# Modelling the Environmental and Anatomical Solar Ultraviolet Distribution in a School Playground

A dissertation submitted by

Nathan James Downs BEd, BEng(Hons), MPhil

for the award of Doctor of Philosophy

#### Abstract

The causative association between exposure to sunlight and the development of melanoma and non-melanoma skin cancer is well recognised. Intermittent sunburning episodes and chronic exposure to solar ultraviolet radiation significantly increase the risk of developing skin cancer. A large proportion of the solar ultraviolet received during childhood can be attributed to exposures received in the school playground. School playgrounds are essentially controlled environments. Increasing awareness and providing accurate predictions of ultraviolet exposure unique to individual school environments is an essential step that needs to be taken to educate children, teachers and school administrators of the risks faced in the playground and will contribute toward reducing unnecessary exposures. This is the first research to provide detailed maps of the ultraviolet exposure received in the school playground and upon the three dimensional skin surfaces of the body based on high density miniaturised polysulphone dosimeter measurements and environmental surveying of the playground environment. In this research, measurements of playground sky view were taken at 822 playground locations and UV exposure ratios were measured at 1453 body sites to map playground exposures and the three dimensional ultraviolet hot spots occurring on the face, neck, arm, hand and leg as a result of using that environment. Predictions of ultraviolet exposure were tested against measurements of erythemally effective ultraviolet exposure received by a cohort of school children using the modelled school playground. Effective shade, playground surface albedo, sky view and sunburning ultraviolet are provided for the modelled school and the suitability of the developed technique to provide estimates of personal ultraviolet exposure in the playground are discussed relative to the solar health risks experienced in Queensland.

## Certification of Dissertation

I certify that the ideas, experimental work, results, analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

| Signature of Candidate  | Date |
|-------------------------|------|
| ENDORSEMENT             |      |
| Signature of Supervisor | Date |
| Signature of Supervisor | Date |
| Signature of Supervisor | Date |

#### Acknowledgements

In the four years required to produce this work a small but significant number of people have made valuable contributions essential to its completion. Associate Professor Alfio Parisi, as principle supervisor has provided not only the assistance required to develop and progress this current research, through advice, suggestion and ongoing editing assistance but has also played a significant mentoring role since my beginning a postgraduate career in science. The value with which Alfio's assistance has been appreciated is reflected in the fact that every research paper I have worked on or coauthored, including those not specifically related to this research topic has included Alfio. I therefore thank particularly Alfio for his assistance over the years for not only this work but those works which have preceded that which is presented here. Particular thanks must also be given to Dr David Turnbull and Dr Brad Carter for their assistance and suggestions that have enabled the production of this dissertation. Of the other USQ staff that have made valuable contributions, thanks must also be given to Graham Holmes and Oliver Kinder for providing the loans and assembly of necessary equipment. Grateful acknowledgment is given to the former school principal of Hervey Bay State High School, Glenn Vaughan, for providing the necessary permission to conduct a number of studies, including this research in the school. I appreciate also the support of interested teachers and the many students involved over the years in research conducted at the school. I also give my thanks to the readers of this work and hope that the ideas and techniques presented are found to be of some value. Lastly, I acknowledge and thank my family for their support and assistance with this work, particularly in regards to the making of dosimeters which I at times have asked for assistance with, given that many thousands have had to be made over the years. Perhaps most importantly however I thank my grandfather for his early encouragement in the sciences. Without such support, it seems unlikely to me that any one of my interests in either my former engineering career or current scientific studies would ever have been attempted, including this little endeavour.

# Table of Contents

# CHAPTER 1 INTRODUCTION

| 1.1 Research f | ocus and objective  | es                                           | 1   |
|----------------|---------------------|----------------------------------------------|-----|
| 1.2 Review of  | the literature      |                                              | 2   |
| 1.2.1          | Origins of sunlig   | ht                                           | 2   |
| 1.2.2          | Definition and cl   | assification of ultraviolet                  | 4   |
| 1.2.3          | Terrestrial ultravi | iolet radiation                              | 4   |
|                | 1.2.3.1 Spectral U  | JV irradiance                                | 5   |
| 1.2.4          | Ozone as a mode     | rator of ultraviolet                         | 7   |
| 1.2.5          | Dobson Units        |                                              | 11  |
| 1.2.6          | Scattering mecha    | nisms                                        | 11  |
|                | 1.2.6.1 Rayleigh    | scattering by air                            | 12  |
|                | 1.2.6.2 Mie scatte  | ering by aerosols                            | 13  |
| 1.2.7          | Ultraviolet incide  | ent on the local playground environment      | 14  |
|                | 1.2.7.1 Surface c   | ondition                                     | 14  |
|                | 1.2.7.2 Altitude a  | and aspect                                   | 14  |
|                | 1.2.7.3 Latitude    |                                              | 15  |
|                | 1.2.7.4 Time of d   | lay                                          | 16  |
|                | 1.2.7.5 Cloud       |                                              | 17  |
| 1.2.8          | Humans and ultra    | aviolet radiation                            | 18  |
|                | 1.2.8.1 Human sk    | xin                                          | 19  |
|                | 1.2.8.1.1           | Skin type                                    | 19  |
|                | 1.2.8.1.2           | Ultraviolet penetration of the skin          | 21  |
|                | 1.2.8.2 Erythema    |                                              | 22  |
|                | 1.2.8.3 Actinic ex  | kposure                                      | 23  |
|                | 1.2.8.4 Vitamin I   | )                                            | 24  |
|                | 1.2.8.5 Lifestyle   | and behaviour                                | 26  |
| 1.2.9          | Skin Cancer         |                                              | 27  |
|                | 1.2.9.1 Non-mela    | noma skin cancer                             | 28  |
|                | 1.2.9.2 Melanom     | a skin cancer                                | 29  |
| 1.2.10         | Personal measure    | ements of UV radiation with polysulphone     |     |
|                | dosimeters          |                                              | 30  |
| 1.2.11         | Ultraviolet expos   | sure models                                  | 31  |
|                | 1.2.11.1 Va         | ariation in UV irradiance due to orientation | ı32 |
|                | 1.2.11.2 M          | odelling personal biologically damaging      |     |
|                | ul                  | traviolet                                    | 33  |
| 1.2.12         | Trends in school    | practices and the ultraviolet environment    | 34  |
|                | 1.2.12.1 Su         | in protection policy                         | 34  |
|                | 1.2.12.2 Be         | ehavioural attitudes and practices of school | l   |
|                | ch                  | ildren                                       | 35  |
| 1.3 Methodolo  | ду                  |                                              | 36  |

# CHAPTER 2 MATERIALS AND METHODS

| 2.1 | Instrumenta | ition          |                                            | 39       |
|-----|-------------|----------------|--------------------------------------------|----------|
|     | 2.1.1 Scar  | nning spectro  | radiometer                                 | 39       |
|     | 2.1.2 Broa  | adband meter   |                                            | 40       |
| 2.2 | Miniaturise | d polysulpho   | ne dosimetry and measurements of body      | site     |
|     | exposure    |                |                                            | 40       |
|     | 2.2.1 Man   | nequin meas    | urements of exposure ratio                 | 42       |
|     | 2.2.1       | 1.1 Mannequi   | in body surface measurement sites          | 43       |
|     | 2.2.2 Cali  | brated measu   | rements of personal UV exposure            | 45       |
| 2.3 | Modelling t | he horizontal  | plane ultraviolet irradiance               | 47       |
|     | 2.3.1 The   | ultraviolet in | radiance model                             | 47       |
|     | 2.3.1       | 1.1 Extra-Ter  | restrial spectral irradiance               | 48       |
|     | 2.3.1       | 1.2 Earth-Sur  | n distance                                 | 49       |
|     | 2.3.1       | 1.3 The direct | t irradiance modelled at the earth's surfa | ce 50    |
|     |             | 2.3.1.3.1      | Standing surface contributions to the d    | irect    |
|     |             |                | ultraviolet irradiance                     | 51       |
|     | 2.3.1       | 1.4 The diffu  | se UV irradiance modelled at the earth's   | surface  |
|     |             |                |                                            | 52       |
|     |             | 2.3.1.4.1      | Modification of the diffuse ultraviolet    |          |
|     |             |                | irradiance with sky view                   | 55       |
|     | 2.3.1       | 1.5 Erythema   | lly effective ultraviolet irradiance       | 55       |
|     | 2.3.2 The   | ultraviolet ex | xposure model                              | 56       |
| 2.4 | Survey wor  | k and image    | processing                                 | 56       |
|     | 2.4.1 Mea   | surement of    | playground sky view                        | 56       |
|     | 2.4.1       | 1.1 Sky view   | image area                                 | 57       |
|     | 2.4.1       | 1.2 Image pro  | ocessing                                   | 61       |
|     | 2.4.2 Grou  | und and stand  | ling surface albedo contributions          | 63       |
|     | 2.4.2       | 2.1 Ground su  | urface albedo contribution to the diffuse  |          |
|     |             | ultraviole     | t                                          | 63       |
|     | 2.4.2       | 2.2 Standing   | surface albedo contribution to the direct  |          |
|     |             | ultraviole     | t                                          | 63       |
| 2.5 | Integrating | playground u   | ltraviolet exposure and body site exposu   | re ratio |
|     |             |                | -                                          | 64       |
| 2.6 | Measureme   | nts of exposu  | re to the student population               | 65       |
| 2.7 | Summary of  | f methods      |                                            | 65       |
|     |             |                |                                            |          |

# CHAPTER 3 MEASUREMENTS OF BODY SURFACE EXPOSURE

| 3.1 | Measu  | ared patterns in facial exposure under low cloud cover | 67 |
|-----|--------|--------------------------------------------------------|----|
| 3.2 | Measu  | ared pattern in facial exposure under high cloud cover | 69 |
| 3.3 | Measu  | ared pattern in facial exposure with changing sky view | 76 |
| 3.4 | Polyn  | omial representation of facial exposure                | 78 |
| 3.5 | Patter | ns in body surface exposure                            | 81 |
|     | 3.5.1  | Surface exposure received by the back of the neck      | 81 |
|     | 3.5.2  | Surface exposure received by the arm                   | 83 |
|     | 3.5.3  | Surface exposure received by the hand                  | 87 |
|     | 3.5.4  | Surface exposure received by the leg                   | 90 |

| 3.6 | Summary of headform and body surface exposures | 94 |
|-----|------------------------------------------------|----|
| 3.7 | Conclusions                                    | 97 |

#### CHAPTER 4 MODELLING THE PLAYGROUND UV EXPOSURE

| 4.1 | The playground                                                  | 98  |
|-----|-----------------------------------------------------------------|-----|
| 4.2 | School children and behaviour                                   | 98  |
| 4.3 | Classification of school playground regions                     | 99  |
| 4.4 | The albedo of building and playground surfaces                  | 102 |
|     | 4.4.1 Uncertainties in albedo measurement                       | 104 |
|     | 4.4.2 Total albedo contribution to ambient UV in the playground | 106 |
| 4.5 | Playground sky view                                             | 108 |
| 4.6 | Solar zenith angle and playground shade                         | 110 |
| 4.7 | Modelling seasonal variation in playground ultraviolet exposure | 114 |
| 4.8 | Playground model summary statistics                             | 117 |
| 4.9 | Significance of the playground model                            | 121 |

# CHAPTER 5 STUDENT EXPOSURE IN THE PLAYGROUND

| 5.1 | Measu  | rements of student body surface exposure in the playground | 122 |
|-----|--------|------------------------------------------------------------|-----|
|     | 5.1.1  | Swimming carnival exposure                                 | 126 |
|     | 5.1.2  | Incidental playground exposures                            | 127 |
|     | 5.1.3  | Variation in UVE playground exposure with cloud cover      | 129 |
|     | 5.1.4  | Variation in UVE playground exposure with season           | 131 |
|     | 5.1.5  | Variation in exposure with body measurement site           | 133 |
|     | 5.1.6  | Student movement in the playground                         | 134 |
|     |        | 5.1.6.1 Playground Activity Index                          | 137 |
| 5.2 | Model  | ling body surface exposures in the playground environment  | 139 |
|     | 5.2.1  | Comparison with measured body site exposure                | 139 |
|     | 5.2.2  | Estimates of body surface exposure by playground region    | 140 |
|     |        | 5.2.2.1 Swimming carnival schedule                         | 143 |
|     |        | 5.2.2.1.1 Non-melanoma skin cancer risk                    | 145 |
|     |        | 5.2.2.2 Open and protected playground regions              | 148 |
|     | 5.2.3  | Estimates of annual exposure                               | 151 |
| 5.3 | Reduct | tion in NMSC risk by wearing a hat                         | 153 |
|     | 5.3.1  | Measured hat use among the student population              | 155 |
| 5.4 | Summ   | arising student playground exposure                        | 156 |

# CHAPTER 6 APPLICATIONS OF THE SOLAR UV MODEL

| 6.1 | Activi | Activity scheduling in the playground and variation in exposure with |     |  |
|-----|--------|----------------------------------------------------------------------|-----|--|
|     | SZA    |                                                                      | 157 |  |
|     | 6.1.1  | Variation in yearly SZA                                              | 157 |  |
|     | 6.1.2  | Implications for the use of hats in the school playground            | 159 |  |
|     |        | 6.1.2.1 Reduction in facial exposure with increasing SZA             | 160 |  |
| 6.2 | Sched  | uling by playground region                                           | 161 |  |
| 6.3 | Reduc  | ing playground and playground region exposure                        | 161 |  |

|     | 6.3.1  | Assessment of playground tree cover                     | 162       |
|-----|--------|---------------------------------------------------------|-----------|
|     | 6.3.2  | Playground shade structures and their effectiveness     | 164       |
|     |        | 6.3.2.1 Additional notes on playground shade cloth stru | ctures    |
|     |        |                                                         | 166       |
| 6.4 | Vitam  | in D deficiency                                         | 167       |
| 6.5 | UV di  | stribution of body surface exposure                     | 168       |
|     | 6.5.1  | Comparison of measured exposure with sites of melano    | oma skin  |
|     |        | cancer incidence                                        | 168       |
|     | 6.5.2  | Comparison of measured exposure with sites of NMSC      | incidence |
|     |        |                                                         | 169       |
|     |        | 6.5.2.1 BCC facial incidence                            | 169       |
|     |        | 6.5.2.2 SCC facial incidence                            | 171       |
|     |        | 6.5.2.3 The anatomical distribution of BCC and SCC      | 172       |
| 6.6 | Future | work and extension of the research project              | 175       |
|     | 6.6.1  | Model applications in different environments            | 175       |
|     | 6.6.2  | Model limitations                                       | 177       |
|     | 6.6.3  | Increasing awareness in school populations              | 179       |
|     |        |                                                         |           |

## CHAPTER 7 CONCLUSIONS

| 7.1  | Annual playground exposure                                  | 181     |
|------|-------------------------------------------------------------|---------|
| 7.2  | Playground exposure ranges                                  | 181     |
| 7.3  | Tree shade and shading structures                           | 182     |
| 7.4  | Measurement of playground surface albedo                    | 182     |
| 7.5  | SZA ranges of body surface UV distribution                  | 182     |
| 7.6  | Comparison of measured body ER and sites of skin cancer inc | cidence |
|      |                                                             | 183     |
| 7.7  | Measured student exposure                                   | 183     |
| 7.8  | Activity Index                                              | 183     |
| 7.9  | Hat use                                                     | 184     |
| 7.10 | NMSC risk                                                   | 184     |
| 7.11 | Recommendations of playground exposure limits               | 184     |

# REFERENCES

186

## APPENDICES

| Appendix A. | Manufacturing polysulphone film dosimeters             | A1 |
|-------------|--------------------------------------------------------|----|
| A.1         | Mixing the polysulphone film solution                  | A1 |
| A.2         | Casting the polysulphone film solution                 | A1 |
| A.3         | Film inspection and storage                            | A2 |
| A.4         | Attaching polysulphone film to dosimeter frames        | A2 |
|             |                                                        |    |
| Appendix B. | Calibration and uncertainty in polysulphone dosimeters | B1 |
| B.1         | Polysulphone dosimeter calibration                     | B1 |

| B.2                | Measurements of uncertainty in polysulphone dosimeters                              | B3            |
|--------------------|-------------------------------------------------------------------------------------|---------------|
| Appendix C.        | Colouring body surface wireframes                                                   | C1            |
| Appendix D.<br>D 1 | Developed software and algorithms<br>The horizontal plane UV exposure package       | D1<br>D2      |
| 211                | D.1.1 Horizontal plane UV exposure model interface                                  | D4            |
| D.2                | Horizontal plane UV exposure model code                                             | D6            |
| D 3                | D.2.1 UV irradiance model subroutine<br>Three dimensional wireframe exposure models | D6<br>D14     |
| D.3<br>D.4         | Playground exposure model                                                           | $D_{14}$      |
| D.5                | Playground sky view image processing algorithm                                      | D62           |
|                    |                                                                                     | 54            |
| Appendix E.        | Measured UV transmission of playground shade cloths                                 | EI            |
| Appendix F.        | Student diaries                                                                     | F1            |
| Appendix G.        | Measurments of body surface exposure ratio listed by ind                            | dividual      |
| C 1                | trial<br>English exposure ratios                                                    | GI<br>G1      |
| G.1<br>G.2         | Nack exposure ratios                                                                | G15           |
| G 3                | Arm exposure ratios                                                                 | G17           |
| G.3<br>G.4         | Hand exposure ratios                                                                | G23           |
| G 5                | Leg exposure ratios                                                                 | G25           |
| 0.5                | Leg exposure ratios                                                                 | 025           |
| Appendix H.        | Surface model contour assignments                                                   | H1            |
| Appendix I.        | Polynomial coefficients for facial horizontal contours                              | I1            |
| Appendix J.        | Photographs of ground and standing surfaces located in th playground                | e model<br>J1 |
| Appendix K.        | Playground buildings                                                                | K1            |
| Appendix L.        | Playground sky view image set                                                       | L1            |
| L.1                | Processed sky view                                                                  | L1            |
| L.2                | Playground sky view site locations                                                  | L10           |
| L.3                | Sky view survey images                                                              | L11           |
| Appendix M.        | Shade density templates                                                             | M1            |
| Appendix N.        | Ozone concentrations for Hervey Bay                                                 | N1            |
| Appendix O.        | Playground site albedo, shade and UV exposure data                                  | 01            |
| Appendix P.        | Additional facial UV exposures measured in the population                           | student<br>P1 |

| Appendix Q. | Comparison | of facial site incidenc | e of BCC and SK to ER | Q1 |
|-------------|------------|-------------------------|-----------------------|----|
|-------------|------------|-------------------------|-----------------------|----|

- Appendix R. Comparison of mannequin to human facial site measurements of ER R1
- Appendix S. Publications resulting from this research S1

#### List of Figures

Figure 1.7: The actinic action spectrum (IRPA 1989)......24

Figure 2.4: Mannequin headform and its wireframe mesh model. Marked dosimeter placement sites (a) correspond with horizontal and vertical contour mesh intersections (b) Mesh colouring was used to highlight the measured ER pattern. Colour interpolation between measurement sites (wireframe intersections) is detailed in Appendix C....44

Figure 2.10: ZA limits of composite images measured with the camera in the horizontal plane and at maximum elevation. The limits listed in the figure were determined from trigonometric tangent ratios of the stand and pole height to camera distance.......60

Figure 3.10: Variation in ER measured to the left leg with SZA for low cloud cover cases (a) SZA  $0^{\circ}$ - $30^{\circ}$ ; (b) SZA  $30^{\circ}$ - $50^{\circ}$ ; (c) SZA  $50^{\circ}$ - $80^{\circ}$ ......91

Figure 4.1: Buildings and structures located in the HBSHS playground (red: covered pathways; light green: shade structures; dark green: large tree sites)......100

Figure 4.5: Location of sky-view survey sites in the playground......109

Figure 4.13: Measured site sky view versus modelled summer solstice UV<sub>ery</sub>......121

Figure 5.4: Mean UVE exposure plotted with respect to body measurement site. Exposures are given for facial, neck, arm, hand and leg sites and were averaged across all cloud cover conditions. Error bars indicate the full range of exposure measured at each body site. No indoor or winter leg data was measured in the study period......133

Figure 5.8: (a) The HBSHS oval photographed from the northern end of the region, and Region 18 photographed from a site located in the middle of the region (b)......142

Figure 5.11: Measuring the protection offered by a broad-brimmed hat at seven different facial sites. Protected and unprotected exposures were recorded simultaneously.....153

Figure B.1.1: Polysulphone dosimeter calibration for 23 February 2008...... B1

Figure B.1.2: Polysulphone dosimeter calibration for 18 April 2007...... B2

Figure B.1.3: Polysulphone dosimeter calibration for 8 May 2008..... B2

\_ \_

. . . . . .

| Figure E.1: Bus shelter shade cloth structure       | .E2. |
|-----------------------------------------------------|------|
| Figure E.2: Oval steps shade cloth structure        | E2   |
| Figure E.3: Quadrangle plastic shelter structure    | .E2  |
| Figure E.4: H Block shade cloth sails (light green) | E2   |
| Figure E.5: H block shade cloth sails (dark green)  | .E2  |
| Figure E.6: M Block shade cloth sail                | .E2  |

| Figure E.7: C Block shade cloth sail | E3 |
|--------------------------------------|----|
|--------------------------------------|----|

| Figure E.8: Art block shade cloth sail | E3 |
|----------------------------------------|----|
|----------------------------------------|----|

Figure H.1: Horizontal (Cx) and vertical (Cn) facial contour assignments......H1

Figure H.2: Horizontal (Cx) and vertical (Cn) neck contour assignments......H2

Figure M.1.1: Shade template for 21 June 2008 (arrows show solar position)...... M1

#### List of Tables

Table 3.3: ER of facial site dosimeters measured in sites of varying sky view......76

Table 4.1: Ground surface erythemal UV albedo. Uncertainty is stated as  $\pm 17\%$  of themeasured albedo.103

Table 5.1: Personal UVE measured in the school population between 5 February and 4 June 2008. Data in the table is subdivided by body site and playground region.....123

 Table 5.2: School playground regions
 125

| Table   | 5.3: | Personal | UVE | exposure | sorted | by | student | movement | in | the |
|---------|------|----------|-----|----------|--------|----|---------|----------|----|-----|
| playgro | ound |          |     |          |        |    |         |          | 13 | 6   |

Table G.1.1: 18 February 2006, SZA 0°-30°, 4/8 cumulus......G1

Table G.1.2: 12 March 2007, SZA 0°-30°, 1/8 cirrus......G2

Table G.1.3: 21 February 2008, SZA  $0^{\circ}$ -30°, 4/8-2/8 cumulus...... G3

Table G.1.4: 25 January 2008, SZA 0°-30°, 2/8-5/8 cumulus / altocumulus......G4

Table G.1.5: 14 November 2007, SZA  $0^{\circ}$ -30°, 1/8-3/8 cumulus......G5

Table G.1.6: 19 June 2006, SZA 30°-50°, 8/8 cumulonimbus / altocumulus...... G6

Table G.1.7: 22 June 2006, SZA 30°-50°, 7/8-8/8 cumulonimbus...... G7

Table G.1.8: 16 September 2005, SZA 30°-50°......G8

Table G.1.9: 5 October 2006, SZA 30°-50°, 3/8 cumulus...... G9

| Table G.1.11:          | 16 October 2007, SZA 30°-50°, clear G11                        |
|------------------------|----------------------------------------------------------------|
| Table G.1.12:          | 16 October 2007, SZA 50°-80°, clear G12                        |
| Table G.1.13:          | 27 May 2005, SZA 50°-80°G13                                    |
| Table G.1.14:          | 27 August 2007, SZA 50°-80°, 1/8 cumulusG14                    |
| Table G.2.1:           | 14 November 2007, 0°-30°, 1/8-3/8 cumulusG15                   |
| Table G.2.3:           | 25 January 2008, 0°-30°, 2/8-5/8 cumulus / altocumulus G15     |
| Table G.2.4:           | 18 December 2007, 30°-50°, 7/8-8/8 cumulonimbus / stratusG15   |
| Table G.2.5:           | 27 August 2007, 50°-80°, 1/8 cumulus                           |
| Table G.3.1:<br>cirrus | 13 December 2007, 0°-30°, 5/8-7/8 cumulonimbus / altocumulus / |
| Table G.3.2:           | 1 February 2008, 0°-30°, 3/8-5/8 cumulus                       |
| Table G.3.3:           | 30 April 2007, 30°-50°, clear                                  |
| Table G.3.4:           | 2 April 2008, 30°-50°, 1/8-2/8 cumulusG20                      |
| Table G.3.5:           | 18 July 2007, 50°-80°, clearG21                                |
| Table G.3.6:           | 12 July 2007, 50°-80°, clear                                   |
| Table G.4.1:           | 21 November 2007, 0°-30°, 2/8-3/8 cumulus                      |

| Table G.4.2:       1 February 2008, 0°-30°, 3/8-5/8 cumulus                                                         |
|---------------------------------------------------------------------------------------------------------------------|
| Table G.4.3:       2 April 2008, 30°-50°, 1/8-2/8 cumulus                                                           |
| Table G.4.4:       28 August 2007, 50°-80°, 4/8-5/8 cirrus                                                          |
| Table G.5.1:       13 November 2007, $0^{\circ}$ - $30^{\circ}$ , 2/8 cumulus                                       |
| Table G.5.2:       1 February 2008, 0°-30°, 3/8-5/8 cumulus                                                         |
| Table G.5.3:       4 March 2008, 30°-50°, 3/8-2/8 cumulus                                                           |
| Table G.5.4:       6 August 2007, 50°-80°, clear                                                                    |
| Table G.5.5:       2 August 2008, 50°-80°, clear                                                                    |
| Table I.1: Equation 3.1 Coefficients $\beta_1$ through $\beta_9$ for the SZA range $0^{\circ}$ -30°I1               |
| Table I.2: Equation 3.1 Coefficients $\beta_8$ through $\beta_{14}$ for the SZA range $0^{\circ}$ -30° I1           |
| Table I.3: Equation 3.1 Coefficients $\beta_{15}$ through $\beta_{19}$ for the SZA range $0^{\circ}$ -30° I2        |
| Table I.4: Equation 3.1 Coefficients $\beta_1$ through $\beta_9$ for the SZA range $30^{\circ}-50^{\circ}13$        |
| Table I.5: Equation 3.1 Coefficients $\beta_8$ through $\beta_{14}$ for the SZA range 30°-50° I3                    |
| Table I.6: Equation 3.1 Coefficients $\beta_{15}$ through $\beta_{19}$ for the SZA range $30^{\circ}-50^{\circ}$ I4 |
| Table I.7: Equation 3.1 Coefficients $\beta_1$ through $\beta_9$ for the SZA range $50^{\circ}$ - $80^{\circ}$ I5   |
| Table I.8: Equation 3.1 Coefficients $\beta_8$ through $\beta_{14}$ for the SZA range 50°-80° I5                    |

Table I.9: Equation 3.1 Coefficients  $\beta_{15}$  through  $\beta_{19}$  for the SZA range  $50^{\circ}-80^{\circ}$ ..... I6

| Table J.1: Sample ground | surface images | J | 1 |
|--------------------------|----------------|---|---|
| 1 0                      | U              |   |   |

 Table J.2: Sample vertical standing surface images
 J3

Table K.1: School buildings in the model school playground......K1

Table L.1: Hervey Bay State High School playground sky view site locations, sky/cloud threshold (blue-red pixel threshold), and site sky view estimate listed as a percentage. Site sky view was determined from each site location processed image up to 32.3° in SZA and estimated by ground observation above 32.3° in SZA. Estimates of sky view for playground sites covered by shade cloths were determined from the measured UV transmission of each playground shade cloth (Appendix E). Site locations listed in the table refer to playground locations where the sky view was surveyed (Figure L.1). Site locations were sorted into survey (traverse) lines according to position from the western fence. Each survey line was separated by 5 m when located near buildings and 20 m over the school's open playground environment. Each site location listed in each survey line starts from the northern fence and ends at the southern fence with site locations from separations of 5 m and 20 m were due to playground obstructions and are shown in Figure L.1.....L1

 Table M.1.1: SZA, azimuth and pixel positions used to develop 21 June 2008 shade

 template.

 M2

 Table M.1.2: SZA, azimuth and pixel positions used to develop 21 December 2008

 shade template.

 M2

Table N.1: OMI (TOMS 2008) ozone concentrations listed for Hervey Bay (25°S,153°E), June 2007 and December 2007......N1

 Table Q.1: Measurements of facial exposure ratio and the density of facial basal cell

 carcinoma (BCC) and solar keratosis (SK)......Q1

# Glossary and Acronyms

| AACR:               | Australasian Association of Cancer Registries.                                                                                                                                            |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCV:               | Anti-Cancer Council of Victoria (Australia).                                                                                                                                              |
| Action Spectra:     | The normalised response of a specified action, typically<br>biological, including for example the human erythema reaction,<br>measured at set wavelengths.                                |
| AEST:               | Australian eastern standard time.                                                                                                                                                         |
| AIHW:               | Australian Institute of Health and Welfare.                                                                                                                                               |
| ARPANSA:            | Australian Radiation Protection and Nuclear Safety Agency.                                                                                                                                |
| Basal Cell          |                                                                                                                                                                                           |
| Carcinoma (BCC):    | The most frequent non-melanoma human skin cancer originating<br>in the basal cell layer of the epidermis occurring on both<br>chronically exposed and infrequently exposed skin surfaces. |
| CIE:                | International Commission on Illumination.                                                                                                                                                 |
| Cutaneous Malignant | :                                                                                                                                                                                         |
| Melanoma (CMM):     | The least common but most frequent metastasising skin cancer in                                                                                                                           |
|                     | humans. CMM develop from the DNA mutation of melanocytic                                                                                                                                  |
|                     | (pigmented) skin cells.                                                                                                                                                                   |

Deoxyribonucleic

- Acid (DNA):Contains the genetic instructions for living cells. DNA resides as<br/>an acid in the nucleus of skin cells.
- Dobson Unit (DU): A unit of measure of ozone concentration representing total column ozone at STP (0°C and 1 atm) over a given surface area. One DU is the equivalent of 0.01 mm ozone column thickness at STP.

#### Education

- Queensland (EQ): The Department of Education, Training and the Arts (Queensland, Australia).
- Erythema: The perceptive reddening of fair skin caused by the dilation of epidermal blood vessels following exposure to UV radiation (Sunburn). Human erythema is most effective in the UVB wavelengths.
- Exposure Ratio (ER): The exposure ratio is defined as the exposure measured to a specific body site expressed relative to the ambient horizontal plane exposure.
- HBSHS: Hervey Bay state high school.
- ICNIRP: International Commission on Non-Ionizing Radiation Protection.
- IRPA: International Radiation Protection Association.

Minimal Erythema

Dose (MED): The ultraviolet exposure required to produce a mildly perceptible erythema or sunburn reaction.

## NHMRC: National Health and Medical Research Council (Australia).

Non-Melanoma Skin

Cancer (NMSC): Non-melanoma cancerous lesions of a low metastasising nature. These incorporate both basal and squamous cell carcinomas.

**Ozone Monitoring** 

Instrument (OMI): A satellite ozone mapping spectrometer (NASA).

**Protection Factor** 

- (PF): Sometimes also referred to as the UPF (Ultraviolet Protection Factor). The ratio of the ultraviolet exposure in a location to the ultraviolet exposure received at the same location but with some form of protection in place. The PF is commonly used to rate the ultraviolet protection of shade cloths, trees and forms of personal protective clothing and hats.
- QTH: Quartz tungsten halogen. Specifically the type of lamp used to calibrate the USQ's scanning spectroradiometer.
- Shade density: The total level of shade at a given location occurring within a set period of time. The longer a location is covered by shade, the greater the shade density in the period. For this research, seven shade levels are defined for each school period in the 8:30 am to 3:05 pm school day.

Standard Erythema

Dose (SED): A common unit of measure of the erythemally effective UV radiation. One SED represents 100 Jm<sup>-2</sup> of erythemally effective UV radiation.

Squamous Cell

Carcinoma (SCC): Non-melanoma skin cancer affecting the stratified squamous epithelium. These cancers occur less frequently than BCC but are more prevalent on the frequently exposed surfaces of the human body.

Solar Zenith Angle

(SZA): The angle subtending the zenith and the position of the solar disc.

TOMS: Total Ozone Mapping Spectrometer (NASA).

Ultraviolet (UV): Electromagnetic radiation specifically modelled in this research between the 280 nm to 400 nm waveband.

Ultraviolet A (UVA): Ultraviolet radiation in the 290 nm to 320 nm waveband.

Ultraviolet B (UVB): Ultraviolet radiation in the 320 nm to 400 nm waveband.

Ultraviolet C (UVC): Ultraviolet radiation defined in this research to lie below 290 nm.

- UVE: Personal erythemally effective ultraviolet measured using polysulphone dosimeters.
- UV<sub>ery</sub>: Erythemally effective ultraviolet defined for this research to be the modelled erythemally effective ultraviolet.

Zenith Angle (ZA): The angle subtended from the zenith.

## CHAPTER 1 INTRODUCTION

#### 1.1 Research focus and objectives

School playgrounds present a significant health risk to children in Australia for the development of environmental solar ultraviolet (UV) induced disease. The risk is most significant in Queensland, enhanced by a proportionately fair skinned population, high solar altitudes due to geographical latitude, a high number of sunshine days and low aerosol concentrations (Armstrong 1994; Roy et al. 1995). These risks contribute to Queensland having the highest incidence rates of NMSC (non-melanoma skin cancer) and cutaneous malignant melanoma (CMM) in the world (Lowe et al. 1993). Children, having unacclimatised skin and being potentially placed in the sun during school hours at times of peak UV intensity increase their risk of receiving acute and long term damage associated with excessive exposure to UV. Furthermore, the risk of developing skin cancer is potentially greater for school aged children, with some studies indicating an increased risk of melanoma and other skin cancers associated with a past history of severe sunburn during childhood and adolescence (Armstrong 1988; Diffey 1991; Longstreth et al. 1998).

The National Health and Medical Research Council's (NHMRC) Sun Protection Programs Working Party (NHMRC 1996) recommended the undertaking of further research for developing more effective measures of population sun exposure. This project addresses this recommendation directly through measurements designed to build up a scientifically collected database of UV exposures to humans that take the physical playground environment into account. Specifically this will be achieved by integrating measurements of UV exposures received by school children during normal school activities with physical modelling of the ambient UV exposure within a school playground. The development of a computer model utilising personal exposure and playground survey measurements will provide a technique for assessing the UV exposure within individual school environments and provide a tool for the analysis of risks associated with UV exposure to children placed within those environments.

The computer model developed for this research incorporates the ambient UV and the distribution of solar UV exposures to the face and exposed parts of the human body for a large range of solar zenith angles (SZA) in three dimensional space. The influence of buildings, surfaces, trees and other materials that are commonly found within school playgrounds has also been investigated. The influence of the modelled environment will be examined with respect to human measurements of exposure and these results will be discussed relative to the development of sun-safe strategies for schools. The outcomes from this project have the potential to contribute to the reduction of solar UV exposures leading to a reduction in skin cancers and associated cost of treatment for these cancers.

This study will aid the development of better sun-safe practices in schools through:

- 1. The development of a model for the calculation of solar UV exposures in three dimensional space that takes into account the physical playground environment;
- 2. The collection of detailed quantitative data on the distribution of solar ultraviolet radiation to the face and other uncovered parts of the human body over a large range of solar zenith angles and under varying atmospheric conditions;
- 3. The development of computer software that produces UV hazard charts that highlight the UV hot spots within school environments to assess the potential risk associated with exposure to uncovered parts of the body for seasonal and daily (AEST) periods.
- 1.2 Review of the literature

#### 1.2.1 Origins of sunlight

The sun may be considered a perfect blackbody, absorbing and reemitting all radiation that falls upon it across the electromagnetic spectrum. The intensity of electromagnetic radiation emitted by any blackbody, including the earth's sun varies with wavelength. The peak intensity of radiation emitted by a blackbody is dependent upon the
temperature of the body. All bodies with temperatures above absolute zero emit electromagnetic radiation, with their peak emission being shifted toward shorter wavelengths the higher the temperature of the body. Figure 1.1 shows the variation in peak radiation intensity for perfect black body emitters of different temperatures (Cutnell & Johnson 1998). The sun has a surface temperature of approximately 6000 K. Its peak emission lies in the visible spectrum at approximately 500 nm, giving the sun a yellowish appearance.



Figure 1.1: Radiation intensity curves for perfect blackbody emitters. The peak emission of radiation for the sun at approximately 6000 K is in the visible region of the electromagnetic spectrum (Cutnell & Johnson 1998).

The sun does not however emit radiation consistently across the electromagnetic spectrum. Absorption of radiation in the continuum, particularly by elements in the sun's photosphere results in noticeable drops in the emitted intensity. These drops are observed as Fraunhofer absorption lines in the visible spectrum, having a notable effect also in the UV waveband that eventually reaches the earth's surface following further absorption by the earth's atmosphere. Therefore, although the intensity of solar radiation may be noted to increase from lower to higher wavelengths in the UV waveband (Figure 1.1), the spectrum is not continuous. Furthermore, the changing position of the sun relative to the earth's atmosphere, variation in ozone concentration and other aerosols

including particulates, local pollutants and cloud cover will also affect the intensity of UV radiation that reaches the surface of the earth. Each of these factors play a role in influencing the UV that is eventually incident upon the exposed skin surfaces of children using a playground environment.

# 1.2.2 Definition and classification of ultraviolet

Ultraviolet radiation (UV) is defined as those wavelengths of the electromagnetic spectrum that lie immediately below 400 nm. This region lies just below the visible region of the electromagnetic spectrum, defined as those wavelengths that lie between 400 nm (violet) to 700 nm (red). UV is further classified into three separate bands, UVA, UVB, and UVC. A general classification of the near to middle UV wavebands is as follows: UVA - 400 nm to 320 nm; UVB - 320 nm to 290 nm; UVC – 200 nm to 290 nm (Campbell et al. 1993). In this classification, the UVB region represents those wavelengths to which human skin is most sensitive under natural sunlight which does not readily penetrate the earth's atmosphere below 290 nm. The transmission of the UV received from the sun, the UVC region represents that region in which no radiation is detected at the earth's surface, except at high altitudes (Diffey 2002). Terrestrial UVA is more readily transmitted through the atmosphere and is therefore the most prominent UV waveband detected at the earth's surface.

# 1.2.3 Terrestrial ultraviolet radiation

Human exposure to UV most commonly occurs from exposure to the sun. As mentioned previously, solar UV however, is not distributed continuously. The sun's energy output is also variable. This variability is often linked to the solar cycle and can significantly influence the extra-terrestrial spectral irradiance distribution. Depletions, and increases in ozone content, related to UV flux, have been linked to the variable energy output of the sun and the solar cycle (McKenzie 1991; Schindell et al. 1999). The seasonal variation in the distance between the earth and the sun is another effect that influences

the intensity of the extra-terrestrial spectral irradiance. The sun's elliptical orbit increases terrestrial UV in the southern hemisphere summer during the earth's closest approach to the sun in early January.

#### 1.2.3.1 Spectral UV irradiance

A number of Fraunhofer absorption lines are prominent in the extra-terrestrial UV spectrum which are also noted following transmission through the earth's atmosphere in the terrestrial UV waveband. The Ca II Fraunhofer absorption line is one such line prominent between 390 nm and 400 nm (Rottman 2000). Strong Fraunhofer absorption lines are also found in the ultraviolet region of the extra-terrestrial spectrum below 290 nm, however these lines are less noticeable in terrestrial spectra as wavelengths below 290 nm are strongly absorbed by atmospheric oxygen and ozone. The terrestrial UV spectrum, as measured on the ground differs from the extra-terrestrial UV spectrum. Figure 1.2 shows a typical terrestrial UV spectrum following transmission through the atmosphere recorded at the University of Southern Queensland, Toowoomba (152°E, 28°S) for a SZA of 50°. The spectral irradiance is strongly moderated below 320 nm due to the presence of stratospheric ozone.



Figure 1.2: Terrestrial UV irradiance recorded during a clear winter day at the University of Southern Queensland, Toowoomba campus.

The earth's atmosphere contains a number of atmospheric windows across the entire range of the electromagnetic spectrum in which the atmosphere is almost completely transparent (visible region), partially opaque, or completely opaque. The degree to which the atmosphere absorbs certain wavelengths and obscures others depends on its chemical composition and particulate or aerosol concentration. As with the Fraunhofer absorption lines observed due to solar photospheric absorption, the earth's atmosphere contains a number of elements that absorb discrete wavelengths of incident solar eltromagnetic radiation. Examples of elements in the atmosphere known to absorb extraterrestrial radiation at UV wavelengths include molecular and diatomic oxygen, nitrogen and ozone (Huffman 1992). Sunlight is absorbed by ozone across the entire UV and visible region (Orphal & Chance 2003). Absorption by ozone is particularly efficient in the Hartley absorption band between wavelengths of 200 nm to 320 nm with the peak efficiency being around 250 nm (Huffman 1992; Orphal & Chance 2003).

Photons covering a broad range of the electromagnetic spectrum are scattered by the reemission of atmospheric constituents making up a proportion of the diffuse radiation, or blue skylight, received during the day that are not directly incident from the solar beam. The UV radiation incident directly from the sun is therefore not always the dominant component of the solar UV received at the earth's surface. Direct solar radiation is also predominantly scattered into diffuse radiation by Mie and Rayleigh scattering mechanisms. The total or global terrestrial UV spectral irradiance distribution such as that depicted in Figure 1.2 is made up of the vertical component of the direct solar beam and the diffuse radiation received at the earth's surface. In a standard solar radiation measuring system, the global UV irradiance is measured with the input sensor of the measuring instrument oriented in a horizontal plane measuring both the direct UV and diffuse skylight UV from the whole sky (Webb et al. 1999).

Terrestrial UV spectral distributions are not constant, nor are the relative proportions of direct and diffuse UV. The UV spectral irradiance changes depending on the local surroundings, atmospheric conditions and the position of the sun in the sky. The spectral irradiance received at the earth's surface changes with the position of the sun because of

the angle over which the incoming sunlight is spread and because of the changing degree of atmospheric interference. Variable atmospheric conditions, including cloud, aerosol distributions, turbidity, ozone and other atmospheric gases influence the way solar UV is distributed at the earth's surface. Reflections from ground surfaces influencing atmospheric backscatter, local altitude and the local surroundings also play an important role in altering the terrestrial UV spectral intensity that is incident upon a horizontal surface. UV exposures received by the human body are further influenced by the orientation and inclination of the receiving surface topography and the position of the body relative to the reflecting ground surface.

The path that solar UV takes as it travels through the atmosphere and reaches the surface of the earth can be explained in a number of stages, namely:

- Ozone absorption;
- Rayleigh scattering by air;
- Mie scattering by aerosols; and
- Local environment.

### 1.2.4 Ozone as a moderator of ultraviolet

UVC is most readily absorbed by nitrogen (N<sub>2</sub>) and molecular and diatomic oxygen, (O) and (O<sub>2</sub>), at the shorter UV wavelengths that extend into the far (typically < 200 nm) and extreme (< 100 nm) regions of the UV range (Huffman 1992). Absorption of these more harmful wavelengths of UV radiation occurs in the upper layers of the earth's atmosphere, typically at altitudes above 100 kilometers. Stratospheric concentrations of ozone (O<sub>3</sub>), between 18 to 50 kilometers in altitude, additionally limit the levels of UVC across the Hartley absorption band such that wavelengths below 290 nm and extending to the far UV are absorbed almost completely. The combined molecular absorption of oxygen, ozone and nitrogen, results in negligible UV wavelengths below 290 nm being recorded at sea level. The level of UVB detected at the earth's surface is regulated by the higher concentration of O<sub>3</sub> molecules in the stratosphere between an altitude of

approximately 20 km to 30 km. Stratospheric ozone is responsible for the absorption of most UV that enters the earth's atmosphere and its absorption of wavelengths in the UVB is of particular importance to the regulating of ambient levels of UV detected at the earth's surface (Barton & Paltridge 1979; Diffey 1991; Madronich 1993). Increasing UVB intensities at ground level have been linked to depleted ozone concentrations (Kerr & McElroy 1993). By contrast, the absorption of UVA wavelengths by ozone is quite weak. Ozone concentration is however an important factor to consider when modelling or making predictions of future terrestrial UV exposures, particularly biologically effective exposures which have a tendency to be strongly weighted toward the UVB wavelengths.

In the natural atmosphere, undisturbed by the effects of pollutants and in the absence of global warming, concentrations of stratospheric ozone are regulated by a series of photosensitive reactions. Namely, absorption by UV wavelengths results in the photodisassociation of oxygen and ozone molecules. An  $O_2$  molecule is dissociated by the absorption of UV wavelengths below 242 nm into free atomic oxygen (Diffey 1991). Similarly, the absorption of wavelengths up to approximately 320 nm by  $O_3$  molecules results in their conversion into a single free O atom and diatomic  $O_2$  (Chapman 1930, cited in Diffey 1991, p.301). Free atmospheric oxygen atoms will combine to form either molecular oxygen or ozone. Alternatively, an ozone molecule can be destroyed by reaction with atomic oxygen (Huffman 1992). The reactions that control concentrations of stratospheric ozone are delicately balanced. Spread thinly throughout the stratosphere at low, high altitude pressures, UV levels detected at ground level are particularly sensitive to changes in ozone concentration.

Concentrations of ozone in the stratosphere and therefore terrestrial distributions of UVB are different at different locations on earth. Production of ozone is greatest around the earth's equatorial regions due to the stronger diurnal levels of UV compared to the available levels of UV received at higher latitudes. Global ozone concentrations tend to be higher toward polar regions but are subject to large variations in concentration as distributions change throughout the year due to the seasonal variation of global

atmospheric circulation patterns (Van Heuklon 1979; Huffman 1992). The distribution of ozone is also influenced by pollution often associated with human activity. Atmospheric pollutants such as chlorofluorocarbons (CFC's) exposed to sunlight experience a photochemical breakdown into chlorine, which subsequently reacts with  $O_3$ to reduce it to  $O_2$ . The chlorine released by CFC's acts as a catalyst in the breakdown of stratospheric ozone, and following the destruction of  $O_3$  is free to continue with the process following the initial reaction (WMO 1994):

$$Cl + O_3 \longrightarrow ClO + O_2$$
$$ClO + O \longrightarrow Cl + O_2$$

Bromine species may also be implicated in destructive ozone processes (Huffman 1992). Other halons, CFCs, nitrous oxide (NO<sub>2</sub>), methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) also affect stratospheric ozone concentrations (WMO 1994). Although efforts are being made to reduce CFC emissions, levels of CH<sub>4</sub> and NO<sub>2</sub> have been reported to be on the rise (Isaksen & Stordal 1986). The catalytically active reaction of pollutants including CFCs and NO<sub>2</sub>, have the potential to greatly influence future ozone concentrations (Isaksen & Stordal 1986; WMO 1994). Ozone concentrations are further influenced by increasing levels of CH<sub>4</sub>, and the absorption of UV by ozone molecules resulting in stratospheric heating which may in turn increase reaction rates (Isaksen & Stordal 1986). Although the combined effect that these pollutants will have on ozone levels is uncertain, ozone levels have been recorded and shown to fall since the 1970s (Isaksen & Stordal 1986; NASA 1988; Sze et al. 1989; McKenzie 1991). More recent evidence seems to suggest that ozone levels may be on the increase, though further uncertainties remain as to whether ozone concentrations will reach levels observed before the declines which have resulted in current concentrations (McKenzie et al. 2007).

Depleted ozone levels over Antarctica, first reported by Farman et al. (1985) are likely to be one potential consequence of atmospheric pollutants. The reduction of ozone concentration over Antarctica changes with the season, with the lowest concentrations being recorded during the Southern Hemisphere spring (Parisi & Kimlin 1997a). Recent observations of the total daily ozone concentration over Antarctica are approximately one third of the concentrations measured 35 years ago (Parisi & Kimlin 1997a). Variations in the ozone concentration similarly occur over populated regions of the world. There is a strong relationship in the latitudinal variation in ozone concentration in both hemispheres, with the Southern Hemisphere having consistently less ozone than the Northern Hemisphere (Van Heuklon 1979; McKenzie 1991). There are further suggestions that the reduction in ozone over the Southern Hemisphere is related to depleted ozone concentrations over Antarctica (Sze et al. 1989; Atkinson et al. 1989, McKenzie 1991; Parisi & Kimlin 1997a).

Seasonal variations in latitudinal ozone occur in both hemispheres. Seasonal variations are greatest in the respective spring months of each hemisphere at mid to sub polar latitudes of around 70° North and 70° South (Van Heuklon 1979; McKenzie 1991). These latitudes experience the highest level of seasonal fluctuation in ozone concentration and experience the greatest ozone losses in the upper stratosphere (Randel et al. 1999), while the equatorial regions experience the least influence in seasonal fluctuation (Van Heuklon 1979; McKenzie 1991). Fluctuations in ozone can also occur daily with some evidence suggesting daily changes in concentration in the mid latitudes of  $\pm 20\%$ ; however, changes observed in the tropics are more subtle (McKenzie 1991). Ozone fluctuations over mid latitudes are of greater concern than fluctuations observed near the poles due to average UV irradiance levels being considerably lower toward the polar regions (McKenzie 1991), and the increased number of people living in the mid latitudes.

In addition to stratospheric ozone there are many local concentrations of tropospheric ozone produced in urban areas as a result of pollutants. Car exhausts being the main cause of photochemical smog, produce NO<sub>2</sub> which is photochemically disassociated by the absorption of UV photons into NO and O which subsequently forms O<sub>3</sub> when a free O atom combines with diatomic O<sub>2</sub> (Van Heuklon 1979). Ozone is a toxic gas, so that the potential benefits of higher concentrations of ozone found in urban areas are offset somewhat by the health risk to the population. Typically 90% of the ozone found in a

vertical column that regulates the levels of UV detected at the earth's surface is concentrated in the stratosphere rather than the troposphere (Huffman 1992). The distribution of terrestrial UV is inextricably linked to the climatology of atmospheric ozone. A 1% decrease in stratospheric ozone concentration is estimated to increase the incidence of non-melanoma skin cancer by 2 to 3% (Hofmann 1987; Urbach 1997). Recently, increasing UV irradiances at Northern Hemisphere sites have been linked to long term changes in cloud, aerosol and ozone concentrations (WMO 2007).

### 1.2.5 Dobson Units

Concentrations of ozone are typically measured in a vertical column toward the zenith above the surface of the earth. Most commonly, ozone concentrations are expressed in *Dobson units*, or alternatively, as molecular densities. Dobson units (DU) provide the number of milliatmosphere centimeters of ozone that would extend in a 1 metre square vertical column if held at standard temperature and pressure (STP). Standard temperature and pressure is defined as  $0^{\circ}$ C and 1 atmosphere. In these conditions, a typical level of ozone concentration of 300 DU would be the equivalent of a 1 metre square square column density of ozone of 0.3 cm height if measured at sea level and at  $0^{\circ}$ C.

#### 1.2.6 Scattering mechanisms

Scattering by air and aerosols contributes to the production of an isotropic distribution of diffuse radiation. The radiation is however, not evenly distributed near the zenith or the horizon and there is an increased amount of forward scattered radiation near the position of the sun on a clear day (Barton & Paltridge 1979). Diffuse radiation is not distributed evenly because the atmosphere is spherical. Scattered light is less likely to reach an observer from a line of sight along the horizon as air and aerosol concentrations are highest toward the earth's surface. Similarly, there is little scattered light at all toward the zenith, as air and aerosol concentrations are least in a vertical column. Variation in atmospheric scattering and the changing diurnal position of the sun results in changes in the distributions to both surfaces are not proportional and depend upon surface orientation, solar position and wavelength (Webb et al. 1999).

### 1.2.6.1 Rayleigh scattering by air

Rayleigh scattering has a significant effect on the relative skylight distributions of wavelengths observed at the earth's surface. Shown below is Rayleigh's equation describing the relative degree of light scattering depending on the wavelength of the incident light (Meyer-Arendt 1995):

$$i \propto 1/\lambda^4$$
 (1.1)

where *i* is the intensity of the light scattered out of the direct line of sight and  $\lambda$  is the wavelength.

The intensity of UV light scattered according to equation 1.1 and normalised at 280 nm is plotted in Figure 1.3. The figure shows that the degree of Rayleigh scattering is inversely proportional to the fourth power of the wavelength. The differential degree of scattering by air molecules in the lower atmosphere accounts for the blue appearance of the sky as seen in the visible region of the electromagnetic spectrum. More importantly, scattering at shorter UV wavelengths that are able to penetrate the earth's ozone layer is much greater than scattering at longer wavelengths. Rayleigh scattering results in a higher diffuse component of UV than the perceived diffuse visible radiation. Scattered UV is of a similar intensity to direct UV; however the direct visible beam is usually five times greater than the diffuse visible radiation (Barton & Paltridge 1979). The potentially harmful effects of a high level diffuse component of UV are therefore not immediately noticeable in conditions that may protect an individual from the direct solar beam, namely shaded locations. In addition, the level of scattering at UVB wavelengths is higher than the level of scattering at UVA wavelengths, increasing the UVB component of diffuse skylight and further increasing the risk of over exposure to UV in shaded environments.



Figure 1.3: Rayleigh scattering of incident radiation in the UV and visible waveband.

#### 1.2.6.2 Mie scattering by aerosols

Mie scattering, like Rayleigh scattering is another scattering mechanism that scatters the light depending on the scattering particle size; however this mechanism scatters incoming light independently of the wavelength. Mie scattering is responsible for the scattering of light by larger sized particles found in the troposphere as opposed to Rayleigh scattering by atomic sized particles. Mie scattering therefore occurs in the lowest region of the earth's atmosphere extending to an altitude of approximately 30 km. Scattering by larger sized aerosol particles includes scattering by water droplets (clouds), dust, and smoke particles. Unlike the scattering of UV by air molecules, scattering by aerosols is constant across the entire UV spectrum. Additionally, the degree of aerosol scattering is not overly significant unless there is a noticeable amount of smog or smoke (Barton & Paltridge 1979). Scattering by aerosols, including clouds has the effect of reducing the overall intensity of the direct UV radiation received on the ground (Diffey 1991). However, partial cloud cover not directly covering the sun can enhance the level of UV received at ground level due to the extra reflection of direct radiation (Estupinan et al. 1996).

# 1.2.7 Ultraviolet incident on the local playground environment

#### 1.2.7.1 Surface condition

The condition of the earth's surface influences the UV intensity received at ground level. Reflection over the entire earth's surface, including the ocean is normally less than 7% (Diffey 1991). Reflection of radiation from the surface of the earth is defined as the surface albedo. UV surface albedo is expressed as the ratio of incident to reflected UV and is measured along the reflecting surface normal. Examples of surfaces that have a high albedo include snow, ice, sand, and water, making locations such as the beach and snow covered mountains, regions of particular high risk to UV exposure, particularly in the UVA waveband which typically has a higher surface albedo than in the UVB (Blumthaler & Ambach 1988; Fiester & Grewe 1995; McKenzie et al. 1996). Different surfaces reflect different wavelengths differently, depending on the surface colour, texture and chemical composition. Surfaces that seem to be poor reflectors of visible radiation may not necessarily be poor reflectors of UV. Similarly, materials found in an urban environment may be good reflectors of visible radiation but poor reflectors of UV radiation (Grant & Heisler 1996). In a school environment, typically high reflectors of UV radiation include bitumen and concrete surfaces, and common building materials, especially galvanized metal surfaces (Lester & Parisi 2002). The UV reflectivity of a surface also depends upon solar incidence angles. Glass surfaces for example are extremely efficient reflectors at near grazing angles of incidence (Heisler & Grant 2000). The extent to which surface orientations of reflective building surfaces influence ambient UV has been investigated in previous research, showing daily increases of several hundred Jm<sup>-2</sup> of sun-burning effective UV in different situations (Parisi et al. 2003), and increased UV contributions from vertically inclined reflecting building surfaces compared to horizontal surfaces (Turner et al. 2008).

# 1.2.7.2 Altitude and aspect

Altitude can have a significant effect on the UV irradiance. Lower air densities result in cooler, less humid conditions at altitude, reducing turbidity and decreasing attenuation by aerosols (McKenzie 1991). Locations at higher altitude can also often be higher than

particulate altitudes produced from smoke, smog or other pollutants, increasing the intensity of UV not scattered or absorbed by a thick aerosol layer. Of the UV that is transmitted through the ozone layer, approximately half is backscattered into space and the other half contributes to diffuse skylight (McKenzie 1991). At higher altitudes, lower air densities reduce the amount of Rayleigh scattering, reducing the level of UV backscattered into space and increasing the direct component of UV radiation. Calculations by Barton and Paltridge (1979) found that an increase in height of 1 km above sea level resulted in a 15% increase in the erythemal (sunburn) dose. Similar results by McKenzie (1991) predict a 10% increase in the UV irradiance due to a loss of air pressure affecting Rayleigh scattering at a height of 2 km. At extreme altitudes, reductions in ozone concentrations can also have an effect on the UV irradiance.

