensions of EEG 

data. In the classification process, machine learning algorithms are used to detect the 

particular class of EEG signal based on its extracted features. The performance of these 

algorithms, in which the class membership of the input signal is determined, can then 

be used to infer what event in the real-world process occurred to produce the input 

signal. The classification procedure has the potential to assist experts to diagnose the 

related brain disorders. To evaluate and diagnose neurological disorders properly, it is 

necessary to develop new automatic classification techniques. These techniques will 

help to classify different EEG signals and determine whether a person is in a good 

health or not. This project aims to develop new techniques to enhance the analysis and 

classification of different categories of EEG data. 

 A simple random sampling (SRS) and sequential feature selection (SFS) method 

was developed and named the SRS_SFS method. In this method, firstly, a SRS 

technique was used to extract statistical features from the original EEG data in time 

domain. The extracted features were used as the input to a SFS algorithm for key 
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features selection. A least square support vector machine (LS_SVM) method was then 

applied for EEG signals classification to evaluate the performance of the proposed 

approach.  

Secondly, a novel approach that combines optimum allocation (OA) and spectral 

density estimation methods was proposed to analyse EEG signals and classify an 

epileptic seizure. In this study, the OA technique was introduced in two levels to 

determine representative sample points from the EEG recordings. To reduce the 

dimensions of sample points and extract representative features from each OA sample 

segment, two power spectral density estimation methods, periodogram and 

autoregressive, were used. At the end, three popular machine learning methods 

(support vector machine (SVM), quadratic discriminant analysis, and k-nearest 

neighbor (k-NN)) were employed to evaluate the performance of the suggested 

algorithm.  

Additionally, a Tunable Q-factor wavelet transform (TQWT) based algorithm was 

developed for epileptic EEG feature extraction. The extracted features were forwarded 

to the bagging tree, k-NN, and SVM as classifiers to evaluate the performance of the 

proposed feature extraction technique. The proposed TQWT method was tested on two 

different EEG databases.  

Finally, a new classification system was presented for epileptic seizures detection in 

EEGs blending frequency domain with information gain (InfoGain) technique. Fast 

Fourier transform (FFT) or discrete wavelet transform (DWT) were applied 

individually to analyse EEG recording signals into frequency bands for feature 

extraction. To select the most important feature, the infoGain technique was employed. 

A LS_SVM classifier was used to evaluate the performance of this system.  

The research indicates that the proposed techniques are very practical and effective 

for classifying epileptic EEG disorders and can assist to present the most important 

clinical information about patients with brain disorders.  
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CHAPTER 1 

INTRODUCTION 

The human brain is the most important organ in the human body as it controls all the 

body’s activities. When a person is moving or doing specific activities, different brain 

cells are involved by sending electrical signals to the targeted part of the body to get 

the right response (Lindsay & Norman, 2013; Radocy & Boyle, 2012). To detect the 

neuron’s responses of the brain, several methods are developed for instance: 

electroencephalography (EEG), magnetoencephalography (MEG), positron emission 

tomography (PET), functional magnetic resonance imaging (fMRI), and optical 

imaging. Although MEG, PET, fMRI and optical imaging are in favour of clinical 

experts, they are required a high cost to use them in diagnose of brain disorders 

(Wolpaw et al., 2002). In addition, PET, fMRI and optical imaging depend on reading 

several metrics from a patient such as blood pressure.  Collecting and analysing these 

metrics could take long time and less accurate compared with EEG which records 

information quickly and efficiently, as well as being inexpensive (Wolpaw et al., 2002). 

EEG record the brain activities as signals. These signals are obtained from 

electrodes placed on the scalp. Experts are then analysed and investigated them to 

decide whether a patient have neurologic disorders, such as sleep problems, and 

epilepsy. Many researchers have used EEG signals as a tool to discover brain activities 

using a variety of techniques (Faust et al., 2015; Salem et al., 2014; Zhang & Parhi, 

2014; Zhu et al., 2014). These techniques are used to extract and select discriminative 

features, as well as to classify EEG recordings. Most of these techniques fall under 

1 
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five different categories: time domain; frequency domain; time frequency domain; 

traditional nonlinear methods; and graph theory approaches (Acharya et al., 2013). 

1.1 Brain structures and their labor 

The human brain consists of three main parts: the cerebrum, brainstem and cerebellum. 

Each part of the brain is associated with different human activities. A brief explanation 

about these brain’s parts is presented below: 

• Cerebrum

The cerebrum is the largest part in the human brain. It is divided into two nearly equal 

halves that are the left and right hemispheres, by a deep longitudinal pothole (Davey, 

2011). Their outer parts are the cerebral cortex, which are made up of grey matter 

coordinated in layers, while inside the cortex is the white matter (Kandel et al., 2000). 

Each side of the hemisphere is partitioned into four lobes: frontal, parietal, temporal 

and occipital lobes, and denoted according to the skull bones located below them, 

(Standring, 2015) as shown in Figure 1.1. 

Figure 1.1 Structure of the human brain (Standring, 2015). 
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Each lobe is associated with certain bodily activities. However, some of these 

activities are with two or more lobes (Ackerman, 1992). The frontal lobe is associated 

with emotions, problem solving, planning, personality, speech and movement. The 

parietal lobe is associated with sensations such as pain and touch, orientation, 

recognition, movement and stimuli. However, processing of visualization is controlled 

by the occipital lobe while the temporal lobe is responsible for perception, 

differentiation of voices, memory, speech and stimuli. 

• Cerebellum

The cerebellum is the second largest part of the brain and is located at the back of the 

cranial cavity lying underneath the occipital lobe. It is isolated from the occipital lobe 

by a sheet of fibre (Standring, 2015). The cerebellum is divided into three lobes; 

anterior; posterior; and flocculonodular. The anterior and posterior lobes are associated 

with the responses of motor movements, while the flocculonodular lobe is associated 

with maintaining the balance (Hall, 2015). In the cerebellum, the outer cortex is thinner 

when compared with the outer cortex of the cerebrum (Standring, 2015). 

• Brainstem

The brainstem lies under the cerebrum and includes the midbrain, pons and medulla. 

It is located in the back of the skull, continuing downwards to the spinal cord 

(Standring, 2015). The brainstem has reticular formation repressing as a network of 

nuclei used to pass brain’s commands to body organs. The brainstem maintains many 

essential processes such as breathing, control of eye movements and balance 

(Standring, 2015; Hall, 2015). 

1.2 Brain and EEG recordings 

The brain contains billions of neurons that keep the brain active (Herculano-Houzel, 

2009). These neurons, which have the same parts {soma (cell body), axon and 

dendrites} are interconnected by membranes which transport proteins and exchange 

ions with each other as illustrated in Figure 1.2. This process leads to many ions being 

pushed out of neurons and also repels the analogous ions. These ions can push their 
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neighbours, who ultimately push their neighbours etc., and in the end a wave is created 

(Sanei & Chambers, 2013).  

This wave reaches the scalp and is recorded by using electrodes placed on the scalp. 

These electrodes reflect voltages of millions of neurons over time as 

electroencephalography (EEG) signals (Tatum, 2014). Sometimes, several neurons 

create abnormal waves due to do not have the same direction as other neurons, and do 

not pump their ions properly. These abnormal waves influence the normal EEG 

characteristics.  

As characteristics of EEG signals are complex, aperiodic and nonlinear in nature. 

EEG signals are a combination of sustained oscillation and non-oscillation transients 

that exhibit by a variety of frequencies. To record and study brain activities, there are 

several tools used for this purpose, such as EEG, MEG, PET, fMRI, and optical 

imaging. EEG signals have a relatively poor spatial sensitivity. However, they have 

multiple advantages over other techniques. The EEG hardware costs are cheaper than 

those of most other techniques. In addition to this, EEG sensors can be used in different 

places compared with others. Furthermore, some techniques take a long time to collect 

data from the brain, while EEG only requires a short time (Wolpaw et al., 2002). That 

motivated us to use EEG signals in this study.  

Figure 1.2 Structure, link, and work of a neuron (Sanei & Chambers, 2013). 
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EEG signals define as an electrophysiological monitoring method used to record 

electrical activity of the brain using electrodes placed on the scalp. In addition, EEGs 

measure the change of voltage in the swapped ions of the brain’s neurons 

(Niedermeyer & Silva, 2005). As EEGs record the spontaneous electrical brain activity 

through time, EEGs have been used in several clinical research to trace abnormality in 

the brain’s behaviours such as epileptic seizures.  

In 1842, different studies tried to record the activity of the brain. Studies began 

when Richard Caton, who was a physician practising in Liverpool, recorded first brain 

activities. He proved in 1875 that the exposed cerebral hemispheres of animals 

released electrical signals (Swartz 1998). Thereafter, Adolf Beck presented his 

findings in 1890 about electrical activity, which included consistent oscillations in the 

brains of rabbits and dogs, by placing electrodes directly on the scalp (Coenen et al., 

2014). Till (1924) reported the first brain signals (EEG) which were recorded by Hans 

Berger (Haas, 2003). Depending on the previous studies on animals, Hans Berger 

developed one of the most significant developments in human history, which was a 

device to record the activity of the human brain (Millet, 2002). 

To record brain activities, we need to use a number of electrodes and set them in 

different places on the scalp with a conductive gel or paste and connect them to an 

amplifier that is attached to an EEG recording.  

 There are two types of recorded EEG signals, multi-channel and single-channel 

EEG recordings, depending on the number of electrodes used to capture these signals. 

For instance, using two electrodes leads to one single signal being recorded (single 

channel), while using more than two electrodes at the same time leads to multi-channel 

EEG signals being recorded. Multi channels can include up to 256 electrodes around 

the scalp using a cap or net of electrodes. 

The International 10-20 system is used as a standard way to set the electrodes on 

the scalp (Towle, 1993; Klem et al., 1999).  The locations of these electrodes are 

specified by dividing them into a 10% and 20% interval, depending on the distances 

among neighbouring electrodes (Abhang & Gawali, 2015). As shown in Figure 1.3, 

there are two points on the scalp help to determine the electrode positions, named as 

Nasion and Inion, where the nasion is located at the front of the head, alongside with 
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the eyes, and the inion is located in the back of the head. It can be seen in Figure 1.3 

that each electrode has letters which correspond to the placement of the electrode. For 

example, the F refers to the front of the skull, T the temporal, C refers to the centre of 

the skull, P refers to parietal and O is the occipital. However, the letter "z" refers to the 

midline area from the nasion to inion point. In addition, from numbers associated to 

the electrodes, it can recognize their locations to determine whether they are placed in 

the left or right sides of the scalp. The electrodes with even numbers are placed to the 

right side of the skull while the electrodes with odd numbers are placed to the left side 

of the skull. 

Figure 1.3 Location of electrodes on the scalp using the international 10-20 system 

(Abhang & Gawali, 2015; Klem et al., 1999). 

Each electrode senses diverse voltages of each lobe of the cerebrum or other parts 

of the brain. To collect these voltages and transfer them to the computer as EEG 

signals, one amplifier per electrode pair is used to amplify the voltage for the active 

electrode and its reference is shown in Figure 1.4. As EEG signals symbolize different 

voltages for two electrodes, there are numerous ways of reading EEG signals known 

as “montages” as illustrated below: 

 Electrodes 

Appearing 
bone 
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1. Bipolar or sequential montage

Using this method, two neighbouring electrodes begin to register one channel of 

EEG (Nunez & Pilgreen, 1991; Niedermeyer & Silva, 2005) and the whole 

montage consists of a sequential number of channels. For instance, the two 

electrodes Fp1 and F3 produce a channel 'Fp1-F3', and the next electrodes, F3 and 

C3 generate the channel 'F3-C3', and so on, as shown in Figure 1.4. 

Figure 1.4 Example of recording EEG signals from multi and single channel. 

2. Referential Montage

In this montage, there is no standard way of using the electrodes to record EEG 

signals. However, each channel represents the difference between a certain 

electrode and a particular reference electrode. Midline positions are often used 

because they do not amplify the signal in one hemisphere compared with other 

positions. Another method of referential is to take a physical or mathematical 

average of electrodes set to the earlobes or mastoids, which use electrodes A2, A1 

as references (Siuly et al., 2016; Nunez & Pilgreen, 1991) as shown in Figure 1.4. 
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3. Average reference montage

This montage uses an average signal (ARef) of all the amplifiers as a designated 

reference for each channel (Siuly et al., 2016).   

4. Laplacian montage

Each channel represents the difference between electrodes and a weighted average 

of the surrounding electrodes (Nunez & Pilgreen, 1991). 

Table 1.1 Examples of montage type for EEG recordings 

Bipolar or 

sequential montage 

Referential 

Montage 

Average reference 

montage 

Fp1-F3 

F3-C3 

C3-P3 

P3-O1 

Fp1-F7 

F7-T3

T3-T5 

T5-O1 

Fp1-A1 

F3-A1

C3-A1 

P3-A1 

F7-A1

T3-A1 

T5-A1 

O1-A1 

Fp1-ARef 

F3- ARef
C3- ARef 

P3- ARef 

F7- ARef
T3- ARef 

T5- ARef 

O1- ARef 

Fp2-F4 

F4-C4 

C4-P4 

P4-O2 

Fp2-F8 

F8-T4

T4-T6 

T6-O2 

Fp2-A2 

F4-A2

C4-A2 

P4-A2 

F8-A2

T4-A2 

T6-A2 

O2-A2 

Fp2- ARef 

F4- ARef
C4- ARef 

P4- ARef 

F8- ARef
T4- ARef 

T6- ARef 

O2- ARef 

Table 1.1 presents in detail the type of montages that are used to collect a number 

of EEG channels. Through these montages, two types of EEG signals are identified 

analog; and digital. In analog EEG, the EEG specialist changes electrodes during the 

different montages to record and highlight the significant features of EEGs. In 
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addition, all the EEG signals are recorded digitally, and are stored and categorized 

within each montage, which leads to particularly easy usage. 

1.3 The EEG wave patterns 

An EEG recording contains an array of signals depending on the number of electrodes 

used to record the brain’s electrical activities (brain waves). These waves are defined 

as the electric rhythmic changes. With these rhythms, the EEG is divided into five 

frequency bands: Delta, Theta, Alpha, Beta and Gamma. These bands are used to 

measure brain waves which fall into the range of 0.5-32 Hz frequency (Teplan, 2002) 

as shown in Figure 1.5. The following subsections clarify the frequency bands in detail: 

• Delta falls in the range 0.5-4 Hz frequency. It demonstrates the highest amplitude

and the slowest waves. It appears in EEG signals when humans are asleep and not

dreaming or in deep sleep;

• Theta lies between 4 Hz to 7 Hz with 20µν. It can be seen in EEGs recorded from

teenagers and older adults (Cahn & Polich, 2013) and can also be observed in long

distance drivers. Thus, the increase of theta frequency in the brain performs

abnormal activity. It refers to a focal disorder in focal subcortical lesions, deep

midline disorders, metabolic encephalopathy or other disorders, such as diffuse

disorders. In other words, theta is associated with records of the relaxed, meditative

and creative states;

• Alpha occurrs between 7 Hz to 13 Hz with an amplitude range from 30 to 50 µν

(Gerrard & Malcolm, 2007). Alpha waves are appeared in an adult who is awake

with eyes closed, relaxed and has cleared mind of any wandering thoughts. It is

recorded from the occipital and parietal regions in the back of the skull;
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Figure 1.5 Examples of five frequency bands of EEG rhythmic (Brain waves; Siuly, 

2016). 

• Beta is in the frequency range of 14 Hz to 30 Hz with low amplitude. It is observed

on both sides in parallel locations in the frontal area of the skull. Beta waves are

closely related to body movements, thinking and active concentration (Pfurtscheller

& Da Silva, 1999). In addition, it is linked with several brain disorders, such as drug

effects and Duo 15q syndrome, which is a neuro disorder, caused by duplicating

part of Chromosome 15 that accords a risk for epilepsy, intellectual disability, and

autism (Frohlich et al., 2016);

• Gamma lies between the range of 30 Hz and 100 Hz with the lowest amplitude

compared with other frequency bands. It refers to a number of neurons working

together as a network for the purposes of a certain cognitive or motor function

(Niedermeyer & Silva, 2005).

In nature, EEGs recorded from adults are different to EEGs from children, where

the latter have slow oscillations compared with adult’s EEGs. In addition, EEG signals 

are impacted by non-cerebral origin signals named as artifacts. These artifacts have a 

large amplitude compared to the amplitudes of important cortical signals. This is one 

of the reasons why it takes considerable experience to correctly interpret EEGs 

clinically. 
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EEG signals are most often utilized to differentiate between normal and abnormal 

signals. In this thesis, different techniques are developed to analyse and classify 

epileptic EEG signals. The following section provides more details about the epileptic 

seizures and how these neurological disorders affect EEG signals.  

1.4 Epileptic seizures 

An epileptic seizure is an event or symptom leading to abnormal signals in the EEG 

recordings (Fisher et al., 2005) and affects a patient’s daily life by a momentary loss 

of awareness or absence seizure. Seizures are not detected to epileptic patients a lone, 

but also they can be seen in people who do not have epilepsy for a variety of reasons, 

such as drug use, low blood sugar, low levels of oxygen, brain trauma and high body 

temperature. A first episode of epilepsy does not usually require immediate anti-seizure 

medication, unless there is a determined a patient’s problem with EEG signals (MEG, 

PET and so on) (Wilden & Cohen-Gadol, 2012). Often older people, who live up to 80 

years, have at least one epileptic seizure (Berg, 2008; Wilden & Chohen-Gadol, 2012). 

Epilepsy influences about 50 million people internationally each year (WHO, 

2018). Epilepsy is defined as having two or more seizures. There are episodes of 

involuntary movements that have an effect on parts or all of the body, and their 

symptoms vary depending on the type of seizure (convulsive or non-convulsive) 

(Shearer et al., 2006). The convulsive type is the most widespread around the world, 

which leads to loss of awareness of patients and also loss of control of bladder function. 

Further, the convulsive seizure type is ordered by whether the source of the seizure is 

localized (focal seizure) or distributed (generalized seizure) within the brain (National, 

2012). Although the brain activity is normally not concurrent, an epileptic seizure 

impacts the brain activity by making abnormal and excessive signals which are sent 

from a group of neurons in a synchronized way that performs in a wave of 

depolarization named as a paroxysmal depolarizing shift (National, 2012; McPhee & 

Hammer., 1995).  

Using EEG recordings assists to understand more about epilepsy. Epilepsy is a 

neurological disorder that impacts on the nature of the brain activities and causes 

abnormal EEG signals. In order to diagnose and treat these kinds of disease, analysis 

and classification of the EEG data is required to detect epileptic seizures. In EEG 
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recordings, there are two abnormal categories which can observed, ictal (can appear 

through epileptic seizures) and inter-ictal (can be seen through free epileptic seizures 

or between two seizures). These seizures lead to unexpected changes in frequency 

specifications and oscillations for a normal EEG signal, which is often within the alpha 

range with slow amplitude that may or may not be observed in the form of EEG 

recordings. Sometimes, this change of EEG charts occurs between beta and gamma 

bands with an increase in amplitude. In order to reveal whether people are healthy or 

have epilepsy disease, this thesis aims to develop techniques which can be used to 

analyse and classify the EEG signals. 

1.5 Overview techniques analysis and classification 

EEG signals contain a huge amount of information about the brain’s functions and 

human activities. Consequently, the analysis and classification of these signals play 

significant roles in biomedical and big data research. Analysing EEG recordings is 

vitally important to extract discriminative features and reduce the large amount of EEG 

data. However, classifying these features is no less paramount than its analysis, which 

work together for the diagnosis of brain related disorders. Further, a good classification 

approach supports the decision making on people's health by differentiating EEG 

categories.  

The next sections explain in detail the EEG signal analysis and classification 

techniques used in these areas. For analysing and classifying EEGs, there are several 

procedures most researchers follow, as shown in Figure 1.6.  

1.5.1 Analysis of EEG signals 

Raw EEG data contain artifacts generated though different channels (e.g. physical 

problems in the electrodes or other parts of the recording machine, connectivity issues 

between head and device or head motion during the EEG recordings etc). This stage 

depends on two approaches, which are artifact removal and data filtering (Ames, 1971; 

Başar & Schürmann, 1999). The artifact removal is considered a challenging stage 

because artifacts create an abnormal EEG signal shape with high amplitudes. It is 

necessary to remove this unwanted noise and provide a clear EEG signal.  
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Figure 1.6 Block diagram of the procedures for processing EEG signals. 

The next stage of EEG analysis is feature extraction and selection, which is used to 

derive and choose representative features from EEG data by applying various signal 

processing techniques to it (Kumar & Bhuvaneswari, 2012).  This stage is very 

important to extract representative features from EEG data and reduce the amount of 

unnecessary signals. In this stage, the extraction method impacts enormously on the 

results of the EEG classification. Additionally, these are excellent methods to use to 

extract relevant features and accurately describe EEG signals in order to obtain high 

quality EEG classifications.  

From the literature, it is shown that a variety of methods have been used for feature 

extraction for epileptic EEG data. Most of those techniques fall under five different 

categories: time domain; frequency domain; time frequency domain; traditional 

nonlinear methods; and graph theory approaches (Acharya et al., 2013). The following 

sections provide details of the signal analysis techniques used and brief descriptions 

of the previous research undertaken in this regard. 

1.5.1.1 Analysis using time domain methods 

Artifacts Removal

Data Filtering

Feature Extraction

Classification

Pre-Processing 
procedure 

Raw EEG data 
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In time domain, the processing shows how the EEG signal changes with time. The 

important aspects of time series analysis of EEG recordings are linear prediction and 

component analysis approach, using for example principal component analysis, 

independent component analysis, and linear discriminant analysis (Acharya et al., 

2013). These methods are used to analyse EEG recordings with regard to a specified 

period of time. 

In the last few decades, a sampling technique (ST) based on least square support 

vector machines (LS_SVM) was proposed by Siuly et al. (2009). Firstly, they used the 

ST to extract features from two different classes of people such as healthy individuals 

with eyes open and epileptic patients during seizure activity. They divided the features 

into two datasets: training and testing datasets. They applied the LS_SVM to evaluate 

the extracted features. Chen et al. (2017) proposed a method to detect epileptic seizures 

from the EEG data by using the feature extraction method, which is combining the 

maximum cross correlation and principal component analysis depending on LS-SVM 

classifier.  

On the other hand, a genetic algorithm was used by Guo et al. (2011) to 

automatically extract features from EEG data in order to enhance the classifier’s 

performance, as well as to reduce the feature’s dimensionality. They used two groups 

of epileptic datasets. The first group included: two classes of healthy people and 

epileptic patients. The second group included: three classes of healthy people, inter-

ictal and ictal. The k-nearest neighbour classifier was used in this work to classify the 

two groups. They gained 88.6% and 99.2% accuracy for the first group without the 

genetic algorithm and with the genetic algorithm, respectively.  

Husain and Rao (2014) presented an artificial neural network model using a back-

propagation algorithm for classification of epileptic EEG signals. They decomposed 

the EEG signals into a finite set of band limited signals termed ‘intrinsic mode’ 

functions. They also applied Hilbert transom method on those intrinsic mode functions 

to calculate instantaneous frequencies. An optimum allocation based principal 

component analysis method was proposed by Siuly and Li (2015) to extract key 

features for the classification of multiclass EEG signals from epileptic EEG data. They 

used four different classifiers: LS_SVM; naive bayes classifier; k-nearest neighbour 

algorithm; and linear discriminant analysis to determine which one was the most 

effective. They utilized four different output coding approaches for the multi-class 
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LS_SVM. These were error correcting output codes; minimum output codes; one vs 

one (1vs1); and one vs all.  

To reduce the dimension of extracted features from discrete wavelet transforms, 

Subasi and Gursoy (2010) utilized three-time domain methods: principal components 

analysis; independent components analysis; and linear discriminant analysis. 

1.5.1.2 Analysis using frequency domain methods 

In frequency domain, the processing demonstrates that the number of the EEG signal 

falls within frequency bands through a number of frequencies. The most significant 

analysis methods in frequency domain are spectral estimation methods, which can be 

classified as parametric and non-parametric methods (Kiymik et al., 2004). These 

methods are used to analyse EEG signals with regard to frequency and its bands. 

In 2013, Shen et al. proposed a cascade of wavelet-approximate entropies for 

feature selection. They utilised fisher scores for adaptive feature selection, and support 

vector machine for feature classification to detect epileptic seizures. They applied this 

method to different epileptic EEG recordings: open source EEG data; and clinical EEG 

data. The method obtained overall classification accuracies of 99.97% and 98.73%, 

respectively.   

Chua et al. (2011) gained features from raw EEG recordings by using higher order 

spectra. In order to select the best classifier, they forwarded extracted features into two 

different methods to compare their performances. They used a gaussian mixture model 

and a support vector machine classifier to detect epileptic EEG signals. They achieved 

average accuracies of 93.11% and 92.56% for higher order spectra based on the 

gaussian mixture model classifier and the support vector machine classifier, 

respectively, for the following different EEG classes: normal; pre-ictal; and epileptic. 

A wavelet transform method was used by Gajic et al. (2014) to extract key features. 

They also used scatter matrices to reduce the dimensionality of the features. These 

features were used as the input to a quadratic classifier. The EEG epileptic database 

was classified into: healthy subjects; epileptic subjects during a seizure-free period 

(inter-ictal); and epileptic patients during seizure activity (ictal). They obtained a 99% 

classification accuracy.  
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The discrete wavelet transform (DWT) was employed by Amin et al. (2015) for 

analysing EEG recordings. Two datasets of the raven’s advance progressive metric test 

and the eyes open test were utilized. This research applied different classifiers, 

including the SVM, K-nearest neighbouring, and multi-layer perceptron classifiers. An 

accuracy of above 98% was achieved by using these classifiers with approximation 

(A4) and detail coefficients (D4) from the DWT. 

1.5.1.3 Analysis using time frequency domain methods 

Time frequency methods are applied to analyse EEG signals in both the time and 

frequency domains at the same time. These methods are often used to analyse two 

dimensional or multidimensional signals (Sejdic & Jiang, 2009). The important 

analysis methods in time frequency domain are wavelet transforms, such as continuous 

wavelet transform, discrete wavelet transform, and wavelet packet decomposition. 

Recently, a sequential floating forward selection algorithm was proposed to detect 

epileptic seizures in EEG signals by Choi et al. (2012). They selected the best energy 

as the key features from frequency bands by using the sequential floating forward 

selection algorithm. Moreover, feature extraction was also carried out through an 

empirical mode decomposition. The extracted features were used to feed two 

classifiers, the classification and regression tree and the C4.5 classifiers. The method 

proposed by Martis et al. (2012) obtained an accuracy of 95.33% by using the C4.5 

classifier. Bhattacharyya et al. (2018) presented an empirical wavelet transform to 

analyse the EEG signals and to reveal an area associated to the focal epilepsy. 

In 2015, Gajic et al., extracted different features from time, frequency, time 

frequency domain, and used the non-linear analysis. Those features were obtained 

from sub-bands with good representative characteristics compared with those from the 

whole band. The researchers reduced the dimension of the features by using scatter 

matrices.  

There are several types of wavelet transform approaches, which include wavelet 

transform; discrete wavelet transform; wavelet packet decomposition; and continuous 

wavelet transform, that were applied to determine the epileptic seizures from EEG 

recordings (Sharma et al., 2017; Chen et al., 2017; Alickovic et al., 2018; Abibullaev 

et al., 2010). 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6491894
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6491894
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1.5.1.4 Analysis using traditional nonlinear methods 

Naturally, the EEG recording is a nonlinear signal, which can be processed in an 

efficient way by utilizing nonlinear methods. There are a variety of useful nonlinear 

techniques used to analyse the EEG signals, such as Hurst exponent, Q-factor wavelet 

transform, correlation dimension, entropies and so on. 

In recent times, higher order spectra have been applied by Chua et al. (2007; 2011) 

to identify epileptic seizures from the EEG signals based on SVM and the Gaussian 

mixture model. They achieved 86.89% and 88.78% average classification accuracies 

from SVM and the Gaussian mixture model, respectively. To differentiate between 

normal and epileptic EEG signals, Acharya et al. (2011) applied recurrence plots and 

extracted recurrence quantification analysis. The extracted features were forwarded to 

various classifier models. They reported that the extracted features based on the SVM 

and fuzzy classifiers yielded a 94.4% average efficiency. 

In another study, Martis et al. (2015) applied several nonlinear methods: Hurst 

exponent; Higuchi fractal dimension; largest Lyapunov exponent; and sample entropy 

to extract the most representative features. To evaluate extracted features, they used 

the SVM classifier with diverse kernel functions and other classifiers. Their methods 

based on the SVM with a radial basis function obtained a 98% classification accuracy. 

Acharya et al. (2012) proposed an automatic detection of normal, pre-ictal, and ictal 

conditions by extracting four entropy features, namely: approximate entropy; sample 

entropy; phase entropy 1; and phase entropy 2 from the EEG recordings and the 

extracted features fed seven classifiers. The optimum result they achieved was a 98.1% 

accuracy based on Fuzzy classifier. 

1.5.1.5 Analysis using graph theory approaches 

Graph theory (complex networks) techniques are utilized to analyse EEG data 

depending on the number of EEG channels. These are a relatively new technique 

dealing with multichannel EEGs by mapping each channel as a node in the graph 

methods. Also, studying the graph theory based on single channel EEG signals is an 

important factor, because it applies each feature of EEG as a node in complex 

networks. The most significant analysis techniques on complex networks are visibility 
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graphs, horizontal visibility graphs, and recurrence networks (Zhu et al., 2014; Diykh 

& Li, 2016; Diykh et al., 2017). 

Zhu et al. (2014) suggested a weighted horizontal visibility graph to detect epileptic 

seizures in EEG signals. Their approach was applied to extract two representative 

features, which were mean degree and strength. They obtained 100% accuracy for 

some of the database.  In order to detect epileptic seizures in EEG recordings, Diykh 

et al. (2017) provided an undirected weighted complex network. They employed four 

popular classifiers to evaluate the provided method. Their methodology gained a 98% 

accuracy rate. 

A measurement of statistical mechanics of complex networks from horizontal 

visibility graphs was provided by Artameeyanant et al. (2017). To evaluate the 

performance of the proposed method, three well known classifiers were utilized. In the 

suggested method, the authors achieved an average of 98.83% classification accuracy. 

A new edge weight technique for visibility graphs in complex networks has been 

provided by Supriya et al. (2016) to extract the most powerful features from the EEG 

data. In order to evaluate their proposal, they applied SVM and linear discriminant 

analysis as classifiers. 

Wang et al. (2017) applied three graph theories, namly visibility graphs, horizontal 

visibility graphs and difference visibility graphs in a complex network to analyse and 

classify epileptic EEG databases. The authors extracted new features, such as degree 

distributions, degree entropies and power law degree powers from different visibility 

graphs. They reported that the degree distributions can differentiate between epileptic 

seizures and non-seizures. 

Many approaches for the classification of epileptic EEG signals have been 

developed. This chapter provided some of those techniques. It also reported that some 

researchers obtained 100% accuracy by using different methods. However, those 

methods required a long time to gain results or used only a part of the database in their 

studies. 

1.6 Classification of EEG signals 

Classification is a processing method to group a number of features in different 

categories depending on particular characteristics. It is the most popular way of 
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learning, for instance, allocating materials to solid, liquid and gas or detecting a disease 

based on patient examination and symptoms. In this stage, the input data are classified 

based on certain categories that are determined by particular features called vectors. 

The features in vectors work as a description of instances or classes. In addition, the 

classification aims to allocate a number of labels to the extracted features by observing 

a set of information for a definite issue. Methods that are applied to classify the 

extracted features are called classifiers.  

The classification methods are divided into three types based on the usage of 

features vector labels, such as labelled classification (called supervised classification), 

semi-labelled classification (denoted as semi-supervised classification) and unlabelled 

classification (named as unsupervised classification). For instance, the action of the 

supervised classification requires all input data to be labelled. In the semi-supervised 

classification approach, only a few pieces of input data are labelled, whilst the rest of 

them are not. However, unsupervised classification methods require no labelling at all 

(Huang et al., 2014). 

In this thesis, four techniques have been employed: simple random sampling with 

sequential feature selection; optimum allocation based power spectral density 

estimation; tunable Q-factor wavelet transform; and frequency domain with 

information gain. Also, the five following classification methods: least square support 

vector machine (LS-SVM); quadratic discriminant analysis (QDA); k-nearest 

neighbour (k-NN); support vector machine (SVM); and bagging tree (BT) are used as 

tools to classify the extracted features. 

1.7 Overview and Motivation 

This thesis focuses on developing novel methods for analysing epileptic EEG data. 

EEG signals are obtained using a number of electrodes connected to a computer. 

Recordings epileptic EEG normally take between 20 to 30 minutes (Niedermeyer & 

Silva, 2005). These recorded EEG signals are normally used to distinguish between 

epileptic seizures and other forms of fainting, such as sub-cortical movement disorder 

and psychogenic non-epileptic seizures.  

Epilepsy is a conditional brain’s disorder that impairs patient’ daily live (Kumar et 

al., 2015; McGrogan, 1999). It is characterized by recurrent and sudden incidence of 
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epileptic seizures (Buck et al., 1997). According to a report released by World Health 

Organization (WHO) more than 50 million of the world’s population are affected by 

epilepsy (WHO, 2017).  

Developing new effective techniques to detect the effected brain regions with 

seizures is a crucial step in pre-surgical assessment. EEG signals have been proved to 

be a powerful tool for detecting and diagnosing epilepsy diseases. The main challenge 

of biomedical signal processing research is how to analyse and classify EEG 

recordings accurately to obtain a high level of accuracy. Much research regarding the 

classification of epileptic EEG signals have been designed (Acharya et al., 2012; 

Altunay et al., 2010; Chen et al., 2010; Joshi et al., 2014; Sharma et al., 2014; Sharma 

& Pachori, 2015; Arunkumar et al., 2016; Bajaj et al., 2017; Tzimourta et al., 2018; 

Usman & Hassan, 2018) and most of those research work have limitations. It is 

necessary to develop new techniques to cope these limitations to achieve accurate 

classification results. Thus, a goal of this thesis is to develop EEG classification 

methods to analyse and classify EEG recording signals.  

1.8  Research Problems 

EEGs contain a huge amount of information that exhibit brain activities. Some of the 

recorded information could be irrelevant data that represent as a noise and artifact. 

However, in order to reduce unrelated data, an automatic technique is required to 

extract representative features and classify these features by suitable methods. 

Previously, the analyses and classification approaches of those signals have not been 

well developed. Those procedures are usually evaluated by experts who visually 

examine the EEG records (Kutlu et al., 2009; Subasi & Ercelebi, 2005). However, it is 

often difficult to recognize people who have brain diseases through visual inspection 

of EEG recordings (Siuly & Li, 2015; Siuly & Zhang, 2016). Also, the visual 

inspection of these signals takes a long time and error prone. This inspection method 

is therefore unsuitable to produce credible information. Improved analysis and 

classification of EEG signals automatically will lead to better diagnostic techniques 

for brain related diseases.  

Recently, many approaches have been developed to extract the key features from 

EEG data and classify these features into different EEG categories. From previous 
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studies (Kiymik et al., 2004; Lawhern et al., 2012; Zhu et al., 2013; Siuly & Li, 2014; 

Acharya et al., 2015; Zhang et al., 2016; Diykh & Li, 2016; Satapathy et al., 2017), it 

seems that most of the techniques provided had limitations such as did not get high 

accuracy rates and took more time to perform the required analysis, as well as too 

complicated for practical applications. In addition, some of these methods tested with 

small datasets rather than a huge dataset that made them unsuitable to utilize in real-

time applications.  

To address these limitations, this thesis proposes four techniques for epileptic EEG 

data classification. In addition to classifying the EEG signals effectively, 

representative features need to be extracted and selected carefully, and time 

consumption must be reduced. Hence, the following research questions are identified: 

1. How to enhance the performance of EEG signals classification?

This question can be divided into three sub-questions as seen below: 

a. How to analyse different EEG categories in effective ways?

b. How to reduce the execution time required to classify and analyse EEG

signals?

c. How to reduce the feature space of the EEG recordings?

1.9 Contributions of the Thesis 

Naturally, EEG signals are aperiodic, complex, nonlinear and nonstationary 

(Selesnick, 2011; Siuly et al., 2017). From these characteristics, it is challenging to 

extract representative features from big EEG data sets for classification. This study 

focuses on the analysis of the EEG signals, extracting the most representative features, 

reducing irrelevant data, more efficient use of time, and investigating the most suitable 

classification methods, using various machine learning classification methods. The 

developed methods in this thesis were published in various journals, about the analysis 

and classification of the EEG signals. Those research work were reviewed and 

summarised in terms of their precision of classification. The outcomes of this thesis 

are: 

1. Simple random sampling (SRS) combined with a sequential feature selection (SFS)

technique was presented to classify epileptic EEG data. Firstly, a SRS technique
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was applied to extract the most representative features from the raw EEG data. The 

SRS was used to divide the EEG recording into two stages. In stage one, ten samples 

were chosen randomly from each set of epileptic EEG signals. In the next stage, 

five subsamples were selected randomly from each sample of the first stage. 