Aspect plays an important role in the levels of UV exposure received. Surfaces that face toward their respective poles (south in Southern Hemisphere, north in Northern Hemisphere) receive less direct exposure to sunlight on vertical surfaces than surfaces facing the opposite direction (Grifoni et al. 2005). Tilted surfaces receive varying amounts of UV radiation depending on their orientation. If the tilted surface faces the direction of the sun in azimuth and the sun is not directly overhead, it will receive more direct radiation than a horizontal surface or a surface tilted away from the sun (Barton & Paltridge 1979). Similarly any object, including the human form, located on a tilted surface receives an increased exposure due to reflected radiation from the ground (Barton & Paltridge 1979; Schauberger 1990; Grifoni et al. 2006). Diffuse radiation is the more significant component of UV when the sun is at low elevations (McKenzie 1991), therefore the influence of surface orientation with respect to the horizontal plane is less at lower solar elevations compared to when the sun is located higher in the sky.

# 1.2.7.3 Latitude

Surface environments and playgrounds located in higher latitudes receive a lower UV irradiance than those located in latitudes closer to the equator on a daily and yearly basis due to the highest elevation angle that the sun can reach in those locations. This is the

most significant factor influencing the UV irradiance received at the earth's surface. In the polar regions of the earth the sun doesn't rise above the horizon in winter and in summer can only reach low elevations compared to the equatorial regions in which the sun always reaches the zenith. The season, as mentioned previously, also affects the distance the earth is to the sun. The UV irradiance in the Southern Hemisphere mid summer is approximately 6.6% greater at all wavelengths than in the Northern Hemisphere mid summer (McKenzie 1991). Hemispherical differences in the UV latitudinal distribution are greatest at shorter wavelengths in the UV waveband and these differences are further amplified by differences in atmospheric turbidity and lower ozone levels in southerly latitudes (McKenzie 1991). Consequently summertime sunburning UV irradiances can be up to 40% greater in the Southern Hemisphere compared to latitudes located in the Northern Hemisphere (Madronich et al. 1998). Tropical latitudes tend to have a higher humidity than other latitudes, increasing turbidity and therefore increasing the efficiency of absorption of UV by aerosols, offsetting somewhat lower tropical ozone levels and higher UV irradiances, however there remains a significant UV irradiance latitude gradient in both hemispheres (McKenzie 1991). Many locations, especially in northern latitudes tend to have increased levels of aerosols as the result of population induced pollutants, influencing the levels of UV irradiance at ground level (Van Heuklon 1979). Furthermore, tropospheric ozone levels are higher in northern latitudes compared to southern latitudes (Fishman et al. 1990).

## 1.2.7.4 Time of day

The UV irradiance recorded at the earth's surface changes with the position of the sun in the sky. At solar noon, when the sun is at its highest point in the sky, the path the sunlight has to take through the atmosphere is its shortest, resulting in less particulate and atmospheric scattering, and less absorption by ozone. A larger vertical component of direct solar radiation is also received at solar noon, resulting in a higher irradiance than would be received when the sun is lower in the sky. At lower solar elevations, the received UV irradiance is reduced by a larger horizontal component of the direct solar UV beam and an increased atmospheric path through which the sunlight must travel. In addition to atmospheric absorption, atmospheric scattering differentially alters the distribution of solar UV throughout the day. As has been previously discussed, scattering of UV radiation is greatest at shorter wavelengths. This tends to shift the relative degree of scattering at different wavelengths as the sun moves across the sky (Parisi & Kimlin 1997b). This differential degree of UV scattering further increases the risk of exposure during midday when the sun is at its highest elevation and scattering of shorter wavelengths is less than the scattering of those same wavelengths at lower solar elevation angles, particularly for individuals including school children that use open outdoor playground environments during lunch breaks. Measurements of the increase in the spectral UV irradiance are shown in Figure 1.4 for a day in which little or no cloud cover was observed. It can be noted from the figure, that increases are particularly high in the biologically significant shorter wavelengths of the measured spectrum.



Figure 1.4: Increase in UV spectral irradiance distributions recorded at the University of Southern Queensland on a clear winter day during mid morning (blue line) and at midday (red line).

# 1.2.7.5 Cloud

The influence of cloud on terrestrial UV varies depending on the type of cloud and the degree of cover. Light, sparsely distributed clouds have little effect on the received UV

irradiance. Total cloud cover can reduce terrestrial UV by one half of its clear sky value (Diffey 1991). Attenuation of solar electromagnetic radiation by clouds is greater in the visible region of the electromagnetic spectrum than at UV wavelengths. Furthermore, attenuation of solar infrared radiation by water droplets in clouds is greater than attenuation at UV wavelengths, reducing the sensation of heat on human skin, increasing the behavioural risk of overexposure to UV (Diffey 1991). Cloud cover has little influence on the diffuse component of solar UV radiation received at the earth's surface, reducing the total diffuse component by levels often less than 10% of levels measured under a clear sky (Paltridge & Barton 1979). Cloud cover can therefore not be considered an adequate form of protection from excessive UV exposure. The active use of sunscreens, hats and other forms of sun protection should be employed in cloudy conditions to avoid the risks associated with long term chronic and short term acute exposures to environmental UV radiation.

Furthermore, the type of cloud cover plays an important role in determining levels of terrestrial UV. Sparse cumulus cloud cover for example can enhance the UV irradiance above the nominal clear sky UV irradiance received at the earth's surface when not located directly in front of the solar disk (Estupinan et al. 1996; Sabburg et al. 2003; Parisi et al. 2004). This can enhance the UV irradiance by up to 25% (WMO 2007). Temporal variations in cloud cover resulting in significant variations in the UV irradiance received in the playground environment between 9:00am and 3:00pm often occur over short time periods. This effectively results in changing UV conditions in a real playground environment varying from cases of UV enhancement to UV reductions in short, random time frames.

# 1.2.8 Humans and ultraviolet radiation

Personal UV exposure depends on the activity or orientation of the individual, the environment in which the individual is exposed, the altitude of the sun, the season and atmospheric and weather conditions. Typically, humans experience between 5% to 10% of the ambient UV, with this fraction increasing for outdoor workers to between 20%

and 30% (WHO 2006). Personal sensitivity to UV is additionally dependent on the skin type or degree of pigmentation in the skin and on individual phenotypes. Unlike many other forms of radiation hazardous to humans, UV has a low penetrating ability, limiting potential damage to the skin and eyes. Human skin is least sensitive to wavelengths in the UVA region, however biological damage to deeper layers of the skin is likely to be due to UVA being able to penetrate human skin further than the shorter UVB wavelengths. Photoageing caused by UV penetration of the skin affects underlying structural macromolecules of dermal connective skin tissue resulting in skin wrinkling and loss of elasticity (Wlaschek et al. 2008). UVB is also the primary cause of sunburn or erythema in human skin. The relationship between exposure and UV and the development of non-melanoma skin cancer (NMSC) later in life including in particular the development of Basal Cell Carconimas (BCC) and Squamous Cell Carcinomas (SCC) are generally well accepted (Urbach 1997; deGruijl 1999) although this is largely based on indirect epidemiological evidence including higher incidence rates observed in low latitudes and high rates of incidence observed in populations exposed to high ambient levels of UV (Kricker et al. 1994). The links between UV and malignant melanoma are less well defined although exposure during childhood and intense intermittent exposure to solar UV are likely to be the most significant environmental risk factors for the development of the disease (Armstrong 1988; Longstreth et al. 1998; Walter et al. 1999; Gilchrest et al. 1999). Some exposure to solar UV is however essential for human health. Indeed, the reported disease burden due to no UV exposure exceeds the disease burden caused by excessive exposure to UV (WHO 2006).

### 1.2.8.1 Human skin

#### 1.2.8.1.1 Skin type

The single most important factor influencing the effect of UV on humans is skin type. Different types of skin offer differing degrees of protection from UV. Melanin, a chemical compound that exists in the upper layers of the skin is responsible for the primary absorption of UV. Melanin is also responsible for variation in skin pigmentation. Concentrations of melanin are strongly correlated with population origin with darker pigmentations typically being observed in populations originating from low latitudes and lighter skin pigmentations being observed in individuals originating from higher latitudes. As a result, darkly pigmented populations do not burn or suffer the incidence of skin cancer observed in lightly pigmented populations. Australia, as a consequence of its geographical location is placed at significant risk due to the high number of fair skin types observed in the current population. The relative health risk to a population associated with exposure to UV must take into consideration the differences in skin type. Six sun reactive skin types have since been defined following an experiment based on the personal history of exposure to the sun (Fitzpatrick 1975). The six reactive human skin types are listed in Table 1.1.

| Skin Type | Skin reaction to UV                                                                                                                              | Examples                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Ι         | Always burns easily and<br>severely (painful burn); tans<br>little or none and peels.                                                            | People most often with fair<br>skin, blue eyes, freckles;<br>unexposed skin is white.                                      |
| ΙΙ        | Usually burns easily and<br>severely (painful burn); tans<br>minimally or lightly, also<br>peels.                                                | People most often with fair<br>skin, red or blond hair, blue,<br>hazel or even brown eyes;<br>unexposed skin is white.     |
| III       | Burns moderately and tans about average.                                                                                                         | Unexposed skin is white.                                                                                                   |
| IV        | Burns minimally; tans<br>easily and above average<br>with each exposure;<br>exhibits immediate pigment<br>darkening reaction (rapid<br>tanning). | People with white or light<br>brown skin, dark brown<br>hair, and dark eyes;<br>unexposed skin is white or<br>light brown. |
| V         | Rarely burns; tans easily<br>and substantially; always<br>exhibits immediate pigment<br>darkening reaction.                                      | Unexposed skin is brown.                                                                                                   |
| VI        | Never burns and tans<br>profusely; shows immediate<br>pigment darkening.                                                                         | Unexposed skin is black.                                                                                                   |

Table 1.1: Sun reactive skin types (Diffey 1991, p.314).

### 1.2.8.1.2 Ultraviolet penetration of the skin

Ultraviolet radiation can penetrate up to no more than 1 mm of skin (Bruls et al. 1984). Scattering by surface follicles, glands, absorption and reflection of the skin at the surface and within deeper layers of higher refractive index, account for the varying degree of penetration with depth (WHO 1994). In addition to this, melanin in darker skin types reduces the effectiveness of the incoming UV (Kollias et al. 1991). Figure 1.5 indicates the degree of penetration by radiation of 365 nm and 313 nm which lie in the UVA and UVB bands respectively. It can be seen that 50% of the incident UVA and 33% of the UVB penetrates to a depth of 30 µm. Similarly, only 9.5% of the UVB reaches 70 µm while to the same depth, 19% of the incident UVA is still effective (WHO 1994). Approximately 1% of the UVA radiation reaches the subcutaneous tissue (Parrish et al. 1982). The increased proportion of UVA that is able to penetrate the atmosphere and the increased depth of the skin reachable in this waveband places significant importance on the prevention of penetration of UVA wavelengths.



*Figure 1.5: UV penetration and the layers of the skin (Bruls et al. 1984, cited in WHO 1994, pp. 46-47; Parrish et al. 1982, cited in WHO 1994, pp. 46-47).* 

# 1.2.8.2 Erythema

There are a number of reactions that human skin can exhibit as a result of exposure to ultraviolet radiation. The most noticeable acute effects are sunburn and tanning. Sunburn, or erythema is defined as the reddening of the skin that results from excessive exposure to UV. The reddening is the result of increased blood flow caused by the dilation of superficial blood vessels in the dermal layer of the skin. The reddening of the skin takes several hours to appear with the maximum effect becoming noticeable 8 to 12 hours after exposure, eventually fading entirely within 2 days (Olson et al. 1966; Farr et al. 1988). High levels of exposure to UV often result in severe pain, blistering and eventually peeling of the dermal skin layer. Erythemal intensities are typically measured in units of MED or SED. An MED (minimal erythema dose) represents the UV exposure required to produce mildly perceptible erythema with a definite border, measured typically 24 hours following the exposure event (Harrison & Young 2002). The MED is a measure of an individual's susceptibility to sunburn and varies with individual skin type with higher exposures typically being required in individuals of increasingly higher skin type number (Harrison & Young 2002). The SED (standard erythema dose) is referred to in this research work and represents 100 Jm<sup>-2</sup> of erythemally effective UV (Diffey et al. 1997). In determining the SED, the erythemally effective action spectrum (CIE 1987) is weighted to the global ultraviolet of the source which for this research is global solar UV in the 280 nm to 400 nm waveband.

The relative effectiveness of UV wavelengths at causing an erythemal reaction in type I human skin is given in Figure 1.6. Type I skin is used for the reference action spectrum as it represents the worst possible case of the erythema response. The relative effectiveness of the UV wavelengths at causing an erythemal reaction in other types of human skin are progressively lower for each darker skin type, however the general trend of shorter wavelengths being more effective than longer wavelengths in the UV waveband is preserved. Although the erythema action spectrum is low at UVA wavelengths, higher UVA levels in terrestrial sunlight mean UVA contributes around 15% to 20% of the sunburn reaction (Diffey 1991).



Figure 1.6: The erythemal action spectrum (CIE 1987).

The relative response of the erythemal action spectrum is determined by measuring the narrowband UV exposure required to produce perceptible erythema in human skin. It is considerably more difficult to determine an action spectrum for skin cancers as such effects have a longer period of latency before they are noticed and are likely to be produced through chronic exposure rather than a single exposure to UV radiation. Action spectra for skin cancers are therefore often inferred from animal experiments that can be performed in controlled environments (Setlow et al. 1993). The actinic and vitamin  $D_3$  action spectra are included in this review below to demonstrate their response similarities particularly at the shorter UV wavelengths.

#### 1.2.8.3 Actinic exposure

The actinic exposure represents the adopted international occupational and public safety standard of the limiting UV exposure that may be received by humans to both the skin and the eye. The relative effectiveness of the actinic spectrum is not normalised to any particular wavelength. The greatest relative effectiveness of the actinic action spectrum peaks at 270 nm. The weighted actinic UV in the range 280 nm to 400 nm can be integrated over a given exposure interval to determine the effective actinic exposure. The occupational standard for outdoor workers is chosen to reflect the average biologically damaging UV to the eyes and the skin such that received exposures do not

exceed 30 Jm<sup>-2</sup> over an 8 hour day (NHMRC 1989; ARPANSA 2006). Although the erythema and actinic weighted UV exposure cannot be directly compared due to variations in each respective spectral response, the occupational limit of exposure represents approximately 1.2 SED under most conditions, with the comparison changing for different periods of the day due to solar position and variations in the resulting atmospheric path (Gies & Wright 2003).



Figure 1.7: The actinic action spectrum (IRPA 1989).

#### 1.2.8.4 Vitamin D

One potentially beneficial consequence of exposure to sunlight is the production of vitamin D. Exposure to solar UVB radiation photochemically converts 7dehydrocholesterol in the epidermis to pre-vitamin  $D_3$ . No more than 5 to 15% of the 7dehydrocholesterol content in the skin is converted into pre-vitamin  $D_3$  due to excessive exposure reducing the pre-vitamin  $D_3$  into biologically inert photoproducts regardless of the duration of the exposure (Diffey 1991). In two to three days, the pre-vitamin  $D_3$  is completely converted to vitamin  $D_3$  by a reaction controlled by skin temperature (Diffey 1991). The reference action spectrum for the production of vitamin  $D_3$  is given in Figure 1.8. The spectrum shows the relative production of the vitamin  $D_3$  that would be produced following an initial UV exposure. Vitamin  $D_3$  produced in the skin is taken by the bloodstream to the liver to be metabolised to 25-hydroxyvitamin D (Webb & Holick 1988). As vitamin D is found in limited food sources including some fish and other fortified products, the dietary intake of Vitamin D can be limited such that most humans obtain the body's requirement from casual exposure to sunlight (Holick 2004).

Vitamin D deficiency has been linked to rickets (Meulmeester et al. 1990; Holick 2003), calcium imbalances in the elderly (Preece et al. 1975), type I diabetes (Hypponen et al. 2001), multiple sclerosis (Hayes et al. 1997) and the possible development of some cancers (Gorham et al. 1990; Garland et al. 2002; Grant 2002). Darker skin types, having an increased melanin pigmentation (Clemens et al. 1982) and older age groups (MacLaughlin & Holick 1985) are more likely to be deficient in vitamin D<sub>3</sub>, especially when the sun is at lower elevations, as might occur at higher latitudes or depending on the season (Holick 1997). This does not mean however, that vitamin D deficiency is constrained to those latitudes and environments that experience low ambient levels of UV. Vitamin D deficiency has also been reported in sub tropical latitudes (McGrath et al. 2001) and can be linked to a number of factors that might alter the received UV exposure. The efficiency of sunscreens (Matsuoka et al. 1988), certain clothing (Matsuoka et al. 1992), and glass at reducing the UVB irradiance can significantly reduce if not eliminate the ability of the skin to produce vitamin  $D_3$  (Holick 1997). These factors in addition to lifestyle factors may limit the effective vitamin  $D_3$  produced by exposure to natural sunlight, even in high ambient UV climates such as those experienced in Australia.



Figure 1.8: Action spectrum for the synthesis of vitamin  $D_3$  in human skin (CIE 2006).

The effective response of the vitamin D (CIE 2006), actinic (IRPA 1989) and erythemal action spectra (CIE 1987) when weighted to a typical terrestrial UV spectrum is shown in Figure 1.9. It can be seen from the figure that the relative response of vitamin D is greater than the erythema response which in turn is greater than the actinic exposure when weighted with the global UV that occurs naturally in the playground environment. The erythemal response of human skin has been employed extensively in the research undertaken in this project.



*Figure 1.9: Weighted UV exposure of vitamin D (blue line), erythema (red line) and actinic response (black line) for a winter UV spectrum measured at SZA 50°.* 

### 1.2.8.5 Lifestyle and behaviour

Potentially the most significant consequence of exposure to terrestrial UV is the risk of developing skin cancer and sun related eye diseases. Increasing rates of the incidence of malignant melanoma and corresponding mortality rates may be due to changing lifestyle or behavioural patterns in humans (Diffey 1991; McKenzie 1991). The rate of increase in skin cancer is therefore not necessarily related to increases in UV irradiance at ground level. Changes in lifestyle have been suggested for increases in malignant melanoma. In New Zealand, a 7.5% increase per year in malignant melanoma (Cooke et al. 1983) precedes predicted levels of ozone depletion (McKenzie 1991). Such reports come

despite the fact that there have been significant increases in the survival rate of melanoma over the past few decades (Rigel et al. 1987), suggesting an outdoor lifestyle and sun-safe attitudes play an important role in increasing melanoma skin cancer rates which cannot be attributed to changes in the environment alone. This point is particularly significant for a school environment. Controlling the outdoor behaviour patterns of children in a school environment could effectively reduce incidence rates of skin cancer.

The risk of developing chronic UV induced skin damage is reduced provided effective sun protective strategies are implemented on a daily basis (Gasparro et al. 1998). The correct use of sunscreens, hats, protective clothing, exposure avoidance and the sustained development of effective sun safe strategies is an important factor in reducing the risk of overexposure to UV and reducing the risks of overexposure incurred during childhood.

## 1.2.9 Skin Cancer

It is well recognised that exposure to UV radiation is the primary cause of all types of skin cancer. Skin cancer, as a consequence of exposure to terrestrial UV radiation is the most common type of cancer observed in humans, particularly in high ambient UV climates (Diffey 1991; deGruijl 1999). Most skin cancers occur as a result of solar exposure during childhood (Leyden 1990; Katsambas & Nicolaidou 1996; Weinstock 1996; Longstreth et al. 1998; Walter et al. 1999; Gilchrest et al. 1999), however, as previously mentioned this may also be due to higher exposure rates at a young age and outdoor behavioural activity rather than environmental factors.

Skin cancer results in the mutation of normal skin cells into either benign or malignant tumours. The frequency with which skin cancers develop depend on the skin's melanin synthesis capability as levels of cutaneous melanin absorb and act as a filter to UV radiation (Hussein 2005). Skin cancer itself is not a fatal disease, however the metastasizing nature of many skin cancers, particularly malignant melanoma often

results in the spreading of cancerous growth to other organs which can result in death. It is estimated that skin cancer costs the Australian community an estimated \$400 million per year (Girgis et al. 1994). The high incidence of skin cancers in the Australian population and the rising incidence of skin cancer in risk population groups (Longstreth et al. 1998) highlight the need for further research to develop effective sun-safe strategies.

#### 1.2.9.1 Non-melanoma skin cancer

NMSC is the most common type of cancer observed in fair skinned populations (Diepgen and Mahler 2002). NMSC does not readily metastasize. The risk factors associated with the development of NMSC are similar to the observed risks commonly associated with erythema. Lightly coloured individuals with poor tanning ability and high sunburn susceptibility, especially those with light eye and hair colour are more likely to develop NMSC than darker pigmented individuals (Urbach et al. 1974; Kollias et al. 1991). While darker skin pigmentation reduces the risk of the development of NMSC, they can still occur in areas of lighter pigmentation including the palms of the hand or the lips (Diffey 1991). Areas of the body that are often exposed to solar UV such as the head and neck are common sites for NMSC (Urbach 1982). Experiments derived from animals have shown that the UVB wavelengths are more effective than UVA wavelengths in producing NMSC (Sterenborg & van der Leun 1987).

Of the types of NMSC, BCC occurs more frequently, originating in the basal cell layer of the epidermis varying in depth from between 40  $\mu$ m for the head, 50  $\mu$ m for the arms and legs and 150  $\mu$ m for the dorsal sides of the hand (Konishi and Yoshizawa 1985). SCC, affecting the stratified squamous epithelium occur frequently to exposed areas of human skin. SCC and the nodular form of BCC show an increasing rate of incidence with age (Scrivener et al. 2002; Staples et al. 1999) and are strongly correlated in fair skinned populations living in risk climates. The ambient UV incident upon skin surfaces of the human body is strongly dependent on geographical latitude, having a significantly greater intensity in lower latitudes due to higher solar elevation. Low geographical

latitude and the predominately northern European ethnocentric origin of the current Australian population contribute to Australia having the largest incidence rates of both NMSC and melanoma skin cancer in the world, displaying a distinct latitudinal gradient for both forms of the disease (Staples et al. 1999; McCarthy 2004).

### 1.2.9.2 Melanoma skin cancer

Cutaneous malignant melanoma occurs less frequently but metastasises at a higher rate than NMSC. The development of benign or malignant skin cell tumors is linked to the absorption of UV radiation causing mutation in the DNA of skin cells (deGruijl 1999). A malignant melanoma is a tumour that develops from the pigmented cells of the skin. The pigmented cells, known as melanocytes contain melanin, a chemical that absorbs radiation over all UV wavelengths (Setlow et al. 1993). The absorption of radiation by the melanin in melanocytes may be responsible for the mutation of DNA, a symptom that may lead to the development of skin cancer (Selow et al. 1993). The direct absorption of UV by DNA is stronger in the UVB than the UVA (Setlow et al. 1993), however the complexity of the processes involved in the mutation of DNA and the long latent time period between exposure and the development of melanoma makes it difficult to determine an action spectrum. The absorption of UV by melanin and the difficulties associated with determining the effectiveness of UV absorption by DNA have led to suggestions that wavelengths other than those concentrated in the UVB region may be responsible for the onset of malignant melanoma. The visible, UVA and infrared regions of the electromagnetic spectrum may be responsible for the development of malignant melanoma (Loggie & Eddy 1988; Setlow et al. 1993) with the deeper skin penetrating ability of UVA photons likely being responsible for acute DNA damage (Agar et al. 2004). While research from other groups has placed a significant importance on the UVB regions (Sober 1987; Koh et al. 1990), there is general agreement that the development of melanoma is related strongly to exposure to sunlight (Armstrong & Kricker 1996; Setlow et al. 1993; Diffey 1991; Gasparro et al. 1998).

The ability of skin cell DNA to repair itself is a significant contributing factor toward preventing the development of skin cancer (Kraemer et al. 1994; Wei et al. 2003). Individuals afflicted with the DNA repair deficient skin disorder, xeroderma pigmentosum are hyper-sensitive to UV and readily develop both cutaneous malignant melanoma and NMSC, supporting the links between DNA repair deficiency and the likelihood of developing skin cancer (Kraemer et al. 1994; Taylor 1995). Like NMSC, certain phenotypic characteristics including fair skin type, eye and hair colour contribute to the likelihood of developing melanoma (Evans et al. 1988; Lock-Anderson, et al. 1998; Harris & Alberts 2004) with the most significant phenotypic risk associated with melanoma being the number of moles larger than 2 mm on the skin (MacKie et al. 1989). Melanoma occurs more frequently on unacclimatised skin surfaces including the body trunk and legs and unlike NMSC is not always a prevalent condition on areas of the skin that receive high ambient UV exposures. Approximately 800 Australians die annually from melanoma and 200 annually from NMSC (NHMRC 1996). More recent data indicate increases in these figures with 390 deaths attributed to NMSC and 1146 deaths attributed to cutaneous malignant melanoma in the year 2003 (AIHW and AACR 2007).

In children, the sensitivity of unacclimatised skin may be an important risk factor influencing the later development of melanoma. Research on human personal characteristics and sun related beliefs has shown that the number of sunburns, and therefore total human UV exposure, is related to human behaviour (Hill et al. 1993). The behaviour of children in a potentially unsafe environment warrants the necessity to develop protective strategies based on a detailed investigation of the school environment.

1.2.10 Personal measurements of UV radiation with polysulphone dosimeters

Polysulphone dosimeters originally developed for use in UV exposure studies by Davis et al. (1976) have a response to UV radiation similar to human skin. This type of thin film polysulphone dosimeter has been constructed and implemented previously to measure

personal UV exposures to school children (Diffey et al. 1996; Gies et al. 1998; Milne et al. 1999a). Studies involving mannequins have also made extensive use of polysulphone dosimeters to determine the erythemally effective UV to specific anatomical sites under various atmospheric and physical conditions (Diffey et al. 1977; Diffey et al. 1979; Kimlin et al. 1998). Previous polysulphone dosimeter studies using mannequin and human subjects are however limited by the total number of anatomical sites assessed and have been developed primarily to examine the influence of the local environment (Lester & Parisi 2002; Turnbull & Parisi 2006; Turner et al. 2008) and occupation or activity (Holman et al. 1983; Herlihy et al. 1994; Gies et al. 1995; Vishvakarman et al. 2001; Gies & Wright 2003; Siani et al. 2008; Siani et al. 2009) on anatomical sunlight distributions and relative environmental exposures, or to determine protection factors for subjects using various forms of personal sun protective clothing and hat wear (Parisi et al. 2000; Gies et al. 2006). Polysulphone dosimetry has been used extensively in this research to determine body surface exposure distributions in the school playground environment. The methods and techniques used to measure UV exposure with polysulphone dosimeters are discussed in the following chapter.

### 1.2.11 Ultraviolet exposure models

Terrestrial UV radiation models have been developed by a number of researchers to predict the horizontal plane spectral UV irradiance. Computer models developed to predict the horizontal plane UV irradiance list the direct UV component and the diffuse or scattered UV component. Typically, as the mechanisms that affect the transmission of the direct and diffuse UV at the earth's surface are different, different methods are used to model their influence. The levels of diffuse and direct UV reaching the earth's surface depend on the sunlight's optical path through the atmosphere and atmospheric concentrations of ozone, aerosols, and particulates. Semi-empirical models such as that used for this research, model the UV irradiance as the product of the extra-terrestrial UV irradiance and the total attenuation due to transmission through ozone, aerosol and particulate atmospheric layers. Modelled direct and diffuse spectral UV depends strongly on the incident sunlight angle and the incident atmospheric path. Following

atmospheric attenuation for a given SZA, the global UV irradiance can be modelled for any particular time of day providing results comparative to spectroradiometeric measurements. UV exposure models have been applied to predict exposure risks to humans and employed to investigate variations in environmental UV (Jokela et al. 1993; Feister 1994; Kimlin et al. 2003; Downs et al. 2001). Furthermore, the biologically effective UV has been measured and modelled extensively under tree shade indicating that perceived shady locations can present a significant risk of exposure in the biologically effective UVB (Grant 1997; Grant et al. 2002; Heisler et al. 2003). For this research, a hybrid UV exposure model was developed for predicting the horizontal plane UV exposure in a school playground environment. This model is discussed in detail in the following chapter.

# 1.2.11.1Variation in UV irradiance due to orientation

Surfaces orientated away from a horizontal plane receive varying amounts of UV radiation depending on their orientation with respect to the sun and the local environment influencing the total biologically damaging UV received by human subjects. The surrounding surface and ground objects can also influence the UV reflected back into the atmosphere. The Australian UV index predicts the maximum ambient UV on a horizontal plane. However, no mechanism exists for the prediction of human UV exposure based on scientifically measured human exposure data taking into account human activities, the complex shape of the human body, geographic factors and local climatic and physical conditions.

The influence of the environment and variation in UV exposure due to orientation has been investigated by a handful of researchers. Mech and Koepke (2004) developed a model for the computation of UV on arbitrarily orientated surfaces. The influence of albedo contribution to the total UV irradiance incident on surfaces orientated away from the horizontal plane has also been investigated (Schauberger 1990). Hoeppe et al. (2004) measured the UV irradiance at 27 differently inclined surfaces with radiometers and interpolated the results in two dimensions to visualise the whole body UV exposure. Recently, Hess and Koepke (2008) developed a model to calculate the UV irradiance on arbitrarily orientated surfaces taking into account surface obstructions which influence the effective sky view. This approach required modelling the complete hemispheric UV radiance field including the influence of the regional albedo. This work extended the model of Mech and Koepke (2004) by positioning sky obstructions in the radiance field, whereby the influence of incident UV on the modelled obstruction included the UV transmission and reflection properties of the obstructing structure. The effectiveness of this model was demonstrated by modelling UV in an urban environment and a mountain skyline.

## 1.2.11.2 Modelling personal biologically damaging ultraviolet

Mannequins and human dosimeter experiments have been used to model human exposures in different physical environments and situations. In a comparative study using mannequin and human subjects, Airey et al. (1995) found that the orientation of human subjects can be modelled by mannequin headforms tilted at various angles with respect to the environment to represent the postures of standing, sitting, bending and kneeling respectively. Previous research has emphasised the use of rotating mannequins and headforms to determine the UV exposure to specific sites of the human body as human volunteers wearing dosimeters may not always represent a feasible or practical approach. Alternatively, predictions not involving the direct measurement of human exposure to UV have been modelled directly onto three dimensional representations of the human form through the use of ray tracing and UV irradiance algorithms (Streicher et al. 2004).

Research conducted by Kimlin et al. (1998) utilising polysulphone dosimeters located on different mannequin facial sites found the relative exposure to the nose varied by a factor of approximately three due to seasonal variation in SZA from winter to summer. These findings were supported by Downs et al. (2001) following the development of a UV exposure model highlighting variation in erythemally effective UV to the face with variation in SZA. The model developed by Downs et al. (2001) was later integrated into studies to investigate UVA facial exposure distributions and to investigate variation in facial UV exposure distribution with latitude (Kimlin et al. 2003a; Kimlin et al. 2003b). For this work, a three dimensional high density headform exposure network was developed from measurements of UV exposure improving the resolution of modelled facial exposure distributions over existing polysulphone mannequin model measurements. This extends the work of others by representing UV exposure distributions in high detail and in three dimensional space by assessing hundreds of exposure measurements rather than assessing a handful of anatomical sites. Furthermore, as this work is based on measured exposures, the unique shading effects caused by the body itself in the natural UV environment can be examined.

## 1.2.12 Trends in school practices and the ultraviolet environment

#### 1.2.12.1 Sun protection policy

The extent to which UV modelling and prediction can be transferred to sun safe practice is dependent on the attitudes and resulting behaviours of individuals. Schools, being directly responsible for the behaviour of students under their care have the opportunity to modify and control playground practice. Protective strategies aimed at reducing exposure to solar UV in schools include the active use of suitable clothing, hat and eyewear, the application of sunscreens, appropriate role modeling and education by teachers, timetabling and planning to avoid periods of peak daily UV intensity, and the use of physical shade structures designed to minimise direct exposure to the sun in a variety of playground environments.

SunSmart campaigning by the Anti-Cancer Council of Victoria has resulted in the development of safer practice in schools and the broader community in Australia through markedly influencing the behaviour and subsequent exposure of individuals to environmental UV (Montague et al. 2001). A national program for the accreditation of SunSmart early childhood centers, primary and secondary schools was launched in 1998 by the Anti-Cancer Council of Victoria to formalise participation in sun-safe practice by

child care providers (ACCV 1999). Adoption of sun-safe practice in schools, such as those formalised by the SunSmart campaign, has generally been well accepted in both early childhood and primary schools, however, policy acceptance by high schools is less frequent (ACCV 1999). While it has been well documented that childhood exposure to UV is crucial to the potential development of skin cancers later in life, behavioural trends among school aged children show a decrease in sun safe practices with age, particularly among adolescents (Broadstock et al. 1996; Dixon et al. 1999; Balanda et al. 1999; Lowe et al. 2000) and a reluctance from high schools compared with the early childhood and primary school sectors to formalize safe sun policies (ACCV 1999).

#### 1.2.12.2 Behavioural attitudes and practices of school children

Due to school hours coinciding with periods of peak UV intensity, school children can potentially be exposured to significant levels of biologically damaging UV. Dosimeter experiments have shown exposures to the shoulders of school children range from between 34% (Gies et al. 1998) to 15% (Milne et al. 1999b) of the daily available ambient UV. Poor sun-safe practices noted by Milne et al. (1999a) in a study conducted across 33 primary schools located in Perth showed that use of hats affording quality protection worn by school children was often less than 30%. Giles-Corti et al. (2004) showed that this figure could be increased in schools that implemented intensive intervention policies, namely SunSmart accreditation and strict "no hat no play" policies. Kimlin and Parisi (2001) determined that the ambient UV exposure received by primary school children could further be reduced provided school children were aware of the daytime risk to ambient UV and its potential to increase facial exposure without hat protection while at school. Further research has shown that sun-protective practices however, are reduced markedly as children age. This behavioural trend has been reported to increase in high school children as they progress in year level and is especially noticeable as children move from primary to high school (Broadstock 1996; Lowe et al. 2000). Strategic approaches aimed at reducing UV exposure to children in high schools are needed to develop safer school environments.

# 1.3 Methodology

The research program developed to achieve the objectives introduced at the beginning of this introduction will be described as follows:

- Chapter 2 (Materials and Methods) will present a brief introduction of the instrumentation required to measure the three dimensional UV anatomical surface exposure. The horizontal plane UV exposure model, required to make predictions of the erythemally effective exposure incident in the playground environment is discussed in detail. The method used to survey a playground environment is introduced and the techniques needed to weight the horizontal plane playground exposure to the three dimensional surfaces of the body are discussed. The chapter concludes by discussing the measurement of personal UV exposure in a cohort of the school population. These measurements were taken to compare to model predictions of personal playground exposure.

- Chapter 3 (Measurements of body surface exposure) is the first results chapter. Measured patterns in body surface exposure for each of the face, neck, arm, hand and leg are discussed relative to the SZA ranges of  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$ , and  $50^{\circ}$ - $80^{\circ}$ .

- Chapter 4 (Modelling the playground UV exposure) presents the results developed for the model school playground environment. Specifically, playground sky view, surface albedo, shade density and erythemally effective UV exposure are presented from playground measurements. Summary statistics for various regions of the model school playground are also presented. UV exposures and subsequent playground hot spots found in the real playground environment are detailed.

- Chapter 5 (Student exposure in the playground) is the third results chapter. This chapter details the exposure distribution measured in the school population. The influence of the local playground environment is discussed in relation to cloud cover, season, and measured face, neck, arm, hand, and leg body site exposures. Comparisons

of measured body site erythemally effective exposures are presented relative to modelled erythemally effective body surface exposures. The risks associated with the development of non-melanoma skin cancer are discussed in relation to modelled body surfaces and measured hat use in the student population. Estimates of the annual erythemally effective UV exposure received by a school child using the model school environment are provided for each of the face, neck, arm, hand, and leg surfaces.

- Chapter 6 (Discussion) discusses the value of playground activity scheduling in regards to reducing skin cancer risks incurred by students using the model school playground environment. The value of playground tree cover and shading structures are assessed by application of the techniques developed to modelled school playground exposure. The techniques developed for this research are presented with respect to their potential use in different outdoor environments and the playground model limitations are also presented.

- Chapter 7 (Conclusions) summarizes the effective outcomes of this research.

In review of the topics discussed thus far, the origins of sunlight and UV radiation have been presented with respect to the total path of UV radiation that is eventually incident upon the exposed skin surfaces of individuals using the playground environment. This has involved the discussion of solar photospheric and terrestrial atmospheric absorption of UV radiation, reflection and transmission influenced by well recognised atmospheric mechanisms. Incident radiation at the earth's surface has been discussed in relation to surface orientation, aspect and the albedo properties of materials common in the school environment. The potentially harmful effects of solar UV radiation and the techniques used to measure and model some of the commonly observed human responses to UV exposure have been presented. This provides a foundation upon which the discussion presented in this work now moves toward detailing the techniques developed to model the UV radiation to children using the school environment.

# CHAPTER 2 MATERIALS AND METHODS

Modelling the UV received at the skin's surface in a school playground requires consideration of the playground location, the physical playground environment itself, the atmospheric parameters that affect the UV irradiance, and the orientation of exposed skin surfaces relative to the irradiating source. The methodology applied to this work considers each of these factors by application and modification of existing horizontal plane UV irradiance modelling techniques, measurement of personal UV exposure, and assessing the influence of the school playground environment. Specifically this has involved:

- Modelling the influence of the direct and diffuse component of solar UV radiation incident on a horizontal plane at the earth's surface with variation in atmospheric parameters including ozone and aerosol species;
- Modifying the modelled horizontal plane irradiance to account for the influence of the playground including shading and surface reflections in the UV waveband;
- Applying the modelled horizontal plane playground irradiance to make accurate predictions of the exposure received to human skin surfaces by application of measured exposure ratios received by body surfaces, and
- Validating the predictions made by measurement of the UV exposure received by a school population.

The modelled UV exposure affecting the skin surfaces of the face, neck, arm, hand and leg are presented for an Australian school playground situated in a sub-tropical latitude. The techniques presented can however be applied to other schools for predictions of exposure in the  $0^{\circ}$  to  $80^{\circ}$  SZA range. Measurements of the playground sky view and surface reflections were applied to the horizontal plane UV irradiance calculated for the playground's altitude and latitude. Ratios of UV exposure measured using mannequin field subjects and expressed relative to the horizontal plane were used to weight the modelled horizontal plane playground exposure providing estimates of the UV exposure
received by unprotected skin surfaces of the body. The work is innovative as it provides a model that can predict day to day playground and body surface UV exposures which can be used to assist schools and students in understanding their local UV environment.

### 2.1 Instrumentation

#### 2.1.1 Scanning spectroradiometer

Measurements of UV exposure made over the surface of the human body are critical toward understanding exposure risk in a student population. The distributions of cancerous squamous cell carcinoma are greatest on frequently exposed parts of the body including the dorsa of the arms and hands, and the face (Pearl and Scott 1986; Kricker et al. 1990; Raasch et al. 1998). By developing a technique to map realistic UV exposure distributions over the surface of the body, distributions of pre-cancerous and cancerous lesions resulting from exposure to sunlight may be better understood. In this research a polysulpone dosimeter technique has been further developed to map detailed UV exposure distributions over the human body. Additionally, UV exposures measured to the student population in the school playground have been measured using polysulphone dosimeters. UV exposures measured to the student population were calibrated to the University of Southern Queensland's scanning spectroradiometer (model DTM300, Bentham Instruments, Reading UK). This instrument is a double grating monchromator which measures the UV spectrum incident on a horizontal plane on each 10 minute interval between 5:00am and 7:00pm, Australian Eastern Standard Time (AEST) daily. The spectroradiometer is located on a roof top site at the USQ Toowoomba campus and has a virtually unobstructed view of the horizon, with some tree canopies covering the south-western region of the sky up to an elevation of approximately 5°. The accuracy of the irradiance measured by this instrument is quoted at  $\pm 10\%$  (Parisi & Downs 2004), including ±5.2% uncertainty in temporal stability measured against the output of the instrument's 150 W quartz tungsten halogen (QTH) lamp, ±1.1% uncertainty due to variation in wavelength response,  $\pm 0.8\%$  uncertainty in the cosine response of the instrument diffuser,  $\pm 0.1\%$  dark count variability and  $\pm 3\%$  uncertainty in the traceability of the QTH lamp calibrated to the National Physical Laboratory, UK standard.

# 2.1.2 Broadband meter

Field measurements of UV radiation were made using a portable broadband UV meter (Solar Light Co., model 3D, Philadelphia, PA 19126). The broadband UV meter was used to measure the UV transmission through various playground shade cloths and to determine the UV reflected from various playground surfaces. This meter has a measured uncertainty of  $\pm 17\%$  including a  $\pm 12\%$  uncertainty in temporal stability measured against a constant UV emitting source (Solar Light Co. Xenon arc lamp) and  $\pm 5\%$  variation in cosine response for incident radiation received at angles up to  $80^{\circ}$  from the input diffuser. Additional uncertainties resulting from the measurement of reflected radiation of surfaces oriented in the horizontal and vertical plane are discussed in Chapter 4.

# 2.2 Miniaturised polysulphone dosimetry and measurements of body site exposure

The UV exposure received by the body was measured so that modelled horizontal plane playground exposures could be weighted to the UV surface distributions of frequently exposed regions of the body, namely the face, neck, arms, hand and leg. This technique was initially employed by Davis et al. (1976), however for this research the dosimeters were miniaturised to allow for high density placement. Measurements of ultraviolet exposure were made using miniaturised polysulphone dosimeters which exhibit changes in optical absorbance when exposed to UVB radiation. The miniaturised flexible dosimeters were attached to the surface topography of a life sized mannequin headform model (Figure 2.1) and life sized body mannequin (Figure 2.2). The body mannequin has a height of 178 cm and was taken to represent the height of a high school aged student. Measurements of personal exposure were also made by attaching dosimeters to the exposed skin surfaces of school students. Each miniaturised dosimeter was made from flexible card frame measuring approximately 10 mm by 15 mm with a clear

circular aperture of 6 mm over which polysulphone film of an approximate thickness of 40  $\mu$ m was adhered. (The manufacturing process of the polysulphone film used in this research is detailed in Appendix A). Pre- and post- exposure measurements of polysulphone film absorbance were made at four locations over the dosimeter aperture and averaged to minimise inconsistencies in the measurement of the film. The change in absorbance is defined as:

$$\Delta A = A_{post} - A_{pre} \qquad (2.1)$$

Measurements of the polysulphone absorbance,  $\Delta A$  were made at 330 nm using a spectrophotometer (model 1601, Shimadzu Co., Kyoto, Japan). This wavelength represents the approximate maximum change in optical absorbance for 40 µm thick polysulphone film which has a strong spectral response in the UVB (CIE 1992) that can further be calibrated to the erythemal response of human skin.



Figure 2.1: Life sized headform mannequin model photographed at a school playground measurement site. Horizontal plane exposures were recorded in proximity to the mannequin. Horizontal plane dosimeters can be seen in the figure foreground (green arrow) for this experiment which measured facial UV exposure distribution in a low sky view environment.



Figure 2.2: Life sized mannequin model dressed in school uniform. The photograph was taken in an open field measurement site at the USQ, Toowoomba campus (28°S, 152°E). This site was used to measure the three dimensional surface exposures presented in Chapter 3.

### 2.2.1 Mannequin measurements of exposure ratio

Exposures measured by dosimeters placed on the headform and body mannequin were expressed relative to the horizontal plane exposure which was measured in proximity to both mannequins. For the results presented here, the exposure measured at any mannequin body site and expressed relative to the horizontal plane exposure was given by:

$$ER = \frac{E_{site}}{E_{hor}}$$
(2.2)

where ER is the exposure ratio of the UV exposure measured by the polysulphone dosimeters at any given body site,  $E_{site}$ , and expressed relative to the maximum received exposure measured on a horizontal plane,  $E_{hor}$ . The erythemally effective exposures, Ewere calculated using the third order polynomial approximation to the calibrated erythemally effective exposure given with increasing change in optical absorbency measured at 330 nm (Diffey 1989):

$$E = K(9\Delta A^3 + \Delta A^2 + \Delta A)$$
(2.3)

In the equation,  $\Delta A$  is the change in polysulphone film absorbance measured at 330 nm and K (Jm<sup>-2</sup>) is a constant that is eliminated in the ratio, *ER*. The mean uncertainty of the miniaturised dosimeters calculated as the range in measured  $\Delta A$  over a series of 46 dosimeter sets which received identical UV exposures was determined to be ±6% of the recorded horizontal plane exposure in the 0° to 30° SZA range, ±9% in the 30°-50° SZA range and ±16% in the 50°-80° SZA range. Uncertainty in the measured exposure ratio, ER is therefore taken to be in the order of ±12%, ±18% and ±32% for the 0°-30°, 30°-50° and 50°-80° SZA ranges respectively. The uncertainty in the measured ER increases with SZA due to increases in the ratio between the measured ranges of  $\Delta A$  and decreasing horizontal plane exposure experienced at increasing SZA (Measurements of  $\Delta A$  for the 46 sets of dosimeters used to determine the stated uncertainty in ER are provided in Appendix B.2 ).

## 2.2.1.1 Mannequin body surface measurement sites

Measurements of ER were taken on up to 1453 body sites including the mannequin face (709 sites), neck (98 sites), forearm (166 sites), hand (247 sites) and leg (233 sites). Sites on each of the body parts were organised into horizontal and vertical contours. Contours on the face and hand were separated by 5 mm, 10 mm on the arm and neck, and 20 mm on the leg. To visualise measured patterns in the ER for the UV a three dimensional wireframe mesh of each of the face, neck, arm, hand and leg was developed from measurements of body surface sites. The developed body surface meshes were built to the measured spatial contour resolutions of the face, neck, arm, hand and leg models. Wireframe representations of body exposure patterns show the positions of horizontal and vertical contour shows the measured position in three dimensional space of the body site which was also marked on the respective mannequin model. These sites were measured and marked onto the mannequin models by application of a laser mounted to an optical bench and jig

assembly (Figure 2.3). Exposures measured by polysulphone dosimeters placed at marked body sites on each mannequin were represented by colour levels on the developed wireframe mesh of each respective body part expressing the UV exposure relative to the horizontal plane exposure measured in proximity to the mannequin in the ER range 0 to 100%. Figure 2.4 is a comparison of the mannequin headform model and wireframe mesh developed in three dimensional space.



Figure 2.3: Optical bench assembly. (a) Marking the mannequin headform (b) Marking the leg of the body mannequin.





Figure 2.4: Mannequin headform and its wireframe mesh model. Marked dosimeter placement sites (a) correspond with horizontal and vertical contour mesh intersections (b) Mesh colouring was used to highlight the measured ER pattern. Colour interpolation between measurement sites (wireframe intersections) is detailed in Appendix C.

For field measurements of UV exposure, both mannequins were placed on rotating platforms that completed approximately two revolutions per minute. As the movement of a mannequin placed on the rotating platform was fast compared to the changing SZA in the field, the influence of mannequin aspect relative to the environment was negated and measured exposures were taken to represent the random movements of an upright human subject. The rotating platform and mannequins were placed in an open environment which was located at least 30 m from the nearest buildings inside the grounds of the University of Southern Queensland's Toowoomba campus (28°S, 152°E). The field measurement site has a sky view of 95% and was covered by grass for most of the field experiments with the degree of grass cover being sparse in 2007 due to drought conditions. Measurements of the ER were made over a four year period between 2005 and 2008. Measurements of ER were taken under various cloud cover conditions during periods when the SZA varied from  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$ . These SZA ranges were chosen to represent three periods of the summer day in a low latitude location, namely the highest UV irradiance period of the day either side of midday,  $0^{\circ}$ -30°, the period following the highest irradiance period and leading into the lowest UV irradiance period of the day,  $30^{\circ}$ - $50^{\circ}$  and the lowest UV irradiance period of the day,  $50^{\circ}$ - $80^{\circ}$ . The SZA ranges cover the most significant range of SZA that have a biologically effective influence on exposure and can be applied at any latitude to show patterns in human exposure with daily and seasonal variation.

#### 2.2.2 Calibrated measurements of personal UV exposure

Miniaturised polysulphone dosimeters used to measure personal UV exposures were calibrated to the erythemally effective UV, represented by the equation:

$$UVE = \int_{0}^{t} \int_{280nm}^{400nm} S(\lambda, t) A(\lambda) d\lambda dt \qquad (2.4)$$

where *UVE* represents the measured erythemally effective UV exposure,  $A(\lambda)$  is the erythemal action spectrum (CIE 1987), and  $S(\lambda, t)$  is the measured horizontal plane UV

irradiance integrated over the biologically effective UV waveband,  $\lambda$  from 280 nm to 400 nm, and over the exposure time interval, *t*.

Dosimeters that were utilised in measuring personal UVE were kept in light proof containers prior to field exposure. The measured change in dosimeter absorbance,  $\Delta A$ was determined at least 24 hours following field exposure of the dosimeters to allow for the polysulphone dark reaction following exposure to solar UV (Davis et al. 1976). Given the possibility for seasonal variation in polysulphone film exposure response (Wong et al. 1995), the measured change in dosimeter absorbance was calibrated to the erythemally effective UV during cloud free days for the months of February, April and May. These dates were chosen as they roughly divide the 5 month period between February and June into three periods, namely, late summer early autumn (summerautumn), mid autumn, and late autumn early winter (autumn-winter). The calibrated response of the polysulphone film dosimeters employed in measuring personal UV exposures for this work are listed in Appendix B.1. The measured change in dosimeter absorbance at 330 nm was calibrated to the horizontal plane erythemally effective UV measured by the USQ's scanning spectroradiometer to determine personal UVE. The summertime dosimeter saturation limit was measured at a  $\Delta A$  of 0.7 and represents an exposure period of 5 hours. Calibrated polysulphone dosimeter exposures were used to measure personal exposures to children using the model school playground between February and June 2008. Erythemally weighted UVE exposures measured by calibrated polysulphone dosimeters were expressed in units of standard erythema dose (SED) where 1 SED represents 100  $\text{Jm}^{-2}$  of erythemally effective UV (Diffey et al. 1997) and 2 SED represents the approximate exposure required to produce mildly perceptible erythema in fair skinned (type I) individuals 12 to 24 hours following an exposure event.

The total maximum uncertainty in the measurement of the personal UVE was determined to be in the order of  $\pm 26\%$  including the uncertainty estimate of  $\pm 10\%$  based on the spectroradiometer measurement of the horizontal plane irradiance and  $\pm 16\%$  maximum uncertainty in measured polysulphone film absorbance measured in the 50° to 80° SZA range. The uncertainty estimate of the dosimeters quoted here exceeds

the coefficient of variation of 10% determined by Diffey (1987) for polysulphone dosimeters not exceeding a  $\Delta A$  of 0.3, however is within the upper limit of 30% further specified by Diffey (1987) for a  $\Delta A$  less than 0.4.

# 2.3 Modelling the horizontal plane ultraviolet irradiance

Measured UV exposure distributions for each of the face, neck, arm, hand and leg expressed as a ratio of the horizontal plane UV exposure in each of the three SZA ranges were used to weight the modelled horizontal plane playground exposure. The horizontal plane playground UV exposure was determined by weighting the direct and diffuse components of the horizontal plane UV modelled in an open environment to the measured sky view and albedo of various playground structures surveyed at 822 playground sites located within the grounds of the model school. The horizontal plane playground UV exposure was determined for the winter and summer solstice over the entire area of the selected school playground. In this way the extremes in UV exposure received within the playground environment could be assessed for the playground environment itself and for the students using that environment.

# 2.3.1 The ultraviolet irradiance model

The radiative transfer of UV through the atmosphere is affected by the refraction and absorption of air, and aerosols including ozone, cloud and particulate matter. The processes that govern the absorption and refraction of the direct solar beam by each of these atmospheric constituents are quantified in this research by the use of semiempirical equations. The diffuse component of the UV that reaches the earth's surface which needs to account for the random scattering and reflection of UV in a turbid atmosphere is estimated through the use of radiative transfer equations. The direct UV irradiance modelled at the earth's surface in this research was based on Rundel's (1986) formulation of the Green, Cross and Smith (1980) and Schippnick and Green (1982) improvement to the original Green, Sawada and Shettle (1974) semi-empirical model. The horizontal plane diffuse UV irradiance model is based on the equations of Green, Cross and Smith (1980). These equations employ the radiatve transfer calculations of Braslau and Dave (1973) and Dave and Halpern (1976) for diffuse UV reaching the terrestrial surface. The diffuse UV model was found to overestimate the received surface irradiance being the greater proportion of the total modelled UV, however for this research this overestimate resulted in better predictions of the modelled horizontal plane UV compared to measurements made in Toowoomba which represent a higher UV irradiance environment than the environment in which the original model was developed (Northern Hemisphere).

## 2.3.1.1 Extra-terrestrial spectral irradiance

The extra-terrestrial spectral UV irradiance incident on the earth's atmosphere was modelled over the biologically significant 280 nm to 400 nm waveband using the following estimate (Schippnick and Green 1982):

$$H(\lambda) = H_{b}(\lambda)(1 + \sum_{i} A_{i} \exp(-(\lambda - \lambda_{i})^{2} / 2\sigma_{i}^{2})$$
(2.5)
where  $H_{b}(\lambda) = K\left(\frac{\lambda_{o}}{\lambda}\right)^{5} \frac{\exp(p) - 1}{\exp(p\lambda_{o} / \lambda) - 1}$ 

 $H(\lambda)$  is the extra-terrestrial irradiance at wavelength  $\lambda$ , K = 0.582 Wm<sup>-2</sup>nm<sup>-1</sup>, p = 9.102,  $\lambda_o = 300$  nm,

And:

| $\lambda_{i}$ | $A_{i}$ | $\sigma_{_i}$ |
|---------------|---------|---------------|
| 279.5         | - 0.738 | 2.96          |
| 286.1         | - 0.485 | 1.57          |
| 300.4         | - 0.243 | 1.80          |
| 333.2         | +0.192  | 4.26          |
| 358.5         | -0.167  | 2.01          |
| 368.0         | +0.097  | 2.43          |

Figure 2.5 displays the resultant extra-terrestrial spectrum of equation 2.5. The N Fraunhoffer line caused by solar photospheric absorption of iron at 358 nm and a Magnesium absorption line at 285 nm are prominent in the figure.



Figure 2.5: Extra-terrestrial UV spectrum modelled over the 280 nm to 400 nm waveband.

### 2.3.1.2 Earth-Sun distance

Variation in the extra-terrestrial UV irradiance incident on the earth's atmosphere due to the elliptical orbit of the earth was accounted for in the model. Equation 2.6 (Josefsson 1986) represents the factor by which the spectral extra-terrestrial irradiance was multiplied to account for the seasonal variation in the earth-sun distance which is closest during January and greatest in June. The extra-terrestrial irradiance varies by approximately 6.7% throughout the year (Björn 1989).

$$f = 1 + 0.033 \cos(2\pi D_n / 365.25) \tag{2.6}$$

where f is the seasonal extra-terrestrial intensity variation factor, and  $D_n$  is the day number of the year.

#### 2.3.1.3 The direct UV irradiance modelled at the earth's surface

The direct component of the UV irradiance varies with altitude above sea level. This variation was considered by the direct application of Rundel's (1986) algorithm formulated from the improvements of Green, Cross and Smith (1980) and Schippnick and Green (1982). The sequence required to determine the direct UV irradiance at sea level and at altitude is given by equation 2.7 (Green, Cross & Smith 1980):

$$U_{dir}(\lambda,\theta,y) = \mu H(\lambda)e^{-A_t}$$
(2.7)

where  $U_{dir}(\lambda, \theta, y)$  is the local direct spectral irradiance (Wm<sup>-2</sup>nm<sup>-1</sup>) at a given wavelength, SZA, and altitude.  $A_i$  is the attenuating thickness of the atmosphere along the path of the direct solar beam,  $H(\lambda)$  is the extra-terrestrial spectral irradiance (equation 2.4), and  $\mu$  is the cosine response,  $\cos(\theta)$ , such that  $U_{dir}$  is the modelled direct UV that is incident on a horizontal plane,

where, 
$$A_i = \sum_j \frac{\tau_j}{\mu_j}$$

and where  $\tau_1, \tau_2, \tau_3$  are the resultant product of the wavelength dependent species optical depth and altitude dependent concentrations of air, ozone and aerosols respectively, and  $\mu_1, \mu_2, \mu_3$  are geometric cosine functions that describe each of the aforementioned species relative to a spherical earth.

And, 
$$\mu_{j} = \left(\frac{\mu^{2} + t_{j}}{1 + t_{j}}\right)^{1/2}$$

where  $t_1, t_2, t_3$  are constants that depend on the altitude distribution of the air, ozone, and aerosol species.

2.3.1.3.1 Standing surfaces contributions to the direct ultraviolet irradiance

Contributions to the direct UV were further modified depending on the measured albedo of standing surfaces located in proximity to the modelled site. In this way vertically incident contributions to the horizontal plane direct UV irradiance were increased depending on the location of nearby buildings and other playground structures:

$$U_{dir}(\lambda, \theta, y, A_s) = \mu H(\lambda) e^{-A_t} + A_{dir}$$
(2.8)

Here,  $U_{dir}$  is the modelled direct UV component of the global UV irradiance (direct vertical component), and  $A_{dir}$  is the vertical cosine component of direct UV due to the standing surface albedo of a nearby vertical surface which is dependent on  $A_s$ , the measured standing surface albedo (equation 2.9). The global direct component of the UV irradiance ( $U_{dir}$ ) was formulated in this instance as the cosine of the sun normal direct UV (Figure 2.6). The direct component of standing surface albedo,  $A_{dir}$ , takes the same value as the product of the standing surface albedo ( $A_s$ ) and the cosine of the sun normal UV,  $U_{sn}$ , giving an equation dependent on  $U_{dir}$ , the direct UV irradiance and the standing surface albedo:

$$A_{dir} = A_s U_{sn} \cos(SZA)$$

$$A_{dir} = A_s \frac{U_{dir}}{\cos(SZA)} \cos(SZA)$$

$$A_{dir} = A_s U_{dir}$$
(2.9)



Figure 2.6: Direct albedo UV contribution  $(A_{dir})$  to a horizontal plane (ground) surface due to the influence of a nearby standing vertical surface.

2.3.1.4 The diffuse UV irradiance modelled at the earth's surface

Contributions to the diffuse irradiance due to surface reflection (albedo) were implemented originally by application of Rundel's (1986) formulation of the Green, Cross and Smith (1980) and Schippnick and Green (1982) modifications to Green, Sawada and Shettle's (1974) algorithm for modelling the diffuse UV irradiance contribution at the earth's surface. The diffuse component of the total UV irradiance determined by Schippnick and Green (1982) that was implemented in Rundel's (1986) algorithm was found to be less than the diffuse irradiance calculated in the original Green, Sawada and Shettle (1974) algorithm. The original modification to the diffuse irradiance reduced the predicted global UV irradiance when compared with measurements of the horizontal plane UV irradiance made with the USQ's scanning spectroradiometer. This discrepancy was overcome by reverting to a modification of the older Green, Sawada and Shettle (1974) diffuse irradiance was included to account for variation in the diffuse horizontal plane UV irradiance with altitude and surface albedo (equation 2.10).

The modifications suggested by Green, Sawada and Shettle (1974, p.257) alter the parameters  $K_{ap}$  and  $q_2$  respectively, to account for variation in altitude. The modified

parameters are listed under equation 2.10, the semi-empirical parameterisation of the diffuse irradiance,  $U_{diff}(\lambda, \theta, y)$  (Wm<sup>-2</sup>nm<sup>-1</sup>) listed by Green, Sawada and Shettle (1974):

$$U_{diff}(\lambda, \theta, y) = H(\lambda)e^{-D_t(\theta, \lambda)}$$
(2.10)

where  $D_t(\theta, \lambda) = K_{oz}(e^{\kappa k_0 w_{oz} - (\lambda - \lambda_0)/(\delta speq \theta)})seq(\theta, q_1) + K_{ap}seq(\theta, q_2)$ 

$$speq\theta = \frac{1}{\left(1 - \frac{\sin p_{\theta}}{q}\right)^{1/p}}$$
$$seq_{i}(\theta, q_{i}) = \left(1 - \left(\frac{\sin^{2} \theta}{q_{i}}\right)\right)^{-1/2}$$

$$K_{ap} = 1.255$$
 at sea level,  $q_2 = 1.32$  at sea level,  $K_{oz} = 1.62$ ,  $\kappa = 2.40$ ,  $\delta = 7.48$ ,  
 $q_1 = 1.10$ ,  $q = 1.148$ , and  $p = 4$ 

and at altitude,  $K_{ap} = 0.872(1+0.179y+0.0487(\tau_p - 0.538)^2)$  $q_2 = 1.06(1+0.106y)$ 

where y is the altitude above sea level expressed in kilometers, and  $\tau_p$  is a wavelength and altitude dependent atmospheric parameter (product of the aerosol optical depth and aerosol species concentration). The modification of  $K_{ap}$  for variation in altitude was used for diffuse calculations of the UV irradiance incident in a playground environment.

Equation 2.10 was further modified by adding the surface albedo contribution formulated by Schippnick and Green (1982, p.96). The surface albedo contribution added to equation 2.11 and used by the final algorithm was originally intended for use with the omitted diffuse equation used by Rundel's (1986) algorithm and has been included here as an improvement to the Green, Sawada, and Shettle (1974) diffuse equation amended for altitude.

$$U_{diff}(\lambda,\theta,y,A_g) = H(\lambda)e^{-D_t(\theta,\lambda)} + A_{diff}$$
(2.11)

where, 
$$A_{diff} = r(\lambda)S_u$$

 $S_u$  is the upward irradiance resulting from the local ground surface albedo, and  $r(\lambda)$  is the air reflectivity function describing the spectral reflectivity of the above atmosphere such that  $A_{diff}$  is the total downward albedo contribution of the diffuse irradiance resulting from downward atmospheric backscatter.

Furthermore, 
$$S_u = \frac{A_g G_s E_d}{1 - r(\lambda) A_g}$$

where  $A_g$  is the site ground surface albedo measured 0.3 m from the playground surface,  $G_s$  is the global ultraviolet irradiance at sea level without an albedo contribution and,  $E_d$  is the normalised altitude dependence defined as the ratio of the albedo contribution at altitude to the albedo contribution at sea level.

The modified formula (equation 2.11) increases the diffuse component of the total UV irradiance over most of the day such that the greatest increases are calculated near solar noon. By utilising equation 2.11, it was found that total daily exposures were more closely matched to the erythemally effective exposure measured by the scanning spectroradiometer. The calculated component of the diffuse irradiance is typically less at SZAs near sunrise and sunset than the calculated diffuse irradiance found using Green, Sawada & Shettle's, (1974) unmodified formula (equation 2.10). However, because the erythemally effective exposure falls significantly at large SZA, equation 2.11 was selected as the preferred representation of the diffuse to direct UV, either the original Green, Sawada and Shettle (1974) or Rundel's (1986) algorithm are recommended. For Northern Hemisphere model applications, Rundel's (1986) algorithm may provide better estimates of the horizontal plane UV irradiance than the hybrid employed for this work.

2.3.1.4.1 Modification of the diffuse ultraviolet irradiance with sky view

The resultant diffuse representation of the UV irradiance was further modified to account for variation in site sky view (equation 2.12):

$$U_{diff}(\lambda, \theta, y, A_g, V) = V(H(\lambda)e^{-D_t(\theta, \lambda)} + A_{diff})$$
(2.12)

where V is the site sky view expressed as a value between 0 and 1. For sites located in the playground that had an unobstructed horizon (100% sky view) V=1. This modification to the diffuse UV irradiance incident on a horizontal plane was applied to a total of 822 playground sites in which the sky view was measured using the photographic technique detailed in Section 2.4.

#### 2.3.1.5 Erythemally effective ultraviolet irradiance

The total or global UV irradiance was determined by summing the direct and diffuse components formulated by the above semi-empirical equations 2.8 and 2.12. The result is equation 2.13:

$$G_t(\lambda, \theta, y, A_g, A_s, V) = U_{dir}(\lambda, \theta, y, A_s) + U_{diff}(\lambda, \theta, y, A_g, V)$$
(2.13)

The global UV irradiance was weighted to the erythemally effective action spectrum (CIE 1987) (equation 2.14):

$$E_t(\lambda, \theta, y, A_g, A_s, V) = G_t(\lambda, \theta, y, A_g, A_s, V)A(\lambda)$$
(2.14)

where  $E_t(\lambda, \theta, y, A_g, A_s, V)$  is the erythemal weighted UV irradiance expressed in Wm<sup>-2</sup> specified for a given wavelength, SZA, altitude, site ground surface albedo, site standing

surface albedo and site sky view,  $A(\lambda)$  is the erythemal action spectrum (CIE 1987), and  $G_t(\lambda, \theta, y, A_g, A_s, V)$  is the global UV irradiance (equation 2.13).

### 2.3.2 The ultraviolet exposure model

The horizontal plane spectral erythemally effective UV irradiance modelled over the 280 nm to 400 nm range was integrated to provide the erythemally effective UV irradiance in Wm<sup>-2</sup> at each 5 minute interval in the modelled exposure period.  $UV_{ery}$ , the erythemally effective UV exposure was determined by integrating the erythemally effective UV irradiance with respect to the modelled exposure period, *t*, using a trapezoidal integration technique to determine the erythemally effective UV exposure in Jm<sup>-2</sup>:

$$UV_{ery} = \int_{0}^{t} \int_{280nm}^{400nm} E_t(\lambda, \theta, y, A_g, A_s, V) d\lambda dt$$
(2.15)

Appendix D lists the principle component of the horizontal plane UV exposure model code which was developed using Microsoft Visual Basic (version 6).

# 2.4 Survey work and image processing

Albedo contributions from ground and vertical standing surfaces to the modelled direct and diffuse UV exposure were determined at each of the series of 822 playground survey sites. Additionally, the sky view weighted diffuse UV irradiance modelled over the playground environment was measured at each of the playground survey sites. Both the albedo and site sky view were determined by employing a photographic technique to survey the school playground being modelled.

# 2.4.1 Measurement of playground sky view

Measurements of the sky view were taken by application of an image processing

algorithm to classify sky regions from the local surface environment for a ground observer. A series of 16 images were taken at each of 822 sites located in the model school playground to form single composite site images. Images were taken with a Digital SLR camera (50 mm lens) at f11 (Canon EOS 350D). The composite sky view image developed from 16 images taken at each of the model school playground site locations covers  $32^{\circ}$  to  $90^{\circ}$  in zenith angle (ZA) and  $0^{\circ}$  to  $360^{\circ}$  in azimuth. The camera used to take each site image set was fitted to a tripod, levelled and positioned with respect to north. The height of the mounted camera objective lens was approximately 840 mm above the playground surface. This technique was preferred as hemispherical lenses were not available at the time the survey work was commenced resulting in parrallax error associated with imaging the sky at different orientations to complete composite site images, and not imaging regions of the sky above  $32^{\circ}$  in ZA.

The panoramic composite site image developed for this research was found to be the most convenient for plotting the position of the solar disk to determine patterns in playground shade density. The sky view less than  $32^{\circ}$  in ZA that was not photographed was predominately clear of surface obstructions for most playground sites. The area not represented in site composite images makes up 36% of the total sky view. Sites that were covered by surface objects above this range were noted upon survey of the study site and estimates of the unmeasured sky view less than  $32^{\circ}$  in ZA were included to determine the total sky view. For measurements of the sky view presented in this research, several shade structures were found to cover the sky above  $32^{\circ}$  in ZA and for these cases the percentage of cover less than  $32^{\circ}$  was estimated from UV transmission measurements of each playground shade cloth used by respective shade structures (Appendix E).

# 2.4.1.1 Sky view image area

To develop a composite site image of the sky view, photographs were taken orientated with respect to N, NE, E, SE, S, SW, W, NW and repeated with the camera tilted at approximately  $30^{\circ}$  to the horizon. The first north facing image in each composite sky

view image was orientated with respect to the facings of the playground boundary fence which had a north-south aspect. The location of true north was corrected for by comparison of photographed solar positions to the expected azimuth of the sun for the respective date and time at which the sun was photographed. The azimuth image limits for each of the N, NE, E, SE, S, SW, W, and NW facings were set at 243 pixels each. This was determined by comparing the overlap between respective image facings. Figure 2.7 highlights the overlap in three survey site sky views of the horizon facing SW, W and NW. The highlighted length between overlapping images shown in the example of Figure 2.7 is 103 pixels. Site image facings were photographed to a horizontal resolution of 346 pixels each which were cut down to a horizontal width of 243 pixels to produce the 360° panoramic site view of the horizon.



Figure 2.7: An example of image overlap in a panoramic composite image of the horizon. The overlap of 103 pixels is highlighted in green in the figure.

The ZA limits of the image field of view were determined by simple trigonometric measurements of a stand of known height set at various distances from the camera lens. Figure 2.8 shows how the upper and lower ZA limit of images were determined with the camera orientated parallel to the horizon. The height of the camera lens when placed on the field tripod was measured at 840 mm. This height was also marked on a vertical standing pole. The image in Figure 2.8(b) shows the position of this height marked on the standing pole with white tape. This position marks the horizon limit (ZA 90°). As the bottom limit of the image captured by the camera lens marks the bottom of the pole which is 840 mm from the central axis of the horizontally orientated camera, the top of the pole in the image was determined to be 840 mm from the camera's horizon axis. The

limit of elevation measured by the lens which was positioned 2000 mm from the stand and pole was determined to be  $22.8^{\circ}$  (67.2° in ZA).



Figure 2.8: Calculating the lower ZA limit for images taken with the mounted camera orientated in a horizontal plane. The green arrow in (b) marks the approximate height of the camera lens (840 mm) and the horizon limit.

The calculation of the lower ZA limit for images taken with the camera orientated at approximately  $30^{\circ}$  to the horizontal plane is illustrated in Figure 2.9. Here, images of the vertical stand and pole were taken with the camera orientated at its greatest tripod elevation (approximately  $30^{\circ}$ ) at increasingly further distances from the vertically standing pole until its top could just be imaged in the resulting photograph. This limit was determined to be  $9.5^{\circ}$  (ZA  $80.5^{\circ}$ ).



Figure 2.9: Calculating the lower ZA limit for images taken with the mounted camera orientated at its greatest elevation. The green arrow in (b) marks the top of the vertically standing pole with the camera 7 m away.

Measurements of the top of the stand and pole taken at a series of distances from 1 m to 12 m away were used to determine ZA limits in composite image facings whereby images taken at maximum tripod elevation were overlaid onto images taken with the camera orientated in the horizontal plane. Matching the visible horizon between images taken at maximum elevation and images taken with the camera orientated in the horizontal plane determined the vertical height of composite images to be 383 pixels. Figure 2.10 shows the calculated ZA limits measured from the top of the vertical stand and pole assembly. The extreme ZA limit of the camera when orientated to its maximum elevation and determined by extrapolating the limits in Figure 2.10 was estimated to be 32.3° in ZA for the top pixel in the 383 pixel height limit of the composite image area.



Figure 2.10: ZA limits of composite images measured with the camera in the horizontal plane and at maximum elevation. The limits listed in the figure were determined from trigonometric tangent ratios of the stand and pole height to camera distance.

The complete composite sky view template made from N, NE, E, SE, S, SW, W, NW images taken with the camera oriented parallel to the horizontal plane and same respective images with the camera orientated to its maximum elevation are shown in Figure 2.11(a). The approximate area of the sky photographed in the 16 images of each sky view composite image is given in Figure 2.11(b). Some overlapping of regions in the sky occur closer toward the zenith. Sky view was determined at each playground site

under clear sky conditions as the percentage of blue pixels available in the composite image sky view.



Figure 2.11: (a) Composite site sky view image divided into horizontal plane images (bottom series) and images taken at maximum elevation (top series); (b) fish eye lens view of the approximate regions of the sky imaged at each respective facing. The limits of the imaged area are from  $32.3^{\circ}$  to  $90^{\circ}$  in ZA.

# 2.4.1.2 Image processing

The image processed sky view was determined as the percentage of pixels classified as "sky" in each site composite image and included the sky view estimate for a ZA less than 32°. For the image processing algorithm, the difference between the blue and red (B-R) RGB colour level of each pixel in the unprocessed photograph of each composite playground site was used to determine if an image pixel would be classified as "sky" or surface obstruction. Pixels having a higher blue RGB level in unprocessed photographs produce a positive B-R difference. For an unprocessed image pixel to be classified as a "sky" pixel by the image processing algorithm used here, the RGB blue level needed to be significantly higher than the respective RGB red pixel level. For this research, the threshold B-R value was set at 0.8 for most site images, which classified the majority of sky pixels correctly. The threshold B-R value was varied from 0.8 to accomodate changes in image brightness between site image sets. Changes in the B-R threshold were made following comparison between the unprocessed and "sky" pixel processed site image whereby increases in the threshold level were made to increase the classification of "sky" pixels and decreases in the thresold value were made to increase the processed level of surface obstructions. Due to atmospheric scattering, particularly at low solar elevations, the red component of unprocessed RGB pixel levels made the classification of "sky" pixels difficult if a B-R threshold of 1 was used (pixels containing no RGB red colour level), therefore the maximum B-R threshold was set at 0.95. The image processing algorithm used to classify "sky" pixels from playground surface obstructions was written using MATLAB version 7 (The MathWorks, Inc. 2004) and is listed in Appendix D.5. Figure 2.12 compares a processed playground site composite image to the original playground site composite photograph. In the figure, pixels classified as "sky" were given the false colour blue, remaining pixels were classified as surface obstructions and coloured white. The site sky view was determined as:



sky view (%) = blue pixel count (%) + estimate above  $32^{\circ}$  in ZA (%) (2.16)

Figure 2.12: A composite playground site image (top) and the respective sky view processed image of the same site (bottom). The image of the solar disk was removed before processing.

It should be noted that the technique used to classify sky view does not distinguish between white cloud, the solar disk and surface objects in the unprocessed photograph and is similarly limited if blue surface objects are photographed. Blue surface structures and the solar disk were manually edited from the image before determining the site sky view percentage. Photographed playground site images were taken on days with no cloud cover where possible. For sites photographed that included sparse regions of cloud cover, the cloud was manually edited from the image before determining the site sky view percentage. An alternative method of removing heavy cloud cover was developed in which the number of colours in the composite image were reduced to 16 and areas of cloud were manually coloured blue. The sky view of the processed figure above, determined as the percentage of pixels classified as "sky" relative to the unobstructed sky view was calculated in this case to be 76% which was determined from the processed site image of 40% and the estimated unobstructed 36% sky view above the image limit of 32.8° in ZA.

### 2.4.2 Ground and standing surface albedo contributions

### 2.4.2.1 Ground surface albedo contribution to the diffuse ultraviolet

The albedo of playground ground surfaces was measured using a portable broadband UV meter. Surface contributions to the modelled diffuse atmospheric backscatter (equation 2.11) were included at each survey site depending on the measured albedo of the site ground surface. The albedo of each site ground surface was determined by examining each survey site image to determine the playground site surface and was measured as the ratio of reflected UV to incident UV along the ground surface normal. Standing surface albedo was also measured in this research with respect to the surface normal.

### 2.4.2.2 Standing surface albedo contribution to the direct ultraviolet

Composite site images were examined to determine the relative area of vertical standing surfaces orientated with respect to North, East, South and West. Composite images were divided into four segments to approximate regions of surface orientation. Each region was classified as either clear (no albedo contribution), or

was assigned the measured surface albedo of the various playground standing surfaces and an average standing surface albedo value was calculated for each playground site. Figure 2.13 shows how site standing albedo contributions were calculated for a site located near the school's library. Vertical standing structures, including both vegetation and buildings that were further than 2 m from the playground composite image site location were classified as "clear" for the calculation of standing site albedo. This was based on the assumption that surfaces further than 2 m from the site survey location made no significant direct albedo contribution to the surveyed site.



Figure 2.13: Standing surface albedo contribution estimate for a site located near the school's library. The total site standing surface albedo contribution of  $A_s = 0.0425$  was estimated from the average of 0 for a clear south facing region (image left), 0.11 for painted brickwork west facing (mid left image), 0 for the predominately clear north facing region (mid right) and 0.06 for east facing standing vegetation (image right).

# 2.5 Integrating playground ultraviolet exposure and body site exposure ratio

The weighted albedo and sky view influence on the playground site horizontal plane UV exposure was determined at each of the 822 survey sites measured in the school playground. Estimates of erythemally effective exposure to the surfaces of the face, neck, arm, hand and leg were calculated by weighting individual site horizontal plane exposures to the measured exposure ratios of each respective body part for each of the 1453 sites measured on the mannequin headform and body models. The modelled erythemally effective UV exposure to any body site was calculated as:

$$UV_{site} = ER(UV_{erv}) \tag{2.17}$$

where  $UV_{site}$  is the erythemally effective exposure at any given body site, *ER* is the body site exposure ratio and  $UV_{ery}$  the erythemally effective exposure calculated over the desired exposure period at a given playground site (equation 2.15).

#### 2.6 Measurements of exposure to the student population

Modelled estimates of UV<sub>site</sub> for each respective body part were compared with measurements of the erythemally effective exposure received by school children using the school playground. Ethics clearance was given by the USQ human ethics committee to measure a total of 147 personal UV exposures to school children in the period between February and June 2008 at the school playground. During the personal exposure measurement period, children were instructed in the proper handling of the polysulphone film badges and asked to apply them to the skin normally exposed to solar UV. This included application of the badge frames using medical tape onto regions classified as the face, neck, arm, hand or leg. Badges were attached at 8.30am (AEST) on each trial day under a covered area in the school playground and retrieved at 3.05pm (AEST) at the same location. Participating students were asked to complete a daily diary of the school playground locations they attended during each period and meal break of the day (Appendix F). Students were asked to complete their diaries for those areas where they spent the majority of each period or break time. Data on the degree of cloud cover, estimated in eighths (oktas) was measured by an observer on each trial day in the February through June period and the type of hat (voluntary at the study school) used by each participant was also recorded in the daily diary.

# 2.7 Summary of methods

The methodology presented details a technique to model the UV exposure received by the skin surface of students using a school environment. This involves modelling the horizontal plane UV exposure; modifying the horizontal plane exposure due to structural and other surface objects located in the playground influencing the sky view and albedo; and weighting the modelled playground exposure to the surface topography of the human form. Chapters 3, 4, and 5 detail exposure patterns measured to the mannequin headform and body models, highlight variations in the modelled playground UV exposure, and validate modelled values of personal body surface exposures with respect to measurements made over the student population.

The pattern in UV exposure received by specific body sites, being dependent upon solar zenith angle is critical toward understanding frequency of incidence and anatomical distribution of NMSC present in worldwide populations. This chapter presents the measured UV exposure distribution received by surfaces of a headform and full body mannequin with variation in SZA to a spatial resolution of between 5 mm and 20 mm to the face, neck, forearm, hand and leg. The effect of cloud cover and variation in measurement site sky view on patterns in UV surface exposures are also investigated.

# 3.1 Measured patterns in facial exposure under low cloud cover

Of the parts of the human body that are exposed to the sun regularly, the human face receives a significant proportion of ambient ultraviolet. This significance is increased considering that the face is not regularly protected by clothing as are other regions of the body that receive high exposures to solar UV. Correspondingly, non-melanoma skin cancers are highly prevalent on the face followed by other regions of the body that receive high solar UV exposures including the arms, hands and legs (Pearl and Scott 1986; Kricker et al. 1990; Raasch et al. 1998). Within the human facial region, the nose, ears and cheeks receive the highest proportions of ambient UV (Diffey et al. 1979; Urbach 1993). Of these facial regions, the nose often receives the greatest proportion of ambient UV over a wide SZA range (Kimlin et al. 1998; Downs et al. 2001; Downs and Parisi 2007). Figure 3.1 illustrates the variation in facial ER measured under low cloud cover conditions (less than 4 okta or eighths) with changing SZA. A clear spreading of the exposure relative to the horizontal plane toward the lower proximities and outer extremities of the face is evident in the figure for lower solar elevations (larger SZA). These findings are due to the increased proportion of direct UV incident to a greater area of the face at lower solar elevations (larger SZA). A greater distribution of diffuse UV at low solar elevations also contributes to a greater distribution of facial UV exposure.

Apart from the vertex and forehead, measurements of facial ER were consistently high on the bridge of the nose which receives a high proportion of incident UV at both small and large SZA as the nose protrudes from the face receiving less shading by other facial features. The angle of inclination of the nose bridge, being orientated at an angle of approximately  $45^{\circ}$  to the vertical, results in direct UV radiation incident at  $30^{\circ}-50^{\circ}$  and  $50^{\circ}-80^{\circ}$  in SZA having more influence on the exposure patterns observed in Figure 3.1 than UV radiation incident at  $0^{\circ}-30^{\circ}$ . The effect is high nose bridge ER observed in the  $30^{\circ}-50^{\circ}$  and  $50^{\circ}-80^{\circ}$  SZA ranges.



Figure 3.1: Facial ER measured with changing SZA for low cloud cover cases (a) SZA  $0^{\circ}$ - $30^{\circ}$ ; (b) SZA  $30^{\circ}$ - $50^{\circ}$ ; (c) SZA  $50^{\circ}$ - $80^{\circ}$ .

Measurements of ER to facial sites are listed in Tables 3.1(a), 3.1(b) and 3.1(c). The Tables are organised into contours, listing individual ER measurements made over the measurement period between 2005 and 2008. Data provided in the tables are the measured ER recorded over several measurement trials in each SZA range. Where more than one measurement has been recorded at a specific site, mean ER is listed. Individual table columns represent vertical facial contours and rows represent horizontal facial contours. The facial wireframe exposure model is made up of 18 vertical contours ranging from Cn1 (the middle of the face) to Cn18 (the ear) and 49 horizontal contours ranging from Cx1 (the top of the head) to Cx49 (the bottom of the neck). Table data is listed for each intersection of the wireframe model where a measurement has been made. Note that in each of the tables, the first horizontal contour starts at the second vertical

position and is labelled Cx1. The first contour, Cx1 can be clearly seen in Figure 3.1 at the top of the head as the first horizontal red contour. (Facial ER data recorded over each trial in the 2005 to 2008 measurement period is listed in Appendix G.1. The positions of vertical and horizontal contour labels for the face, neck, arm, hand and leg are shown on their respective three dimensional wireframe models in Appendix H).

#### 3.2 Measured pattern in facial exposure under high cloud cover

Figure 3.2 shows the variation in facial exposure for SZA ranges  $0^{\circ}-30^{\circ}$  and  $30^{\circ}-50^{\circ}$  for cloud cover conditions greater than 4 okta. Exposures represented in the figure were interpolated from measurements taken under high cloud cover cases (Appendix G.1) and do not include the  $50^{\circ}-80^{\circ}$  range due to low levels of ambient UV received under high cloud cover conditions and large SZA ranges. Comparison between Figure 3.1 and Figure 3.2 shows little obvious variation in facial exposure. Greater cloud cover conditions reduce the influence of the direct solar UV incident on the face, effectively increasing the incident diffuse UV that affects the facial exposure pattern. It is therefore reasonable to expect that a slightly broader exposure pattern affecting the outer extremities and lower proximities of the face would result as the influence of the direct UV which changes significantly with SZA would be negated. High ratios of UV exposure can be observed in Figure 3.2(b) toward the side of the face, neck and ear which are notably higher than the ER observed at the same sites in low cloud cover conditions (Figure 3.1). However, the observed increases in facial ER are not significantly greater than the ER uncertainty of  $\pm 18\%$  quoted for the  $30^{\circ}-50^{\circ}$  SZA range.

Table 3.1(a): Facial site exposure ratio expressed as a percentage for the SZA range  $0^{\circ}$ -30° and cloud cover less than 4 oktas.

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5        | Cn6 | Cn7 | Cn8      | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15     | Cn16 | Cn17 | Cn18 |
|------|-----|-----|-----|-----|------------|-----|-----|----------|-----|------|------|------|------|------|----------|------|------|------|
|      | 100 | 100 | 82  | 85  | 77         | 96  |     |          |     |      |      |      |      |      |          |      |      |      |
| Cx1  | 67  | 100 | 84  | 95  | 95         | 50  | 85  | 58       |     |      |      |      |      |      |          |      |      |      |
| Cx2  | 01  | 100 | 80  | 77  | 85         |     | 64  | 00       | 70  | 86   |      |      |      |      |          |      |      |      |
| Cx3  | 87  | 80  | 84  |     | 76         |     | 88  | 68       | 71  | 81   | 72   |      |      |      |          |      |      |      |
| Cx4  |     | 78  | 74  |     | 89         |     |     |          | 46  | 94   | 74   | 69   |      |      |          |      |      |      |
| Cx5  |     |     |     |     | 56         |     | 79  |          |     | 41   |      | 79   | 65   |      |          |      |      |      |
| Cx6  |     | 70  | 53  |     |            |     |     |          |     |      | 28   |      | 40   | 55   |          |      |      |      |
| Cx7  |     |     |     |     | 49         |     |     | 56       | 49  | 67   |      | 46   |      | 53   |          |      |      |      |
| Cx8  |     | 38  | 58  |     |            |     |     |          |     |      |      |      | 38   | 48   | 42       |      |      |      |
| Cx9  |     |     |     |     | 58         |     | 45  |          |     | 62   | 42   |      |      |      | 47       |      |      |      |
| Cx10 |     | 51  | 52  |     | 50         |     |     |          | 54  |      |      |      |      | 36   | 29       |      |      |      |
| Cx11 |     |     |     |     | 88         |     |     | 84       |     | 45   |      |      |      | 45   |          | 36   |      |      |
| Cx12 |     | 30  | 45  |     |            |     | 49  |          |     | ~~   | 29   | 33   | 29   | 27   | 29       | 26   |      |      |
| Cx13 |     |     | ~ 1 |     | 50         |     |     |          | 54  | 69   |      | ~~   |      |      | 46       | 40   |      |      |
| Cx14 |     | 56  | 34  |     | <b>F</b> 4 |     | 40  |          | 69  | 60   |      | 29   |      | 05   | 22       | 17   |      |      |
| CX15 |     | 00  | 07  |     | 51         |     | 42  |          |     | 43   |      | 48   | 05   | 25   | 40       | 22   |      |      |
| Cx10 |     | 32  | 27  |     | 4          |     |     |          | 4   | 7    |      | 23   | 35   | 22   | 13       | 23   |      |      |
| Cv18 |     | 17  | 6   |     | 4<br>0     |     | 10  |          |     | '    |      | 14   |      | 22   | 29<br>17 | 10   |      |      |
| Cy10 |     | 17  | 0   |     | 8          |     | 10  |          |     | 16   | a    | ٥    | 15   | 26   | 17       | 22   |      |      |
| Cx20 | 50  | 23  | 11  |     | 7          |     |     |          |     | 10   | 3    | 3    | 15   | 20   | 10       | 10   |      |      |
| Cx21 | 55  | 20  |     |     | 7          |     |     | 15       |     | 21   | 8    | 8    |      | 25   | 14       | 15   | 65   |      |
| Cx22 | 70  | 55  | 42  |     | 17         |     |     | 10       |     |      | 0    | 0    |      | 20   | 18       | 31   | 75   |      |
| Cx23 | 59  | 40  | 32  |     | ••         | 31  |     | 35       |     | 31   | 40   | 21   | 29   | 25   | 21       | 0.   |      |      |
| Cx24 |     | 55  | 34  |     | 54         | -   |     | 34       |     | 40   |      |      |      | 17   |          | 19   | 22   | 31   |
| Cx25 | 27  | 19  | 47  |     | 44         |     |     | 48       |     | -    | 47   | 34   | 22   |      |          | -    |      | -    |
| Cx26 |     |     |     | 40  |            |     |     |          |     | 29   |      |      |      | 26   | 20       | 7    | 13   | 25   |
| Cx27 |     | 5   | 8   |     | 30         |     |     | 35       |     |      | 29   | 18   | 24   | 14   | 28       |      |      | 9    |
| Cx28 |     |     |     |     | 25         |     |     |          |     | 24   |      |      |      | 16   | 12       | 20   | 26   |      |
| Cx29 |     | 12  | 19  |     |            |     |     | 27       |     |      | 17   | 9    | 14   | 15   |          |      | 8    |      |
| Cx30 | 28  |     | 37  |     | 38         |     | 36  |          | 19  | 15   | 14   | 12   | 17   | 15   |          | 20   |      |      |
| Cx31 |     | 40  | 46  |     |            |     |     | 26       |     |      | 10   | 9    |      | 15   |          | 17   |      |      |
| Cx32 |     |     |     |     | 33         |     |     |          |     | 20   |      | 13   |      | 8    |          | 10   |      |      |
| Cx33 |     | 5   | 8   |     | ~~         |     |     | 21       |     | 4.0  | 14   | 12   | 13   | 6    |          |      |      |      |
| CX34 |     | 05  | 00  |     | 26         |     |     |          |     | 19   | 40   | 16   | 45   |      |          |      |      |      |
| CX35 |     | 25  | 28  |     | 16         | 10  |     | 14       |     | 04   | 18   | 15   | 15   |      |          |      |      |      |
| Cx30 |     | 7   | 7   |     | 10         | 12  |     | 26       | 16  | 21   | 10   | 14   |      |      |          |      |      |      |
| Cx38 |     | 1   | 1   |     | 10         |     | 27  | 20<br>10 | 10  | 10   | 19   | 14   |      |      |          |      |      |      |
| Cv30 |     | 33  | 20  |     | 19         |     | 21  | 19       |     | 10   | 12   | 10   |      |      |          |      |      |      |
| Cx40 |     | 55  | 23  |     | 38         |     |     | 10       |     | 15   | 7    | 15   |      |      |          |      |      |      |
| Cx41 |     | 21  | 16  |     | 50         |     |     | 15       | 11  | 5    | '    | 19   |      |      |          |      |      |      |
| Cx42 |     |     | 10  |     | 6          | 10  | 8   | 7        | 3   | 11   |      | 10   |      |      |          |      |      |      |
| Cx43 |     | 4   | 5   |     | U          | 4   | 3   | 8        | 0   | ••   |      | 25   |      |      |          |      |      |      |
| Cx44 | 1   | 1   | 1   |     | 3          |     | 5   | -        |     | 23   |      |      |      |      |          |      |      |      |
| Cx45 |     |     | 3   | 2   | •          |     | -   |          |     |      |      | 28   |      |      |          |      |      |      |
| Cx46 |     |     |     |     | 7          |     | 9   | 15       |     | 18   |      |      |      |      |          |      |      |      |
| Cx47 |     |     | 7   |     |            |     |     |          |     |      |      | 29   |      |      |          |      |      |      |
| Cx48 |     |     |     |     | 13         |     | 14  |          |     | 17   |      |      |      |      |          |      |      |      |
| Cx49 |     |     | 9   |     | 11         |     |     | 18       |     |      |      | 29   |      |      |          |      |      |      |

|              | Cn1 | Cn2 | Cn3      | Cn4 | Cn5 | Cn6 | Cn7      | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|--------------|-----|-----|----------|-----|-----|-----|----------|-----|-----|------|------|------|------|------|------|------|------|------|
| Cx1          | 100 |     | 69<br>97 |     |     |     |          | 70  |     |      |      |      |      |      |      |      |      |      |
| Cx2<br>Cx3   |     |     | 69       |     |     |     | 100      | 63  |     |      |      |      |      |      |      |      |      |      |
| Cx4<br>Cx5   | 71  | 66  | 61       | 70  |     | 70  | 100      | 64  |     | 75   | 66   | 75   | 57   |      |      |      |      |      |
| Cx7<br>Cx8   | 65  |     | 45       |     |     |     | 90<br>79 | 55  |     |      |      |      | 56   | 88   |      |      |      |      |
| Cx9          | 62  |     | -        |     |     |     |          |     |     |      |      |      |      | 70   | 46   |      |      |      |
| Cx10<br>Cx11 | 66  |     |          |     |     |     | 58       | 60  |     |      |      |      | 10   | 53   | 46   |      |      |      |
| Cx12<br>Cx13 | 69  |     |          |     |     |     | //       |     |     |      |      |      | 32   | 51   |      |      |      |      |
| Cx14         |     | 16  |          | 48  |     | 54  | 82       | 57  |     | 59   |      | 47   | 33   | 29   | 33   | 32   |      |      |
| Cx15<br>Cx16 | 66  |     |          |     |     |     | 12       | 49  |     |      |      |      | 37   | 40   | 32   |      |      |      |
| Cx17<br>Cx18 | 35  |     |          |     |     |     | 13       | 9   |     |      |      |      | -    | 42   | -    |      |      |      |
| Cx19<br>Cx20 | 38  |     |          |     |     |     | 21       | 16  |     |      |      |      | 26   | 48   |      |      |      |      |
| Cx21         | 82  |     | 27       |     |     |     | 21       | 10  |     |      |      |      |      | 42   |      |      |      |      |
| Cx22         | 98  |     | 46       |     |     |     | 33       | 37  |     |      |      |      | 44   | 60   |      |      |      |      |
| Cx24         | 00  | 47  | 40       | 53  |     | 57  | 83       | 58  |     | 58   |      | 52   | 43   | 36   | 28   |      | 20   | 24   |
| Cx25         | 56  |     | 36       |     |     |     | 51       | 49  |     |      |      |      | 38   | 47   | 17   |      |      |      |
| Cx27         | 9   |     |          |     |     |     | 51       |     |     |      |      |      |      | 32   | 31   |      |      |      |
| Cx28         | ~ 1 |     | 16       |     |     |     | 39       | 34  |     |      |      |      | ~~   | ~~   |      |      |      |      |
| Cx29<br>Cx30 | 31  |     |          |     |     |     | 54       |     |     |      |      |      | 22   | 32   | 30   |      |      |      |
| Cx31         | 67  | 44  | 35       | 45  |     | 39  | 01       | 30  |     | 19   |      | 18   | 20   | 25   | 00   | 20   |      |      |
| Cx32         | 10  |     | 0        |     |     |     | 40       |     |     |      |      |      | 21   | e    |      |      |      |      |
| Cx34         | 12  |     | 0        |     |     |     | 31       | 24  |     |      |      |      | 15   | 0    |      |      |      |      |
| Cx35         | 50  |     | 37       |     |     |     | 00       |     |     |      |      |      | 4.0  |      |      |      |      |      |
| Cx36         | 11  |     |          |     |     |     | 20       | 19  |     |      |      |      | 18   |      |      |      |      |      |
| Cx38         |     |     | 18       |     |     |     | 42       |     |     |      |      |      |      |      |      |      |      |      |
| Cx39         | 54  |     | 25       |     |     |     | 20       | 21  |     |      |      |      |      |      |      |      |      |      |
| Cx41         | 34  | 16  | 30       | 16  |     | 41  | 30       | 14  |     |      |      |      |      |      |      |      |      |      |
| Cx42         |     |     | 17       |     |     |     |          | 8   |     |      |      |      |      |      |      |      |      |      |
| Cx43<br>Cx44 | 8   |     |          |     |     |     | 13       | 11  |     |      |      |      |      |      |      |      |      |      |
| Cx45         |     |     |          |     |     |     | 10       | ••  |     |      |      |      |      |      |      |      |      |      |
| Cx46<br>Cx47 | 8   |     |          |     |     |     | 24       | 21  |     |      |      |      |      |      |      |      |      |      |
| Cx48<br>Cx49 | 12  |     |          |     |     |     | 25       | 26  |     |      |      |      |      |      |      |      |      |      |

Table 3.1(b): Facial site exposure ratio expressed as a percentage for the SZA range  $30^{\circ}-50^{\circ}$  and cloud cover less than 4 oktas.

Table 3.1(c): Facial site exposure ratio expressed as a percentage for the SZA range  $50^{\circ}$ -80° and cloud cover less than 4 oktas.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn16 Cn17 Cn18

|              | 100 | 100        | 04 | 0.2       | 100 |    |     |           |     |    |    |    |    |          |    |    |    |    |
|--------------|-----|------------|----|-----------|-----|----|-----|-----------|-----|----|----|----|----|----------|----|----|----|----|
| Cx1          | 100 | 100        | 01 | os<br>100 | 100 |    | 73  | 74        |     |    |    |    |    |          |    |    |    |    |
| Cx2          | 100 | 96         |    |           |     |    |     | • •       | 100 |    |    |    |    |          |    |    |    |    |
| Cx3          | 100 | <b>Q</b> / |    |           |     |    | 100 |           | 79  |    | 63 | 77 |    |          |    |    |    |    |
| Cx5          | 100 | 34         |    |           |     |    | 84  |           | 92  |    | 05 | 88 | 97 |          |    |    |    |    |
| Cx6<br>Cx7   | 78  | 73         |    |           |     |    | 80  |           | 94  |    |    |    | 72 | 83<br>72 |    |    |    |    |
| Cx8          | 94  | 73         |    |           |     |    |     |           |     |    | 66 |    | 78 | 63       |    |    |    |    |
| Cx9<br>Cx10  | 88  | 78         |    |           |     |    | 90  | 39        | 86  |    |    |    | 62 | 100      | 66 |    |    |    |
| Cx11         | 00  | <u>c</u> e |    |           |     |    | 75  | <b>FF</b> | 79  |    | 74 |    |    | 61       |    | 68 |    |    |
| Cx12<br>Cx13 | 00  | 65         |    |           |     |    | 83  | 55        | 66  |    | 60 |    | 56 | 01       |    | 61 |    |    |
| Cx14         | 92  | 77         |    |           |     |    | 82  | 54        | 77  |    |    |    | 52 | 53       | 53 | 54 |    |    |
| Cx16         | 56  | 58         |    |           |     |    | 02  | 18        |     |    |    | 53 | 45 | 34       |    | 57 |    |    |
| Cx17         |     |            |    |           |     |    | 11  |           | 28  |    |    | 00 |    | 43       |    | 26 |    |    |
| Cx18         | 41  | 29         |    |           |     |    |     |           |     |    |    |    | 45 | 94       | 31 |    |    |    |
| Cx19         |     |            |    |           |     |    | 34  |           | 39  | 18 |    |    | 54 |          |    | 36 |    |    |
| Cx20         | 67  | 61         |    |           |     |    |     |           |     |    |    |    | 11 | 43       |    |    |    |    |
| Cx21         |     |            |    |           |     |    | 42  | 25        | 39  | ~~ |    |    |    |          | 23 | 52 |    |    |
| Cx22         | 100 | 53         | 30 |           |     |    |     |           |     | 38 |    | 58 |    | 77       | 40 |    |    | ~- |
| CX23         | ~~  | 75         |    |           |     |    | 59  | ~~        | ~ 1 |    |    | 00 | 50 | 49       | 49 | ~  |    | 65 |
| CX24         | 33  | 75         | 40 |           |     |    | 70  | 83        | 64  |    | 00 | 83 | 52 | 44       |    | 31 | 40 | 47 |
| Cx25         | 25  | 26         | 40 |           |     |    | 79  | 51        | 72  |    | 82 |    |    | 17       |    |    | 10 | 47 |
| $C_{\chi}27$ | 20  | 20         |    |           |     |    | 56  | 37        | 13  |    |    |    | 51 | 47       | 10 |    |    | 37 |
| Cx28         | 21  | 15         |    |           |     |    | 50  | 57        |     |    | 47 | 23 | 51 | 51       | 43 |    |    | 57 |
| Cx29         | 21  | 10         |    |           |     |    | 52  |           | 51  |    | 77 | 20 | 22 | 01       | 34 |    | 25 |    |
| Cx30         | 65  | 63         |    |           |     |    |     | 40        | 0.  |    | 33 |    |    | 30       | 0. |    | _0 |    |
| Cx31         |     |            |    |           |     |    | 59  |           |     |    |    |    | 28 | 27       |    | 37 |    |    |
| Cx32         | 39  | 39         |    |           |     |    |     | 56        | 44  |    | 33 | 33 | -  | 34       |    | -  |    |    |
| Cx33         |     |            |    |           |     |    | 45  |           |     |    |    |    | 24 | 8        |    |    |    |    |
| Cx34         | 64  | 72         |    |           |     |    |     |           |     |    | 22 |    |    |          |    |    |    |    |
| Cx35         |     |            |    |           |     |    | 39  | 39        | 30  |    |    | 38 | 41 |          |    |    |    |    |
| Cx36         | 22  |            |    |           |     |    |     |           |     |    | 45 |    |    |          |    |    |    |    |
| Cx37         |     | 15         |    |           |     |    | 41  | 37        |     |    |    |    |    |          |    |    |    |    |
| Cx38         | 36  |            |    |           |     |    |     |           | 35  |    | 36 | 29 |    |          |    |    |    |    |
| Cx39         |     | 66         |    |           |     | 45 | 63  |           |     |    |    | 23 |    |          |    |    |    |    |
| Cx40         | 62  |            |    |           |     |    |     | 24        | ~~  |    | 18 | 44 |    |          |    |    |    |    |
| Cx41         | ~~  | 33         |    |           |     | 43 | 25  |           | 22  |    |    | 38 |    |          |    |    |    |    |
| CX42         | 29  | 40         |    |           |     |    | 0   |           | 00  | 40 |    | 20 |    |          |    |    |    |    |
| Cx43         | 7   | 10         |    |           |     |    | 0   |           | 20  | 43 |    | 30 |    |          |    |    |    |    |
| $C_{X44}$    | 1   | 1          |    |           |     |    | 14  |           | 40  | 25 |    | 27 |    |          |    |    |    |    |
| Cy46         | I   | 1          |    |           |     |    | 14  |           | 40  | 35 |    | 21 |    |          |    |    |    |    |
| Cx47         | 13  |            |    |           |     |    | 15  |           |     | 46 |    | 58 |    |          |    |    |    |    |
| Cx48         |     |            |    |           |     |    |     |           | 52  |    |    | 00 |    |          |    |    |    |    |
| Cx49         | 28  | 16         |    |           |     |    | 35  |           |     | 33 |    | 43 |    |          |    |    |    |    |

Previous research has determined UV exposures measured to anatomical sites to be independent of cloud cover (Diffey et al. 1977). Table 3.2 compares measurements of facial site ER made under high and low cloud cover conditions in the  $0^{\circ}$ - $30^{\circ}$  and  $30^{\circ}$ - $50^{\circ}$  SZA range. A total of 66 identical facial sites were measured under both high and low cloud cover conditions in the 2005 to 2008 measurement period. Variations, measured as the difference between high cloud cover ER cases and low cloud cover ER cases observed at identical facial sites are given in the table. The mean variation, measured as the difference between high and low cloud cover ER sites was -3% and -2% for the SZA ranges  $0^{\circ}$ - $30^{\circ}$  and  $30^{\circ}$ - $50^{\circ}$  respectively, indicating the ER was greater under low cloud cover conditions. The difference is expressed relative to the horizontal plane ambient UV.



Figure 3.2: Facial ER with changing SZA for high cloud cover cases (a) SZA  $0^{\circ}$ - $30^{\circ}$ ; (b) SZA  $30^{\circ}$ - $50^{\circ}$ .

Table 3.2: Comparison of facial site ER data made under high and low cloud coverconditions. ER is expressed as a percentage of the ambient horizontal plane exposure.SZA 0°-30°SZA 30°-50°

| Site       | Low        | High Cloud | High cloud ER | Site        | Low        | High          | High cloud ER |
|------------|------------|------------|---------------|-------------|------------|---------------|---------------|
|            | Cloud ER   | ER         | % - Low cloud |             | Cloud ER   | Cloud ER      | % – Low cloud |
|            | (< 4 okta) | (> 4 okta) | ER %          |             | (< 4 okta) | (> 4 okta)    | ER %          |
| Cn1 / Cx0  | 100%       | 100%       | 0%            | Cn1 / Cx19  | 38%        | 34%           | -4%           |
| Cn1 / Cx30 | 28%        | 29%        | +1%           | Cn1 / Cx25  | 56%        | 51%           | -4%           |
| Cn1 / Cx44 | 1%         | 2%         | +1%           | Cn1 / Cx31  | 67%        | 48%           | -19%          |
| Cn5 / Cx0  | 77%        | 100%       | +23%          | Cn1 / Cx41  | 34%        | 54%           | +20%          |
| Cn5 / Cx2  | 85%        | 98%        | +13%          | Cn1 / Cx41  | 34%        | 52%           | +18%          |
| Cn5 / Cx4  | 100%       | 78%        | -22%          | Cn1 / Cx46  | 8%         | 7%            | -1%           |
| Cn5 / Cx4  | 78%        | 78%        | 0%            | Cn2 / Cx24  | 47%        | 73%           | +26%          |
| Cn5 / Cx10 | 50%        | 54%        | +4%           | Cn7 / Cx4   | 100%       | 100%          | 0%            |
| Cn5 / Cx18 | 8%         | 5%         | -3%           | Cn7 / Cx6   | 90%        | 48%           | -42%          |
| Cn5 / Cx20 | 7%         | 5%         | -2%           | Cn7 / Cx34  | 31%        | 33%           | +2%           |
| Cn5 / Cx24 | 55%        | 42%        | -13%          | Cn10 / Cx14 | 59%        | 75%           | +16%          |
| Cn5 / Cx24 | 52%        | 42%        | -10%          | Cn10 / Cx24 | 58%        | 44%           | -14%          |
| Cn5 / Cx28 | 25%        | 24%        | -1%           | Cn12 / Cx5  | 75%        | 63%           | -12%          |
| Cn5 / Cx30 | 45%        | 36%        | -9%           | Cn12 / Cx14 | 47%        | 34%           | -13%          |
| Cn5 / Cx30 | 36%        | 36%        | 0%            | Cn12 / Cx31 | 18%        | 18%           | 0%            |
| Cn5 / Cx30 | 32%        | 36%        | +4%           | Cn14 / Cx7  | 88%        | 51%           | -37%          |
| Cn5 / Cx32 | 33%        | 23%        | -10%          | Cn14 / Cx9  | 70%        | 35%           | -35%          |
| Cn5/ Cx34  | 25%        | 25%        | 0%            | Cn14 / Cx14 | 29%        | 27%           | -2%           |
| Cn5 / Cx34 | 27%        | 25%        | -2%           | Cn14 / Cx24 | 36%        | 34%           | -2%           |
| Cn5 / Cx36 | 16%        | 10%        | -6%           | Cn14 / Cx29 | 32%        | 25%           | -7%           |
| Cn5 / Cx38 | 23%        | 25%        | +2%           | Cn16 / Cx14 | 32%        | 31%           | -1%           |
| Cn5 / Cx38 | 15%        | 25%        | +10%          |             | Me         | an difference | -2%           |
| Cn5 / Cx42 | 6%         | 9%         | +3%           |             |            |               |               |
| Cn5 / Cx46 | 7%         | 8%         | +1%           |             |            |               |               |
| Cn5 / Cx48 | 13%        | 11%        | -2%           |             |            |               |               |
| Cn11 / Cx3 | 89%        | 66%        | -23%          |             |            |               |               |
| Cn11 / Cx3 | 55%        | 66%        | -11%          |             |            |               |               |
| Cn11 / Cx9 | 42%        | 34%        | -8%           |             |            |               |               |

Cn11 / Cx19

9%

7%

-2%
| Cn11 / Cx21 | 8%  | 10% | +2%  |
|-------------|-----|-----|------|
| Cn11 / Cx23 | 40% | 34% | -6%  |
| Cn11 / Cx25 | 47% | 45% | -2%  |
| Cn11/ Cx27  | 29% | 24% | -5%  |
| Cn11 / Cx29 | 17% | 13% | -4%  |
| Cn11 / Cx31 | 10% | 12% | +2%  |
| Cn11 / Cx33 | 14% | 13% | -1%  |
| Cn11 / Cx35 | 18% | 12% | -6%  |
| Cn11 / Cx37 | 19% | 16% | -3%  |
| Cn11 / Cx39 | 12% | 12% | 0%   |
| Cn17 / Cx21 | 69% | 58% | -11% |
| Cn17 / Cx21 | 60% | 58% | -2%  |
| Cn17 / Cx24 | 22% | 18% | -4%  |
| Cn17 / Cx26 | 12% | 11% | -1%  |
| Cn17 / Cx26 | 13% | 11% | -2%  |
| Cn17 / Cx28 | 26% | 17% | -9%  |
|             |     |     |      |

Mean difference -3%

Large ER site differences were observed in the  $30^{\circ}-50^{\circ}$  SZA range at facial sites (Cn7, Cx6) and (Cn14, Cx7). The ER at these two facial sites were higher under low cloud cover conditions than the ER recorded under high cloud cover conditions at their respective (Cn7, Cx6) and (Cn14, Cx7) sites showing an ER difference between high and low cloud cover of -42% and -37% expressed relative to ambient horizontal plane exposure. If the effect of cloud cover were to broaden the pattern in exposure observed across the face the ER would be expected to be higher under high cloud cover conditions, especially at sites located further from the centre of the face. Given the two sites (Cn7, Cx6) and (Cn14, Cx7) located on the forehead at the middle to further extremities of the face have a lower ER measured under high cloud cover conditions and given the mean variation in high to low cloud cover ER (Table 3.2) shows that the ER was higher under low cloud cover conditions, it can be reasoned that the influence of cloud cover does not broaden the facial exposure pattern.

3.3 Measured pattern in facial exposure with changing sky view

A total of five trials were run to determine the influence of sky view on facial ER. Measurements of exposure were recorded to the face during each of these trials at the facial sites illustrated in Figure 3.3 for playground locations that had sky views varying from 19% to 48%. The measured ER results are listed in Table 3.3 and plotted in Figure 3.4.



Figure 3.3: Location of dosimeters for examining the influence of sky view on facial ER.

| Facial       | site         | Location A | Location B Locat |  | Location | n C | Location | Location E |       |     |  |
|--------------|--------------|------------|------------------|--|----------|-----|----------|------------|-------|-----|--|
| location     |              | (48%       | (19% sky         |  | (48% sky |     | (30%     | sky        | (35%  | sky |  |
|              | sky view)    |            | view)            |  | view)    |     | view)    |            | view) |     |  |
| Upper face   |              |            |                  |  |          |     |          |            |       |     |  |
| Cn1, Cx      | Cn1, Cx10 66 |            | 52               |  | 40       |     | 69       |            | 75    |     |  |
| Cn9, Cx      | 8            | 61         | 63               |  | 63       |     | 71       |            | 66    |     |  |
| Cn14, C      | x4           | 49         | 47               |  | 54       |     | 65       |            | 55    |     |  |
| Middle f     | face         |            |                  |  |          |     |          |            |       |     |  |
| Cn1, Cx2     | 24           | 91         | 65               |  | 75       |     | 78       |            | 64    |     |  |
| Cn9, Cx      | 24           | 72         | 78               |  | 60       |     | 62       |            | 58    |     |  |
| Cn14, C      | x20          | 47         | 50               |  | 40       |     | 43       |            | 52    |     |  |
| Lower fa     | ace          |            |                  |  |          |     |          |            |       |     |  |
| Cn1, Cx4     | Cx42 29      |            | 34               |  | 36       |     | 30       |            | 35    |     |  |
| Cn9, Cx40 25 |              | 25         | 39               |  | 26       |     | 20       |            | 28    |     |  |
| Cn12, C      | x45          | 23         | 28               |  | 25       |     | 23       |            | 23    |     |  |

Table 3.3: ER of facial site dosimeters measured in sites of varying sky view.



Figure 3.4: Variation in measured facial site ER with sky view (red data points were measured across the forehead, green data points were measured across the nose, eye and temple, and blue data points were measured across the lower proximities of the face (Figure 3.3). Square points in this figure represent measurements made through the centre of the face, crosses were measured through the outer side of the face and triangular points represent measurements made between the centre and outer proximities of the facial region extending through the eye of the mannequin headform. Error bars show the maximum ER uncertainty of  $\pm 32\%$  for the SZA range 50°-80°. Data points were separated for clarity in the figure but represent sky view exposures of 19%, 30%, 35% and 48%.

As observed from the data presented in Figure 3.4, no obvious trend in facial site ER could be found for variations with sky view. It is likely that if variations in facial ER are present they are less than the stated uncertainty in dosimeters used for this research. A handful of facial site locations did however show a statistically significant increase in ER (P<0.05). These sites included the side of the forehead, the nose, the eye and the jaw. Of the six sites that showed a significant increase in ER, five where determined at locations in which the sky view was 30% or 19% and one was measured in a location

that had a sky view of 48%. A reasonable explanation for these significant results at lower sky view locations is the level of ambient UV recorded over the 7 hour period in which the ER was measured, in this instance out of direct sunlight, whereby increases in the ER are possible when the ambient UV is lower due to the increased error introduced in measuring exposure relative to lower ambient UV incident on a horizontal plane. Increased uncertainty due to measurement of ER in low sky view environments is similar to increased error discussed in the pervious chapter for measurements taken over high SZA ranges during which the measurements of ambient horizontal plane UV were also low.