However, a sample size of each stage was determined through using a sample size 

calculator. At the end of the SRS, nine statistical features were extract from each 

subsample. Secondly, the SFS algorithm was used to reduce the dimensionality of 

the EEG data by selecting the discriminative features. Finally, a least square support 

vector machine (LS_SVM) classifier was applied to classify the extracted features. 

The SRS_SFS method was executed to classify the epileptic EEG signals. The 

results show that this method has the potential to classify the EEG data. Details of 

this approach are given in Chapter 2. The content of this chapter was published by 

the journal of Brain Informatics. 

2. Optimum allocation (OA) based power spectral density estimation was developed

to detect epileptic seizures from EEG recordings as can be seen in Chapter 3. The

OA technique was introduced in two levels to determine representative sample

points from the EEG recordings. In the first level, the sample size of each EEG class

was defined by applying a sample size calculator. In the second level, the OA

technique was applied to segment each EEG class and then choose the sample

points based on sample size determination. Afterwards, two power spectral density

estimation methods (periodogram and autoregressive) were used to reduce the

dimensions of sample points and extract representative features from each OA

sample segment. Three popular machine learning methods: support vector machine

(SVM), quadratic discriminant analysis, and k-nearest neighbor (k-NN) were

employed in order to evaluate the performance of the proposed method. The

experimental results show that the proposed scheme with SVM classifier achieves

high accuracy compared with recent studies. As a result, this method has the most

potential to help experts to analyse and classify quantities of EEG data. The content

of this chapter was published by the journal of IET Signal Processing.

3. A tunable Q-factor wavelet transform based algorithm was developed for epileptic

EEG features extraction in order to classify multichannel EEG signals. This

framework depends on two phases to analyse large amounts of EEG recordings. In

the first phase, the EEG signals were decomposed into a number of sub-bands by

using TQWT method. In the second phase, each sub-band was partitioned into n
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windows and then ten statistical features were extracted from each window. Finally, 

the extracted features were forwarded to the bagging tree, using k-NN, and SVM 

as classifiers to evaluate the performance of the proposed feature extraction 

technique. The experimental results demonstrated that the proposed feature 

extraction algorithm with the k-NN classifier produces the best performance, when 

compared to the other two classifiers. The details were given in Chapter 4, which 

was published by the journal of Neuroscience Methods. 

4. Finally, a frequency domain implemented with Information Gain (InfoGain)

method to assist with the extraction of the most important features and detect

epileptic seizures in EEG signals, was proposed. In this study, fast Fourier transform

(FFT) and discrete wavelet transform (DWT) were applied individually to analyse

EEG recording signals into frequency bands. A segmentation model was used to

segment each band into k windows and extract a number of statistical features from

these windows. Next, to select the most important feature, the InfoGain technique

was employed. Finally, in order to evaluate the performance of this system, a

LS_SVM classifier was used. The results showed that FFT combined with InfoGain

yields the best performance when the LS-SVM classifier was utilized. The details

of this technique are provided in Chapter 5, the contents which were published by

the journal of Soft Computing.

1.10 Connections Between Chapters 

This thesis focuses on analysing epileptic EEG signals to extract and select the most 

representative features and also to reduce the dimensions of the EEG recordings in 

different domains. For analysis and data extraction, this study used a SRS with SFS to 

classify the EEG data in time domain (Chapter 2). Furthermore, it introduced a novel 

classification method entitled optimum allocation-based power spectral density 

estimation to classify the EEG recordings in time frequency domain (Chapter 3). A 

Tunable Q-factor wavelet transform based algorithm is developed for feature 

extraction in nonlinear method (Chapter 4). A system that extracts and selects the most 

relevant data and ignores irrelevant data, whilst detecting simultaneously epileptic 

seizures by blending frequency domain with the InfoGain approach, is provided in 

frequency domain (Chapter 5).  
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1.11 Structure of the Thesis 

This thesis consists of six chapters and each chapter provides important information 

on our study. The rest of the thesis is structured as follows: 

Chapter 2 presents a new SRS combined with SFS algorithm for the classification of 

epileptic EEG signals. A least square support vector machine (LS_SVM) used in this 

study as a classifier method. 

Chapter 3 integrates the optimum allocation technique and the power spectral density 

estimation for EEG classification. This chapter also investigates a suitable machine 

learning classifier by using three popular classification methods: SVM; quadratic 

discriminant analysis; and k-NN. This chapter provides a comparative study between 

the proposed technique and other existing methods in terms of accuracy.  

Chapter 4 introduces a Tunable Q-factor wavelet transform for the differentiation of 

EEG categories. This algorithm decomposes the EEG signals into a number of sub-

bands for feature extraction, and bagging tree, k-NN, and SVM are used as classifiers 

to evaluate the proposed algorithm.  

Chapter 5 provides a frequency domain blending with information gain that helps to 

detect epileptic seizures. In this chapter, two different frequency methods, FFT and 

DWT, are applied separately to decompose the EEG signals into frequency bands. In 

order to select the most important features from these bands, we used the information 

gain method. This chapter also utilizes the LS_SVM classifier to evaluate the 

proposed scheme.  

Chapter 6 presents a summary and the findings of this study. Possible directions for 

future work are also discussed in this chapter. 

 Appendices A-D provide simulation code for our proposed methods, described in 
Chapters 2, 3, 4 and 5. 
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CHAPTER 2 

CLASSIFICATION OF EPILEPTIC EEG SIGNALS 

BASED ON SIMPLE RANDOM SAMPLING AND 

SEQUENTIAL FEATURE SELECTION 

This chapter is an exact copy of a published article in Brain Informatics (2016). It 

describes a new method which extracts and selects features from multi-channel EEG 

signals. This research focuses on three main points. Firstly, simple random sampling 

(SRS) technique is used to extract features from the time domain of EEG signals. 

Secondly, the sequential feature selection (SFS) algorithm is applied to select the key 

features and to reduce the dimensionality of the data. Finally, the selected features are 

forwarded to a least square support vector machine (LS_SVM) classifier to classify 

EEG signals. The LS_SVM classifier classified the features that are extracted and 

selected from the SRS and the SFS.  

In addition, appendix A provides MATLAB code for the proposed technique. 

2 
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Abstract Electroencephalogram (EEG) signals are used

broadly in the medical fields. The main applications of

EEG signals are the diagnosis and treatment of diseases

such as epilepsy, Alzheimer, sleep problems and so on.

This paper presents a new method which extracts and

selects features from multi-channel EEG signals. This

research focuses on three main points. Firstly, simple

random sampling (SRS) technique is used to extract fea-

tures from the time domain of EEG signals. Secondly, the

sequential feature selection (SFS) algorithm is applied to

select the key features and to reduce the dimensionality of

the data. Finally, the selected features are forwarded to a

least square support vector machine (LS_SVM) classifier to

classify the EEG signals. The LS_SVM classifier classified

the features which are extracted and selected from the SRS

and the SFS. The experimental results show that the

method achieves 99.90, 99.80 and 100 % for classification

accuracy, sensitivity and specificity, respectively.
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1 Introduction

Epilepsy is a disorder which affects the human brain and

hugely impairs patients’ daily lives. It is characterized by

recurrent and sudden incidence of epileptic seizures [1].

According to an estimation of the World Health Organi-

zation, more than 50 million of population are affected by

epilepsy [2, 3]. Approximately, almost 1 % population

have the neurological disorders [4–6]. It leads to numerous

research works to identify epilepsy and related treatments.

Electroencephalogram (EEG) signals have been proved as

a powerful tool for detecting and diagnosing different

neurological diseases. EEG signals are often used to detect

and classify epilepsy [7]. It is often difficult for the experts

to recognize the people who have a brain disorder through

visual inspection of EEG signals [8]. In addition, visual

inspection for discriminating EEG signals is a time con-

suming, error prone, costly process and not sufficient

enough for reliable information. The analysis and classifi-

cation of EEG signals can lead to better diagnostic tech-

niques for brain-related disorders. It is thus important to

develop better EEG classification methods.

Many researchers developed new techniques to extract

the significant information from EEG signals. The infor-

mation is used as the input to different classifiers. There are

many approaches used to extract the key features as well as

to further select features. Most of these fall under five

broad categories: time domain, frequency domain, time–

frequency domain, traditional non-linear methods and

graph theory approaches [9].
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One of the methods used in this paper for extracting

epileptic EEG data is sample random sampling (SRS)

technique. Researchers often applied the SRS in time

domain. In this technique, each sample of the population

has the same chance to be selected as a subject. The

complete process of sampling is done in a single step, with

each subject can be selected independently from the other

samples of the population [10]. Then, we forwarded all

these samples to the sequential feature selection (SFS)

method for selecting the best features.

This study uses the selected features as the input for a

classifier. One of the most popular classifiers, the least square

support vector machines (LS_SVMs) [11], is used to classify

EEGdata. This technique isused to identify theEEGdata from

healthy people and epileptic patients for epileptic seizures.

A lot of approaches for EEG signals classification have

been developed [12]. There were reported a diverse of

classification precisions for epileptic EEG data. Brief dis-

cussions of the previous research are provided below.

Gajic et al. [13] extracted different features from time,

frequency, time–frequency domain and non-linear analysis.

These features were obtained from sub-bands with good

representative characteristics. The researchers reduced the

dimension of the features by using scatter matrices. This

method yielded 98.7 % accuracy.

An optimum allocation-based principal component

analysis method was proposed by Siuly and Li [8] to

extract key features for the classification of multi-class

EEG signals from epileptic EEG data. They used four

different classifiers which were LS_SVM, naive Bayes

classifier, k-nearest neighbour (KNN) algorithm and linear

discriminant analysis, to find out which one was the best

classifier. They used four different output coding approa-

ches for the multi-class LS_SVM. These were error cor-

recting output codes, minimum output codes, one versus

one (1vs1) and one versus all. That method achieved a

100 % accuracy with LS_SVM_1vs1.

Feature extraction was carried out through an empirical

mode decomposition. The extracted features were for-

warded to two classifiers, the classification and regression

tree and the C4.5 classifiers. The method using the C4.5

classifier suggested by Martis et al. [14] obtained good

experimental results of 95.33, 98 and 97 % for accuracy,

sensitivity and specificity, respectively.

Chua et al. [15] gained features from raw EEG record-

ings by using higher order spectra. They used a Gaussian

mixture model (GMM) and a SVM classifiers to detect

epileptic EEG signals. They achieved average accuracies

of 93.11 and 92.56 % for the HOS based GMM classifier

and the SVM classifier, respectively, for different EEG

classes, such as normal, pre-ictal and epileptic EEGs.

On the other hand, a genetic algorithm (GA) was used by

Guo et al. [16] to automatically extract features from EEG

data in order to enhance the classifier’s performance, as well

as, to reduce the feature’s dimensionality. They used two

groups of epileptic datasets. The first group was two classes

of healthy people and epileptic patients. The second group

was three classes of healthy people, inter-ictal and ictal. The

KNN classifier was used in the work to classify the two

groups. They gained 88.6 and 99.2 % accuracies for the first

group without GA and with GA, respectively. They obtained

of a 67.2 % accuracy without GA, and 93.5 % within GA,

respectively, for the second group.

Ocak decomposed EEG signals, which were recorded

from normal subjects and epileptic patients, by using discrete

wavelet transform [17]. An approximate entropy (ApEn) was

extracted from the approximation and the detail coefficients.

The methodology achieved more than 96 % accuracy.

Srinivasan et al. used the ApEn to extract features and

an artificial neural network classifier to identify epileptic

EEG signals [18]. That approach achieved a high overall

accuracy of 100 %.

Srinivasan et al. also proposed a special type of recur-

rent neural network, Elman network [19]. They used the

feature extracted in time domain and frequency domain as

the input to the proposed classifier. The Elman network

method yielded a 99.6 % accuracy with a single input

feature.

A wavelet transform method was used by Gajic et al.

[20] to extract the key features. They also used scatter

matrices to reduce the dimensionality of the features. These

features were used as the input to a quadratic classifier. The

EEG epileptic database was classified into healthy subjects,

epileptic subjects during a seizure-free (inter-ictal) and

epileptic patients during the seizure activity (ictal). They

obtained a 99 % classification accuracy.

Shen et al. [12] proposed a cascade of wavelet-ApEn for

feature selection. They used Fisher scores for adaptive

feature selection, and SVM for feature classification to

detect epileptic seizures. They applied the method to dif-

ferent epileptic EEG recordings: open source EEG data and

clinical EEG data. The method obtained the overall clas-

sification accuracies of 99.97 and 98.73 %, respectively.

A sampling technique (ST) based on a LS_SVM was

proposed by Siuly et al. [21]. Firstly, they used the ST to

extract features from two classes of, normal persons with

eyes open and epileptic patients during a seizure activity.

They applied the LS_SVM to the extracted features. The

total classification accuracy by that approach for both the

training and testing datasets was 80.31 and 80.05 %,

respectively.

Husain and Rao [22] presented an artificial neural net-

work model using back propagation algorithm for the

classification of epileptic EEG signals. They decomposed

the EEG signals into a finite set of band limited signals

termed as intrinsic mode functions. They also applied
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Hilbert transform on these intrinsic mode functions to

calculate instantaneous frequencies. They achieved a

99.80 % overall classification accuracy.

Rückstieß et al. [23] performed a SFS method to select

the most representative features at each time step. Each

successive features depended on the previous features. All

the features were put into one vector and were forwarded to

a classifier. This approach was applied for handwritten

digits classification and a medical diabetes prediction task.

A sequential floating forward selection (SFFS) algorithm

was proposed to detect epileptic seizures in EEG signals by

Choi et al. [24]. They selected the most energy power as the

features from frequency bands by using the SFFS algorithm.

The total accuracy obtained by that method was 97.2 %.

In this study, we developed a new method combining the

SRS with the SFS to acquire the best features set, and then

we use the features as the input of the LS_SVM classifier for

the EEG classification. All the techniques are discussed in

Sects. 3 and 4. The conclusion is presented in Sect. 5.

2 Experimental data

The data used in this study are open source EEG recordings

and are publicly available1 [25]. The database includes five

sets of EEG recordings (sets A–E), with each containing

100 single-channel EEG signals of 23.6 s from five sepa-

rate classes. References [13, 26] presented all details of

these datasets from set A to E. This study selected set

A which was taken from surface EEG recordings of five

healthy people with eye open, and set E which was taken

from EEG records of five pre-surgical epileptic patients

during epileptic seizure activity.

3 Methodology

The big EEG datasets cause the curse of dimensionality

and make it difficult to estimate the accuracy of classifi-

cation from a limited number of samples. This study

develops a new structure for classifying epileptic EEG

signals, as presented in Fig. 1. This work investigates and

explores whether the SRS combined with SFS give the best

features for epileptic EEG signals classification.

3.1 Simple random sampling (SRS) technique

SRS technique is a popular type of random or prospect

sampling [21]. In this technique, each sample of the pop-

ulation has the same chance of being selected as a subject.

We put the number of population in a sample size calcu-

lator of the ‘‘Creative Research System’’ (available in

sample size calculator online), to determine the sample size

for both samples and subsamples. In this work, the dataset

used are set A and set E (repeated). Each set has 100 data

files, and each file has 4097 observations.

This research uses the sample size calculator to find the

sample size needed as well as to find the subsample size.

The sizes of the samples and the subsamples in this work

are 3288 and 2746, respectively. The sizes were selected

because they reflect the limitation of time to select samples

and subsamples. Firstly, we randomly select 10 samples

from size 3288 for each dataset (set A or E). Secondly, 5

subsamples are also random chosen from each 10 random

samples, with a size of 2746. In each step, this study takes

into account a 99–100 % confidence interval and a 99 %

confidence level. In the last step, nine statistical features

are extracted from each subsample. These features are

{maximum value (Max), minimum value (Min), mean

value, median value, mode, first quartile (Xq1), second

quartile (Xq2), range value and standard deviation (Std)}.

Figure 2 shows how samples, subsamples and features are

taken from each class. We used MATLAB software

package version 8.4, R2014b, for the experiments.

3.2 Sequential feature selection (SFS) algorithms

The SFS is used to reduce the dimensionality of the dataset

selected randomly from the SRS. This method is used to

generate fewer numbers of uncorrelated variables which

are utilized as the features for the better classification of

EEG signals. The aim of the presented sequential selection

algorithm is to decrease the feature space, D = x1, x2,…,xn,

to a subset of features, D - n. It aims at enhancing or

optimizing the computational execution of the classifier, as

well as avoiding the curse of dimensionality [27]. This

method is used to select a sufficiently reduced subset from

the feature space D without affecting the performance of

the classifier. In order to choose a suitable feature subset

size k, namely, a criterion function typically estimates the

recognition rate of the classifier [28]. The SFS algorithm

starts with an empty set S, and progressively fills the set S

through adding features selected by the criterion function

[29, 30]. It is searching on the feature space from bottom to

up. Figure 3 illustrates how the SFS picks features from the

original data. The SFS is applied to select the best features

EEG 
Signals 

SRS 
Technique 

SFS 
Algorithm 

Classification by 
LS_SVM

C

Fig. 1 The structure of the proposed system

1 http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.

html.
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from the statistical features. The criterion is empirically

chosen based on the experimental results. In this study,

several experiments are made to define the best criterion.

The criterion value is calculated based on the statistical

relations among the features. Firstly, the Max value is

chosen as the criterion as shown in Eq. (1).

d ¼ q
Xn

i¼1

fs2ðiÞ i ¼ 1; 2; . . .; n; ð1Þ

where d refers to the criterion, q is one of the nine statis-

tical features, n is the number of the features and fs2 is the

statistical feature set. Secondly, all the features are selected

in the same way for Min, Mean, Mode and Std, in order to

find the best features by the SFS algorithm. The best fea-

tures (denoted as SFS_feature) are selected based on

Eqs. (2) and (3) as below:

d� fs2; ð2Þ
d[ fs2: ð3Þ

3.3 The feature set

After decreasing the dimensions of the features through the

SFS, the new feature set is forwarded to the LS_SVM

classifier. In this study, we obtain a feature set that has

2000 data points of 35 dimensions. These features are

divided into two groups, which are the training set and the

testing set. The training set is directed to train a classifier.

The testing set is employed to evaluate the performance of

the methodology and it is utilized as the input of the

classifier.

3.4 Least square support vector machines

In this subsection, we briefly review some basic work on

LS_SVMs for classification. LS_SVMs are proposed by

Suykens and Vandewalle. LS_SVMs are the least square

versions of SVMs, which are a set of related supervised

learning methods that analyse data and recognize patterns.

Moreover, they are used for classification and regression

analysis [31]. In this research, the LS_SVM classifier with

a radial basis function kernel is used for the classification

of epileptic EEG signals. These classifiers can avoid the

problem of convex quadratic programming from the clas-

sical SVMs by using a set of linear equations [8]. In this

paper, the classification is performed by LS_SVMlab

(version 1.8) toolbox in MATLAB2 [32].

Chose 10 samples randomly from each dataset (Set A and Set E)  

Sta�s�cal features are extracted from each subsample  

Max       Min      Mean      Median      Mode          Xq1      Xq2     Range    Std 

Chose 5 subsamples randomly from each sample  

EEG signals 

Set E 

…………………… a100           e001 ……………..….. e100  

Set A

a001

Sample 1 …………………………………..……………………. Sample 10  

Subsample 1 …………….. Subsample 5                  Subsample 1 …………….. Subsample 5 

Fig. 2 The SRS technique to

select samples, subsamples and

statistical features

The 
Extracted 

Features by 
the SRS 

The SFS 
Technique

Criterion 
Function

Performance 
Improved 

SFS_feature set Yes 

No 

h SF

Fig. 3 Features selection from the extracted features by the SRS

2 http://www.esat.kuleuven.ac.be/sista/lssvmlab/.
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3.5 Performance measures

This subsection presents assessing how the proposed

method performs. The assessments include accuracy (also

known as recognition rate), sensitivity (or recall) and

specificity. The accuracy of a classifier is the percentage of

the test set which is correctly classified by the classifier.

The sensitivity is referred to the true positive rate which is

the proportion of the positive set correctly identified.

The specificity is the true negative average which is the

proportion of the negative set correctly identified. The

following Eqs. (4)–(6) provide the definitions for the terms

[33]:

Accuracy ¼ TPþ TN

Pþ N
; ð4Þ

Sensitivity ¼ TP

P
; ð5Þ

Specificity ¼ TN

N
; ð6Þ

where TP is the number of true positives, TN is the number

of true negatives and P and N are the positive and negative

samples, respectively.

4 Results and discussions

In this study, we involved two datasets: sets A and E as

mentioned in Sect. 2. SRS technique was used to extract

features from the datasets. This technique selected features

randomly by choosing 10 samples from each dataset (sets

A and E). A five subsamples were selected from each

sample. From each subsample, nine statistical features,

such as minimum, maximum, mean, median, mode, first

quartile, third quartile, inter-quartile range and Std were

extracted as aforementioned in Sect. 3.1.

A set of features obtained from the SRS included

2000 9 45 dimensions. These features were used in two

different ways. Firstly, the statistical features were directly

fed to the LS_SVM classifier and yielded the results, as

shown in Table 1. Secondly, the SFS based on the criterion

was employed to select the key features from the extracted

features as mentioned in Sect. 3.2. As shown in the results,

the good results of the best features are presented in

Table 2. In Table 2, the good results are obtained by using

the SRS algorithm and the SFS technique with the

LS_SVM classifier depending on the best criterion chosen.

Furthermore, the LS_SVM has two important parameters,

which are c and r2 which should be suitably selected for

achieving a desirable performance too. The LS_SVM was

affected by the value of these two parameters. This study

trained the LS_SVM with different groups of the parame-

ters c and r2 to obtain best results. In this proposed method,

we conducted with one group of the five EEG datasets and

gained the best classification result with sets A and E when

c = 10 and r2 = 1 for the two methods applied in this

paper. The results of the proposed method were compared

with the results that were obtained from the SRS method

and the LS_SVM classifier. The experimental results

showed that our approach yielded 99.90 % classification

accuracy for the epileptic EEG data. Table 3 gives a better

view for the results by the two different classification

methods. On the other hand, in this study, the evaluation of

time complexity between the presented approach and the

SRS was conducted.

The SRS_SFS_LS_SVM method took 0.16 s to classify

the extracted features in Sect. 3.2. While the

SRS_LS_SVM tackled the same features with 1.52 s as

shown in Table 3. The performance of the proposed

method is also compared with two existing methods in the

literature. For fair comparison, the same dataset was used

in comparison. The results show that the proposed method

outperforms over the other two existing methods: a Huang–

Hilbert transform and an artificial neural network model by

Husain and Rao [22] and a ST and LS_SVM methods by

Table 1 Classification accuracy for epileptic EEG signals (sets

A and E)

Statistical parameters Results (%)

Accuracy 100

Sensitivity 100

Specificity 100

Table 2 Experimental results

using different statistic features

as the criterion

Choose criterion Accuracy (%) Sensitivity (%) Specificity (%)

Mean C fs2 (SFS_feature) 99.90 99.80 100.00

Mean B fs2 (SFS_feature) 98.90 98.00 99.80

Max B fs2 (SFS_feature) 97.20 100.00 94.40

Min C fs2 (SFS_feature) 99.10 99.20 99.00

Mode C fs2 (SFS_feature) 97.70 95.40 100.00

Median B fs2 (SFS_feature) 95.30 92.80 97.80

Std C fs2 (SFS_feature) 95.60 91.20 100.00
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Siuly et al. [21]. The performance comparison of the pro-

posed method with the two reported methods to classify

sets A and E is shown in Table 4. Husain and Rao in 2014

applied a Huang–Hilbert transform and an artificial neural

network model on sets A and E (the same datasets used in

this paper). They achieved a 99.80 % classification accu-

racy. While Siuly et al. in 2009 obtained 80.05 % classi-

fication accuracy when they used a ST and the LS_SVM

methods to classify the EEG signals for the same datasets.

Moreover, the proposed method gains a 99.90 % classifi-

cation accuracy for the same group of datasets. The results

shown that the proposed technique in this paper has the

potential to classify the EEG signals from healthy people

and epileptic patients using the extracted and selected

features from the SRS and SFS techniques.

5 Conclusions

This research concentrates on two classes of EEG signals

from healthy people and epileptic patients. The study

presents a SRS_SFS method to extract and select the key

features for classifying EEG signals into two classes. The

LS_SVM classifier is used to classify two-category EEG

data after the feature extraction and selection. This method

yields the results of 99.90, 99.80 and 100 % for classifi-

cation accuracy, sensitivity and specificity, respectively. In

addition, the proposed method is faster than the SRS

technique. It means that the SRS_SFS is useful for

extracting and selecting the EEG features. To sum up, the

proposed method is very efficient for analysing and clas-

sifying epileptic EEG signals. It will be also useful for the

classification of other biomedical data.
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2.2 Chapter Summary 

Al Ghayab et al. (2016) concentrates on two classes of EEG signals from healthy 

people and epileptic patients. A SRS_SFS method was presented to extract and select 

the key features for classifying EEG signals into two classes. In order to classify these 

classes, the LS_SVM classifier was applied. Al Ghayab et al. (2016) reported that, the 

SRS_SFS is useful for extracting and selecting the EEG features. The proposed method 

is very efficacious for analysing and classifying two classes of epileptic EEG signals. 

However, using only two classes of epileptic EEG recording was not good enough to 

classify the epileptic EEG data with high accuracy. Investigating from other technique, 

such as an optimum allocation (OA) and power spectrum density estimation, improved 

the accuracy of epileptic EEG classification with all datasets. The next chapter will be 

discussing EEG classification of whole epileptic datasets based on OA and power 

spectrum density estimation. 
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CHAPTER 3 

EPLIEPTIC EEG SINGAL CLASSIFICATION USING 
OPTIMUM ALLOCATION BASED POWER SPECTRAL 

DENSITY ESTIMATION 

In chapter 2, the SRS and SFS technique denoted as SRS_SFS based on the LS_SVM 

classifier is developed to classify the epilepsy patients from healthy people. The 

experimental results show that the SRS_SFS technique works well to classify the 

epileptic seizures in EEG signals. However, the SRS_SFS method is applied on two 

sets of the EEG time series, which are set A and set E rather than using whole database 

of EEGs and also the SRS method does not use all sample points to extract the 

representative features. 

This chapter is an exact copy of a published paper in IET Signal processing (2018). 

It evolves a novel approach blending optimum allocation (OA) technique and spectral 

density estimation to analyse and classify epileptic EEG signals. This study employs 

the OA to determine representative sample points from the original EEG data and then 

applies periodogram (PD), autoregressive (AR), and the mixture of PD and AR to 

extract the discriminative features from each OA sample group. The obtained feature 

sets are evaluated by three popular machine learning methods: support vector machine 

(SVM), quadratic discriminant analysis (QDA), and k-nearest neighbor (k-NN). 

Several output coding approaches of the SVM classifier are tested for selecting the 

best feature sets. This scheme was implemented on a benchmark epileptic EEG 

database for evaluation and also compared with existing methods.  

Further, appendix B provides Simulation code for the proposed method. 

3 
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Abstract: This study proposes a novel approach blending optimum allocation (OA) technique and spectral density estimation to
analyse and classify epileptic electroencephalogram (EEG) signals. This study employs the OA to determine representative
sample points from the original EEG data and then applies periodogram (PD), autoregressive (AR), and the mixture of PD and
AR to extract the discriminative features from each OA sample group. The obtained feature sets are evaluated by three popular
machine learning methods: support vector machine (SVM), quadratic discriminant analysis (QDA), and k-nearest neighbour (k-
NN). Several output coding approaches of the SVM classifier are tested for selecting the best feature sets. This scheme was
implemented on a benchmark epileptic EEG database for evaluation and also compared with existing methods. The
experimental results show that the OA_AR feature set yields better performances by the SVM with an overall accuracy of 100%,
and outperforms the state-of-the-art works with a 14.1% improvement. Thus, the findings of this study prove that the proposed
OA-based AR scheme has significant potential to extract features from EEG signals. The proposed method will assist experts to
automatically analyse a large volume of EEG data and benefit epilepsy research.

1 Introduction
The human brain is made up of a huge number of brain cells that
are connected to each other. These links help transform the tiny
electric signals generated by their activities and any defect in these
connections can lead to a disorder in the brain.
Electroencephalograms (EEGs) are the recordings of tiny electrical
signals from the electrodes placed on the scalp. The EEG signals
are affected by the neural activities. One of the abnormal activities
is caused by epilepsy. Epilepsy is a neurological disease that affects
the human brain. It causes seizures of involuntary activity that may
involve parts or all of the body. Once the seizures appear, they
impair patients’ daily lives [1]. It is easy to treat the epileptic
seizures with inexpensive medication when diagnosed early.
However, it is not efficient to identify epileptic EEGs through
visual examination by a specialist [2]. In order to detect epileptic
seizures, a variety of methods have been developed to analyse and
classify the EEG signals. Those methods can be grouped based on
feature extraction. There are methods from time domain, frequency
domain, time–frequency domain, traditional non-linear method,
and graph theory [3].

One of the methods in time domain is the principal component
analysis (PCA). This approach is used to reduce the large number
of data and select the most important components as the features.
The researchers in [4–6] applied the PCA to classify the epileptic
EEG signals.

In terms of frequency domain, power spectral density (PSD)
estimation methods are widely used to extract features in EEG
signals. These methods can be grouped into categories of non-
parametric approaches and parametric approaches. Periodogram
(PD) is a non-parametric method and used to determine the
estimate of the PSD [7]. An autoregressive (AR) model is a
parametric approach [8]. So far much research work has been done
by using the AR method for classifying EEG data [7, 9–11].

A wavelet transform is often employed to extract the features,
the wavelet coefficients, in EEG signals. These coefficients
represent EEG signals in time and frequency domain. A variety of

wavelet transforms have used the time–frequency domain to
analyse and classify the EEG signals [11–13].

Complex networks based on graph theory were developed to
classify EEG signals, as reported by [14]. To reduce the
dimensionality of the EEGs, a statistical model was employed in
that study. The statistical features were mapped into undirected
complex networks to extract the representative features. The
attributes of the structural networks were extracted and fed to
different classifiers. Zhu et al. [15] used a horizontal visibility
graph to estimate alcoholic EEG signals. A statistical method was
employed to select the best channels and detect the abnormal EEG
signals. The selected channels were forwarded to two different
classifiers [support vector machine (SVM), and k-nearest
neighbour (k-NN)].

Nicolaou and Georgiou [16] provided a technique to detect
epileptic seizures automatically. This technique employed a
permutation entropy method to extract the key features from
epileptic EEG recordings. Those features were utilised as the input
to a SVM classifier. An average of 86.10% accuracy was achieved
with the SVM and a permutation entropy. Song and Zhang [17]
detected epileptic seizures using EEG signals based on a discrete
wavelet transform. This approach decomposed EEG signals into
five EEG sub-bands and extracted non-linear features, which are
permutation entropy, sample entropy, and Hurst exponent. These
features were extracted and used as the features set. An extreme
learning machine was applied to evaluate the extracted non-linear
features. The approach attained an 85.9% classification accuracy.
In order to enhance the accuracy, they developed a genetic
algorithm technique to select the most significant features from the
extracted features. This method obtained a 94.2% classification
accuracy with the extreme learning machine.

Samiee et al. [18] used the conception of an adaptive and
localised time–frequency for the epileptic seizure detection. A
rational discrete short-time Fourier transform was implemented to
extract the features from multichannel EEG signals. The extracted
features were forwarded to a multilayer perceptron classifier. A
98.1% overall classification accuracy was achieved in that study.
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In 2016, Alcin et al. [19] applied a time–frequency image based
on a grey-level co-occurrence matrix and filter vector method to
extract the key features for epileptic EEG classification. The
obtained features were utilised as the input into an ELM classifier.
A 96.4% overall classification accuracy was achieved. Al Ghayab
et al. [20] employed a simple random sampling technique
combined with a sequential feature selection method to represent
different combinations of epileptic EEG features. The extracted
features were evaluated by applying a LS-SVM classifier. This
technique gained a 99.9% accuracy from the most discriminative
epileptic EEG features. A complete ensemble empirical mode
decomposition with noise was developed by Hassan and Subasi
[21]. From this model, six spectral moment features were extracted
and forwarded to a classifier. The researchers applied a linear
programming boosting classifier to perform classification and the
method achieved 99.2 and 100% accuracy for E versus (A, B, C,
D) and E versus A cases, respectively. In the same year, Djemili et
al. [22] proposed an empirical mode decomposition method to
extract features from the epileptic EEG data. Those features were
fed to a multilayer perceptron neural network classifier and yielded
100 and 97.7% classification rates between A versus E and D
versus E classes, respectively.

More recently, Patidar and Panigrahi [23] presented a new
technique to discriminate the seizure-free segments from the
epileptic seizure EEG signals by using the tunable Q-factor wavelet
transform and Kraskov entropy. The approach achieved 97.75%
accuracy with a least square SVM (LS-SVM) classifier. Satapathy
et al. [24] used an integration of the best attributes of the artificial
Bee colony and a radial basis function network in order to analyse
EEG signals, and to classify the epileptic seizures. A 98% of
average accuracy was gained with the method and an inverse
multi-quadric kernel. Bhati et al. [25] designed a time–frequency
localised three-band wavelet filter bank to classify the epileptic
EEG signals based on a multi-layer perceptron neural network. The
designed method was yielded 99.33% classification rate. Also, two
techniques were used to extract the key features, which were local
neighbour descriptive pattern and one-dimensional local gradient
pattern by Jaiswal and Banka [26]. In order to select the most
accurate classifier, the researchers applied different classifiers, such
as k-NN, the SVM, the decision tree, and an artificial neural
network. The best accuracy gained was 99.82 and 99.8% with the
two techniques and the artificial neural network, respectively.

From our team's work, Zhu et al. [27] proposed a multi-scale K-
means approach to detect the epileptic seizures from EEG signals.
In order to find these seizures, the researchers extracted six key
features by using sample entropy method and yielded 100, 99, and
99.1% classification accuracies for three cases (A versus E, B
versus E, and AB versus CDE), respectively. In 2014, Zhu et al.
[28] provided a fast weighted horizontal visibility graph to
differentiate the epileptic patients from healthy people. They
obtained 100, 93, and 95.4% accuracies for A versus E, D versus E,
and ABCD versus E, respectively.

In the same year (2014), a combination of simple random
sampling technique with J48 algorithm was implemented and
achieved 100, 95.6, and 97.3% classification accuracy for three
group: A versus E, B versus E, and C versus E, respectively, by
Wang et al. [29].

Also, in 2014, Siuly and Li [30] introduced an optimum
allocation (OA) technique to select the most represented samples
from all EEG samples. A multiclass LS-SVM classifier was
employed to classify the features by the OA technique. The study
investigated four output coding techniques for the multiclass LS-
SVM. The techniques were one versus one (1vs1), one versus all
(1vsA), minimum output codes, and error correcting output codes
being applied with the multiclass LS-SVM for classifying the
multichannel epileptic EEG signals. An average of 99.9%
classification accuracy was obtained in that study. Moreover, a
clustering technique based on a LS-SVM was proposed by Siuly et
al. [31]. A 99.9% classification accuracy was yielded by using
clustering technique.

In this paper, an automatic feature extraction scheme is
proposed based on OA and PSD estimate for extracting
discriminative patterns from epileptic EEG data. First, the OA

technique is used in two stages: (i) to determine sample size; and
(ii) to partition data. The OA technique is used to reduce the huge
number of EEG signals and to extract the most relevant features.
Second, the extracted features are mapped into PSD estimation
methods to reduce the high dimensionality. These methods are the
PD and the AR. The obtained features from the proposed scheme
are denoted as OA_PD, OA_AR, and OA_PD_AR sets. Then, the
feature sets are fed to three popular classifiers, which are a SVM,
quadratic discriminant analysis (QDA), and k-NN. For further
investigation several output coding schemes for the SVM classifier,
including 1vs1, all pairs (AP), 1vsA, binary complete (BC), ternary
complete (TC), ordinal (OR), sparse random (SR), and dense
random (DR), are tested for selecting the best parameters.

From the above discussion of the existing methods, there are
several challenges in the epileptic EEG classification techniques.
One of the challenges is their limited effectiveness. For example,
some techniques do not work effectively for big data. Second, all
the methods that applied the SVM classifier did not apply any of
the eight output coding techniques: namely 1vs1, AP, 1vsA, BC,
TC, OR, SR, and DR. In this research, the OA combined with a
PSD estimate method is proposed to classify EEG signals.

The organisation of the rest of the paper is as follows. In
Section 2, the data used in this study are described. In Section 3,
the methodology of the proposed method is illustrated. The
performance measurements are introduced in Section 4. Section 5
discusses the experimental results. Finally, the conclusion is
presented in Section 6.

2 Epileptic EEG data
In this study, popular datasets have been used which were utilised
in many research studies [16, 18, 20, 30, 32]. The datasets are open
source and available in [33]. They were collected by Bonn
University, Germany. The datasets include five classes of EEG
recordings and are noted as: class A and class B from five healthy
volunteers with eyes open and closed, respectively, while classes
C, D, and E from another five epileptic patients. Classes C and D
were recorded from five epileptic subjects during inter-ictal time
periods (free of seizures). Class E was taken from five patients
through ictal duration (seizures activity). Each class has 100
channels of EEG signals with each having 4096 data points. The
EEG time duration for each class was 23.6 s, as explained in [34].

3 Proposed methodology
This study proposes a dynamic method to classify EEG epileptic
data. Fig. 1 clarifies the structure of the proposed method. The
sample size is calculated to determine the size of the selected
samples (data points) in each class. This study divides EEG signals
into k segments for making the signal quasi-stationary. The OA
technique is applied to reduce the big data of EEG signals and
select the most significant samples in the set of OA_sample. This
study also investigates whether the PSD estimation methods are
suitable for the OA technique for reducing the dimensionality of
epileptic EEG signals. 

Based on a PD and an AR, these estimation methods of PSD are
conducted to generate three distinct feature sets which are denoted
as OA_PD, OA_AR, and OA_PD_AR. The features sets with
various classifiers are extracted and tested. The classifiers are a
SVM, QDA, and k-NN, which are popular and widely used. All
details of the proposed scheme are explained in the following
sections.

3.1 Feature extraction

EEG signals normally contain a huge number of data points.
Feature extraction techniques are applied to reduce the data size,
and to achieve better performance. In this framework, the feature
extraction stage includes several phases in this paper. Those phases
are explained in the following subsections. The diagram of the
methodology is shown in Fig. 1.

3.1.1 Sample size calculation (SSC): In this study, we need to
calculate the sample size from each class of the EEG data (classes
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A–E of EEG recordings as mentioned in Section 2). The samples
are a part of a statistical population whose properties are studied to
obtain the information about the whole data. In this study, a
number of samples are chosen from each class to extract key
features. Thus, the sample size is the number of the key features
that are included in the sample. It is determined by using sample
size calculator software [35]. The formula of the SSC is presented
below [6, 36]:

SSC = Z2 × ep × 1 − ep
∝2 (1)

where SSC is the calculated sample size; Z refers to the value of
confidence level (Z-score); ep is the estimated proportion of a
feature in the whole EEG data (if ep is not known the biggest
sample size needs to be created). The value of ep is set at 0.5; ∝ is
the confidence interval (margin of error).

In order to select the appropriate Z-score and ∝ when the
confidence level is 99%, the ∝= 0.01 and ∝ is split evenly into two
parts as shown in Fig. 2. From Fig. 2 the calculated Z-score is (Z = 
2.58) [37]. Based on (1), the SSC is calculated for the whole
dataset for the five epileptic EEG classes. This research used (2) to
calculate the SSC for each class [6]

SSCoC = SSC
1 + (SSC − 1)/C (2)

where SSCoC is the calculated sample size for each class (refer to
Section 3.1.1 for details); C is the size of an EEG class (C = 4097).
From (2), we obtain the sample size of each class as SSCoC = 
3288. 

3.1.2 EEG segmentation: EEG signals are non-stationary, having
a random distribution or pattern that can be analysed statistically
but cannot be predicted accurately [30]. To make a signal more
stable for obtaining better classification results, the signal was split
into smaller segments, with a short time period.

The signal becomes quasi-stationary within the small period of
time. In this study, the EEG recordings were divided into a number
of small units called segments (S1, S2, …, Sk) as shown in Fig. 3. K
segments are chosen experimentally in this paper. The formula of
the k-segment determination is presented below:

K = floor DS
P P = S1, S2, …, Sn (3)

where K is the number of segments, DS is the data size in each
class, and P is the number of data points per segment. In this
scheme, each class of the EEG signals is partitioned into four k-
segments and each segment has 5.9 s, when the data size of each
segment is S1 = 1024, S2 = 1024, S3 = 1024, and S4 = 1025,
respectively. This technique has an ability to analyse the EEG
signals in real time. As the proposed algorithm splits the EEG
signals into smaller segments with a shorter time period, that
makes it easier to apply in real time. 

3.1.3 Optimum allocation: The OA is an approach used in
stratified sampling to allocate the numbers of sample units to
different segments to provide the best accuracy [17]. In this
framework, the OA is applied to randomly select the number of
samples from different segments for each class as appeared in
Fig. 3. This technique can predict the number of samples from each
class by using (4) [6], based on the SSC as mentioned in Section
3.1.1

Fig. 1  Block diagram of the proposed scheme for the automatic epileptic EEG signals classification

Fig. 2  Curve of the standard normal distribution to calculate Z-score of confidence level 99%
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SSC(i) = Si ∑ j = 1
p Ei j

2

∑i = 1
k Si ∑ j = 1

p Ei j
2

× SSCoC (4)

where SSC(i) refers to the number of samples selected from each
segment, Si is the data size of each segment, Eij

2 is the variance of
the jth channel of the ith segment, SSCoC is the sample size of
each epileptic EEG class calculated by (2). The sum of SSC(i)
from each segment of the EEG class is 3288 samples.

In this schema, the EEG data of each class contains 4096
observations and 100 channels. Each class was divided into four k
segments (k = 4) (refer to Section 3.1.2 for details) and p is the
number of channels in each EEG class (p = 100). The size of the
four segments of S1, S2, S3, and S4 are 1024, 1024, 1024, and 1025,
respectively. The OA technique is used to choose the number of
samples from each segment of that epileptic EEG class.

3.1.4 Power spectral density estimate method: In this study,
two estimate approaches of PSD are utilised. One of these methods
is PD. The PD is basically equal to the Fourier transform of the
biased autocovariance, which is a non-parametric method. This
method can detect the EEG power density of the frequency
components in a signal. The formula of the PD is presented in the
following equation [7]:

PD f = Δt
N ∑

n = 0

N − 1
xn e−i2π f nΔt

2

, − 1/2Δt < f ≤ 1/2Δt (5)

where PD( f ) is the estimated value (PD), Δt is the sampling
interval, N is a number of samples in a signal, xn denotes the signal,
and f is the sampling frequency. In this study, after the OA
technique is applied to select the most discriminative sample from

each segment, the PD is used to extract the power density values
from the selected samples as in Fig. 3.

Also an AR method is used in this investigation. The AR model
is a linear prediction method to predict an output of a signal based
on the previous outputs. The AR method is a spectral density
estimation method, which is a parametric method for the PSD
estimation [8]. The AR is used to determine the features of an EEG
signal in this paper. The order p of the AR is presented below [9]:

ARt = − ∑
m = 1

p
αmAR t − m + ϵt (6)

where ARt is a time series to be modelled, p refers to the number of
time points in the past, αm is modelling coefficients, and ϵt is a
white noise (error term) which is selected best on the previous
points, respectively. From the data p + 2 parameters, which are the
coefficients, expected sample value, and variance of error term, are
estimated in model 1. There are a set of equations, which are used
to resolve the estimation problem of these parameters. The AR
power spectral estimation of data from the order p is given in the
following equation [7]:

p f = σp
2Δt / 1 + ∑

m = 1

p
αpmexp − j2π f mΔt

2

(7)

where ap0 = 1. In order to estimate the AR parameters, only p
number of αpm and σp

2 parameters are appropriate AR coefficients,
which can be used to identify the amplitude rates, and can be
calculated using the Burg method. The Burg algorithm, which is
the most popular algorithm for estimating parameters, has been
applied in this research [7, 38–40]. The initial values of the

Fig. 3  Extracted feature sets based on the OA and PSD methods. SSC, sample size calculation; Sk, the number of segments; OAk, optimum allocation in k
segment; PSDk, power spectral density methods (PD, AR) in k segments
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algorithm for computing the parameters of the AR for order p are
chosen as appeared in formulas (8)–(14)

α11 = −Rxx(1)
Rxx(0) (8)

σ1
2 = 1 − α11

2 R11 0 (9)

For k = 2, 3, 4…

αkk = − Rxx k + ∑
m = 1

k − 1
αk − 1, mRxx k − m /σk − 1

2 (10)

αki = αk − 1, i + αkkαk − 1, k − i, i = 1, 2, 3, …, k − 1 (11)

σk
2 = 1 − αkk

2 σk − 1
2 (12)

where Rxx(k) refers to the estimation of the eigen relationship
function of the process. When the processes are finished

αi = αpi, i = 1, 2, 3, …, p (13)

σ2 = σp
2 (14)

Equations (8)–(14) are used to determine the parameters of the AR
method. In this method, it is very important to select the order of
the model. If the order of the AR method is low, their specific peak
does not exist. If the order of this model is very high, misleading
and wrong peaks would occur and spectra degenerate. In order to
select the order of the AR method, the Akaike information
criterion, which is a well-known criterion for selecting the model
order [39], is used in this study. The order p is selected as 7 [7] as
shown in Table 1. 

3.2 Classification methods

After the features extraction, three different feature sets (OA_PD,
OA_AR, and OA_PD_AR) were extracted by applying the OA
technique and PSD estimation methods and forwarded into
different classifiers as shown in Fig. 3. In this study, the SVM,
QDA, and KNN classifiers were employed to select a suitable
classifier for the obtained feature sets. All details of these
classifiers are explained below.

3.2.1 Support vector machine: The SVM was developed by
Cortes and Vapnik [41] and has become one of the most
widespread classification methods. Generally, the SVM is used to
separate the extracted feature sets into two classes through finding
an optimal hyperplane. A study by Dagher [42] presented a
quadratic kernel-free non-linear SVM which was used in this
research. The quadratic function was utilised to split the feature
sets non-linearly as can be found in [42]. Furthermore, various
output codes are examined to solve the multiclass categorisation
problem [43]. In this paper, eight output coding approaches: 1vs1,
AP, 1vsA, BC, TC, OR, SR, and DR, are used to reformulate the
problem into a set of binary classification problems. The best
output coding is selected for the extracted feature sets.

3.2.2 Quadratic discriminant analysis: The QDA is a common
supervised classification method [44] and is closely related to a
linear discriminant analysis. The QDA presumes the covariance

matrix can be different for each class and uses a simple max gate
function as a classification rule [45]. The equation of the QDA is
given below [46, 47]:

f i X = − 1
2 X − μi

TCovi
−1 X − μi + log πi (15)

where X is a member of class i, μ refers to the mean value of each
class, T is a transpose operator, and Covi is a covariance matrix for
the ith class.

3.2.3 K-nearest neighbours: The k-NN is one of the most
commonly used classification algorithms as it is among the
simplest ones of all machine learning algorithms. The k-NN is a
non-parametric method. This algorithm classifies the extracted key
features based on the nearest training features [48]. It aims to
classify an unlabelled input to its k-NN within the training set [35].
One important parameter (k) in the k-NN classifier should be
chosen correctly. In this study, the number of the neighbours k is
selected as k = 1. For details of this algorithm readers may refer to
[6, 32, 38, 48–50].

4 Classification performance measurements
There are several types of classification measurement methods.
One of these assessments is the n-fold cross-validation method [6].
In this study, a five-fold cross-validation is used as the training and
testing processes to achieve the assessment of the classification
execution. As can be seen in Table 2, this work obtains a total of
10,260, 2580, and 12,840 feature sets from OA_PD, OA_AR, and
OA_PD_AR, respectively. The cross-validation technique divides
the input datasets into five parts. From each partition, one part is
used as a testing set for the classification and the remaining parts
(four folds) are utilised as classifier training. This process is
iterated five times, with each time a different fold being used as the
testing set. The training parameters are obtained from the training
process, which are used for the testing process to evaluate the
algorithm. In each iteration, the training set consists of 8208, 2064,
and 10,272 features from the total of feature sets, respectively.
Whereas, the testing set consists of 2052, 516, and 2568 features
from the same feature sets, respectively, as can be seen in Table 3. 

In this procedure, the five classification accuracies can be
obtained from each testing set. In the end, the average
classification accuracy is obtained as the final performance
measurement. Table 4 shows the results from each testing set by
the cross-validation technique and their overall classification
accuracy. 

The performance of this proposed method is also evaluated by
using different statistical methods. One of these measurements is
the accuracy or the recognition rate, which is the percentage of the
correctly classified ones by a classifier for the testing data. The
second assessment is sensitivity, which is the proportion of the
correctly identified positive set. The other statistical method is
specificity, which is the percentage of the correctly identified
negative set [20].

5 Experimental results and discussions
In this part of study, the experimental results were yielded based on
the epileptic EEG signals described in Section 2. The datasets
include five classes (class A, B, C, D, or E). The OA technique was
used to extract the most discriminative samples based on the
following three steps.

Table 1 Results of the model selection of p for AR technique
Accuracy, %

P order p = 6 p = 7 p = 8
Classifier OA_AR OA_AR OA_AR
SVM 100 100 100
QDA 99.92 99.94 99.84
k-NN 100 100 99.96
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First, the sample size calculator is used to determine the
required sample size. Second, in order to make the EEG signals
quasi-stationary, this study divided the signal of each class into
smaller segments. From each segment, the representative samples
were extracted by using the OA technique based on the determined
sample size and named as OA_sample set. The OA_sample for
each class of EEG signals contains 3288 observations with 100
channels. While the whole OA_sample set, which is obtained from
five classes of the epileptic EEG signals, consists of 16,440
observations of 100 channels. The features went through two PSD
methods (PD and AR) for reducing the dimensionality of the
extracted features from each segment in an EEG class. The
obtained features from the two methods are denoted as OA_PD,
OA_AR, and OA_PD_AR sets as seen in Table 2. The OA_PD set
was yielded when using the OA technique and the PD estimation
method on each segment, respectively. On the other hand, the
OA_AR set was extracted by employing the OA and AR
techniques on each segment. While, the OA_PD_AR set was

obtained by implementing the OA technique and the two PSD
estimation methods (PD and AR) together as the features extraction
technique on each segment.

Fig. 4 shows an example of the PD and AR estimates for a
single-channel EEG. As shown in Table 4, the highest accuracies
are obtained by using the SVM classifier with 1vs1 and TC output
coding for three feature sets, which are OA_PD, OA_AR, and
OA_PD_AR (complex feature set). The accuracies were 99.8, 100,
and 99.9% for the OA_PD set, OA_AR set, and OA_PD_AR set,
respectively, by applying the SVM classifier with two output
codings of 1vs1 and TC. 

Further, the second highest accuracies for the three feature sets
were obtained through the implementation of the SVM with the
AP, and the SVM with the SR gained the third highest
classification accuracies. Also, the SVM with other output coding
of 1vsA, BC, OR, and DR yielded a 97.7, 99.6, 99.1, and 99.7%
overall classification accuracies, respectively, for the OA_PD set.

Table 2 Total number of the extracted features from each class of epileptic EEG signals
Methods Dataset

Set A dimension Set B dimension Set C dimension Set D dimension Set E dimension Total dimension
raw datasets 4097 × 100 4097 × 100 4097 × 100 4097 × 100 4097 × 100 20,485 × 100
OA 3288 × 100 3288 × 100 3288 × 100 3288 × 100 3288 × 100 16,440 × 100
OA_PD 2052 × 100 2052 × 100 2052 × 100 2052 × 100 2052 × 100 10,260 × 100
OA_AR 516 × 100 516 × 100 516 × 100 516 × 100 516 × 100 2580 × 100
OA_PD_AR 2568 × 100 2568 × 100 2568 × 100 2568 × 100 2568 × 100 12,840 × 100

Table 3 Number of the training and testing sets are used in this study
Methods Total Training Testing
OA_PD 10,260 8208 2052
OA_AR 2580 2064 516
OA_PD_AR 12,840 10,272 2568

Table 4 Accuracies of the three features sets by using different classifiers
Classifiers Feature sets

Overall accuracy of OA_PD, % Overall accuracy of OA_AR, % Overall accuracy of OA_PD_AR, %
SVM (1vs1) 99.8 100 99.9
SVM (AP) 99.8 99.9 99.8
SVM (1vsA) 97.7 99.9 98.2
SVM (BC) 99.6 99.9 99.7
SVM (TC) 99.8 100 99.9
SVM (OR) 99.1 99.9 99.3
SVM (SR) 99.6 100 99.8
SVM (DR) 99.7 99.9 99.7
QDA 98.5 99.9 99.2
k-NN 96.2 100 97.4

Fig. 4  Example of PD and AR for a single-channel EEG
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In the SVM with the same output techniques, an accuracy of 99.9%
was achieved for the OA_AR set as presented in Table 4.

On the other hand, with the OA_PD_AR set, the SVM obtained
a 99.2, 99.7, 99.3, and 99.7% accuracy with the same output
coding, respectively. Although the k-NN classifier only achieved
the lowest classification accuracy of 96.2 and 97.4% for the two
features sets of the OA_PD set and the OA_PD_AR, respectively,
it achieved 100% classification accuracy for the OA_AR set.

In order to see more details about the fold cross-validation,
Table 5 illustrates the obtained accuracy from each testing fold of
the cross-validation technique and overall classification accuracy
for the proposed approach with three different classifiers, such as
SVM, QDA, and k-NN. Clearly, from Table 5, the SVM and k-NN
classifiers achieved 100% classification rates for each testing fold
by the OA_AR scheme. 

In addition, Table 6 shows the results of sensitivity, specificity,
overall accuracy, and the overall error. Those results were obtained
and compared with the proposed classifiers of the SVM with 1vs1
and TC output techniques, QDA, and k-NN classifiers. As
appeared in Table 6, the best performances with the lowest errors
were obtained by the SVM classifier for different feature sets. The
QDA classifier yielded the second highest accuracies of 98.5 and
99.2% for the OA_PD set and OA_PD_AR, respectively. For
OA_AR set, the QDA achieved a 99.9% overall accuracy and 0.1%
overall error. 

In the feature sets of the OA_PD set and the OA_PD_AR set,
the lowest results with a high overall error were from the k-NN
classifier. Obviously, from Tables 4–6, the performance of the
SVM classifier is better than the performances of the QDA and k-
NN classifiers.

In addition, to investigate a suitable selection of order p, this
research implemented the AR algorithm in different order of p as
shown in Table 1. Table 1 shows that, a high classification
accuracy was achieved when the p value was equal to 7.

Figs. 5a–c present a clear picture of individual performance for
the three extracted features from each class. The figures show the
classification accuracies from the three different classifiers for each
EEG class. The error bars in Fig. 5 represent the standard errors,
which indicate the error rates in the performances by the classifiers.
As can be seen from Fig. 5, the accuracies from the SVM classifier
are significantly better than the accuracy from the other two
classifiers with the extracted features from each class. 

In addition, this study investigates the effectiveness of the used
classifiers with the extracted feature sets. Table 7 illustrates a
comparison of the overall accuracy among the classifiers using the
proposed scheme and some existing methods from the related work
with the same epileptic EEG database. From Table 7, Nicolaou and
Georgiou [16] developed an epileptic detection method based on
permutation entropy and SVM. Overall, they gained an average of
classification accuracy of 86.1%. However, our proposed method
achieved higher accuracy than those by Nicolaou and Georgiou
[16]. Song and Zhang [17] employed wavelet transform pattern
recognition and extreme learning machine and same method with
genetic algorithm. These two methods achieved 85.9 and 94.2%
average accuracies, respectively. Based on the obtained results, the
proposed method outperformed Song and Zhang [17]. Another
study was made by Samiee et al. [18] in which rational discrete
short-time Fourier transform and multilayer perceptron classifier
were used. The authors reported a 98.3% classification accuracy
for A, B, C, Dversus E case. The obtained results in our technique
were higher than those by Samiee et al.[18]. 

Alcin et al. [19] used time–frequency image based on filter
vector and extreme learning machine to detect epileptic seizures.
An overall classification accuracy of 96.4% for all sets was
yielded. Their result was lower than the proposed scheme. Al
Ghayab et al. [20] classified two classes (A versus E) using simple
random sampling technique and sequential feature selection
method with LS-SVM. They achieved 99.9% accuracy rate for
class A versus class E. Their result was lower than the proposed
method. Hassan and Subasi [21] obtained 100% accuracy for only
A versus E sets by using complete ensemble empirical mode
decomposition and adaptive noise with a linear programming
boosting compared with our method, which used all datasets and
yielded 100% accuracy. Although the achieved results by the
authors of [22, 27, 28] were 100% accuracies, they used part of
datasets that was A group versus E group. The detection
performance of the proposed technique was also higher than those
by the authors of [24–26, 30, 31].

The existing methods were conducted with two sets and
achieved an average of accuracy between 99 and 100% compared
with the proposed method which was tested using the whole
datasets. The highest overall classification accuracies are
highlighted in bold font. The best performance was obtained from
the OA technique combined with the AR estimation method as

Table 5 Accuracies from each testing set by the cross-validation technique and the average accuracies
Classifiers Methods Accuracy, % Average accuracy, %

Fold1 Fold2 Fold3 Fold4 Fold5
SVM OA_PD 100 99.7 100 99.8 99.7 99.84

OA_AR 100 100 100 100 100 100
OA_PD_AR 100 99.7 99.9 99.8 100 99.88

QDA OA_PD 99.6 97.4 95.6 99.8 100 98.48
OA_AR 100 100 100 99.5 100 99.9

OA_PD_AR 99.4 98.8 97.9 99.8 100 99.18
k-NN OA_PD 98.9 89.2 94.6 98.5 99.8 96.2

OA_AR 100 100 100 100 100 100
OA_PD_AR 99.2 92.4 96.3 99.1 100 97.4

Table 6 Results of sensitivity, specificity, overall accuracy, and overall error for each of the proposed classifiers with the
extracted features sets
Classifier Feature sets Sensitivity, % Specificity, % Overall accuracy, % Overall error, %
SVM OA_PD 98.89 99.98 99.8 0.2

OA_AR 100 100 100 0.0
OA_PD_AR 99.23 99.98 99.9 0.1

QDA OA_PD 93.10 99.94 98.5 1.5
OA_AR 99.61 100 99.9 0.1

OA_PD_AR 96.53 99.89 99.2 0.8
k-NN OA_PD 84.35 99.82 96.2 3.8

OA_AR 100 100 100 0.0
OA_PD_AR 88.95 99.91 97.4 2.6
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well as SVM classifier, compared with the results obtained by the
authors of [16–31].

Even though the extracted features by using the OA combined
with the mentioned spectral methods were scored the second
highest accuracy with a 99.9%, it is considered acceptable in the
research of epileptic seizures detection. The results affirmed that
the proposed method has achieved a more accurate classification
rate than the other existing methods which were conducted with the
same datasets.

The advantages of this method are: (i) most of the research that
applied the SVM classifier did not apply the eight output coding
techniques, which are: 1vs1, AP, 1vsA, BC, TC, OR, SR, and DR.
The proposed method tested these output coding techniques to
select the best parameters of the SVM. (ii) The outcomes of this
research can help physicians and doctors to better diagnose brain
disorders. The main advantage of this method is: our proposed
OA_AR technique can reduce big size EEG data into a small set
selection the best representative data points from every
segmentation of a dataset considering the variability of the
observations. Due to the reduction of data, this approach can
handle massive size of data with less computation cost compared to
the existing methods. One of the limitations of the proposed
method is that the delay time could be increased when it
implements with a real-time application. However, the proposed
method was implemented with off-line datasets collected by Bonn
University, Germany.

6 Conclusions
In this study, a novel method was developed to classify the
epileptic EEG signals. It presented an OA technique combined
with two PSD estimation methods: PD and AR, for extracting and

reducing the high dimensionality of EEG recordings. The feature
sets were gained and denoted as OA_PD, OA_AR, and
OA_PD_AR sets from the OA technique with the PD estimation
method, OA technique with AR method, and OA technique with
two PSD estimation methods (PD and AR) together as a features
extraction technique, respectively, on each segment of each class
from the epileptic EEG data. This paper also investigated the best
matching classifier for the extracted features sets by implementing
three well-known classifiers: SVM, QDA, and k-NN. The
experimental results showed that the OA_AR set achieved better
performances with the SVM classifier with 1v1 and TC output
coding for the epileptic EEG signals, with an overall classification
accuracy of 100%. On the other hand, the OA_PD_AR set yielded
a 99.9% overall accuracy, which is the second highest accuracy
with the SVM.

The proposed algorithm was compared with six existing
methods. It was proved that the proposed scheme outperformed the
other methods in terms of the accuracy. Also, the proposed method
had a possibility to analyse other EEG signals, which can lead to
assist physicians to diagnose and treat brain disorders. As a follow-
on study, the proposed method will be implemented in real time
and applied to other EEG recordings, such as the EEGs from
Alzheimer, sleeping disorder, and alcoholic subjects.
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3.2 Chapter Summary 

Al Ghayab et al. (2018) developed a novel method to classify the epileptic EEG 

signals. They presented an optimum allocation (OA) technique combined with two 

power spectral density estimation methods: periodogram and autoregressive, for 

extracting and reducing the large amounts of EEG recordings. The extracted features 

were forwarded to three well known classifiers: SVM, QDA, and k-NN. The 

experimental results showed that the proposed scheme achieved better performances 

with the SVM classifier based on (1v1) and (TC) output coding for the epileptic EEG 

signals.  

The proposed algorithm was compared with six existing methods. It was proved 

that the proposed scheme outperformed the other methods in terms of the accuracy. 

Furthermore, the proposed method had a possibility to analyse other EEG signals, 

which can lead to assist physicians to diagnose and treat brain disorders.  
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CHAPTER 4 

A FEATURE EXTRACTION TECHNIQUE BASED ON 
TUNABLE Q-FACTOR WT FOR BRAIN SIGNAL 

CLASSIFICATION 

In chapter 2, the SRS technique combined with the SFS algorithm was presented to 

classify two sets of epileptic EEG data. In chapter 3, the optimum allocation (OA) 

based power spectral density estimation was presented to analyse and classify all sets 

of epileptic EEG data.  

In this chapter, the details presented here is an exact copy of a published paper in 

journal of Neuroscience Methods (2018). It explains a new scheme based on a Tunable 

Q-factor wavelet transform (TQWT) and a statistical approach to analyse various EEG

recordings. In the proposed method. Firstly, EEG signals are decomposed into different

sub-bands using the TQWT method, which is parameterized by its Q-factor and

redundancy. This method depends on the resonance of a signal, instead of frequency

or scaling as in Fourier and wavelet transforms. Secondly, using a statistical method

on the sub-bands to divide each sub-band into n windows, and then extract several

statistical features from each window. Finally, the extracted features are forwarded to

a bagging tree (BT), k nearest neighbor (k-NN), and support vector machine (SVM)

as classifiers to evaluate the performance of the proposed feature extraction technique.

The proposed method is tested on two different EEG databases: Bonn University

database and Born University database. The experimental results demonstrate that the

proposed feature extraction algorithm with the k-NN classifier produces the best

performance compared with the other two classifiers.

Moreover, Appendix C provides MATLAB code for the proposed scheme. 
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A B S T R A C T

Background: Electroencephalogram (EEG) signals are important for brain health monitoring applications.
Characteristics of EEG signals are complex, being non-stationarity, aperiodic and nonlinear in nature. EEG
signals are a combination of sustained oscillation and non-oscillation transients that are challenging to deal with
using linear approaches.
Method: This research proposes a new scheme based on a tunable Q-factor wavelet transform (TQWT) and a

statistical approach to analyse various EEG recordings. Firstly, the proposed method decompose EEG signals into
different sub-bands using the TQWT method, which is parameterized by its Q-factor and redundancy. This
method depends on the resonance of a signal, instead of frequency or scaling as in the Fourier and wavelet
transforms. Secondly, using a statistical feature extraction on the sub-bands to divide each sub-band into n
windows, and then extract several statistical features from each window. Finally, the extracted features are
forwarded to a bagging tree (BT), k nearest neighbor (k-NN), and support vector machine (SVM) as classifiers to
evaluate the performance of the proposed feature extraction technique.
Results: The proposed method is tested on two different EEG databases: Bonn University database and Born

University database. The experimental results demonstrate that the proposed feature extraction algorithm with
thek-NN classifier produces the best performance compared with the other two classifiers.
Comparison with existing methods: In order to further evaluate the performances, the proposed scheme is

compared with the other existing methods in terms of accuracy. The results prove that the proposed TQWT based
feature extraction method has great potential to extract discriminative information from brain signals.
Conclusion: The outcomes of the proposed technique can assist doctors and other health experts to identify

diversified EEG categories.

1. Introduction

The human brain comprises billions of neurons that are connected
with each other by sending tiny electrical signals. Electroencephalogram
(EEG) signals are recorded by using electrodes placed on the scalp. EEG
signals indicate the electrical activity of the brain, that is highly random in
nature and contain useful information about the brain state to study brain
function and neurological disorders (Siuly and Li, 2014; Siuly and Zhang,
2016; Siuly et al., 2013, 2011; Zhu et al., 2012). Analysing brain signals is
a very challenging task due to their oscillatory and non-oscillatory tran-
sients, nonlinear, aperiodic, and non-stationary dynamic behaviours
(Selesnick, 2011a,b; Siuly et al., 2017). It is challenging to extract the most

representative information from raw EEG data for classification. Two types
of feature extraction methods, linear and nonlinear (Zhu et al., 2014; Siuly
et al., 2010), are generally used for EEG classification.

A number of methods are used to identify various types of brain dis-
orders by EEG analysis. The most commonly used nonlinear classification
methods often employ Fourier transform (FT), wavelet transform (WT), or
Lyapunov exponent. FT and WT, and other techniques are applied for
detecting brain disorders because EEGs contain a combination of sustained
oscillation and non-oscillation transients (Selesnick, 2011a, 2011b; Siuly
et al., 2017; Zhu et al., 2014; Gajic et al., 2014). The Fourier transform is
used to transfer EEG signals from time series into frequency domain in
which the most discriminative features are extracted (Kohtoh et al., 2008;
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Polat and Güneş, 2007; Murugappan et al., 2014). In order to extract the
best features from different bands of wavelets, a wavelet transform is also
applied to EEG data (Subasi et al., 2005; Zhang et al., 2016; Lekshmi et al.,
2014; Gajic et al., 2014). Wavelet transform is an improved version of
Fourier transform that can capture transient features and localize them in
both time and frequency domains. A Lyapunov exponent is applied to
extract most significant features from EEG data (Pritchard et al., 1995;
Adeli et al., 2007; Hosseinifard et al., 2013). To explore the representative
samples, an empirical mode decomposition is also used (Acharya et al.,
2015; Hassan and Subasi, 2016; Hassan and Haque, 2015; Sharma et al.,
2014; Pachori et al., 2015; Alickovic et al., 2018). Several researchers have
used entropies from EEG signals as features (Zhang et al., 2016; Pachori
and Patidar, 2014; Broberg and Lewis, 2014; Jie et al., 2014; Xiang et al.,
2015). However, most of the nonlinear approaches are slow in their im-
plementation, which makes them difficult to use in real time (Diykh et al.,
2016; Zhu et al., 2014).

Most recently, the tunable Q-factor WT (TQWT) has become popular in
brain signal processing (Patidar et al., 2017; Patidar and Panigrahi, 2017;
Patidar et al., 2015; Hassan et al., 2016) and in the other fields (Soleymani
et al., 2018; Selesnick, 2011a, 2011b) as a flexible and discrete wavelet
transform that is applicable particularly for analysing oscillatory signals
(Hassan et al., 2016). Most wavelet transforms are incapable of tuning their
Q-factors. The TQWT is able to adjust its Q-factor and has thus emerged as a
powerful tool for oscillatory signals analysis. By changing Q value, the
wavelet transform can better reflect the signal (Selesnick, 2011a, 2011b). In
addition, the TQWT method is developed to process the signals through
employing ideal reconstruction oversampled filter banks that is developed
in expression of repetition two channel filter banks, with real-valued scaling
factors. However, it depends on the resonance (its oversampling rate) of a
signal, instead of the frequency, while the band pass filter depends on the
frequency of a signal. This study presents a nonlinear algorithm that is
sufficiently accurate to analyse and classify EEG signals. This procedure is
developed based on both the TQWT and a statistical feature extraction
method. Three popular classifiers: bagging trees (BT), k-nearest neighbor (k-
NN), and support vector machine (SVM), are employed to evaluate the
performance of the proposed scheme. This approach is explained in detail in
Sections 2.2. Two epileptic databases, which are Bonn University EEG Da-
tabase and Bern University EEG Database (focal and non-focal EEG signals),
are used to test the effectiveness of the proposed methodology in this study.

The rest of the paper is organized as follows. Section 2 provides the
description of the experimental data used in this study and the proposed
framework. Section 3 presents the experimental results with discussions.
Section 4 provides a comparative report with state-of-the-art methods.
Finally, Section 5 provides the concluding remarks about this study.

2. Materials and methods

2.1. Experimental data

In order to test the efficiency of the proposed method, this study
uses two epileptic databases: a set of epileptic signals collected by Bonn
University denoted as Bonn University EEG database and a set of focal
and non-focal epileptic data collected by Bern University denoted as
Born University EEG database as described below:

2.1.1. Bonn university EEG database
This database is publicly available, which is widely used by re-

searchers (Siuly and Li, 2014; Zhu et al., 2014; Al Ghayab et al., 2016;
Supriya et al., 2016; Al Ghayab et al., 2017; Tzimourta et al., 2018),
and was collected by Bonn University, Germany. It contains five dif-
ferent EEG data sets (A–E). From five healthy people, sets A and B were
recorded with eyes opened and closed, respectively. Sets C–E were
obtained from different five patients. Sets C and D were recorded from
epileptic patients free of seizures. Set E was taken from epileptic sub-
jects during active seizures. The EEG recordings were digitized at
173.61 Hz with 12-bit resolution. Consequently, each dataset (A, B, C, D
or E) contained 100 single-channels, 4096 sample length, with each set
having 23.6 s of time duration to avoid continuous multichannel EEG
recordings after visual inspection for artifacts, (e.g., due to muscle ac-
tivity or eye movements) (Andrzejak et al., 2001).

2.1.2. Bern university EEG database
The second datasets utilized in this study are the Bern Barcelona

database that were collected by Bern University and this database is
publicly available (The Bern University EEG database, 2012; Andrzejak
et al., 2012). Multichannel EEG signals were recorded using the 10/20
system and the sampling rate of the acquisition is 512 Hz. It contains
two different EEG signals, focal and non-focal and denoted F and N,
respectively. Those datasets were recorded from five patients who were
suffering from temporal lobe EEG epilepsy. Each recording contains
10,240 observations and 3750 pairs of focal (F) and non-focal (N) EEG
data. In this study, to evaluate the proposed method, full size of this
database, 3750 pairs (F and N simultaneously) of EEG recording, re-
spectively, with 15,000 sets was utilized. This study processed the full
size of data pairs and formed 7500 sets from each group of F and N,
respectively. Each set having 20 s of time duration.

2.2. Methodology

A detailed description of the proposed scheme is presented in this
section. The structure of the proposed TQWT based feature extraction
method is shown in Fig. 1. The proposed method and three popular
classifiers (k-NN, BT, and SVM) are implemented to evaluate the clas-
sification process.

2.2.1. Feature extraction
Generally, a huge number of data points are included in the EEG re-

cordings. Redundant data slow down the classification process and often
cause inaccurate results. To reduce the data dimensionality and for a
better performance, feature extraction techniques are often used in this
stage. Fig. 2 illustrates the feature extraction process used in this study.

2.2.1.1. Tunable Q-factor WT (TQWT). The TQWT is a newly developed
signal decomposition technique. It is an analogous form of the rational-
dilation wavelet transform (Bayram and Selesnick, 2009; Selesnick,
2011a, 2011b), and it has been used to analyse EEG signals (Patidar
et al., 2017; Bhattacharyya et al., 2017; Al Ghayab et al., 2017). The
TQWT depends on changeable parameters: Q-factor (Q), redundancy
(R), and decomposition level (J). For the TQWT parameters, Q is often
setting at a high value because EEG signals have more oscillations. The

Fig. 1. Block diagram of the proposed scheme for the analysis and classification of EEGs.
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TQWT decomposes EEG signals into a number of decomposition levels
called sub-bands (SB) using the input parameters (Q, R, and J).

The input signal, Sig[m], in each level is decomposed into a low pass
sub-band (Lsig) and a high pass sub-band (Hsig) with sampling fre-
quencies of αfs and βfs, respectively, where α and β are low pass scaling
and high pass scaling factors, respectively, and fs refers to the sampling
rate of input Sig[m]. For this process, a filter bank with two channels is
repeatedly utilized and has employed this filter to Lsig by TQWT. Lsig is
generated by applying a low pass filter h0(ω) with α. Also, Hsig is
generated from a high pass filter h1(ω) with β at one level of decom-
posing. Hsig is further decomposed into its Lsig and Hsig at jth level as
shown in Fig. 3. In this research, Eqs. (1) and (2) are used to calculate
h0(ω) and h1(ω) (Patidar and Panigrahi, 2017; Patidar et al., 2015;
Hassan et al., 2016; Selesnick, 2011a, 2011b):
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if

if
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where h1(ω) can be mathematically expressed as (Patidar et al., 2015;
Bayram and Selesnick, 2009):
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where θ(ω) represents Daubechies filter frequency response as (Patidar
et al., 2015). R, Q, and J values in the TQWT related to the filter bank
parameters, α and β, as in the equations below (Patidar et al., 2015;
Hassan et al., 2016):

Q ( 2)=
(3)

R /( 1)= (4)

This research used two databases as mentioned in Section 2.1,
which have different oscillation transients. For instance, the Q-factor
sets to high if the EEG signal has more oscillations. In this study, the Q
value was set at 14 for Bonn University database and 6 for the focal and
non-focal database, which are selected empirically for the both data-
bases. The different Q values were used because the databases have
different oscillatory transients. In addition, the decomposition level J
was set empirically for the five sub-bands. Figs. 4(a), (b) and 5(a), (b)
present a single EEG signal from the health persons and epileptic pa-
tients, and focal/non-focal epileptic EEG, and their five sub-bands
which were obtained by the TQWT. From Fig. 4, the difference between
F and N data are seen in the last two sub-bands of the TWQT method
that means the statistical power is different in these sub-bands. How-
ever, the difference from sets A and E appeared in Fig. 5 in each sub-
band of the proposed method. Clearly, the statistical power of each sub-
band is different among Figs. 5 (a) and (b).