## 3.4 Polynomial representation of facial exposure

Figure 3.5 is a polynomial representation of the facial ER with variation in horizontal position measured from the centre of the face for each of the horizontal contours, Cx1 through Cx49. Horizontal contour ER plotted with respect to the facial position measured from the centre of the face is given for SZA ranges of  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$  for low and high cloud cover cases. The polynomial fits to the data presented in the figure were derived from the low cloud cover facial ER data listed in Tables 3.1(a), 3.1(b) and 3.1(c) where the data presented in these tables represents the mean ER measured for each specific site for each SZA range. The polynomials plotted as solid lines in Figure 3.5 for each horizontal facial contour Cx1 through Cx49 are of the general form:

$$ER(x_i) = \beta_n x_i^n + \beta_{n-1} x_i^{n-1} \dots \beta_o x_i^o$$
(3.1)

where  $ER(x_i)$  is the exposure ratio for the horizontal facial contour,  $\beta_n$  is a constant polynomial parameter for a polynomial of degree *n*, where in this case *n* is 18 for each contour and  $x_i$  is the distance from the centre of the face. All polynomials represented in the figure were chosen to be 18<sup>th</sup> order polynomials to provide the best fits through measured ER data. A least squares polynomial regression fitting technique was chosen as the best fit for the measured data due to the high degree of variability in the data over closely spaced horizontal facial distances between measurement points. The polynomial parameters,  $\beta_n$  are listed for each horizontal facial contour Cx1, through Cx49 in each SZA range in Appendix I.

As is evident in Figures 3.1 and 3.2, Figure 3.5 clearly identifies that higher UV exposures relative to the horizontal plane are received by contours located in the upper regions of the face with the highest exposures occurring at the vertex. Horizontal contours Cx1 through Cx16 located above the eyebrows show a decreasing trend in ER moving toward the outer facial proximities (increasing distance from the centre of the face). Contours Cx17 through Cx22 show the effect of the eye socket reducing ER between 25 mm and 50 mm measured from the centre of the face. Contours Cx23 through Cx29 highlight increases in exposure over the same 25 mm to 50 mm range. The increase in ER over this range is likely to be due to the protruding influence of the upper cheek. Horizontal contours show decreasing exposure moving toward the outer facial proximities from underneath the nose to the lower lip (Cx30 through to Cx35) and then show an increasing trend in exposure moving toward the outer facial proximities for contours located underneath the bottom lip. The influence of the chin (Cx38 through to Cx41), results in higher exposure at the centre of the face. The ER is shown to clearly increase moving toward the side of the neck in contours Cx42 through to Cx49 showing the strong influence of the chin and jaw shading sites located directly underneath the neck. The figure, being produced by measurements made on a mannequin headform shows clearly the advantage of using polysulphone dosimeter measurements as the effects of shading and surface orientation at individually located sites are taken into account. All measurements show that greater ERs are received with increasing SZA. Cloud affected data, provided in the figure as square points do not show consistent variations from the plotted facial exposure polynomials. The lower high cloud cover affected ER compared to the low cloud cover ER measured in the 30°-50° SZA range discussed previously can be seen in the figure at approximately 30 mm (Cx6) and 70 mm (Cx7).



Figure 3.5: Horizontal facial contour ER for high (square point) and low (circular point) cloud cover cases in the SZA ranges  $0^{\circ}-30^{\circ}$  (black),  $30^{\circ}-50^{\circ}$  (green) and  $50^{\circ}-80^{\circ}$  (red).

# 3.5 Patterns in body surface exposure

Measurements of exposure in the SZA ranges 0°-30°, 30°-50° and 50°-80° taken over the four year study period are given for the back of the neck, arm, hand and leg in Figures 3.6, 3.7, 3.8 and 3.10 respectively. Where possible, data presented in the figures were measured under low cloud cover conditions (less than 4 okta). The three dimensional wireframe models represented in each figure are orientated to highlight surfaces that received the maximum ER. Each of the body parts represented in the figures show clearly the variation in UV exposure resulting from changing SZA. ER data measured under low and high cloud cover conditions for each of the neck, arm, hand and leg models are listed in Appendix G. The mean site ER data used to produce each of the body ER figures are listed in tabular form under each of the respective body part sub headings.

## 3.5.1 Surface exposure received by the back of the neck



Figure 3.6: Variation in ER measured to the back of the neck (a) SZA  $0^{\circ}-30^{\circ}$ , < 4 oktas; (b) SZA  $30^{\circ}-50^{\circ}$ , > 4 oktas; (c) SZA  $50^{\circ}-80^{\circ}$ , < 4 oktas.

Table 3.4(a): Site exposure ratio measured to the back of the neck and expressed as a percentage for the SZA range  $0^{\circ}$ -30° and cloud cover less than 4 oktas.

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1  | 6   |     | 6   | 17  | 7   | 16  | 8   |     |     |
| Cx2  | 10  |     | 9   |     | 12  |     | 12  |     |     |
| Cx3  | 13  |     | 14  |     | 14  |     | 12  |     |     |
| Cx4  | 14  |     | 18  |     | 17  |     | 15  |     |     |
| Cx5  | 20  |     | 15  | 20  | 20  | 24  | 19  |     |     |
| Cx6  | 19  |     | 17  |     | 21  | 23  | 19  |     |     |
| Cx7  | 20  |     | 18  |     | 17  | 26  | 23  |     |     |
| Cx8  | 21  |     | 22  |     | 23  | 34  | 27  |     |     |
| Cx9  | 17  |     | 22  | 28  | 21  | 18  | 32  |     |     |
| Cx10 | 20  |     | 22  |     | 29  |     | 32  | 50  |     |
| Cx11 | 23  |     | 23  |     | 32  |     | 37  | 52  | 50  |
| Cx12 | 19  |     | 20  |     | 26  |     | 30  | 38  | 48  |
| Cx13 | 24  |     | 28  |     | 20  | 39  | 34  | 36  | 40  |

Table 3.4(b): Site exposure ratio measured to the back of the neck and expressed as a percentage for the SZA range  $30^{\circ}$ - $50^{\circ}$  and cloud cover greater than 4 oktas.

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1  |     | 14  |     | 13  |     | 13  |     |     |     |
| Cx2  |     | 21  |     | 21  |     | 16  |     |     |     |
| Cx3  |     | 24  |     | 23  |     | 23  |     |     |     |
| Cx4  |     | 32  |     | 30  |     | 27  |     |     |     |
| Cx5  |     | 38  |     | 35  |     | 32  |     |     |     |
| Cx6  |     | 33  |     | 37  |     | 35  |     |     |     |
| Cx7  |     | 56  |     | 33  |     | 35  |     |     |     |
| Cx8  |     | 35  |     | 32  |     | 47  |     |     |     |
| Cx9  |     | 37  |     | 38  |     | 44  |     |     |     |
| Cx10 |     | 33  |     | 44  |     | 44  |     | 62  |     |
| Cx11 |     | 40  |     | 30  |     | 40  |     | 49  | 53  |
| Cx12 |     | 43  |     | 69  |     | 42  |     | 59  |     |
| Cx13 |     | 38  |     | 42  |     | 44  |     | 48  |     |

Table 3.4(b): Site exposure ratio measured to the back of the neck and expressed as a percentage for the SZA range  $50^{\circ}$ - $80^{\circ}$  and cloud cover less than 4 oktas.

|              | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1<br>Cx2   | 19  |     |     |     |     |     |     |     |     |
| Cx3<br>Cx4   | 43  |     |     |     |     |     |     |     |     |
| Cx5<br>Cx6   | 49  |     | 49  |     | 47  |     | 48  |     |     |
| Cx7<br>Cx8   | 59  |     | 48  |     | 62  |     | 57  |     |     |
| Cx9<br>Cx10  | 58  |     | 56  |     | 66  |     | 69  |     |     |
| Cx11<br>Cx12 | 45  |     | 60  |     | 63  |     | 77  |     | 86  |
| Cx13         | 62  |     | 00  |     | 68  |     | 68  |     | 73  |

Exposures represented in Figure 3.6 show the left side of the back of the neck of the headform model. Measurements of the UV ER were made from the shoulder to the middle of the neck under high and low cloud cover conditons. Tables 3.4(a), 3.4(b) and 3.4(c) show the data used to produce Figure 3.6. Tables 3.4(a) and 3.4(c) give neck site ER recorded under low cloud cover conditons (< 4 okta). Table 3.4(b) was measured under high cloud cover conditions. Each table is organised into vertical and horizontal contours. Vertical contour, Cn1 is located along the centreline of the mannequin neck model, vertical contour Cn9 is located on the shoulder. Horizontal contours are positioned from the base of the headform skull (Cx1) to the bottom of the neck (Cx13). The effects of headform shading are most evident in Figure 3.6 at the top of the neck having the lowest ER. The highest exposures measured on the back of the neck of the upright headform were located on the shoulder. Like exposures measured to the face, surfaces on the neck model that are more closely oriented toward the horizontal plane received the greatest ER.

## 3.5.2 Surface exposure received by the arm

Measurements of surface UV ER to the arm were made with the body mannequin wearing a school uniform (Figure 2.2). Dosimeters placed underneath the cotton polo shirt worn by the mannequin recorded no appreciable ER resulting in the low ER evident in the upper arm (Figure 3.7). Exposure ratios measured to the forearm were shown to increase with increasing SZA. These increases are attributed to solar UV incident at lower elevations with increasing SZA affecting a larger area of the arm which was orientated in a vertical position during the measurement campaign.



Figure 3.7: Variation in ER measured to the forearm with SZA for low cloud cover cases (a) SZA  $0^{\circ}-30^{\circ}$ ; (b) SZA  $30^{\circ}-50^{\circ}$ ; (c) SZA  $50^{\circ}-80^{\circ}$ . The shirt used on the mannequin covers the upper arm.

Tables 3.5(a), 3.5(b) and 3.5(c) give the mean site ER data recorded under low cloud cover conditions (< 4 okta). Vertical contours start from the top of the shoulder and end at the wrist of the mannequin arm model. Horizontal contours are banded around the arm starting from the top of the shoulder and finishing in a band circling the wrist. Appendix H shows the position of vertical and horizontal contours on the three dimensional arm model. Vertical contours Cn16, Cn17, Cn18, and Cn19 were located on the underside of the upper arm. As these contours received no exposure they have not been included in Tables 3.5(a), 3.5(b) and 3.5(c).

| Table 3.5(a): Site        | exposure ration | o measured i  | to the arm  | and expresse | d as a percentag | ze for |
|---------------------------|-----------------|---------------|-------------|--------------|------------------|--------|
| the SZA range $0^{\circ}$ | 30° and cloud   | cover less th | han 4 okta. | <i>s</i> .   |                  |        |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn20 Cn21 Cn22 Cn23

Table 3.5(b): Site exposure ratio measured to the arm and expressed as a percentage for the SZA range  $30^{\circ}$ - $50^{\circ}$  and cloud cover less than 4 oktas.

| Cx1<br>Cx2<br>Cx3<br>Cx4 |          |          |          | 0        |          | 0        |          |          | 0        |    | 0  |         |        |   |   |   |        |        |
|--------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----|----|---------|--------|---|---|---|--------|--------|
| Cx5                      |          |          |          | 0        |          | 0        |          |          |          |    |    |         |        |   |   |   |        |        |
| Cx6 0                    |          |          |          | 0        |          |          |          |          | 0        |    |    |         |        | 0 |   |   |        |        |
| Cx8                      |          |          |          | 0        |          |          |          |          | 0        |    | 0  |         |        |   | 0 |   | 0      |        |
| Cx9 0                    |          | 0        |          | 0        |          | 0        |          |          |          |    |    |         |        |   |   |   |        |        |
| Cx10                     |          | •        |          | •        | •        |          | 0        | 0        |          |    | ~  |         | 0      |   |   |   | 0      |        |
| Cx11 0                   |          | 0        |          | 0        | 0        | ٥        |          | 1        |          |    | 0  |         |        |   | 0 |   | з      | 1      |
| Cx13 10                  | 0        | 1        | 1        | 7        |          | 14       | 8        | 7        | 4        |    |    |         | 0      |   |   |   | 8      | 13     |
| Cx14 18                  | 1        | 20       | 8        | 38       | 5        | 13       | 24       | 11       | 6        | 5  | 0  |         |        |   |   | 6 |        | 14     |
| Cx15 22                  | 28       | 30       | 44       | 49<br>46 | 31       | 39       | 40       | 25       | 25       | 17 | 5  | F       | 2      | 3 | 0 | 7 | 15     | 10     |
| Cx10 18<br>Cx17 17       | 25<br>23 | 29<br>19 | 40       | 40       | 33       | 45<br>49 | 40<br>43 | 29<br>36 | 20<br>32 | 20 | 9  | 5       | 3      | 4 |   | 6 | о<br>6 | 9<br>8 |
| Cx18 7                   | 17       | 33       | 41       | 45       | 45       | 37       | 35       | 34       | 22       | 17 | 22 | 11      | •      | - |   | • | 2      | 8      |
| Cx19 8                   | 20       | 29       | 33       | 48       | 49       | 37       | 55       | 41       | 28       |    | 16 | 13      | 7      | 3 |   | 6 | 7      |        |
| Cx20 4<br>Cx21           |          | 20       | 24<br>23 | 42<br>39 | 42<br>47 | 45<br>19 |          | 17<br>38 |          |    | 14 | 10<br>9 | 5<br>5 | 6 |   |   |        |        |
| Cx22                     |          |          | 20       | 00       | 39       | 10       |          | 00       |          |    |    | 7       | 3      | U |   |   |        |        |
| Cx23                     |          |          |          |          | 30       |          |          |          |          |    |    |         |        | 7 |   |   |        |        |
| Cx24                     |          |          |          |          |          |          |          |          |          |    |    | 11      | 4      | 6 |   |   |        |        |
| Cx25<br>Cx26             |          |          |          |          |          |          |          |          |          |    |    |         | 4      |   |   |   |        |        |
| Cx27                     |          |          |          |          |          |          |          |          |          |    |    | 11      | 4      | 5 |   |   |        |        |
| Cx28                     |          |          |          |          |          |          |          |          |          |    |    | 15      |        |   |   |   |        |        |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn20 Cn21 Cn22 Cn23

| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11 |    |    |    |    |    |    |    |    |    |    |    |          | 2  |    |    |    |    |
|-------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----------|----|----|----|----|----|
| Cx12                                                                                      |    |    |    |    |    |    | 11 |    |    |    |    |          | 2  |    |    |    | 20 |
| Cx13                                                                                      |    |    |    |    | 6  |    |    |    | 25 |    |    |          |    | 4  |    |    | 24 |
| Cx14 27                                                                                   | 20 | 39 | 31 |    | -  | 66 | 64 | 43 | -  | 46 |    | 13       |    |    |    |    | 23 |
| Cx15 32                                                                                   | 27 |    |    |    | 61 |    | 71 |    | 49 | 65 |    |          |    | 13 | 12 | 14 |    |
| Cx16                                                                                      | 41 | 47 | 62 | 67 |    |    | 87 | 76 | 66 | 49 |    | 23       |    |    |    |    |    |
| Cx17 19                                                                                   | 26 |    | 55 | 51 | 58 | 72 | 61 | 63 | 54 |    | 24 |          | 16 |    |    | 11 | 19 |
| Cx18 19                                                                                   | 23 | 41 | 55 | 54 |    | 71 | 69 |    | 60 | 49 | 41 | 37       |    | 13 |    |    |    |
| Cx19 12                                                                                   | 14 | 32 | 47 | 52 | 60 | 63 | 82 | 57 | 44 |    | 43 | ~~       | 26 |    |    |    |    |
| CX20 11                                                                                   | 22 |    | 36 | 10 | 55 | 58 | 56 | 66 |    |    | 48 | 29       | 18 |    |    |    |    |
| Cv22                                                                                      |    |    | 29 | 43 | 54 | 60 |    |    |    |    |    | 30<br>10 | 12 |    |    |    |    |
| Cx23                                                                                      |    |    |    |    | 45 |    |    |    |    |    |    | 19       | 12 |    |    |    |    |
| Cx24                                                                                      |    |    |    |    | 40 |    |    |    |    |    |    |          | 12 |    |    |    |    |
| Cx25                                                                                      |    |    |    |    |    |    |    |    |    |    |    | 29       |    |    |    |    |    |
| Cx26                                                                                      |    |    |    |    |    |    |    |    |    |    |    | -        | 20 |    |    |    |    |
| Cx27                                                                                      |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |
| Cx28                                                                                      |    |    |    |    |    |    |    |    |    |    |    | 46       | 21 |    |    |    |    |

Table 3.5(c): Site exposure ratio measured to the arm and expressed as a percentage for the SZA range  $50^{\circ}$ - $80^{\circ}$  and cloud cover less than 4 oktas.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn20 Cn21 Cn22 Cn23

## 3.5.3 Surface exposure received by the hand

The surface ERs received by the mannequin hand for low cloud cover conditions in the SZA ranges 0°-30°, and 30°-50° are illustrated in Figure 3.8. ERs measured in the 50°-80° SZA range were made under conditions in which the cloud cover increased over 4 oktas. Tables 3.6(a), 3.6(b) and 3.6(c) give the ERs used to produce the three dimensional wireframe exposure plots given in the figure. Vertical contours start at the wrist and move toward the finger tips for both the dorsal and palm surfaces of the hand. UV exposures received by the palm of the mannequin hand were less than 10% of the horizontal plane UV exposure. The greatest exposures were received by the dorsal surface of the hand. Figure 3.8 clearly illustrates changes in the received UV ER with variation in SZA showing that a greater area of the hand receives a higher ER with

increasing SZA. The ERs received by the hand were typically higher than the exposure ratios received by the arm surface. This was due to the orientation of the hand model with respect to the attached arm model. The hand was orientated with a greater surface being exposed to vertically incident UV (Figure 3.9).



Figure 3.8: Variation in ER measured to the hand (a) SZA  $0^{\circ}$ - $30^{\circ}$ , < 4 okta; (b) SZA  $30^{\circ}$ - $50^{\circ}$ , < 4 okta; (c) SZA  $50^{\circ}$ - $80^{\circ}$ , > 4 okta.



Figure 3.9: Hand orientation with respect to the arm used on the full body mannequin.

Table 3.6(a): Site exposure ratio measured to the hand and expressed as a percentage for the SZA range  $0^{\circ}$ -30° and cloud cover less than 4 oktas.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

Table 3.6(b): Site exposure ratio measured to the hand and expressed as a percentage for the SZA range  $30^{\circ}$ - $50^{\circ}$  and cloud cover less than 4 oktas.

| Cx1    |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   | 6  |   |    | 15 |    |    |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|---|----|----|---|----|---|----|----|----|----|
| Cx2    |    |    |    |    | 31 |    |    |    |    |    |    |    |   |    | 12 |   |    | 6 |    |    |    |    |
| Cx3    |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   | 5  |   | 12 | 20 |    |    |
| Cx4    |    |    |    | 21 | 46 | 57 |    |    |    |    |    |    |   |    | 10 | 5 |    |   |    | 22 |    |    |
| Cx5    |    |    |    | 50 |    |    | 45 | 42 | 44 | 33 |    |    |   |    |    |   | 5  |   |    |    |    |    |
| Cx6    |    |    |    | 61 | 62 | 70 | 53 | 45 |    | 18 |    |    |   |    |    |   |    | 6 |    |    |    |    |
| Cx7    |    |    |    | 64 | 74 |    |    | 56 |    | 32 |    |    |   |    | 5  | 4 |    |   | 6  |    |    |    |
| Cx8    |    |    | 35 |    |    |    | 61 | 55 | 53 | 41 | 25 | 10 |   | 20 |    |   | 2  |   |    |    |    |    |
| Cx9    |    | 34 |    | 52 | 76 | 70 | 70 |    | 58 |    | 34 |    | 3 | 7  | 2  |   | 1  |   |    |    | 10 |    |
| C10    | 47 |    | 61 | 67 | 66 |    |    | 58 |    | 52 |    |    |   |    |    |   |    | 3 |    | 3  |    | 20 |
| C11    |    | 66 |    |    |    |    | 71 |    | 51 | 53 | 58 |    |   |    | 3  |   | 3  |   |    |    |    | 13 |
| C12 39 |    | 64 | 67 | 53 | 70 | 60 | 46 | 53 | 56 |    |    |    | 4 |    |    |   |    |   | 11 |    | 5  |    |
| C13    | 69 | 31 | 10 |    |    | 37 |    |    | 51 | 32 | 33 |    |   |    |    |   |    |   |    |    |    | 9  |
| C14    | 47 |    |    | 52 | 72 |    | 60 | 10 |    |    |    |    |   |    | 8  |   |    |   | 15 |    |    |    |
| C15    |    | 16 |    | 48 | 68 |    |    |    | 60 |    |    |    |   | 4  |    |   | 17 |   |    |    |    |    |
| C16    |    |    |    |    | 60 | 15 | 61 | 11 |    |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C17    |    |    |    | 51 | 31 |    | 45 |    | 20 |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C18    |    |    |    | 60 |    |    | 24 |    |    |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C19    |    |    |    | 57 |    |    | 15 |    | 14 |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C20    |    |    |    |    |    |    | 15 |    |    |    |    |    |   |    |    |   |    |   |    |    |    |    |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

Table 3.6(c): Site exposure ratio measured to the hand and expressed as a percentage for the SZA range  $50^{\circ}$ - $80^{\circ}$  and cloud cover greater than 4 oktas.



Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

## 3.5.4 Surface exposure received by the leg

Surface UV exposures measured under low cloud cover conditions are shown in Figure 3.10 for the SZA ranges  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$ . The figure represents UV ER measured to the left leg and is orientated so that the anterior and calf muscle of the left leg is to the front of the figure (the knee cap faces away from the viewer). Clothing worn by the mannequin protected the upper thigh as is evident in the figure. Measurements of exposure were not made below the ankle as it was assumed that students in a playground environment would be wearing shoes and socks. The greatest exposures were received over the calf muscle region of the leg. Lower solar elevations account for increases in surface exposure ratio observed with increasing SZA in parts (b) and (c) of the figure.



Figure 3.10: Variation in ER measured to the left leg with SZA for low cloud cover cases (a) SZA  $0^{\circ}$ - $30^{\circ}$ ; (b) SZA  $30^{\circ}$ - $50^{\circ}$ ; (c) SZA  $50^{\circ}$ - $80^{\circ}$ .

Tables 3.7(a), 3.7(b) and 3.7(c) give the mean ER data used to produce Figure 3.10. Vertical contours Cn0, Cn1, Cn2 and Cn16 are not included in the tables as these contours were located high on the mannequin leg and were well protected by clothing. These contours were small and did not extend beyond 20 cm from the upper thigh and were therefore well protected by clothing for this work.

|                                                                                                   | Cn3                | Cn4                                                   | Cn5                                                   | Cn6                                                   | Cn7                                                        | Cn8                                                                  | Cn9                     | Cn10            | Cn11                                      | Cn12                                       | Cn13                                        | Cn14                                        | Cn15                                      |
|---------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|-----------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|
| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12 | Cn3<br>0<br>1<br>6 | Cn4<br>0<br>3<br>6<br>8<br>11<br>13<br>15<br>14<br>20 | Cn5<br>0<br>2<br>4<br>8<br>12<br>15<br>19<br>19<br>22 | Cn6<br>1<br>2<br>4<br>6<br>10<br>14<br>17<br>19<br>10 | Cn7<br>1<br>3<br>4<br>5<br>8<br>11<br>15<br>18<br>19<br>16 | Cn8<br>7<br>6<br>9<br>10<br>11<br>10<br>9<br>9<br>10<br>9<br>10<br>2 | Cn9<br>6<br>5<br>5<br>5 | Cn10<br>9<br>22 | Cn11<br>0<br>7<br>10<br>10<br>8<br>8<br>7 | Cn12<br>0<br>0<br>12<br>13<br>10<br>8<br>6 | Cn13<br>0<br>0<br>13<br>16<br>15<br>11<br>7 | Cn14<br>0<br>0<br>9<br>13<br>12<br>11<br>11 | Cn15<br>0<br>0<br>1<br>7<br>9<br>19<br>17 |
| Cx12<br>Cx13<br>Cx14<br>Cx15                                                                      |                    | 20<br>23<br>21<br>20                                  | 23<br>20<br>21<br>20                                  | 19<br>21<br>20<br>19                                  | 16<br>16<br>14<br>14                                       | 7<br>12<br>12<br>14                                                  |                         |                 | 7<br>6<br>7<br>9                          | 6<br>8<br>7<br>8                           | 6<br>8<br>9<br>9                            | 13<br>15<br>16<br>14                        | 15<br>15<br>13<br>16                      |
| Cx16<br>Cx17<br>Cx18                                                                              |                    | 20                                                    | 19<br>16<br>16                                        | 18<br>16<br>18                                        | 14<br>14<br>15                                             | 13<br>16<br>17                                                       |                         |                 | 9<br>11<br>9                              | 8<br>10<br>9                               | 9<br>9<br>9                                 | 13<br>12<br>12                              | 10                                        |
| Cx19<br>Cx20<br>Cx21<br>Cx22                                                                      |                    |                                                       | 15<br>13<br>15                                        | 15<br>15<br>16<br>16                                  | 15<br>15<br>17<br>17                                       | 24                                                                   |                         |                 | 8<br>7<br>6<br>7                          | 10<br>8<br>10<br>9                         | 9<br>9<br>9<br>10                           | 11<br>10<br>8<br>11                         |                                           |
| Cx23<br>Cx24<br>Cx25                                                                              |                    |                                                       |                                                       | 17<br>18<br>14                                        | 16<br>17<br>16                                             |                                                                      |                         |                 | 7<br>6<br>8                               | 9<br>10<br>9                               | 10<br>10<br>9<br>10                         | 11<br>12<br>13                              |                                           |
| Cx26<br>Cx27<br>Cx28                                                                              |                    |                                                       |                                                       | 14                                                    | 19<br>24<br>16                                             |                                                                      |                         |                 | 8<br>8<br>7                               | 10<br>11<br>11                             | 11<br>10<br>11                              | 14<br>13<br>12                              |                                           |
| Cx29<br>Cx30<br>Cx31<br>Cx32                                                                      |                    |                                                       |                                                       |                                                       |                                                            |                                                                      |                         |                 | 9<br>10<br>10<br>9                        | 10<br>10<br>11<br>10                       | 12<br>12<br>16<br>13                        |                                             |                                           |
| Cx33                                                                                              |                    |                                                       |                                                       |                                                       |                                                            |                                                                      |                         |                 |                                           | 10                                         | 12                                          |                                             |                                           |

Table 3.7(a): Site exposure ratio measured to the leg and expressed as a percentage for the SZA range  $0^{\circ}$ - $30^{\circ}$  and cloud cover less than 4 oktas.

Table 3.7(b): Site exposure ratio measured to the leg and expressed as a percentage for the SZA range  $30^{\circ}$ - $50^{\circ}$  and cloud cover less than 4 oktas.

|      | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 |
|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Cx1  |     |     |     |     |     | 17  | 13  | 18   |      |      |      |      |      |
| Cx2  |     |     |     |     | 4   | 21  | 11  | 35   |      |      |      |      |      |
| Cx3  |     | 4   | 5   | 6   | 9   | 23  | 11  |      |      |      |      |      |      |
| Cx4  | 6   | 11  | 9   | 8   | 12  | 25  | 10  |      |      |      |      |      |      |
| Cx5  | 13  | 15  | 13  | 13  | 13  | 31  |     |      | 14   | 20   | 17   |      | 9    |
| Cx6  | 21  | 22  | 18  | 15  | 20  | 25  |     |      | 16   | 22   | 25   | 37   | 19   |
| Cx7  | 25  | 28  | 29  | 21  | 25  | 21  |     |      | 17   | 22   | 28   | 38   | 30   |
| Cx8  |     | 34  | 33  | 18  | 38  | 22  |     |      | 17   | 20   | 26   | 22   | 29   |
| Cx9  |     | 37  | 34  | 29  | 43  | 23  |     |      | 14   | 17   | 25   | 44   | 30   |
| Cx10 |     | 52  | 29  | 38  | 38  | 23  |     |      | 14   | 10   | 24   | 44   | 42   |
| Cx11 |     | 43  | 45  | 31  | 42  | 22  |     |      | 11   | 12   | 22   | 42   | 45   |
| Cx12 |     | 44  | 44  | 38  | 33  | 27  |     |      | 13   | 13   | 21   | 43   | 31   |
| Cx13 |     | 37  | 47  | 36  | 33  | 28  |     |      | 10   | 13   | 21   | 48   | 35   |
| Cx14 |     | 33  | 39  | 44  | 36  | 35  |     |      | 12   | 12   | 21   | 46   | 33   |
| Cx15 |     | 39  | 32  | 28  | 33  | 30  |     |      | 18   | 15   | 21   | 40   | 33   |
| Cx16 |     | 36  | 32  | 32  | 30  | 40  |     |      | 14   | 14   | 21   | 36   |      |
| Cx17 |     |     | 27  | 31  | 34  | 35  |     |      | 14   | 14   | 21   | 35   |      |
| Cx18 |     |     | 29  | 35  | 35  | 46  |     |      | 14   | 14   | 20   | 22   |      |
| Cx19 |     |     | 34  | 31  | 45  | 41  |     |      | 13   | 14   | 15   | 26   |      |
| Cx20 |     |     | 21  | 28  | 41  |     |     |      | 12   | 13   | 16   | 27   |      |
| Cx21 |     |     | 32  | 38  | 48  |     |     |      | 11   | 15   | 16   | 26   |      |
| Cx22 |     |     |     | 38  | 39  |     |     |      | 11   | 14   | 17   | 23   |      |
| Cx23 |     |     |     | 32  | 36  |     |     |      | 14   | 16   | 18   | 29   |      |
| Cx24 |     |     |     | 26  | 36  |     |     |      | 11   | 15   | 19   | 32   |      |
| Cx25 |     |     |     | 33  | 37  |     |     |      | 13   | 15   | 24   | 29   |      |
| Cx26 |     |     |     | 26  | 39  |     |     |      | 16   | 16   | 19   | 33   |      |
| Cx27 |     |     |     |     | 43  |     |     |      | 13   | 18   | 23   | 26   |      |
| Cx28 |     |     |     |     | 44  |     |     |      | 15   | 17   | 25   | 25   |      |
| Cx29 |     |     |     |     |     |     |     |      | 15   | 18   | 23   |      |      |
| Cx30 |     |     |     |     |     |     |     |      | 16   | 19   | 23   |      |      |
| Cx31 |     |     |     |     |     |     |     |      | 14   | 21   | 22   |      |      |
| Cx32 |     |     |     |     |     |     |     |      | 15   | 19   | 28   |      |      |
| Cx33 |     |     |     |     |     |     |     |      |      | 14   | 25   |      |      |

|      | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 |
|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Cx1  |     |     |     |     |     | 33  | 24  |      |      |      |      |      |      |
| Cx2  |     |     |     |     | 12  |     |     |      |      |      |      |      |      |
| Cx3  |     |     |     |     | 19  | 36  |     |      |      |      |      |      |      |
| Cx4  |     |     |     |     | 22  |     |     |      |      |      |      |      |      |
| Cx5  |     | 35  |     | 35  |     |     |     |      |      |      | 47   |      |      |
| Cx6  | 43  |     | 42  |     | 40  |     |     |      |      |      |      |      |      |
| Cx7  | 50  |     | 38  | 36  |     |     |     |      | 32   |      | 50   | 36   | 51   |
| Cx8  |     | 45  | 15  |     | 58  |     |     |      |      |      |      |      | 38   |
| Cx9  |     | 63  | 70  | 41  |     |     |     |      | 34   | 37   | 51   | 56   |      |
| Cx10 |     | 62  | 42  | 58  | 65  |     |     |      |      |      | 37   |      | 77   |
| Cx11 |     | 64  | 62  | 65  | 55  |     |     |      | 24   | 25   |      | 40   |      |
| Cx12 |     | 71  | 70  |     | 52  |     |     |      |      |      | 31   |      | 48   |
| Cx13 |     | 62  | 75  |     | 46  |     |     |      | 27   | 25   |      |      |      |
| Cx14 |     | 60  | 53  |     | 56  |     |     |      |      |      | 35   |      | 47   |
| Cx15 |     | 43  | 59  | 59  | 40  |     |     |      | 39   | 25   |      | 61   | 52   |
| Cx16 |     | 62  | 60  |     | 45  |     |     |      |      |      | 27   |      |      |
| Cx17 |     |     | 53  |     | 44  |     |     |      |      | 27   |      | 57   |      |
| Cx18 |     |     | 56  | 59  | 51  |     |     |      |      |      | 41   |      |      |
| Cx19 |     |     | 55  |     | 57  |     |     |      |      | 33   |      | 42   |      |
| Cx20 |     |     | 46  | 51  |     |     |     |      |      |      | 45   |      |      |
| Cx21 |     |     | 49  |     | 57  |     |     |      |      | 24   |      |      |      |
| Cx22 |     |     |     | 58  |     |     |     |      |      |      | 32   |      |      |
| Cx23 |     |     |     | 54  | 60  |     |     |      |      | 33   |      | 37   |      |
| Cx24 |     |     |     | 51  |     |     |     |      |      |      | 26   |      |      |
| Cx25 |     |     |     | 52  | 58  |     |     |      |      |      |      | 53   |      |
| Cx26 |     |     |     | 51  | 53  |     |     |      |      |      | 42   |      |      |
| Cx27 |     |     |     |     | 61  |     |     |      |      |      |      | 45   |      |
| Cx28 |     |     |     |     | 50  |     |     |      |      |      | 49   |      |      |
| Cx29 |     |     |     |     |     |     |     |      |      |      |      |      |      |
| Cx30 |     |     |     |     |     |     |     |      |      |      | 41   |      |      |
| Cx31 |     |     |     |     |     |     |     |      |      |      |      |      |      |
| Cx32 |     |     |     |     |     |     |     |      |      |      | 40   |      |      |
| Cx33 |     |     |     |     |     |     |     |      |      |      |      |      |      |

Table 3.7(c): Site exposure ratio measured to the leg and expressed as a percentage for the SZA range  $50^{\circ}$ - $80^{\circ}$  and cloud cover less than 4 oktas.

## 3.6 Summary of headform and body surface exposures

Table 3.8 represents the variation in measured ER for each of the face, neck, arm, hand and leg models. The minimum, maximum, median and first and third inter-quartile ranges are listed in the table. The highest measured exposure relative to the horizontal plane UV was received by the face at the vertex in each SZA range. Of each of the body parts studied in the  $0^{\circ}$ - $30^{\circ}$  SZA range, the dorsum of the hand received the highest exposure relative to the horizontal plane UV, followed by the face, the back of the neck, the forearm and legs. ERs measured within the  $0^{\circ}$ - $30^{\circ}$  SZA range received the strongest UV irradiance. This is due to high solar elevation and reduced atmospheric absorption caused by incident sunlight moving through a shorter atmospheric path than occurs at greater SZA. The measured pattern of exposure in the  $0^{\circ}-30^{\circ}$  SZA range would commonly be observed in sub-tropical to low latitudes during the summer months either side of midday. At greater SZA ranges, the face and neck were found to receive the highest ER for the  $30^{\circ}-50^{\circ}$  and  $50^{\circ}-80^{\circ}$  SZA ranges with the hand and leg receiving higher exposures than the forearm (Table 3.8). This is due to UV radiation incident in the greater SZA ranges having a more significant influence on vertically orientated body surfaces.

Exposures to all body parts measured in this study showed an increase in ER with increasing SZA range. Apart from the ER measured in the 0°-30° SZA range for the back of the neck, all body parts showed a further increase in the inter-quartile range (IQR) of exposures. These findings indicate that the UV exposure received over the body surface increases relative to the horizontal plane exposure and affects a larger surface area of the body with increasing SZA.

Table 3.8: Exposure ratio statistics listed for the face, back of the neck, forearm, hand and leg in the SZA ranges  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$ .

|                    | Face    |               |               |  |  |
|--------------------|---------|---------------|---------------|--|--|
|                    | 0°-30°  | 30°-50°       | 50°-80°       |  |  |
| Range              | 1-100%  | 6-100%        | 0-100%        |  |  |
| IQR                | 15-47%  | 24-58%        | 33-70%        |  |  |
| Median             | 26%     | 39%           | 48%           |  |  |
| Total measurements | 391 154 |               | 229           |  |  |
|                    |         | Neck          |               |  |  |
|                    | 0°-30°  | 30°-50°       | 50°-80°       |  |  |
| Range              | 4-67%   | 13-69%        | 19-86%        |  |  |
| IQR                | 16 220/ | 20 440/       | 10 670/       |  |  |
| -                  | 10-35%  | 30-44%        | 49-07%        |  |  |
| Median             | 23%     | 30-44%<br>36% | 49-07%<br>59% |  |  |

|                    |        | Forearm |         |  |  |  |
|--------------------|--------|---------|---------|--|--|--|
|                    | 0°-30° | 30°-50° | 50°-80° |  |  |  |
| Range              | 3-61%  | 0-55%   | 2-88%   |  |  |  |
| IQR                | 5-29%  | 7-35%   | 21-57%  |  |  |  |
| Median             | 13%    | 17%     | 41%     |  |  |  |
| Total measurements | 140    | 175     | 109     |  |  |  |
|                    |        | Hand    |         |  |  |  |
|                    | 0°-30° | 30°-50° | 50°-80° |  |  |  |
| Range              | 1-76%  | 1-76%   | 0-84%   |  |  |  |
| IQR                | 8-51%  | 12-57%  | 10-61%  |  |  |  |
| Median             | 30%    | 35%     | 42%     |  |  |  |
| Total measurements | 264    | 119     | 82      |  |  |  |
|                    |        | Leg     |         |  |  |  |
|                    | 0°-30° | 30°-50° | 50°-80° |  |  |  |
| Range              | 1-39%  | 4-52%   | 12-82%  |  |  |  |
| IQR                | 9-16%  | 15-33%  | 37-57%  |  |  |  |
| Median             | 12%    | 23%     | 47%     |  |  |  |
| Total measurements | 248    | 231     | 112     |  |  |  |

While there is a clear spreading in the received exposure over a larger surface area with increasing SZA, exposures measured in the larger SZA ranges were received during periods of the day that receive a lower UV irradiance. The ER measured at sites in the  $0^{\circ}-30^{\circ}$  SZA range, though affecting a smaller surface area receive a significant level of the ambient UV due to the higher UV irradiances that are incident at the earth's surface when the sun is located in the  $0^{\circ}-30^{\circ}$  SZA range. The measured ranges of exposure listed in Table 3.8 provide an indication of the areas of each body part at risk of receiving high levels of solar UV radiation. Of the areas of the body surface shown to receive high exposures relative to the measured horizontal plane UV in the  $50^{\circ}-80^{\circ}$  SZA range, those at greater risk of receiving higher exposures are reduced to the areas measured in the respective  $30^{\circ}-50^{\circ}$  and  $0^{\circ}-30^{\circ}$  SZA range and are clearly seen in Figures 3.1, 3.6, 3.7, 3.8 and 3.10. For populations located in sub-tropical to low latitudes that experience high solar elevations, and subsequently all of the SZA ranges studied in this research, the areas of the body surface that receive the highest UV exposure are the vertex, the nose,

the cheeks, the top of the ear, the dorsa of the forearms and hand, the lower back of the neck located near the shoulder, and the calf muscle and anterior region of the leg.

# 3.7 Conclusions

Measurements of mannequin facial exposure were highest toward the upper facial proximities. Facial exposures measured to human subjects also show an increasing trend in ER for sites located closer to the vertex (Downs & Parisi 2008). However, exposures measured to the vertex and forehead are often protected by hair cover and hat use. Hats also offer more protection to the upper proximities of the face (Gies et al. 2006; Downs & Parisi 2008). The nose and cheek represent the highest exposure regions of the face that are positioned toward the lower limits of protection offered by hats. Measurements of high ER to the nose and cheek show that these regions of the face are likely to be at high risk of the development of solar induced disease. Measurements of body surface UV exposure patterns have been presented with respect to changing SZA. These measurements improve upon previously available data which is often limited to fewer isolated body sites. The presented collection of measured UV exposure data is of further importance in detailing the solar exposures that affect human skin surfaces which are influenced by shading caused by the body itself and surface orientation with respect to the diffuse skylight and the direct solar beam. A total of 2491 measurements of ER to the face, neck, forearm and leg have confirmed that exposures received by the face and back of the neck are greater than exposures received by both the upper and lower limbs. Of each of the studied body parts, the anatomical distribution of BCC and SCC is greatest to the face and upper limbs, particularly the dorsum of the hand and forearm (Pearl and Scott 1986; Kricker et al. 1990; Raasch et al. 1998; Giles et al. 1988). Incidence rates of both types of NMSC cancer are particularly high at the nose (Pearl and Scott 1986; Brodkin et al. 1969) and correlate with the facial ER measurements taken in this research across all SZA ranges.

# CHAPTER 4 MODELLING THE PLAYGROUND UV EXPOSURE

# 4.1 The playground

Public schools funded by the Queensland state and Australian commonwealth governments make up approximately 70% of primary and secondary schools in Queensland (EQ 2008). These schools share a distinctive architecture common in public buildings and are often built and furnished from the same materials depending upon when they were established. A public school playground was chosen for this research as the Queensland school population is made up of predominately public students and similarities in architecture and building materials were likely to reduce errors in comparisons made between other public school playgrounds. Public schools in Queensland are commonly made up of double story weatherboard buildings, temporary demountables or single storey brick buildings, although there is some variation between schools. These buildings are typically painted with white or cream coloured paint and are often connected by a series of covered concrete pathways. Long rectangular shaped buildings are orientated East-West to minimise morning and afternoon sunlight entering classrooms.

Hervey Bay State High School (HBSHS) ( $25^{\circ}$ S,  $153^{\circ}$ E) was chosen as the study playground. This school neighbours the University of Southern Queensland's Fraser Coast campus and experiences a yearly SZA range of between  $3^{\circ}$  and  $46^{\circ}$  over the summer months and  $67^{\circ}$  and  $34^{\circ}$  over the winter months (Michalsky 1988) during school hours from 9:00am to 3:00pm.

# 4.2 School children and behaviour

Open areas typically make up a significant proportion of school playgrounds, however these areas are not always proportionately occupied by children in the school population leading to overcrowding in more stimulating playground regions (Malone & Tranter 2003). During the HBSHS school playground survey, smaller numbers of children were observed using the open oval space during lunchtime breaks compared with children occupying medium and high density playground environments. This behaviour is likely to result in lower playground exposures to UV experienced during lunch breaks compared with activities that require children to be placed in an open environment, such as scheduled sporting activities.

## 4.3 Classification of school playground regions

The HBSHS playground covers an area of 6.5 ha, excluding the school's neighbouring agricultural plots. Approximately 16% of the playground surface area is covered by hard surfaces including concrete, paving dust, brick pavers and asphalt surfaces with another 4% of the playground surface area being covered by garden beds. The remainder of the playground surface area is covered with grass. Grass surfaces were found predominately in two large open areas or 'ovals' which consisted of the school running track and a soccer field. These two large open areas cover approximately 46% of the surveyed school playground. Hard playground surfaces were located near buildings and in high traffic areas and included pathways and school carparks. School buildings were located in proximity to one another, typically no more than 30 m apart at the western end of the playground.

The three largest school buildings were double storey rectangular shaped structures. These buildings, referred to as B, C, and D blocks have classrooms running the length of their upper level, and have classrooms and large undercover spaces accessed by students during lunch breaks on the lower level. A large school assembly hall is located in the playground's south-western corner. There were eleven large single storey buildings located in the playground. These were the administration building, the school library, the manual arts classrooms and manufacturing workshops, the art building, the canteen, the toilet block, and classroom buildings E, G, H, L and M blocks. There were several other smaller structures located in the playground, including three steel storage sheds, the pool

storage building, pool canteen and pool toilet block, a large plastic shade structure, the school bus shelter, and several shade-cloth covered areas. The position of these structures and large shade providing trees are given in Figure 4.1. The figure also provides the location of the school's covered pathways that link each of the main school buildings. The types and locations of playground surfaces are provided in Figure 4.2.



Figure 4.1: Buildings and structures located in the HBSHS playground (red: covered pathways; light green: shade structures; dark green: large tree sites).



Figure 4.2: Ground surfaces located in the HBSHS playground (light green: grass surfaces; dark green: garden beds; cyan: bitumen surfaces; grey: concrete surfaces; yellow: blue metal paving dust; orange: light coloured paving; dark brown: dark coloured paving).

The playground was subdivided into 25 regions based on similarities in ground surface and surface structure (building and tree) density. Figure 4.3 is included as a reference to the numbered outdoor regions. Additional regions not given in the figure included covered areas and verandas specific to each building.



Figure 4.3: Subdivided playground regions. Each region contains similar surfaces and structure density.

4.4 The albedo of building and playground surfaces

Tables 4.1 and 4.2 list the surface materials visible in the playground and their measured UV albedo. Surface materials visible on each school building and playground surface have been provided in the appendices (Appendix J). Photographs of each of the school buildings are also provided in Appendix K. The erythemal UV albedo of ground and

vertical standing surfaces given in each of the tables below was calculated as the ratio of incident to reflected UV measured along the surface normal.

The reflectivity of each surface will vary with the incident angle of the UV radiation field. For this research the diffuse UV modelled on a horizontal plane considers the vertical up-welling UV albedo of ground surfaces, influencing atmospheric backscatter. Furthermore, the direct contribution resulting from standing surface UV reflections was considered for nearby playground structures as that component of the reflected UV radiation that is vertically incident upon a horizontal plane. Reflections from highly anisotropic surfaces such as glass windows will result in variations to the albedo stated in Table 4.2 which was measured along the surface normal, resulting in increased surface reflections depending upon solar position. To minimise this uncertainty, measurements of glass window albedo were performed on windows which were protected by building awnings and were therefore measured under full shade conditions. Modelled albedo contributions from glass window surfaces are however subject to some error depending upon the time of the day playground exposures are modelled. To simplify this uncertainty, glass window surfaces are assumed to be shaded for playground surface exposure models presented in this chapter.

| ured a | albedo.               |                         |  |
|--------|-----------------------|-------------------------|--|
|        | Ground surface        | Erythemal UV albedo (%) |  |
|        | Light coloured pavers | $7 \pm 1$               |  |
|        | Dark coloured pavers  | $6 \pm 1$               |  |
|        | Concrete              | $10 \pm 2$              |  |

Bitumen

Grass

Blue metal paving dust

7 + 1

 $8 \pm 1$ 

 $4 \pm 1$ 

Table 4.1: Ground surface erythemal UV albedo. Uncertainty is stated as  $\pm 17\%$  of the measured albedo.

Table 4.2: Vertical standing surface erythemal UV albedo. Uncertainties include meter measurement uncertainty of  $\pm 17\%$  for each listed aspect added to an additional standing surface uncertainty estimate calculated as the difference in maximum and minimum measured albedo for aspects measured on north, east, south and west facing surfaces. Standing surface

Erythemal UV albedo of standing surfaces with aspect

| ( | % | ) |
|---|---|---|
|   |   | - |

|                             | North facing | East facing | South facing | West facing |
|-----------------------------|--------------|-------------|--------------|-------------|
| White fibreboard            | $6\pm8$      | $8\pm8$     | $3\pm 8$     | $1\pm7$     |
| Light coloured brick        | $5\pm 6$     | $6\pm 6$    | $2\pm 5$     | $7\pm 6$    |
| Dark coloured brick         | $4\pm7$      | $6\pm7$     | $3\pm7$      | $9\pm8$     |
| White painted brick         | $6\pm8$      | $8\pm8$     | $1\pm7$      | na          |
| Brown painted paling        | $7 \pm 3$    | $6 \pm 3$   | $6\pm3$      | $8\pm3$     |
| White painted paling        | na           | $6\pm7$     | $1 \pm 6$    | $7\pm7$     |
| Glass                       | 4 ±3         | $2\pm 2$    | $2\pm 2$     | $2\pm 2$    |
| White painted blocks        | $7\pm9$      | $8\pm9$     | $3\pm9$      | $11 \pm 10$ |
| White painted weatherboard  | $7\pm7$      | $1 \pm 6$   | $3\pm7$      | $1 \pm 6$   |
| Yellow painted sleepers     | 6 ± 11       | $1 \pm 10$  | $2 \pm 10$   | $11 \pm 12$ |
| Stone work                  | $11 \pm 10$  | $12 \pm 10$ | $4\pm9$      | na          |
| Light coloured garden block | $11 \pm 13$  | 6 ±12       | $2 \pm 11$   | $13 \pm 13$ |
| Dark coloured garden block  | $3 \pm 14$   | $3 \pm 14$  | $2 \pm 13$   | $15 \pm 16$ |
| Thick vegetation            | $7\pm9$      | $6\pm9$     | $2\pm 8$     | 9 ± 10      |

#### 4.4.1Uncertainties in albedo measurement

Measurements of the UV albedo were taken using a broadband UV meter (Solar Light Co., model 3D, Philadelphia, PA 19126) and measured perpendicular to and 0.3 m from the reflecting surface. The accuracy of the broadband UV meter was determined to be in the order of  $\pm 17\%$  for UV radiation incident at angles up to  $80^{\circ}$ . Errors in albedo measurement due to hand held positioning of the broadband UV meter orientated along the approximate surface normal of all measured surfaces are estimated at  $\pm 17\%$ . Additional uncertainties in stated albedo measurements were due to body shading reducing the sky view and therefore incident diffuse UV reflected by the measured surface, SZA at the time of measurement affecting instrument cosine response sensitivity, and variation in atmospheric parameters occurring between incident and reflected measurements. To minimise these errors measurements of surface albedo were taken in full sun conditions during cloud free periods near midday and the meter was held as far from the body as possible during measurement.

The stated albedo provided for vertical standing surfaces were subject to greater uncertainty than measurements of ground surfaces. This was due to additional factors influencing surface normal measurements that require the measuring instrument to be exposed to a greater proportion of the diffuse UV when held parallel to the horizon whereby the total surface area of the measured reflecting surface directly influences the proportion of diffuse skylight received by the measuring broadband UV meter. The albedo measured along the vertical standing surface normal and given as the ratio of incident to reflected UV experiences further variation due to meter cosine response sensitivity with SZA if direct UV radiation is incident on the meter sensor. To minimise the effect of exposure to diffuse UV when the meter was held parallel to the horizon, measurements of standing vertical surfaces were taken where possible on large surfaces in positions located well away from surface edges. Measurements of standing surface albedo were also repeated for north, south, east and west facing surfaces for each material found in the school that covered a large vertical standing area. Albedo measurements of south facing surfaces were taken in full shade, east facing surfaces were measured in the morning and west facing surfaces were measured in the afternoon to minimise the likelihood of stray direct UV contributions affecting reflected surface measurements. A surface with either a north, south, east or west aspect experiences a variation in the received UV irradiance (Webb et al. 1999). As the UV albedo is a property of the material and not the incident UV irradiance, variation in measurements indicated in Table 4.2 give some indication of the measuring meter's uncertainty when orientated parallel to the horizon. The additional uncertainty in standing surface albedo was estimated for each vertical standing surface as the maximum variation in measured standing surface albedo measured over each of the north, south, east and west facing aspects (Table 4.2). The additional uncertainty in standing surface albedo measured as the maximum range in variation with aspect, varied from between 13% listed for dark coloured garden edges and 2% listed for glass. The greater uncertainty in the albedo of surfaces such as garden beds were likely due to increased diffuse radiation affecting the albedo measurements of surfaces that have a relatively small surface area. As an approximation to the true vertical standing surface albedo, the measured albedo of standing surfaces orientated with respect to north, south, east and west were used to model the influence of the reflecting surface on the incident horizontal plane UV irradiance.

## 4.4.2 Total albedo contribution to ambient UV in the playground

Estimates of the direct increase in playground UV irradiance due to both standing and ground surfaces are given in Figure 4.4. The albedo plotted in the figure is the direct albedo playground estimate calculated from measurements of each ground and vertical standing surface (Tables 4.1 and 4.2) affecting each of the 822 playground survey sites. Standing surface contributions to each site albedo estimate were only included if a vertical standing surface was within 2 m of a playground survey site. For the figure, the total direct albedo contribution at each playground site was determined by adding ground surface albedo and mean standing surface albedo determined by the method outlined in Section 2.4.2.2. The total albedo contribution at each playground site shown in Figure 4.4 was further weighted to site sky view (Section 4.5), providing an estimate of those regions in the playground that make the most significant contribution to the ambient playground UV. It should be noted here that the direct albedo contribution to playground ambient UV shown in Figure 4.4 is the total albedo contribution from reflecting ground surfaces and vertical standing surfaces, not the vertically incident components of the diffuse and direct UV discussed in Chapter 2. Figure 4.4 was developed as the cumulative sum of direct measurements of the up-welling ground surface albedo for ground surfaces and the mean horizontally incident reflected UV measured parallel to the horizon for standing surfaces based on the contribution of each standing surface affecting each particular playground site. Figure 4.4 is the calculated UV albedo contribution based on the sampled surface albedo measurements for each ground and standing surface listed in Tables 4.1 and 4.2. The contributions, while not directly affecting the down-welling UV irradiance will contribute to student exposures. Figure 4.4 is provided as a reference to playground albedo contributions not modelled directly onto a horizontal plane or weighted to ER body surface measurements.



Figure 4.4: Estimated standing and ground surface contribution to the direct UV irradiance. Playground albedo in the figure is weighted to sky view (Section 4.5) to give an indication of the relative effectiveness of playground surface contributions to the sunburning ambient UV.

## 4.5 Playground sky view

A significant proportion of the ambient UV received at the earth's surface can be attributed to skylight with the relative proportion of UVA and UVB attributed to diffuse skylight being dependent upon the SZA. Rayleigh scattering of UV increases the proportion of UVB in diffuse skylight before and after peak daily solar elevation, while diffuse UVA is generally lower than the direct sun UVA for most of the day. Although methods for modelling the relative proportions of diffuse UV have already been discussed (Chapter 2), the additional dependence of site sky view needs to be taken into account in order to develop a playground specific model of the diffuse UV irradiance. Modelling of the diffuse UV dependence on SZA and site sky view was considered for each period and break time of the school day from 8:30am to 3:05pm observed at HBSHS for 21 June 2008 and 21 December 2008. These dates represent the winter solstice (lowest daily solar elevation) and summer solstice respectively (highest daily solar elevation).

The influence and quality of UV protection afforded by playground surface structures was assessed by measurements of playground sky view. The playground sky view was developed from measurements taken at each of the 822 survey sites located inside HBSHS (Figure 4.5). Figure 4.6 is a coloured contour map of the playground sky view measured using the survey technique described in Chapter 2. Measurements of site sky view are included in Appendix L.



Figure 4.5: Location of sky view survey sites in the playground.



Figure 4.6: Contour map of playground sky view. The influence of covered pathways (Figure 4.1) can be clearly seen as can the influence of shading structures located in the playground.

# 4.6 Solar zenith angle and playground shade

The influence of shade in the playground was examined for the winter and summer solstice, 21 June and 21 December 2008 respectively. The influence of playground surface structures on shade density were examined on each of these dates during each
school period and break time at 8:30am (before school), 9:35am (first school period), 10:50am (second school period), 11:45am (first lunch break), 12:40pm (third school period), 1:35pm (second lunch break), and 2:30pm (fourth school period). Apart from 8:30am, these times represent the middle of each 70 minute teaching and 40 minute break period between 9:00am and 3.05pm observed at the school. Figure 4.7 and Figure 4.8 highlight regions of shade density in the playground on 21 June and 21 December 2008 respectively where shade density (either shaded or not shaded for each of the above times) was determined by comparing the predicted position of the solar disc to playground site photographs to determine whether or not playground obstructions would cause shading at each of the 822 playground sites. Shade density was measured as one of seven shade levels illustrated in the figures below. These figures show the approximate regions of shade protection offered by playground surface structures. These regions were calculated by comparing the solar position at 8:30am, 9:35am, 10:50am, 11:45am, 12:40pm, 1:35pm and 2:30pm on 21 June and 21 December respectively to playground survey site images. Figure 4.9 shows an example of the plotted solar position on 21 June 2008. The solar position templates calculated from the SZA and azimuth position of the sun (Michalsky 1988) for 21 June and 21 December 2008 are given in Appendix M. In Figures 4.7 and 4.8, regions showing the darkest shade levels were found to be in shade for each of the seven school period and break sample times (shade density level 7) with the lightest shade level showing those regions that were in shade for only one of the seven sample times. Those playground sites that were not located in the shade were given a shade density level of 0. It is clear from the figures that there is a significant variation in shade density between the winter and summer solstice periods. The increased solar elevation during the summer solstice shows clearly the reduction in playground shade density due to the solar disc moving beyond the limiting obstruction of playground surface objects.