2.2.1.2. Statistical feature extracted method. The statistical approach is
the most important part of the proposed scheme and employed to
extract the representative statistical features. It influences the
performance of a classifier if the features are not selected well. The
statistical method includes two stages, the segmentation and the
statistical feature extraction. The EEG signals are nonlinear and non-
stationary in nature (Siuly et al., 2017; Al Ghayab et al., 2018a,b),
which makes analysis and classification difficult.

Two methods are employed to make EEG signals quasi-stationary.
Firstly, a segmentation technique is utilized to divide each sub-band
into several smaller windows that are denoted as W1, W2, …., Wn. The
window size is determined by the following algorithm:

Algorithm

Fig. 2. Feature extraction based on Tunable Q-factor wavelet transform and statistical method. Note: SB= Sub-Bands; All-SBm= gathering each Sub-Band from all
channels in one set; Wn= the number of windows.
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Secondly, ten statistical features are extracted from each window.
The features are {minimum (Min), maximum (Max), mean (Mean),
median (Med), first quartile (Q1), second quartile (Q2), range (Ran),
standard deviation (SD), skewness (Sk), and variance (Var)}. The sta-
tistical features can represent important information included in the
EEG signals (Siuly et al., 2015a, 2015b) and can be expressed mathe-
matically as:

Min min x( )n= (5)

Max max x( )n= (6)

Mean
n

x1 n

n
1

=
(7)

Med N 1
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where xn =1, 2, …., n, is a time series; N refers to the number of data

Fig. 4. Examples of Focal (F) and Non-focal (N) and their five Sub-Brands: (a) Focal =F; (b) Non-focal = (N), obtained by using the TQWT.

Fig. 5. Examples of five level TQWT decomposition: (a) Healthy persons with eye open (set A); (b) Patient with seizure (set E).

Fig. 3. The TWQT decomposes the input EEG signal (Sig[m]) into low pass sub-band Lsig and high pass sub-band Hsig at Jth levels.
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points, SM is the mean of the samples.
ANOVA f-test is used to test the strength of the characteristics of the

extracted features for classifying various brain signal cases, {A vs E}, {B
vs E}, {C vs E}, {D vs E}, {AB vs E}, {AB vs CD vs E}, and {A vs B vs C vs
D vs E} as shown in Table 1. The ANONA f-test is tested using the one-
way ANOVA that takes one random sample from each population under
consideration, with a selection of a significance level (α) of 0.05.

This investigation found that five of the extracted features (Min,
Max, Ran, SD, and Var) were significant, with f> 1.65. The features
were labeled as “S”, reflecting their significance in representing epi-
leptic activities as shown in Table 1. In Table 1, the NS label indicates
that the features with f<1.65 are not significant for the classification.
In this study, we considered the f value of 1.65 based on the hypothesis
used in this paper that said that each value more than 1.65 is accepted
otherwise it was rejected. Choosing value of the f-test is depended on
the correlation among features. Based on the results, we found that
those features gained less than 1.65, were not significant and noisy. As
result, they were rejected. For details of how to choose the significant
features based on the f-test, readers may refer to (Faul et al., 2007;
Morgan et al., 2004; Brown and Forsythe, 1974).

At the end, the first and second sub-bands contain 2048 observa-
tions and the rest of the sub-bands have 1024 observations. Each sub-
band includes 20 data points. Furthermore, each group of the focal and
non-focal EEG contains 8192 observations of the first two sub-bands
and other three sub-bands have 4096 observations. Next step, we will
use the cross-validation measurement technique as can see in Section
2.2.3.

2.2.2. Classification method
Three popular machine learning classifiers, bagging trees, k-nearest

neighbors, and support vector machine are applied to evaluate the
proposed features extraction technique and select the most suitable
classification method. In the sections below, we present more details
about those classifiers.

2.2.2.1. Bagged trees (BT). The BT classifier, developed by Breiman
(1996), is one of the statistical learning methods. It is employed for the
EEG classification in this paper. The equation of the BT classifier is
presented below (Breiman, 1996; James et al., 2014):

A x
P

A x( ) 1 ( )avg
i

P
i

1
=

= (15)

where A x( )avg is the average of the accuracy of x; P is a separate
training sets; A x( )i is the tree’s prediction at input x. In this
investigation, 80 training sets were selected from the extracted
features to reduce the variance and hence increase the prediction
accuracy. The main benefit of this classifier is to gather fitted values
from a huge size of bootstrap samples and calculate the average of each
fitted values with a low bias and high variance. This way aggregates the

fitted values based on other statistical learning developments (Breiman,
1996).

2.2.2.2. K nearest neighbors (k-NN). The k-NN is one of the most
common nonparametric methods. It is considered to be the simplest
method among all the machine learning algorithms (Duda et al., 2012).
The classifier is applied to classify the extracted features based on the
nearest training features. It can classify the unlabeled input features to
its k nearest neighbors (Ergen, 2016). To make the k-NN classifier work
properly, k should be selected carefully (Duda et al., 2012; Ergen, 2016;
Cover and Hart, 1967). In this paper, k=1 is used. The advantage to
use the k-NN classifier is that this method applies effective techniques
to reduce the noise appeared in input data, which are improving the
accuracy of the k-NN classifier (Cunningham and Delany, 2007).

2.2.2.3. Support vector machines (SVM). The SVM is one of the well-
known classification methods that was developed by Cortes and Vapnik
(1995). A variation of the SVM is a quadratic kernel free non-linear
support vector machine (denoted as QSVM) that was proposed by
Dagher (2008), is used in this study. This function separates the feature
sets nonlinearly as can be found in (Dagher, 2008). The main reason to
apply the SVM classifier in this study is that the SVM grants a better
generalization solution if its parameters are well chosen. In choosing
appropriate parameters, the SVM can be robust (Auria and Moro,
2008).

2.2.3. Performance measurements
Several measurements were used for evaluating the performance of

the proposed scheme. The f-fold cross validation method was used. The
datasets were divided into f subsets/folds (Siuly and Li, 2015b). In each
implementation, one-fold is used as a testing set and f-1 folds are uti-
lized as a training set. In each process, the number of features in the
training and testing sets are shown in Table 2.

An average accuracy is obtained for the whole process in the cross-

Table 1
Results of ANOVA f-test of the statistic feature characteristics for each case of Bonn EEG Dataset.

Statistical Features f-test

{A vs E} {B vs E} {C vs E} {D vs E} {AB vs E} {AB vs CD vs E} {A vs B vs C vs D vs E} Result

Min 275.84772 348.95716 274.53135 311.2916 275.84772 268.76247 287.99356 S
Max 311.26012 395.90688 310.12819 352.68545 311.26012 302.2518 323.54456 S
Mean 0.02882 0.02576 0.0239 0.0202 0.02882 0.02536 0.02249 NS
Med 0.3794 0.43788 1.19521 0.25751 0.3794 0.26107 0.0568 NS
Q1 0.19645 0.07705 1.40824 0.33093 0.19645 0.13463 0.06509 NS
Q2 0.3141 0.46503 1.28864 0.28364 0.3141 0.22865 0.09816 NS
Ran 654.6591 826.88195 648.32584 736.28225 654.6591 634.67079 676.89236 S
SD 786.35536 982.60613 799.20694 879.65361 786.35536 775.18764 816.60389 S
SK 0.01688 0.02259 0.00003 0.02199 0.01688 0.01202 0.01589 NS
Var 198.36928 209.44634 198.69604 204.06362 198.36928 198.37071 202.228 S

Table 2
Numbers of the training and testing sets used in this study.

Database Case Sub-band Total Training Testing

Bonn Database {A vs E}, {B vs E},
{C vs E}, and {D vs
E}

1st and 2nd 4096 3278 818
3rd, 4th and
5th

2048 1640 408

{AB vs E} 1st and 2nd 6144 4916 1228
3rd, 4th and
5th

3072 2459 613

{AB vs CD vs E}
{A vs B vs C vs D vs
E}

1st and 2nd 10,240 8195 2045
3rd, 4th and
5th

5120 4100 1020

Born Database {F vs N} 1st and 2nd 16384 13108 3276
3rd, 4th and
5th

8192 6554 1638
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validation method. All the sub-sets are used for testing separately, and
the average of classification accuracy is calculated by using 5-fold cross
validation as shown in equation (16).

ACA
perfo
f

n, 1,2, .., 5
n
1= = …

(16)

where ACA refers to the average of classification accuracy, f is the
number of folds, and perfo refers to the performance of each fold.

The classification accuracy (Acc) was applied to evaluate the pro-
posed method. It is defined as the percentage of the correctly classifi-
cation result by the classifier for the testing dataset as depicted in Eq.
(17) (Zhu et al., 2014; Breiman, 1996; Al Ghayab et al., 2018a, 2018b):

Acc
TP TN

AS
100=

+
×

(17)

where TP is the true positives, TN refers to the true negatives, FP is the
false positives, FN is the false negatives, and AS refers to all the samples.

Another statistical measurement used in this study was sensitivity
(SE). This measurement takes into consideration the true positive rate
divided by the positive samples in the test data as shown in Eq. (20) (Al
Ghayab et al., 2016):

SE
TP
P

100= ×
(18)

Specificity (SP) was applied in this study to evaluate the perfor-
mance of the algorithm. SP considers true negatives divided by the
negative samples of the test to obtain a result (Al Ghayab et al., 2016).
SP is defined as:

SP
TN
N

100= ×
(19)

3. Experimental results and discussions

In this research, a set of experiments were implemented by using
two different databases, which are described in Section 2.1. The pro-
posed new technique was applied to analyse and extract the key fea-
tures from both databases (Bonn University EEG and Bern University
EEG databases). The TQWT based feature extraction technique was
implemented. Two methods were used to decompose the epileptic EEG
signals into five sub-bands and extract the most representative features.
Firstly, the TQWT nonlinear method was applied to each dataset of EEG
signals to decompose the EEG signals based on the resonance of five
sub-bands. Secondly, each sub-band was divided into smaller windows,
and ten statistical features were extracted from each window. The key
features were obtained and forwarded to three classifiers (BT, k-NN and
SVM), separately, to select the most suitable one. In this study, several
cases from the two databases were tested. Also, the experiments were
conducted using MATLAB R2017b on a computer with Intel (R) core i7-
7700, 3.60 GHz CPU, RAM capacity of 16 GB.

3.1. Experiment results for the Bonn University EEG database

This experiment used seven epileptic cases, which are {A vs E}, {B
vs E}, {C vs E}, {D vs E}, {AB vs E}, {AB vs CD vs E}, and {A vs B vs C vs
D vs E} as shown in Table 2. The proposed scheme was implemented
and evaluated using a variety of evaluation methods. Table 3 shows
that the average accuracies of the measurement of each epileptic case
were achieved from each sub-band by using the k-NN, BT, and SVM
classifiers. In Table 3, the TQWT based algorithm decomposed the EEG
signals into five sub-bands, which have chosen empirically as men-
tioned in Section 2.2.1.1, to validate the proposed method in different
sub-bands. The overall classification accuracy of the TQWT method
with k-NN for Bonn University database is 100% in variety cases and
difference sub-bands, which was the highest accuracy compared with

the BT and SVM classifiers in each sub-band from the seven experi-
mental cases for the epileptic EEG data. In contrast, the lowest accuracy
was obtained by using the TQWT with SVM as shown in Table 3.

On the other hand, Tables 4 and 5 illustrate the confusion matrix
and accuracy for the cases of {A vs B vs C vs D vs E} and {AB vs CD vs
E}, respectively, from Bonn University database. Based on the yielded
results there are significant differences in the classification accuracies
among the three classifiers (k-NN, BT and SVM) compared with the
proposed method. The accuracy of the proposed method with k-NN
classifier in Tables 4 and 5 is 100% overall classification rate, which is
the highest accuracy compared with the BT and SVM classifiers in
Table 3. The results reveal that the TQWT based algorithm combined
with k-NN classifier is effective to classify the epileptic EEG signals.
Tables 4 and 5 show the confusion matrices between the results by the
proposed and the expert’s scoring, and their accuracies for the relevant

Table 3
Accuracy rates of each sub-band of TQWT based algorithm for different cases of
Bonn University database.

No Case Classifier Acc (%)

1st SB 2nd SB 3rd SB 4th SB 5th SB

1 A vs E k-NN 100 100 100 100 100
BT 99.98 99.98 100 100 100
SVM 97.6 96.3 96.3 91.1 92.3

2 B vs E k-NN 100 100 100 100 100
BT 100 99.98 100 99.97 99.98
SVM 95.5 94.9 97.6 85.8 89.6

3 C vs E k-NN 100 100 100 100 100
BT 100 100 100 100 100
SVM 99.1 95.8 96.8 85.8 92.3

4 D vs E k-NN 100 100 100 100 100
BT 99.97 100 100 100 100
SVM 97.7 96.4 96.3 91.5 87.2

5 AB vs E k-NN 100 100 100 100 100
BT 99.98 100 100 100 99.98
SVM 92.3 97.4 96.5 92.4 90.2

6 AB vs CD vs E k-NN 100 100 100 100 100
BT 99.82 99.77 99.92 99.67 99.76
SVM 55.02 57.32 50.66 50.22 48.95

7 A vs B vs C vs D vs E k-NN 100 100 100 100 100
BT 99.85 99.83 99.82 99.86 99.82
SVM 45.71 49.63 47.6 49.55 47.12

Table 4
Confusion matrix and accuracy for the case of {A vs B vs C vs D vs E} from Bonn
University database using k-NN.

Expert’s Scoring

A B C D E

TQWT A 204 0 0 0 0
B 0 204 0 0 0
C 0 0 204 0 0
D 0 0 0 204 0
E 0 0 0 0 204

Accuracy 100% 100% 100% 100% 100%

Table 5
Confusion matrix and accuracy for the case of {AB vs CD vs E} from Bonn
University database using k-NN.

Expert’s Scoring

AB CD E

TQWT AB 408 0 0
CD 0 408 0
E 0 0 204

Accuracy 100% 100% 100%
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pairs.
The suggested approach based on the k-NN classifier gained the

highest score with 100% average of sensitivity in all the sub-bands for
the seven epileptic cases. At the same time, the proposed method with
the BT achieved a 100% sensitivity rate with most of the sub-bands for
all epileptic cases as can be seen in Fig. 6. Fig. 6(a)-(g) provide a
comparison of using the proposed feature extraction method with the
three classifiers on seven epileptic states in terms of the sensitivity
measurement. The lowest sensitivity yielded was 46.23% and 32.32%
for the epileptic cases of {AB vs CD vs E} and {A vs B vs C vs D vs E},
respectively. It was from the SVM classifier and the results are pre-
sented in Fig. 6. The two cases of{AB vs CD vs E} and {A vs B vs C vs D
vs E} that are multi-classification, were similar to each other, which led
to the lowest sensitivity results compared with the results for other
cases.

Furthermore, Table 6 shows the average of the specificity rates from
each sub-band by the proposed technique for different cases of the
epileptic EEG signals. As can be seen in Table 6, the highest results for
specificity were achieved by using the suggested approach combined
with the k-NN classifier that was 100% specificity rate in all sub-bands
for all cases. In contrast, the TQWT with the other two classifiers (BT
and SVM) got low results in some sub-bands. The experiment results
from this study demonstrated that the TQWT coupled with the k-NN
classifier was the best method to analyse and classify the epileptic EEG

signals.

3.2. Experiment results for the born university EEG database

In this research, we used focal vs non-focal case of Born University
database as seen in Table 2. The proposed scheme was implemented
and evaluated using the above evaluation measures.

Table 7 presents the accuracy rates that were gained by the same
proposed TQWT based scheme and classifiers (k-NN, BT, and SVM) with
the full size of Born University database (refer to Section 2.1.2). In these
experiments, the TQWT feature extraction method with the k-NN
gained the highest overall accuracy of 100% for each sub-band, while
the BT classifier with the proposed approach achieved>99% classifi-
cation accuracies from all the sub-bands. In contrast, the proposed
technique with the SVM classifier achieved about 92% overall classi-
fication accuracies from all the sub-bands for the F vs N case with large
datasets. It seems that they are the lowest rate among all the three
classifiers for the proposed scheme as can be seen from Table 7.

The sensitivity and specificity were used to evaluate the im-
plementation of the TQWT based algorithm with three popular classi-
fiers for the F and N two datasets. This scheme based on the k-NN
classifier obtained a 100% average of sensitivity and specificity for the
five sub-bands for F vs N case with large datasets, which was the highest
outcome. However, the proposed scheme combined with the BT yielded

Fig. 6. Performance comparison among the reported classifiers with the proposed feature extraction method for seven cases of Bonn University EEG database in terms
of Sensitivity (SN).
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more than 99% sensitivity and specificity rates for the same sub-bands
in the F vs N case, which are the second highest results as shown in
Table 7. In addition, the low results were from the TQWT and the SVM
with results of 92.35% to 97.59% for sensitivity, and 92.59% to 97.23%
for specificity for the sub-bands from the F vs N case in Born University
database.

4. Comparative study

In this section, we formulated two types of performance compar-
isons to evaluate the implementation of the proposed technique. Firstly,
the classification accuracies of the TQWT based feature extraction
method and k-NN classifier on the epileptic EEG pairs in Table 3 were
compared with five recent techniques. Secondly, the accuracy results of
the focal and non-focal epileptic data in Table 7 was also compared
with the existing methods. In this investigation, the comparisons were
made between the proposed scheme and the existing approaches, which
used the same databases and the same EEG channels.

1 The comparison among the proposed method and other epileptic

EEG classification methods: the results from the proposed method
were compared with the results from other studies in (Zhu et al.,
2014; Patidar and Panigrahi, 2017; Zhu et al., 2013; Samiee et al.,
2015; Alçіn et al., 2016). Table 8 shows a comparison of this tech-
nique with five other existing methods. From Table 8, Zhu et al.
(2013) provides a new technique based on a sample entropy and
multi-scale K-means method to classify the epileptic seizures. They
achieved an overall classification accuracy of 100%, 99% and 99.1%
for the cases of {A vs E}, {B vs E}, and {AB vs CDE}, respectively.
However, the proposed scheme in this study gained a 100% accu-
racy rate for all cases, which means that it achieved a higher ac-
curacy than those by (Zhu et al., 2013). Samiee et al. (2015) applied
a rational discrete short time Fourier transform combined with a
multilayer perceptron classifier. That paper reported a 99.8%,
99.3%, 98.5%, and 94.9% classification accuracy for the cases of {A
vs E}, {B vs E}, {C vs E], and {D vs E}, respectively. Based on those
results, our proposed method outperformed Samiee et al. (2015).

2 Another study was made by Zhu et al. (2014) in which fast
weighting horizontal visibility graph and k-NN classifier were uti-
lized. The authors reported a 100%, 93%, 95.3% overall accuracy
for {A vs E}, {D vs E}, and {ABCD vs E}, respectively. The results in
our approach were higher than those by (Zhu et al., 2014). Alcin
et al. (2016) obtained a 96.4% average classification accuracy for all
the data sets using time frequency image combined with a filter
vector and extreme learning machine, compared with our proposed
scheme and achieved 100% classification rates. Patidar et al. (2017)
applied a TQWT based on Kraskov entropy and least square support
vector machine to classify epileptic seizures. An average accuracy of
97.75% for seizure free classes vs epileptic seizure was reported.

3 Some of the existing methods were conducted with two sets of Bonn
University database and achieved an average of accuracy between
99% and 100% compared with the proposed technique that tested
using the whole Bonn University database. In Table 8, the best
outcome among all the methods was highlighted in bold font. Based
on those results, the TQWT based algorithm with k-NN produced the
highest accuracy among all the existing methods.

4 The comparison between the proposed TQWT method and other
focal and non-focal epileptic EEG classification methods: the out-
comes of this method based on k-NN classifier were compared with
those of other five existing methods, which are used the same focal
and non-focal EEG database. Sharme et al. (2015) implemented an
empirical mode decomposition and least square support vector

Table 6
Specificity (SP) rates from each sub-band by the TQWT based algorithm for
different cases of Bonn University database.

No Case Classifier SP (%)

1st SB 2nd SB 3rd SB 4th SB 5th SB

1 A vs E k-NN 100 100 100 100 100
BT 100 100 100 100 100
SVM 98.51 99.84 94.3 93.85 95.68

2 B vs E k-NN 100 100 100 100 100
BT 100 99.95 100 100 100
SVM 93.8 9947 98.51 85.98 93.46

3 C vs E k-NN 100 100 100 100 100
BT 100 100 100 100 100
SVM 98.55 97.96 95.45 94.32 95.78

4 D vs E k-NN 100 100 100 100 100
BT 100 100 100 100 100
SVM 98.61 97.64 94.22 92.41 92.71

5 AB vs E k-NN 100 100 100 100 100
BT 100 100 100 100 100
SVM 97.41 98.76 93.21 94.59 100

6 AB vs CD vs E k-NN 100 100 100 100 100
BT 99.79 99.69 99.9 99.58 99.67
SVM 65.37 58.17 61.28 54.04 62.82

7 A vs B vs C vs D vs E k-NN 100 100 100 100 100
BT 99.9 99.87 99.9 99.95 99.93
SVM 89.71 72.99 87.6 69.22 79.85

Table 7
Accuracy, Sensitivity, and Specificity rates for each sub-band by the TQWT
based algorithm for Focal (F) vs Non-focal (N) with a data full size from the
Born University database.

Case Sub-Band Classifier Acc (%) SE (%) SP (%)

F vs N 1st SB k-NN 100 100 100
BT 99.97 99.95 99.99
SVM 92.47 92.35 92.59

2nd SB k-NN 100 100 100
BT 100 100 100
SVM 97.0 97.59 96.45

3rd SB k-NN 100 100 100
BT 100 100 100
SVM 97.35 97.47 97.23

4th SB k-NN 100 100 100
BT 99.99 99.98 100
SVM 96.57 96.57 95.82

5th SB k-NN 100 100 100
BT 100 100 100
SVM 95.65 95.79 95.55

Table 8
Comparative report of the proposed method for the epileptic EEG database.

Authors Technique Case Acc (%)

Zhu et al.
(2013)

Sample entropy+Multi-scale K-
means

A vs E
B vs E
AB vs CDE

100
99.0
99.1

Zhu et al.
(2014)

Fast weighted horizontal visibility
graph + k-NN

A vs E
D vs E
ABCD vs E

100
93.0
95.4

Samiee et al.
(2015)

Rational discrete short time Fourier
transform+Multilayer perceptron
classifier

A vs E
B vs E
C vs E
D vs E

99.8
99.3
98.5
94.9

Alcin et al.
(2016)

Time-frequency image+ Filter
vector+ Extreme learning machine

Multi
classification

96.4

Patidar et al.
(2017)

TQWT+Kraskov entropy+ least
square support vector machine

CD vs E 97.75

This study Tunable Q-factor WT based
technique+ Statistical features
+k-NN

A vs E
B vs E
C vs E
D vs E
AB vs E
AB vs CD vs E
Multi
classification

100
100
100
100
100
100
100
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machine to classify focal and non-focal epileptic EEG data. Totally,
they achieved an accuracy of 87%. However, the proposed TQWT
based algorithm gained a higher rate than those by Sharme et al.
(2015). Das and Bhuiyan (2016) also applied the empirical mode
decomposition combined with the discrete wavelet transform and k-
NN classifier. Their approach obtained an 89.4% accuracy for {F vs
N}. Based on those results, the proposed TQWT method out-
performed Das and Bhuiyan (2016). Different entropies, such as
approximate entropy, sample entropy, and Reyni’s entropy, have
been used as features by Arunkumar et al. (2017). To evaluate their
features, they employed non-nested generalized exemplars classifier
and achieved an average classification accuracy of 98%.

5 Another study was made by Arunkumar et al. (2018) in which a
number of entropies based on normal inverse Gaussian and non-
nested generalized exemplars were utilized. Overall, their method
obtained 99% classification rate compared with our method, which
used the same database and achieved 100% accuracy. Sharma et al.
(2017) applied orthogonal wavelet filter banks and entropies. In
order to select the most discriminative features, they used t-test
method. The selected features were forwarded to the least square
support vector machine. They reported a 94.25% accuracy for F vs N
sets. The obtained results in our scheme were higher than those by
Sharma et al. (2017). Some of the existing methods were conducted
with smaller datasets excerpted from Born University database and
achieved an average of accuracy between 87% and 99%. We high-
lighted in bold font the best classification accuracy among all the
compared techniques in Table 9.

Obviously, based on Tables 8 and 9, the proposed scheme achieved
the highest accuracy for both two EEG databases, the Bonn University
and Born University, compared with the existing methods which used
the same databases.

One of the limitations of the proposed method is that the proposed
method may not work well for real time applications, due to it needs
further processing to remove the artifacts. However, the proposed
method was implemented with two off-line databases collected by Bonn
University and Born University. In addition, the main advantage of the
TQWT based feature extraction method is: the technique can reduce a
huge amount of EEG data into small sets selecting the best re-
presentative data points from every segmentation of a dataset con-
sidering the variability of the observations. Due to the reduction of
data, this approach can handle a large amount of data with less com-
putation cost compared to the existing methods.

5. Conclusion

This article developed an innovative technique to extract the most
significant features from two different EEG databases, Bonn University
EEG and Born University EEG databases. The TQWT was applied to
decompose the EEG signals into five sub-bands based on its parameters,
Q, R, and J level. After signal decomposition, ten statistical features
were used to segment the sub-bands and the most representative fea-
tures were extracted. These features were put in one set for each sub-
band and then forwarded to three popular machine-learning classifiers,

k-NN, BT, and SVM. The experimental results reveal that the proposed
TQWT based feature extraction method combined with the k-NN clas-
sifier is capable to differentiate the epileptic EEG signals with an ex-
cellent performance, compared to the existing methods. In the future,
we will endeavour to enhance this method and implement it online.
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4.2 Chapter Summary 

Al Ghayab et al. (2018) implemented an innovative technique to extract the most 

significant features from two different EEG databases, Bonn University EEG database 

and Born University EEG database. The TQWT was applied to decompose the EEG 

signals into five sub-bands. Thereafter, statistical features extraction were used to 

segment these sub-bands and extract the most representative features. The key features 

were forwarded to three classifiers, k-NN, BT, and SVM. The experimental results 

reveal that the proposed feature extraction method combined with the k-NN classifier 

is capable to differentiate the variety of EEG categories with an excellent performance, 

compared to existing methods. 

Al Ghayab et al. (2018) obviously demonstrated that using TQWT method has a 

high potential to improve the classification way and to detect an abnormal EEG signal. 
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CHAPTER 5 

EPILEPTIC SEIZURES DETECTION IN EEGS 

BLENDING FREQUENCY DOMAIN WITH 

INFORMATION GAIN TECHNIQUE 

This chapter is an exact copy of a published article in Soft Computing (2018). It 

presents a new algorithm which combines the information in frequency domain with 

the Information Gain (InfoGain) technique for the detection of epileptic seizures from 

electroencephalogram (EEG) data. The process includes four main steps: Firstly, it is 

necessary to investigate which is most method suitable to decompose the EEG signals 

into frequency bands, a fast Fourier transform (FFT) or discrete wavelet transform 

(DWT); Secondly, each band is partitioned into k windows and a set of statistical 

features are extracted from each window; Thirdly, the InfoGain is used to rank the 

extracted features and the most important ones are selected; and lastly, these features 

are forwarded to a least square support vector machine (LS_SVM) classifier to classify 

the EEG. This scheme is implemented and tested on a benchmark EEG database and 

also compared with other existing methods, based on some performance evaluation 

measures.   

In addition, the simulation code of this method is provided in appendix D. 

5 
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Abstract
This paper proposes a new algorithm which combines the information in frequency domain with the Information Gain
(InfoGain) technique for the detection of epileptic seizures from electroencephalogram (EEG) data. The proposed method
consists of four main steps. Firstly, in order to investigate which method is most suitable to decompose the EEG signals into
frequency bands, we implement separately a fast Fourier transform (FFT) or discrete wavelet transform (DWT). Secondly,
each band is partitioned into k windows and a set of statistical features are extracted from each window. Thirdly, the InfoGain
is used to rank the extracted features and the most important ones are selected. Lastly, these features are forwarded to a
least square support vector machine (LS-SVM) classifier to classify the EEG. This scheme is implemented and tested on a
benchmark EEG database and also compared with other existing methods, based on some performance evaluation measures.
The experimental results show that the proposed FFT combined with InfoGain method can generate better performance than
the DWT method. This method achieves 100% accuracy for five different pairs: healthy people with eyes open (z) versus
epileptic patients with activity seizures (s); healthy people with eyes closed (o) versus s; epileptic patients with free seizures
(n) versus s; patients with free seizures epileptic (f ) versus s; and z versus o. The accuracies obtained for two other pairs, (o
vs. n) and (z vs. f ), are 95.62 and 88.32%, respectively. These two pairs have more similarities with each other, leading to a
lower level of accuracy. The proposed approach outperforms six other reported methods and achieves an 11.9% improvement.
Finally, it can be concluded that the proposed FFT combinedwith InfoGainmethod has the capacity to detect epileptic seizures
in EEG most effectively.

Keywords Electroencephalogram · Epileptic seizures · Frequency domain · Information gain technique · Least square support
vector machine
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1 Introduction

An electroencephalogram (EEG) is a test commonly per-
formed to study the brain’s electrical activity. The brain
cells communicate with each other producing tiny electri-
cal impulses. An abnormal electrical activity would reflect
potential brain disorders. Epileptic seizures may lead to a
brief case of involuntary activity that may involve a part or
all of the body and be accompanied by loss of consciousness
and disturbances ofmovement, aswell as uncomfortable sen-
sation, mood, or mental function for a patient (Yuan et al.
2011). The World Health Organization (2011) reported that
approximately 2.4 million people around the world are diag-
nosed with epilepsy each year. In developing countries, it is
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estimated that between 30 and 50 people per 100,000 people
suffer from epilepsy at some stage, while in poor countries
this incidence will appear to be up to twice as high (WHO
2011; Mcgrogan 1999). Although it is easy to treat epileptic
seizures with inexpensive medication, it is often difficult for
experts to identify people who have a brain defect through
visual inspection of EEG signals (Siuly and Li 2015). There-
fore, it is necessary to develop a newmethod of analysing and
classifying EEG data. This method can help doctors detect
and treat brain disorders. There are a variety of techniques
being developed to analyse and classify EEG signals (Shen
et al. 2013; Siuly and Li 2015; Al Ghayab et al. 2017, 2018;
Tzimourta et al. 2018).

Siuly et al. (2015) detected multi-category EEG record-
ing data. Random sampling and optimal allocation sampling
were used in their research to identify the important fea-
tures from each group of EEG classes. The method divided
the input signals of each class into different segments.
Twelve statistical features from each set (RS or OS set)
were extracted, separately. In order to evaluate the per-
formance of the proposed feature extraction method, three
different classifiers were applied. Those were k-nearest
neighbour, multinomial logistic regression, and a support
vector machine. It was reported that the random sampling
technique represented the EEG data and the k-nearest neigh-
bour with the random sampling achieved good results for
each EEG class. Wali et al. (2013) used the theta, alpha
and beta bands of EEG signals from the discrete wavelet
packet transform and the FFT methods to extract features.
The extracted features were based on spectral centroid and
power spectral. These features were evaluated by three dif-
ferent classifiers: subtractive fuzzy clustering probabilistic;
neural network; and k-nearest neighbour, for comparing the
results. The researchers achieved a 79.21%accuracy by using
the subtractive fuzzy classifier. Swami et al. (2016) used
three different methods to select the best method for the
detection of epileptic seizures. These methods were DWT,
wavelet packet transform and dual-tree complex wavelet
transform. Their technique applied energy, root-mean-square
values and standard deviation as the extracted features. A
general regression neural network classifier was utilized in
this study to evaluate the performance. A 98% overall accu-
racy was obtained by using the dual-tree complex wavelet
transform technique,whichweremuchmore successful other
methods. Chua et al. (2011) extracted features from EEG
signals by using higher-order spectra. To select the best clas-
sifier, the extraction features were forwarded to two different
methods to compare their performances. A Gaussian mix-
ture model and a support vector machine classifier were
used to detect epileptic EEG signals. The research achieved
an average accuracy of 93.11 and 92.56% for higher-order
spectra based on the Gaussian mixture model classifier and
the support vector machine classifier, respectively, for dif-

ferent EEG classes, such as normal, pre-ictal and epileptic
EEGs. A time–frequency technique was proposed to extract
features for analysing the EEG signals by Rao and Vish-
wanath (2014). The DWT method was used to detect sleep
disorders, such as a sleep breathing disorder, an insomnia
disorder, a bruxism disorder, and one healthy subject. Four
levels of decomposition were used to extract EEG features.
The extracted features were evaluated by using the follow-
ing evaluation measurements: energy; variance; waveform
length; and standard deviation. All these evaluationmeasure-
mentswere used to detect different sleep disorders. Shen et al.
(2013) proposed a cascade of wavelet-approximate entropies
for feature selection. This approach utilized fisher scores
for adaptive feature selection and support vector machine to
detect epileptic seizures. The technique was applied to dif-
ferent epileptic EEG recordings: open source EEG data and
clinical EEGdata. Themethod achieved overall classification
accuracies of 99.97 and 98.73%, respectively.

A wavelet transform method was used by Gajic et al.
(2014) to extract the key features. Scatter matrices were used
to reduce the dimensionality of the features. These features
were used as the input to a quadratic classifier. The EEG
epileptic data were classified into healthy subjects, epilep-
tic subjects during a seizure-free period (inter-ictal), and
epileptic patients during seizure activity (ictal). A 99% clas-
sification accuracy was reported. The DWT was employed
by Amin et al. (2015) for analysing EEG recordings. Two
datasets of the Raven’s advance progressive metric test and
the eyes open test were used to classify them. The research
applied different classifiers, including the SVM, k-nearest
neighbouring, andmultilayer perceptron classifiers.An accu-
racy of above 98% was achieved by using those classifiers
with approximations and detail coefficients from the DWT.
Gajic et al. (2015) extracted different features from time,
frequency, time frequency domain, and used a nonlinear anal-
ysis. The features were obtained from sub-bands with good
representative characteristics compared with those from the
whole band. The researchers reduced the dimension of the
features by using scatter matrices. That method yielded a
98.7% accuracy. A comparative studywasmade byYang and
Pedersen (1997) with a different feature selection method to
classify texts. Five types of selection algorithm were esti-
mated, as follows: document frequency; information gain
(InfoGain); mutual information; X2–test (CHI); and a term
strength. InfoGain yielded the highest classification accuracy
of the above five methods, with 98%.

Most recently, a rational discrete short-time Fourier trans-
form was utilized by Samiee et al. (2015). It was a novel
method of extracting features from epileptic EEG sig-
nals. To classify the extracted features, they employed a
multilayer neural network perceptron classifier. A 98.3%
overall classification accuracy was achieved with that tech-
nique.
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In 2014, Kaya et al. performed a one-dimensional local
binary pattern to extract key features from epileptic EEG
recordings. The key features of uniform and non-uniform
were used as the input to different classifiers, such as
Bayes Net, SVM, artificial neural network, logistic regres-
sion and the functional trees. 99.5 and 99.0% accuracies
were achieved by uniform and non-uniform functional trees,
respectively, for classes z and s. Wang et al. (2014) imple-
mented a significant method to classify the epileptic EEG
signals by using a simple random sampling combined with
the J48 decision tree. This approach achieved a 97.6% aver-
age classification accuracy for classes z versus s, classes o
versus s and classes n versus s. Shen et al. (2013) presented
an approach based on a cascade of wavelet approximate
entropies to extract features from the epileptic EEG signals.
In order to classify the extracted features, three classification
methods were tested: support vector machine (SVM); K-
nearest neighbour; and radial basis function neural network.
The overall accuracy achieved from these three classifica-
tion approaches were 99.97, 99.10 and 99.82%, respectively.
Also in 2013, Zhu et al. reported an important method which
employed the sample entropywithmulti-scaleK-means. The
sample entropywas used to extract features andmeasured the
complexity time. With the aim of finding the optimum solu-
tion, the three different classifiers of K-means, multi-scale
K-means and a SVMwere tested. The sample entropy based
on multi-scale K-means attained a 99.5% average classifi-
cation accuracy for classes z versus s and classes o versus
s. Nicolaou and Georgiou (2012) established a new method
to detect epileptic seizures, using permutation entropy as the
extracted feature. The SVM classifier was applied to classify
the epileptic EEG signals based on permutation entropy.

As can be seen in the literature review, there are several
challenges in the epileptic EEG classification techniques.
Several demonstrated limited accuracy and effectiveness.
Therefore, some approaches do not work successfully with
large amounts of data.