Figure 4.7: Daily playground shade density experienced on 21 June 2008 (winter solstice).



*Figure 4.8: Daily playground shade density experienced on 21 December 2008 (summer solstice).* 



*Figure 4.9: Determining shade density at playground site 86 for 21 June 2008 (Figure L.1). For this example, the playground site experiences shade at 2:30pm (white arrow – right of figure), giving a total shade density level between 8:30am and 3:05pm of 1.* 

## 4.7 Modelling seasonal variation in playground ultraviolet exposure

Both the diurnal and seasonal variation in playground ultraviolet exposure in any school environment is dependent upon the SZA, local atmospheric conditions, local geography, the positioning of shading structures in the playground such as buildings and trees, and the albedo of ground and vertical standing surfaces located in the school environment. The modelled school playground is located at sea level in a regional city of approximately 40 000 residents, local anthropogenic influences to air quality were minimal. The highest Ozone Monitoring Instrument (OMI) ozone concentrations measured over the site varied from between 303 DU and 297 DU over the respective June and December months of 2007 (TOMS 2008). The lowest ozone concentrations recorded over the same June and December period in 2007 were 250 DU and 256 DU respectively. (Appendix N lists the ozone concentrations for Hervey Bay (25°S, 153°E) for June and December in the year 2007).

An ozone concentration of 300 DU was input into the UV irradiance model employed in this work and was taken to be a reasonable estimate of the highest ozone concentration experienced at the study site during the winter and summer solstice period. Estimated values of the playground erythemal UV exposure received on 21 June (Figure 4.10) and 21 December (Figure 4.11) therefore represent the minimal threshold of the possible daily exposure. These figures represent the cloud free  $UV_{ery}$  exposure. Shading by playground surface structures including shade cloths, playground sky view and the influence of surface albedo contributions to the horizontal plane UV exposure were used to develop Figures 4.10 and 4.11. Additional UV irradiance model inputs used to calculate the daily exposures represented in these figures included air, aerosol and ozone species concentration with altitude, specified in this instance at sea level, and air, aerosol and ozone optical depths. These were calculated across the 280 nm to 400 nm range and are specified by the Rundel (1986) modification to the Green, Sawada and Shettle (1974), Green, Cross and Smith (1980), and Schippnick and Greeen (1982) UV irradiance equations employed by the horizontal plane UV irradiance model discussed previously. (The complete code listing of the UV irradiance model is included as supplementary material to this work. A partial code listing is provided in Appendix D). The surface albedo contributions to the UV exposures modelled in Figures 4.10 and 4.11 affect the horizontal plane only and are caused by vertically incident atmospheric backscatter from ground surface albedo and the direct vertically incident contribution due to vertical standing surfaces (equations 2.8 and 2.11). Ground and standing surface albedo contributions however (Figure 4.4.), affect the reflected direct UV irradiance which is not necessarily vertically incident upon a horizontal plane and are therefore not included in the Figure 4.10 and Figure 4.11 playground exposure representations. Essentially, the radiation that is vertically incident on a horizontal plane was considered by the horizontal plane UV irradiance model employed for this research (a 1-sided plane). Direct contributions to the UV irradiance due to reflections from playground surfaces did not influence the horizontal plane exposure model but will however influence estimates of human body surface exposure in the playground as stray reflections which have been estimated in Figure 4.4.



Figure 4.10: Total erythemal UV exposure received on a horizontal plane for 21 June 2008.



Figure 4.11: Total erythemal UV exposure received on a horizontal plane for 21 December 2008.

#### 4.8 Playground model summary statistics

Table 4.3 summarizes the albedo, shade density, and modelled UV exposure determined at each of the 822 playground study sites by region categories, 2 to 24 (Figure 4.3). In the table, regions 2 through 14, not shown in Figure 4.3 represent covered areas and verandas associated with each school building (Figure 4.1). Specifically, regions 2

through 14 include under building and covered areas accessible to students including M block (region 2), L block (region 3), C block (region 4), B block (region 5), D block (region 6), G block (region 7), Art (region 8), H block (region 10), the canteen (region 12) and the office administration building (region 14). The complete surface and vertical standing erythemal UV albedo contribution, shade density and erythemal UV exposure model data for both the summer and winter solstice is listed for each of the 822 playground survey sites in Appendix O.

Table 4.3: Arithmetic mean, median and range statistics for site surface erythemal UV albedo, sky view, and erythemal UV exposure subdivided by playground regions 2 through 24.

| Mean       |            |             |              |              |          |             |             |
|------------|------------|-------------|--------------|--------------|----------|-------------|-------------|
| Playground | Erythemal  | Erythemal   | Shade        | Shade        | Sky view | Erythemal   | Erythemal   |
| region     | UV surface | UV standing | density      | density      | (%)      | UV exposure | UV exposure |
|            | albedo     | surface     | 21 June      | 21 Dec       |          | 8:30am to   | 8:30am to   |
|            | (%)        | albedo      | (level: 0-7) | (level: 0-7) |          | 3:05pm      | 3:05pm      |
|            |            | (%)         |              |              |          | 21 June     | 21 Dec      |
|            | 1.0        |             | _            | _            |          | (SED)       | (SED)       |
| Region 2   | 10         | 4           | 7            | 7            | 24       | 2.4         | 8.2         |
| Region 3   | 10         | 6           | 7            | 7            | 7        | 1.1         | 4.2         |
| Region 4   | 10         | 4           | 4            | 6            | 18       | 4.4         | 9.9         |
| Region 5   | 10         | 5           | 4            | 6            | 19       | 4.5         | 12.5        |
| Region 6   | 10         | 2           | 7            | 7            | 5        | 0.8         | 2.7         |
| Region 7   | 10         | 3           | 5            | 6            | 11       | 2.9         | 7.7         |
| Region 8   | 10         | 3           | 7            | 7            | 29       | 3.0         | 10.2        |
| Region 10  | 10         | 5           | 2            | 4            | 33       | 7.8         | 24.6        |
| Region 12  | 10         | 0           | 7            | 7            | 1        | 0.1         | 0.2         |
| Region 14  | 6          | 3           | 6            | 5            | 38       | 4.8         | 25.1        |
| Region 15  | -7         | 2           | 4            | 2            | 60       | 8.8         | 41.1        |
| Region 16  | 7          | 2           | 5            | 3            | 44       | 5.9         | 31.4        |
| Region 17  | 8          | 2           | 5            | 4            | 33       | 4.9         | 22.9        |
| Region 18  | 7          | 3           | 6            | 5            | 25       | 3.4         | 19.2        |
| Region 19  | 1          | 1           | 4            | 3            | 49       | 7.1         | 33.7        |
| Region 20  | 6          | 2           | 4            | 2            | 57       | 8.5         | 40.1        |
| Region 21  | 6          | 2           | 3            | 2            | 64       | 9.7         | 44.4        |
| Region 22  | 5          | 0           | 1            | 1            | 81       | 12.7        | 54.0        |
| Region 23  | 4          | 1           | 2            | 2            | 76       | 11.5        | 46.5        |
| Region 24  | /          | 0           | 0            | 0            | 93       | 15.0        | 61.0        |
| Median     |            |             |              |              |          |             |             |
| Playground | Ervthemal  | Ervthemal   | Shade        | Shade        | Sky view | Ervthemal   | Ervthemal   |
| region     | UV         | UV standing | density      | density      | (%)      | UV exposure | UV exposure |
| 0          | surface    | surface     | 21 June      | 21 Dec       |          | 8:30am to   | 8:30am to   |
|            | albedo     | albedo      | (level: 0-7) | (level: 0-7) |          | 3:05pm      | 3:05pm      |
|            | (%)        | (%)         | . ,          | · · · · ·    |          | 21 June     | 21 Dec      |
|            |            |             |              |              |          | (SED)       | (SED)       |
| Region 2   | 10         | 3           | 7            | 7            | 31       | 3.2         | 10.9        |
| Region 3   | 10         | 6           | 7            | 7            | 5        | 1.5         | 1.8         |
| Region 4   | 10         | 5           | 4            | 6            | 14       | 3.2         | 8.3         |
| Region 5   | 10         | 6           | 3            | 6            | 19       | 5.0         | 15.1        |
| Region 6   | 10         | 0           | 7            | 7            | 3        | 0.4         | 1.1         |
| Region 7   | 10         | 4           | 5            | 6            | 13       | 3.8         | 10.1        |
| Region 8   | 10         | 2.5         | 7            | 7            | 29       | 3.0         | 10.2        |
| Region 10  | 10         | 6           | 1            | 3.9          | 37       | 8.0         | 25.0        |
| Region 12  | 10         | 0           | 7            | 7            | 1        | 0.1         | 0.4         |
| Region 14  | 6          | 2           | 6            | 4.5          | 39       | 4.8         | 25.0        |

| Region 15  | 7          | 0           | 4            | 1            | 64       | 9.6         | 45.7        |
|------------|------------|-------------|--------------|--------------|----------|-------------|-------------|
| Region 16  | 7          | 0           | 6            | 3            | 48       | 5.5         | 31.6        |
| Region 17  | 7          | 0           | 6            | 4            | 30       | 3.9         | 23.0        |
| Region 18  | 6          | 1.5         | 7            | 5            | 23       | 2.6         | 18.1        |
| Region 19  | 7          | 0           | 5            | 2.4          | 58       | 8.2         | 38.9        |
| Region 20  | 4          | 0           | 4            | 2            | 58       | 8.4         | 43.9        |
| Region 21  | 4          | 0           | 2.8          | 1            | 68       | 10.6        | 48.7        |
| Region 22  | 4          | 0           | 0            | 0            | 85       | 14.1        | 57.5        |
| Region 23  | 4          | 0           | 2            | 2            | 80       | 11.6        | 44.2        |
| Region 24  | 7          | 0           | 0            | 0            | 94       | 15.2        | 61.3        |
|            |            |             |              |              |          |             |             |
| Range      |            |             |              |              |          |             |             |
| Playground | Erythemal  | Erythemal   | Shade        | Shade        | Sky view | Erythemal   | Erythemal   |
| region     | UV surface | UV standing | density      | density      | (%)      | UV exposure | UV exposure |
|            | albedo     | surface     | 21 June      | 21 Dec       |          | 8:30am to   | 8:30am to   |
|            | (%)        | albedo      | (level: 0-7) | (level: 0-7) |          | 3:05pm      | 3:05pm      |
|            |            | (%)         |              |              |          | 21 June     | 21 Dec      |
|            |            |             |              |              |          | (SED)       | (SED)       |
| Region 2   | 10-10      | 6-3         | 7-7          | 7-7          | 34-5     | 3.5-0.5     | 11.9-1.8    |
| Region 3   | 10-10      | 7-3         | 7-6          | 7-6          | 14-3     | 2.1-0.3     | 10.6-1.1    |
| Region 4   | 10-10      | 7-0         | 7-0          | 7-4          | 37-2     | 9.1-0.3     | 26.1-0.7    |
| Region 5   | 10-10      | 9.5-0       | 7-0          | 7-3          | 45-1     | 9.2-0.1     | 36.0-0.4    |
| Region 6   | 10-10      | 8-0         | 7-5          | 7-4          | 24-0     | 3.6-0.0     | 22.6-0.0    |
| Region 7   | 10-10      | 4-2         | 7-4          | 7-6          | 14-7     | 4.1-0.7     | 10.4-2.5    |
| Region 8   | 10-10      | 3-2         | 7-7          | 7-7          | 32-26    | 3.3-2.7     | 11.2-9.1    |
| Region 10  | 10-10      | 6-4         | 5.7-0        | 7-3          | 43-17    | 10.3-3.4    | 35.7-6.0    |
| Region 12  | 10-10      | 0-0         | 7-7          | 7-7          | 1-0      | 0.1-0.0     | 0.4-0.0     |
| Region 14  | 7-4        | 7-0         | 7-5          | 5-4          | 41-33    | 5.5-4.2     | 29.9-20.4   |
| Region 15  | 10-4       | 11-0        | 7-0          | 7-0          | 90-4     | 14.5-0.4    | 60.2-1.4    |
| Region 16  | 10-4       | 9-0         | 7-0          | 7-0          | 76-0     | 13.1-0.0    | 55.3-0.0    |
| Region 17  | 10-4       | 9-0         | 7-1          | 7-0          | 76-2     | 13.1-0.2    | 54.8-0.7    |
| Region 18  | 10-4       | 9-0         | 7-0          | 7-0          | 66-0     | 12.1-0.0    | 51.5-0.0    |
| Region 19  | 10-4       | 8-0         | 7-0          | 7-0          | 80-1     | 13.7-0.1    | 56.2-0.4    |
| Region 20  | 10-4       | 11-0        | 7-0          | 7-0          | 88-13    | 14.5-2.5    | 59.2-4.6    |
| Region 21  | 10-4       | 11-0        | 7-0          | 6.2-0        | 86-17    | 14.3-3.6    | 58.2-9.2    |
| Region 22  | 10-4       | 9-0         | 7-0          | 5-0          | 97-30    | 15.4-3.4    | 62.0-22.6   |
| Region 23  | 4-4        | 9-0         | 4-0          | 4-0          | 92-44    | 14.9-6.3    | 60.3-23.5   |
| Region 24  | 7-7        | 0-0         | 1.9-0        | 0-0          | 96-88    | 15.4-14.1   | 62.0-59.2   |

The mean  $UV_{ery}$  playground exposure determined for each region 2 through 24 is given also in Figure 4.12. From the data presented in the table and Figure 4.12 it can be seen that region 24, the bitumen basketball courts had the highest UV exposure during both the winter and summer solstice periods. The lowest playground UV exposures were modelled for region 12 (underneath the canteen veranda). This site although surfaced by concrete has very low sky views ranging from between 0% and 1%. The lowest modelled exposure determined for a playground region not located underneath a building or veranda was found to occur at region 18, which is predominately covered with trees. From the data presented in Table 4.3, it can be seen that sky view plays the most important role in influencing the modelled playground UV exposure. Figure 4.13 plots the mean sky view versus the modelled horizontal plane UV<sub>ery</sub> exposure for 21 December 2008 at each of the 822 playground sites. The high correlation between sky view and modelled exposure ( $R^2 = 0.93$ ) indicates further that playground sky view is a significant factor influencing playground exposures.



Figure 4.12: Column chart of mean erythemally effective UV exposure modelled for 21 June 2008 (dark blue columns) and 21 December 2008 (light blue columns). Error bars show the standard deviation in region exposure.

From Figure 4.13, a broader range in modelled UV exposure can be observed in middle sky view ranges. A plausible explanation for this is due to the increasingly variable nature of middle sky view environments compared to those with either high or low sky views. High sky view environments for example are open environments that are less likely to be affected by changing shade patterns throughout the day. Low sky view environments are those surrounded by a higher density of buildings and playground surface objects and are therefore those environments more likely to be in full shade during the day and therefore those environments that experience little variation in modelled UV exposure.



Figure 4.13: Measured site sky view versus modelled summer solstice UV<sub>erv</sub>.

## 4.9 Significance of the playground model

The horizontal plane UV irradiance modelled for the HBSHS school playground demonstrates that variations in the incident UV irradiance are affected by sky view, shading by playground surface structures and the albedo of playground structures and surfaces. The techniques presented to model these influences presented here have been based on measurements of each of these factors. The techniques discussed, when applied to other playgrounds and outdoor environments may be used to provide an assessment of variations in the incident horizontal plane UV. Models of the horizontal plane playground UV may be further extended by weighting to body surface exposures. In this way an assessment of human exposure to UV due to influences in the playground environment can be made.

# CHAPTER 5 STUDENT EXPOSURE IN THE PLAYGROUND

The modelled erythemally effective UV exposure incident in the playground environment provides a valuable tool that can be used to asses the protective influence of playground structures with daily and seasonal variation in solar elevation. Playground exposures weighted to unprotected skin surfaces of the body extend the value of the playground exposure model in assessing the risks placed upon students using the playground environment. In this chapter the risks of exposure to potentially harmful solar UV to students using the playground environment are assessed over the short term for different regions of the playground and over the long term to provide an estimate of the body surfaces that are likely to receive the greatest proportion of incident solar UV due to incidental exposures received while at school. Measurements of exposure to children using the model school environment are provided to asses the suitability of the approaches applied to model body surface exposures. The movements of children about the school environment recorded over a five month survey period are used to estimate incidental daily exposures that occur due to the outdoor behavioural patterns observed in the measured school population.

#### 5.1 Measurements of student body surface exposure in the playground

A total of 147 measurements of personal erythemally effective UV exposures (UVE) were taken using miniaturised polysulphone dosimeters in a small cohort of the student population at HBSHS. Details of personal movements about the school playground and the measured UVE for each of the face, neck, arm, hand and leg body sites are given in Table 5.1 for the February to June measurement period. Dosimeters placed by children on the skin were located in a variety of places within each of the classified face, neck, arm, hand and leg areas but were limited to the forehead, nose, cheek, and chin for the face, the thigh just above the knee, the shin and upper foot for the leg, the outer surfaces of the upper arm and lower forearm, the back of the hand and the side and center of the

back of the neck. Playground sites, noted by student participants for each measurement day were coded according to the playground regions specified in Figure 4.3. Playground regions were further subdivided into one of four categories including, indoors; shaded outdoor locations located near buildings; unshaded outdoor locations located near buildings; and open unshaded locations (Table 5.2). The calibrated UVE listed in Table 5.1 was determined using the dosimeter calibration curves (Appendix B) whereby exposure measured between 5 February and 31 March used calibration curve B.1, exposures measured between 1 April and 30 April used calibration curve B.2, and exposures measured between 1 May and 4 June used calibration curve B.3. Daily exposures include the calibrated dosimeter uncertainty of  $\pm 26\%$ . Given exposures were calibrated under clear sky conditions, there is an increased uncertainty in the calibrated personal exposures presented for high cloud cover ranges due to the increased proportion of UVB present under such conditions. Aerosol, particulate density and the time of day during which students were exposed will also influence the calibrated exposures presented which were determined in this case from the clear sky calibration curves presented in Appendix B.1.

Table 5.1: Personal UVE measured in the school population between 5 February and 4June 2008. Data in the table is subdivided by body site and playground region.

| Summer calib | oration 5 Fel | bruary 2008 | to 31 Mar | rch 2008      |        |        |                        |              |                   |        |                 |
|--------------|---------------|-------------|-----------|---------------|--------|--------|------------------------|--------------|-------------------|--------|-----------------|
|              |               |             |           |               |        | Regi   | on location in the Sch | ool Playgrou | ınd               |        |                 |
| Body site    | Date          | Mean        | Hat       | Before school | Per. 1 | Per. 2 | First break            | Per. 3       | Second break      | Per. 4 | Total           |
|              |               | cloud       | type      | 8:30 to 9:00  | 9:00   | 10:15  | 11:25 to 12:05         | 12:05        | 13:15 to 13:55    | 13:55  | Exposure        |
|              |               | cover       |           |               | to     | to     |                        | to           |                   | to     | (SED)           |
|              |               | (okta)      |           |               | 10:10  | 11:25  |                        | 13:15        |                   | 15:05  |                 |
| arm          | 5/02          | 8/8         | none      | 12            | 1      | 1      | 6,17                   | 1            | 6                 | 1      | $0.5 \pm 0.1$   |
| arm          | 5/02          | 8/8         | none      | 12            | 1      | 1      | 6                      | 1            | 6                 | 1      | $0.5 \pm 0.1$   |
| arm          | 5/02          | 8/8         | none      | 12            | 1      | 1      | 1                      | 1            | 3                 | 1      | NA              |
| arm          | 5/02          | 8/8         | none      | 12            | 1      | 1      | 3                      | 1            | 3                 | 1      | $0.5 \pm 0.1$   |
| arm          | 5/02          | 8/8         | none      | 12,17         | 1      | 1      | 17                     | 1            | 17                | 1      | $0.6 \pm 0.1$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 18,1                   | 1            | 18                | 1      | $0.9 \pm 0.2$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 6                      | 1            | 22                | 1      | $1.3 \pm 0.3$   |
| arm          | 6/02          | 7/8         | none      | 12,3          | 1      | 1      | 2                      | 1            | 2                 | 1      | $1.7 \pm 0.4$   |
| arm          | 6/02          | 7/8         | none      | 12,2          | 1      | 1      | 16,17,22               | 1            | 16,17,22,23,24,15 | 1      | $3.1 \pm 0.8$   |
| arm          | 6/02          | 7/8         | cap       | 12            | 1      | 1      | 1                      | 1            | 12                | 1      | $0.9 \pm 0.2$   |
| arm          | 6/02          | 7/8         | none      | 12,20         | 1      | 25     | 20                     | 1            | 20                | 1      | $2.6 \pm 0.7$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 3                      | 1            | 1                 | 1      | $1.0 \pm 0.3$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 9                      | 11           | 9                 | 1      | $5.2 \pm 1.4$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 22                     | 1            | 12                | 1      | $1.5 \pm 0.4$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 12,22                  | 1            | 12,22             | 1      | $2.9 \pm 0.8$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 10,19                  | 1            | 10,19             | 1      | $5.0 \pm 1.3$   |
| arm          | 6/02          | 7/8         | none      | 12,1          | 1      | 1      | 3                      | 1            | 1,14,8            | 1      | $0.7 \pm 0.2$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 16                     | 1            | 22                | 1      | $2.7 \pm 0.7$   |
| arm          | 6/02          | 7/8         | NA        | 12            | 1      | 1      | 16                     | 1            | 16                | 1      | $1.4 \pm 0.4$   |
| arm          | 6/02          | 7/8         | none      | 12,18         | 1      | 1      | 1                      | 1            | 1                 | 1      | $0.5 \pm 0.1$   |
| arm          | 6/02          | 7/8         | none      | 12            | 1      | 1      | 6                      | 1            | 6                 | 1      | $1.2 \pm 0.3$   |
| arm          | 6/02          | 7/8         | none      | 1             | 22,1   | 1      | 1,18                   | 1            | 1,18              | 1,18   | $0.1 \pm 0.0$   |
| upper arm    | 7/02          | 0           | none      | 16,12         | 1      | 1      | 1                      | 1            | 1                 | 1      | $0.2 \pm 0.0$   |
| upper arm    | 8/02          | 0           | none      | 19,18,17,12   | 1      | 1      | 17,18                  | 1            | 1                 | 1      | $1.2 \pm 0.3$   |
| upper arm    | 15/02         | 0           | NA        | 21            | 21     | 21     | 21                     | 21           | 21                |        | $15.8 \pm 4.1$  |
| face vertex  | 15/02         | 0           | NA        | 21            | 21     | 21     | 21                     | 21           | 21                |        | $39.7 \pm 10.3$ |
| face vertex  | 15/02         | 0           | NA        | 21            | 21     | 21     | 21                     | 21           | 21                |        | $39.6 \pm 10.3$ |
| face vertex  | 15/02         | 0           | NA        | 21            | 21     | 21     | 21                     | 21           | 21                |        | $32.0\pm8.3$    |
| upper arm    | 15/02         | 0           | NA        | 21            | 21     | 21     | 21                     | 21           | 21                |        | $12.3 \pm 3.2$  |
| face vertex  | 15/02         | 0           | NA        | 21            | 21     | 21     | 21                     | 21           | 21                |        | $49.8 \pm 12.9$ |

| arm        | 15/02 | 0     | none | 21      | 21    | 21    | 21       | 21 | 21      |      | $4.9 \pm 1.3$                  |
|------------|-------|-------|------|---------|-------|-------|----------|----|---------|------|--------------------------------|
| upper arm  | 15/02 | 0     | NA   | 21      | 21    | 21    | 21       | 21 | 21      |      | $38.7 \pm 10.1$                |
| face cheek | 21/02 | 0-4/8 | none | 12      | 11    | 1     | 16       | 1  | 1       | 22   | $3.5 \pm 0.9$                  |
| face       | 21/02 | 0-4/8 | NA   | 12,15   | 25    | 1     | 18       | 1  | 18      | 22   | $5.0 \pm 1.3$                  |
| neck front | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 6        | 1  | 6       | 1    | $1.6 \pm 0.4$                  |
| face       | 21/02 | 0-4/8 | none | 12      | 22,2  | 11    | 22,23    | 1  | 23      | 1    | $2.5 \pm 0.7$                  |
| face cheek | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 12       | 1  | 1,12    | 22   | $3.2 \pm 0.8$                  |
| face cheek | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 1        | 1  | 1       | 1    | $0.5 \pm 0.1$                  |
| face cheek | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 1        | 1  | 1       | 1    | $0.4 \pm 0.1$                  |
| face cheek | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 1        | 1  | 19      | 1    | $1.5 \pm 0.4$                  |
| face       | 21/02 | 0-4/8 | NA   | 12      | 1     | 11    | 15.16.17 | 1  | 19      | 1    | $6.9 \pm 1.8$                  |
| neck front | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 10       | 1  | NA      | NA   | $0.4 \pm 0.1$                  |
| face cheek | 21/02 | 0-4/8 | none | 12      | 1     | 1     | 22       | 1  | NA      | 22   | $7.2 \pm 1.9$                  |
| forearm    | 27/02 | 0     | none | 12.17   | 1     | 22    | 17       | 1  | 1       | 1    | $5.6 \pm 1.5$                  |
| forearm    | 27/02 | Ő     | none | 12      | 1     | 1     | 1        | 1  | 1       | 1    | $0.5 \pm 0.1$                  |
| upper arm  | 27/02 | Ő     | cap  | 12.18.6 | 1     | 1     | 19       | 25 | 19      | 1    | $6.6 \pm 1.7$                  |
| forearm    | 27/02 | Ő     | none | 12.6    | 1     | 1     | 8        | 1  | 5       | 1    | $24 \pm 0.6$                   |
| arm        | 27/02 | Ő     | none | 12,0    | 1     | 1     | 16       | 1  | 1 22 16 | 1    | $2.1 \pm 0.0$<br>$2.5 \pm 0.7$ |
| arm        | 27/02 | Ő     | none | 12      | 1     | 1     | NA       | 1  | 1       | 1    | $15 \pm 0.4$                   |
| hand back  | 28/02 | 7/8   | can  | 12 17   | 1     | 25 22 | 1        | 1  | 1       | NA   | $88 \pm 23$                    |
| hand back  | 28/02 | 7/8   | none | 12,17   | 1     | 1 22  | 1        | 1  | 1       | NA   | $29 \pm 0.8$                   |
| hand back  | 28/02 | 7/8   | none | 12 3    | 1     | 1 22  | 1        | 1  | 1       | 1    | $2.9 \pm 0.0$<br>2.9 ± 0.8     |
| hand back  | 28/02 | 7/8   | none | 12,5    | 1     | 1 22  | 2        | 1  | 10      | 1    | $2.9 \pm 0.0$<br>2.9 ± 0.7     |
| hand back  | 28/02 | 7/8   | none | 12,10   | 25.1  | 1 22  | 12       | 1  | 12      | 1    | $2.0 \pm 0.7$<br>$2.0 \pm 0.5$ |
| hand back  | 28/02 | 7/8   | none | 12      | 25,1  | 1,22  | 12       | 1  | 12      | 1    | $4.0 \pm 0.3$                  |
| hand back  | 28/02 | 7/8   | NA   | 12      | 1     | 1,22  | 12       | 1  | 12      | 21   | $4.0 \pm 1.1$<br>5.0 ± 1.5     |
| hand back  | 28/02 | 7/9   | nono | 12 16   | 1     | 1,22  | 2        | 1  | 10      | 21   | $5.7 \pm 1.5$                  |
| forcorm    | 6/02  | 1/0   | none | 12,10   | 1     | 1,22  | 12.16    | 1  | 12.16   | 2.5  | $0.2 \pm 1.0$<br>2.5 ± 0.7     |
| Log chip   | 6/03  | 4/0   | none | 12,15   | 25    | 1     | 22       | 1  | 12,10   | 1 22 | $2.3 \pm 0.7$                  |
| Leg shin   | 6/03  | 4/0   | wide | 12 16   | 23    | 1     | 1        | 1  | 12,10   | 22   | $4.2 \pm 1.1$                  |
| Leg sinn   | 6/02  | 4/0   | none | 12,10   | 1     | 1     | 1        | 1  | 10      | 1    | $3.6 \pm 1.3$                  |
| Leg 100t   | 6/03  | 4/0   | none | 12,0    | 25    | 1     | 1 22     | 1  | 12 22   | 1    | $2.7 \pm 0.7$<br>$5.1 \pm 1.2$ |
| Leg thigh  | 6/03  | 4/0   | cap  | 12      | 23    | 1     | 1        | 1  | 12,22   | 22   | $3.1 \pm 1.3$<br>$4.6 \pm 1.2$ |
| Leg Ioot   | 6/03  | 4/0   | NA   | 12      | 1     | 1     | 12       | 1  | 12      | 1    | $4.0 \pm 1.2$                  |
| Leg        | 6/03  | 4/0   | INA  | 12      | 23,1  | 1     | 12       | 1  | 12      | 1    | $3.3 \pm 0.9$                  |
| Leg sinn   | 6/03  | 4/0   | NA   | 12,24   | 1     | 1     | 15       | 1  | 24      | 1    | $5.1 \pm 0.8$                  |
| Leg        | 0/05  | 4/0   | INA  | 12      | 1     | 1     | 13       | 1  | 1       | 1    | $1.0 \pm 0.3$                  |
| Leg shin   | 6/03  | 4/0   | none | 12,0    | 1     | 1     | 10       | 1  | 19      | 1    | $5.7 \pm 1.0$                  |
| Leg sinn   | 0/05  | 4/0   | none | 12,0    | 1     | 1     | 1        | 1  | 19      | 23   | $4.3 \pm 1.2$                  |
| Iorearm    | 6/03  | 4/8   | none | 12,1    | 1     | 1     | 10       | 1  | 1       | 1    | $3.4 \pm 0.9$                  |
| Leg thigh  | 6/03  | 4/8   | none | 12      | 25    | 1     | 22       | 1  | 1       | 1    | $4.2 \pm 1.1$                  |
| forearm    | 0/03  | 4/8   | NA   | 12      | 1     | 1     | 10       | 1  | 10      | 1    | $2.3 \pm 0.6$                  |
| hand back  | 7/03  | 4/8   | none | 12      | 1     | 1     | 9        | 1  | 9       | 1    | $1.2 \pm 0.3$                  |
| Leg snin   | 7/03  | 4/8   | none | 12      | 1     | 1     | 9        | 1  | 9       | 1    | $1.7 \pm 0.5$                  |
| hand       | 7/03  | 4/8   | none | 12      | 1     | 1     | 15       | 1  | 1       | 1    | $1.9 \pm 0.5$                  |
| Leg shin   | 1/03  | 4/8   | none | 12,15   | 1     | 1     | 16       | 1  | 22      | 22   | 7.2 ± 1.9                      |
| forearm    | 13/03 | NA    | none | 12,15   | 1     | 1     | 16       | 1  | 16,23   | 1    | $3.9 \pm 1.0$                  |
| forearm    | 13/03 | NA    | none | 12      | 1     | 1     | NA       | 1  | 10      | 1    | $4.1 \pm 1.1$                  |
| forearm    | 13/03 | NA    | none | 12      | 25,11 | 1     | 18       | 1  | 18      | 22   | $11.7 \pm 3.0$                 |
| arm        | 13/03 | NA    | none | 12      | 1     | 1     | 12       | 1  | 1       | 1    | $2.7 \pm 0.7$                  |
| arm        | 13/03 | NA    | none | 12      | 25    | 1     | 22       | 1  | 22      | 22   | $9.0 \pm 2.4$                  |
| arm        | 13/03 | NA    | NA   | 12      | 1     | 1     | 23       | 1  | 23      | 1    | $3.3 \pm 0.9$                  |
| forearm    | 13/03 | NA    | none | 12      | 1     | 1     | 1        | 1  | 1       | 25   | $4.4 \pm 1.1$                  |
| arm        | 13/03 | NA    | none | 12      | 1     | 1     | 16       | 1  | 1       | 1    | $2.5 \pm 0.6$                  |
| neck       | 26/03 | NA    | NA   | 12,7    | 1     | 1     | 7        | 1  | 7       | 1    | $2.9 \pm 0.7$                  |
| neck       | 26/03 | NA    | none | 12      | 1     | 1     | 7        | 1  | 7       | 1    | $3.8 \pm 1.0$                  |
| neck       | 26/03 | NA    | none | 12,16   | 1     | 1     | 23       | 1  | 1       | 1    | $2.2 \pm 0.6$                  |
| neck       | 26/03 | NA    | none | 12,6    | 1     | 25    | 19       | 1  | 1       | 1    | $4.6 \pm 1.2$                  |

|            |       |                                  |             |                                     |                                    | Reg                                 | ion location in the Se        | chool Playgro                       | ound                           |                                     |                            |
|------------|-------|----------------------------------|-------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|--------------------------------|-------------------------------------|----------------------------|
| Body site  | Date  | Mean<br>cloud<br>cover<br>(okta) | Hat<br>type | Before<br>school<br>8:30 to<br>9:00 | Period<br>1<br>9:00<br>to<br>10:10 | Period<br>2<br>10:15<br>to<br>11:25 | First break<br>11:25 to 12:05 | Period<br>3<br>12:05<br>to<br>13:15 | Second break<br>13:15 to 13:55 | Period<br>4<br>13:55<br>to<br>15:05 | Total<br>Exposure<br>(SED) |
| neck       | 3/04  | NA                               | NA          | 12                                  | NA                                 | NA                                  | NA                            | NA                                  | NA                             | NA                                  | 1.1 ± 0.3                  |
| neck       | 3/04  | NA                               | NA          | 12                                  | NA                                 | NA                                  | NA                            | NA                                  | NA                             | NA                                  | $1.4 \pm 0.4$              |
| forearm    | 3/04  | NA                               | NA          | 12                                  | 1                                  | 25                                  |                               |                                     |                                |                                     | $3.1 \pm 0.8$              |
| forearm    | 3/04  | NA                               | NA          | 12                                  | 1                                  | 25                                  |                               |                                     |                                |                                     | $2.9 \pm 0.7$              |
| lower arm  | 3/04  | NA                               | NA          | 12                                  | 1                                  | 1                                   | NA                            | 1                                   | NA                             | 1                                   | $1.2 \pm 0.3$              |
| ower arm   | 3/04  | NA                               | NA          | 12                                  | 1                                  | 1                                   | NA                            | 1                                   | NA                             | 1                                   | $0.8 \pm 0.2$              |
| upper arm  | 3/04  | NA                               | none        | 12                                  | 1                                  | 1                                   | 3                             | 1                                   | 3                              | 1                                   | $0.8 \pm 0.2$              |
| forearm    | 3/04  | NA                               | none        | 12                                  | 1                                  | 1                                   | 3                             | 1                                   | 3                              | 1                                   | $0.8 \pm 0.2$              |
| forearm    | 16/04 | 1/8-5/8                          | NA          | 12                                  | 1                                  | 1                                   | 22                            | 25                                  | 22                             | 1                                   | $4.3 \pm 1.1$              |
| forearm    | 16/04 | 1/8-5/8                          | NA          | 12                                  | 1                                  | 1                                   | 18                            | 1                                   | 18                             | 1                                   | $1.2 \pm 0.3$              |
| ace vertex | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                                  | 1                                   | 1                             | 25                                  | 1                              | 1                                   | $6.8 \pm 1.8$              |
| Leg shin   | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                                  | 1                                   | 1                             | 25                                  | 1                              | 1                                   | $1.7 \pm 0.4$              |
| hand back  | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                                  | 1                                   | 7                             | 1                                   | 7                              | 1                                   | $1.1 \pm 0.3$              |
| Leg shin   | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                                  | 1                                   | 7                             | 1                                   | 7                              | 1                                   | $1.2 \pm 0.3$              |
| arm        | 16/04 | 1/8-5/8                          | cap         | 12,16                               | 1                                  | 1                                   | 2                             | 11                                  |                                |                                     | $4.6 \pm 1.2$              |
| hand back  | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                                  | 25                                  | 19                            | 1                                   | 19                             | 1                                   | $4.2 \pm 1.1$              |
| forehead   | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                                  | 25                                  | 19                            | 1                                   | 19                             | 1                                   | $3.4 \pm 0.9$              |
| hand back  | 17/04 | 7/8-2/8                          | none        | 12,15                               | 1                                  | 1                                   | 15                            | 1                                   | 1                              | 1                                   | $0.4 \pm 0.1$              |
| hand back  | 17/04 | 7/8-2/8                          | none        | 12,15                               | 1                                  | 1                                   | 15                            | 1                                   | 1                              | 1                                   | $0.9 \pm 0.2$              |
| hand back  | 17/04 | 7/8-2/8                          | NA          | 12                                  | NA                                 | NA                                  | NA                            | NA                                  | NA                             | NA                                  | $0.8 \pm 0.2$              |
| hand back  | 17/04 | 7/8-2/8                          | NA          | 12                                  | NA                                 | NA                                  | NA                            | NA                                  | NA                             | NA                                  | $0.8 \pm 0.2$              |
| and back   | 17/04 | 7/8-2/8                          | none        | 12                                  | 1                                  | 25                                  | 18                            | 1                                   | 17                             |                                     | $3.7 \pm 1.0$              |
| Leg shin   | 17/04 | 7/8-2/8                          | none        | 12                                  | 1                                  | 25                                  | 18                            | 1                                   | 17                             |                                     | $2.0 \pm 0.5$              |
| hand back  | 17/04 | 7/8-2/8                          | none        | 12                                  | 1                                  | 1                                   | 2                             | 1                                   | 6                              | 1                                   | $0.9 \pm 0.2$              |
| hand back  | 17/04 | 7/8-2/8                          | none        | 12,6                                | 1                                  | 1                                   | 1                             | 1                                   | 1                              | 25                                  | $0.5 \pm 0.1$              |
| hand wrist | 23/04 | 4/8                              | NA          |                                     |                                    | 22                                  | 22                            | 22                                  | 22                             | 22                                  | $1.1 \pm 0.3$              |
| forearm    | 23/04 | 4/8                              | NA          |                                     |                                    | 1                                   | 18                            | 22                                  | 22                             | 22                                  | $1.1 \pm 0.3$              |

| forearm    | 23/04 | 4/8   | NA   |       |   | 1  | 18 | 22 | 22 | 22 | $1.6 \pm 0.4$ |
|------------|-------|-------|------|-------|---|----|----|----|----|----|---------------|
| forearm    | 23/04 | 4/8   | NA   |       |   | 25 | 1  | 22 | 22 | 22 | $2.5 \pm 0.7$ |
| forearm    | 23/04 | 4/8   | NA   |       |   | 1  | 18 | 22 | 22 | 22 | $1.4 \pm 0.4$ |
| forearm    | 23/04 | 4/8   | NA   |       |   | 1  | 18 | 22 | 22 | 22 | $1.4 \pm 0.4$ |
| forearm    | 23/04 | 4/8   | NA   |       |   | 1  | 15 | 22 | 22 | 22 | $1.3 \pm 0.3$ |
| face cheek | 30/04 | 4-2/8 | none | 12    | 1 | 25 | 1  | 1  | 1  | 1  | $0.6 \pm 0.2$ |
| face cheek | 30/04 | 4-2/8 | none | 12    | 1 | 25 | 1  | 1  | 1  | 1  | $0.7 \pm 0.2$ |
| neck side  | 30/04 | 4-2/8 | none | 12    | 1 | 1  | 1  | 1  | 1  | 1  | $1.2 \pm 0.3$ |
| forearm    | 30/04 | 4-2/8 | none | 12    | 1 | 1  | 1  | 1  | 1  | 1  | $0.3 \pm 0.1$ |
| neck side  | 30/04 | 4-2/8 | none | 12,16 | 1 | 1  | 20 | 1  | 20 | 1  | $3.0 \pm 0.8$ |

|           |       |                                  |             |                                     |                                    | Reg                                 | ion location in the Se        | chool Playgro                       | ound                           |                                     |                            |
|-----------|-------|----------------------------------|-------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|--------------------------------|-------------------------------------|----------------------------|
| Body site | Date  | Mean<br>cloud<br>cover<br>(okta) | Hat<br>type | Before<br>school<br>8:30 to<br>9:00 | Period<br>1<br>9:00<br>to<br>10:10 | Period<br>2<br>10:15<br>to<br>11:25 | First break<br>11:25 to 12:05 | Period<br>3<br>12:05<br>to<br>13:15 | Second break<br>13:15 to 13:55 | Period<br>4<br>13:55<br>to<br>15:05 | Total<br>Exposure<br>(SED) |
| hand back | 1/05  | 0-5/8                            | none        | 12,16                               | 1                                  | 1                                   | 2                             | 1                                   | 7                              | NA                                  | $0.1 \pm 0.0$              |
| neck side | 1/05  | 0-5/8                            | none        | 12,1                                | 1                                  | 1                                   | 1                             | 1                                   | 1                              | 1                                   | $0.1 \pm 0.0$              |
| neck side | 1/05  | 0-5/8                            | none        | 12,1                                | 1                                  | 1                                   | 1                             | 1                                   | 1                              | 1                                   | $0.4 \pm 0.1$              |
| and back  | 1/05  | 0-5/8                            | none        | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | NA                                  | $0.2 \pm 0.1$              |
| and back  | 1/05  | 0-5/8                            | none        | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | NA                                  | $0.2 \pm 0.0$              |
| and back  | 1/05  | 0-5/8                            | none        | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | 1                                   | $0.4 \pm 0.1$              |
| orehead   | 1/05  | 0-5/8                            | none        | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | 1                                   | $0.1 \pm 0.0$              |
| rm        | 15/05 | 4/8                              | none        | 12                                  | 25,1                               | 1                                   | 22                            | 1                                   | 1                              | 1                                   | $2.0 \pm 0.5$              |
| rm        | 15/05 | 4/8                              | cap         | 12                                  | 1                                  | 1                                   | 1                             | 25                                  | 16                             | 1                                   | $1.7 \pm 0.4$              |
| rm        | 15/05 | 4/8                              | cap         | 12                                  | 1                                  | 1                                   | 1                             | 25                                  | 16                             | 1                                   | $1.0 \pm 0.3$              |
| rm        | 15/05 | 4/8                              | none        | 12                                  | 1                                  | 1                                   | 22                            | 1                                   | 22                             | 1                                   | $1.6 \pm 0.4$              |
| orearm    | 15/05 | 4/8                              | none        | 12                                  | 1                                  | 1                                   | 22                            | 1                                   | 22                             | 1                                   | $1.6 \pm 0.4$              |
| and back  | 15/05 | 4/8                              | none        | 12,16                               | 1                                  | 1                                   | 1                             | 1                                   | 17                             | NA                                  | $0.2 \pm 0.1$              |
| and back  | 15/05 | 4/8                              | none        | 12,16                               | 1                                  | 1                                   | 1                             | 1                                   | 17                             | NA                                  | $0.3 \pm 0.1$              |
| and back  | 15/05 | 4/8                              | none        | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | NA                                  | $0.0 \pm 0.0$              |
| and back  | 15/05 | 4/8                              | none        | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | NA                                  | $0.3 \pm 0.1$              |
| and back  | 21/05 | 0                                | none        | 12                                  | 1                                  | 1                                   | 19                            | 1                                   | 19                             | 1                                   | $1.3 \pm 0.3$              |
| and back  | 21/05 | 0                                | none        | 12                                  | 1                                  | 1                                   | 1                             | NA                                  | NA                             | NA                                  | $2.6 \pm 0.7$              |
| and back  | 21/05 | 0                                | NA          | 12                                  | 1                                  | 1                                   | 1                             | 1                                   | 1                              | 1                                   | $0.8 \pm 0.2$              |
| and back  | 21/05 | 0                                | none        | 12                                  | 1                                  | 1                                   | 10                            | 22                                  | 10                             | 1                                   | $0.2 \pm 0.1$              |
| and back  | 21/05 | 0                                | cap         | 12                                  | 1                                  | 1                                   | 2                             | 25                                  | 2                              | 1                                   | $0.5 \pm 0.1$              |
| and back  | 21/05 | 0                                | none        | 12,16                               | 1                                  | 1                                   | 3                             | NA                                  | NA                             | NA                                  | $0.3 \pm 0.1$              |
| and back  | 4/06  | 6/8-2/8                          | none        | 12                                  | 1                                  | 25                                  | 3                             | 1                                   | 3                              | 1                                   | $0.6 \pm 0.2$              |
| and back  | 4/06  | 6/8-2/8                          | none        | 12                                  | 1                                  | 1                                   | 1                             | 25                                  | 15                             | 1                                   | $1.8 \pm 0.5$              |

# Table 5.2: School playground regions.

| Insid                           | le                                                                  |                                                             | 1                                                             | Near t                                                          | ouildii                                                       | ngs ar                                                                  | nd sha                                                    | ided f                                                            | rom d                                                                      | lirect                                                   | sunlig                                               | ght                                                  |                                                     | sh                                                           | Near<br>aded                                                    | build<br>from                                          | ings a<br>direct                                                 | und no<br>t sunli                                                 | ot<br>ight                                            |                  | op               | en are                | eas                                     |                         |
|---------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|------------------|------------------|-----------------------|-----------------------------------------|-------------------------|
| Region 1 - Indoors or Classroom | Region 2 - Under Building or Covered Area - M block (Maths/Science) | Region 3 - Under Building or Covered Area – L block (Music) | Region 4 - Under Building or Covered Area – C block (Home Ec) | Region 5 - Under Building or Covered Area - B block (Computers) | Region 6 - Under Building or Covered Area – D block (Chinese) | Region 7 - Under Building or Covered Area – G block (First Year Centre) | Region 8 - Under Building or Covered Area - G block (Art) | Region 9 - Under Building or Covered Area - F block (Manual Arts) | Region 10 - Under Building or Covered Area - H block (Manual Arts / Drama) | Region 11 - Under Building or Covered Area – Agriculture | Region 12 - Under Building or Covered Area – Canteen | Region 13 - Under Building or Covered Area – Library | Region 14 - Under Building or Covered Area - Office | Region 15 - Near Buildings Science / Music / Maths / C Block | Region 16 - Near Buildings C Block / B Block / Canteen / Office | Region 17 – Near buildings B Block / D block / Library | Region 18 – Near buildings Fist year Centre / Art / Toilet Block | Region 19 – Near buildings Manual Arts / Drama First /Year Centre | Region 20 - Near buildings Library / Great Hall / Art | Region 21 – Pool | Region 22 – Oval | Region 23 – Tree line | Region 24 - Basketball / Netball courts | Region 25 – Agriculture |

#### 5.1.1 Swimming carnival exposure

From Table 5.1, the largest variation in personal UVE exposure recorded over the February to June measurement period occurred on 15 February 2008. This was the date of the school's annual swimming carnival which was run between 9:00am and 2:30pm. For this day, UVE exposures to the arm were recorded at 15.8  $\pm$  4.1 SED, 12.3  $\pm$  3.2 SED,  $4.9 \pm 1.3$  SED and  $38.7 \pm 10.1$  SED. Vertex measurements were also taken during the school swimming carnival measuring  $39.7 \pm 10.3$  SED,  $39.6 \pm 10.3$  SED,  $32.0 \pm 8.3$ SED and  $49.8 \pm 12.9$  SED. Personal UVE exposures measured during the swimming carnival were well in excess of the national occupational limit of exposure to solar UV incident upon the skin or eye which is between approximately 1.1 and 1.4 SED for an 8 hour working day (NHMRC 1989, ARPANSA 2006). Specifically, the occupational exposure limit adopted by the NHMRC (1989) and ARPANSA (2006) standards is that specified by the International Radiation Protection Association (IRPA 1989) and represents a weighted UV exposure of 30 Jm<sup>-2</sup>. The weighted action spectrum for occupational exposure is different from the erythemal weighting used to derive the SED unit (Figure 1.7). As an approximation to the International Commission on Non-Ionizing Radiation Protection (ICNIRP 1999) guidelines for the specific wavelength dependent weighting of the occupational action spectrum adopted by the NHMRC (1989) and ARPANSA (2006) standards, Gies and Wright (2003) relate the CIE (1987) erythemally weighted exposure to the ICNIRP (1999) occupational weighted exposure, giving ratios of 3.5 to 4.5 at mid latitudes (30°S) between 9:00am and 5:00pm. This represents between 105 Jm<sup>-2</sup> (1.05 SED) and 135 Jm<sup>-2</sup> (1.35 SED) of erythemally effective radiation. The lower limit of occupational exposure (105 Jm<sup>-2</sup>) occurs near solar noon and is lower due to the increased relative proportion of ambient UVB at that time and the spectral differences above 300 nm in the ICNIRP (1999) and CIE (1987) weighted spectra.

Measurements of UVE exposures recorded on students placed in an outdoor environment for the entire school day show a significant increase compared to measured exposures recorded over periods during which the normal school routine was observed. It is clearly evident from this data, that consideration and preparation by school authorities should be given to the planning of outdoor school activities that run over an entire day, particularly during summer. The active use of hats, protective clothing, sunscreen and exposure avoidance during periods of peak UV intensity need to be practiced if schools are to meet their obligations in reference to occupational UV exposure standards set out by both the NHMRC (1989) and ARPANSA (2006) standards.

The measured swimming carnival exposure results, while not typical of a student's incidental playground exposure received during a normal school day, highlight the importance of planning and scheduling outdoor events including fun runs and sports carnivals during which there is a high probability of students receiving severe sunburns which is a well recognized risk factor for the later development of melanoma and NMSC. Additional risks, including cumulative exposure to solar UV are present due to the day to day use of the school playground.

#### 5.1.2 Incidental playground exposures

The mean incidental personal UVE playground exposure recorded over the February to June measurement period was  $2.4 \pm 2.1$  SED (1 $\sigma$ ). Mean personal exposures measured over the summer-autumn (5 February to 31 March), mid autumn (1 April to 31 April) and autumn-winter (1 May to 4 June) measurement periods were  $3.1 \pm 2.3$  SED (1 $\sigma$ ), 1.8  $\pm$  1.5 SED (1 $\sigma$ ) and 0.8  $\pm$  0.7 SED (1 $\sigma$ ) respectively. These exposures while averaged over body sites and variations in cloud coverage are significantly lower than exposures measured during the school swimming carnival. Due to the potential for students to spend various amounts of time in the sun during the school day there is also a large variation, evident in the large deviation from the mean exposures quoted above, in measured personal UVE exposure. The frequency distribution of incidental school time UVE exposures measured between February and June 2008 is plotted in Figure 5.1.



Figure 5.1: Frequency distribution of daily personal UVE exposure measured between February and June 2008.

Clearly evident in the above figure are the number of exposures skewed toward the lower daily exposure range, with the greatest number of students receiving incidental playground exposures of between 0.5 and 1.0 SED. The modelled daily horizontal plane playground UV<sub>ery</sub> averaged over each of the 822 survey sites varied from between 8.3  $\pm$ 4.8 SED (1 $\sigma$ ) and 37.3 ± 19.8 SED (1 $\sigma$ ) for the winter and summer solstice respectively. The disparity in the comparison between personal daily UVE exposure and the modelled daily playground UV<sub>ery</sub> is caused by the time students spend in classrooms reducing the total daily playground exposure. The tendency for exposures to be skewed toward the lower end of the exposure range listed in Figure 5.1 also indicates that most students do not spend a significant proportion of the day outdoors. From Table 5.1, students that received exposures ranging from 0 to 0.5 SED were found to spend the majority of the 8:30am to 3:05pm school day in indoor environments. A total of 17 out of the 19 student UVE exposures that had a recorded daily UVE exposure of < 0.5 SED were recorded on students that had spent each of the four teaching periods at the school indoors and every one of the students in this sample range had spent both meal breaks either indoors, under cover or near the school buildings.

In contrast to exposures measured on children spending most of their day indoors, significant incidental UVE exposures were observed for children that spent more than one school teaching or break period in the open outdoor playground environment. The mean personal UVE exposure measured to students spending at least one period of the day in an open environment was  $2.7 \pm 1.8$  SED (1 $\sigma$ ) which increased to a mean exposure of  $3.3 \pm 2.3$  SED (1 $\sigma$ ) for students spending more than one school class or break period in an open environment. The highest daily exposure was measured at a forearm site (11.7 ± 3.0 SED). This exposure was measured to a student that spent 2 class periods in open outdoor environments and had also spent both meal breaks near school buildings. The second highest daily personal UVE exposure (9.0 ± 2.4 SED) was measured on an arm site of a student that had spent 4 out of the 6 school class and break periods on the school oval or agricultural plot. Incidental daily exposures are presented below from the personal exposure data recorded over the February to June measurement period for variation in cloud coverage, season and body measurement site.

#### 5.1.3 Variation in UVE playground exposure with cloud cover

UVE exposures measured with respect to variation in cloud cover are given in figure 5.2. The mean daily UVE exposure measured over the study period and plotted in the figure for variation in cloud cover was averaged across all body sites. In the figure there is a clear association between UVE exposure and school environment. For all cloud cover cases, the UVE exposure increases for students spending more time in less protected playground environments.



Figure 5.2: Mean UVE exposure plotted for students spending time indoors (region 1), near buildings in outdoor environments (regions 2-20), and in open outdoor environments (regions 21-25). Exposures are given for low (0-2 okta), middle (0-5 okta) and high (0-8 okta) cloud cover days and were averaged across all body sites measured in the respective cloud cover ranges. Error bars show the full range of daily UVE exposure for each respective environment and cloud cover case. Only one measurement point was taken for a student using an indoor environment on a high cloud cover day.

All cloud cover cases, averaged over all body sites show the greatest increases in UVE exposure with decreasing protection offered by the school environment. The protection offered by the school environment has a greater influence on personal exposure than cloud cover. It is possible however that increased cloud cover may reduce the influence of protection offered by the school environment as the ambient UV is reduced by absorption due to high levels of cloud cover, particularly cloud cover blocking the direct UV when in front of the solar disc. The maximum decrease in the mean UVE for students located both near buildings and in open playground environments with increasing cloud cover was 0.2 SED. The mean decrease in the personal UVE exposure is within the uncertainty of the calibrated dosimeters of  $\pm 26\%$ . Personal UVE exposures measured in the playground environment therefore indicate that increasing cloud coverage does not reduce personal UVE exposure.

Mean daily UVE exposures exceeded 0.5 SED for students spending the day in protected indoor school environments. A likely explanation for this is due to student movement during the day, particularly at this high school when students were required to move from class to class. For this study, students were required to move between four 70 minute classes per day, meaning students would be required to be in outdoor environments at least 5 times daily, namely: before school; moving from the first class to the second; morning tea time; lunch time; and for a brief period after school. For the school studied in this research, 5 minutes of time is given to students to move from the first class ending at 10:10am to the second starting at 10:15am. Students moving to and from indoor environments at morning tea, lunch and before and after school would add to their personal time spent in an outdoor environment which may not have been necessarily recorded as the main school location noted in the daily student diary. The ARPANSA (2006) standard for occupational exposure to solar ultraviolet states that the daily exposure limit can be exceeded in 10 minutes given a UV index of 8. In summer at sub tropical latitudes the UV index readily exceeds 8 before 9.00am, the implications of which are that students moving between classes during the day may exceed the daily occupational limit even if they spend the majority of the school day in indoor environments.

The range of personal UVE exposures were also increased with increasing time spent in unprotected environments. A likely explanation for the large variation in exposure ranges for students located in outdoor environments may be attributed to students also spending some proportion of the school day in indoor environments. The large range in measured UVE exposure is also due to seasonal variation in the daily UV exposure incident in the playground environment over which the cloud classifications in the figure were produced.

#### 5.1.4 Variation in UVE playground exposure with season

Figure 5.3 shows the variation in grouped personal UVE exposures with season. Students that spent some of their school day outdoors (near playground buildings and in

open environments) received the greatest exposures during the summer-autumn (5 February to 30 March) measurement period. Furthermore, the range in personal UVE exposure was greatest during this period. This is due to the ambient playground UV being higher in summer-autumn than in the autumn-winter or mid autumn period, meaning that students spending more time in the sun receive greater exposures, especially if their time in the sun extends over several periods of the school day. Low personal UVE exposures represented in the summer-autumn exposure range are likely due to the classification of summer-autumn outdoor exposures of students that spent only one period of the school day outdoors. Further variation in the plotted exposure range was due to seasonal groupings being made regardless of the cloud coverage.



Figure 5.3: Mean UVE exposure plotted for students spending time indoors (region 1), near buildings in outdoor environments (regions 2-20), and in open outdoor environments (regions 21-25). Exposures are given for the summer-autumn period (5 February to 30 March), mid autumn (1 April to 30 April) and autumn-winter (1 May to 4 June) and were averaged across all body sites measured in each season range. Error bars show the full range of daily UVE exposure for each respective environment and season. Only one student measurement point was taken in Autumn-Winter near buildings.