This study introduces an approach based on the Info-
Gain method incorporating either FFT or DWT techniques
to extract features from EEG recordings. The LS-SVM clas-
sifier is applied to evaluate the performance of this proposed
method. The structure of the proposed method is discussed
in Sects. 2–4. The conclusion is presented in Sect. 5.

2 Data andmethods

2.1 Epileptic EEG signals

The epileptic EEG data used in this paper were recorded
by the Epileptology Department, Bonn University, Germany.

They are publicly available.1 The database contains five
classes of EEG signals (denoted classes z, o, n, f , and s),
with each class containing 100 single channel EEG signals
of 23.6 s. All classes of the EEG signals were made with
the same 128-channel amplifier system, using a common
reference. The signals were digitized at 173.61 samples per-
second using 12-bit resolution. Band-pass filter settings were
0.53–40 Hz (12B/oct). Classes z and o were recorded from
five healthy people with open and closed eyes, respectively,
while classes n, f , and s were collected from five epileptic
patients. The data in classes n and f were collected through
the free seizure from five epileptic patients. However, class
s was taken from EEG records of five pre-surgical epilep-
tic patients during epileptic seizure activity. Figure 1 shows
examples of five EEG signals, classes z, o, n, f and s (Al
Ghayab et al. 2016).

2.2 Methods

This study aims to develop a technique for detecting epilep-
tic seizures from EEG. Figure 2 shows the structure of the
proposed method. Here the frequency domain is used by
performing FFT or DWT based on InfoGain to extract and
select the key features. The LS-SVM is used to classify the
extracted and selected features. As illustrated in Fig. 2, the
proposed approach is divided into five main parts: FFT and
DWT (employed separately); bands segmentation; statistical
features extraction; features ranking; and selection based on
the InfoGain and classification part by theLS-SVMclassifier.
A brief explanation of these five parts is provided below.

2.2.1 Fast Fourier transform

Fast Fourier transform (FFT) is an improved algorithm of
discrete Fourier transform (DFT). It is used for the fast imple-
mentation of the DFT method (Heckbert 1995). According
to Zonst (1995), the execution time of the DFT is greater than
the execution time of the FFT. The FFT can achieve the same
results much faster than that of DFT to analyse the EEG sig-
nals. In this study, we use the FFT algorithm to reduce the
amount of computation required on EEG quantities data. The
FFT splits EEG data into two parts and processes each part
individually to extract five frequency bands.

2.2.2 Discrete wavelet transform

Discrete wavelet transform (DWT) transforms the EEG sig-
nals into the wavelet domain. In the DWT, the EEG signals
are transformed into different levels of decomposition. In the
first level, a signal is decomposed into a low pass filter (LPF)

1 http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.
html.
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Fig. 1 Examples of five different
classes of EEG signals

Fig. 2 The structure of the
proposed system for the
classification of epileptic EEG
signals
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called ‘approximate coefficients’, and a high pass filter (HPF)
called ‘detail coefficients’. This technique is used to trans-
form the EEG signals into two different numerical vectors of
the same length. In the next level of decomposition, the pre-
vious LPF is decomposed again into a HPF and a LPF. This
operation is repeated to acquire the next level of DWT coef-

ficients. At the end of each level, the length of the LPF and
the HPF are half of the length of the previous approximate
coefficients (Acharya et al. (2015)). Figure 3 represents the
process of the decomposition by using the DWT approach.
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2.2.3 Bands segmentation

EEG recordings are non-stationary in frequency. Partitioning
EEG signals into smaller segments or windows can make the
EEG signals quasi-stationary. To extract the most discrimi-
native statistical features from each band, firstly, we utilize
and divide each band from the FFT or DWT into a number
of small windows. The number of windows is determined
empirically based on the following formula (1):

S(i) � B

W
; W � 1, 2, 3, 4 (1)

where S(i) refers to the statistical features set for each win-
dow, i is the number of the statistical features, B is the band
from the FFT or DWT, W is the number of windows.

Secondly, we extract the key statistical features from
each window. All the extracted features from each window
are gathered in one set, called Feature_FFT_Dn or Fea-
ture_Wave_Dn, depending on the FFT or DWT as appearing
in formulas (2) and (3):

Feature_FFT _Dn �
W∑

i�1

S(i);

(i � 1, 2, . . . .,W ), (n � 1, 2, . . . ., 5) (2)

Feature_Wave_Dn �
W∑

i�1

S(i);

(i � 1, 2, . . . .,W ), (n � 1, 2, . . . ., 5) (3)

where Feature_FFT_Dn is the set of the features from each
band of the FFT, Feature_Wave_Dn, is the features set from
each band of the DWT, n is the number of bands, and W is
the number of windows.

2.2.4 The statistical features

In this study, nine statistical features are extracted from each
window to reduce the dimensions of each band. These statis-
tical features are {maximum,minimum,mean,median,mode,
first quartile, second quartile, range and standard devia-
tion}. As the EEG signals provide important information for
human behaviours, these statistical features ideally represent
the important information (Siuly et al. 2015). A set of fea-
tures are obtained from each band by the FFT or the DWT,
having 4097 data points in 36 dimensions. These features are
used in the next step of the proposed method.

2.2.5 Information gain

Information Gain (InfoGain) is widely applied in machine
learning areas. This technique is important to optimize the
feature sets used in classification. It is often used to reduce the

dimensionality of the key features by selecting the important
data and removing the redundant data from the classification
process (Deng et al. 2008; Koprinska 2010). In this study, the
InfoGain is used to select the most important features from
the huge amount of data provided by the EEG signals. It is
based on the concept of entropy from information theory.
The formula of the InfoGain is presented below (Han et al.
2011):

Info(X) � −
n∑

i�0

Pi log2(Pi ) (4)

where Pi is the prior probability for the ith discretized value
of X. The entropy of X after observing another variable Y is
then defined as

Info

(
X

Y

)
� −

m∑

j�1

∣∣y j
∣∣

|X | ×
n∑

i�0

P
xi
yi

log2

(
P
xi
yi

)
(5)

The InfoGain is defined as the difference between the original
information and the new information after dividing by Y. It
is given as

InfoGain � Info(X) − Info

(
X

Y

)
(6)

In this study, to select the most important statistical features,
each feature within the different bands of EEG signals is
ranked based on an adaptive threshold in decreasing order
by using the InfoGain method.

2.2.6 Least square support vector machines (LS-SVM)

The LS-SVM classifier is extensively used in the field of
biomedical signal processing. It is updated by versions of the
support vector machines (SVMs). SVMs employ supervised
learning approaches that analyse information and under-
stand patterns of data. The LS-SVMs were developed by
Suykens and Vandewalle (1999). Thus, the LS-SVM classi-
fier is applied for the classification of EEG recordings with
a radial basis function kernel in this paper. The use of the
LS-SVM classifier is to avoid the convex quadratic program-
ming issue which appeared in the classical SVMs, as it uses
a set of linear equations (Siuly and Li 2015). The LS-SVM
has γ and σ 2 parameters. These two parameters are selected
empirically as shown in Sect. 3. In this paper, the classifica-
tion is performed by the LS-SVMlab (version 1.8) toolbox
in MATLAB (2011).2

2 http://www.esat.kuleuven.ac.be/sista/lssvmlab.
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3 Classificationmeasurements

Different assessments are used in this study to evaluate the
proposed technique. One of these method is a k fold cross-
validation (Siuly and Li 2015; Al Ghayab et al. 2018). In
order to assess the performance of this scheme, the k fold
is employed to divide the datasets into k subgroups denoted
as folds. In each implementation, one of these folds is used
as a testing group and other folds (k − 1) are used as the
training groups. The number of the k fold used in this study
is fourfold cross-validation, which is found to be the most
suitable for this dataset.

In addition, three different statistical evaluation methods
are applied to evaluate the performances of the proposed
technique. One of these measurements is the accuracy or
the recognition rate. It is the percentage of a class correctly
classified by a classifier for the testing data. A second assess-
ment measurement is sensitivity or recall. This is defined as
the percentage of the positive set correctly identified. It refers
to the rate of the true positives. The specificity is the propor-
tion of the negative set correctly identified. It is the average of
the true negatives as shown in formulas (7)–(9) (Al Ghayab
et al. 2016, 2017):

Accuracy � True positives + True negatives

All samples
× 100 (7)

Sensitivity � Number of true positives

Positive samples
× 100 (8)

Specificity � Number of true negatives

Negative samples
× 100 (9)

4 Experimental results and discussions

In this section, the epileptic EEG signals used in this paper
include five classes, which are: healthy peoplewith eyes open
(class z); healthy people with eyes closed (class o); epileptic
patients with two free seizure classes (class n and f ); and the
epileptic patients through activity seizures (class s) classes.
The FFT and DWT approaches were utilized to analyse the
five classes of epileptic EEG signals into different sub-bands
based on the levels of decomposition. Here, we used five
levels of decomposition for both the FFT and DWT tech-
niques and obtained five different frequency bands, namely
Gamma, Beta, Alpha, Theta, and Delta, respectively. With
the purpose of extracting the most discriminative statistical
features from the bands, each band was divided empirically
into four windows (refer to Sect. 2.2.2 for details).

Nine statistical featureswere extracted from eachwindow.
A set of statistical features was gained from the segmenta-
tions of the bands. These features were processed by the
InfoGain technique in the next step. The InfoGain technique
ranked each feature in the statistical features set extracted

Table 1 Reduced dimensionality of each band from FFT and DWT by
using segmentation and InfoGain

Classes Band FFT+
InfoGaim

DWT+
InfoGaim

Class z 1st band
(Gamma)

1882×36 2016×36

2nd band (Beta) 1767×36 1934×36

3rd band (Alpha) 1909×36 1942×36

4th band (Theta) 1964×36 1881×36

5th band (Delta) 1934×36 1832×36

Class o 1st band
(Gamma)

1845×36 1913×36

2nd band (Beta) 1929×36 1892×36

3rd band (Alpha) 1990×36 1962×36

4th band (Theta) 1878×36 2038×36

5th band (Delta) 2031×36 1876×36

Class n 1st band
(Gamma)

1784×36 2321×36

2nd band (Beta) 1805×36 2234×36

3rd band (Alpha) 1972×36 2124×36

4th band (Theta) 2081×36 1837×36

5th band (Delta) 2088×36 1641×36

Class f 1st band
(Gamma)

2943×36 2307×36

2nd band (Beta) 2194×36 2529×36

3rd band (Alpha) 2460×36 2533×36

4th band (Theta) 2571×36 2261×36

5th band (Delta) 2263×36 2378×36

Class s 1st band
(Gamma)

2101×36 2821×36

2nd band (Beta) 2000×36 2799×36

3rd band (Alpha) 2161×36 2321×36

4th band (Theta) 2496×36 2044×36

5th band (Delta) 2752×36 2060×36

from the previous step. The InfoGain selects the most impor-
tant features from each band and omits the less important
ones. The goal of this technique is to reduce the dimension-
ality of the extracted features. The comparison performance
results are shown in Table 1. After reducing the dimensions
of the statistical features by the InfoGain, several experi-
ments were conducted with the epileptic EEG signals. In
each experiment, we gathered two similar bands of two dif-
ferent classes as pairs. For instance, we grouped the extracted
features from the Delta band of class z with the Delta band
of class s as the first pair, and continuing, as summarized in
Table 2.

To assess the performance of each pair, EEG data was
divided into two groups of training and testing by apply-
ing the k-fold cross-validation technique. The training group
was used to train a classifier. The testing group was used
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Table 2 The pairs gained from
different classes with similar
bands

Methods Pairs Gamma Beta Alpha Theta Delta

FFT z versus s 3983×36 3767×36 4070×36 4460×36 4686×36

z versus o 3727×36 3696×36 3962×36 3842×36 3965×36

z versus f 4825×36 3961×36 4369×36 4535×36 4197×36

o versus n 3629×36 3734×36 3973×36 3959×36 4119×36

o versus s 3946×36 3929×36 4151×36 4374×36 4783×36

n versus s 3885×36 3805×36 4133×36 4577×36 4840×36

f versus s 5044×36 4194×36 4621×36 5067×36 5015×36

DWT z versus s 4837×36 4733×36 4263×36 3925×36 3892×36

z versus o 3929×36 3826×36 3904×36 3919×36 3708×36

z versus f 4323×36 4463×36 4475×36 4142×36 4210×36

o versus n 4234×36 4126×36 4086×36 3875×36 3517×36

o versus s 4734×36 4691×36 4283×36 3920×36 3936×36

n versus s 5142×36 5033×36 4445×36 3881×36 3701×36

f versus s 5128×36 5328×36 4854×36 4305×36 4438×36

Table 3 Experimental results for
the classes of (z and s) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 97.19 100 98.60 γ �1, σ 2 �105

Beta 100 100 100 γ �1, σ 2 �103

Alpha 100 100 100 γ �1, σ 2 �103

Theta 100 100 100 γ �1, σ 2 �103

Delta 98.57 99.47 99.02 γ �1, σ 2 �103

Averages N/A 99.05 99.99 99.52 N/A

DWT+InfoGain
with LS-SVM

Gamma 34.16 99.34 66.78 γ �102, σ 2 �
103

Beta 27.99 96.63 62.34 γ �102, σ 2 �
10

Alpha 64.67 100 82.35 γ �1, σ 2 �10

Theta 83.54 100 91.78 γ �1, σ 2 �1

Delta 76.84 100 88.42 γ �1, σ 2 �102

Averages N/A 57.44 99.19 78.33 N/A

to evaluate the performance of the classifier. Thereafter, the
LS-SVM classifier was employed to categorize each dataset.
The LS-SVM has two fundamental parameters, which are γ

andσ 2. These parameterswere chosen empirically to achieve
the best results. The changing of these parameters affected
the execution of the LS-SVM classifier. With the intention
of gaining effective results, this study used various groups
of parameters γ and σ 2 to train the LS-SVM. We performed
the proposed method with seven different pairs of the five
epileptic EEG signals, which were classes z versus o, classes
z versus f , classes z versus s, classes o versus n, classes o
versus s, classes n versus s, and classes f versus s from the
both FFT and DWT methods with different frequency bands
as shown in Table 2.

The highest classification accuracies yielded 100% accu-
racy from the FFT and InfoGain (FFT+InfoGain) for the
pairs of classes z versus s, classes o versus s, classes n versus
s, classes f versus s, and classes z versus o, when γ �1 and
σ 2 �103, as shown in Tables 3, 4, 5, 6, 7, 8 and 9.

Tables 3, 4, 5, 6, 7, 8 and 9 illustrate the experimental
results for the seven pairs of the epileptic EEG recordings in
five different bands from the FFT and DWT combined with
the InfoGain technique. By applying the FFT+InfoGain, a
100% classification accuracy was achieved with the follow-
ing five pairs:

• Healthy peoplewith eyes open (class z) versus the epileptic
patients through activity seizures (class s).
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Table 4 Experimental results for
the classes of (o and s) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 94.53 100 97.27 γ �1, σ 2 �105

Beta 100 100 100 γ �1, σ 2 �103

Alpha 100 100 100 γ �1, σ 2 �103

Theta 100 100 100 γ �1, σ 2 �103

Delta 99.66 98.28 98.97 γ �1, σ 2 �104

Averages N/A 98.84 99.66 99.25 N/A

DWT+InfoGain
with LS-SVM

Gamma 23.74 99.83 61.78 γ �104, σ 2 �
103

Beta 23.68 97.28 60.51 γ �102, σ 2 �
10

Alpha 66.23 98.32 82.29 γ �102, σ 2 �
102

Theta 82.82 100 91.42 γ �1, σ 2 �1

Delta 81.50 100 90.75 γ �1, σ 2 �102

Averages N/A 55.59 99.09 77.35 N/A

Table 5 Experimental results for
the classes of (n and s) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 92.66 100 96.34 γ �1, σ 2 �103

Beta 100 100 100 γ �1, σ 2 �103

Alpha 100 100 100 γ �1, σ 2 �103

Theta 100 100 100 γ �1, σ 2 �103

Delta 100 100 100 γ �1, σ 2 �103

Averages N/A 98.53 100 99.27 N/A

DWT+InfoGain
with LS-SVM

Gamma 60.78 100 80.39 γ �102, σ 2 �
102

Beta 55.80 94.92 75.38 γ �102, σ 2 �
10

Alpha 82.41 100 91.21 γ �10, σ 2 �1

Theta 78.76 100 89.39 γ �1, σ 2 �1

Delta 55.17 100 77.61 γ �1, σ 2 �1

Averages N/A 66.58 98.98 82.80 N/A

• Healthy people with eyes closed (class o) versus class s.
• Epileptic patients with free seizures (class n) versus class
s.

• Another group of epileptic patients with free seizures
(class f ) versus class s.

• Classes z versus o.

Epileptic seizures are normally shown in the EEGs with
high amplitudes. There are significant differences between
healthy EEG signals such as classes z, o and n, and unhealthy
EEG signals, such as class s. The differences make it easier
to classify them as demonstrated by a 100% classification

accuracy by implementing the FFT with Beta, Alpha, Theta,
and Delta frequency bands based on InfoGain on five pairs.

For the pairs of o versus n and z versus f , a 95.62 and
88.32% accuracy was obtained, respectively, for Gamma and
Beta bands, when γ �1 and σ 2 �102. The two groups were
more analogous to each other, which led to the lowest clas-
sification accuracy compared with the classification results
for other epileptic EEG pairs.

The highest accuracy (100%)was achieved by usingDWT
and InfoGain (DWT+InfoGain) on pair f versus s, when
the parameters γ and σ 2 (102, 102). Also, with the DWT+
InfoGain approach, the results obtained from the remain-
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Table 6 Experimental results for
the classes of (f and s) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 97.36 100 98.68 γ �1, σ 2 �105

Beta 100 100 100 γ �1, σ 2 �103

Alpha 100 100 100 γ �1, σ 2 �103

Theta 100 100 100 γ �1, σ 2 �103

Delta 98.17 100 99.08 γ �104, σ 2 �
103

Averages N/A 99.11 100 99.55 N/A

DWT+InfoGain
with LS-SVM

Gamma 60.69 99.22 79.95 γ �104, σ 2 �
102

Beta 78.83 94.29 86.56 γ �102, σ 2 �
10

Alpha 100 100 100 γ �102, σ 2 �
102

Theta 100 98.70 99.35 γ �10, σ 2 �
102

Delta 100 98.74 99.37 γ �103, σ 2 �
103

Averages N/A 87.90 98.19 93.05 N/A

Table 7 Experimental results for
the classes of (o and n) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 100 91.26 95.62 γ �1, σ 2 �102

Beta 65.09 73.98 69.54 γ �103, σ 2 �
103

Alpha 82.93 100 91.47 γ �1, σ 2 �10

Theta 67.68 100 83.86 γ �1, σ 2 �102

Delta 84.34 98.18 91.26 γ �10, σ 2 �
10

Averages N/A 80.01 92.68 86.35 N/A

DWT+InfoGain
with LS-SVM

Gamma 61.32 97.55 79.43 γ �104, σ 2 �
103

Beta 69.69 95.37 82.53 γ �10, σ 2 �
10

Alpha 82.85 93.37 88.11 γ �10, σ 2 �
10

Theta 70.72 91.56 81.15 γ �10, σ 2 �
102

Delta 84.35 83.94 84.14 γ �1, σ 2 �10

Averages N/A 73.79 92.36 83.07 N/A

ing six pairs were 91.78, 91.42, 91.21, 88.11, 80.98 and
99.69% classification accuracies, respectively. The results
were achieved using various groupings of the parameters γ

and σ 2, which were (1, 1), (1, 1), (10, 1), (10, 10), (102, 102)
and (102, 103), respectively, as provided in Tables 3, 4, 5, 6,
7, 8 and 9.

Additionally, this study compared the experimental results
and time complexity by the FFT and DWT. Even though the
FFT approach took 9.07 s to decompose the epileptic EEG
signals, this method achieved 100% classification accuracy
with five different groups by using the LS-SVM classifier.
The DWT tackled the same groups in 1.16 s and yielded the
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Table 8 Experimental results for
the classes of (z and f ) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 59.89 96.30 78.10 γ �1, σ 2 �103

Beta 81.05 95.58 88.32 γ �1, σ 2 �102

Alpha 57.55 98.87 78.23 γ �10, σ 2 �
102

Theta 52.32 99.47 75.91 γ �102, σ 2 �
102

Delta 64.00 97.14 80.57 γ �10, σ 2 �
10

Averages N/A 62.96 97.47 80.23 N/A

DWT+InfoGain
with LS-SVM

Gamma 73.20 88.75 80.98 γ �102, σ 2 �
102

Beta 48.93 88.77 68.87 γ �10, σ 2 �
10

Alpha 48.93 88.95 68.96 γ �10, σ 2 �
102

Theta 67.69 75.77 71.73 γ �102, σ 2 �
104

Delta 51.04 93.74 72.39 γ �10, σ 2 �
10

Averages N/A 57.96 87.20 72.59 N/A

Table 9 Experimental results for
the classes of (z and o) pair in
the epileptic EEG database with
different groups of parameters,
γ and σ 2

Methods Bands Sensitivity (%) Specificity (%) Accuracy (%) Parameter
groups

FFT+InfoGain
with LS-SVM

Gamma 61.21 81.72 71.47 γ �1, σ 2 �103

Beta 90.50 99.59 95.05 γ �1, σ 2 �103

Alpha 100 100 100 γ �1, σ 2 �103

Theta 79.59 94.70 87.16 γ �1, σ 2 �102

Delta 99.43 100.00 99.71 γ �10, σ 2 �
103

Averages N/A 86.15 95.20 90.68 N/A

DWT+InfoGain
with LS-SVM

Gamma 100 99.39 99.69 γ �102, σ 2 �
103

Beta 82.05 83.92 82.99 γ �10, σ 2 �
10

Alpha 77.66 88.11 82.89 γ �0.5, σ 2 �
10

Theta 75.41 74.24 74.82 γ �1, σ 2 �102

Delta 77.42 69.25 73.33 γ �10, σ 2 �
102

Averages N/A 82.51 82.98 82.74 N/A

lowest accuracies by utilizing the same classifier as presented
in Table 10.

The comparison of several approaches was listed in terms
of the accuracy for the epileptic EEG signals classification
as shown in Table 11. In this table, the performance results
of the proposed method were compared with the six exist-

ing methods (Nicolaou and Georgiou 2012; Zhu et al. 2013;
Shen et al. 2013; Wang et al. 2014; Kaya et al. 2014; Samiee
et al. 2015) by using the same datasets. We highlighted in
bold font the highest overall classification accuracy between
the techniques. It can certainly be seen from the results in
Table 11 that the results yielded from the FFT based on
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Table 10 Comparison of the
results and time complexity for
the FFT and DWT approaches

Different pairs Bands The accuracy of the
FFT+InfoGain

The accuracy of the
DWT+InfoGain

z versus s Theta 100% 91.78%

o versus s Theta 100% 91.42%

n versus s Alpha 100% 91.21%

f versus s Alpha 100% 100%

o versus n Gamma and Alpha,
respectively

95.62% 88.11%

z versus f Beta and Gamma,
respectively

88.32% 80.98%

z versus o Alpha and Gamma,
respectively

100% 99.69%

Time (s) N/A 9.07 s 1.16 s

Table 11 Comparison with the
existing techniques with the
epileptic EEG data

Authors Methods Classification test
(Classes)

Overall accuracy (%)

Al Ghayab et al. (the
proposed method)

FFT+InfoGain+LS-SVM z versus s, o versus s, n
versus s, f versus s,
and z versus o

100.0

DWT+InfoGain+LS-SVM z versus s, o versus s, n
versus s, f versus s,
and z versus o

94.8

Samiee et al. (2015) Rational discrete short-time
Fourier transform+
multilayer perceptron

z versus s, o versus s and
n versus s

99.2

Kaya et al. (2014) One-dimensional local
binary (non-uniform)+
functional tree

z versus s 99.5

One-dimensional local
binary (uniform)+
functional tree

z versus s 99.0

Wang et al. (2014) Simple random sampling+
J48 decision tree

z versus s, o versus s and
n versus s

97.6

Shen et al. (2013) Wavelet+approximate
entropy +SVM

z versus s, and o versus s 99.97

Wavelet+approximate
entropy+k-nearest
neighbours

z versus s, and o versus s 99.1

Wavelet+approximate
entropy+ radial basis
function neural network

z versus s, and o versus s 99.8

Zhu et al. (2013) Sample entropy+
multi-scale K-means
clustering

z versus s, and o versus s 99.5

Nicolaou and Georgiou
(2012)

Permutation entropy+SVM z versus s, o versus s and
n versus s

88.1

the InfoGain and LS-SVM were the best compared with the
recent reported methods. The results show that the proposed
method enhanced the overall classification accuracy up to
11.9% more than the existing approaches for the classifica-
tion of the epileptic EEG recordings with the same datasets.

5 Conclusion

This research presents a new method to detect the epileptic
seizures from EEG signals. Two frequency domain tech-
niques FFT and DWT were used individually to investigate
which method was the most suitable for EEG feature extrac-
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tion. Thereafter, the extracted features were utilized as the
input to the information gain algorithm (InfoGain) for rank-
ing and selecting the most discriminative statistical features.
The LS-SVMwith aRBF kernel functionwas used for classi-
fying two classes of EEG recordings. In this study, different
pairs of two class epileptic EEG signals were tested. The
FFT combined with InfoGain yielded a 100% average clas-
sification accuracy for five different pairs of epileptic EEG
data, which were: healthy people with eyes open (class z)
versus the epileptic patients through activity seizures (class
s); healthy people with eyes closed (class o) versus class s;
epileptic patients with free seizures (class n) versus class s;
patients with free seizures epileptic (class f ) versus class s;
and class z versus o. However, for two other groups of (o
vs. n) and (z vs. f ), the classification accuracies were 95.62
and 88.32%, respectively, because these two pairs were more
similar to each other.

Overall, the results demonstrate that the proposed
approach was promising for the extraction of the features
from the raw EEG data and the selection of the most impor-
tant features. Moreover, our method was compared with six
existing approaches and showed that the proposed technique
outperformed the six compared methods. This method was
capable of detecting EEG epileptic seizures with the highest
recognition rate. The proposedmethod will also be useful for
analysing and classifying other biomedical data.
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5.2 Chapter summary 

Al Ghayab et al. (2018) developed a new method to detect the epileptic seizures from 

EEG signals. They used two frequency domain techniques FFT and DWT individually 

to extract features from the epileptic EEG signals. The extracted features from FFT or 

DWT were transmitted to the InfoGain algorithm for ranking and selecting the most 

discriminative statistical features. The LS_SVM with an RBF kernel function was used 

for classifying EEG recordings. The proposed technique tested seven cases of epileptic 

EEG signals. This study proved that the FFT combined with InfoGain achieved higher 

accuracy than DWT and InfoGain. 

Al Ghayab et al. (2018) demonstrated that the proposed approach was promising 

for the extraction of the features from the EEG data and the selection of the most 

important features. Moreover, this method was compared with recent studies and 

showed that the proposed technique outperformed those methods. Al Ghayab et al. 

(2018) clearly demonstrate that the proposed method is capable of detecting EEG 

epileptic seizures with the highest recognition rate.  
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CHAPTER 6 

CONCLUSIONS AND DIRECTIONS FOR FUTURE 
WORK 

EEG signals are affected by brain diseases, such as epileptic seizures, sleep problems, 

Alzheimer, etc. Analysis and classification methods of EEG signals are used to detect 

and identify brain disorders. These methods are grouped into five domains: time 

domain, frequency domain, time-frequency domain, traditional nonlinear method, and 

graph theory. Practical and effective approaches are therefore in demand to achieve 

accurate results for EEG classification. This chapter summarises the analysis and 

classification techniques presented in this thesis, and also some work limitations are 

discussed for future research guidance. 

6.1 Summary and Conclusions of the Thesis 

In this research, EEG analysis and classification methods are developed in four 

domains to identify different categorises of EEG recordings, with four new techniques: 

1. To develop a new technique to analyse and classify epileptic EEG signals based on

the simple random sampling (SRS) and sequential feature selection (SFS). The

SRS_SFS was utilized to reduce the redundant EEG epileptic data and also

minimized the execution time as shown in Table 6.1. This method achieved a high

classification accuracy compared with other techniques, as seen in Chapter 2.

2. To develop a novel technique to classify the EEG multi-channels by blending

optimum allocation (OA) technique based power spectral density estimation

6 
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methods. The proposed OA_AR technique was implemented to extract the best 

features from big quantities of EEG signals with a small execution time. This 

scheme yielded a 100% of classification accuracy. The comparisons were made 

between the proposed scheme and the existing approaches. These comparisons 

show that the proposed technique outperforms other methods as seen in Chapter 3. 

3. To introduce an efficient feature extraction method from different EEG databases

based on a Tunable Q-factor wavelet transform for EEG signal classification. In

this technique, two different databases were used to validate the performances.

Additionally, the comparison with other methods was conducted to evaluate the

effectiveness of the proposed method as seen in Chapter 4. As a result, the method

has a great potential to extract representative features from the EEG recordings.

4. To detect the epileptic seizures in EEGs by developing a frequency domain and

information gain method. This approach took into consideration that the reduction

of dimensions of the data used and consumption time are paramount for best EEG

classification. While, this method achieved a high classification accuracy. To

evaluate the performance of this scheme, the comparisons were made between the

proposed technique and other approaches, which used the same database and the

same EEG channels as discussed in Chapter 5.

These four techniques can help doctors and other health experts to analye EEG

signals and diagnose the different brain disorders effectively. In addition, the 

proposed methods made contributions by providing significant information to the 

researchers in this filed. 

In order to accomplish these techniques, a simple random sampling (SRS) 

method, combined with sequential feature selection (SFS) was built for feature 

extraction and selection in the time domain as seen in Chapter 2. Firstly, an SRS 

technique was applied to extract the most representative features from the EEG data. 

To extract a set of features, EEG recording was divided into two levels. In the first 

level, ten samples were selected randomly from each set of EEGs. In the next level, 

five subsamples were selected randomly from each first phase sample. In order to 

determine a sample size for each level, a sample size calculator (Creative Research 

System) was used. Ultimately, nine statistical features were extracted from each 

subsample and located in one set. Secondly, the SFS algorithm was employed to select 
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the most discriminating feature and to reduce the dimensionality of EEG data. The 

SFS was utilized to select fewer numbers of uncorrelated variables were used as the 

input of a classifier for better EEG classification. Finally, a least square support vector 

machine (LS_SVM) classifier was applied to classify the extracted features. The SRS 

and SFS method was implemented on the EEG epileptic data to differentiate between 

the EEG categories. The results show that this method achieved 99.9% classification 

accuracy. 

To improve the classification performance, an optimum allocation (OA) technique 

based power spectral density estimation method was developed for epileptic EEG 

classification in the time-frequency domain as discussed in Chapter 3. In this 

technique, the OA method to determine representative sample points was introduced 

in two stages from the EEG data. In the first stage, a sample size was determined for 

each EEG class by using a sample size calculator. In the next stage, the OA technique 

was employed to partition each EEG class and then choose the sample points from 

each class of epileptic EEG data depending on sample size determination from the 

previous stage. In order to reduce the dimensionality of the chosen sample points and 

to extract the most relevant features from each OA sample group, two power spectral 

density estimation were used methods: periodogram and autoregressive. The extracted 

feature sets from this technique were fed to three popular machine learning classifiers: 

support vector machine (SVM), quadratic discriminant analysis (QDA) and k-nearest 

neighbour (k-NN). Furthermore, several output coding schemes were used for the 

SVM classifier, which included one vs one (1vs1), all pairs (AP), one vs all (1vsA), 

binary complete (BC), ternary complete (TC), ordinal (OR), sparse random (SR), and 

dense random (DR), were tested. In addition, this technique was implemented on a 

benchmark epileptic EEG database for classification and evaluation. The experimental 

results showed that the OA_AR method yielded 100% overall accuracy with SVM for 

all epileptic EEG sets.  

For the nonlinear methods, a Tunable Q-factor wavelet transform (TQWT) and 

statistical approach was developed for EEG signal analysis and classification as 

explained in Chapter 4. In this framework, the multi-channel EEG signals were 

decomposed into a number of sub-bands using the TQWT method. The TQWT method 

was parameterized by its Q factor (Q), redundancy (R) and decomposition level (jth). 

This method also depends on the resonance of the EEG signals, rather than on 
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frequency or scaling as in other wavelet transform methods. Thereafter, a statistical 

method was applied on the sub-bands. The statistical method was used to divide each 

sub-band into n windows, and then extracted ten statistical features from each window. 

Lastly, the extracted features were used as the input to a bagging tree, k-NN and SVM 

as classifiers to evaluate the performance of this technique. Further, this technique was 

conducted on two different EEG databases. The results presented indicated that the 

TQWT with k-NN classifier achieved 100% average classification accuracy for two 

databases.   

In the frequency domain, a new algorithm that combines the methods from the 

frequency domain with an information Gain (InfoGain) technique was presented to 

detect the epileptic seizures in EEGs as shown in Chapter 5. Firstly, two frequency 

domain methods, namely fast Fourier transform (FFT) and discrete wavelet transform 

(DWT), were applied to decomposed EEG recording signals. In order to extract the 

representative features, each frequency band was segmented into a number of 

segmentations and key statistical features were extracted from each segment. 

Hereinafter, the InfoGain was employed to rank the extracted features and then to 

select the most important features. Finally, to evaluate the performance of this 

algorithm, the LS-SVM classifier was used. The experimental results demonstrated 

that the FFT + InfoGain obtained 100% average accuracy with some epileptic EEG 

cases, which were tested on a benchmark EEG database.  

Table 6.1 Total of the dimension reduction and the time consuming from each 
studies and the whole database. 

     Method 

Dataset 

Raw Datasets SRS_SFS 
with 

LS_SVM 

OA_AR with 
SVM 

TQWT with 
k-NN

FFT_InfoGain 
with LS_SVM 

Set (A) 4097×100 1000×35 512×100 1024×20 1909×36 
Set (B) 4097×100 -- 512×100 1024×20 1990×36 
Set (C) 4097×100 -- 512×100 1024×20 1972×36 
Set (D) 4097×100 -- 512×100 1024×20 2460×36 
Set (E) 4097×100 1000×35 512×100 1024×20 2161×36 

Total 
Dimension 

20,485×100 2000×35 2580×100 5120×20 10,492×36 

Execution 
time 

25.93s 0.16s 3.08s 0.28s 1.16s 
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It was found that the techniques could reduce the implemantation time, as can 

be seen in Table 6.1. Table 6.1 shows a comparison for the four proposed 

techniques in terms of data reduction and time consuming. As in Table 6.1 the 

data points to the algorithms have been reduced through the four proposed 

techniques as well as the execution time. This table demonstraties that the 

proposed approaches have a good potential to extract the most significant 

features. These extracted features from the developed methods led to decrease the 

exeution time to classify the EEG signals. 

In terms of accuracy, I have compared the proposed techniques with the recent 

methods as can be seen in each chapter in this thesis. I found that, the developed 

techniques outperformed the state-of-the-art works with a 14.1% improvement. 

The proposed approaches will assist experts to automatically analyse a large 

volume of EEG data and benefit epilepsy research. 

To sum up, it can be concluded that this research project has established new 

and successful algorithms and techniques for reliable classification of epileptic 

EEG recordings in the biomedical field. These approaches will assist experts to 

detect and diagnose brain related disorders and the outcomes will help epileptic 

patients to improve the quality of their lives. 

6.2 Future Work 

This study develops analysis and feature extraction techniques from EEG 

recordings for classification in the following different domains: time domain; 

frequency domain; time-frequency domain; and nonlinear method. It is believed 

that the techniques discussed in this thesis will provide great potential to analyse 

EEG signals in the biomedical field. To enable additional improvements to the 

methods presented in this thesis, a few key issues are highlighted which are 

addressed below. 

In regards to the SRS and SFS technique, it was tested on two classes of EEG 

signals: health class (A); vs patient during epileptic seizures class (E). 

Technically, the SRS method was applied to divide the EEG signals into two 

levels (samples and subsamples) through the distribution of population. In future, 

the SRS method cauld be used to segment the EEG data into three or more levels. 

At the last subsamples, more than nine statistical features with entropies features 

will extract and study the characteristics of each feature to find the harmonize 
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among these features. The SFS algorithm will test these features and select the 

most proportional features from all EEG classes. This study will extract the most 

representative features of raw EEG data. 

With regard to the OA_AR method, this was developed to extract features 

from the time-frequency domain from an offline database collected by Bonn 

University, Germany. This approach works well with this database, but it may 

increase the delay time when implemented with a real time application. In the 

future, the OA_AR scheme might be executed on a real time database by using a 

big data framwork.  

In addition, the TQWT based feature extraction method was developed to 

analyse and classify two different epileptic EEG databases. The TQWT is a 

parametric method that depends on  Q factor (Q) and redundancy (R), which were 

set empirically, to decompose EEG signals into a number of sub-bands. In the 

future, the technique could be used to investigate the relation between two 

parameters (Q and R) to obtain the best decomposition level and to extract key 

features from each level. 

Finally, two frequency domain methods (FFT and DWT) with InfoGain were 

tested using offline Epileptic EEG signals. This method was used to classify 

binary EEG classes. This scheme can be extended in the future to test multi-

channel EEG signals, and also to be implemented on real time databases. 

Additionally, the raw EEG recordings contain a variety of noises and 

artifacts, both from the subject and from equipment interferences. In this study, 

we did not develop techniques which might deal with removing noise and artifacts 

from raw EEG data. Further study is needed to successfully remove noise without 

comprosing EEG signals for the proposed algorithms. In the future, these 

algorithms would be developed so that there could be a significant improvement 

in signal classification, after removal of these kind of unrelated signals. 

In summary, these proposed techniques can successfully classify EEG signals 

and efficiently get accurate results. However, room for improvement still exists 

and therefore, further study needs to be undertaken in the future.
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Appendix A : Matlab simulation code for Simple Random Sampling and 
Sequential Feature Selection 

A simulation code for classification of epileptic EEG signals is presented. 

A.I Matlab code for simple random sampling (SRS) and sequential feature selection

(SFS).

A 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
/\%%%%%%%%%% Read Epileptic EEG database %%%%%%%%%/\ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 
clc 

for i=1:9 
    zds=sprintf('Z00%d.txt',i); 
    ods=sprintf('O00%d.txt',i); 
    nds=sprintf('N00%d.txt',i); 
    fds=sprintf('F00%d.txt',i); 
    sds=sprintf('S00%d.txt',i); 
    z(:,i)=load(zds); 
    o(:,i)=load(ods); 
    n(:,i)=load(nds); 
    f(:,i)=load(fds); 
    s(:,i)=load(sds); 
end 
for i=10:99 
    zds=sprintf('Z0%d.txt',i); 
    ods=sprintf('O0%d.txt',i); 
    nds=sprintf('N0%d.txt',i); 
    fds=sprintf('F0%d.txt',i); 
    sds=sprintf('S0%d.txt',i); 
    z(:,i)=load(zds); 
    o(:,i)=load(ods); 
    n(:,i)=load(nds); 
   f(:,i)=load(fds); 

    s(:,i)=load(sds); 
end 
for i=100 
    zds=sprintf('Z%d.txt',i); 
    ods=sprintf('O%d.txt',i); 
    nds=sprintf('N%d.txt',i); 
    fds=sprintf('F%d.txt',i); 
    sds=sprintf('S%d.txt',i); 

    z(:,i)=load(zds); 
    o(:,i)=load(ods); 
    n(:,i)=load(nds); 
    f(:,i)=load(fds); 
    s(:,i)=load(sds); 
end 

x=[z s];         % Combine set A (z) and set E (s) 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%% Function of SRS Technique %%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m=1;s=[];ss=[]; 
for ii=1:200 

    for jj=1:10 

s(:,jj)=randsample(x(:,ii),3287); 

for k=1:5 
ss(:,k)=randsample(s(:,jj),2745); 
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fs1(:,k)=[min(ss(:,k)),max(ss(:,k)),mean(ss(:,k)),median(ss(:,k)),mo
de(ss(:,k)),median(ss(:,k))/2,3*median(ss(:,k))/2,(3*median(ss(:,k))
/2-median(ss(:,k))/2), std(ss(:,k))]; 

end 
fs2(m,:)=fs1(:);      % Extracted features  
m=m+1;  

    end 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Function of SFS technique %%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc 
load fs2 % load the features were extracted from Simple Random 

Sampling method (SRST2). 
P=fs2; 
[z1 z2]=size(P); 
  for i=1:z1 
    N=P(i,:); 
    N1=sqfeat1(N); % calls the sqfeat1 function to select the key 

features. 
    [M M1]=size(N1); 
    SFS_feature(i,1:M1)=N1(1,1:M1); 
  end 
%% 
tic 
X=SFS_feature; 
x=[X(1:500,:);X(1001:1500,:)]; 
y=[1*ones(500,1);-1*ones(500,1)]; 

Xtest= [X(501:1000,:);X(1501:2000,:)]; 
Ytest=[1*ones(500,1);-1*ones(500,1)]; 

size(x) 
size(y) 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% LS_SVM classifier %%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
gam=10; 
sig2=1; 
type='classification'; 

[alpha,b] = trainlssvm({x,y,type,gam,sig2,'RBF_kernel'}); 
disp(b) 

Yh=simlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},Xtest); 
plotlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b}); 
%% 

[perc,n,which]=misclass(Ytest,Yh); % Which: contains the indices of 
the misclassificated instances(the 
first column gives the row, the 
second the column index) 

n; % is the number of misclassifications 
perc; % is the rate of misclassifications (between 0 and 1) 
[C,order] = confusionmat(Ytest,Yh); 



Appendices 

120 

C 
order 

%% 
Y_latent=latentlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},x);  
[area,se,thresholds,oneMinusspec,sens,TN,TP,FN,FP]=roc({x,y,type,gam
,sig2,'RBF_kernel'}); 
%[thresholds oneMinusspec sens ]; 

%% 
Sensitivity =TP/(TP+FN)*100 
Specificity =TN/(TN+FP)*100 
Accuracy =(TP+TN)/(TP+TN+FP+FN)*100 
toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% Sub-Function of SFS technique %%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [ Y ] = Untitled2( X ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

Y=[] 
[L1 L2]=size(X) 
for j=1:L1 
    k=0 
ave= mean(X(j,:)); % select different types of features such as 

%{min(X(j,:)),max(X(j,:)),median(X(j,:)),mode(X(j
,:)),median(X(j,:))/2,3*median(X(j,:))/2,(3*media
n(X(j,:))/2-median(X(j,:))/2), std(X(j,:))} 

  for i=1:L2 
     fnumber=X(j,i); 
    if fnumber<=ave % check the feature depand on (<= or >=) and 

then bet the selected features in vactor which 
is fnumber. 

k=k+1; 
Y1(k)=X(j,i); 

    end 
  end 
     Y(j,:)=Y1(1,:);

end 
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Appendix B : Matlab simulation code for Optimum Allocation and 
Power Spectral Density Estimation 

A simulation code for classification of epileptic EEG signals is presented. 

B.I Matlab code for optimum allocation (OA) and power spectrum density

estimation.

B 



Appendices 

122 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
/\%%%%%%%%%%%%% Read Epileptic EEG %%%%%%%%%%%/\ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Reading epileptic EEG data is same as in the appendix A 

%% 
sign1=[z]; 
sign2=[o]; 
sign3=[n]; 
sign4=[f]; 
sign5=[s]; 
 %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% Segmentation %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sign11=sign1(1:1024,:); 
sign12=sign1(1025:2048,:); 
sign13=sign1(2049:3072,:); 
sign14=sign1(3073:4097,:); 

sign21=sign2(1:1024,:); 
sign22=sign2(1025:2048,:); 
sign23=sign2(2049:3072,:); 
sign24=sign2(3073:4097,:); 

sign31=sign3(1:1024,:); 
sign32=sign3(1025:2048,:); 
sign33=sign3(2049:3072,:); 
sign34=sign3(3073:4097,:); 

sign41=sign4(1:1024,:); 
sign42=sign4(1025:2048,:); 
sign43=sign4(2049:3072,:); 
sign44=sign4(3073:4097,:); 

sign51=sign5(1:1024,:); 
sign52=sign5(1025:2048,:); 
sign53=sign5(2049:3072,:); 
sign54=sign5(3073:4097,:); 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Apply OA with PSDE %%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%% class A %%%%%%%%%%%%%%%%%%% 

sum(var(sign11(:,1:100))); 
sum(var(sign12(:,1:100))); 
sum(var(sign13(:,1:100))); 
sum(var(sign14(:,1:100))); 

sign11_n= 
round(length(sign11)*sqrt(sum(var(sign11(:,1:100))))*3288/(l
ength(sign11)*sqrt(sum(var(sign11(:,1:100))))+length(sign12)
*sqrt(sum(var(sign12(:,1:100))))+length(sign13)*sqrt(sum(var
(sign13(:,1:100))))+length(sign14)*sqrt(sum(var(sign14(:,1:1
00))))));
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%%% sign11_n= sample size from x11 by optimum allocation formula 
sign12_n= 

round(length(sign12)*sqrt(sum(var(sign12(:,1:100))))*3288/(l
ength(sign11)*sqrt(sum(var(sign11(:,1:100))))+length(sign12)
*sqrt(sum(var(sign12(:,1:100))))+length(sign13)*sqrt(sum(var
(sign13(:,1:100))))+length(sign14)*sqrt(sum(var(sign14(:,1:1
00))))));

sign13_n= 
round(length(sign13)*sqrt(sum(var(sign13(:,1:100))))*3288/(l
ength(sign11)*sqrt(sum(var(sign11(:,1:100))))+length(sign12)
*sqrt(sum(var(sign12(:,1:100))))+length(sign13)*sqrt(sum(var
(sign13(:,1:100))))+length(sign14)*sqrt(sum(var(sign14(:,1:1
00))))));

sign14_n= 
round(length(sign14)*sqrt(sum(var(sign14(:,1:100))))*3288/(l
ength(sign11)*sqrt(sum(var(sign11(:,1:100))))+length(sign12)
*sqrt(sum(var(sign12(:,1:100))))+length(sign13)*sqrt(sum(var
(sign13(:,1:100))))+length(sign14)*sqrt(sum(var(sign14(:,1:1
00))))));

%% 

posi_sign11_n=randsample([1:size(sign11,1)],sign11_n); 
sample_sign11_n=sign11(posi_sign11_n,:); 
pxx11 = periodogram(sample_sign11_n); %Extract periodogram from the 

1st window for set A 
AuR11 = pcov(sample_sign11_n,5);      %Extract Autoregressive from 

the 1st window for set A with 
order time is 5 

posi_sign12_n=randsample([1:size(sign12,1)],sign12_n); 
sample_sign12_n=sign12(posi_sign12_n,:); 
pxx12 = periodogram(sample_sign12_n); %Extract periodogram from the 

2nd window for set A 
AuR12 = pcov(sample_sign12_n,5);      %Extract Autoregressive from 

the 2nd window for set A with 
order time is 5 

posi_sign13_n=randsample([1:size(sign13,1)],sign13_n); 
sample_sign13_n=sign13(posi_sign13_n,:); 
pxx13 = periodogram(sample_sign13_n); %Extract periodogram from the 

3rd window for set A 
AuR13 = pcov(sample_sign13_n,5);      %Extract Autoregressive from 

the 3rd window for set A with 
order time is 5 

posi_sign14_n=randsample([1:size(sign14,1)],sign14_n); 
sample_sign14_n=sign14(posi_sign14_n,:); 
pxx14 = periodogram(sample_sign14_n); %Extract periodogram from the 

4th window for set A 
AuR14 = pcov(sample_sign14_n,5);      %Extract Autoregressive from 

the 4th window for set A with 
order time is 5 

new_sign1=[sample_sign11_n; sample_sign12_n; sample_sign13_n; 
sample_sign14_n]; 
pxx1=[pxx11;pxx12;pxx13;pxx14];       %All periodogram from four 

windows of set A 
AuR_A=[AuR11;AuR12;AuR13;AuR14];      %All Autoregressive from four 

windows of set A 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%% class B %%%%%%%%%%%%%%%%%%%%%%%%%%% 

sum(var(sign21(:,1:100))); 
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sum(var(sign22(:,1:100))); 
sum(var(sign23(:,1:100))); 
sum(var(sign24(:,1:100))); 

sign21_n= 
round(length(sign21)*sqrt(sum(var(sign21(:,1:100))))*3288/(l
ength(sign21)*sqrt(sum(var(sign21(:,1:100))))+length(sign22)
*sqrt(sum(var(sign22(:,1:100))))+length(sign23)*sqrt(sum(var
(sign23(:,1:100))))+length(sign24)*sqrt(sum(var(sign24(:,1:1
00))))));

%%% sign21_n= sample size from x21 
sign22_n= 

round(length(sign22)*sqrt(sum(var(sign22(:,1:100))))*3288/(l
ength(sign21)*sqrt(sum(var(sign21(:,1:100))))+length(sign22)
*sqrt(sum(var(sign22(:,1:100))))+length(sign23)*sqrt(sum(var
(sign23(:,1:100))))+length(sign24)*sqrt(sum(var(sign24(:,1:1
00))))));

sign23_n= 
round(length(sign23)*sqrt(sum(var(sign23(:,1:100))))*3288/(l
ength(sign21)*sqrt(sum(var(sign21(:,1:100))))+length(sign22)
*sqrt(sum(var(sign22(:,1:100))))+length(sign23)*sqrt(sum(var
(sign23(:,1:100))))+length(sign24)*sqrt(sum(var(sign24(:,1:1
00))))));

sign24_n= 
round(length(sign24)*sqrt(sum(var(sign24(:,1:100))))*3288/(l
ength(sign21)*sqrt(sum(var(sign21(:,1:100))))+length(sign22)
*sqrt(sum(var(sign22(:,1:100))))+length(sign23)*sqrt(sum(var
(sign23(:,1:100))))+length(sign24)*sqrt(sum(var(sign24(:,1:1
00))))));

%% 

posi_sign21_n=randsample([1:size(sign21,1)],sign21_n); 
sample_sign21_n=sign21(posi_sign21_n,:); 
pxx21 = periodogram(sample_sign21_n); %Extract periodogram from the 

1st window for set B 
AuR21 = pcov(sample_sign21_n,5);      %Extract Autoregressive from 

the 1st window for set B with 
order time is 5 

posi_sign22_n=randsample([1:size(sign22,1)],sign22_n); 
sample_sign22_n=sign22(posi_sign22_n,:); 
pxx22 = periodogram(sample_sign22_n); %Extract periodogram from the 

2nd window for set B 
AuR22 = pcov(sample_sign22_n,5);      %Extract Autoregressive from 

the 2nd window for set B with 
order time is 5 

posi_sign23_n=randsample([1:size(sign23,1)],sign23_n); 
sample_sign23_n=sign23(posi_sign23_n,:); 
pxx23 = periodogram(sample_sign23_n); %Extract periodogram from the 

3rd window for set B 
AuR23 = pcov(sample_sign23_n,5);      %Extract Autoregressive from 

the 3rd window for set B with 
order time is 5 

posi_sign24_n=randsample([1:size(sign24,1)],sign24_n); 
sample_sign24_n=sign24(posi_sign24_n,:); 
pxx24 = periodogram(sample_sign24_n); %Extract periodogram from the 

4th window for set B 
AuR24 = pcov(sample_sign24_n,5);      %Extract Autoregressive from 

the 4th window for set B with 
order time is 5 

new_sign2=[sample_sign21_n; sample_sign22_n; sample_sign23_n; 
sample_sign24_n]; 
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pxx2=[pxx21;pxx22;pxx23;pxx24];       %All periodogram form four 
windows of set B 

AuR_B=[AuR21;AuR22;AuR23;AuR24];      %All Autoregressive from four 
windows of set B 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%% Class C %%%%%%%%%%%%%%%%%%%%%%%%%%% 

sum(var(sign31(:,1:100))); 
sum(var(sign32(:,1:100))); 
sum(var(sign33(:,1:100))); 
sum(var(sign34(:,1:100))); 

sign31_n= 
round(length(sign31)*sqrt(sum(var(sign31(:,1:100))))*3288/(l
ength(sign31)*sqrt(sum(var(sign31(:,1:100))))+length(sign32)
*sqrt(sum(var(sign32(:,1:100))))+length(sign33)*sqrt(sum(var
(sign33(:,1:100))))+length(sign34)*sqrt(sum(var(sign34(:,1:1
00))))));

%%% sign31_n= sample size from x31 
sign32_n= 

round(length(sign32)*sqrt(sum(var(sign32(:,1:100))))*3288/(l
ength(sign31)*sqrt(sum(var(sign31(:,1:100))))+length(sign32)
*sqrt(sum(var(sign32(:,1:100))))+length(sign33)*sqrt(sum(var
(sign33(:,1:100))))+length(sign34)*sqrt(sum(var(sign34(:,1:1
00))))));

sign33_n= 
round(length(sign33)*sqrt(sum(var(sign33(:,1:100))))*3288/(l
ength(sign31)*sqrt(sum(var(sign31(:,1:100))))+length(sign32)
*sqrt(sum(var(sign32(:,1:100))))+length(sign33)*sqrt(sum(var
(sign33(:,1:100))))+length(sign34)*sqrt(sum(var(sign34(:,1:1
00))))));

sign34_n= 
round(length(sign34)*sqrt(sum(var(sign34(:,1:100))))*3288/(l
ength(sign31)*sqrt(sum(var(sign31(:,1:100))))+length(sign32)
*sqrt(sum(var(sign32(:,1:100))))+length(sign33)*sqrt(sum(var
(sign33(:,1:100))))+length(sign34)*sqrt(sum(var(sign34(:,1:1
00))))));

%% 

posi_sign31_n=randsample([1:size(sign31,1)],sign31_n); 
sample_sign31_n=sign31(posi_sign31_n,:); 
pxx31 = periodogram(sample_sign31_n); %Extract periodogram from the 

1st window for set C 
AuR31 = pcov(sample_sign31_n,5);      %Extract Autoregressive from 

the 1st window for set C with 
order time is 5 

posi_sign32_n=randsample([1:size(sign32,1)],sign32_n); 
sample_sign32_n=sign32(posi_sign32_n,:); 
pxx32 = periodogram(sample_sign32_n); %Extract periodogram from the 

2nd window for set C 
AuR32 = pcov(sample_sign32_n,5);      %Extract Autoregressive from 

the 2nd window for set C with 
order time is 5 

posi_sign33_n=randsample([1:size(sign33,1)],sign33_n); 
sample_sign33_n=sign33(posi_sign33_n,:); 
pxx33 = periodogram(sample_sign33_n); %Extract periodogram from the 

3rd window for set C 
AuR33 = pcov(sample_sign33_n,5);      %Extract Autoregressive from 

the 3rd window for set C with 
order time is 5 

posi_sign34_n=randsample([1:size(sign34,1)],sign34_n); 
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sample_sign34_n=sign34(posi_sign34_n,:); 
pxx34 = periodogram(sample_sign34_n); %Extract periodogram from the 

4th window for set C 
AuR34 = pcov(sample_sign34_n,5);      %Extract Autoregressive from 

the 4th window for set C with 
order time is 5 

new_sign3=[sample_sign31_n; sample_sign32_n; sample_sign33_n; 
sample_sign34_n]; 
pxx3=[pxx31;pxx32;pxx33;pxx34];       %All periodogram form four 

windows for set C 
AuR_C=[AuR31;AuR32;AuR33;AuR34]; 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%% class D %%%%%%%%%%%%%%%%%%%%%%%%%%% 

sum(var(sign41(:,1:100))); 
sum(var(sign42(:,1:100))); 
sum(var(sign43(:,1:100))); 
sum(var(sign44(:,1:100))); 

sign41_n= 
round(length(sign41)*sqrt(sum(var(sign41(:,1:100))))*3288/(l
ength(sign41)*sqrt(sum(var(sign41(:,1:100))))+length(sign42)
*sqrt(sum(var(sign42(:,1:100))))+length(sign43)*sqrt(sum(var
(sign43(:,1:100))))+length(sign44)*sqrt(sum(var(sign44(:,1:1
00))))));

%%% x41_n= sample size from x41 
sign42_n= 

round(length(sign42)*sqrt(sum(var(sign42(:,1:100))))*3288/(l
ength(sign41)*sqrt(sum(var(sign41(:,1:100))))+length(sign42)
*sqrt(sum(var(sign42(:,1:100))))+length(sign43)*sqrt(sum(var
(sign43(:,1:100))))+length(sign44)*sqrt(sum(var(sign44(:,1:1
00))))));

sign43_n= 
round(length(sign43)*sqrt(sum(var(sign43(:,1:100))))*3288/(l
ength(sign41)*sqrt(sum(var(sign41(:,1:100))))+length(sign42)
*sqrt(sum(var(sign42(:,1:100))))+length(sign43)*sqrt(sum(var
(sign43(:,1:100))))+length(sign44)*sqrt(sum(var(sign44(:,1:1
00))))));

sign44_n= 
round(length(sign44)*sqrt(sum(var(sign44(:,1:100))))*3288/(l
ength(sign41)*sqrt(sum(var(sign41(:,1:100))))+length(sign42)
*sqrt(sum(var(sign42(:,1:100))))+length(sign43)*sqrt(sum(var
(sign43(:,1:100))))+length(sign44)*sqrt(sum(var(sign44(:,1:1
00))))));

%% 
posi_sign41_n=randsample([1:size(sign41,1)],sign41_n); 
sample_sign41_n=sign41(posi_sign41_n,:); 
pxx41 = periodogram(sample_sign41_n); %Extract periodogram from the 

1st window for set D 
AuR41 = pcov(sample_sign41_n,5);      %Extract Autoregressive from 

the 1st window for set D with 
order time is 5 

posi_sign42_n=randsample([1:size(sign42,1)],sign42_n); 
sample_sign42_n=sign42(posi_sign42_n,:); 
pxx42 = periodogram(sample_sign42_n); %Extract periodogram from the 

2nd window for set D 
AuR42 = pcov(sample_sign42_n,5);      %Extract Autoregressive from 

the 2nd window for set D with 
order time is 5 

posi_sign43_n=randsample([1:size(sign43,1)],sign43_n); 
sample_sign43_n=sign43(posi_sign43_n,:); 
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pxx43 = periodogram(sample_sign43_n); %Extract periodogram from the 
3rd window for set D 

AuR43 = pcov(sample_sign43_n,5);      %Extract Autoregressive from 
the 3rd window for set D with 
order time is 5 

posi_sign44_n=randsample([1:size(sign44,1)],sign44_n); 
sample_sign44_n=sign44(posi_sign44_n,:); 
pxx44 = periodogram(sample_sign44_n); %Extract periodogram from the 

4th window for set D 
AuR44 = pcov(sample_sign44_n,5);      %Extract Autoregressive from 

the 4th window for set D with 
order time is 5 

new_sign4=[sample_sign41_n; sample_sign42_n; sample_sign43_n; 
sample_sign44_n]; 
pxx4=[pxx41;pxx42;pxx43;pxx44];    %All periodogram form four 

windows for set D 
AuR_D=[AuR41;AuR42;AuR43;AuR44]; 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%% class E %%%%%%%%%%%%%%%%%%%%%%%%%%% 

sum(var(sign51(:,1:100))); 
sum(var(sign52(:,1:100))); 
sum(var(sign53(:,1:100))); 
sum(var(sign54(:,1:100))); 

sign51_n= 
round(length(sign51)*sqrt(sum(var(sign51(:,1:100))))*3288/(l
ength(sign51)*sqrt(sum(var(sign51(:,1:100))))+length(sign52)
*sqrt(sum(var(sign52(:,1:100))))+length(sign53)*sqrt(sum(var
(sign53(:,1:100))))+length(sign54)*sqrt(sum(var(sign54(:,1:1
00))))));

%%% sign51_n= sample size from x51 
sign52_n= 

round(length(sign52)*sqrt(sum(var(sign52(:,1:100))))*3288/(l
ength(sign51)*sqrt(sum(var(sign51(:,1:100))))+length(sign52)
*sqrt(sum(var(sign52(:,1:100))))+length(sign53)*sqrt(sum(var
(sign53(:,1:100))))+length(sign54)*sqrt(sum(var(sign54(:,1:1
00))))));

sign53_n= 
round(length(sign53)*sqrt(sum(var(sign53(:,1:100))))*3288/(l
ength(sign51)*sqrt(sum(var(sign51(:,1:100))))+length(sign52)
*sqrt(sum(var(sign52(:,1:100))))+length(sign53)*sqrt(sum(var
(sign53(:,1:100))))+length(sign54)*sqrt(sum(var(sign54(:,1:1
00))))));

sign54_n= 
round(length(sign54)*sqrt(sum(var(sign54(:,1:100))))*3288/(l
ength(sign51)*sqrt(sum(var(sign51(:,1:100))))+length(sign52)
*sqrt(sum(var(sign52(:,1:100))))+length(sign53)*sqrt(sum(var
(sign53(:,1:100))))+length(sign54)*sqrt(sum(var(sign54(:,1:1
00))))));

%% 
posi_sign51_n=randsample([1:size(sign51,1)],sign51_n); 
sample_sign51_n=sign51(posi_sign51_n,:); 
pxx51 = periodogram(sample_sign51_n); %Extract periodogram from the 

1st window for set E 
AuR51 = pcov(sample_sign51_n,5);      %Extract Autoregressive from 

the 1st window for set E with 
order time is 5 

posi_sign52_n=randsample([1:size(sign52,1)],sign52_n); 
sample_sign52_n=sign52(posi_sign52_n,:); 
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pxx52 = periodogram(sample_sign52_n); %Extract periodogram from the 
2nd window for set E 

AuR52 = pcov(sample_sign52_n,5);      %Extract Autoregressive from 
the 2nd window for set E with 
order time is 5 

posi_sign53_n=randsample([1:size(sign53,1)],sign53_n); 
sample_sign53_n=sign53(posi_sign53_n,:); 
pxx53 = periodogram(sample_sign53_n); %Extract periodogram from the 

3rd window for set E 
AuR53 = pcov(sample_sign53_n,5);      %Extract Autoregressive from 

the 3rd window for set E with 
order time is 5 

posi_sign54_n=randsample([1:size(sign54,1)],sign54_n); 
sample_sign54_n=sign54(posi_sign54_n,:); 
pxx54 = periodogram(sample_sign54_n); %Extract periodogram from the 

4th window for set E 
AuR54 = pcov(sample_sign54_n,5);      %Extract Autoregressive from 

the 4th window for set E with 
order time is 5 

new_sign5=[sample_sign51_n; sample_sign52_n; sample_sign53_n; 
sample_sign54_n]; 
pxx5=[pxx51;pxx52;pxx53;pxx54];       %All periodogram form four 

windows for set E 
AuR_E=[AuR51;AuR52;AuR53;AuR54]; 
%% 
X_all=[new_sign1; new_sign2; new_sign3; new_sign4; new_sign5]; 
pxx_all=[pxx1;pxx2;pxx3;pxx4;pxx5];     %All predictor 
AuR_all=[AuR_A;AuR_B;AuR_C;AuR_D;AuR_E]; 
%% 
%%%%%%%%% Response classes of OA_PD %%%%%% 
x1(1:2052,1)=[1];  % set A 
x2(1:2052,1)=[2];  % set B 
x3(1:2052,1)=[3];  % set C 
x4(1:2052,1)=[4];  % set D 
x5(1:2052,1)=[5];  % set E 

x_all=[x1;x2;x3;x4;x5];    %All response  
EEG=[pxx_all,x_all];       %Using the EEG in different 

classifiers(SVM; KNN; QDA) 
%%%%%%%%% Response classes of OA_AR %%%%%%%%% 
h_A(1:516,1)=[1]; 
h_B(1:516,1)=[2]; 
h_C(1:516,1)=[3]; 
h_D(1:516,1)=[4]; 
h_E(1:516,1)=[5]; 

h_all=[h_A;h_B;h_C;h_D;h_E];   %All response 
EEG_AuR=[AuR_all,h_all];       %Using the EEG_AuR in different 

classifiers(SVM; KNN; QDA) 
%% 
%%%%%%%%%%%%% Response Classes of OA_PD_AR %%%%%%%%%% 
z1(1:2568,1)=[1]; 
z2(1:2568,1)=[2]; 
z3(1:2568,1)=[3]; 
z4(1:2568,1)=[4]; 
z5(1:2568,1)=[5]; 

Z_all=[z1;z2;z3;z4;z5];      %All response 
OA_PD_AR=[Hybrid_all,Z_all]; %Using the OA_PD_AR set in different 
classifiers(SVM; KNN; QDA) 
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%%%%%%%%%%%%%%%% Recall the classifiers %%%%%%%%%%%%%%%% 

[Acc_KNN_PD, Acc_SVM_PD, Acc_QDA_PD]=Classifiers (OA_PD); 
[Acc_KNN_AR, Acc_SVM_AR, Acc_QDA_AR]=Classifiers (OA_AR); 
[Acc_KNN_PD_AR, Acc_SVM_PD_AR, Acc_QDA_PD_AR]=Classifiers 
(OA_PD_AR); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Functions of three classifiers %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Accuracy_KNN, Accuracy_SVM, Accuracy_QDA] = 
trainClassifier(trainingData) 
% trainClassifier(trainingData) 
%  returns a trained classifier and its  accuracy. 
%  
%   Input: 
%       trainingData: the training data is 100 channals which are 

predictors and one channal response (table or matrix). 
% 
%   Output: 
%       trainedClassifier: a struct containing the trained 

classifier. 
% The struct contains various fields with information about 
the 
% trained classifier. 
% 
%       trainedClassifier.predictFcn: a function to make predictions 
% on new data. It takes an input of the same form as this 

training 
% code (table or matrix) and returns predictions for the 

response. 
% If you supply a matrix, include only the predictors columns 

(or rows). 
% 
%       Accuracy: a double containing the validation accuracy *100 

% Convert input to table 
inputTable = table(trainingData); 
inputTable.Properties.VariableNames = {'column'}; 

% Split matrices in the input table into vectors 
inputTable = 
[inputTable(:,setdiff(inputTable.Properties.VariableNames, 
{'column'})), array2table(table2array(inputTable(:,{'column'})), 
'VariableNames', {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
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'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 
'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 
'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 
'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 
'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 
'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 
'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 
'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 
'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 
'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 
'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 
'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 
'column_100', 'column_101'})]; 

% Extract predictors and response 
% This code processes the data into the right shape for training the 
% classifier. 
predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 
'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 
'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 
'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 
'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 
'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 
'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 
'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 
'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 
'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 
'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 
'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 
'column_100'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.column_101; 

% Train a classifier 
% This code specifies all the classifier options and trains the 
classifier. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Function of KNN %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 classificationKNN = fitcknn(... 
    predictors, ... 
    response, ... 
    'Distance', 'Euclidean', ... 
    'Exponent', [], ... 
    'NumNeighbors', 1, ... 
    'DistanceWeight', 'equal', ... 
    'Standardize', true, ... 
    'ClassNames', [1; 2; 3; 4; 5]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% Function of SVM classifier %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 template = templateSVM(... 
    'KernelFunction', 'polynomial', ... 
    'PolynomialOrder', 2, ... 
    'KernelScale', 'auto', ... 
    'BoxConstraint', 1, ... 
    'Standardize', true); 
classificationSVM = fitcecoc(... 
    predictors, ... 
    response, ... 
    'Learners', template, ... 
    'Coding', 'onevsone', ... 
    'ClassNames', [1; 2; 3; 4; 5]); 

%Using one of the Coding techniques:'onevsone', 'allpairs', 
'onevsall', 'binarycomplete', 'ternarycomplete', 'ordinal', 
'sparserandom', or 'denserandom' 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Function of QDA classifier %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationDiscriminant = fitcdiscr(... 
    predictors, ... 
    response, ... 
    'DiscrimType', 'diagQuadratic', ... 
    'FillCoeffs', 'off', ... 
    'SaveMemory', 'on', ... 
    'ClassNames', [1; 2; 3; 4; 5]); 

%%%%%%%% Results of three classifiers %%%%%%%%% 
trainedClassifier1.ClassificationDiscriminant = 
classificationDiscriminant; 

trainedClassifier2.ClassificationKNN = classificationKNN; 

trainedClassifier3.ClassificationSVM = classificationSVM; 

convertMatrixToTableFcn = @(x) table(x, 'VariableNames', 
{'column'}); 
splitMatricesInTableFcn = @(t) 
[t(:,setdiff(t.Properties.VariableNames, {'column'})), 
array2table(table2array(t(:,{'column'})), 'VariableNames', 
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 
'column_6', 'column_7', 'column_8', 'column_9', 'column_10', 
'column_11', 'column_12', 'column_13', 'column_14', 'column_15', 
'column_16', 'column_17', 'column_18', 'column_19', 'column_20', 
'column_21', 'column_22', 'column_23', 'column_24', 'column_25', 
'column_26', 'column_27', 'column_28', 'column_29', 'column_30', 
'column_31', 'column_32', 'column_33', 'column_34', 'column_35', 
'column_36', 'column_37', 'column_38', 'column_39', 'column_40', 
'column_41', 'column_42', 'column_43', 'column_44', 'column_45', 
'column_46', 'column_47', 'column_48', 'column_49', 'column_50', 
'column_51', 'column_52', 'column_53', 'column_54', 'column_55', 
'column_56', 'column_57', 'column_58', 'column_59', 'column_60', 
'column_61', 'column_62', 'column_63', 'column_64', 'column_65', 
'column_66', 'column_67', 'column_68', 'column_69', 'column_70', 
'column_71', 'column_72', 'column_73', 'column_74', 'column_75', 
'column_76', 'column_77', 'column_78', 'column_79', 'column_80', 
'column_81', 'column_82', 'column_83', 'column_84', 'column_85', 
'column_86', 'column_87', 'column_88', 'column_89', 'column_90', 
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'column_91', 'column_92', 'column_93', 'column_94', 'column_95', 
'column_96', 'column_97', 'column_98', 'column_99', 'column_100'})]; 
extractPredictorsFromTableFcn = @(t) t(:, predictorNames); 
predictorExtractionFcn = @(x) 
extractPredictorsFromTableFcn(splitMatricesInTableFcn(convertMatrixT
oTableFcn(x))); 
discriminantPredictFcn = @(x) predict(classificationDiscriminant, 
x); 
trainedClassifier1.predictFcn = @(x) 
discriminantPredictFcn(predictorExtractionFcn(x)); 

knnPredictFcn = @(x) predict(classificationKNN, x); 
trainedClassifier2.predictFcn = @(x) 
knnPredictFcn(predictorExtractionFcn(x)); 

svmPredictFcn = @(x) predict(classificationSVM, x); 
trainedClassifier3.predictFcn = @(x) 
svmPredictFcn(predictorExtractionFcn(x)); 

% Convert input to table 
inputTable = table(trainingData); 
inputTable.Properties.VariableNames = {'column'}; 

% Split matrices in the input table into vectors 
inputTable = 
[inputTable(:,setdiff(inputTable.Properties.VariableNames, 
{'column'})), array2table(table2array(inputTable(:,{'column'})), 
'VariableNames', {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 
'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 
'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 
'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 
'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 
'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 
'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 
'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 
'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 
'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 
'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 
'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 
'column_100', 'column_101'})]; 

% Extract predictors and response 
% This code processes the data into the right shape for training the 
% classifier. 
predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
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'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 
'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 
'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 
'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 
'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 
'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 
'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 
'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 
'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 
'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 
'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 
'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 
'column_100'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.column_101; 

% Perform cross-validation 
partitionedModel = 
crossval(trainedClassifier1.ClassificationDiscriminant, 'KFold', 5); 
partitionedMode2 = crossval(trainedClassifier2.ClassificationKNN, 
'KFold', 5); 
partitionedMode3 = crossval(trainedClassifier3.ClassificationSVM, 
'KFold', 5); 

% Compute accuracy of QDA, KNN, and SVM 
validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 
'ClassifError'); 
Accuracy_QDA=validationAccuracy*100 

validationAccuracy = 1 - kfoldLoss(partitionedMode2, 'LossFun', 
'ClassifError'); 
Accuracy_KNN=validationAccuracy*100 

validationAccuracy = 1 - kfoldLoss(partitionedMode3, 'LossFun', 
'ClassifError'); 
Accuracy_SVM=validationAccuracy*100 
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Appendix C : Matlab simulation code for Tunable Q-Factor WT 

A simulation code for classification two databases, epileptic EEG signals and 
focal and non-focal EEG signals, is presented.  

C.I Matlab code for Tunable Q-Factor WT (TQWT).