Playground exposures received during the autumn-winter and mid autumn are lower than summer-autumn exposures. Mean autumn-winter exposures varied between 0.3 SED to 1.3 SED and showed the lowest variation in personal UVE exposure. As for exposures measured during the summer-autumn period which had a large range in exposure, the low autumn-winter range is due to the ambient UV received during the early winter season. Clearly, outdoor lessons and sporting events scheduled over the winter period could result in significant reductions in personal UVE exposure.

#### 5.1.5 Variation in exposure with body measurement site

Figure 5.4 illustrates the variation in UVE exposure with respect to the body site being measured for the different school playground environments. The mean daily UVE exposure plotted in the figure was averaged over all cloud cover conditions in the study period. Like Figure 5.2 and Figure 5.3, Figure 5.4 shows a clear association between UVE exposure and school environment for each of the face, neck, arm, hand and leg sites. The full range of recorded UVE exposure for each body site is also plotted in the figure.



Figure 5.4: Mean UVE exposure plotted with respect to body measurement site. Exposures are given for facial, neck, arm, hand and leg sites and were averaged across all cloud cover conditions. Error bars indicate the full range of exposures measured at each body site. No indoor or winter leg data was measured in the study period.

For all body sites except the hand, the mean daily UVE exposure more than doubled for students who spent some time of the day in open outdoor environments compared with students that spent their day indoors. These results clearly show that UVE exposures increase with time spent in outdoor environments for all measured body sites. The distribution of UVE exposure to body sites however, gives no clear indication of sites that are at risk of greater exposures compared to another. This is due to the random movement and orientation of each body site with respect to the playground environment and the various activities performed by students on a day to day basis.

#### 5.1.6 Student movement in the playground

To develop an accurate model for the prediction of skin surface exposures, the random movement of students in the playground needs to be quantified relative to the playground regions frequented by students on a daily basis. Table 5.3 details the position of students in the playground environment that were frequented on more than one occasion over the February to June personal UVE exposure measurement period. The table is organised into student groups that spent the school day in identical environments, individual students that did not show a pattern that was repeated over the measurement period are not listed in the table.

A total of 107 measurements were recorded to students between 8:30am and 3:05pm for every period of the regular school day with the remainder of measurements not being held over the full school day, not being included due to incomplete movement diaries or being recorded during the school swimming carnival (15 February 2008) or fun run day (23 April 2008) (Table 5.1). Out of the 107 personal measurements of exposure measured over regular school days, 12 were measured on students that spent the entire school day between 9:00am and 3:05pm indoors. This represents approximately 11% of the study population. A total of 23 measurements were made on students that had spent only 1 period of the school day outdoors of which 9 were required to spend time outdoors to attend agriculture or sports classes in open playground environments. These two groups make up the infrequent sun exposed school population group and comprise of approximately 32% of the study population. The majority of the measured population spent two periods outdoors. This group consisted of 44 measurements, 41% of the study population. Of these, most had spent their two periods outdoors during school meal breaks. The children that spent both meal breaks in the playground were located either near buildings or in open playground environments. Of these children, 73% chose to spend their meal breaks out of open environments with approximately half of the reminder spending both meal breaks in open outdoor playground environments. A total of 28 measurements were made on students that had spent more than 2 school periods in an outdoor playground environment (26%). All of these students had spent both meal breaks outdoors and were required to attend at least one class in an outdoor environment. This group represents the student population at most risk of overexposure to solar UV caused by attending school. Students that spent 3 or more periods outdoors were well in excess of national daily occupational limits of exposure to solar UV (ARPANSA 2006).

In a position statement of the Australian and New Zealand Bone and Mineral Society, Endocrine Society, Osteoporosis Australia, Australian College of Dermatologists and the Cancer Council Australia the recommended levels of exposure to sunlight for the adequate production of vitamin D were stated to be five minutes solar UV exposure either side of the peak UV period on most days of the week in summer and 2 to 3 hours solar UV exposure over a week in winter. These levels are exceeded by students spending two or more periods outdoors in one school day during summer and winter, affecting 68% of the sample student population and are likely to be exceeded by 89% of the student population that had spent only one school period (between 70 and 40 minutes) outdoors.

# Table 5.3: Personal UVE exposure sorted by student movement in the playground.

|            |       |                                  |             |                               |                               | Regio                          | on location in the Sch        | ool Playgrou                   | ind                            |                                |                            |
|------------|-------|----------------------------------|-------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------|
| Body site  | Date  | Mean<br>cloud<br>cover<br>(okta) | Hat<br>type | Before school<br>8:30 to 9:00 | Per. 1<br>9:00<br>to<br>10:10 | Per. 2<br>10:15<br>to<br>11:25 | First break<br>11:25 to 12:05 | Per. 3<br>12:05<br>to<br>13:15 | Second break<br>13:15 to 13:55 | Per. 4<br>13:55<br>to<br>15:05 | Total<br>Exposure<br>(SED) |
| arm        | 6/02  | 7/8                              | none        | 12,18                         | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.5 \pm 0.1$              |
| upper arm  | 7/02  | 0                                | none        | 16,12                         | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.2 \pm 0.0$              |
| forearm    | 27/02 | 0                                | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.5 \pm 0.1$              |
| forearm    | 30/04 | 4-2/8                            | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.3 \pm 0.1$              |
| face cheek | 21/02 | 0-4/8                            | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.5 \pm 0.1$              |
| face cheek | 21/02 | 0-4/8                            | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.4 \pm 0.1$              |
| forehead   | 1/05  | 0-5/8                            | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.1 \pm 0.1$              |
| neck side  | 30/04 | 4-2/8                            | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $1.2 \pm 0.3$              |
| neck side  | 1/05  | 0-5/8                            | none        | 12,1                          | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.1 \pm 0.0$              |
| neck side  | 1/05  | 0-5/8                            | none        | 12,1                          | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.4 \pm 0.1$              |
| hand back  | 1/05  | 0-5/8                            | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.4 \pm 0.1$              |
| hand back  | 21/05 | NA                               | none        | 12                            | 1                             | 1                              | 1                             | 1                              | 1                              | 1                              | $0.8 \pm 0.2$              |

#### Students located near buildings and not in direct sunlight (regions 2-14)

|            |       |                                  |             |                                     |                           | Reg                        | ion location in the So        | chool Playgro              | ound                           |                            |                            |
|------------|-------|----------------------------------|-------------|-------------------------------------|---------------------------|----------------------------|-------------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|
| Body site  | Date  | Mean<br>cloud<br>cover<br>(okta) | Hat<br>type | Before<br>school<br>8:30 to<br>9:00 | Period<br>1<br>9:00<br>to | Period<br>2<br>10:15<br>to | First break<br>11:25 to 12:05 | Period<br>3<br>12:05<br>to | Second break<br>13:15 to 13:55 | Period<br>4<br>13:55<br>to | Total<br>Exposure<br>(SED) |
|            |       |                                  |             |                                     | 10:10                     | 11:25                      |                               | 13:15                      |                                | 15:05                      |                            |
| arm        | 5/02  | 8/8                              | none        | 12                                  | 1                         | 1                          | 6                             | 1                          | 6                              | 1                          | $0.5 \pm 0.1$              |
| arm        | 6/02  | 7/8                              | none        | 12                                  | 1                         | 1                          | 6                             | 1                          | 6                              | 1                          | $1.2 \pm 0.3$              |
| neck front | 21/02 | 0-4/8                            | none        | 12                                  | 1                         | 1                          | 6                             | 1                          | 6                              | 1                          | $1.6 \pm 0.4$              |
|            |       |                                  |             |                                     |                           |                            |                               |                            |                                |                            |                            |
| arm        | 5/02  | 8/8                              | none        | 12                                  | 1                         | 1                          | 3                             | 1                          | 3                              | 1                          | $0.5 \pm 0.1$              |
| upper arm  | 3/04  | NA                               | none        | 12                                  | 1                         | 1                          | 3                             | 1                          | 3                              | 1                          | $0.8 \pm 0.2$              |
| forearm    | 3/04  | NA                               | none        | 12                                  | 1                         | 1                          | 3                             | 1                          | 3                              | 1                          | $0.8 \pm 0.2$              |
|            |       |                                  |             |                                     |                           |                            |                               |                            |                                |                            |                            |
| hand back  | 7/03  | 4/8                              | none        | 12                                  | 1                         | 1                          | 9                             | 1                          | 9                              | 1                          | $1.2 \pm 0.3$              |
| leg shin   | 7/03  | 4/8                              | none        | 12                                  | 1                         | 1                          | 9                             | 1                          | 9                              | 1                          | $1.7 \pm 0.5$              |
|            |       |                                  |             |                                     |                           |                            |                               |                            |                                |                            |                            |
| neck       | 26/03 | NA                               | NA          | 12,7                                | 1                         | 1                          | 7                             | 1                          | 7                              | 1                          | $2.9 \pm 0.7$              |
| neck       | 26/03 | NA                               | none        | 12                                  | 1                         | 1                          | 7                             | 1                          | 7                              | 1                          | $3.8 \pm 1.0$              |
| hand back  | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                         | 1                          | 7                             | 1                          | 7                              | 1                          | $1.1 \pm 0.3$              |
| leg shin   | 16/04 | 1/8-5/8                          | none        | 12                                  | 1                         | 1                          | 7                             | 1                          | 7                              | 1                          | $1.2 \pm 0.3$              |
|            |       |                                  |             |                                     |                           |                            |                               |                            |                                |                            |                            |

#### Students located near buildings and in direct sunlight (regions 15-20)

|           | _     |                                  |             | Hat Kegion location in the school Prayground |                                    |                                     |                               |                                     |                                |                                     |                            |
|-----------|-------|----------------------------------|-------------|----------------------------------------------|------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|--------------------------------|-------------------------------------|----------------------------|
| Body site | Date  | Mean<br>cloud<br>cover<br>(okta) | Hat<br>type | Before<br>school<br>8:30 to<br>9:00          | Period<br>1<br>9:00<br>to<br>10:10 | Period<br>2<br>10:15<br>to<br>11:25 | First break<br>11:25 to 12:05 | Period<br>3<br>12:05<br>to<br>13:15 | Second break<br>13:15 to 13:55 | Period<br>4<br>13:55<br>to<br>15:05 | Total<br>Exposure<br>(SED) |
| hand back | 7/03  | 4/8                              | none        | 12                                           | 1                                  | 1                                   | 15                            | 1                                   | 1                              | 1                                   | $1.9 \pm 0.5$              |
| hand back | 17/04 | 7/8-2/8                          | none        | 12,15                                        | 1                                  | 1                                   | 15                            | 1                                   | 1                              | 1                                   | $0.4 \pm 0.1$              |
| hand back | 17/04 | 7/8-2/8                          | none        | 12,15                                        | 1                                  | 1                                   | 15                            | 1                                   | 1                              | 1                                   | $0.9\pm0.2$                |
| forearm   | 6/03  | 4/8                              | none        | 12,1                                         | 1                                  | 1                                   | 16                            | 1                                   | 1                              | 1                                   | $3.4 \pm 0.9$              |
| arm       | 13/03 | NA                               | none        | 12                                           | 1                                  | 1                                   | 16                            | 1                                   | 1                              | 1                                   | $2.5\pm0.6$                |
| arm       | 6/02  | 7/8                              | NA          | 12                                           | 1                                  | 1                                   | 16                            | 1                                   | 16                             | 1                                   | $1.4 \pm 0.4$              |
| forearm   | 6/03  | 4/8                              | none        | 12                                           | 1                                  | 1                                   | 16                            | 1                                   | 16                             | 1                                   | $2.3\pm0.6$                |

| Statemes (regions 21 25) |                |                                  |             |                                     |                                    | Region location in the School Playground |                               |                                     |                                |                                     |                            |
|--------------------------|----------------|----------------------------------|-------------|-------------------------------------|------------------------------------|------------------------------------------|-------------------------------|-------------------------------------|--------------------------------|-------------------------------------|----------------------------|
| Body site                | Date           | Mean<br>cloud<br>cover<br>(okta) | Hat<br>type | Before<br>school<br>8:30 to<br>9:00 | Period<br>1<br>9:00<br>to<br>10:10 | Period<br>2<br>10:15<br>to<br>11:25      | First break<br>11:25 to 12:05 | Period<br>3<br>12:05<br>to<br>13:15 | Second break<br>13:15 to 13:55 | Period<br>4<br>13:55<br>to<br>15:05 | Total<br>Exposure<br>(SED) |
| forearm                  | 3/04           | NA                               | NA          | 12                                  | 1                                  | 25                                       |                               |                                     |                                |                                     | $3.1 \pm 0.8$              |
| forearm                  | 3/04           | NA                               | NA          | 12                                  | 1                                  | 25                                       |                               |                                     |                                |                                     | $2.9 \pm 0.7$              |
| face vertex              | 16/04          | 1/8-5/8                          | none        | 12                                  | 1                                  | 1                                        | 1                             | 25                                  | 1                              | 1                                   | $6.8 \pm 1.8$              |
| leg shin                 | 16/04          | 1/8-5/8                          | none        | 12                                  | 1                                  | 1                                        | 1                             | 25                                  | 1                              | 1                                   | $1.7 \pm 0.4$              |
|                          | <b>2</b> 0/0 / |                                  |             |                                     |                                    |                                          |                               |                                     |                                |                                     |                            |
| face cheek               | 30/04          | 4/8-2/8                          | none        | 12                                  | 1                                  | 25                                       | 1                             | 1                                   | 1                              | 1                                   | $0.6 \pm 0.2$              |
| face cheek               | 30/04          | 4/8-2/8                          | none        | 12                                  | 1                                  | 25                                       | 1                             | 1                                   | 1                              | 1                                   | $0.7 \pm 0.2$              |
| arm                      | 15/05          | 4/8                              | сар         | 12                                  | 1                                  | 1                                        | 1                             | 25                                  | 16                             | 1                                   | $1.7 \pm 0.4$              |
| arm                      | 15/05          | 4/8                              | cap         | 12                                  | 1                                  | 1                                        | 1                             | 25                                  | 16                             | 1                                   | $1.0 \pm 0.3$              |
|                          |                |                                  |             |                                     |                                    |                                          |                               |                                     |                                |                                     |                            |
| hand back                | 16/04          | 1/8-5/8                          | none        | 12                                  | 1                                  | 25                                       | 19                            | 1                                   | 19                             | 1                                   | $4.2 \pm 1.1$              |
| forehead                 | 16/04          | 1/8-5/8                          | none        | 12                                  | 1                                  | 25                                       | 19                            | 1                                   | 19                             | 1                                   | $3.4 \pm 0.9$              |
| hand back                | 17/04          | 7/8-2/8                          | none        | 12                                  | 1                                  | 25                                       | 18                            | 1                                   | 17                             |                                     | $3.7 \pm 1.0$              |
| leg shin                 | 17/04          | 7/8-2/8                          | none        | 12                                  | 1                                  | 25                                       | 18                            | 1                                   | 17                             |                                     | $2.0 \pm 0.5$              |
|                          |                |                                  |             |                                     |                                    |                                          |                               |                                     |                                |                                     |                            |
| hand back                | 28/02          | 7/8                              | none        | 12                                  | 25,1                               | 1,22                                     | 12                            | 1                                   | 12                             | 1                                   | $2.0 \pm 0.5$              |
| hand back                | 28/02          | 7/8                              | none        | 12                                  | 25,1                               | 1,22                                     | 12                            | 1                                   | 12                             | 1                                   | $4.0 \pm 1.1$              |
| arm                      | 15/05          | 4/8                              | none        | 12                                  | 1                                  | 1                                        | 22                            | 1                                   | 22                             | 1                                   | $1.6 \pm 0.4$              |
| forearm                  | 15/05          | 4/8                              | none        | 12                                  | 1                                  | 1                                        | 22                            | 1                                   | 22                             | 1                                   | $1.6 \pm 0.4$              |
|                          |                | 110                              |             |                                     |                                    |                                          | 10                            |                                     |                                |                                     |                            |
| forearm                  | 23/04          | 4/8                              | NA          |                                     |                                    | 1                                        | 18                            | 22                                  | 22                             | 22                                  | $1.1 \pm 0.3$              |
| forearm                  | 23/04          | 4/8                              | NA          |                                     |                                    | 1                                        | 18                            | 22                                  | 22                             | 22                                  | $1.6 \pm 0.4$              |
| forearm                  | 23/04          | 4/8                              | NA          |                                     |                                    | 1                                        | 18                            | 22                                  | 22                             | 22                                  | $1.4 \pm 0.4$              |
| Iorearm                  | 23/04          | 4/0                              | INA         |                                     |                                    | 1                                        | 10                            | 22                                  | 22                             | 22                                  | 1.4 ± 0.4                  |
| upper arm                | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $15.8 \pm 4.1$             |
| upper arm                | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $12.3 \pm 3.2$             |
| upper arm                | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $38.7 \pm 10.1$            |
| arm                      | 15/02          | 0                                | none        | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $4.9 \pm 1.3$              |
| face vertex              | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $49.8 \pm 12.9$            |
| face vertex              | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $32.0 \pm 8.3$             |
| face vertex              | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $39.6 \pm 10.3$            |
| face vertex              | 15/02          | 0                                | NA          | 21                                  | 21                                 | 21                                       | 21                            | 21                                  | 21                             |                                     | $39.7 \pm 10.3$            |
|                          |                |                                  |             |                                     |                                    |                                          |                               |                                     |                                |                                     |                            |

<sup>1</sup>Where data was not recorded this has been marked with an NA. Some daily measurements of exposure started later than 8:30am or finished before 3:05pm, in these cases no student movement pattern is recorded in the table and these spaces are left blank.

#### 5.1.6.1 Playground Activity Index

Figure 5.5 shows the mean daily activity pattern observed in the school student population excluding the swimming carnival and fun run days. Incidental day to day playground exposures were developed from the collected student movement patterns listed in Table 5.1 where students spending time in regions 21 through 25 were assigned an outdoor activity index of 1, students located in sunlit areas but located near buildings (regions 15 through 20) were assigned an outdoor activity index of 0.75, students located under building and shading structures were assigned an outdoor activity index of 0.25, and students located indoors were assigned an outdoor activity index of 0. Here the outdoor activity index gives some indication of student exposure to the ambient UV. The data presented in Figure 5.5 therefore is not a specific measurement of student exposure but a representation of mean behavioural trends observed in the school relative to the outdoor environment.



Figure 5.5: Mean outdoor activity index of student behaviour observed relative to time spent in sunlit areas of the school playground. Error bars show the standard deviation in outdoor activity index in the sample population.

From Figure 5.5, the two most significant periods of outdoor activity occur between 11:25 and 12:05, and 13:15 and 13:55. These times represent the two meal break times observed at the school. The highest mean activity index after these two time periods occurs in the period before school (8:30 to 9:00). The likely reason for the high outdoor activity index observed at these times is due to limited access to indoor environments available at these times when school classrooms are locked, and the tendency of students to seek outdoor playground regions for either sporting or leisure activity between indoor classes. Cumulative daily  $UV_{ery}$  exposure is affected most significantly by the tendency of students to be located in outdoor playground environments during meal break times, particularly as these times tend to be closest to solar noon. Reductions in cumulative daily  $UV_{ery}$  exposure brought about by active sun protection strategies held during meal breaks will have the greatest effect on reducing exposure risks to a school population.

# 5.2 Modelling body surface exposures in the playground environment

#### 5.2.1 Comparison with measured body site exposure

Mean exposures for the listed movement patterns of students that had spent at least one school period outdoors were compared to modelled body surface exposures determined for students spending time in the respective playground regions. Comparisons of the modelled exposure to each body site were based on the mean statistics of each school playground region, including mean sky view, standing surface albedo contribution and shade density for the SZA range of each school period. Here, the calculated summer solstice shade density for each respective playground region was applied to modelled direct UV exposures in February and March and the winter solstice shade density determined for each playground region was applied to modelled direct UV exposures in April, May and June. Modelled horizontal plane exposures were then weighted to median mannequin ER data measured for each of the respective face, neck, arm, hand and leg body regions (Table 3.8). Modelled body site exposures were calculated according to equation 2.17 where ER was the median ER given for each body region listed in Table 3.8. Vertex body sites were the exception, and were modelled as the horizontal plane UV exposure because the measured mannequin vertex site ER was found to be 100% of the horizontal plane exposure for each SZA range. The student movement patterns listed in Table 5.3 are plotted against their respective modelled body site exposures in Figure 5.6. Modelled body site exposures were determined at sea level, for clear sky conditions and included OMI (TOMS 2008) ozone concentrations observed over Hervey Bay for each respective measurement date.



Figure 5.6: Comparison of measured and modelled body site UV exposure in the HBSHS playground. Swimming carnival data was ignored in determining the correlation coefficient. These points are coloured red in the figure.

Considering the limitations of the model predictions that will always be present due to an individual student's movement, behaviour and the subsequent details recorded in student movement diaries, the predictions given were on average within  $0.9 \pm 0.7$  SED (1 $\sigma$ ) of the measured exposure for all measurements excluding those taken during the swimming carnival. Modelled exposures predicted for normal school routine days were within the measured dosimeter exposure uncertainty varying from measured body site exposures by an average of 12%. Excluding the data measured during the swimming carnival, model exposures showed some correlation with measured exposures (R<sup>2</sup> = 0.43). In Figure 5.6, all exposures measured over 10 SED were recorded during the swimming carnival. These exposures may be taken as untypical of exposures received on a day to day basis as is further evident in the exposure distribution of Figure 5.1.

#### 5.2.2 Estimates of body surface exposure by playground region

Playground region statistics given in the previous chapter give some indication of the overall risk associated with using different regions of the playground environment. The

likelihood of overexposure to solar UV was found to increase in regions that had greater sky views. Comparison between measured UVE among the student population to the median weighted body site exposure predictions given for students using various playground sites showed that this risk could be modelled reasonably well for a student's day to day use of the school playground. To develop a more detailed assessment of the likely exposure distribution affecting unprotected skin surfaces, modelled playground exposures were weighted to the ER measurements for each of the face, neck, arm, hand and leg. Using the techniques presented in this work, detailed body surface exposure distributions can be modelled at any one of the 822 playground sites studied. A summary of exposures affecting unprotected skin surfaces is presented below for region 21 (the pool), region 22 (the oval) and region 18 (the region most covered with trees). Region 21 (Figure 5.7) was studied here as this region represents the region in which the highest student exposures were recorded during the school swimming carnival and therefore presents the most significant risk to the school population of receiving a severe sunburn. Apart from indoor environments, region 22, the school oval (Figure 5.8(a)), was the most popular region frequented by students during both meal breaks. Region 18 (Figure 5.8(b)) was the next most popular region attended during school meal breaks. Region 18 also represents an outdoor region significantly different from region 22, having a significant number of trees compared with the open oval environment.



Figure 5.7: The HBSHS pool environment photographed from the eastern end of the region.



*Figure 5.8: (a) The HBSHS oval photographed from the northern end of the region, and Region 18 photographed from a site located in the middle of the region (b).* 

Body surface exposures were plotted between 8:30am and 2:30pm for region 21 for 15 February 2008 and 15 April 2008. These two plots show by way of example how rescheduling the swimming carnival by two months can have a significant impact on reducing UV exposure. Exposures are plotted for regions 22 and 18 over a cumulative total of two meal break times (the most popular observed pattern in student playground use) between 11:25am and 12:05pm, and 1:15pm and 1:55pm for 12 December 2008, the last day of the school year. Comparisons are made between the likely body surface exposures received by student groups spending time in these two different regions to gauge the relevant increase in risk students using open outdoor environments are placed under when using such environments for sporting or meal break activities. It should be noted that these four examples are discussed here to illustrate the value of developing a model to predict body surface exposures in a school environment. Any number of playground environments and situations can be examined at any time of the year and can be modelled using the techniques presented.

# 5.2.2.1 Swimming carnival schedule

Swimming carnivals, by their nature need to be held during the warmer months of the year. This has the potential to place students using such an environment at increased risk of overexposure to UV due to increased solar elevation which occurs during the warmer periods of the year. Figure 5.9(a) compares the predicted body surface exposure of a student attending a swimming carnival on 15 February between 8:30am and 2:30pm to a student attending a swimming carnival over the same time period on 15 April (Figure 5.9(b)). In producing the figure, mean ground and standing surface albedo, sky view and shade density for region 21 was applied (Table 4.3) and ozone concentration was set at 277 DU. Playground exposures were weighted to the  $0^{\circ}$ -30° SZA body surface ER data for part (a) of Figure 5.9 (mean  $25^{\circ}$  SZA in the 8:30 am to 2:30 pm period), and  $30^{\circ}-50^{\circ}$ SZA body surface ER data for part (b) (mean 45° SZA in the 8:30 am to 2:30 pm period). In the figure, the greatest exposure was modelled for 15 February at 37.4 SED. This exposure is received by the vertex body site. High exposures are also evident in part (a) of the figure on the nose, the shoulder region of the neck, and the dorsa of the forearm and hand (> 20 SED). Exposures on 15 February were lower to the leg, but in excess of 12 SED to the calf muscle region. Exposures modelled for 15 April were lower than 20 SED to all body surface regions except the vertex (21.2 SED) as is evident by their being no blue colouration at most surface sites in the wireframe models presented in part (b). Note that in the figures, the extreme exposure range (>32 SED) was coloured purple and pink to stand out from the exposures represented in the continuum red (low) through to blue (high). The extreme exposures occur only to the vertex site for 15 February, a region of the face that is often protected by hair cover or a hat.

A broader ER pattern can also be observed between 15 February and 15 April. This is mostly evident to the side of the face. The most noticeable effect however is the reduced exposure occurring on 15 April. Comparison of the facial exposure on these two dates shows that the extreme exposure occurring toward the vertex region of the face in February is reduced considerably in April. Noticeable reductions in exposure are also evident to the lower anterior forearm and dorsa of the hand between February and April.





*Figure 5.9: Modelled pool region exposure on 15 February 2008(a) and 15 April 2008 (b). Body parts from top to bottom are the face, back of the neck, arm, hand, and leg.* 

#### 5.2.2.1.1 Non-melanoma skin cancer risk

The annual contribution to the risk of developing NMSC may be expressed as (Schothorst et al. 1985):

$$Risk = kD^{\beta}A^{\alpha} \tag{5.1}$$

where the risk of developing NMSC is dependent upon the cumulative annual exposure, D and the age of the individual, A. In the equation,  $\alpha$  and  $\beta$  are the respective age dependent and biological amplification factor constants which can be determined by

epidemiological evidence. Wong et al. (1996) determined that the increase in risk by not wearing a hat could be measured at various facial sites by comparing the mean protection factors of those sites (*MPF*):

$$Risk = MPF^{\beta}$$
 (5.2)

Here, equation 5.2 is derived from the ratio of cumulative UV exposure of an individual not wearing a hat,  $D_0$  to the cumulative UV exposure of an individual wearing a hat, D and the dependence on age and the constant of proportionality, k are removed in the ratio:

$$Risk = \frac{k(D_0)^{\beta} A^{\alpha}}{k(D)^{\beta} A^{\alpha}}$$
(5.3)

For this research a similar method can be used to determine the risk associated with running the school swimming carnival on 15 February as opposed to 15 April. Here, the annual exposure of a child that normally spends every school day in indoor environments except the school swimming carnival spending the 8:30am to 2:30pm period in region 21 of the school playground experiences an increased risk of developing non-melanoma skin cancer. This risk was calculated by determining cumulative annual exposure received while at school. From measurements collected over the February to June 2008 period, the mean exposure of students spending the entire school day indoors was approximately 0.5 SED. From Figure 5.2, it can be seen that this mean does not vary significantly from summer to winter, nor was any significant variation measured with body site (Figure 5.4) and if applied to 201 days of the 202 day school year results in an erythemally effective exposure of 101 SED at each of the face, neck, arm, hand and leg body sites. The risk in developing BCC or SCC at a vertex site being close to the modelled horizontal plane ambient exposure is:

$$Risk_{BCC} = \frac{(101+37.4)^{1.7}}{(101+21.2)^{1.7}} = 1.2$$
(5.4)
$$Risk_{SCC} = \frac{(101+37.4)^{2.3}}{(101+21.2)^{2.3}} = 1.3$$
(5.5)

or 1.2 times greater for BCC and 1.3 times for SCC based on the epidemiological biological amplification factors,  $\beta$  for BCC of 1.7 (NRPB 1995, cited in Visvakarman and Wong 2003) and 2.3 for SCC, where the biological amplification factor for SCC was based on the mean result of several studies cited by Vishvakarman and Wong (2003), including Schothorst et al. (1985); DeGruijl (1982); Scotto et al. (1983); Hunter et al. (1990); Chuang et al. (1990); Levi et al. (1988); Coebergh et al. (1991); Roberts (1990); Glass and Hoover (1989); and Whitaker et al. (1979).

In the calculation, 37.4 SED was the mean modelled pool region UV exposure for 15 February and 21.2 SED was the mean modelled pool region exposure for 15 April. The risk as derived above represents a respective BCC and SCC risk of 20% and 30% due to a single daily exposure but will be reduced below 1.2 when weighted to the measured ER of other body sites and the protection of hair cover is considered for a vertex site. Furthermore, consideration needs to be given to exposure received by school students outside of school hours as this will influence the cumulative annual exposure upon which the risk is determined. In the above calculation of non-melanoma skin cancer risk, it is assumed that there is no exposure received outside of school hours. Vishvarkarmen and Wong (2003) determined an estimate for the total annual childhood UV<sub>ery</sub> exposure by using the method of Diffey (1992) modified for latitudes in Central Queensland. This estimate was 1510 kJm<sup>-2</sup> calculated for a total number of 4380 sunlight hours. For this research, at Hervey Bay's latitude, an annual estimate was modelled for clear skies and an ozone concentration of 300 DU, giving a total  $UV_{ery}$  exposure of 1678 kJm<sup>-2</sup>. Vishvarkarmen and Wong (2003) determined that 1524 hours were spent outside annually by an Australian child in tropical weather conditions. This estimate was reduced by the estimated time spent traveling to, from and while at school estimated by Vishvarkarmen and Wong (2003) at 3.5 hours per school day giving approximately 824 annual hours spent outside of school in sunlight representing approximately 19% of the 4380 annual sunlight hours for an estimated total of 315 kJm<sup>-2</sup> or 3150 SED, 19% of the annual estimate of 1687 kJm<sup>-2</sup>. Including this estimate in the student's total annual exposure reduces the risk associated with attending the swimming carnival on 15 February to 1 as the difference between 15 February and 15 April (16.2 SED) is not significant compared with the estimated total annual exposure. However, the risk of developing melanoma skin cancer and BCC is also dependent upon an individual experiencing a history of severe intermittent UV exposures (Kricker et al. 1995; Rosso et al. 1998). A risk factor of 1, while indicating no apparent risk should perhaps be referred to as a low *chronic* NMSC risk, as every severe acute episode of UV exposure is likely to increase the risk of developing both BCC and melanoma skin cancer and if the school's annual swimming carnival were held on 15 April, the risk of developing skin cancer would be reduced.

5.2.2.2 Open and protected playground regions

Patterns in student behaviour observed on a day to day basis can have a more noticeable influence on the chronic skin cancer risk associated with cumulative exposure to solar UV. Figure 5.10 compares the exposure of students frequenting playground region 22 and playground region 18 on 12 December during both meal break periods. In producing the figure, mean ground and standing surface albedo, sky view and shade density for region 22 and region 18 was applied (Table 4.3), ozone concentration was set at 277 DU for the modelled horizontal plane estimate of exposure of 13.4 SED for region 22 and 4.7 SED for region 18. The modelled horizontal plane exposure estimate was calculated as the total exposure received between 11:25 am and 12:05 pm (first meal break) and 1:15 pm and 1:55 pm (second meal break) and assumed students were located indoors during other periods of the school day. Playground exposures were weighted to the  $0^{\circ}$ -30° SZA body surface ER data.

As for exposure modelled on 15 February and 15 April in the pool region, exposures modelled in region 22 and 18 show that the highest exposures were received by the face, the lower neck, and the dorsa of the forearm and hand. Exposures above 8 SED are not evident on the leg model. Furthermore the influence of playground tree cover affecting

shade density and sky view, results in exposures less than 4 SED being represented on surface models of exposure to students using region 18.

The risk of developing BCC for students frequenting region 22 during both meal breaks on every day of the school year was calculated to be 1.8 times higher compared with students using region 18 and 2.2 times higher between the respective playground regions for the development of SCC. Essentially, the risk of using an open environment for both meal breaks doubles the risk of developing NMSC. Here these calculations were determined using the method outlined in the previous section by determining the annual exposure received between the two break periods on a horizontal plane and weighting the exposure to mean playground region sky view, and shade density where direct UV was weighted to 0.90 for the months October through to March for region 22 and 0.34 for region 18. The weighting of the modelled direct UV was determined by the mean region summer shade density. For the months April through to September, mean region winter shade densities were applied to give direct UV exposure weightings of 0.80 and 0.14 for region 22 and region 18 respectively. The total annual exposure received over the two meal break periods in the school year (subtracting holidays and weekend periods) was determined to be 2380 SED in region 22 and 740 SED in region 18, where school holidays were determined according to the 2008 school calendar year occurring after the first day of the school year, 29 January, between 21 and 24 March, 5 and 13 April, 28 June and 13 July, 20 September and 5 October, and from 13 December through to the end of the year. An additional exposure of 101 SED was added to both of these estimates to account for incidental exposures received as a consequence of student movement between indoor classes and 3150 SED was added to both region exposure estimates to account for exposure received outside of school hours, resulting in total annual exposures of 5630 SED and 3990 SED for students using the respective region 22 and region 18 playground areas every day of the school year. Biological amplification factors as required by equation 5.2 to determine NMSC risk were applied as mentioned previously (section 5.2.2.1.1) using the values of 1.7 and 2.3 to determine skin cancer risk for BCC and SCC respectively.





Figure 5.10: Cumulative meal break exposure modelled for region 22 (a) and region 18 (b), 12 December 2008. Body parts from top to bottom are the face, back of the neck, arm, hand, and leg.

### 5.2.3 Estimates of annual exposure

Mean playground sky view, shade density and albedo (Table 4.3) were used to estimate a school child's annual exposure received over the approximate 202 school days of the Queensland calendar year. The total annual exposure to erythemally effective UV received at a vertex site by a child using the HBSHS playground was estimated at 840 SED from an estimated annual playground exposure of 4210 SED. Here, the student exposure estimate was based on the calculation of a cloud free annual exposure using equation 5.6:

$$AE = \sum_{d=1}^{d=202} n(d) \sum_{h=9}^{h=15} (diff(h,d) \cdot S_{view} + dir(h,d) \cdot S_{density}) \cdot O_{ai}$$
(5.6)

where *AE* is the estimated total annual UV<sub>ery</sub> exposure, n(d) is the number of days in the school year (not including holidays or weekends), *h*, is the number of hours in each school day from 9:00am to 3:00pm, *diff* is the modelled horizontal plane diffuse UV<sub>ery</sub> exposure modelled for each respective day,  $S_{view}$  is the mean HBSHS playground sky view of 55%, *dir* is the modelled horizontal plane direct UV<sub>ery</sub> exposure modelled for each respective day,  $S_{density}$  is the mean fraction of the HBSHS playground (winter and summer) not shaded in a school day which is represented by the mean shade density remainder of 57%, and  $O_{ai}$  is the mean outdoor activity index (Figure 5.5) of 0.2.

The estimated annual exposure of a child can further be subdivided by body site, where the estimated annual exposure (equation 5.6) is weighted to the median mannequin body region ER in the 30°-50° SZA range for each respective body part giving annual exposures of 330 SED to the face, 300 SED to the back of the neck, 140 SED to the arm, 290 SED to the hand, and 190 SED to the leg. This compares to an estimated annual erythemally effective vertex exposure of  $340 \pm 71 \text{ kJm}^{-2}$  ( $3400 \pm 710 \text{ SED}$ ) estimated for physical education school teachers in central Queensland (Vishvakarman et al. 2001), the approximate equivalent of a daily  $UV_{ery}$  exposure of 16.8 ± 3.5 SED, assuming there are approximately 202 days in a school calendar year. In this comparison, the estimated annual exposure of central Queensland physical education teachers is greater than the predicted vertex exposure of a student using the HBSHS playground (840 SED) and lower than the predicted annual playground exposure of 4210 SED. A likely explanation for this is the effective activity index of physical education teachers who are more likely to be spending a greater proportion of the day in outdoor environments than the mean activity index of 0.2 suggested from measurements of playground use patterns in the HBSHS student population. From the estimates provided in this research, annual exposures received at a vertex site are likely to be less than the mean playground exposure estimate of 4210 SED given it is unlikely that an individual would spend each hour of every school day, and each school day in the outdoor playground environment.

From this perspective, the estimates determined by Vishvakarman et al. (2001) for physical education teachers would seem to be in reasonable agreement with the annual horizontal plane playground estimate given here. Annual exposures received by teachers and students in the modelled playground environment are likely to range therefore between 101 SED to 4210 SED, where 101 SED was determined as the annual estimate from measurement of the student exposures who were exclusively located indoors and 4210 SED is the upper limit determined as the mean playground horizontal plane UV<sub>ery</sub> exposure.

# 5.3 Reduction in NMSC risk by wearing a hat

One of the most effective types of hat that provides shading to the human facial region is the broad-brim style (Gies et al. 2006). The protection offered by this type of hat was examined by comparison of 7 unprotected (no hat) facial sites to 7 protected facial sites (hat worn) using two mannequin headforms placed in an upright position on a rotating base (Figure 5.11). Measurement of exposure recorded on both headforms which were simultaneously exposed in two open regions of the playground are provided in Table 5.4.



Figure 5.11: Measuring the protection offered by a broad-brimmed hat at seven different facial sites. Protected and unprotected exposures were recorded simultaneously.

Table 5.4: Mean mannequin facial ER (%) measured in region 24 (basketball courts) and region 22 (oval). ERs are given relative to ambient  $UV_{ery}$  horizontal plane exposure. Measurements of exposure to the temple, mandible and ear lobe were averaged and given as a single "side" measurement in the table.

|              | Region 2                   | 24 ER (%)   | Region 2      | 2 ER (%)    |  |
|--------------|----------------------------|-------------|---------------|-------------|--|
|              | (outdoor basketball court) |             | (school oval) |             |  |
|              | Protected                  | Unprotected | Protected     | Unprotected |  |
| Vertex       |                            | 88          |               | 86          |  |
| Forehead     | 2                          | 42          | 24            | 56          |  |
| Nose         | 22                         | 61          | 17            | 61          |  |
| Cheek        | 10                         | 56          | 14            | 46          |  |
| Chin         | 23                         | 33          | 24            | 35          |  |
| Side of face | 13                         | 26          | 14            | 28          |  |

It is clearly evident from Table 5.4 that the broad-brimmed style of hat made a significant contribution to the reduction in UV<sub>ery</sub> exposure relative to the ambient horizontal plane exposure. This is evident despite the maximum ER uncertainty of  $\pm 18\%$  present for ER measurements recorded in this case up to a maximum SZA range of 30° and the movement of the broad-brimmed hat during measurement periods which accounted for the greatest ER variation at the forehead site. The broad-brimmed hat however provided greatest protection to the forehead, cheek and nose with the side and chin sites receiving less protection. Due to the forehead, cheek and nose sites being closer to the shade offered by the hat brim, better protection was provided compared to the side and chin sites. The order of increasing UV ER to specific facial sites are in agreement with broad-brimmed protection factors measured using mannequin headforms by other researchers (Diffey & Cheeseman 1992; Kimlin & Parisi 1999; Gies et al. 2006) with the exception of cheek exposure for which the dosimeters vary in position relative to those used for this work.

Not wearing a broad-brimmed hat, such as that tested for this research can be expressed relative to the increased risk of developing NMSC. As determined previously, the mean

horizontal plane playground annual UV<sub>ery</sub> exposure was determined at 4210 SED. When this exposure is weighted to the mean student activity index of 0.2, the mean measured ER facial site data given in Table 5.4 and the cumulative annual exposure estimate of 3150 SED received outside of school hours, the site specific contribution to the risk of developing BCC and SCC can be determined for a student not wearing a broad-brimmed hat and observing a normal school routine. The increase in risk of developing BCC and SCC to facial sites is given in Table 5.5. The risk estimates provided in the table illustrate the increased risk of developing NMSC by not wearing a hat to facial sites located toward the top half of the face (those facial regions best protected by the hat), namely the forehead, nose and cheek. The risk involved for students that spend a greater fraction of the day in outdoor environments will be higher than those quoted in Table 5.5. Similarly, teachers that spend a higher proportion of the day outside (physical education teachers for example) will be expected to have an increased risk of developing NMSC at the facial sites listed in the table provided no hat protection is used.

Table 5.5: Relative increase in NMSC risk by not wearing a broad-brimmed hat for a student observing the normal school routine (activity index 0.2). Biological amplification factors used to determine the relative risk for BCC and SCC were implemented as specified in section 5.2.2.1.1.

|              | Relative increase in risk |     |  |
|--------------|---------------------------|-----|--|
|              | BCC                       | SCC |  |
| Forehead     | 1.2                       | 1.2 |  |
| Nose         | 1.2                       | 1.3 |  |
| Cheek        | 1.2                       | 1.2 |  |
| Chin         | 1.0                       | 1.1 |  |
| Side of face | 1.1                       | 1.1 |  |

### 5.3.1 Measured hat use among the student population

Of the 114 students that completed diaries on hat use during the February to June 2008 student measurement period (Table 5.1), 105 indicated that they did not wear a hat on

the measurement day. Of the hats that were worn by students on the measurement days, 8 chose to wear a baseball style of cap and 1 student indicated that they wore a broadbrim style of hat. These results are comparable to the behavioural study of Milne et al. (1999a) which indicated that the use of quality hats in three Western Australian primary schools was observed to be often less than 30%. The data also supports the behavioural studies of Balanda et al. (1999) and Lowe et al. (2000) which highlight a decline in sun protection strategies used by high school aged children compared with primary school aged children and highlights the significant role school administrators can take to control the behavioural patterns of children in their care to minimise lifetime cumulative exposure to potentially harmful solar UV, particularly during meal breaks which account for most of the cumulative UV exposure received throughout the day.

## 5.4 Summarising student playground exposure

Playground exposures and the subsequent UV exposures predicted for unprotected body surfaces have been developed from playground site measurements and measurements of body surface UV exposure. These measurements detail the influence of shading caused by the human form and detail variation in exposure over human surface topography to a high resolution not able to be measured on living human subjects alone. This data set represents the most extensive set of body surface UV exposures available that can be applied to predict patterns in body surface exposure with seasonal and daily variation in solar elevation. Structures present in the playground such as individual trees and buildings are accounted for by survey measurements made in the playground, extending existing techniques used to model the effects of playground shading alone. The benefits of modelling the erythemally effective UV to students in a school environment include making assessments of long term UV exposure and providing added planning assistance that can be utilised to minimise UV exposures associated with school activities that use the playground environment. In the following chapter, the value of the developed body surface UV exposure model weighted to the playground environment is discussed relative to existing public health literature.

### CHAPTER 6 APPLICATIONS OF THE SOLAR UV MODEL

The principal outcome of this research has been the development of a model that predicts the UV exposure in a school environment. The developed model highlights locations within a school environment that present the most risk to students using that environment, with the most significant risk being the development of NMSC and melanoma skin cancer which are essentially preventable diseases. A technique has been presented for transferring the modelled horizontal plane UV playground exposure onto three dimensional surface models of unprotected parts of the body. This is seen as an essential step for the development of better sun-safe practices in schools. Techniques used to model the effective UV exposure to students in a real school playground have been developed providing estimates of exposure that can be reliably calculated for any playground environment by region statistics or by specific playground site. An understanding of the local playground environment and how this influences the day to day UV exposure as presented in this research is essential for the reduction of skin cancer and sun-related eye disorders caused by childhood exposure to solar UV radiation. In this chapter, the specific outcomes determined from measured body surface and predicted playground exposures are discussed in relation to skin cancer, vitamin D, general public health and health education. Suggestions are given for the scheduling of activities in the current school environment and the broader use of the techniques presented thus far are discussed in relation to other school playground environments.

### 6.1 Activity scheduling in the playground and variation in exposure with SZA

### 6.1.1 Variation in yearly SZA

For Hervey Bay, the SZA ranges from between  $3^{\circ}$  and  $46^{\circ}$  over the summer months and between  $67^{\circ}$  and  $34^{\circ}$  over the winter months for the hours of 9:00am to 3:00pm (Michalsky 1988). No measurements were taken over the student exposure measurement

period, 5 February 2008 to 4 June 2008 for SZA ranges greater than  $63^{\circ}$  or less than  $9^{\circ}$ . Students using the model school playground experience body surface distributions to UV predominately in the  $0^{\circ}$ - $30^{\circ}$  and  $30^{\circ}$ - $50^{\circ}$  SZA range for most of the year. A notable observation for the model school located in the latitude of  $25^{\circ}$ S is that low solar elevation angles limited to a maximum SZA of  $30^{\circ}$  make up the maximum range for most of the year (excepting mid spring to mid summer) that students need to be exposed to provided outdoor activities are scheduled in either the first or last hour of the school day. Roughly, these times correspond to the first teaching period (9:00am to 10:10am) and the last teaching period (1:55pm to 3:05pm). Figure 6.1 shows the complete SZA range experienced during the first and last hour of the 9:00am to 3:00pm range (Michalsky 1988). Provided outdoor activities are scheduled to minimise exposure to low SZA (SZA  $0^{\circ}$ - $30^{\circ}$ ), the potential reduction in the received exposure to all body sites can be significant.



*Figure 6.1: Daily variation in SZA plotted between 9:00am and 3:00pm (light curve) and between 9:00am to 10:00am and 2:00pm to 3:00pm (dark curve) at latitude 25.3° S.* 

As a comparison, the modelled annual horizontal plane exposure calculated for the 202 school days in the year and determined using a mean playground sky view (55%), shade density remainder (57%), surface albedo (8%), and ozone concentration of 300 DU

varies from between 3150 SED and 970 SED respectively for daily exposures received between 10:00am and 2:00pm (including the 0°-30° SZA range) and daily exposures received only in the first and last hours of the school day (roughly limited to the  $30^{\circ}-50^{\circ}$ SZA range). Using the method outlined previously in section 5.2.2.1.1, the biological amplification factors also previously specified in the aforementioned section, and including an estimated 3150 SED annual UV<sub>erv</sub> exposure received outside of school hours, the relative NMSC risk can be calculated. Here, a student using the playground environment between 10:00am and 2:00pm has an increased risk of developing BCC and SCC compared to a student that avoids exposure between 10:00am and 2:00pm. The increased risk is 2.1 times and 2.7 times greater for the development of BCC and SCC respectively. At first such a comparison may seem unfair considering that there are 4 hours in the period 10:00am to 2:00pm and only 2 hours in the first and last hours of the school day. However, both meal breaks occurring between 10:00am and 2:00pm are included in the risk comparison for that period. The reductions in NMSC risk therefore can be achieved provided that exposure is avoided during both meal breaks and a student is limited to exposure in the first and last hours of the school day. Sun protection strategies, including the encouragement of indoor activity, hat, protective clothing and mandatory sun screen application during meal breaks could achieve such a reduction. Where such measures cannot be implemented, timetables, particularly the timing of lunch breaks which account for the majority of the daily cumulative UV exposure (Figure 5.5) could be rescheduled to reduce exposure. Additionally consideration could be given to the hours over which a school day is held. School days could for example be lengthened to a standard 8 hour working day, starting at 8:00am and ending at 4:00pm, in which time school meal breaks could be scheduled outdoors between 9:00am and 10:00am and 2:00pm and 3:00pm and the extended two hours of the school day could be utilised as supervised indoor study or free time.

### 6.1.2 Implications for the use of hats in the school playground

Based on the calculated daily variation in SZA over a full year, it was found that outdoor activities run during the first and last hour of the school day could result in a maximum

SZA limit of  $30^{\circ}$  for most of the year at  $25.3^{\circ}$  S with the limit increasing for schools located further south and decreasing for more northerly latitudes (southern hemisphere). From the results detailed here, this has the potential to reduce the unprotected student  $UV_{erv}$  exposure from a low SZA range of  $0^{\circ}$ -30° to a higher SZA range of 30°-50°. Patterns in exposure measured to the mannequin test subjects studied in this research show a clear broadening of the surface exposure to a larger area of the body with increasing SZA. Kimlin et al. (1998) determined mannequin facial exposures would shift from horizontally inclined facial regions to vertical regions from summer to winter, attributing this to increased diffuse UV at larger SZA ranges. Previous work using the same mannequin headforms employed by Kimlin et al. (1998) has indicated similar variation in facial ER with SZA (Downs et al. 2001; Downs & Parisi 2007). The mean UVery facial exposure measured here is consistent with these findings, indicating that reductions in  $UV_{\text{ery}}$  facial exposure caused by increasing SZA range correspond with an increase in facial ER. Based on these results, it can reasonably be concluded that hat protection is particularly important at low (summer) SZA as increased ambient UV exposure can be more effectively reduced by the hat brim than at greater (winter) SZAs which affect a larger proportion of the face.

### 6.1.2.1 Reduction in facial exposure with increasing SZA

Measurements of human facial exposure were collected during a series of 1 hour trials in the HBSHS student population to determine the relative effectiveness of wearing broadbrimmed hats (Downs & Parisi 2008). A summary of these results is given in Appendix P. It was determined that mean UV<sub>ery</sub> facial exposures received for 1 hour of the school day varied between  $1.6\pm0.5$  SED ( $1\sigma$ ) and  $1.3\pm0.2$  SED ( $1\sigma$ ) in the ranges of  $0^{\circ}-30^{\circ}$ and  $30^{\circ}-55^{\circ}$  respectively resulting in a yearly accumulated exposure of  $320\pm100$  SED to  $260\pm40$  SED taken over a 202 day school year and assuming an exposure interval of at least 1 hour per day. Both of these exposures, based on the measurement of student facial exposure agree with modelled estimates of annual facial exposure given in section 5.2.3 of 330 SED where this calculation was determined using equation 5.6 and the median mannequin facial ER of 39% (Table 3.8) for the mean annual 30°-50° SZA range at Hervey Bay's latitude.

# 6.2 Scheduling by playground region

In this research it was found that playground sky view was the most important factor influencing total playground exposure modelled on a horizontal plane. This is likely to be the case because areas of the playground that have limited sky views affecting the diffuse component of incident UV also experience higher shade densities influencing the direct component of incident UV. In the previous chapter it was determined that the risk of developing NMSC was increased for students using open playground environments compared to those located in regions that had lower sky views. Limiting student movement to regions of the playground that offer greater protection from direct and diffuse UV, particularly at times of peak solar UV irradiance, will result in lower exposures experienced by the student population.

# 6.3 Reducing playground and playground region exposure

 $UV_{ery}$  exposures modelled in the playground included modelling the effects of shade structures including buildings, shade structures covered by shade cloths and trees. The effect of playground surface structures combined with sky view measurements taken at each of the 822 playground sites showed some variation in the degree of protection provided as was evident in the modelled  $UV_{ery}$  variation in protected ground surface patterns observed over the playground region (Figure 4.10 and 4.11). These variations were linked strongly to site sky view and direct UV irradiance influenced by local site structures. In order to make accurate assessments of the  $UV_{ery}$  in a realistic environment such as the school playground modelled here, variation in surface UV irradiance with solar position relative to the environment was considered. Predictions of the open environment surface UV intensity such as the widely available UV index reported frequently by local forecasting agencies do not take such considerations in account, showing typically variation in UV irradiance

due only to seasonal effects. While such predictions are a valuable guide to assessing the general UV risk, more detailed assessments taking the local environment into account, such as that developed here, can provide better information to the public, education and health authorities to better plan and assess for risks likely to be incurred by those using specific outdoor environments, particlarly environments such as schools that are used frequently on a day to day basis. Assessment of the risks present in any playground environment using the techniques developed for this work may include better planning of schedules for outdoor activity, the organisation of those sheduled activites, including sports days, relative to specific positions within a playground, planning for playground improvements and selecting sites for the positioning of seating, playground equipment, shade and other structures. The quality of protection unique to the studied playground environment can be examined using the survey techniques developed. The quality of tree shade and some of the shade structures present in the HBSHS playground are breifly discussed here to illustrate the value of modelling UV playground exposures using the survey technique developed for this research.

### 6.3.1 Assessment of playground tree cover

Apart from the shade protection offered to students located underneath buildings, trees often provide the next most reasonable form of quality cover from direct UV. Trees are also a valuable source of shade in the open playground which by necessity grow in open sunlit environments. Furthermore, shade from tree cover is relatively inexpensive to provide in a playground setting, although the quality of protection offered depends on the density of tree canopies which vary from species to species, an individual's location relative to the canopy, and with the planted densities of the trees themselves. The protecton afforded by a tree is also very much dependent upon the total sky view covered and cannot be judged by the appearance of tree shadow alone (Heisler & Grant 2000). The image processing technique applied throughout this research adequately assesses the quality of tree shade, providing estimates of the degree of cover provided by different trees found in the playground. As expected,

thicker trees were found to more likely block the direct UV irradiance and subsequently influence the modelled  $UV_{ery}$  exposure than trees that provided less cover. Comparison of solar position with composite playground site images of tree structure provided a simple and useful method of assessing tree shade quality allowing its influence to be plotted over a horizontal plane (Chapter 4). The influence of thick tree cover, and sparse tree cover is clearly evident in Figures 4.6 (sky view), 4.7, 4.8 (shade densities) and 4.11 (summer solstice UV exposure). In the figures, the influence of thick tree cover is prominent along the school's western fence between 90 m and 130 m, the upper (eastern) end of the school's carpark located between 70 m and 100 m on the northen fence line and in the middle region of the school oval. Sparse tree cover is provided in the north-western corner of the school canteen.



Figure 6.2: Examples of sparse tree cover. North facing view of cover located in the north western corner of the playground (left), shade in the pool region (middle), and cover behind the school canteen (right).



Figure 6.3: Examples of thick tree cover. North facing view of thick tree shade located between 90 m and 130 m on the school's western fence line (left), thick canopy cover in the eastern end of the school's main carpark (middle), thick cover on the school oval (right).

Measurements of the horizontal plane UVB (280 nm to 320 nm) made underneath a tree grove in previous research (Heisler et al. 2003) over the SZA range of  $20^{\circ}-50^{\circ}$ indicates that the irradiance relative to an open sky environment varies between 0.4 and 0.6 for sky views between 40% and 60%. Similar UV shade effects have been discussed in Grant et al. (2001). Here, for tree cover between 90 m and 130 m the measured sky view examined along survey contours 1 and 2 (Appendix L) ranged between 38% and 63% which is relatively close to the sky view examined by Heisler et al. (2003). In comparison to this research, the modelled UV<sub>erv</sub> playground exposure in this region expressed relative to the open environment exposure varied from between 0.41 and 0.46 for the respective winter and summer solstice periods modelled in Chapter 4 (the equivalent of an approximate Protection Factor of 2). Measurements by other researchers (Parisi & Kimlin 1999) however, indicate that tree shade protection is more effective in the UVA wavelengths (320 nm to 400 nm) and the direct comparison made to UVB estimates (Heisler at al. 2003) may better be represented if they are reduced slightly to account for the increased UVA wavelength dependence of the erythemally effective UV modelled here. Modelled predictions of the playground horizontal plane UV<sub>ery</sub> exposure in the school's shaded region along the western fence line do however compare well with measurement studies (Parisi et al. 2001) for which the relative UV irradiance was determined at 0.42 in the SZA range 30°-54° under dense tree shade. These comparisons with the measured results of Heisler et al. (2003) and Parisi et al. (2001) indicate that the technique presented to model UV exposure in a playground environment can be used to assess the quality of tree shade in a realistic environment.

#### 6.3.2 Playground shade structures and their effectiveness

In the summer solstice playground exposure illustrated in Figure 4.11, the influence of a small bus shelter (Figure 6.4) can be seen at approximately 10 m along the western fence line.  $UV_{ery}$  exposures modelled using the technique developed for the school bus shade structure presented in this research are comparable with subsequent Protection Factors (PF) measured for similarly built shade structures placed in an open environment (Turnbull & Parisi 2006). Here, sky view images were taken

underneath the bus shade structure along the first survey line at 10 m and 15 m from the school's northern fence. The sky view at these locations was determined to be 30% and 39% respectively which included a measured 11% transmittance factor for UV penetration through the bus shelter's blue PVC shade cloth cover (Broad-band UV measurements of shade cloth UV transmission are given in Appendix E for all shade cloths found in the HBSHS playground environment). Both covered survey sites in this case were approximately centred underneath the bus shade structure shown in Figure 6.4. The reduction in modelled  $UV_{erv}$  exposure along the survey line passing through the bus shelter structure is listed in Table 6.1. The estimated PF for the shelter was determined as the ratio of mean modelled unprotected UV<sub>erv</sub> to the mean protected UV<sub>erv</sub> values listed in the table. The estimated PF for the structure in this school playground is similar to measured PFs of 1.8-16.1 determined for shade cloth (Toomey et al. 1995), PFs of 4-8 (Gies & Mackay 2004) determined for shade structures located in New Zealand primary schools and PFs found for small sized shade structures determined at < 3 in winter and < 8 in summer (Turnbull & Parisi 2006).