C 
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1- Implementation of the first EEG database

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
/\%%%%%%%%%%%%% Read Epileptic EEG %%%%%%%%%%%/\ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Reading epileptic EEG data is same as in the appendices A and B 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% TQWT to classify the Epileptic EEG data %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all  
clc 
close all 
load Epilpeic; 

%% Set example parameters 
% High Q-factor wavelet transform parameters 

Q2 = 14; 
r2 = 3; 
J2 = 5; 

%% 
%%%%%%%%%%% Set A %%%%%%%%%%% 
x1=A;  
[n m ]=size (x1); 
for i=1:m             
w1=tqwt_radix2(x1(:,i),Q2,r2,J2); 
p1{i}.o=w1; 
end 

%%%%%%% Plot class A %%%%%% 
%% 
fs = 1; 
figure(1), clf 
PlotSubbands(x1(:,1),w1,Q2,r2,1,J2,fs); 

%%%%%%% Extract feature using TQWT %%%%%% 
for i=1:100 
    M1=p1{i}; 
    T11=M1.o{1,1}; T12=M1.o{1,2}; T13=M1.o{1,3}; T14=M1.o{1,4}; 

T15=M1.o{1,5}; 
%% 
    Fea_new11{i}=T11; Fea_new12{i}=T12; Fea_new13{i}=T13; 

Fea_new14{i}=T14; Fea_new15{i}=T15; 
end 

%% 
 for j=1:100 
     TT=Fea_new11{j};  WQ11(:,j)=TT;  TT=[]; 
     TT1=Fea_new12{j}; WQ12(:,j)=TT1; TT1=[]; 
     TT2=Fea_new13{j}; WQ13(:,j)=TT2; TT2=[]; 
     TT3=Fea_new14{j}; WQ14(:,j)=TT3; TT3=[]; 
     TT4=Fea_new15{j}; WQ15(:,j)=TT4; TT4=[]; 
end 
%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% Feature extraction from A set %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%% Sub-band 1 %%%%%%%%%% 
v1=WQ11(:,1:25); 
v2=WQ11(:,26:50); 
v3=WQ11(:,51:75); 
v4=WQ11(:,76:100); 

for k=1:2048  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,:
)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1(k
,:)),skewness(v1(k,:)),var(v1(k,:))];  

end 
for k=1:2048 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,:
)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2(k
,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ12(:,1:25); 
v2=WQ12(:,26:50); 
v3=WQ12(:,51:75); 
v4=WQ12(:,76:100); 

for k=1:2048  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,:
)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1(k
,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:2048 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,:
)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2(k
,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048  
fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,:
)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3(k
,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,:
)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4(k
,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 
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F_A_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 

v1=WQ13(:,1:25); 
v2=WQ13(:,26:50); 
v3=WQ13(:,51:75); 
v4=WQ13(:,76:100); 

for k=1:1024   
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 

v1=WQ14(:,1:25); 
v2=WQ14(:,26:50); 
v3=WQ14(:,51:75); 
v4=WQ14(:,76:100); 

for k=1:1024    
fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 



Appendices 

139 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ15(:,1:25); 
v2=WQ15(:,26:50); 
v3=WQ15(:,51:75); 
v4=WQ15(:,76:100); 

for k=1:1024    
fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs51=[]; fs52=[]; fs53=[]; fs54=[]; 

%% 
%%%%%%%%%%%%%%% Set B %%%%%%%%%% 
x2=B;  
[n m ]=size (x2); 
for i=1:m

w2=tqwt_radix2(x2(:,i),Q2,r2,J2); 
p2{i}.o=w2; 

end 
%%%%%% Plot class B %%%%% 
fs = 1; 
figure(2), clf 
PlotSubbands(x2(:,1),w2,Q2,r2,1,J2,fs); 

%% 
for i=1:100 
    M2=p2{i}; 
    T21=M2.o{1,1}; T22=M2.o{1,2}; T23=M2.o{1,3}; T24=M2.o{1,4}; 

T25=M2.o{1,5}; 
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    Fea_new21{i}=T21; Fea_new22{i}=T22; Fea_new23{i}=T23; 
Fea_new24{i}=T24; Fea_new25{i}=T25; 
end 
 for j=1:100 
     TT=Fea_new21{j};  WQ21(:,j)=TT;  TT=[]; 
     TT1=Fea_new22{j}; WQ22(:,j)=TT1; TT1=[]; 
     TT2=Fea_new23{j}; WQ23(:,j)=TT2; TT2=[]; 
     TT3=Fea_new24{j}; WQ24(:,j)=TT3; TT3=[]; 
     TT4=Fea_new25{j}; WQ25(:,j)=TT4; TT4=[]; 
 end 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Feature extraction from B set %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Sub-band 1 %%%%%%%%%% 

v1=WQ21(:,1:25); 
v2=WQ21(:,26:50); 
v3=WQ21(:,51:75); 
v4=WQ21(:,76:100); 

for k=1:2048  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:2048 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ22(:,1:25); 
v2=WQ22(:,26:50); 
v3=WQ22(:,51:75); 
v4=WQ22(:,76:100); 

for k=1:2048  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:2048 
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fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 

v1=WQ23(:,1:25); 
v2=WQ23(:,26:50); 
v3=WQ23(:,51:75); 
v4=WQ23(:,76:100); 

for k=1:1024    
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 

v1=WQ24(:,1:25); 
v2=WQ24(:,26:50); 
v3=WQ24(:,51:75); 
v4=WQ24(:,76:100); 

for k=1:1024    
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fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ25(:,1:25); 
v2=WQ25(:,26:50); 
v3=WQ25(:,51:75); 
v4=WQ25(:,76:100); 

for k=1:1024    
fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs51=[]; fs52=[]; fs53=[]; fs54=[]; 

%% 
%%%%%%%% Set C %%%%%%%%%% 
x3=C; 
[n m ]=size (x3); 
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for i=1:m
w3=tqwt_radix2(x3(:,i),Q2,r2,J2); 
p3{i}.o=w3; 

end 
%%%%%%% Plot class C %%%%%%%%% 
fs = 1; 
figure(3), clf 
PlotSubbands(x3(:,1),w3,Q2,r2,1,J2,fs); 

%% 
for i=1:100 
    M3=p3{i}; 
    T31=M3.o{1,1}; T32=M3.o{1,2}; T33=M3.o{1,3}; T34=M3.o{1,4}; 
T35=M3.o{1,5}; 
    Fea_new31{i}=T31; Fea_new32{i}=T32; Fea_new33{i}=T33; 
Fea_new34{i}=T34; Fea_new35{i}=T35; 
end 
 for j=1:100 
     TT=Fea_new31{j};  WQ31(:,j)=TT;  TT=[]; 
     TT1=Fea_new32{j}; WQ32(:,j)=TT1; TT1=[]; 
     TT2=Fea_new33{j}; WQ33(:,j)=TT2; TT2=[]; 
     TT3=Fea_new34{j}; WQ34(:,j)=TT3; TT3=[]; 
     TT4=Fea_new35{j}; WQ35(:,j)=TT4; TT4=[]; 
 end 
%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Feature extraction from C set %%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Sub-band 1 %%%%%%%%%% 

v1=WQ31(:,1:25); 
v2=WQ31(:,26:50); 
v3=WQ31(:,51:75); 
v4=WQ31(:,76:100); 

for k=1:2048  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))];  

end 
for k=1:2048 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_C_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[]; 
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
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%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ32(:,1:25); 
v2=WQ32(:,26:50); 
v3=WQ32(:,51:75); 
v4=WQ32(:,76:100); 

for k=1:2048  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))];  

end 
for k=1:2048 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_C_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 

v1=WQ33(:,1:25); 
v2=WQ33(:,26:50); 
v3=WQ33(:,51:75); 
v4=WQ33(:,76:100); 

for k=1:1024    
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))];  

end 
for k=1:1024 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 
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F_C_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[]; 
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 

v1=WQ34(:,1:25); 
v2=WQ34(:,26:50); 
v3=WQ34(:,51:75); 
v4=WQ34(:,76:100); 

for k=1:1024    
fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_C_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[]; 
fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ35(:,1:25); 
v2=WQ35(:,26:50); 
v3=WQ35(:,51:75); 
v4=WQ35(:,76:100); 

for k=1:1024    
fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 
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fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_C_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs51=[]; fs52=[]; fs53=[]; fs54=[]; 
%% 

%%%%%%%%%% set D %%%%%%%%%% 
x4=D; 
[n m ]=size (x4); 
for i=1:m             
w4=tqwt_radix2(x4(:,i),Q2,r2,J2); 
p4{i}.o=w4; 
end 
%%%%%%%% Plot class D %%%%%%% 
fs = 1; 
figure(4), clf 
PlotSubbands(x4(:,1),w4,Q2,r2,1,J2,fs); 
%% 
for i=1:100 
    M4=p4{i}; 
    T41=M4.o{1,1}; T42=M4.o{1,2}; T43=M4.o{1,3}; T44=M4.o{1,4}; 
T45=M4.o{1,5}; 
    Fea_new41{i}=T41; Fea_new42{i}=T42; Fea_new43{i}=T43; 
Fea_new44{i}=T44; Fea_new45{i}=T45; 
end 
 for j=1:100 
     TT=Fea_new41{j};  WQ41(:,j)=TT;  TT=[]; 
     TT1=Fea_new42{j}; WQ42(:,j)=TT1; TT1=[]; 
     TT2=Fea_new43{j}; WQ43(:,j)=TT2; TT2=[]; 
     TT3=Fea_new44{j}; WQ44(:,j)=TT3; TT3=[]; 
     TT4=Fea_new45{j}; WQ45(:,j)=TT4; TT4=[]; 
 end 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% Feature extraction from D set %%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Sub-band 1 %%%%%%%%%% 

v1=WQ41(:,1:25); 
v2=WQ41(:,26:50); 
v3=WQ41(:,51:75); 
v4=WQ41(:,76:100); 

for k=1:2048  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))];  

end 
for k=1:2048 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 
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fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 
F_D_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ42(:,1:25); 
v2=WQ42(:,26:50); 
v3=WQ42(:,51:75); 
v4=WQ42(:,76:100); 

for k=1:2048  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:2048 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_D_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 

v1=WQ43(:,1:25); 
v2=WQ43(:,26:50); 
v3=WQ43(:,51:75); 
v4=WQ43(:,76:100); 

for k=1:1024    
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 
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fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_D_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 

v1=WQ44(:,1:25); 
v2=WQ44(:,26:50); 
v3=WQ44(:,51:75); 
v4=WQ44(:,76:100); 

for k=1:1024    
fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_D_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ45(:,1:25); 
v2=WQ45(:,26:50); 
v3=WQ45(:,51:75); 
v4=WQ45(:,76:100); 

for k=1:1024    



Appendices 

149 

fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_D_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs51=[]; fs52=[]; fs53=[]; fs54=[]; 
%% 
%%%%%%%%%%%%% set E %%%%%%%%%% 
x5=E; % one set form the datasets (A, B, C, D, E) 
[n m ]=size (x5); 
for i=1:m

w5=tqwt_radix2(x5(:,i),Q2,r2,J2); 
p5{i}.o=w5; 

end 
%%%%%%%% Plot class E %%%%%%% 
fs = 1; 
figure(5), clf 
PlotSubbands(x1(:,1),w5,Q2,r2,1,J2,fs); 
%% 
for i=1:100 
    M5=p5{i}; 
    T51=M5.o{1,1}; T52=M5.o{1,2}; T53=M5.o{1,3}; T54=M5.o{1,4}; 
T55=M5.o{1,5}; 
    Fea_new51{i}=T51; Fea_new52{i}=T52; Fea_new53{i}=T53; 
Fea_new54{i}=T54; Fea_new55{i}=T55; 
end 
 for j=1:100 
     TT=Fea_new51{j};  WQ51(:,j)=TT;  TT=[]; 
     TT1=Fea_new52{j}; WQ52(:,j)=TT1; TT1=[]; 
     TT2=Fea_new53{j}; WQ53(:,j)=TT2; TT2=[]; 
     TT3=Fea_new54{j}; WQ54(:,j)=TT3; TT3=[]; 
     TT4=Fea_new55{j}; WQ55(:,j)=TT4; TT4=[]; 
 end 
%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% Feature extraction from E set %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Sub-band 1 %%%%%%%%%% 

v1=WQ51(:,1:25); 
v2=WQ51(:,26:50); 
v3=WQ51(:,51:75); 
v4=WQ51(:,76:100); 
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for k=1:2048  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,:
)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1(k
,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:2048 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,:
)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2(k
,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_E_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ52(:,1:25); 
v2=WQ52(:,26:50); 
v3=WQ52(:,51:75); 
v4=WQ52(:,76:100); 

for k=1:2048  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:2048 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:2048 

fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:2048 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_E_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 
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v1=WQ53(:,1:25); 
v2=WQ53(:,26:50); 
v3=WQ53(:,51:75); 
v4=WQ53(:,76:100); 

for k=1:1024    
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_E_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 

v1=WQ54(:,1:25); 
v2=WQ54(:,26:50); 
v3=WQ54(:,51:75); 
v4=WQ54(:,76:100); 

for k=1:1024    
fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_E_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[]; 



Appendices 

152 

fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ55(:,1:25); 
v2=WQ55(:,26:50); 
v3=WQ55(:,51:75); 
v4=WQ55(:,76:100); 

for k=1:1024    
fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:1024 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:1024 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:1024 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_E_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs51=[]; fs52=[]; fs53=[]; fs54=[]; 

%% 
%%%%%%%%%%% class label %%%%%%%%%% 
f11(1:2048,1)=[1]; f12(1:1024,1)=[1]; 
f21(1:2048,1)=[2]; f22(1:1024,1)=[2]; 
f31(1:2048,1)=[3]; f32(1:1024,1)=[3]; 
f41(1:2048,1)=[4]; f42(1:1024,1)=[4]; 
f51(1:2048,1)=[5]; f52(1:1024,1)=[5]; 

A_SBL1=[F_A_Band1,f11]; A_SBL2=[F_A_Band2,f11]; 
A_SBL3=[F_A_Band3,f12]; A_SBL4=[F_A_Band4,f12]; 
A_SBL5=[F_A_Band5,f12]; 
B_SBL1=[F_B_Band1,f21]; B_SBL2=[F_B_Band2,f21]; 
B_SBL3=[F_B_Band3,f22]; B_SBL4=[F_B_Band4,f22]; 
B_SBL5=[F_B_Band5,f22]; 
B_SBL11=[F_B_Band1,f11]; B_SBL22=[F_B_Band2,f11]; 
B_SBL33=[F_B_Band3,f12]; B_SBL44=[F_B_Band4,f12]; 
B_SBL55=[F_B_Band5,f12]; 
C_SBL1=[F_C_Band1,f31]; C_SBL2=[F_C_Band2,f31]; 
C_SBL3=[F_C_Band3,f32]; C_SBL4=[F_C_Band4,f32]; 
C_SBL5=[F_C_Band5,f32]; 
C_SBL11=[F_C_Band1,f51]; C_SBL22=[F_C_Band2,f51]; 
C_SBL33=[F_C_Band3,f52]; C_SBL44=[F_C_Band4,f52]; 
C_SBL55=[F_C_Band5,f52]; 
D_SBL1=[F_D_Band1,f41]; D_SBL2=[F_D_Band2,f41]; 
D_SBL3=[F_D_Band3,f42]; D_SBL4=[F_D_Band4,f42]; 
D_SBL5=[F_D_Band5,f42]; 
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D_SBL11=[F_D_Band1,f51]; D_SBL22=[F_D_Band2,f51]; 
D_SBL33=[F_D_Band3,f52]; D_SBL44=[F_D_Band4,f52]; 
D_SBL55=[F_D_Band5,f52]; 
E_SBL1=[F_E_Band1,f51]; E_SBL2=[F_E_Band2,f51]; 
E_SBL3=[F_E_Band3,f52]; E_SBL4=[F_E_Band4,f52]; 
E_SBL5=[F_E_Band5,f52]; 

%% 
%%%%%%%%%% cases used in this scheme %%%%%%%%% 
case11=[A_SBL1;E_SBL1]; case12=[A_SBL2;E_SBL2]; 
case13=[A_SBL3;E_SBL3]; case14=[A_SBL4;E_SBL4]; 
case15=[A_SBL5;E_SBL5]; 
case21=[A_SBL1;C_SBL1]; case22=[A_SBL2;C_SBL2]; 
case23=[A_SBL3;C_SBL3]; case24=[A_SBL4;C_SBL4]; 
case25=[A_SBL5;C_SBL5]; 
case31=[B_SBL1;E_SBL1]; case32=[B_SBL2;E_SBL2]; 
case33=[B_SBL3;E_SBL3]; case34=[B_SBL4;E_SBL4]; 
case35=[B_SBL5;E_SBL5]; 
case41=[C_SBL1;E_SBL1]; case42=[C_SBL2;E_SBL2]; 
case43=[C_SBL3;E_SBL3]; case44=[C_SBL4;E_SBL4]; 
case45=[C_SBL5;E_SBL5]; 
case51=[D_SBL1;E_SBL1]; case52=[D_SBL2;E_SBL2]; 
case53=[D_SBL3;E_SBL3]; case54=[D_SBL4;E_SBL4]; 
case55=[D_SBL5;E_SBL5]; 
case61=[A_SBL1;B_SBL11;E_SBL1]; case62=[A_SBL2;B_SBL22;E_SBL2]; 
case63=[A_SBL3;B_SBL33;E_SBL3]; case64=[A_SBL4;B_SBL44;E_SBL4]; 
case65=[A_SBL5;B_SBL55;E_SBL5]; 
case71=[A_SBL1;C_SBL11;D_SBL11;E_SBL1]; 
case72=[A_SBL2;C_SBL22;D_SBL22;E_SBL2]; 
case73=[A_SBL3;C_SBL33;D_SBL33;E_SBL3]; 
case74=[A_SBL4;C_SBL44;D_SBL44;E_SBL4]; 
case75=[A_SBL5;C_SBL55;D_SBL55;E_SBL5]; 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%% 5 fold cross validation %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% for cases 1,2,3,4, and 5 

% X=[case11];    % cross validation for subcase 1 and 2 
%  
% a1=[X(1:409,:);X(2049:2457,:)]; 
% a2=[X(410:818,:);X(2458:2866,:)]; 
% a3=[X(819:1227,:);X(2867:3275,:)]; 
% a4=[X(1228:1636,:);X(3276:3684,:)]; 
% a5=[X(1637:2048,:);X(3685:4096,:)]; 
% x=[a1;a3;a4;a5]; 
% Xtest=[a2]; 

% X=[case13];    % cross validation for subcase 3, 4 and 5 
%  
% a1=[X(1:204,:);X(1025:1228,:)]; 
% a2=[X(205:408,:);X(1229:1432,:)]; 
% a3=[X(409:612,:);X(1433:1636,:)]; 
% a4=[X(613:816,:);X(1637:1840,:)]; 
% a5=[X(817:1024,:);X(1841:2048,:)]; 
% x=[a1;a3;a4;a5]; 
% Xtest=[a2]; 
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%% 
% % for case 6 

% X=[case61];    % cross validation for subcase 1 and 2 
%  
% a1=[X(1:819,:);X(4097:4505,:)]; 
% a2=[X(820:1638,:);X(4506:4914,:)]; 
% a3=[X(1639:2457,:);X(4915:5323,:)]; 
% a4=[X(2458:3276,:);X(5324:5732,:)]; 
% a5=[X(3277:4096,:);X(5733:6144,:)]; 
% x=[a2;a3;a4;a5]; 
% Xtest=[a1]; 

% X=[case63];    % cross validation for subcase 3, 4 and 5 
%  
% a1=[X(1:409,:);X(2049:2252,:)]; 
% a2=[X(410:818,:);X(2253:2456,:)]; 
% a3=[X(819:1227,:);X(2457:2660,:)]; 
% a4=[X(1228:1636,:);X(2661:2864,:)]; 
% a5=[X(1637:2048,:);X(2865:3072,:)]; 
% x=[a1;a3;a4;a5]; 
% Xtest=[a2]; 

%% 
% for case 7 
%  
% X=[case71];    % cross validation for subcase 1 and 2 
%  
% a1=[X(1:1228,:);X(6145:6553,:)]; 
% a2=[X(1229:2456,:);X(6554:6962,:)]; 
% a3=[X(2457:3684,:);X(6963:7371,:)]; 
% a4=[X(3685:4912,:);X(7372:7780,:)]; 
% a5=[X(4913:6144,:);X(7781:8192,:)]; 
% x=[a2;a3;a4;a5]; 
% Xtest=[a1]; 

X=[case73];    % cross validation for subcase 3, 4 and 5 

a1=[X(1:614,:);X(3073:3276,:)]; 
a2=[X(615:1228,:);X(3277:3480,:)]; 
a3=[X(1229:1842,:);X(3481:3684,:)]; 
a4=[X(1843:2456,:);X(3685:3888,:)]; 
a5=[X(2457:3072,:);X(3889:4096,:)]; 
x=[a1;a2;a4;a5]; 
Xtest=[a3]; 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% Classification %%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

inputTable = array2table(Xtest, 'VariableNames', {'column_1', 
'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 
'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 
'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 
'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 
'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 
'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 
'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 
'column_37', 'column_38', 'column_39', 'column_40', 'column_41'}); 
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predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
'column_40'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.column_41; 
isCategoricalPredictor = [false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false]; 

% Train a classifier 
% This code specifies all the classifier options and trains the 
classifier. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Function of KNN %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationKNN = fitcknn(... 
    predictors, ... 
    response, ... 
    'Distance', 'Euclidean', ... 
    'Exponent', [], ... 
    'NumNeighbors', 1, ... 
    'DistanceWeight', 'Equal', ... 
    'Standardize', true, ... 
    'ClassNames', [1; 5]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Function of SVM  %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationSVM = fitcsvm(... 
    predictors, ... 
    response, ... 
    'KernelFunction', 'polynomial', ... 
    'PolynomialOrder', 2, ... 
    'KernelScale', 'auto', ... 
    'BoxConstraint', 1, ... 
    'Standardize', true, ... 
    'ClassNames', [1; 5]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Function of BT  %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationEnsemble = fitensemble(... 
    predictors, ... 
    response, ... 
    'Bag', ... 
    30, ... 
    'Tree', ... 
    'Type', 'Classification', ... 
    'ClassNames', [1; 5]); 

% Create the result struct with predict function 
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predictorExtractionFcn = @(x) array2table(x, 'VariableNames', 
predictorNames); 
knnPredictFcn = @(x) predict(classificationKNN, x); 
trainedClassifier.predictFcn = @(x) 
knnPredictFcn(predictorExtractionFcn(x)); 
svmPredictFcn = @(x) predict(classificationSVM, x); 
trainedClassifier.predictFcn = @(x) 
svmPredictFcn(predictorExtractionFcn(x)); 
ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 
trainedClassifier.predictFcn = @(x) 
ensemblePredictFcn(predictorExtractionFcn(x)); 

% Add additional fields to the result struct 
trainedClassifier.ClassificationKNN = classificationKNN; 
trainedClassifier.ClassificationSVM = classificationSVM; 
trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

% Extract predictors and response 
% This code processes the data into the right shape for training the 
% classifier. 
% Convert input to table 
inputTable = array2table(x, 'VariableNames', {'column_1', 
'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 
'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 
'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 
'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 
'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 
'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 
'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 
'column_37', 'column_38', 'column_39', 'column_40', 'column_41'}); 

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
'column_40'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.column_41; 
isCategoricalPredictor = [false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false]; 

% Compute resubstitution accuracy 
resubstitutionAccuracy1 = 1 - 
resubLoss(trainedClassifier.ClassificationKNN, 'LossFun', 
'ClassifError'); 
Accuracy_KNN=resubstitutionAccuracy1*100 
resubstitutionAccuracy2 = 1 - 
resubLoss(trainedClassifier.ClassificationSVM, 'LossFun', 
'ClassifError'); 
Accuracy_SVM=resubstitutionAccuracy2*100 
resubstitutionAccuracy3 = 1 - 
resubLoss(trainedClassifier.ClassificationEnsemble, 'LossFun', 
'ClassifError'); 
Accuracy_BT=resubstitutionAccuracy3*100 
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2- Implementation of the second EEG database

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Read Focal/Non-focal EEG data %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 
clc 
%% 
%%%%%%%%% Read data from 1 to 750 focal epilepsy %%%%%%% 

B1=[]; 
for i=1:100 
    N=[]; 
    if i<10 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1_750 (1)\Data_F_Ind000' num2str(i) 
'.txt']; 

    else  
N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 

Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1_750 (1)\Data_F_Ind00' num2str(i) 
'.txt']; 

    end 
    if (i==100) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1_750 (1)\Data_F_Ind0' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
B1=[B1,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
for i=101:750 
    N=[]; 
    if i<750 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1_750 (1)\Data_F_Ind0' num2str(i) 
'.txt']; 

    end 
    if (i==750) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1_750 (1)\Data_F_Ind0' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
B1=[B1,A]; 
end  
N=[]; 
i=[]; 
Focal1=B1; 
%% 
%%%%%%%%% Read data from 1 to 750 non_focal epilepsy %%%%%%% 
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C1=[]; 
for i=1:100 
    N=[]; 
    if i<10 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1_750\Data_N_Ind000' num2str(i) 
'.txt']; 

    else  
N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 

Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1_750\Data_N_Ind00' num2str(i) 
'.txt']; 

    end 
    if (i==100) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1_750\Data_N_Ind0' num2str(i) '.txt']; 

    end; 
A = importdata(N); 
C1=[C1,A]; 
end  
N=[]; 
i=[]; 
for i=101:750 
    N=[]; 
    if i<750 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1_750\Data_N_Ind0' num2str(i) '.txt']; 

    end 
    if (i==750) 

N=['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1_750\Data_N_Ind0' num2str(i) '.txt']; 

    end; 
A = importdata(N); 
C1=[C1,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Non_Focal1=C1; 

%%%%%%%%% Read data from 751 to 1500 focal epilepsy %%%%%%% 
B2=[]; 

for i=751:1500 
    N=[]; 
    if i<1000 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_751_1500 (1)\Data_F_Ind0' num2str(i) 
'.txt']; 

    else  
N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 

Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_751_1500 (1)\Data_F_Ind' num2str(i) 
'.txt']; 

    end 
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    if (i==1500) 
N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 

Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_751_1500 (1)\Data_F_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
B2=[B2,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Focal2=B2; 
%% 
%%%%%%%%% Read data from 751 to 1500 non_focal epilepsy %%%%%%% 
C2=[]; 

for i=751:1500 
    N=[]; 
    if i<1000 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_751_1500 (1)\Data_N_Ind0' num2str(i) 
'.txt']; 

    else  
N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 

Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_751_1500 (1)\Data_N_Ind' num2str(i) 
'.txt']; 

    end 
    if (i==1500) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_751_1500 (1)\Data_N_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
C2=[C2,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Non_Focal2=C2; 

%%%%%%%%% Read data from 1501 to 2250 focal epilepsy %%%%%%% 
B3=[]; 

for i=1501:2250 
    N=[]; 
    if i<2250 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1501_2250\Data_F_Ind' num2str(i) 
'.txt']; 

    end 
    if (i==2250) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_1501_2250\Data_F_Ind' num2str(i) 
'.txt']; 
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    end; 
A = importdata(N); 
B3=[B3,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Focal3=B3; 
%% 
%%%%%%%%% Read data from 1501 to 2250 non_focal epilepsy %%%%%%% 
C3=[]; 

for i=1501:2250 
    N=[]; 
    if i<2250 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1501_2250\Data_N_Ind' num2str(i) 
'.txt']; 

    end 
   if (i==2250) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_1501_2250\Data_N_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
C3=[C3,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Non_Focal3=C3; 

%%%%%%%%% Read data from 2251 to 3000 focal epilepsy %%%%%%% 
B4=[]; 

for i=2251:3000 
    N=[]; 
    if i<3000 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_2251_3000\Data_F_Ind' num2str(i) 
'.txt']; 

    end 
    if (i==3000) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_2251_3000\Data_F_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
B4=[B4,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Focal4=B4; 
%% 
%%%%%%%%% Read data from 2251 to 3000 non_focal epilepsy %%%%%%% 
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C4=[]; 

for i=2251:3000 
    N=[]; 
    if i<3000 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_2251_3000\Data_N_Ind' num2str(i) 
'.txt']; 

    end 
    if (i==3000) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_2251_3000\Data_N_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
C4=[C4,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Non_Focal4=C4; 

%%%%%%%%% Read data from 3001 to 3750 focal epilepsy %%%%%%% 
B5=[]; 

for i=3001:3750 
    N=[]; 
    if i<3750 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_3001_3750\Data_F_Ind' num2str(i) 
'.txt']; 

    end 
    if (i==3750) 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_F_Ind_3001_3750\Data_F_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
B5=[B5,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Focal5=B5; 
%% 
%%%%%%%%% Read data from 3001 to 3750 non_focal epilepsy %%%%%%% 
C5=[]; 

for i=3001:3750 
    N=[]; 
    if i<3750 

N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 
Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_3001_3750\Data_N_Ind' num2str(i) 
'.txt']; 

%     else  
    end 
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    if (i==3750) 
N= ['C:\Users\U1054787\Desktop\Papers\Fiveth 

Paper\Wavelet\tqwt_matlab_toolbox\F and NonF\New 
folder\Data_N_Ind_3001_3750\Data_N_Ind' num2str(i) 
'.txt']; 

    end; 
A = importdata(N); 
C5=[C5,A]; 
end  
N=[]; 
i=[]; 
A=[]; 
Non_Focal5=C5; 

%%%%%%%%%% Whole read data of focal/no-focal EEG %%%%%%%%% 

All_Focal=[Focal1,Focal2,Focal3,Focal4,Focal5]; 
All_Non_Focal=[Non_Focal1,Non_Focal2,Non_Focal3,Non_Focal4,Non_Focal
5]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Using TQWT technique %%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Set example parameters 
% High Q-factor wavelet transform parameters 

Q2 = 6; 
r2 = 3; 
J2 = 5; 

%%%%%%%%%%% Focal Signals %%%%%%%%%%% 
x1=All_Focal;  
[n m ]=size (x1); 
for i=1:m

w1=tqwt_radix2(x1(:,i),Q2,r2,J2); 
p1{i}.o=w1; 

% p2{i}.o=w2; 
End 
%% 
%%%%%%%%%% Plot Focal class %%%%%%%%% 
fs = 1; 
figure(1), clf 
PlotSubbands(x1(:,1),w1,Q2,r2,1,J2+1,fs); 

%% 
for i=1:m 
    M1=p1{i}; 
    T11=M1.o{1,1}; T12=M1.o{1,2}; T13=M1.o{1,3}; T14=M1.o{1,4}; 
T15=M1.o{1,5}; 
%     T16=M1.o{1,6}; 
    Fea_new11{i}=T11; Fea_new12{i}=T12; Fea_new13{i}=T13; 
Fea_new14{i}=T14; Fea_new15{i}=T15; 
%     Fea_new15{i}=T16; 
end 
 for j=1:m 
     TT=Fea_new11{j};  WQ11(:,j)=TT;  TT=[]; 
     TT1=Fea_new12{j}; WQ12(:,j)=TT1; TT1=[]; 
     TT2=Fea_new13{j}; WQ13(:,j)=TT2; TT2=[]; 
     TT3=Fea_new14{j}; WQ14(:,j)=TT3; TT3=[]; 
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     TT4=Fea_new15{j}; WQ15(:,j)=TT4; TT4=[]; 
end 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Feature extraction from facol %%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Sub-band 1 %%%%%%%%%% 
v1=WQ11(:,1:1875); 
v2=WQ11(:,1876:3750); 
v3=WQ11(:,3751:5625); 
v4=WQ11(:,5626:7500); 

for k=1:8192  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))];  

end 
for k=1:8192 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:8192 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:8192 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ12(:,1:1875); 
v2=WQ12(:,1876:3750); 
v3=WQ12(:,3751:5625); 
v4=WQ12(:,5626:7500); 

for k=1:8192  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:8192 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:8192 

fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:8192 
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fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 

v1=WQ13(:,1:1875); 
v2=WQ13(:,1876:3750); 
v3=WQ13(:,3751:5625); 
v4=WQ13(:,5626:7500); 

for k=1:4096    
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:4096 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:4096 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:4096 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 

v1=WQ14(:,1:1875); 
v2=WQ14(:,1876:3750); 
v3=WQ14(:,3751:5625); 
v4=WQ14(:,5626:7500); 

for k=1:4096    
fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:4096 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:4096 



Appendices 

165 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:4096 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ15(:,1:1875); 
v2=WQ15(:,1876:3750); 
v3=WQ15(:,3751:5625); 
v4=WQ15(:,5626:7500); 

for k=1:4096    
fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:4096 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:4096 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:4096 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_A_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs51=[]; fs52=[]; fs53=[]; fs54=[];  
%% 
%%%%%%%%% Non-focal Signals %%%%%%%%%% 

x2=All_Non_Focal;  
[n m1 ]=size (x2); 
for i=1:m1

w2=tqwt_radix2(x2(:,i),Q2,r2,J2); 
p2{i}.o=w2; 

end 
%% 
%%%%%%%%% Plot Non-Focal class %%%%%%% 
fs = 1; 
figure(2), clf 
PlotSubbands(x2(:,1),w2,Q2,r2,1,J2+1,fs); 
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%% 
for i=1:m1 
    M2=p2{i}; 
    T21=M2.o{1,1}; T22=M2.o{1,2}; T23=M2.o{1,3}; T24=M2.o{1,4}; 
T25=M2.o{1,5}; 
    Fea_new21{i}=T21; Fea_new22{i}=T22; Fea_new23{i}=T23; 
Fea_new24{i}=T24; Fea_new25{i}=T25; 
end 
 for j=1:m1 
     TT=Fea_new21{j};  WQ21(:,j)=TT;  TT=[]; 
     TT1=Fea_new22{j}; WQ22(:,j)=TT1; TT1=[]; 
     TT2=Fea_new23{j}; WQ23(:,j)=TT2; TT2=[]; 
     TT3=Fea_new24{j}; WQ24(:,j)=TT3; TT3=[]; 
     TT4=Fea_new25{j}; WQ25(:,j)=TT4; TT4=[]; 
 End 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Feature extraction from Non-facol %%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Sub-band 1 %%%%%%%%%% 

v1=WQ21(:,1:1875); 
v2=WQ21(:,1876:3750); 
v3=WQ21(:,3751:5625); 
v4=WQ21(:,5626:7500); 

for k=1:8192  
fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:8192 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:8192 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:8192 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band1=[fs11 fs12 fs13 fs14]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs11=[]; fs12=[]; fs13=[]; fs14=[]; 
%% 
%%%%%%%%%% Sub-band 2 %%%%%%%%%% 

v1=WQ22(:,1:1875); 
v2=WQ22(:,1876:3750); 
v3=WQ22(:,3751:5625); 
v4=WQ22(:,5626:7500); 
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for k=1:8192  
fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:8192 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:8192 

fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:8192 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band2=[fs21 fs22 fs23 fs24]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs21=[]; fs22=[]; fs23=[]; fs24=[]; 
%% 
%%%%%%%%%% Sub-band 3 %%%%%%%%%% 

v1=WQ23(:,1:1875); 
v2=WQ23(:,1876:3750); 
v3=WQ23(:,3751:5625); 
v4=WQ23(:,5626:7500); 

for k=1:4096    
fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:4096 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:4096 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:4096 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band3=[fs31 fs32 fs33 fs34]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs31=[]; fs32=[]; fs33=[]; fs34=[]; 
%% 
%%%%%%%%%% Sub-band 4 %%%%%%%%%% 
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v1=WQ24(:,1:1875); 
v2=WQ24(:,1876:3750); 
v3=WQ24(:,3751:5625); 
v4=WQ24(:,5626:7500); 

for k=1:4096    
fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:4096 

fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:4096 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:4096 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band4=[fs41 fs42 fs43 fs44]; 
v1=[]; v2=[]; v3=[]; v4=[];  
fs41=[]; fs42=[]; fs43=[]; fs44=[]; 
%% 
%%%%%%%%%% Sub-band 5 %%%%%%%%%% 

v1=WQ25(:,1:1875); 
v2=WQ25(:,1876:3750); 
v3=WQ25(:,3751:5625); 
v4=WQ25(:,5626:7500); 

for k=1:4096    
fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),median(v1(k,:))/2,3*median(v1(k,:))/2,range(v1(k,:)),std(v1
(k,:)),skewness(v1(k,:)),var(v1(k,:))]; 

end 
for k=1:4096 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),median(v2(k,:))/2,3*median(v2(k,:))/2,range(v2(k,:)),std(v2
(k,:)),skewness(v2(k,:)),var(v2(k,:))]; 

end 
for k=1:4096 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),median(v3(k,:))/2,3*median(v3(k,:))/2,range(v3(k,:)),std(v3
(k,:)),skewness(v3(k,:)),var(v3(k,:))]; 

end 
for k=1:4096 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),median(v4(k,:))/2,3*median(v4(k,:))/2,range(v4(k,:)),std(v4
(k,:)),skewness(v4(k,:)),var(v4(k,:))]; 

end 

F_B_Band5=[fs51 fs52 fs53 fs54]; 
v1=[]; v2=[]; v3=[]; v4=[];  
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fs51=[]; fs52=[]; fs53=[]; fs54=[]; 

%% 
%%%%%%%%%%% class label %%%%%%%%%% 
f1(1:8192,1)=[1]; f12(1:4096,1)=[1]; 
f2(1:8192,1)=[2]; f22(1:4096,1)=[2]; 

Focal_SBL1=[F_A_Band1,f1]; Focal_SBL2=[F_A_Band2,f1]; 
Focal_SBL3=[F_A_Band3,f12]; Focal_SBL4=[F_A_Band4,f12]; 
Focal_SBL5=[F_A_Band5,f12]; 
Non_SBL1=[F_B_Band1,f2]; Non_SBL2=[F_B_Band2,f2]; 
Non_SBL3=[F_B_Band3,f22]; Non_SBL4=[F_B_Band4,f22]; 
Non_SBL5=[F_B_Band5,f22]; 
%% 
%%%%%%%%%% cases used in this scheme of each sub-band %%%%%%%%% 
case1=[Focal_SBL1;Non_SBL1]; case2=[Focal_SBL2;Non_SBL2]; 
case3=[Focal_SBL3;Non_SBL3]; case4=[Focal_SBL4;Non_SBL4]; 
case5=[Focal_SBL5;Non_SBL5]; 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% 5 fold cross validation %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% for cases 1,2,3,4, and 5 
% %  
% X=[case2];    % cross validation for subcase 1 and 2 
%   
% a1=[X(1:1638,:);X(8193:9830,:)]; 
% a2=[X(1639:3276,:);X(9831:11468,:)]; 
% a3=[X(3277:4914,:);X(11469:13106,:)]; 
% a4=[X(4915:6552,:);X(13107:14744,:)]; 
% a5=[X(6553:8192,:);X(14745:16384,:)]; 
% x=[a1;a3;a4;a5]; 
% Xtest=[a2]; 

X=[case5];    % cross validation for subcase 3, 4 and 5 

a1=[X(1:819,:);X(4097:4915,:)]; 
a2=[X(820:1638,:);X(4916:5734,:)]; 
a3=[X(1639:2457,:);X(5735:6553,:)]; 
a4=[X(2458:3276,:);X(6554:7372,:)]; 
a5=[X(3277:4096,:);X(7373:8192,:)]; 
x=[a1;a3;a4;a5]; 
Xtest=[a2]; 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% Classification %%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

inputTable = array2table(Xtest, 'VariableNames', {'column_1', 
'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 
'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 
'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 
'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 
'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 
'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 
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'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 
'column_37', 'column_38', 'column_39', 'column_40', 'column_41'}); 

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
'column_40'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.column_41; 
isCategoricalPredictor = [false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false]; 

% Train a classifier 
% This code specifies all the classifier options and trains the 
classifier. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Function of KNN %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationKNN = fitcknn(... 
    predictors, ... 
    response, ... 
    'Distance', 'Euclidean', ... 
    'Exponent', [], ... 
    'NumNeighbors', 1, ... 
    'DistanceWeight', 'Equal', ... 
    'Standardize', true, ... 
    'ClassNames', [1; 5]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Function of SVM  %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationSVM = fitcsvm(... 
    predictors, ... 
    response, ... 
    'KernelFunction', 'polynomial', ... 
    'PolynomialOrder', 2, ... 
    'KernelScale', 'auto', ... 
    'BoxConstraint', 1, ... 
    'Standardize', true, ... 
    'ClassNames', [1; 5]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Function of BT  %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
classificationEnsemble = fitensemble(... 
    predictors, ... 
    response, ... 
    'Bag', ... 
    30, ... 
    'Tree', ... 
    'Type', 'Classification', ... 
    'ClassNames', [1; 5]); 
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% Create the result struct with predict function 
predictorExtractionFcn = @(x) array2table(x, 'VariableNames', 
predictorNames); 
knnPredictFcn = @(x) predict(classificationKNN, x); 
trainedClassifier.predictFcn = @(x) 
knnPredictFcn(predictorExtractionFcn(x)); 
svmPredictFcn = @(x) predict(classificationSVM, x); 
trainedClassifier.predictFcn = @(x) 
svmPredictFcn(predictorExtractionFcn(x)); 
ensemblePredictFcn = @(x) predict(classificationEnsemble, x); 
trainedClassifier.predictFcn = @(x) 
ensemblePredictFcn(predictorExtractionFcn(x)); 

% Add additional fields to the result struct 
trainedClassifier.ClassificationKNN = classificationKNN; 
trainedClassifier.ClassificationSVM = classificationSVM; 
trainedClassifier.ClassificationEnsemble = classificationEnsemble; 

% Extract predictors and response 
% This code processes the data into the right shape for training the 
% classifier. 
% Convert input to table 
inputTable = array2table(x, 'VariableNames', {'column_1', 
'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 
'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 
'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 
'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 
'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 
'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 
'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 
'column_37', 'column_38', 'column_39', 'column_40', 'column_41'}); 

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 
'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 
'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 
'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 
'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 
'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 
'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 
'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 
'column_40'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.column_41; 
isCategoricalPredictor = [false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false]; 

% Compute resubstitution accuracy 
resubstitutionAccuracy1 = 1 - 
resubLoss(trainedClassifier.ClassificationKNN, 'LossFun', 
'ClassifError'); 
Accuracy_KNN=resubstitutionAccuracy1*100 

resubstitutionAccuracy2 = 1 - 
resubLoss(trainedClassifier.ClassificationSVM, 'LossFun', 
'ClassifError'); 
Accuracy_SVM=resubstitutionAccuracy2*100 
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resubstitutionAccuracy3 = 1 - 
resubLoss(trainedClassifier.ClassificationEnsemble, 'LossFun', 
'ClassifError'); 
Accuracy_BT=resubstitutionAccuracy3*100 
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Appendix D : Matlab simulation code for Frequency Domain with 
Information Gain Technique 

A simulation code for classification of epileptic EEG signals is presented. 

D.I Matlab code for Frequency Domain with Information Gain Technique.

D 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% Read dataset of epileptic EEG signals %%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Reading epileptic EEG data is same as in the appendices A, B and C 

%%%%% Five classes of epileptic EEG signals (A-E) %% 
A=[z]; %z=set A; o=set B; n=set C; f=set D; s=set E. 
B=[o]; 
C=[n]; 
D=[f]; 
E=[s]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Using DWT to decompose each class %%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
x=A;    % do each class individually (A, B, C, D, and E classes) 
technique 
[n m]=size(x); 
for i=1:m 
    A=x(:,i); 
[C,L] = wavedec(A,5,'db5'); 

% Calculation The Coificients Vectors of every Band: 
cD1 = detcoef(C,L,1); %DELTA 
cD2 = detcoef(C,L,2); %BETA 
cD3 = detcoef(C,L,3); %ALPHA 
cD4 = detcoef(C,L,4); %THETA 
cD5 = detcoef(C,L,5); %GAMMA 
cA5 = appcoef(C,L,'db5',5); %A5

% Calculation the Details Vectors of every Band : 

D1 = wrcoef('d',C,L,'db1',1);   %DELTA 
D2 = wrcoef('d',C,L,'db2',2);   %BETA 
D3 = wrcoef('d',C,L,'db3',3);   %ALPHA 
D4 = wrcoef('d',C,L,'db4',4);   %THETA 
D5 = wrcoef('d',C,L,'db5',5);   %GAMMA 
A5 = wrcoef('a',C,L,'db5',5);   % A5   
POWER_DELTA = (sum(A5.^2))/length(A5); 

Delta = D1; %figure, plot(1:1:length(Delta),Delta); title('Delta'); 
Beta  = D2; %figure, plot(1:1:length(Beta),Beta); title('Beta'); 
Alpha = D3; %figure, plot(1:1:length(Alpha), Alpha); title('Alpha'); 
Theta = D4; %figure, plot(1:1:length(Theta),Theta); title('Theta'); 
Gamma = D5; %figure, plot(1:1:length(Gamma),Gamma); title('Gamma'); 
Approximation = A5; %figure, 
plot(1:1:length(Approximation),Approximation);title('Approximation')
; 

%Power_Delta=abs(sum(Delta.^2)); 
%Power_Beta=abs(sum(Beta.^2)); 
%Power_Alpha=abs(sum(Alpha.^2)); 
%Power_Theta=abs(sum(Theta.^2)); 
%Power_Gamma=abs(sum(Gamma.^2)); 

Wave_D1(:,i)=Delta; 
Wave_D2(:,i)=Beta; 
Wave_D3(:,i)=Alpha; 
Wave_D4(:,i)=Theta; 



175 

Wave_D5(:,i)=Gamma; 
Wave_A5(:,i)=Approximation; 
end 
%toc 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% Extract feature from each frequency band %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%% 1st band %%%%%%% 
v1=Wave_D1(:,1:25); 
v2=Wave_D1(:,26:50); 
v3=Wave_D1(:,51:75); 
v4=Wave_D1(:,76:100); 

for k=1:n  

fs11(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),mode(v1(k,:)),median(v1(k,:))/2,3*median(v1(k,:))/2,(3*medi
an(v1(k,:))/2-median(v1(k,:))/2), std(v1(k,:))]; 

end 
for k=1:n 

fs12(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),mode(v2(k,:)),median(v2(k,:))/2,3*median(v2(k,:))/2,(3*medi
an(v2(k,:))/2-median(v2(k,:))/2), std(v2(k,:))]; 

end 
for k=1:n 

fs13(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),mode(v3(k,:)),median(v3(k,:))/2,3*median(v3(k,:))/2,(3*medi
an(v3(k,:))/2-median(v3(k,:))/2), std(v3(k,:))]; 

end 
for k=1:n 

fs14(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),mode(v4(k,:)),median(v4(k,:))/2,3*median(v4(k,:))/2,(3*medi
an(v4(k,:))/2-median(v4(k,:))/2), std(v4(k,:))]; 

end 

Feature_Wave_D1=[fs11 fs12 fs13 fs14]; 
%% 
%%%%%%%%%% 2nd band %%%%%%%% 
v1=Wave_D2(:,1:25); 
v2=Wave_D2(:,26:50); 
v3=Wave_D2(:,51:75); 
v4=Wave_D2(:,76:100); 

for k=1:n  

fs21(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),mode(v1(k,:)),median(v1(k,:))/2,3*median(v1(k,:))/2,(3*medi
an(v1(k,:))/2-median(v1(k,:))/2), std(v1(k,:))]; 

end 
for k=1:n 

fs22(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),mode(v2(k,:)),median(v2(k,:))/2,3*median(v2(k,:))/2,(3*medi
an(v2(k,:))/2-median(v2(k,:))/2), std(v2(k,:))]; 

end 
for k=1:n 
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fs23(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),mode(v3(k,:)),median(v3(k,:))/2,3*median(v3(k,:))/2,(3*medi
an(v3(k,:))/2-median(v3(k,:))/2), std(v3(k,:))]; 

end 
for k=1:n 

fs24(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),mode(v4(k,:)),median(v4(k,:))/2,3*median(v4(k,:))/2,(3*medi
an(v4(k,:))/2-median(v4(k,:))/2), std(v4(k,:))]; 

end 

Feature_Wave_D2=[fs21 fs22 fs23 fs24]; 
%% 
%%%%%%%%% 3rd band %%%%%%%% 
v1=Wave_D3(:,1:25); 
v2=Wave_D3(:,26:50); 
v3=Wave_D3(:,51:75); 
v4=Wave_D3(:,76:100); 

for k=1:n  

fs31(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),mode(v1(k,:)),median(v1(k,:))/2,3*median(v1(k,:))/2,(3*medi
an(v1(k,:))/2-median(v1(k,:))/2), std(v1(k,:))]; 

end 
for k=1:n 

fs32(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),mode(v2(k,:)),median(v2(k,:))/2,3*median(v2(k,:))/2,(3*medi
an(v2(k,:))/2-median(v2(k,:))/2), std(v2(k,:))]; 

end 
for k=1:n 

fs33(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),mode(v3(k,:)),median(v3(k,:))/2,3*median(v3(k,:))/2,(3*medi
an(v3(k,:))/2-median(v3(k,:))/2), std(v3(k,:))]; 

end 
for k=1:n 

fs34(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),mode(v4(k,:)),median(v4(k,:))/2,3*median(v4(k,:))/2,(3*medi
an(v4(k,:))/2-median(v4(k,:))/2), std(v4(k,:))]; 

end 

Feature_Wave_D3=[fs31 fs32 fs33 fs34]; 
%% 
%%%%%%%%% 4th band %%%%%%%%% 
v1=Wave_D4(:,1:25); 
v2=Wave_D4(:,26:50); 
v3=Wave_D4(:,51:75); 
v4=Wave_D4(:,76:100); 

for k=1:n  

fs41(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),mode(v1(k,:)),median(v1(k,:))/2,3*median(v1(k,:))/2,(3*medi
an(v1(k,:))/2-median(v1(k,:))/2), std(v1(k,:))]; 

end 
for k=1:n 
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fs42(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),mode(v2(k,:)),median(v2(k,:))/2,3*median(v2(k,:))/2,(3*medi
an(v2(k,:))/2-median(v2(k,:))/2), std(v2(k,:))]; 

end 
for k=1:n 

fs43(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),mode(v3(k,:)),median(v3(k,:))/2,3*median(v3(k,:))/2,(3*medi
an(v3(k,:))/2-median(v3(k,:))/2), std(v3(k,:))]; 

end 
for k=1:n 

fs44(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),mode(v4(k,:)),median(v4(k,:))/2,3*median(v4(k,:))/2,(3*medi
an(v4(k,:))/2-median(v4(k,:))/2), std(v4(k,:))]; 

end 

Feature_Wave_D4=[fs41 fs42 fs43 fs44]; 
%% 
%%%%%%%%% 5th band %%%%%%% 
v1=Wave_D5(:,1:25); 
v2=Wave_D5(:,26:50); 
v3=Wave_D5(:,51:75); 
v4=Wave_D5(:,76:100); 

for k=1:n  

fs51(k,:)=[min(v1(k,:)),max(v1(k,:)),mean(v1(k,:)),median(v1(k,
:)),mode(v1(k,:)),median(v1(k,:))/2,3*median(v1(k,:))/2,(3*medi
an(v1(k,:))/2-median(v1(k,:))/2), std(v1(k,:))]; 

end 
for k=1:n 

fs52(k,:)=[min(v2(k,:)),max(v2(k,:)),mean(v2(k,:)),median(v2(k,
:)),mode(v2(k,:)),median(v2(k,:))/2,3*median(v2(k,:))/2,(3*medi
an(v2(k,:))/2-median(v2(k,:))/2), std(v2(k,:))]; 

end 
for k=1:n 

fs53(k,:)=[min(v3(k,:)),max(v3(k,:)),mean(v3(k,:)),median(v3(k,
:)),mode(v3(k,:)),median(v3(k,:))/2,3*median(v3(k,:))/2,(3*medi
an(v3(k,:))/2-median(v3(k,:))/2), std(v3(k,:))]; 

end 
for k=1:n 

fs54(k,:)=[min(v4(k,:)),max(v4(k,:)),mean(v4(k,:)),median(v4(k,
:)),mode(v4(k,:)),median(v4(k,:))/2,3*median(v4(k,:))/2,(3*medi
an(v4(k,:))/2-median(v4(k,:))/2), std(v4(k,:))]; 

end 

Feature_Wave_D5=[fs51 fs52 fs53 fs54]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Information Gain %%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% 1th %%%%% 
TR=Feature_Wave_D1; 
TR=TR'; 
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TR1=Feature_Wave_D1; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:n 
    if array1(i)<adp1 

InfoGain11(N,:)=TR1(i,:); 
N=N+1; 

    end 
end  
%% 
%%%%% 2nd %%%%%% 
TR=Feature_Wave_D2; 
TR=TR'; 
TR1=Feature_Wave_D2; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:n 
    if array1(i)<adp1 

InfoGain12(N,:)=TR1(i,:); 
N=N+1; 

    end 
end  
%% 
%%%%%%% 3rd %%%%%%%% 
TR=Feature_Wave_D3; 
TR=TR'; 
TR1=Feature_Wave_D3; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:n 
    if array1(i)<adp1 

InfoGain13(N,:)=TR1(i,:); 
N=N+1; 

    end 
end  
%% 
%%%%%% 4th %%%%%% 
TR=Feature_Wave_D4; 
TR=TR'; 
TR1=Feature_Wave_D4; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:n 
    if array1(i)<adp1 

InfoGain14(N,:)=TR1(i,:); 
N=N+1; 

    end 
end  
%% 
%%%%%%%%% 5th %%%%%%%% 
TR=Feature_Wave_D5; 
TR=TR'; 
TR1=Feature_Wave_D5; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
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for i=1:n 
    if array1(i)<adp1 

InfoGain15(N,:)=TR1(i,:); 
N=N+1; 

    end 
end 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Seven cases of epileptic EEG using DWT %%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%% case A vs E %%%%%%%%%%% 
DWT_InfoG_AvsE1=[InfoGain11; InfoGain51]; 
DWT_InfoG_AvsE2=[InfoGain12; InfoGain52]; 
DWT_InfoG_AvsE3=[InfoGain13; InfoGain53]; 
DWT_InfoG_AvsE4=[InfoGain14; InfoGain54]; 
DWT_InfoG_AvsE5=[InfoGain15; InfoGain55]; 

%%%%%%%% case A vs B %%%%%%%%%%% 
DWT_InfoG_AvsB1=[InfoGain11; InfoGain21]; 
DWT_InfoG_AvsB2=[InfoGain12; InfoGain22]; 
DWT_InfoG_AvsB3=[InfoGain13; InfoGain23]; 
DWT_InfoG_AvsB4=[InfoGain14; InfoGain24]; 
DWT_InfoG_AvsB5=[InfoGain15; InfoGain25]; 

%%%%%%%% case A vs D %%%%%%%%%%% 
DWT_InfoG_AvsD1=[InfoGain11; InfoGain41]; 
DWT_InfoG_AvsD2=[InfoGain12; InfoGain42]; 
DWT_InfoG_AvsD3=[InfoGain13; InfoGain43]; 
DWT_InfoG_AvsD4=[InfoGain14; InfoGain44]; 
DWT_InfoG_AvsD5=[InfoGain15; InfoGain45]; 

%%%%%%%% case B vs C %%%%%%%%%%% 
DWT_InfoG_BvsC1=[InfoGain21; InfoGain31]; 
DWT_InfoG_BvsC2=[InfoGain22; InfoGain32]; 
DWT_InfoG_BvsC3=[InfoGain23; InfoGain33]; 
DWT_InfoG_BvsC4=[InfoGain24; InfoGain34]; 
DWT_InfoG_BvsC5=[InfoGain25; InfoGain35]; 

%%%%%%%% case B vs E %%%%%%%%%%% 
DWT_InfoG_BvsE1=[InfoGain21; InfoGain51]; 
DWT_InfoG_BvsE2=[InfoGain22; InfoGain52]; 
DWT_InfoG_BvsE3=[InfoGain23; InfoGain53]; 
DWT_InfoG_BvsE4=[InfoGain24; InfoGain54]; 
DWT_InfoG_BvsE5=[InfoGain25; InfoGain55]; 

%%%%%%%% case C vs E %%%%%%%%%%% 
DWT_InfoG_CvsE1=[InfoGain31; InfoGain51]; 
DWT_InfoG_CvsE2=[InfoGain32; InfoGain52]; 
DWT_InfoG_CvsE3=[InfoGain33; InfoGain53]; 
DWT_InfoG_CvsE4=[InfoGain34; InfoGain54]; 
DWT_InfoG_CvsE5=[InfoGain35; InfoGain55]; 

%%%%%%%% case D vs E %%%%%%%%%%% 
DWT_InfoG_DvsE1=[InfoGain41; InfoGain51]; 
DWT_InfoG_DvsE2=[InfoGain42; InfoGain52]; 
DWT_InfoG_DvsE3=[InfoGain43; InfoGain53]; 
DWT_InfoG_DvsE4=[InfoGain44; InfoGain54]; 
DWT_InfoG_DvsE5=[InfoGain45; InfoGain55]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% Classification %%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 
clc 

%%%%%%%%%% Cross validation %%%%%%%%% 

X= DWT_InfoG_AvsE1; % Do each case of frequency band 
x=[X(1:1857,:);X(1858:3713,:)]; 
y=[1*ones(1857,1);-1*ones(1856,1)]; 

Xtest= [X(1274:2546,:);X(3820:5092,:)]; 
Ytest=[1*ones(1273,1);-1*ones(1273,1)]; 

size(x) 
size(y) 

%% 
%%%%%%%%%%%%%%% LS_SVM %%%%%%%%%%%%%%% 
% Changeable parameters (gam (ϒ) and sig2 (σ2)) 

gam=10; 
sig2=1; 
%type='classification'; 
%L_fold=10; 
%[gam,sig2]=tunelssvm({x,y,type,1,1,'RBF_kernel'},[],... 
 %   'gridsearch',{},'crossvalidate',{x,y,L_fold,'misclass'}); 

%disp(gam) 
%disp(sig2) 
[alpha,b] = trainlssvm({x,y,type,gam,sig2,'RBF_kernel'}); 
disp(b) 

Yh=simlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},Xtest); 
plotlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b}); 
%% 

[perc,n,which]=misclass(Ytest,Yh); % Which: contains the indices of 
the misclassificated instances(the first column gives the row, the 
second the column index) 
n; % is the number of misclassifications 
perc; % is the rate of misclassifications (between 0 and 1) 
[C,order] = confusionmat(Ytest,Yh); 
C 
order 

%% 
Y_latent=latentlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},x);  
[area,se,thresholds,oneMinusspec,sens,TN,TP,FN,FP]=roc({x,y,type,gam
,sig2,'RBF_kernel'}); 
%[thresholds oneMinusspec sens ]; 
%% 
sensitivity=TP/(TP+FN)*100 
specificity=TN/(TN+FP)*100 
Accuracy=(TP+TN)/(TP+TN+FP+FN)*100 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Using FFT to decompose each class %%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
Test1=[]; 
Test2=[]; 
Test3=[]; 
Test4=[]; 
Test5=[]; 
% Test6=[]; 
% Test7=[]; 
% Test8=[]; 
% Test9=[]; 
% Test10=[]; 

Denoised_x_total=B; % do each class individually (A, B, C, D, and E 
classes)   

Test1=Delta_bandfilter(Denoised_x_total); 
Test2=Theta_bandfilter(Denoised_x_total); 
Test3=Alfa_bandfilter(Denoised_x_total); 
Test4=Beta_bandfilter(Denoised_x_total); 
Test5=Gama_bandfilter(Denoised_x_total); 

% Test6=Test1.^2; 
% Test7=Test1.^2; 
% Test8=Test1.^2; 
% Test9=Test1.^2; 
% Test10=Test1.^2; 

toc 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% Extract feature from each frequency band %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%% 1st band %%%%%%% 
x1=Test1(:,1:25); 
x2=Test1(:,26:50); 
x3=Test1(:,51:75); 
x4=Test1(:,76:100); 

for k=1:4097  

fs1(k,:)=[min(x1(k,:)),max(x1(k,:)),mean(x1(k,:)),median(x1(k,:
)),mode(x1(k,:)),median(x1(k,:))/2,3*median(x1(k,:))/2,(3*media
n(x1(k,:))/2-median(x1(k,:))/2), std(x1(k,:))]; 

end 
for k=1:4097 

fs2(k,:)=[min(x2(k,:)),max(x2(k,:)),mean(x2(k,:)),median(x2(k,:
)),mode(x2(k,:)),median(x2(k,:))/2,3*median(x2(k,:))/2,(3*media
n(x2(k,:))/2-median(x2(k,:))/2), std(x2(k,:))]; 

end 
for k=1:4097 

fs3(k,:)=[min(x3(k,:)),max(x3(k,:)),mean(x3(k,:)),median(x3(k,:
)),mode(x3(k,:)),median(x3(k,:))/2,3*median(x3(k,:))/2,(3*media
n(x3(k,:))/2-median(x3(k,:))/2), std(x3(k,:))];    

end 
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for k=1:4097 

fs4(k,:)=[min(x4(k,:)),max(x4(k,:)),mean(x4(k,:)),median(x4(k,:
)),mode(x4(k,:)),median(x4(k,:))/2,3*median(x4(k,:))/2,(3*media
n(x4(k,:))/2-median(x4(k,:))/2), std(x4(k,:))]; 

end 
Feature_FFT_D1=[fs1 fs2 fs3 fs4]; 
%% 
%%%%%%%% 2nd band %%%%%%% 

x1=Test2(:,1:25); 
x2=Test2(:,26:50); 
x3=Test2(:,51:75); 
x4=Test2(:,76:100); 

for k=1:4097  

fs1(k,:)=[min(x1(k,:)),max(x1(k,:)),mean(x1(k,:)),median(x1(k,:
)),mode(x1(k,:)),median(x1(k,:))/2,3*median(x1(k,:))/2,(3*media
n(x1(k,:))/2-median(x1(k,:))/2), std(x1(k,:))]; 

end 
for k=1:4097 

fs2(k,:)=[min(x2(k,:)),max(x2(k,:)),mean(x2(k,:)),median(x2(k,:
)),mode(x2(k,:)),median(x2(k,:))/2,3*median(x2(k,:))/2,(3*media
n(x2(k,:))/2-median(x2(k,:))/2), std(x2(k,:))]; 

end 
for k=1:4097 

fs3(k,:)=[min(x3(k,:)),max(x3(k,:)),mean(x3(k,:)),median(x3(k,:
)),mode(x3(k,:)),median(x3(k,:))/2,3*median(x3(k,:))/2,(3*media
n(x3(k,:))/2-median(x3(k,:))/2), std(x3(k,:))];    

end 
for k=1:4097 

fs4(k,:)=[min(x4(k,:)),max(x4(k,:)),mean(x4(k,:)),median(x4(k,:
)),mode(x4(k,:)),median(x4(k,:))/2,3*median(x4(k,:))/2,(3*media
n(x4(k,:))/2-median(x4(k,:))/2), std(x4(k,:))]; 

end 
Feature_FFT_D2=[fs1 fs2 fs3 fs4]; 
%% 
%%%%%%%% 3rd band %%%%%%% 

x1=Test3(:,1:25); 
x2=Test3(:,26:50); 
x3=Test3(:,51:75); 
x4=Test3(:,76:100); 

for k=1:4097  

fs1(k,:)=[min(x1(k,:)),max(x1(k,:)),mean(x1(k,:)),median(x1(k,:
)),mode(x1(k,:)),median(x1(k,:))/2,3*median(x1(k,:))/2,(3*media
n(x1(k,:))/2-median(x1(k,:))/2), std(x1(k,:))]; 

end 
for k=1:4097 

fs2(k,:)=[min(x2(k,:)),max(x2(k,:)),mean(x2(k,:)),median(x2(k,:
)),mode(x2(k,:)),median(x2(k,:))/2,3*median(x2(k,:))/2,(3*media
n(x2(k,:))/2-median(x2(k,:))/2), std(x2(k,:))]; 

end 
for k=1:4097 
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fs3(k,:)=[min(x3(k,:)),max(x3(k,:)),mean(x3(k,:)),median(x3(k,:
)),mode(x3(k,:)),median(x3(k,:))/2,3*median(x3(k,:))/2,(3*media
n(x3(k,:))/2-median(x3(k,:))/2), std(x3(k,:))];    

end 
for k=1:4097 

fs4(k,:)=[min(x4(k,:)),max(x4(k,:)),mean(x4(k,:)),median(x4(k,:
)),mode(x4(k,:)),median(x4(k,:))/2,3*median(x4(k,:))/2,(3*media
n(x4(k,:))/2-median(x4(k,:))/2), std(x4(k,:))]; 

end 
Feature_FFT_D3=[fs1 fs2 fs3 fs4]; 
%% 
%%%%%%%% 4th band %%%%%%% 

x1=Test4(:,1:25); 
x2=Test4(:,26:50); 
x3=Test4(:,51:75); 
x4=Test4(:,76:100); 

for k=1:4097  

fs1(k,:)=[min(x1(k,:)),max(x1(k,:)),mean(x1(k,:)),median(x1(k,:
)),mode(x1(k,:)),median(x1(k,:))/2,3*median(x1(k,:))/2,(3*media
n(x1(k,:))/2-median(x1(k,:))/2), std(x1(k,:))]; 

end 
for k=1:4097 

fs2(k,:)=[min(x2(k,:)),max(x2(k,:)),mean(x2(k,:)),median(x2(k,:
)),mode(x2(k,:)),median(x2(k,:))/2,3*median(x2(k,:))/2,(3*media
n(x2(k,:))/2-median(x2(k,:))/2), std(x2(k,:))]; 

end 
for k=1:4097 

fs3(k,:)=[min(x3(k,:)),max(x3(k,:)),mean(x3(k,:)),median(x3(k,:
)),mode(x3(k,:)),median(x3(k,:))/2,3*median(x3(k,:))/2,(3*media
n(x3(k,:))/2-median(x3(k,:))/2), std(x3(k,:))];    

end 
for k=1:4097 

fs4(k,:)=[min(x4(k,:)),max(x4(k,:)),mean(x4(k,:)),median(x4(k,:
)),mode(x4(k,:)),median(x4(k,:))/2,3*median(x4(k,:))/2,(3*media
n(x4(k,:))/2-median(x4(k,:))/2), std(x4(k,:))]; 

end 
Feature_FFT_D4=[fs1 fs2 fs3 fs4]; 
%% 
%%%%%%%% 5th band %%%%%%% 

x1=Test5(:,1:25); 
x2=Test5(:,26:50); 
x3=Test5(:,51:75); 
x4=Test5(:,76:100); 

for k=1:4097  

fs1(k,:)=[min(x1(k,:)),max(x1(k,:)),mean(x1(k,:)),median(x1(k,:
)),mode(x1(k,:)),median(x1(k,:))/2,3*median(x1(k,:))/2,(3*media
n(x1(k,:))/2-median(x1(k,:))/2), std(x1(k,:))]; 

end 
for k=1:4097 
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fs2(k,:)=[min(x2(k,:)),max(x2(k,:)),mean(x2(k,:)),median(x2(k,:
)),mode(x2(k,:)),median(x2(k,:))/2,3*median(x2(k,:))/2,(3*media
n(x2(k,:))/2-median(x2(k,:))/2), std(x2(k,:))]; 

end 
for k=1:4097 

fs3(k,:)=[min(x3(k,:)),max(x3(k,:)),mean(x3(k,:)),median(x3(k,:
)),mode(x3(k,:)),median(x3(k,:))/2,3*median(x3(k,:))/2,(3*media
n(x3(k,:))/2-median(x3(k,:))/2), std(x3(k,:))];    

end 
for k=1:4097 

fs4(k,:)=[min(x4(k,:)),max(x4(k,:)),mean(x4(k,:)),median(x4(k,:
)),mode(x4(k,:)),median(x4(k,:))/2,3*median(x4(k,:))/2,(3*media
n(x4(k,:))/2-median(x4(k,:))/2), std(x4(k,:))]; 

end 
Feature_FFT_D5=[fs1 fs2 fs3 fs4]; 
%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Information Gain %%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

TR=Feature_FFT_D1; % first band of FFT 
TR=TR'; 
TR1=Feature_FFT_D1; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:4097 
    if array1(i)<adp1 

InfoadpFFT21(N,:)=TR1(i,:); 
N=N+1; 

    end 
end 

TR=Feature_FFT_D2; % 2nd Band of FFT 
TR=TR'; 
TR1=Feature_FFT_D2; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:4097 
    if array1(i)<adp1 

InfoadpFFT22(N,:)=TR1(i,:); 
N=N+1; 

    end 
end 

TR=Feature_FFT_D3; % 3rd Band of FFT 
TR=TR'; 
TR1=Feature_FFT_D3; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:4097 
    if array1(i)<adp1 

InfoadpFFT23(N,:)=TR1(i,:); 
N=N+1; 

    end 
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end 

TR=Feature_FFT_D4; % 4th Band of FFT 
TR=TR'; 
TR1=Feature_FFT_D4; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:4097 
    if array1(i)<adp1 

InfoadpFFT24(N,:)=TR1(i,:); 
N=N+1; 

    end 
end 

TR=Feature_FFT_D5; % 5th Band of FFT 
TR=TR'; 
TR1=Feature_FFT_D5; 
[adp1 av1 array1]=HADI_ENT(TR); 

N=1; 
for i=1:4097 
    if array1(i)<adp1 

InfoadpFFT25(N,:)=TR1(i,:); 
N=N+1; 

    end 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Seven cases of epileptic EEG using FFT %%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% case A vs E %%%%%%%%%%% 
FFT_InfoG_AvsE1=[InfoadpFFT11; InfoadpFFT51]; 
FFT_InfoG_AvsE2=[InfoadpFFT12; InfoadpFFT52]; 
FFT_InfoG_AvsE3=[InfoadpFFT13; InfoadpFFT53]; 
FFT_InfoG_AvsE4=[InfoadpFFT14; InfoadpFFT54]; 
FFT_InfoG_AvsE5=[InfoadpFFT15; InfoadpFFT55]; 

%%%%%%%% case A vs B %%%%%%%%%%% 
FFT_InfoG_AvsB1=[InfoadpFFT11; InfoadpFFT21]; 
FFT_InfoG_AvsB2=[InfoadpFFT12; InfoadpFFT22]; 
FFT_InfoG_AvsB3=[InfoadpFFT13; InfoadpFFT23]; 
FFT_InfoG_AvsB4=[InfoadpFFT14; InfoadpFFT24]; 
FFT_InfoG_AvsB5=[InfoadpFFT15; InfoadpFFT25]; 

%%%%%%%% case A vs D %%%%%%%%%%% 
FFT_InfoG_AvsD1=[InfoadpFFT11; InfoadpFFT41]; 
FFT_InfoG_AvsD2=[InfoadpFFT12; InfoadpFFT42]; 
FFT_InfoG_AvsD3=[InfoadpFFT13; InfoadpFFT43]; 
FFT_InfoG_AvsD4=[InfoadpFFT14; InfoadpFFT44]; 
FFT_InfoG_AvsD5=[InfoadpFFT15; InfoadpFFT45]; 

%%%%%%%% case B vs C %%%%%%%%%%% 
FFT_InfoG_BvsC1=[InfoadpFFT21; InfoadpFFT31]; 
FFT_InfoG_BvsC2=[InfoadpFFT22; InfoadpFFT32]; 
FFT_InfoG_BvsC3=[InfoadpFFT23; InfoadpFFT33]; 
FFT_InfoG_BvsC4=[InfoadpFFT24; InfoadpFFT34]; 
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FFT_InfoG_BvsC5=[InfoadpFFT25; InfoadpFFT35]; 

%%%%%%%% case B vs E %%%%%%%%%%% 
FFT_InfoG_BvsE1=[InfoadpFFT21; InfoadpFFT51]; 
FFT_InfoG_BvsE2=[InfoadpFFT22; InfoadpFFT52]; 
FFT_InfoG_BvsE3=[InfoadpFFT23; InfoadpFFT53]; 
FFT_InfoG_BvsE4=[InfoadpFFT24; InfoadpFFT54]; 
FFT_InfoG_BvsE5=[InfoadpFFT25; InfoadpFFT55]; 

%%%%%%%% case C vs E %%%%%%%%%%% 
FFT_InfoG_CvsE1=[InfoadpFFT31; InfoadpFFT51]; 
FFT_InfoG_CvsE2=[InfoadpFFT32; InfoadpFFT52]; 
FFT_InfoG_CvsE3=[InfoadpFFT33; InfoadpFFT53]; 
FFT_InfoG_CvsE4=[InfoadpFFT34; InfoadpFFT54]; 
FFT_InfoG_CvsE5=[InfoadpFFT35; InfoadpFFT55]; 

%%%%%%%% case D vs E %%%%%%%%%%% 
FFT_InfoG_DvsE1=[InfoadpFFT41; InfoadpFFT51]; 
FFT_InfoG_DvsE2=[InfoadpFFT42; InfoadpFFT52]; 
FFT_InfoG_DvsE3=[InfoadpFFT43; InfoadpFFT53]; 
FFT_InfoG_DvsE4=[InfoadpFFT44; InfoadpFFT54]; 
FFT_InfoG_DvsE5=[InfoadpFFT45; InfoadpFFT55]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% Classification %%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc 
load('implement of FFT A-B,C-D'); 
%%%%%%%%%% Cross_validation %%%%%%%%% 
X=InfoGadpFFT_A_B1; 
x=[X(1:1857,:);X(1858:3713,:)]; 
y=[1*ones(1857,1);-1*ones(1856,1)]; 

Xtest= [X(1274:2546,:);X(3820:5092,:)]; 
Ytest=[1*ones(1273,1);-1*ones(1273,1)]; 

size(x) 
size(y) 
%% 
%%%%%%%%%%%%%%% LS_SVM %%%%%%%%%%%%%%% 

% Changeable parameters (gam (ϒ) and sig2(σ2)) 
gam=10;      
sig2=1; 
%type='classification'; 
%L_fold=10; 
%[gam,sig2]=tunelssvm({x,y,type,1,1,'RBF_kernel'},[],... 
 %   'gridsearch',{},'crossvalidate',{x,y,L_fold,'misclass'}); 

%disp(gam) 
%disp(sig2) 
[alpha,b] = trainlssvm({x,y,type,gam,sig2,'RBF_kernel'}); 
disp(b) 

Yh=simlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},Xtest); 
plotlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b}); 
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%% 

[perc,n,which]=misclass(Ytest,Yh); % Which: contains the indices of 
the misclassificated instances(the first column gives the row, the 
second the column index) 
n; % is the number of misclassifications 
perc; % is the rate of misclassifications (between 0 and 1) 
[C,order] = confusionmat(Ytest,Yh); 
C 
order 

%% 
Y_latent=latentlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},x);  
[area,se,thresholds,oneMinusspec,sens,TN,TP,FN,FP]=roc({x,y,type,gam
,sig2,'RBF_kernel'}); 
%[thresholds oneMinusspec sens ]; 
%% 
sensitivity=TP/(TP+FN)*100 
specificity=TN/(TN+FP)*100 
Accuracy=(TP+TN)/(TP+TN+FP+FN)*100 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%% Function of Entropy %%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Adp,Ave,Y] = Untitled3( X ) 
%UNTITLED3 Summary of this function goes here 
%   Detailed explanation goes here 
[N1,M1] = size(X); 
Totals = sum(X,1); 
N = sum(sum(X)); 
Temp_P  = (Totals' * ones(1,N1))'; 
warning off; 
Temp_fre =  X ./ Temp_P; 
warning on; 
Temp_fre(isnan(Temp_fre))=0; 
LogN = Temp_fre.*log2(Temp_fre); 
entropies = -sum(LogN,1); 
my_entropy= sum((Totals/N).*entropies); 
Y=entropies'; 
Ave=mean(Y); 
Adp=my_entropy; 



End of thesis 
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