Figure 6.4: The playground bus shelter PF can be calculated by comparing model  $UV_{ery}$  at sites located underneath the shelter to sites located in proximity to the shelter but not located directly underneath it. The bus shelter shade cloth measured approximately 3 m x 12 m and was located approximately 3 m from the ground surface.

Table 6.1: Survey line variation in  $UV_{ery}$  exposure modelled about the bus shelter for the respective winter and summer solstice in the period 8:30am to 3:05pm. Estimated PF was calculated using the ratio of average unprotected modelled  $UV_{ery}$  to average protected modelled  $UV_{ery}$ .

| Approx. distance from  | Winter solstice exposure | Summer solstice exposure |  |  |
|------------------------|--------------------------|--------------------------|--|--|
| centre of shelter (m)  | (21 June 2008)           | (21 December 2008)       |  |  |
| 8 (north)              | 10.6 SED                 | 45.4 SED                 |  |  |
| 3 (north) <sup>*</sup> | 3.7 SED                  | 17.1 SED                 |  |  |
| 2 (south) <sup>*</sup> | 4.5 SED                  | 17.8 SED                 |  |  |
| 7 (south)              | 14.1 SED                 | 60.2 SED                 |  |  |
| Estimated PF           | 3.0                      | 3.0                      |  |  |

Survey sites marked with an (\*) were located underneath the bus shelter

#### 6.3.2.1 Additional notes on playground shade cloth structures

The PF of shade cloth protected structures located in the HBSHS playground are given in Appendx E. The PF of shade cloth structures located in the HBSHS playgrouned were found to vary from 1.1 to 5.3 during the winter solstice and 1.1 to 16.3 during the summer solstice. The listed PFs given in the appendices were calculated in the same manner as demonstrated in Table 6.1. Additionally UV shade cloth transmissions listed in the appendix were used to weight direct UV exposure provided the sun's disc was located behind a cloth structure for the various times and sites used to determine playground shade density (Figure 4.7 and 4.8). In this way, the modelled direct UV componet was weighted to the UV transmission of the shade cloth attached to the shading structure and the degree to which other playground structures reduce the surrounding sky view. For playground sites located under shade structures protected by shade cloths the measured UV transmission of the respective shade cloth was used as an estimate of the sky view above 32° in ZA. Using measured shade cloth UV transmissions, the model developed for this research

can be applied to assess the quality of shade protection in real outdoor environments.

#### 6.4 Vitamin D deficiency

Recently, the risks of underexposure to ambient solar UV have been linked to the development of diseases including rickets (Holick 2003), type I diabetes (Hypponen et al. 2001), multiple sclerosis (Hayes et al. 1997) and the possible development of some cancers (Gorham et al. 1990; Garland et al. 2002; Grant 2002). As has been previously mentioned, these risks are related to vitamin D deficiencies caused by limitations in diet, and the sunlight induced epidermal reaction of 7dehydrocholesterol into pre-vitamin D<sub>3</sub>. At the latitude examined here, the biological response of vitamin  $D_3$  production in human skin exceeds the predicted erythemally effective UV. This is due to the vitamin  $D_3$  response having a greater weighting at shorter UVB wavelengths than the erythemal response (Figure 1.9). Higher solar elevations observed at sub tropical latitudes result in less atmospheric scattering of the direct UV irradiance inducing a greater vitamin  $D_3$  response than the observed erythema or sunburn reaction. Furthermore, it has been determined that at low latitudes ( $< 25^{\circ}$ ) the effective vitamin D UV is equal during both the summer and winter seasons, meaning extended exposures to sunlight are more likely to be harmful than beneficial in sub tropical and tropical latitudes (Kimlin et al. 2006).

The research presented here, although not specifically weighted to the vitamin  $D_3$  response, suggests outdoor playground exposures received by Queensland school children present a much more significant risk for the development of skin cancers caused by overexposure than diseases linked with underexposure to UV. Horizontal plane daily playground exposures modelled in this research were found to be in excess of 60 SED during the summer solstice and 20 SED during the winter solstice in open playround environments. Measurements of personal exposure were found to be in excess of 40 SED for students attending the school swimming carnival. These results give a clear indication of the level of risk present in a Queensland school environment relative to the risks faced by school aged children caused by under-

exposure and vitamin D deficiency. However, a useful technique applied using a similar method as described for this research could be used to examine the regions of low vitamin  $D_3$  effective UV in outdoor environments by weighting the global UV spectrum to the epidermal reaction of 7-dehydrocholesterol into pre-vitamin  $D_3$  (CIE 2006), rather than the erythemal reaction (CIE 1987).

#### 6.5 UV distributions of body surface exposure

A significant proportion of this research work has concentrated on the detailed measurement of body surface distributions of UV exposure. This was seen as a necessary step in achieving an accurate model of human exposure to ambient UV that takes into account shading of the body itself. The face, neck, arm, hand and leg models used to represent exposure are effectively measurements of body surface exposure patterns with changing SZA rather than predictions of the surface exposure estimated for the variously inclined surfaces of the human body. In addition to this, measurements made of the surface distributions of UV exposure have been recorded to a high resolution, eliminating the uncertainty caused by interpolations made over widely spaced body surface measurement sites. A series of detailed polynomial expressions have been developed for the human facial region that can be used to express ambient UV exposure relative to facial location (Appendix I). It is intended that the surface exposure results collected here can be used in future epidemiological studies relating sites of incidence for NMSC and melanoma skin cancers and it is therefore considered relevant to dedicate some part of this discussion to this topic. Measurements of body surface exposure distribution are compared below to studies detailing sites of NMSC and melanoma skin cancer body site incidence.

### 6.5.1 Comparison of measured exposure with sites of melanoma skin cancer incidence

Detailed body surface incidence data for the distribution for NMSC and melanoma skin cancer is not readily available in the literature. Often, body surface incidence of a particular type of skin cancer is reported for broad regions of the body, including for example, the face, body trunk, neck, arms and legs. Measurements of ER have been performed here at 1453 body sites. The detail provided in this data set provides an opportunity to examine detailed distributions of skin cancer incidence. Where detailed skin cancer distributions could be identified in the literature these have been compared. For melanoma skin cancer, a cancer that does not necessarily occur on frequently exposed surfaces of the body (Diffey 1991), data is available indicating that the upper more frequently exposed surfaces of the body have a tendency to develop the greatest number of cancers in some populations but not others. The frequency at which melanoma is incident to heavily exposed surfaces of the body also depends on age, with less frequently exposed body surfaces having a high melanoma incidence in younger age groups, but showing a stronger correlation with heavily exposed areas in older age groups (Elwood & Gallagher 1998). Similarly, the number of nevi in individuals has been hypothesized to affect melanoma distributions between chronic and intermittent exposure patterns (Whiteman et al. 1999). Studies of melanoma skin cancer incidence in Queensland show that melanoma incidence is greater to the face and neck compared to the arms, hands and legs although it should be noted that there are differences in the distributions between males and females. (Green et al. 1993; Buettner & Raasch 1998). These results are in general agreement with ER distributions recorded for this research (Table 3.8) whereby exposure measured in the  $0^{\circ}$ -30° and 30°-50° SZA range was greatest to the face, followed by the hand, neck, leg and forearm. Measurements of body site distribution of NMSC, particularly SCC are more frequently reported on areas of the body that receive a large proportion of the ambient UV and these are discussed in more detail.

#### 6.5.2 Comparison of measured exposure with sites of NMSC incidence

## 6.5.2.1 BCC facial incidence

Comparison between the detailed facial distribution of UV exposure and the localisation of BCC incidence has been reported previously (Diffey et al. 1979). The facial distribution of BCC incidence has been detailed by Brodkin et al. (1969) and more recently by Scrivener et al. (2002). Both of these studies show high rates of BCC incidence to the nose. Comparisons between the distribution of facial UV exposure and BCC incidence provide a valuable insight into the causal nature of UV exposure and the aetiology of BCC as the face is not often protected by clothing and receives a high proportion of the ambient UV.

The correlation between facial BCC tumour density (Brodkin et al. 1969) and UV expoure examined by Diffey et al. (1979) did not show a strong relationship. The facial site incidence of BCC detailed by Brodkin et al. (1969) is presented in Figure 6.5 relative to the facial UV exposure data measured in this research within each of the 0°-30°, 30°-50° and 50°-80° SZA ranges. In this comparison, sites of facial BCC incidence were assigned an ER for each SZA range for each specific part of the face for which BCC tumour incidence was quoted. (The Brodkin et al. (1969) BCC tumour density data is presented in Appendix Q for each of the respective measured facial site ERs). Comparisons made between the research of Diffey et al. (1979) and the facial exposure measurements made here show similarities that highlight the difficulty in establishing a relationship between UV exposure and BCC tumour density. The data presented shows a steady increase in BCC tumour density with increasing UV exposure, however consistent discontinuities in the comparison weaken the relationship with significantly higher tumour densities occurring for example, under the nose, an area of the face that does not receive a high proportion of the ambient UV. The presented comparison between BCC tumour density and exposure shows that there is no direct relationship that can be drawn between the two quantities.



Figure 6.5: Facial BCC tumour density (Brodkin et al. 1969) and UV exposure per lesion site. The Brodkin et al. (1969) facial tumour densities are expressed relative to the facial measurements of SZA in the ranges:  $(0^{\circ}-30^{\circ})$  open circles;  $(30^{\circ}-50^{\circ})$  closed circles; and  $(50^{\circ}-80^{\circ})$  crosses.

### 6.5.2.2 SCC facial incidence

The relationship between facial UV exposure and the distribution of solar keratoses (SK), possible markers for the later development of SCC (Marks et al. 1988), were also examined with respect to measured facial ER. Figure 6.6 compares the facial distribution of SK incidence measured in Brisbane (Latitude  $27^{\circ}$  S) (Nguyen et al. 1998) with the facial ER data measured in each of the  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$  SZA ranges. (The tabular form of this data is also presented in Appendix Q). Comparisons between this data set show that SK incidence increases with facial UV exposure. The greatest incidence of observed SK for the Brisbane study (Nguyen et al. 1998) was found on the cheek, followed by the ears and the nose. Each of these regions of the face receive a consistently high UV exposure across each of the  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$  SZA ranges. However, as is evident in Figure 6.6, it is difficult to establish a clear relationship between UV exposure distribution and the incidence of SK.



Figure 6.6: Facial SK incidence (Nguyen et al. 1998) and UV exposure per lesion site in the SZA  $0^{\circ}$ - $30^{\circ}$  (open circles);  $30^{\circ}$ - $50^{\circ}$  (closed circles); and  $50^{\circ}$ - $80^{\circ}$  (crosses) range.

6.5.2.3 The anatomical distribution of BCC and SCC

The incidence of SCC in men and women is lower than BCC (Staples et al. 1999; Kricker et al. 1990; Raasch et al. 1998). The proportion of SCC is however greater to the exposed surfaces of the upper limbs than BCC (Raasch et al. 1998; Giles et al. 1988). This, in part is due to the higher incidence rate of BCC localised on the body trunk, an area of the body not readily exposed to solar UV, decreasing the relative proportions of BCC incidence to frequently exposed body surfaces. Patterns in BCC incidence supported by the hypothesis that intermittent exposures affect areas of the body not readily exposed to solar UV, may account for BCC anatomical distributions that develop later in life as a result of earlier severe episodes of sunburn. In the comparisons made to exposures measured in this research, BCC incidence was most strongly correlated to UV exposures measured on the face, followed by the upper limbs.

The anatomical distribution for histologically confirmed incidences of BCC and SCC measured in Australian populations of sub-tropical and tropical latitude was compared to the median body site ER data measured in the  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$  SZA range for the face, neck, arm, hand and leg (Table 6.2(a) and Table 6.2(b)). The localisation of BCC and SCC data presented in the tables were measured from electoral roll populations

residing in Geraldton, Western Australia (Kricker et al. 1990) and Townsville, Queensland (Raasch et al. 1998). These two regional Australian cities are located in latitudes of 29°S and 19°S respectively and are therefore subject to the SZA ranges studied in this research. The incidence of both BCC and SCC to the face and upper limbs were reported in these two studies to be higher than the confirmed incidences to the neck and legs, regions of the body that are better protected by clothing than the face and upper limbs, particularly in warm climates, whereby the forearms are not often protected.

*Table 6.2(a): Comparison of the anatomical distribution of BCC site localisation in Geraldton (Kricker et al. 1990) and Townsville (Raasch et al. 1998) to median ER.* 

| Body Site      | Geraldton |           | Townsville  | ER     |         |         |
|----------------|-----------|-----------|-------------|--------|---------|---------|
|                | men       | women     | men & women | SZA    | SZA     | SZA     |
|                | (n = 232) | (n = 126) | (n=213)     | 0°-30° | 30°-50° | 50°-80° |
| Scalp          | 1%        | 0%        | 6%          |        |         |         |
| Face           | 17%       | 27%       | 44%         | 26%    | 39%     | 48%     |
| Neck           | 5%        | 6%        | 7%          | 23%    | 36%     | 59%     |
| Upper<br>limbs | 13%       | 17%       | 12%         | *20%   | *21%    | *41%    |
| Lower<br>limbs | 8%        | 7%        | 7%          | 12%    | 23%     | 47%     |

\* median of forearm and hand ER

| Body Site      | Geraldton       |                  | Townsville              |               | ER             |                |
|----------------|-----------------|------------------|-------------------------|---------------|----------------|----------------|
|                | men<br>(n = 33) | women<br>(n = 7) | men & women<br>(n= 121) | SZA<br>0°-30° | SZA<br>30°-50° | SZA<br>50°-80° |
| Scalp          |                 |                  | 4%                      |               |                |                |
| Face           | 58%             | 57%              | 19%                     | 26%           | 39%            | 48%            |
| Neck           | 9%              | 0%               | 7%                      | 23%           | 36%            | 59%            |
| Upper<br>limbs | 9%              | 14%              | 49%                     | *20%          | *21%           | *41%           |
| Lower<br>limbs | 9%              | 14%              | 18%                     | 12%           | 23%            | 47%            |

*Table 6.2(b): Comparison of the anatomical distribution of SCC site localisation in Geraldton (Kricker et al. 1990) and Townsville (Raasch et al. 1998) to median ER.* 

\* median of forearm and hand ER

It can reasonably be concluded that chronic exposure to solar UV is likely to establish an exposure pattern similar to that which has been measured in this research as chronic exposure to solar UV will affect unprotected skin surfaces of the body that receive a higher solar UV exposure. The examined incidences of SCC which were recorded in similar latitudes to the measured pattern of body surface exposure show a higher correlation with ER than the respective BCC incidence. However, the aetiological factors that influence the development of NMSC cannot be directly related to the measured anatomical distribution of UV exposure alone. The relevance of this particular point must be emphasised in relation to UV exposure distributions which were measured here using upright mannequin subjects. Additional factors including variation in skin thickness above the basal layer, the presence of hair, clothing, and personal outdoor lifestyle patterns will influence NMSC incidence rates and are difficult to quantify with respect to comparisons made using mannequin subjects.

Existing data present in the literature detailing the measured distribution of solar UV exposure to human subjects is further limited by the total number of body sites that are often measured. An approach that integrates detailed measurements of UV exposure distribution, such as the body site exposure sets provided here for mannequin subjects may improve interpolated estimates of whole body exposure measured using human subjects which in turn may improve correlations made with the anatomical distribution of NMSC and melanoma body distribution incidence data. The measured patterns in UV exposure, although not showing a strong relationship with the distribution of NMSC incidence can be applied to a variety of SZA ranges providing a detailed data set of UV exposures that may assist in future studies assessing the anatomical distribution of melanoma and NMSC incidence.

## 6.6 Future work and extension of the research project

#### 6.6.1 Model applications in different environments

The main components of this research work can be summarised into three points. These include: playground specific modelling of the horizontal plane  $UV_{ery}$  exposure, measurement of body surface UV distribution relative to the horizontal plane; and modelling body surface UV exposure distributions by weighting with body site ER to predict skin surface exposures in the playground environment. The research work presented has been developed from measurements made in one specific school playground. The work presented here could similarly be extended to any outdoor playground environment or any outdoor environment in which the local ambient UV may need to be assessed including for example public parks or sporting grounds.

In order to model the UV exposure incident on human skin surfaces in the HBSHS playground measurements of sky view were taken using a photographic survey method in which 822 specific playground sites were sampled. The detail required for any other outdoor environment may be improved by sampling at higher resolutions than 5 m. Similarly, lower sampling resolutions may be used in more open environments as was

demonstrated in this research whereby the sky view was sampled at 20 m in open regions of the playground.

The model developed for this research was shown to be suitable for measurements of playground shade density. This was examined during the winter and summer solstice to determine the effective range of shade that could occur in the specific playground environment. Playground shading at any time or for any particular period of the day can be determined using the methods developed to assess shade quality in any outdoor location. The effect of shade from surface structures can be accurately modelled provided the position of the sun is plotted with respect to those structures. The advantage of using the method developed is that any ground or surface obstruction can be accounted for. The specific growth patterns of trees or the inclusion of later playground structures is taken into account when the outdoor environment is surveyed. In this way detailed shading patterns can be developed for existing outdoor environments which improve upon methods that make shade predictions based upon only the largest uniform surface structures and take little account of small scale surface objects such as trees and other small scale surface objects that become part of changing outdoor environments.

The method of modelling playground exposure presented in this work required a labour intensive survey of 822 playground sites. This is a necessary step required to make an accurate estimate of the UV exposure in any real environment. A valuable extension to this work could involve automated image processing of a survey playground. A wide-angle lens, attached to a digital camera fitted to a portable computer could be used to process sky view images as they are taken. Playground surveying software could further be developed to plot measured locations and process site images for sky view and shade density to develop UV hazard charts of various playground and outdoor settings in a shorter time frame than has been required for the current study whereby image processing and playground modelling were performed post survey.

#### 6.6.2 Model limitations

Modelled UV exposures in the playground environment have been presented as the erythemal UV incident on a horizontal plane. Predictions of horizontal plane exposure were further weighted to measurements of body surface ER to determine estimates of body surface exposure under different conditions in the playground environment. The influence of the local environment and the behaviour of students in the school playground will result in variations from the predicted body surface exposure and the actual received body surface exposure placing some limitations on any prediction made using the techniques developed for this research.

The first obvious limitation of note is caused by the measurement of body surface exposure on mannequin subjects. The movement of living human subjects is dependent on individual attitude and lifestyles. The posture of a human subject as it is related to the solar UV environment is very much dependent upon the activity undertaken by the individual. Ratios of exposure expressed relative to the horizontal plane UV will be different for students undertaking different sporting activities and will be different for students sitting and standing in the school environment. The measurements of exposure in this work were recorded on a standing upright body and headform mannequin and therefore cannot be taken to represent the body surface exposure pattern received by a student under all conditions. The upright posture was examined here primarily because students using outdoor environments are likely to be either moving between classes, engaged in sporting activity during normal class times, or using the open oval environment during recess breaks for primarily recreational and sporting activities. Some variation in exposure is therefore possible in the real school environment due particularly to a sitting posture which is most likely to affect the predicted ratios of exposure to the leg region of the body. Although the body mannequin selected for the measurement of ER was a female mannequin of 178 cm height, this mannequin cannot be taken to represent individual body shape and size for students ranging from 6 to 17 years of age. It must also therefore be expected that there will be some variation in body surface exposure distributions due to individual body surface shape and size among a school population. An examination of different body postures and the use of different sized mannequins could be used to refine predictions of exposure distribution.

Predictions of UV exposure, weighted to human body surface topography for this work are dependent only upon the ambient UV that falls onto a horizontal plane. That is, there are additional uncertainties in the predicted pattern of body surface exposure caused by variation in the albedo present in any particular area of a playground environment. For a student located near a wall that has a high albedo surface for example, the exposure pattern affecting the body surface will be different to the exposure pattern measured in an open environment. The extent to which surfaces of various albedo and orientations with respect to the horizontal plane affect patterns in body surface exposure is dependent upon the cumulative albedo of the various surfaces specific to the local area of the surrounding playground and their aspect with respect to solar position. Such effects are difficult to model in detail due to the multitude of different surfaces that may be present in any specific playground site and have not been directly included in this research. Instead, a technique to express the cumulative effect of both vertical standing and ground surfaces has been presented from broad-band measurements of surface albedo. As an approximation, albedo contributions were estimated at each of the 822 playground sites from site ground surfaces and the cumulative sum of vertical standing surfaces located within 2 m of the specific playground site. Playground albedo contributions to the total exposure received by students were determined to be less than 10% for the model school environment when weighted to site sky view. As an improvement to the approximation developed for the current research, the influence of vertical standing and ground surface contributions to body surface exposures could be determined at increasing distances from the reflecting surface. The total surface area of individual ground and standing surfaces will also influence the actual exposure received by a student population.

Measurements of ER were recorded over grass surfaces in an open field site at the University of Southern Queensland. The studied playground environment experienced variations in surface albedo from 4% for grass surfaces to 10% for concrete. Variations in the measured body ER due to variation in surface albedo found in the playground environment are likely to be greatest to the lower regions of the full sized body mannequin and lower proximities of the headform mannequin. The greatest increase in ER due to increased surface albedo found in different regions of the playground will be 6% for concrete surfaces, 2% to 3% for paved surfaces, 3% for bitumen surfaces and 4% for paving dust surfaces found in the studied playground environment. The extent to which each of these albedo differences will influence ER to the surfaces of the mannequin model is dependent on the orientation of the mannequin body site relative to the horizontal plane and will be less to mannequin surfaces orientated away from the reflecting surface normal.

In this research a model of UV<sub>ery</sub> exposure was developed assuming a constant ozone concentration of 300 DU and clear sky conditions. The changing influence of stratospheric ozone will affect modelled student exposures. The horizontal plane UV model developed for this research has however included provision for various ozone concentrations and a simple model has been included in the supplied horizontal plane UV exposure software to model ozone concentrations at different longitudes and latitudes (Van Heuklon 1979). The influence of cloud as it relates to UV enhancements and more typically reductions in exposure, is dependent upon temporal cloud conditions which can change significantly during the course of a school day. A simple cloud model has been integrated into the developed horizontal plane UV exposure model (Josefsson 1986), although this has not been specifically investigated in this research. Further research into the modelled effects of cloud, particularly cloud enhancement to the ambient UV could be integrated into the developed horizontal plane model to make better predictions of UV exposure on cloudy days.

### 6.6.3 Increasing awareness in school populations

The developed UV exposure school environment model has been presented to demonstrate its effectiveness in making reasonable predictions of the exposures that affect school children. Models such as that developed for this research may be used to

increase awareness of the local UV environment with changing season and on a day to day basis. This is seen as an important use of this research, particularly in regards to Queensland school environments which present a significant risk to children for the development of preventable solar induced diseases. Using the techniques demonstrated for the model school, other school environments could be assessed for the factors that affect solar safety including the quality and quantity of playground shade regions, sky view, and local albedo. An interesting extension of this research could include the assessment of the solar safety among different school environments. The quality of protection offered by schools of given localities could be adequately assessed to develop rankings to inform parents of the relative protection offered and similarly the relative risks of developing NMSC could be assessed between different school environments using the methods outlined. Playground specific models can be utilised by school administrators to plan for sporting events and to assess regions of the playground to make informed decisions about the local UV environment on a daily basis. Furthermore, students themselves may be given access to information about the UV in their local school environment to help them make informed decisions about their daily playground use.

### CHAPTER 7 CONCLUSIONS

The outcome of this research has been the development of a playground specific UV exposure model that can be utilised to predict personal erythemally effective exposures over skin surfaces of the human body in a school environment. This is the first research to do this based on actual exposure ratio measurements which were made using miniaturised polysulphone dosimeters to allow for the high density measurement of exposure over the surface topography of the face, neck, arm, hand and leg, regions of the human body frequently exposed to ambient UV. Additional outcomes have further been developed and discussed. A summary of the specific outcomes relating to this research is given below:

# 7.1 Annual playground exposure

Mean playground statistics of sky view, and shade density were used to determine an estimate of the annual  $UV_{ery}$  exposure for the 202 day school calendar year. Assuming clear sky conditions and a constant ozone concentration of 300 DU, the annual HBSHS playground exposure was determined at 4210 SED. The weighted annual  $UV_{ery}$  exposure for each respective body part ER was determined to be 330 SED for the face, 300 SED for the back of the neck, 140 SED for the arm, 290 SED for the hand, and 190 SED for the leg. The ER for each of the mentioned body parts was determined as the median ER measured in the  $30^{\circ}$ - $50^{\circ}$  SZA range, the mean annual SZA range experienced at Hervey Bay's latitude.

# 7.2 Playground exposure ranges

Measurements of playground sky view, shade, and albedo contribution were utilised to provide estimates of playground surface  $UV_{ery}$  exposure. Maximum surface exposures were modelled in the school playground open environments, varying from above 20

SED and 60 SED in the 8:30am to 3:05pm school day for the winter and summer solstice respectively.

# 7.3 Tree shade and shading structures

The quality of tree cover in the playground environment was determined by comparing modelled  $UV_{ery}$  exposure under tree cover to open  $UV_{ery}$  playground exposures. This technique can be used to determine tree cover PF and is based on the image processing measurement of sky view and shade in the playground. The UPF of shade cloth structures was also determined in the HBSHS playground environment by determining the ratio of unprotected modelled  $UV_{ery}$  to protected  $UV_{ery}$  located underneath shade structures. The UPF of shade structures located in the model school environment varied from 1.1 to 5.3 in winter and 1.1 to 16.3 in summer.

#### 7.4 Measurement of playground surface albedo

Playground ground and standing surface albedo was measured using a broad-band UV meter. These measurements were used to estimate playground site albedo contribution by weighting with site sky view. Regions of the school playground that made the greatest albedo contributions to the ambient UV were highlighted.

### 7.5 SZA ranges of body surface UV distribution

A total of 2491 measurements of body surface UV exposure were taken over a four year period in the SZA ranges  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$ , and  $50^{\circ}$ - $80^{\circ}$ . This data set provides detailed information on the range of exposure distributions affecting unprotected human skin surfaces taking into account shading caused by the body itself.
### 7.6 Comparison of measured body ER and sites of skin cancer incidence

The patterns in solar UV exposure affecting unprotected skin surfaces of the body measured in this research were found to be in better agreement with published distributions of SCC than BCC. No direct relationship was determined between sites of facial NMSC and ER distributions measured in the  $0^{\circ}$ - $30^{\circ}$ ,  $30^{\circ}$ - $50^{\circ}$  and  $50^{\circ}$ - $80^{\circ}$  SZA ranges.

## 7.7 Measured student exposure

The mean measured exposure recorded to students observing the normal school routine between February and June in the period between 8:30am and 3:05pm was 2.4 SED. Exposures measured during the school swimming carnival varied between 4.9 SED and 49.8 SED. Student location in the playground was determined to be a significant factor in increasing exposure to the face, neck, arm, hand, and leg body sites regardless of season and cloud cover. Most of the personal exposures measured in the school environment between February and June were found to exceed the occupational limit of exposure to solar UV radiation.

### 7.8 Activity index

The mean activity index of children using the study playground environment between 8:30am and 3:05pm was 0.2. The highest activity indices were determined for the short period before the start of school and during both meal breaks. The greatest activity index was observed during a school meal break time. It was determined that most (41%) of the student population had spent two periods outdoors during the normal school routine and most of these students spent both of their two periods outdoors during meal breaks.

Hat use in the playground was noted at 8%. Of the hats that were worn by students most were baseball style caps.

#### 7.10 NMSC risk

NMSC risk was determined for children using various regions of the playground environment. The risk of developing NMSC was discussed in relation to hat use in the school population. It was determined that children using open outdoor environments during both school meal breaks increased their risk of developing BCC by 1.8 and increased their risk of developing SCC by 2.2 compared to children that used well protected playground environments. Students restricted from the playground environment between 10:00am and 2:00pm were found to have a reduced risk for the development of BCC by 2.1 and 2.7 for the development of SCC. It was also determined that moving the school swimming carnival from 15 February to 15 April resulted in a reduction in the risk of developing both BCC and SCC skin cancers provided exposure received outside of school hours was low.

#### 7.11 Recommendations of playground exposure limits

It was determined that playground exposures could be greatly reduced if students were restricted from using the playground environment between 10:00am and 2:00pm. Most of the daily cumulative exposure received by a school student in the model school playground was found to occur during the school meal break periods between 11:25am and 12:05pm and 1:15pm and 1:55pm. The active use of sun protection measures during school meal breaks is likely to have the most significant effect on reducing cumulative UV exposure. High personal exposures measured during the school swimming carnival also highlight the need to take active precautions during outdoor school events such as sports days. School administrators have both the potential and responsibility to reduce

risks associated with excessive childhood UV exposures received in the school environment.

The research presented in this work was developed with the intention of providing a model that could be used to educate children, teachers and administrators of the severity of the UV climate present in Queensland school playground environments. Much of the inspiration for the research came about by observation of Queensland schools holding swimming carnival events in the early February of each year which to the author's understanding is the case largely because qualifying rounds need to be held early in the year to determine district and state championships. Continuing to follow such practices without proper consideration of the health risks inherent in the environment makes no contribution toward reducing skin cancer mortality rates, which in Queensland are recognised as the highest in the world. It is hoped that the methods presented for assessing detailed environmental and anatomical distribution patterns will make some contribution toward better understanding those very real risks presented to children by being exposed to a known carcinogen.

#### **REFERENCES**

- ACCV (Anti-Cancer Council of Victoria), 1999, *SunSmart Campaign 2000-03*, Report of the Anti-Cancer Council, Melbourne.
- Agar, N.S., Halliday, G.M., Barnetson, R.S., Ananthaswamy, H.N., Wheeler, M., Jones, A.M. 2004, 'The basal layer in human squamous tumors habors more UVA than UVB fingerprint mutuations: a role for UVA in human skin carcinogenesis', *Proceedings of the National Academy of Sciences of the United States of America*, vol. 101, no. 14, pp. 4954-4959.
- AIHW (Australian Institute of Health and Welfare) and AACR (Australasian Association of Cancer Registries), 2007, *Cancer in Australia: an overview, 2006*, Cancer Series no. 37, Australian Government, Canberra, Available at: http://www.aihw.gov.au/publications/can/ca06/, Accessed on 14 April 2008.
- Airey, D.K., Wong, J.C.F. & Fleming, R.A. 1995, 'A comparison of human- and headform- based measurements of solar ultraviolet B dose,' *Photodermatology*, *Photoimmunology and Photomedicine*, vol. 11, no. 4, pp. 155-158.
- Armstrong, B.K. 1988, 'Epidemiology of malignant melanoma: intermittent or total accumulated exposure to the sun?,' *The Journal of Dermatologic Surgery and Oncology*, vol. 14, pp. 835-849.
- Armstrong, B.K. 1994, 'Stratospheric ozone and health,' *International Journal of Epidemiology*, vol. 23. pp. 873-885.
- Armstrong, B.K. & Kricker, A. 1996, 'Epidemiology of sun exposure and skin cancer', in *Skin Cancer*, vol. 26, eds I.M. Leigh, J.A. Newton Bishop & M.L. Kripke, pp. 133-154, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
- ARPANSA (Australian Radiation Protection and Nuclear Safety Agency). 2006, *Radiation Protection Standard: Occupational Exposure to Ultraviolet Radiation* Radiation Protection Series Publication no. 12, Canberra: Australian Government.
- Atkinson, R.J., Matthews, W.A., Newman, P.A. & Plumb, R.A. 1989, 'Evidence of the mid-latitude impact of Antarctic ozone depletion,' *Nature*, vol. 340, pp. 290-294.
- Balanda, K. P., Stanton, W.R., Lowe J.B. & Purdie, J. 1999, 'Predictors of sun protective behaviors among school children,' *Behavioral Medicine*, vol. 25, pp. 28-35.
- Barton, I.J. & Paltridge, G.W. 1979, 'The Australian climatology of biologically effective ultraviolet radiation,' *Australian Journal of Dermatology*, vol. 20, pp. 68-74.

- Blumthaler, M. & Ambach, W. 1988, 'Solar UVB-albedo of various surfaces,' Photochemistry and Photobiology, vol. 48, no. 1, pp. 85-88.
- Broadstock, M., Borland, R. & Hill, D. 1996, 'Knowledge, attitudes and reported behaviours relevant to sun protection and suntanning in adolescents,' *Psychology and Health*, vol. 11, pp. 527-539.
- Brodkin, R.H., Kopf, A.W. & Andrade, R. 1969, 'Basal-cell epithelioma and elastosis: a comparison of distribution', in *The Biologic Effects of Ultraviolet Radiation: with Emphasis on the Skin*, ed. F. Urbach, pp. 581-618, Pergamon, New York..
- Bruls W.A.G., Slaper, H., van der Leun, J.C. & Berrens, L. 1984, 'Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,' *Photochemistry and Photobiology*, vol. 40, no. 4, pp. 485-494.
- Björn, L.O. 1989, 'Computer programs for estimating ultraviolet radiation in daylight', in *Radiation Measurement in Photobiology*, ed. B.L. Diffey, pp. 161-189, Academic Press, New York.
- Braslau, N. & Dave, J. V. 1973, 'Effect of aerosols on the transfer of solar energy through realistic model atmospheres, Part III: Ground level Fluxes in the biologically active bands, 0.2850-0.3700 microns', IBM Research Report, RC 4308.
- Buettner, P.G. & Raasch, B.A. 1998, 'Incidence rates of skin caner in Townsville, Australia,' *International Journal of Cancer*, vol. 78, no. 5, pp. 587-593.
- Campbell, C., Quinn, A.G., Angus, B., Farr, P.M. & Rees, J.L. 1993. 'Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation', *Cancer Research*, vol. 53, pp. 2697-2699.
- CIE (International Commission on Illumination) Research Note 1987, 'A reference action spectrum for ultraviolet induced erythema in human skin,' *CIE- Journal*, vol. 6, no. 1, pp. 17-22.
- CIE (International Commission on Illumination) Technical Report 1992, 'Personal dosimetry of UV radiation,' Publication no. CIE 98.
- CIE (International Commission on Illumination) 1997, 'Standard erythema dose, a review,' B.L. Diffey, C.T. Jansén, F. Urbach, H.C. Wulf CIE, Vienna, Austria.
- CIE (International Commission on Illumination) 2006, 'Action spectrum for the production of previtamin  $D_3$  in human skin,' Publication no. CIE 174.
- Chapman, S. 1930. 'A theory of upper atmospheric ozone,' *Memoirs of the Royal Meteorological Society*, vol. 3, pp. 103-25.

- Chuang, T.Y., Popescu, A., Su, W.P.D., & Chute, C.G. 1990, 'Basal cell carcinoma: a population-based incidence study in Rochester, Minnesota,' *Journal of the American Academy of Dermatology*, vol. 22, pp. 413-417.
- Clemens, T.L., Adams, J.S., Henderson, S.L. & Holick, M.F. 1982, 'Increased skin pigment reduces the capacity of skin to synthesize vitamin D<sub>3</sub>,' *Lancet*, vol. 1, pp. 74-76.
- Coebergh, J.W.W. Neumann, H.A.M., Vrints, L.W., van der Heijden, L., Meijer, W.J. & Verhagen-Telings, M.T. 1991, 'Trends in the incidence of nonmelanoma skin cancer in the SE Netherlands 1975-1988: a registry based study,' *British Journal of Dermatology*, vol. 125, pp. 353-359.
- Cooke, K.R., Skegg, D.C.G. & Fraser, J. 1983, 'Trends in malignant melanoma of skin in New Zealand,' *International Journal of Cancer*, vol. 31, pp. 715-718.
- Cutnell, J. D. & Johnson, K.W. 1998, *Physics: Fourth Edition*, John Wiley & Sons, New York.
- Dave, J.V. & Halpern, P. 1976, 'Effects of changes in ozone amount on the ultraviolet radiation received at sea level of a model atmosphere,' *Atmospheric Environment*, vol. 10, pp. 547-555.
- Davis, A., Deane, G.H.W. & Diffey, B.L. 1976, 'Possible dosimeter for ultraviolet radiation,' *Nature*, vol. 261, pp. 169-170.
- deGruijl, F.R. 1982, *The dose response relationship for UV tumorigenesis*, University of Utrecht, PhD Thesis.
- deGruijl, F.R. 1999, 'Skin cancer and solar UV radiation,' *European Journal of Cancer*, vol 35, no. 14, pp. 2003-2009.
- Diepgen, T.L. & Mahler, V. 2002, 'The epidemiology of skin cancer,' British Journal of Dermatology, vol. 146, no. s61, pp. 1-6.
- Diffey, B.L. 1977, 'The calculation of the spectral distribution of natural ultraviolet radiation under clear day conditions (for UV dosimeter correction),' *Physics in Medicine and Biology*, vol. 22, pp. 309-316.
- Diffey, B.L., Kerwin, M. & Davis, A. 1977, 'The anatomical distribution of sunlight,' *British Journal of Dermatology*, vol. 97, no. 4, pp. 407-410.
- Diffey, B.L., Tate, T.J. & Davis, A. 1979, 'Solar dosimetry of the face: the relationship of natural ultraviolet radiation exposure to basal cell carcinoma localisation,' *Physics in Medicine and Biology*, vol. 24, pp. 931-939.
- Diffey, B.L. 1987, 'A comparison of dosimeters used for solar ultraviolet radiometry,' *Photochemistry and Photobiology*, vol. 46, pp. 55-60.

- Diffey, B.L. 1989, 'Ultraviolet radiation dosimetry with polysulphone film', in *Radiation measurement in photobiology*, ed. B.L. Diffey, pp. 135-159, Academic Press, London.
- Diffey, B.L. 1991, 'Solar ultraviolet radiation effects on biological systems,' *Physics in Medicine and Biology*, vol. 36, no. 3, pp. 299-328.
- Diffey, B.L. 1992, 'Stratospheric ozone depletion and the risk of non-melanoma skin cancer in a British population,' *Physics in Medicine and Biology*, vol. 37, pp. 2267-2279.
- Diffey, B. L. & Cheeseman, J. 1992, 'Sun protection with hats,' *British Journal of Dermatology*, vol. 127, pp. 10-12.
- Diffey, B.L., Gibson, C.J., Haylock, R., McKinlay, A.F. 1996, 'Outdoor ultraviolet exposure of children and adolescents,' *British Journal of Dermatology*, vol. 134. no. 6, pp. 1030-1034.
- Diffey, B. L., Jansen, C.T., Urbach, F. and Wulf, H.C. 1997, 'The standard erythema dose: a new photobiological concept,' *Photodermatology, Photoimmunology and Photomedicine*, vol. 13, pp. 64-66.
- Diffey, B.L. 2002, 'What is light?,' *Photodermatology, Photoimmunology and Photomedicine*, vol. 18, no. 2, pp. 68-74.
- Dixon, H., Borland, R. & Hill, D. 1999, 'Sun protection and sunburn in primary school children: the influence of age, gender, and coloring,' *Preventive Medicine*, vol. 28, pp. 119-130.
- Downs, N.J., Kimlin, M.G., Parisi, A.V. & McGrath, J.J. 2001, 'Modelling Human Facial UV Exposure,' *Radiation Protection in Australasia*, vol. 17, no. 3, pp. 103-109.
- Downs, N.J. & Parisi, A.V. 2007, 'Three dimensional visualisation of human facial exposure to solar ultraviolet,' *Photochemical and Photobiological Sciences*, vol.6, pp. 90-98.
- Downs, N.J. & Parisi, A.V. 2008, 'Patterns in the received facial ultraviolet exposure of school children measured at a sub-tropical latitude,' *Photochemistry and Photobiology*, vol. 84(1), pp. 90-100.
- Elwood, J.M. & Gallagher, R.P. 1998, 'Body site distribution of cutaneous malignant melanoma in relationship to patterns in sun exposure,' *International Journal of Cancer*, vol. 78, no. 3, pp. 276-280.
- EQ (Education Queensland), 2008, *Shaping the smart state: a guide to state schools*, Queensland Government: Education Queensland, Available at: http://education.qld.gov.au/schools/about/pdfs/guide-to-state-schools.pdf, Accessed on 21 July 2008.

- Estupinan, J.G., Raman, S., Crescenti, G.H., Streicher, J.J. & Barnard, W.F. 1996, 'Effects of clouds and haze on UV-B radiation,' *Journal of Geophysical Research*, vol. 101, no. d11, pp. 16807-16816.
- Evans, R.D., Kopf, A.W., Lew, R.A., Rigel, D.S., Bart, R.S., Friedman, R.J. & Rivers, J.K. 1988, 'Risk factors for the development of malignant melanoma-I: review of case control studies,' *Journal of Dermatological Surge and Oncology*, vol. 14, pp. 393-408.
- Farman, J.C., Gardiner, B.G. & Shaklin, J.D. 1985, 'Large losses of total ozone in Antarctica reveal seasonal ClOx / NOx interaction,' *Nature*, vol. 315, pp. 207-210.
- Farr, P.M., Besag, J.E. & Diffey, B.L. 1988, 'The time-course of UVB and UVC erythema,' *Journal of Investigative Dermatology*, vol. 91, pp. 454-457.
- Feister, U. 1994, 'Measurements of chemically and biologically effective radiation reaching the ground,' *Journal of Atmospheric Chemistry*, vol. 19, no. 3, pp. 289-315.
- Feister, U. & Grewe, R. 1995, 'Spectral albedo measurements in the UV and visible region over different types of surfaces,' *Photochemistry and Photobiology*, vol. 62, no. 4, pp. 736-744.
- Fishman, J., Watson, C.E., Larsen, J.C. & Logan, J.A. 1990, 'Distribution of tropospheric ozone determined from satellite data,' *Journal of Geophysical Research*, vol. 95, no. D4, pp. 3599-3617.
- Fitzpatrick, T.B. 1975, 'Soleil et peau,' *Journal de Medicine Esthetique*, vol. 2, pp. 33-34.
- Gambichler, T., Moussa, G., Tomi, N.S., Paech, V., Altmeyer, P. & Kreuter, A. 2006, 'Reference limits for erythema-effective UV doses,' *Photochemistry and Photobiology*, vol. 82, no. 4, pp. 1097-1102.
- Garland, C.F., Garland, F.C., Gorham, E.D., Lipkin, M., Newmark, H., Holick, M.F. & Raffa, J.V. 2002, 'Ultraviolet B, vitamin D, and their mechanisms in cancer prevention', in *Ultraviolet Ground- and Space-based Measurements, Models, and Effects: Proceedings of SPIE*, eds. J.R. Slusser, J.R. Herman, and W. Gao, pp. 313-323, The International Society for Optical Engineering, SPIE, Bellingham.
- Gasparro F.P., Mitchnick, M. & Nash, J.F. 1998, 'A review of sunscreen safety and efficacy,' *Photochemistry and Photobiology*, vol. 68, pp. 243-256.
- Gies, P.H., Roy, C.R., Toomey, S., MacLennan, R. & Watson, M. 1995, 'Solar UVR exposure of three groups of outdoor workers on the sunshine coast, Queensland,' *Photochemistry and Photobiology*, vol. 62, no. 2, pp. 1015-1021.

- Gies, P., Roy, S., Toomey, R., MacLennan, R. & Watson, M. 1998, 'Solar UVR exposures of primary school children at three locations in Queensland,' *Photochemistry and Photobiology*, vol. 68, pp. 78-83.
- Gies, P., & Wright, J. 2003, 'Measured solar ultraviolet radiation exposures of outdoor workers in Queensland in the building and construction industry,' *Photochemistry and Photobiology*, vol. 78, no. 4, pp. 342-348.
- Gies, P. & Mackay, C. 2004, 'Measurements of the solar UVR protection provided by shade structures in New Zealand primary schools,' *Photochemistry and Photobiology*, vol. 80, pp. 334-339.
- Gies, P., Javorniczky, J., Roy, C. & Henderson, S. 2006, 'Measurements of the UVR protection provided by hats used at school,' *Photochemistry and Photobiology*, vol. 82, pp. 750-754.
- Gilchrest, B.A., Eller, M.S., Geller, A.C. & Yaar, M. 1999, 'The pathogenesis of melanoma induced by ultraviolet radiation', *New England Journal of Medicine*, vol. 340, pp. 1341-1348.
- Giles, G.G., Marks, R. & Foley, P. 1988, 'Incidence of non-melanocytic skin cancer treated in Australia,' *British Medical Journal*, vol. 296, no. 6614, pp. 13-17.
- Giles-Corti, B., English, D.R., Costa, C., Milne, E., Cross, D. & Johnston, R. 2004, 'Creating SunSmart Schools,' *Health Education Research: Theory and Practice*, vol. 19, no. 1, pp. 98-109.
- Girgis, A., Sanson-Fisher, R.W. & Watson, A. 1994, 'A workplace intervention for increasing outdoor workers' use of solar protection,' *American Journal of Public Health*, vol. 84, no. 1, pp. 77-81.
- Glass, G.G. & Hoover, R.N. 1989, 'The emerging epidemic of melanoma and squamous cell skin cancer,' *The Journal of the American Medical Association*, vol. 262, no. 15, pp. 2097-2100.
- Gorham, E.D., Garland, F.C. & Garland, C.F. 1990, 'Sunlight and breast cancer incidence in the USSR,' *International Journal of Epidemiology*, vol. 19, pp. 614-622.
- Grant, R.H. 1997, 'Biologically active radiation in the vicinity of a singal tree,' *Photochemistry and Photobiology*, vol. 65, no. 6, pp. 974-982.
- Grant, R.H. & Heisler, G.M. 1996, 'Solar ultraviolet-B and photosynthetically active irradiance in the urban sub-canopy: a survey of influences,' *International Journal of Biometeorology*, vol. 39, pp. 201-212.
- Grant, R.H. & Heisler, G.M. 2001, 'Multi-waveband solar irradiance on tree-shaded vertical and horizontal surfaces: cloud-free and partly cloudy skies,' *Photochemistry and Photobiology*, vol 73, no.1, pp. 24-31.

- Grant, R.H., Heisler, G.M. & Gao, W. 2002, 'Estimation of pedestrian level UV exposure under trees', *Photochemistry and Photobiology*, vol. 75, no. 4, pp. 369-376.
- Grant, W.B. 2002, 'An estimate of premature cancer mortality in the U.S. due to inadequate doses of solar UV-B radiation,' *Cancer*, vol. 94, pp. 1867-1875.
- Green, A. MacLennan, R., Youl, P. & Martin, N. 1993, 'Site distribution of cutaneous melanoma in Queensland,' *International Journal of Cancer*, vol. 53, pp. 232-236.
- Green, A.E.S., Cross, K.R., & Smith, L.A. 1980, 'Improved analytic characterization of ultraviolet skylight,' *Photochemistry and Photobiology*, vol. 31, pp. 59-65.
- Green, A.E.S., Sawada, T. & Shettle, E.P. 1974, 'The middle ultraviolet reaching the ground,' *Photochemistry and Photobiology*, vol. 19, pp. 251-259.
- Grifoni, D, Carreras, G., Sabatini, F. & Zipoli, G. 2005, 'UV hazard on a summer's day under Mediterranean conditions, and the protective role of a beach umbrella,' *International Journal of Biometeorology*, vol. 50, no. 2, pp. 75-82.
- Grifoni, D., Carreras, G. Sabatini, F. & Zipoli, G. 2006, 'UV hazard on Italian Apennines under different shading and ground cover conditions during peak tourist seasons of the year', *International Journal of Environmental Health Research*, vol. 16, no. 6, pp. 427-437.
- Harris, R.B. & Alberts, D.S. 2004, 'Strategies for skin cancer prevention,' International Journal of Dermatology, vol. 43, pp. 243-251.
- Harrison, G.I. & Young, A.R. 2002, 'Ultraviolet radiation-induced erythema in human skin,' *Methods*, vol. 28, no.1, pp. 14-19.
- Hayes, C.E., Cantorna, M.T. & DeLuca, H.F., 1997, 'Vitamin D and multiple sclerosis,' *Proceedings of the Society for Experimental Biology and Medicine*, vol. 216, pp. 21-27.
- Heisler, G.M & Grant, R.H. 2000, *Ultraviolet Radiation, Human Health, and the Urban Forest*, General Technical Report NE-268, United States Department of Agriculture Forest Service.
- Heisler, G.M., Grant, R.H. & Gao, W. 2003, 'Individual- and scattered-tree influences on ultraviolet irradiance,' *Agricultural and Forest Meteorology*, vol. 120, pp. 113-126.
- Herlihy, E., Gies, P.H., Roy, C.R. & Jones, M. 1994, 'Personal dosimetry of solar UV radiation for different outdoor activities', *Photochemistry and Photobiology*, vol. 60, no. 3 pp. 288-294.

- Hess, M. & Koepke, P. 2008, 'Modelling UV irradiances on arbitrarily orientated surfaces: effects of sky obstructions', *Atmospheric Chemistry and Physics Discussions*, vol. 8, pp. 3357-3381.
- Hill, D., White, V., Marks, R. & Borland, R. 1993, 'Changes in sun-related attitudes and behaviours and reduced sunburn prevalence in a population at high risk of melanoma,' *European Journal of Cancer Prevention*, vol. 2, pp. 447-456.
- Hoeppe, P., Oppenrieder, A., Erianto, C., Koepke, P., Reuder, J., Seefeldner, M. & Nowak, D. 2004, 'Visualization of UV exposure of the human body based on data from a scanning UV-measuring system,' *International Journal of Biometeorology*, vol. 49, pp. 18-25.
- Hofmann, J.S. 1987, 'Assessing the risks of trace gases that can modify the stratosphere: Vol. 1 Executive Summary', *EPA/400/1-87/001A*, Environmental Protection Agency, Washington.
- Holick, M.F. 1997, 'Photobiology of Vitamin D', in *Vitamin D*, eds D. Feldman, F. H. Glorieux & J.W. Pike, pp. 33-39, Academic Press.
- Holick, M.F. 2003, 'Evolution and function of vitamin D,' *Recent Results in Cancer Research*, vol. 164, pp. 3-28.
- Holick, M.F. 2004, 'Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis,' *The American Journal of Clinical Nutrition*, vol. 79, no. 3, pp. 362-371.
- Holman, C.D.J., Gibson, I.M., Stephenson, M. & Armstrong, B.K. 1983, 'Ultraviolet irradiation of human body sites in relation to occupation and outdoor activity: field studies using personal UVR dosimeters', *Clinical and Experimental Dermatology*, vol. 8, no.3, pp. 269-277.
- Huffman, R.E. 1992, Atmospheric Ultraviolet Remote Sensing, Academic Press, San Diego.
- Hunter, D.J., Colditz, G.A. Stampfer, M.J., Rosner, B., Willet, W.C. & Speizer, F.E. 1990, 'Risk factors for basal cell carcinoma in a prospective cohort of women,' *Annals of Epidemiology*, vol. 1, pp. 13-23.
- Hussein, M.R. 2005, 'Ultraviolet radiation and skin cancer: molecular mechanisms,' Journal of Cutaneous Pathology, vol. 32, pp. 191-205.
- Hypponen, E., Laara, E., Reunanen, A., Jarvelin, M.R. & Virtanen, S.M. 2001, 'Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study,' *Lancet*, vol. 358, pp. 1500-1503.

- ICNIRP (International Commission on Non-Ionizing Radiation Protection), 1999, 'Guidelines of limits of exposure to ultraviolet radiation of wavelengths between 180nm and 400nm (Incoherent Optical Radiation)', in *Guidelines on Limiting Exposure to Non-Ionizing Radiation*, eds. R. Matthes, J.H. Bernhardt and A.F. McKinlay, pp. 207-226, Markl-Druck, Munich.
- IRPA (International Radiation Protection Association), 1989, 'Proposed change to the IRPA 1985 guidelines on limits of exposure to ultraviolet radiation,' *Health Physics*, vol. 56, pp. 971-972.
- Isaksen, I.S.A. & Stordal, F. 1986, 'Ozone perturbations by enhanced levels of CFCs, N<sub>2</sub>O, and CH<sub>4</sub>: A two-dimensional diabatic circulation study including uncertainty estimates,' *Journal of Geophysical Research*, vol. 91, no. D4, pp. 5249-5263.
- Jokela, K., Leszczynski, K. & Visuri R. 1993, 'Effects of Arctic ozone depletion and snow on UV exposure in Finland,' *Photochemistry and Photobiology*, vol. 58, no. 4, pp. 559-566.
- Josefsson, W. 1986, 'Solar ultraviolet radiation in Sweden', Reports: Meteorology and Climatology, 53, 71, Swedish Meteorological and Hydrological Institute, Norrkoping.
- Katsambas, A. & Nicolaidou, E. 1996, 'Cutaneous malignant melanoma and sun exposure. Recent developments and epidemiology,' *Archives of Dermatology*, vol. 132, pp. 444-450.
- Kerr, J.B. & McElroy, C.T. 1993, 'Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion,' *Science*, vol. 262, pp. 1032-1034.
- Kimlin, M.G., Parisi, A.V. & Wong, J.C.F. 1998, 'The facial distribution of erythemal ultraviolet exposure in south-east Queensland,' *Physics in Medicine* and Biology, vol. 43. pp. 231-240.
- Kimlin, M. G. & Parisi, A. V. 1999, 'Ultraviolet protective capabilities of hats under two different atmospheric conditions,' *Second Internet Conference on Photochemistry and Photobiology*, July 16 - September 7 1999. Available at: <u>http://www.photobiology.com/photobiology99/contrib/kimlin/index.htm</u>. Accessed on 20 April 2007.
- Kimlin, M.G. & Parisi, A.V. 2001, 'Usage of real-time ultraviolet data to modify the daily erythemal exposure of primary schoolchildren,' *Photodermatology*, *Photimmunology and Photomedicine*, vol. 17, pp. 130-135.
- Kimlin, M.G., Downs, N.J. & Parisi, A.V. 2003a, 'Comparison of human facial UV exposure at high and low latitudes and the potential impact on dermal vitamin D production,' *Photochemical and Photobiological Sciences*, vol. 2, no. 4, pp. 370-375.

- Kimlin, M.G., Parisi, A.V. & Downs, N.J. 2003b, 'Human UVA exposures estimated from ambient UVA measurements,' *Photochemical and Photobiological Sciences*, vol. 2, no. 4, pp. 365-369.
- Kimlin, M.G., Olds, W.J. & Moore, M.R. 2006, 'Location and vitamin D synthesis: Is the hypothesis validated by geophysical data?,' *Journal of Photochemistry* and Photobiology B: Biology, vol. 86, no. 3, pp. 234-239.
- Koh, H.K., Kligler, B.E. & Lew, R.A. 1990, 'Sunlight and cutaneous malignant melanoma: evidence for and against causation,' *Photochemistry and Photobiology*, vol. 51, pp. 765-79.
- Kollias, N., Sayre, R.M., Zeise, L. & Chedekel, M.R. 1991, 'Photoprotection by Melanin,' *Journal of Photochemistry and Photobiology B: Biology*, vol. 9, no. 2, pp. 135-60.
- Konishi, E. & Yoshizawa, Y. 1985, 'Estimation of depth of basal cell layer of skin for radiation protection,' *Radiation Protection Dosimetry*, vol. 11, no.1, pp. 29-33.
- Kraemer, K.H., Lee, M.M., Andrews, A.D. & Lambert, W.C. 1994, 'The role of sunlight and DNA repair in melanoma and non melanoma skin cancer. The xeroderma pigmentosum paradigm,' *Archives of Dermatology*, vol. 130, no. 8, pp. 1018-1021.
- Kricker, A., English, D.R., Randell, P.L., Heenan, P.J., Clay, C.D., Delaney, T.A. and Armstrong, B.A. 1990, 'Skin cancer in Geraldton, Western Australia: a survey of incidence and prevalence,' *Medical Journal of Australia*, vol. 152, no. 8, pp. 399-407.
- Kricker, A., Armstrong, B.K. & English, D.R. 1994, 'Sun exposure and nonmelanocytic skin cancer,' *Cancer Causes and Control*, vol. 5, no. 4, pp. 367-392.
- Kricker, A., Armstrong, B.K., English, D.R. & Heenan, P.J. 1995, 'Does intermittent sun exposure cause basal cell carcinoma? A case control study in Western Australia', *International Journal of Cancer*, vol. 60, no. 4, pp. 489-494.
- Lester, R.A. & Parisi, A.V. 2002, 'Spectral ultraviolet albedo of roofing surfaces and human facial exposure', *International Journal of Environmental Health Research*, vol. 12, pp. 75-81.
- Levi, F. La Vecchia, C. Te, V.C. & Mezzanotte, G. 1988, 'Descriptive epidemiology of skin cancer in the Swiss Canton of Vaud,' *International Journal of Cancer*, vol. 42, pp. 811-816.
- Leyden, J.J. 1990, 'Clinical Features of ageing skin,' British Journal of Dermatology, vol. 122, (Suppl. 35), pp. 1-3.

- Lock-Anderson, J., Wulf, H.C. & Knudstorp, N.D. 1998, 'Interdependence of eye and hair colour, skin type and skin pigmentation in Caucasian population,' *Acta Dermato-Venereologica*, vol. 78, pp. 214-219.
- Loggie, B.W. & Eddy, J.A. 1988, 'Solar considerations in the development of cutaneous melanoma,' *Seminars in Oncology*, vol. 15, pp. 494-499.
- Longstreth, J., de Gruijl, F.R., Kripke, M.L., Abseck, S., Arnold, F., Slaper, H.I., Velders, G., Takizawa, Y. & van der Leun, J.C. 1998, 'Health Risks,' *Journal* of Photochemistry and Photobiology B: Biology, vol. 46, pp. 20-39.
- Lowe, J.B., Balanda, K.P., Gillespie, A.M., Del Mar, C.B. & Gentle, A.F. 1993, 'Sun-related attitudes and beliefs among Queensland school children: the role of gender and age,' *Australian Journal of Public Health*, vol. 17, no. 3, pp. 202-208.
- Lowe, J.B., Borland, R., Stanton, W.R., Baade, P., White, V. & Balanda, K.P. 2000, 'Sun-safe behaviour among secondary school students in Australia,' *Health Education Research: Theory and Practice*, vol. 15, no. 3, pp. 271-281.
- MacKie, R.M., Freudenberger, T. & Aitchison, T.C. 1989, 'Personal risk-factor chart for cutaneous melanoma,' *Lancet*, vol. 2, pp. 487-490.
- MacLaughlin, J.A., & Holick, M.F. 1985, 'Ageing decreases the capacity of human skin to produce vitamin D<sub>3</sub>,' *Journal of Clinical Investigation*, vol. 76, pp. 1536-1538.
- Madronich, S. 1993, 'UV radiation in the natural and perturbed atmosphere', in UVB Radiation and Ozone Depletion: effects on humans, animals, plants, microorganisms and materials, ed. M. Tevini, Lewis Publishers, Boca Raton.
- Madronich, S., McKenzie, R.L., Björn, L.O. & Caldwell, M.M. 1998, 'Changes in biologically active ultraviolet reaching the earth's surface', *Journal of Photochemistry and Photobiology B: Biology*, vol. 46, pp. 5-19.
- Malone, K. & Tranter, P. 2003, 'Children's environmental learning and the use, design and management of schoolgrounds,' *Children, Youth and Environments*, vol. 13, no. 2, Available at: http://www.colorado.edu/journals/cye/13\_2/Malone\_Tranter/ChildrensEnvLear ning.htm, Accessed on 21 July 2008.
- Marks, R., Rennie, G. & Selwood, T. 1988, 'The relationship of basal cell carcinomas and squamous cell carcinomas to solar keratoses,' *Archives of Dermatology*, vol. 124, no. 7, pp. 1039-1042.
- Matsuoka, L.Y., Wortsman, J., Hanifan, N. & Holick, M.F. 1988, 'Chronic sunscreen use decreases circulating concentration of 25-hydro vitamin D: A preliminary study,' *Archives of Dermatology*, vol. 124, pp. 1802-1804.

- Matsuoka, L.Y., Wortsman, J., Dannenberg, M.J., Hollis, B.W., Lu, Z. & Holick, M.F. 1992, 'Clothing prevents ultraviolet-B radiation-dependent photosysthesis of vitamin D3,' *Journal of Clinical Endocrinol Metabolism*, vol. 75, pp. 1099-1103.
- Mech, M. & Koepke, P. 2004, 'Model for UV irradiance on arbitiarly orientated surfaces,' *Theoretical and Applied Climatology*, vol. 77, pp. 151-158.
- Meyer-Arendt, J.R. 1995, Introduction to Classical and Modern Optics, Prentice-Hall, New Jersey.
- McCarthy, W.H. 2004, 'The Australian experience in sun protection and screening for melanoma,' *Journal of Surgical Oncology*, vol. 86, pp. 236-245.
- McGrath, J.J. 2001, 'Does 'imprinting' with low prenatal vitamin D contribute to the risk of various adult disorders?,' *Medical Hypotheses*, vol. 56, pp. 367-371.
- McKenzie, R.L. 1991, 'Application of a simple model to calculate latitudinal and hemispheric differences in ultraviolet radiation,' *Weather and Climate*, vol. 11, pp. 3-14.
- McKenzie, R.L. Kotkamp, M. & Ireland, W. 1996, 'Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,' *Geophysical Research Letters*, vol. 23, pp. 1757-1760.
- McKenzie, R.L., Aucamp, P.J., Bais, A.F., Björn, L.O. and Ilyas, M. 2007, 'Changes in biologically-active ultraviolet radiation reaching the earth's surface,' *Photochemical and Photobiological Sciences*, vol. 6, pp. 218-231.
- Mech, M. & Koepke, P. 2004, 'Model for UV irradiance for arbitrarily orientated surfaces,' *Theoretical and Applied Climatology*, vol. 77. nos. 3-4, pp. 151-158.
- Meulmeester, J.F., van den Berg, H., Wedel, M., Boshuis, P.G., Hulshof, K.F.A.M. & Luyken, R. 1990, 'Vitamin D status, parathyroid hormone and sunlight in Turkish, Moroccan and Caucasian children in the Netherlands,' *European Journal of Clinical Nutrition*, vol. 44, pp. 461-470.
- Michalsky, J. J. 1988 'The astronomical almanac's algorithm for approximate solar position (1950-2050),' *Solar Energy*, vol. 40, pp. 227-235.
- Milne, E., Corti, B., English, D.R., Cross, D., Costa, C. & Johnston, R. 1999a, 'The use of observational methods for monitoring sun-protection activities in schools,' *Health Education Research: Theory & Practice*, vol. 14, no.2, pp. 167-175.
- Milne, E., English, D.R., Corti, B., Cross, D., Borland, R., Gies, H.P., Costa, C. & Johnston, R. 1999b, 'Direct measurement of sun protection activities in schools,' *Journal of Preventive Medicine*, vol. 29, pp. 45-52.

- Montague, M., Borland, R. & Sinclair, C. 2001, 'Slip! Slop! Slap! and SunSmart, 1980-2000: skin cancer control and 20 years of population-based campaigning,' *Health Education and Behavior*, vol. 28. no. 3, pp. 209-305.
- NASA (National Aeronautics and Space Administration) 1988, 'Present state of the knowledge of the Upper Atmosphere 1988: An assessment report, NASA Reference publication 1208', eds R.T. Watson and the ozone trends panel, M.J. Prather and ad hoc theory panel, M.J. Kurylo and the NASA panel for data evaluation, NASA Office of Space Science and Applications, Washington.
- NHMRC (National Health and Medical Research Council), 1989, *Occupational Standard for Exposure to Ultraviolet Radiation*, Radiation Health Series no. 29, Canberra: Australian Government.
- NHMRC (National Health and Medical Research Council), 1996, *Primary Prevention of Skin Cancer in Australia*, Report of the Sun Protection Programs Working Party, Publication No. 2120, Australian Government Publishing Service.
- NRPB (National Radiological Protection Board), 1995, Statement on effects of Ultraviolet Radiation on Human Health and Health Effects from Ultraviolet Radiation, vol. 6, pp. 115-142.
- Nguyen, T.D., Siskind, V., Green, L., Frost, C. & Green. A. 1997, 'Ultraviolet radiation, melanocytic naevi and their dose-response relationship,' *British Journal of Dermatology*, vol. 137, pp. 91-95.
- Olson, R.L., Sayre, R.M. & Everett, M.A. 1966, 'Effect of anatomic location and time on ultraviolet erythema,' *Archives of Dermatology*, vol. 93, pp. 211-215.
- Orphal, J. & Chance, K. 2003, 'Ultraviolet and visible absorption cross-sections for HITRAN', *Journal of Quantitative Spectroscopy and Radiative Transfer*, vol. 82, pp. 491-504.
- Paltridge G.W. & Barton I.J. 1978, 'Erythemal ultraviolet radiation distribution over Australia - the calculations, detailed results and input data including frequency analysis of observed Australian cloud cover,' Commonwealth Scientific and Industrial Research Organisation - Division of Atmospheric Physics Technical Paper, no. 33, pp. 1-48. Australia.
- Parisi, A.V. & Kimlin, M.G. 1997a, 'Ozone and ultraviolet radiation,' *Australasian Science*, vol. 18, no. 1, pp. 44-46.
- Parisi, A.V. & Kimlin, M.G. 1997b, 'Why do UV levels vary?,' Australasian Science, vol. 18, no. 2, pp. 39-41.
- Parisi, A.V., Meldrum, L.R. & Kimlin, M.G. 1998, 'Polysulphone film thickness and its effects in ultraviolet radiation dosimetery,' *Internet Photochemistry and Photobiology Conference*, Jan 18 - Feb 5, 1999, Available: http://www.photobiology.com/UVR98/parisi/\_[Accessed 16 January 2007].

- Parisi, A.V. & Kimlin, M.G. 1999, 'Comparison of the spectral biologically effective solar ultraviolet in adjacent tree shade and sun,' *Physics in Medicine and Biology*, vol. 44, pp. 2071-2080.
- Parisi, A.V., Kimlin, M.G., Mulheran, L., Meldrum, L.R. & Randall, C., 2000, 'Field-based measurements of personal erythemal ultraviolet exposure through a common summer garment,' *Photodermatology, Photoimmunology and Photomedicine*, vol. 16, no. 3, pp. 134-138.
- Parisi, A.V., Kimlin, M.G., Wong, J.C.F. & Wilson, M. 2001, 'Solar ultraviolet exposures at ground level in tree shade during summer in south east Queensland,' *International Journal of Environmental Health Research*, vol. 11, pp. 117-127.
- Parisi, A.V., Sabburg, J, Kimlin , M.G. & Downs, N. 2003, 'Measured and modelled contributions to UV by the albedo of surfaces in an urban environment,' *Theoretical and Applied Climatology*, vol. 76, nos. 3-4, pp. 181-188.
- Parisi, A. V. & Downs, N. 2004, 'Cloud cover and horizontal plane eye damaging solar UV exposures,' *International Journal of Biometeorology*, vol. 49, pp. 130-136.
- Parisi, A.V., Sabburg, J. & Kimlin, M.G. 2004, *Scattered and Filtered Solar UV Measurements*, Kluwer Academic Publishers, Dordrecht.
- Parrish, J.A., Jaenicke, K.F. & Anderson, R.R. 1982, 'Erythema and melanogenesis action spectra of normal human skin,' *Photochemistry and Photobiology*, vol. 36, pp. 187-191.
- Pearl, D.K. & Scott, E.L. 1986, 'The anatomical distribution of skin cancers,' International Journal of Epidemiology, vol. 15, no. 4, pp. 502-506.
- Preece, M.A., Tomlinson, S., Ribot, C.A., Pietrek, J, Korn, H.T., Davies, D.M., Ford, J.A., Dunnigan, M.G. & O'Riordan, J.L.H. 1975, 'Studies of vitamin D deficiency in man,' *Quarterly Journal of Medicine*, vol. 44, pp. 575-589.
- Raasch, B., Maclennan, R., Wronski, I. & Robertson, I. 1998, 'Body site specific incidence of basal and squamous cell carcinoma in an exposed population, Townsville, Australia,' *Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis*, vol. 422, pp.101-106.
- Randel, W.J., Stolarski, R.S., Cunnold, D.M., Logan, J.A. & Zawodny, J.M. 1999, 'Trends in the vertical distribution of ozone,' *Science*, vol. 285, no. 5434, pp. 1689-1692.
- Rigel, D.S., Kopf, A.W. & Friedman, R.J. 1987, 'The rate of malignant melanoma in the United States: are we making an impact?,' *Journal of American Academic Dermatology*, vol. 17, pp. 1050-1052.

- Roberts, D.L. 1990, 'Incidence of non-melanoma skin cancer in West Glamorgan, South Wales,' *British Journal of Dermatology*, vol. 122, pp. 399-403.
- Rosso, S., Zanetti, R., Pippione, M. & Sancho-Garnier, H. 1998, 'Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure,' *Melanoma Research*, vol. 8, no. 6, pp. 573-583.
- Rottman, G. 2000, 'Variations of solar ultraviolet irradiance observed by the UARS solstice 1991-1999,' *Space Science Reviews*, vol. 94, pp. 83-91.
- Roy, C.R., Gies, H.P. & Toomey, S. 1995, 'The solar UV radiation environment: measurement techniques and results,' *Journal of Photochemistry and Photobiology B: Biology*, vol. 31, no. 1, pp. 21-27.
- Rundel, R.D. 1986, 'Computation of spectral distribution and intensity of solar UVB radiation', in *Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life*, eds R.C. Worrest & M.M. Caldwell, Springer-Verlag, Berlin.
- Sabburg, J.M., Parisi, A.V. & Kimlin, M.G. 2003, 'Enhanced spectral UV irradiance: a 1 year preliminary study,' *Atmospheric Research*, vol. 66, no. 4, pp. 261-272.
- Schauberger, G. 1990, 'Model for the global irradiance of the solar biologicallyeffective ultraviolet-radiation on inclined surfaces,' *Photochemistry and Photobiology*, vol. 52, no. 5, pp. 1029-1032.
- Schindell, D., Rind, D., Balachandran, N., Lean, J. & Lonergan, P. 1999, 'Solar cycle variability, ozone, and climate,' *Science*, vol. 284, no. 5412, pp. 305-308.
- Schippnick, P.F. & Green, A.E.S. 1982, 'Analytical characterization of spectral actinic flux and spectral irradiance in the middle ultraviolet,' *Photochemistry* and *Photobiology*, vol. 35, pp. 89-101.
- Schothorst, A. Slaper, H., Schouten, R. & Suurmond, D. 1985, 'UVB doses in maintenance psoriasis phototherapy versus solar UVB exposure,' *Photodermatology*, vol. 2, pp. 213-220.
- Scotto, J., Fears, T.R. & Fraumeni, J.F. 1983, 'Incidence of non-melanoma skin cancer in the United States,' Bethesda MD, US Department of Health and Human Sciences, NIH Publication, no. 83-2433.
- Scrivener, Y, Grosshans, E. & Cribier, B. 2002, 'Variation of basal cell carcinomas according to gender, age, location and histopathological subtype,' *British Journal of Dermatology*, vol. 147, pp. 41-47.
- Setlow, R.B., Grist, E., Thompson, K. & Woodhead, A.P. 1993, 'Wavelengths effective in induction of malignant melanoma,' *Proceedings of the National Academy of Sciences*, vol. 90, pp. 6666-6670.

- Siani, A.M., Casale, G.R., Diémoz, H., Kimlin, M.G., Lang, C.A. & Colosimo, A. 2008, 'Personal UV exposure in high albedo alpine sites,' *Atmospheric Chemistry and Physics*, vol. 8, pp. 3749-3760.
- Siani, A.M., Casale, G.R., Sisto, R., Borra, M., Kimlin, M.G., Lang, C.A. & Colosimo, A. 2009, 'Short-term UV Exposure of Sunbathers at a Mediterranean Sea Site,' *Photochemistry and Photobiology*, vol. 85, no. 1, pp. 171-177.
- Sober, A.J. 1987, 'Solar exposure in the etiology of cutaneous melanoma,' *Photodermatology*, vol. 4, pp. 23-31.
- Staples, M., Marks, R. & Giles, G. 1999, 'Trends in the incidence of nonmelanocytic skin cancer (NMSC) treated in Australia 1985-1995: Are primary prevention programs starting to have an effect?' *International Journal of Cancer*, vol. 78, no.2, pp.144-148.
- Sterenborg, H.J.C.M. & van der Leun, J.C. 1987, 'Action spectra for tumorigenesis by ultraviolet radiation', in *Human Exposure to Ultraviolet Radiation: Risks* and Regulations, eds W.F. Passchier & B.F.M. Bosnjakovic, pp. 173-190, Elsevier, Amsterdam.
- Streicher, J.J., Culverhouse, W.C., Dulberg, M.S. & Fornaro, R.J. 2004, 'Modeling the anatomical distribution of sunlight,' *Photochemistry and Photobiology*, vol. 79, no. 1, pp. 40-47.
- Sze, N.D., Ko, M.K.W., Weisenstein, D.K., Rodriguez, J.M., Stolarski, R.S. & Schoeberl, M.R. 1989, 'Antarctic ozone hole: possible implications for ozone trends in the Southern Hemisphere,' *Journal of Geophysics Research*, vol. 94, no. D9, pp. 11521-11528.
- Taylor, J.S. 1995, 'DNA, sunlight and skin cancer,' *Pure and Applied Chemistry*, vol. 67, no. 1, pp. 183-90.
- TOMS, 2008, Total Ozone Mapping Spectrometer: Ozone Processing Team NASA/GSFC Code 613.3, National Aeronautics and Space Administration, Available at: http://jwocky.gsfc.nasa.gov/teacher/ozone\_overhead\_v8.html, Accessed on 27 March 2008.
- Toomey, S.J., Gies, H.P. & Roy, C.R. 1995, 'UVR protection offered by shadecloths and polycarbonates,' *Radiation Protection in Australia*, vol. 13, no.2, pp. 50-54.
- Turnbull, D.J. & Parisi, A.V. 2006, 'Effective shade structures,' Medical Journal of Australia, vol. 184, pp. 13-15.
- Turnbull, D., Parisi, A. & Downs, N. 2006, 'Effect of Clouds on the diffuse component of the solar terrestrial erythemal UV,' *Radiation Protection in Australasia*, vol. 23, pp. 2-9.

- Turner, J., Parisi, A. & Turnbull, D.J. 2008, 'Reflected solar radiation from horizontal, vertical and inclined surfaces: ultraviolet and visible spectral and broadband behaviour due to solar zenith angle, orientation and surface type,' *Journal of Photochemisty and Photobiology B: Biology*, vol. 92, no. 1, pp. 29-37.
- Urbach, F., Epstein, J.H. & Forbes, P.D. 1974, 'Ultraviolet carcinogenesis: experimental, global and genetic aspects', in *Sunlight and Man: Normal and Abnormal Photobiological Responses*, eds M.A. Pathak, L.C. Harber, M. Seiji & A. Kukita, pp. 259-283, University of Tokyo Press, Tokyo.
- Urbach, F. 1982, 'Photocarcinogenesis', in *The Science of Photomedicine*, eds J.D. Regan & J.A. Parrish, pp. 261-92, Plenum, New York.
- Urbach, F. 1993, 'Environmental risk factors for skin cancer', in *Skin Carcinogenesis in Man and in Experimental Models*, eds. E. Hecker, J.F. Marks, W. Tilgen, Springer-Verlag.
- Urbach, F. 1997, 'Ultraviolet radiation and skin cancer of humans,' *Journal of Photochemistry and Photobiology B: biology*, vol. 40. no. 1, pp. 3-7.
- Van Heuklon, T.K. 1979, 'Estimating atmospheric ozone for solar radiation models', *Solar Energy*, vol. 22, pp. 63-68.
- Vishvakarman, D., Wong, J.C.F. and Boreham, B.W. 2001, 'Annual occupational exposure to ultraviolet radiation in central Queensland,' *Health Physics*, vol. 81, pp. 536-544.
- Vishvakarman, D. & Wong, J.C.F. 2003, 'Description of the use of a risk estimation model to assess the increased risk of non-melanoma skin cancer among outdoor workers in Central Queensland, Australia,' *Photodermatology Photoimmunology and Photomedicine*, vol. 19, pp. 81-88.
- Walter, S.D., King, W.D., Marrett, I.D. 1999, 'Association of cutaneous malignant melanoma with intermittent exposure to ultraviolet radiation: results of a case control study in Ontario, Canada,' *International Journal of Epidemiology*, vol. 28, pp. 418-427.
- Webb, A.R., Kline, L. & Holick, M.F. 1988, 'Influence of season and latitude on the cutaneous synthesis of vitamin D<sub>3</sub>: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D<sub>3</sub> synthesis in human skin,' *Journal of Clinical Endocrinol Metabolism*, vol. 67, pp. 373-378.
- Webb, A.R. and Holick, M.F. 1988, 'The role of sunlight in the cutaneous production of vitamin D<sub>3</sub>,' *Annual Reviews in Nutrition*, vol. 8, pp. 375-399.
- Webb, A.R., Weihs, P. & Blumthaler, M. 1999, 'Spectral UV irradiance on vertical surfaces: a case study,' *Photochemistry and Photobiology*, vol. 69, no. 4, pp. 464-470.

- Wei, Q, Lee, J.E., Gershenwald, J.E., Ross, M.I., Mansfield, P.F, Strom., S.S., Wang, L., Guo, Z., Qiao, Y., Amos, C.I., Spitz, M.R. & Duvic, M. 2003, 'Repair of UV-light induced DNA damage and risk of cutaneous malignant melanoma,' *Journal of the National Cancer Institute*, vol. 96, no. 4, pp. 308-315.
- Weinstock, M.A. 1996, 'Controversies in the role of sunlight in the pathogenesis of cutaneous melanoma,' *Photochemistry and Photobiology*, vol. 63, pp. 406-410.
- Whiteman, D.C., Parsons, P.G. & Green, A.C., 1998, 'p53 expression and risk factors for cutaneous melanoma: a case-control study,' *International Journal of Cancer*, vol. 77, no. 6, pp. 843-848.
- Whitaker, C.J., Lee, W.R. and Downes, J.E. 1979, 'Squamous cell skin cancer in the north-west of England, 1967-69, and its relation to occupation,' *British Journal* of Industrial Medicine, vol. 36, no. 1, pp. 43-51.
- WHO (World Health Organization) 1994, Ultraviolet radiation, Published under the joint sponsorship of the United Nations Environment Programme, the International Commission on Non-Ionization Radiation Protection and the World Health Organization, Geneva, Switzerland.
- WHO (World Health Organization) 2006, Environmental Burden of Disease Series, No.13, eds A. Prüss-Üstün, H. Zeeb, C. Mathers, M. Repacholi, pp. 1-250, Geneva, Switzerland,.
- Wlaschek, W.M.M., Tantcheva-Poór, I., Schneider, L.A., Naderi, L., Razi-Wolf, Z., Schüller, J., Scharffetter-Kochanek, K. 2008, 'Chronological and photoageing of the fibroblasts and dermal connective tissue,' *Clinical and Experimental Dermatology*, vol. 26, no. 7, pp. 592-599.
- WMO (World Meteorological Organization) 1994, Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project, Report No. 37, World Meteorological Organization, Geneva, Switzerland.
- WMO (World Meteorological Organization) 2007, Scientific Assessment of Ozone Depletion: 2006, Report No. 50, Surface Ultraviolet Radiation: Past, Present and Future, Chapter 7, pp. 7.1-7.54, World Meteorological Organization, Geneva, Switzerland.
- Wong, J.C.F., Toomey, S., Fleming, R.A. & Thomas, B.W. 1995, 'UV-B radiometry and dosimetry for solar measurements,' *Health Physics*, vol. 68, no. 2, pp. 175-184.
- Wong, J.C.F., Airey, D.K. & Fleming, R.A. 1996, 'Annual reduction of solar UV exposure to the facial area of outdoor workers in Southeast Queensland by wearing a hat,' *Photodermatology Photoimmunology and Photomedicine*, vol. 12, pp. 131-135.

# **APPENDICES**

## Appendix A. Manufacturing polysulphone film dosimeters

The polysulphone film used in the manufacture of miniaturised dosimeters for this research was cast at the University of Southern Queensland. The casting and manufacture of polysulphone dosimeters involves:

- 1. Dissolving polysulphone pellets into a chloroform solvent;
- 2. Casting the polysulphone film solution onto a purpose built glass casting table;
- 3. Removing dry polysulphone sheets and inspecting for defects;
- 4. Cutting and adhering polysulphone film sections to dosimeter frames.

A.1 Mixing the polysulphone film solution

Polysuphone pellets are mixed into chloroform solution. A solution of 25 mL is used to cast the polysulphone film to approximately the size of an A4 sheet. The mixing process is performed in a fume cupboard and gloves are used to minimise the likelihood of the solution coming into contact with the skin. The polysulphone pellets are shaken in sealed glass containers and left to dissolve over a 24 hour period.

## A.2 Casting the polysulphone film solution

The casting table used in the manufacture of polysulphone film consists of a glass base onto which the film solution is poured. The film is cast to an approximate thickness of  $40 \ \mu\text{m}$ . To achieve uniform film thickness, an automated blade sweeps over the poured solution at a constant rate determined by a stepper motor drive. The dried film sheet is removed from the table using gloves to prevent grease and finger prints affecting the newly cast film.

## A.3 Film inspection and storage

When the polysulphone film is lifted from the casting table, it is immediately dried by placing between paper towels. The film sheet is inspected for defects under a UV free light source and adhered to backing paper for storage to prevent curling. Defects that are often present in the manufactured film include:

- *thickness variation* which can result from uneven pouring of the initial solution onto the table and variations caused by blade movement over the solution;
- *Rippling and scratches* that occur from the uneven movement of the blade across the film solution and scratches that are present in the underlying glass base;
- *Dust and foreign* matter typically noticed upon inspection and observed as raised or non transparent specks in the cast film;
- *Watermarks* that are typically observed due to the presence of excess water droplets that have remained on the table during the casting process;
- *Variation in film opacity* due to the presence of cleaning agents that have not been completely removed before the film has been cast.

Defects in the cast film can result in sheets being discarded entirely before dosimeter manufacture, but more typically are regions of the sheet mostly located near the edges that are avoided when the film is cut for dosimeter manufacture. Polysulphone sheets are attached to clean backing paper with adhesive tape. The cast polysulphone sheets and backing paper are then stored in light proof envelopes prior to dosimeter manufacture.

## A.4 Attaching polysulphone film to dosimeter frames

Stored sheets of polysulphone film are cut into strips of approximately 1 cm width. Regions of the cut strips that do not contain defects are then cut into further 1 cm sections. These sections then are attached to flexible card frames to complete the manufacture of the miniaturised dosimeters. The frames to which the polysulphone film sections are attached are made from thin cardboard sections that have a 6 mm diameter hole punched through a section measuring approximately 10 mm by 15 mm. The dosimeters developed for this research differ from those in previous research (Downs & Parisi 2001) which have clear apertures measuring approximately 25 mm by 25 mm and are attached to larger plastic frame holders. A smaller dosimeter was developed for this research due to the high density measurements that were required to measure UV exposure over complex skin surface topography including the face. The smaller lightweight dosimeter was also preferred for use with school children, being more comfortable to wear than the conventional sized dosimeter.

Appendix B. Calibration and uncertainty in polysulphone dosimeters

#### B.1 Polysulphone dosimeter calibration

Miniaturised polysulphone dosimeters were calibrated on a horizontal plane under clear sky conditions at the University of Southern Queensland's Toowoomba Campus ( $28^{\circ}$ S,  $152^{\circ}$ E) during later summer, early autumn and late autumn. Dosimeters were calibrated to the USQ's permanently mounted outdoor scanning spectroradiometer (model DTM300, Bentham instruments, Reading UK). This instrument has a stated uncertainty of ±10%, including traceability of the system's calibration lamp. Figures B.1.1, B.1.2 and B.1.3 show the respective summer, early autumn and late autumn calibrations of miniaturised polysulphone dosimeters to the erythemally weighted UV exposure measured by the USQ 's scanning spectroradiometer.



Figure B.1.1: Polysulphone dosimeter calibration for 23 February 2008.



Figure B.1.2: Polysulphone dosimeter calibration for 18 April 2007.



Figure B.1.3: Polysulphone dosimeter calibration for 8 May 2008.

#### B.2 Measurements of uncertainty in polysulphone dosimeters

The change in absorbance,  $\Delta A$  measured over 46 sets of polysulphone dosimeters exposed to equivalent levels of solar UV are listed in Table B.2.1. This table was used to determine the error of the miniaturised polysulphone dosimeters used in this research. The calibration plots (Appendix B.1) were also developed from the  $\Delta A$  measurements listed in Table B.2.1. The mean variation in  $\Delta A$  determined from Table B.2.1 was compared to the mean  $\Delta A$  measured on a horizontal plane in each of the SZA ranges 0°-30°, 30°-50° and 50° to 80° (Table B.2.2) to determine the uncertainty in ER in each SZA range. Table B.2.2 lists the horizontal plane  $\Delta A$  measured for each mannequin headform and body field experiment.

Table B.2.1: Variation in  $\Delta A$  for sets of miniaturised polysulphone dosimeters exposed to equivalent solar UV exposures. Sets are organized into separate rows in the table. Calibration 23 February 2008

| Change in al | osorbency at 33 | 0 nm  | range |  |  |
|--------------|-----------------|-------|-------|--|--|
| 0.048        | 0.045           | 0.048 | 0.003 |  |  |
| 0.098        | 0.093           | 0.099 | 0.006 |  |  |
| 0.141        | 0.145           | 0.147 | 0.006 |  |  |
| 0.180        | 0.205           | 0.187 | 0.025 |  |  |
| 0.290        | 0.292           | 0.378 | 0.087 |  |  |
| 0.380        | 0.376           |       | 0.004 |  |  |
| 0.520        | 0.517           | 0.506 | 0.014 |  |  |
| 0.610        | 0.618           | 0.584 | 0.034 |  |  |
| 0.688        | 0.701           | 0.681 | 0.020 |  |  |
| 0.742        | 0.746           | 0.747 | 0.005 |  |  |
| 0.678        | 0.773           | 0.752 | 0.095 |  |  |
| 0.767        | 0.749           | 0.766 | 0.017 |  |  |
| 0.778        | 0.703           | 0.777 | 0.075 |  |  |
|              |                 |       |       |  |  |

Cloud affected calibration 20 February 2008 (not plotted in Appendix B.1)

| Change in abs | orbency at 330 1 | nm    | range |
|---------------|------------------|-------|-------|
| 0.033         | 0.034            | 0.042 | 0.008 |
| 0.086         | 0.085            | 0.088 | 0.003 |
| 0.136         | 0.145            | 0.134 | 0.011 |
| 0.194         | 0.168            | 0.158 | 0.035 |
| 0.254         | 0.273            | 0.270 | 0.019 |
| 0.322         | 0.349            | 0.330 | 0.027 |
| 0.471         | 0.446            | 0.483 | 0.037 |

| 0.521 | 0.560 | 0.544 | 0.038 |
|-------|-------|-------|-------|
| 0.616 | 0.625 | 0.624 | 0.009 |
| 0.630 | 0.652 | 0.647 | 0.022 |

Calibration 18 April 2007

| Change in absorbency at 330 nm |       |       |       |       |       |       | Range |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|
| 0.070                          | 0.082 | 0.094 | 0.057 | 0.098 | 0.089 | 0.092 | 0.045 |
| 0.136                          | 0.139 | 0.128 | 0.146 | 0.123 | 0.127 | 0.127 | 0.024 |
| 0.206                          | 0.183 | 0.184 | 0.189 | 0.195 | 0.191 | 0.182 | 0.023 |
| 0.221                          | 0.215 | 0.229 | 0.228 | 0.229 | 0.226 | 0.259 | 0.045 |
| 0.247                          | 0.263 | 0.252 | 0.224 | 0.247 | 0.281 | 0.283 | 0.059 |
| 0.296                          | 0.301 | 0.333 | 0.332 | 0.298 | 0.294 | 0.311 | 0.039 |
| 0.335                          | 0.378 | 0.288 | 0.324 | 0.308 | 0.288 | 0.338 | 0.090 |
| 0.302                          | 0.328 | 0.368 | 0.366 | 0.366 | 0.358 | 0.330 | 0.066 |
| 0.393                          | 0.378 | 0.411 | 0.381 | 0.355 | 0.373 |       | 0.057 |
| 0.374                          | 0.403 | 0.341 | 0.403 | 0.414 | 0.342 | 0.379 | 0.072 |

Calibration 8 May 2008

| Change in ab |       | Range |         |       |
|--------------|-------|-------|---------|-------|
| 0.01618      | 0.024 | 0.021 |         | 0.008 |
| 0.032        | 0.038 | 0.036 |         | 0.006 |
| 0.055        | 0.058 | 0.048 |         | 0.010 |
| 0.104        | 0.075 | 0.080 |         | 0.029 |
| 0.144        | 0.139 | 0.128 |         | 0.015 |
| 0.194        | 0.193 | 0.177 |         | 0.017 |
| 0.292        | 0.265 | 0.301 |         | 0.036 |
| 0.358        | 0.387 | 0.358 |         | 0.029 |
| 0.436        | 0.437 | 0.430 |         | 0.007 |
| 0.478        | 0.503 | 0.497 |         | 0.025 |
| 0.483        | 0.457 | 0.489 |         | 0.032 |
| 0.500        | 0.466 | 0.507 |         | 0.041 |
| 0.494        | 0.433 | 0.486 |         | 0.061 |
|              |       |       | mean ΔA | 0.032 |

Table B.2.2: Change in absorbency measured on a horizontal plane in the SZA ranges  $0^{\rm o}\mathchar`{-}30^{\rm o}\mathchar`{-}50^{\rm o}$  and  $50^{\rm o}\mathchar`{-}80^{\rm o}\mathc$ 

| -3 | 0  |
|----|----|
|    | -3 |

| Date       | Mannequin Sites  | Change in absorbency at 330 nm | Mean change in absorbency at 330 nm |
|------------|------------------|--------------------------------|-------------------------------------|
| 01/02/2008 | arm / hand / leg | 0.681                          |                                     |
| 13/12/2007 | Arm              | 0.614                          |                                     |
| 18/02/2006 | Face             | 0.436                          |                                     |
| 12/03/2007 | Face             | 0.411                          |                                     |
| 25/01/2008 | face / neck      | 0.689                          |                                     |
| 14/11/2007 | face / neck      | 0.558                          |                                     |
| 21/02/2008 | face / neck      | 0.611                          |                                     |
| 21/11/2007 | Hand             | 0.584                          | 0.573                               |

SZA 30°-50°

| Date       | Mannequin Sites | Change in absorbency at 330 nm | Mean change in absorbency at 330 nm |
|------------|-----------------|--------------------------------|-------------------------------------|
| 02/04/2008 | arm / hand      | 0.477                          |                                     |
| 30/04/2007 | arm             | 0.347                          |                                     |
| 16/09/2005 | face            | 0.354                          |                                     |
| 18/12/2007 | face / neck     | 0.290                          |                                     |
| 16/10/2007 | face            | 0.266                          |                                     |
| 05/10/2006 | face            | 0.363                          |                                     |
| 04/03/2008 | leg             | 0.457                          | 0.365                               |

#### SZA 50°-80°

| Date       | Mannequin Sites | Change in absorbency at 330 nm | Mean change in absorbency at 330 nm |
|------------|-----------------|--------------------------------|-------------------------------------|
| 12/07/2007 | arm             | 0.310                          |                                     |
| 18/07/2008 | arm             | 0.205                          |                                     |
| 27/05/2005 | face            | 0.178                          |                                     |
| 27/08/2007 | face / neck     | 0.179                          |                                     |
| 16/10/2007 | face            | 0.180                          |                                     |
| 28/02/2008 | hand            | 0.179                          |                                     |
| 06/08/2007 | leg             | 0.159                          |                                     |
| 02/08/2007 | leg             | 0.226                          | 0.202                               |

#### Appendix C. Colouring body surface wireframes

Specific ER colour levels represented along exposure contours ranging from 0 to 100% are interpolated between measured dosimeter sites. Each interpolation between adjacent measurement sites consists of 5 evenly spaced coloured segments and is represented accordingly:

$$x_i = x_{i-1} + \left(\frac{A-B}{5}\right)$$

where points A and B represent the measured ER at two adjacent sites located at contour mesh intersections on the model wireframe and values  $x_1$  through  $x_4$  are spaced evenly in the adjacent dosimeter site interval (Figure C.1). The exposure ratio level (ER) and subsequent colour assigned to each of the 5 segments spaced between measurement sites is calculated as the average of the value assigned to each segment  $x_i$  and  $x_{(i+1)}$ , represented in the range  $x_1$  through  $x_4$ .



Figure C.1: Exposure contours and representative colour ER segment divisions interpolated between two adjacent measurement sites, A and B highlighted in the figure. For the case shown here, points A and B are separated by approximately 5 mm and represent ERs to the forehead. Each segment between A and B is given a specific colour level.

Using this technique, wireframe meshes of mannequin body part models can be represented as a specific colour. Measurements of exposure are represented in three dimensional space on the wireframe mesh model (Figure C.2).



Figure C.2: Photographed mannequin arm dosimeter sites (left) and three dimensional model exposure contours (right). The ERs were measured for the arm in a vertical position alongside the mannequin as photographed.

#### Appendix D. Developed software and algorithms

The two main algorithms developed for this research are concerned with calculating the horizontal plane UV exposure and representing UV exposures on three dimensional body surfaces. Additional algorithms used to represent UV hot spots in the playground environment are also given. Two programming development environments were used to develop the algorithms used for this research, Microsoft Visual Basic (version 6) and Matlab (version 7.1). The code for these algorithms is given in this section of the appendices and was written and developed over the years since originally developing the horizontal plane UV irradiance model for earlier Masters research. The work is original, except for obvious exceptions including the direct and diffuse horizontal plane UV irradiance equations which are modified versions of the work presented by Rundel (1986), Green, Sawada & Shettle (1974), Green, Cross and Smith (1980), Schippnick and Green (1982), Braslau and Dave (1973), and Dave and Halpern (1976), the solar altitude and azimuth model (Michalsky 1988), the earth-sun distance and cloud models (Josefsson 1986), the global ozone model Van Heuklon's (1979) and the various biological action spectra and meteorological data included in the code.

The horizontal plane UV exposure model was developed in the Visual Basic language and has been packaged with this work as an executable file. A description of this software is given in Section D.1. The code developed and presented here has evolved from the original parent version of this software Pro3uv (version 3.0) into the current version 6.0. Readers of this work may find the inclusion of additional biological action spectra or Van Heuklon's (1979) global ozone model of some use and these are present in the packaged software although not present in the listed code. The code listing given for the horizontal plane UV exposure model is the subroutine used by the larger software package to calculate the UV irradiance on a horizontal plane. To include the entire code listing for this software would extend this work by several hundred pages, therefore the complete code listing for the horizontal UV exposure model is provided in the attached supplementary CD-ROM. The three dimensional body surface (D.3), playground model (D.4) and skyview processing algorithm (D.5) included here were developed for use in the MATLAB processing environment. These algorithms have not been modified and are the complete code listings used in this research. While the code listings are complete and unmodified, ensuring each algorithm's integrity, some modification of the code may be necessary to ensure each algorithm's usability on different workstations or for different situations to those which were intended for this specific research application.

#### D.1 The horizontal plane UV exposure package

The horizontal plane UV exposure software package is a global UV irradiance modeller. It is designed to generate a single text file that lists UV exposure totals under various conditions. The generated text file lists ozone concentration (Dobson units), cloud cover (okta's), year, month, day of the month, day of the year, hour of the day, and solar zenith angle as input parameters for integrated UV irradiance totals that describe the diffuse, direct, global, and erythemally effective exposure in units of Jm<sup>-2</sup>. Additional biological action spectra were also included in the software although these were not used in this research. For the developed horizontal plane UV exposure model, the diffuse, direct and global irradiances are integrated after being calculated at various solar zenith angles. The formulae for calculating the instantaneous irradiance values on the surface of the earth are based also on the extra-terrestrial spectral irradiance from 280 nm to 400 nm and are described by Green (1974). Variations in the earth-sun distance that influence the extraterrestrial spectral irradiance are also accounted for by a factor formulated by Josefsson (1986). The varying position of the sun and therefore solar zenith angle is calculated at fixed 5 minute steps for any given latitude and longitude. This position is based on an algorithm presented in the Astronomical Almanac and is implemented as described by Michalsky (1988). Each integrated irradiance is progressively summed as the program executes and is based on a trapezoidal approximation. Although there are more sophisticated numerical integration techniques available, the trapezoidal approximation is by far the fastest and easiest method to employ in this case whereby integrations need to be done progressively and recorded to a textfile at different times. Trapezoidal errors are small, especially when integrated over larger time periods. The progressive integration applied by the developed software is always performed in 5 minute steps regardless of the selected textfile recording step.

If the horizontal plane UV exposure model is executed with no cloud input, the global exposure is simply the sum of the diffuse and direct components of the integrated UV exposure. Inputting cloud will affect the global irradiance and therefore the related responses written to the text file but will not affect the diffuse and direct components listed. The cloud model (Josefsson 1986) operates on the total clear sky global irradiance only, the differing effect on the separate diffuse and direct components are not modelled and remain in the textfile as clear sky values. A results summary is also produced that lists the input parameters and irradiance totals for the selected period from which the user can decide to create another model, erasing the previous text file or print the model summary.

A button on the main interface lists textfile options. The user can select one of the totals to decide how data is stored in the textfile, or choose not to save the file to disk. If the user wants to save the data to the disk, it will be saved to a file called "irrad.dat" and stored in the directory "c:\UV". Therefore, *it is important before operating the software to make a directory under C: called UV*. An additional button is also included on the main interface for the direct import of ozone and cloud cover data.

Pressing the Start button on the main interface will begin the UV exposure algorithm. The horizontal plane UV exposure model also incorporates a progress bar that can be used to monitor the progress of the model once it is started. If integration is to be done for a period longer than 1 year, expect the model to take a long time to calculate. (1 year takes approximately 3 minutes). When recording data for a period longer than 1 year the progress bar will move very slowly. This is to be expected as in this situation the progress bar will only update once at the end of every year as opposed to periods recorded within 1 year when the progress bar updates on a daily basis.

D.1.1 Horizontal plane UV exposure model interface

| 💐 UV Irradianc  | e Model Op    | otions ver 6. | 0 <u>×</u> |
|-----------------|---------------|---------------|------------|
| Location        |               |               |            |
| Latitude:       | [27 (deg      | ) 30 (mins    | ) <u>s</u> |
| Longitude:      | 153 (deg      | )) 0 (mins    | ) e        |
| ASL (km):       | 0             | Albedo (%):   | 0          |
| Region:         | Brisbane      |               | •          |
| Universal Tir   | ne            |               |            |
| Start Time:     | 1200          | Finish Time:  | 1200       |
| Start Day:      | 1             | Finish Day:   | 2          |
| Start Month:    | 1             | Finish Month: | 1          |
| Start Year:     | 2000          | Finish Year:  | 2000       |
| 🔲 Daylight S    | iavings       |               |            |
| Physical Par    | ameters —     |               |            |
| Start Waveleng  | jth (nm):     | 280 💌         |            |
| Stop Waveleng   | jth (nm):     | 400 💌         |            |
| Wavelength St   | eps (nm):     | 1 💌           |            |
| Aerosol Optical | Depth:        | 0.4 🔽 🔽       | Rundel     |
| Ozone Concen    | tration (DU): | 320 🔽 🗖       | model      |
| Cloud Cover (or | otas):        |               | data       |
| Exit            | Start         | Text          | Import     |

The main interface is divided into three sections:

1. Location: From here the user can either select a region already known from the Region selection box or enter the coordinates in longitude and latitude. Hemispheres of latitude and Longitude are entered in the text boxes next to respective coordinates as either n - north, s - south, e - east, w - west, and must be typed in lower case. An error is triggered if the user enters incorrect values into the main interface that disables the start model calculation button until acceptable values are entered. Any
location coordinates on earth will be acceptable model parameters. Selecting a region from the region select box will automatically input the correct coordinates into the model. Similarly, typing coordinates (in degrees only) that match a known location will highlight the region of interest in the region select dialog box.

- 2. Universal Time: This section of the input interface is used to determine the start and stop times for the integration process. Again the model will not operate if the user enters incorrect values for start and finish times. Start and finish times must be entered in 24 hour format with 0000 = midnight and 2359 = last allowable time that can be entered. *All times entered must be in universal time not local time*. Universal time is used to avoid confusion between the many possible local time zones that vary from country to country. Start and finish days are entered as days of the month, months are entered as numbers, not text, from 1 = January to 12 = December. The years entered should be any years after and including the year 1900. Although the model will operate for years before 1900, accuracy cannot be assured, given that the sun's position is calculated from the number of hours that have passed after 0000h 1 Jan 1900.
- 3. Physical Parameters: The integration of the incident spectral irradiance can be varied over a range of wavelengths. The default setup is from 280 nm to 400 nm. Very little, if any radiation gets through in the 280 nm to 290 nm band and Green's model will reflect this. The user can either select from some possible start and stop wavelengths or enter them directly in the start and stop combo boxes. *If the user enters wavelengths directly, integer values must be used.* The spectral step increment can be varied to one of the available steps (1 nm = default, 5 nm, or 10 nm). Increasing the step increment reduces the number of calculations that must be performed to calculate a total irradiance sum over the user defined bandwidth from the extra-terrestrial spectral irradiance, but reduces accuracy of the instantaneous irradiances. Cloud can be entered or selected from one of the sky covered), no more than the maximum of 8 eighths can be entered. Ozone concentration entered in

DU can be any real number the user wishes to try. A global ozone model option exists and should be "checked" if the user wishes to use it. The model can be used to approximate ozone concentration for any location on earth. (Van Heuklon 1979). As this is an old model, which is based on little measured data in the southern hemisphere, its validity over high southerly latitudes cannot be assured. A newer model for global ozone concentration does exist, however it requires that average ozone levels be known for the region in question (Böjrn 1989).

# D.2 Horizontal plane UV exposure model code

The UV irradiance equations used to model the horizontal plane UV exposures in this research form part of the main Visual Basic code listing and are located in a subroutine called "physical" listed in the code. It is this subroutine which is present in this code listing. The complete code listing for the horizontal plane UV exposure model is included in the supplementary CD-ROM.

# D.2.1 UV irradiance model subroutine

Sub physical()

<sup>(</sup>Scherztes the UV irradiance see (Green, Sawada & Shettle 1974), (Green, Cross & Smith 1980), (Schippnick & Green 1982), (Josefsson 1986) and (Rundel 1986)
Dis r2 As Davids

| Dim z2 As Double       | SZA expressed in radians                            |
|------------------------|-----------------------------------------------------|
| Dim woz As Double      | ozone extinction amount (g/cu.cm)                   |
| Dim koz As Double      | 'ozone extinction coefficient (/cu.cm)              |
| Dim wa As Double       | air extinction amount (cu.km)                       |
| Dim ka As Double       | 'air extinction coefficient (/cu.km)                |
| Dim wo As Double       | 'particulate extinction amount (cu km)              |
| Dim kp As Double       | 'particulate extinction coefficient (/cu km)        |
| Dim wchange As Double  | incremented storage array wavelength                |
| Dim CLAs Double        | total cloudiness (average of 3 octa /24)            |
| Dim clouds As Double   | cloud correction factor (Josefsson 1986)            |
| Dim EarthSun As Doubl  | e 'Earth Sun variability factor (Josefsson 1986)    |
| Dim G1 As Double       | 'Total downward global irradiance                   |
| Dim S1 As Double       | 'diffuse zenith angle ratio parameter               |
| Dim S2 As Double       | 'diffuse zenith angle ratio parameter               |
| Dim M1 As Double       | diffuse/direct ratio parameter                      |
| Dim M2 As Double       | diffuse/direct ratio parameter                      |
| Dim M As Double        | 'Cos(z2)                                            |
| Dim D0 As Double       | direct irradiance at 0 height and 0 zenith          |
| Dim D As Double        | direct irradiance at variable height and zenith     |
| Dim B1 As Double       | 'downward albedo contribution to diffuse irradiance |
| Dim B2 As Double       | upward albedo contrbution to diffuse irradiance     |
| Dim ga As Double       | '(Green, Sawada & Shettle 1974) air parameter       |
| Dim gp As Double       | 'GSS, 1974 particulate parameter                    |
| Dim goz As Double      | GSS, 1974 ozone parameter                           |
| Dim bdirt1 As Double   | Direct irradiance parameter                         |
| Dim bdirt2 As Double   | Direct irradiance parameter                         |
| Dim bdirt3 As Double   | Direct irradiance parameter                         |
| Dim A As Double        | Direct irradiance parameter                         |
| Dim altstore As Double | temporary storeage for user specified altitude      |
|                        | 1                                                   |
| Const pi = 3.141592654 |                                                     |
| woz = (wo / 1000)      |                                                     |
| koz = 10               |                                                     |
| wa = 8.42              |                                                     |
| ka = 0.145             |                                                     |

kp = 0.26 bdir = 0 'initilize irradiances before they are summed over wavelength range bdiff = 0Girrad = 0 EryAction = 0 ActAction = 0 ViDAction = 0 DNAAction = 0 pcoAction = 0pkeAction = 0 fmlAction = 0catAction = 0nmcAction = 0 fliAction = 0edfAction = 0 edrAction = 0AdfAction = 0 AdrAction = 0 VdfAction = 0VdrAction = 0DdfAction = 0 DdrAction = 0 pdfAction = 0 pdrAction = 0kdfAction = 0kdrAction = 0 fdfAction = 0fdrAction = 0 cdfAction = 0cdrAction = 0 ndfAction = 0 ndrAction = 0IdfAction = 0

z2 = z1 \* ((2 \* pi) / 360) 'solar zenith angle in radians

altstore = alty 'store the user specified altitude

If albedo <> 0 Then  $\,$  'if user wants to calculate albedo contribution  $\,$  'must find the global irradiance at 0 altitude first alty = 0  $\,$ 

...y = 0

IdrAction = 0

WD = 1.58

Rem CALCULATES RELATIVE SPECIES CONCENTRAION VS. HEIGHT Rem 1 = RAYLEIGH SCATTERING Rem 2 = AEROSOL SCATTERING Rem 3 = OZONE ABSORPTION Rem 4 = AEROSOL ABSORPTION N1 = 1.437 / (0.437 + Exo(alty / 6.35))

N1 = 1.437 / (0.437 + Exp(alty / 6.35)) N2 = 0.8208 / (-0.145 + Exp(alty / 0.952)) + 0.04 \* (1 + Exp(-16.33 / 3.09)) / (1 + Exp((alty - 16.33) / 3.09))

```
N3 = 0.13065 / (2.35 + Exp(alty / 2.66)) + 0.961 * (1 + Exp(-22.51 / 4.92)) / (1 + Exp((alty - 22.51) / 4.92))
Rem N1, N2, N3 FROM GCS EQ. 9 AND TABLE 1
```

Rem CALCULATES S(wchange,z2,alty) RATIO OF IRRADIANCE AT ZENITH Rem ANGLE z2 TO IRRADIANCE AT ZENITH ANGLE 0 Rem wchange = WAVELENGTH Rem z2 = SOLAR ZENITH ANGLE alty = HEIGHT (KM) Rem Rem 1 = DOWN2 = UP Rem P1 = (1.0226 / (M ^ 2 + 0.0226)) ^ 0.5 - 1 P2 = (1.0112 / (M ^ 2 + 0.0112)) ^ 0.5 - 1 Rem SG EQ. 11 F1 = 1 / (1 + 84.37 \* (T3 + T4) ^ 0.6776) F5 = 1 / (1 + 28.8 \* (T3 + T4) ^ 1.325) Rem SG EQ. 10 S1 = (F1 + (1 - F1) \* Exp(-T3 \* N3 ^ 2.392 \* P1)) \* Exp(-(0.5346 \* T1 \* N1 ^ 0.3475 + 0.6077 \* T2 \* N2 ^ 0.3445) \* P1) S2 = (F5 + (1 - F5) \* Exp(-T3 \* P2)) \* Exp(-(0.644 \* T1 \* N1 ^ 0.0795 + 0.102 \* T2) \* P2) Rem SG EQ. 9 Rem CALCULATES M(wchange,alty) RATIO OF DIFFUSE IRRADIANCE AT Rem HEIGHT alty TO DIRECT IRRADIANCE AT alty = 0Rem 1 = DOWN Rem 2 = UP Rem N6 = 7.389/(6.389+EXP(0.921\*alty/6.35))Rem No E - .339(0.3394EXP(0.921\*afty/6.35)) Rem SG E0. 17 FOR N1 BAR A1 = 1.735 - 0.346 \* N1 ^ 5 A2 = 0.8041 \* T1 ^ A1 \* N6 Rem F10(wchange.atty) FROM SG EQ. 15 A3 = 1 / (1 + 0.3264 \* woz ^ 1.223 \* N3 ^ (1 + 1.7 \* T3) \* K3 ^ 0.7555) A3 = 1 / (1 + 0.3264 \* woz ^ 1.223 \* N3 ^ (1 + 1.7 \* T3) \* K3 ^ 0.7555) Rem G3D(wchange,alty) FOR DH MODEL FROM SG EQ. 13 (PREFERRED OPTION) Rem A3 = 1/(1+0.3747\*koz^1.223\*N3^(1+1.5\*T3)\*K3^0.7555 Rem G3D(wchange,alty) FOR BD MODEL FROM SG EQ. 13 A4 = 1 / (1 + 1.554 \* T4 ^ 0.88 \* N2 ^ 0.49) Rem G4D(wchange,alty) FROM SG EQ. 13  $\begin{array}{l} \text{Rem F2D(wchange,alty) FROM SG EQ. 13} \\ \text{Rem F2D(wchange,alty) FROM SG EQ. 13} \\ \text{M1} = (A2 + A5) * A3 * A4 \end{array}$ Rem SG EQ. 12 A6 = 1.1032 \* T1 ^ 1.735 \* (1 - N1) ^ 0.921  $\begin{array}{l} \mathsf{A6}=1.1032 * \mathsf{T1} * 1.735 * (1 - \mathsf{N1}) * 0.921 \\ \mathsf{Rem} \ \mathsf{F1U}(\mathsf{wchange,alty}) \ \mathsf{FROM} \ \mathsf{SG} \ \mathsf{E0}. \ \mathsf{14} \\ \mathsf{A7}=2.02^* \; \mathsf{T1} * (1.735 * \mathsf{T2} * 1.12 * (1 - \mathsf{N1}) * 0.921 + 0.4373 * \mathsf{T2} * 1.12 * (1 - \mathsf{N2}) * 0.564 \\ \mathsf{Rem} \ \mathsf{F2U}(\mathsf{wchange,alty}) \ \mathsf{FROM} \ \mathsf{SG}. \ \mathsf{19} \\ \mathsf{A8}=1 / (1 + 0.1983 * \mathsf{woz} * 1.1181 * \mathsf{K3} * 0.7555 * \mathsf{N3}) \\ \mathsf{Rem} \ \mathsf{G3U}(\mathsf{wchange,alty}) \ \mathsf{FOR} \ \mathsf{DH} \ \mathsf{FROM} \ \mathsf{SG} \ \mathsf{E0}. \ \mathsf{13} \\ \mathsf{Rem} \ \mathsf{G3U}(\mathsf{wchange,alty}) \ \mathsf{FOR} \ \mathsf{DB} \ \mathsf{FROM} \ \mathsf{SG} \ \mathsf{E0}. \ \mathsf{13} \\ \mathsf{A9}=1 / (1 + 0.248^* \mathsf{koz} * 1.1181^* \mathsf{K3} * 0.7555^* \mathsf{N3}) \\ \mathsf{Rem} \ \mathsf{G3U}(\mathsf{wchange,alty}) \ \mathsf{FOR} \ \mathsf{DB} \ \mathsf{FROM} \ \mathsf{SG} \ \mathsf{E0}. \ \mathsf{13} \\ \mathsf{A9}=1 / (1 + 0.2^* \mathsf{T4} * 0.88 * \mathsf{N2} * 0.356) \\ \mathsf{Rem} \ \mathsf{G4U}(\mathsf{wchange,alty}) \ \mathsf{FROM} \ \mathsf{SG} \ \mathsf{EQ}. \ \mathsf{13} \\ \mathsf{M2}= (\mathsf{A6} + \mathsf{A7})^* \times \mathsf{A8} * \mathsf{A9} \\ \mathsf{Pam} \ \mathsf{SG} \ \mathsf{E0} \ \mathsf{12} \end{array}$ M2 = (A0 + PA) / A2 Rem SG EQ. 12 Rem CALCULATES DIRECT IRRADIANCE Ha = 0.582 \* (300 / wchange) ^ 5 \* (Exp(9.102) - 1) / (Exp(9.102 \* 300 / wchange) - 1) Rem UNITS OF W NM^-1 M^-2 Rem EXTRATERRESTRIAL IRRADIANCE FROM SG TABLE 1 Rem Hla = 1.095\*(1-EXP(-0.6902\*EXP((wchange-300)/23.74))) Rem UNITS OF W NM^-1 M^-2 Rem EXTRATERRESTRIAL IRRADIANCE FROM GCS EQ. 17 Ha = Ha \* (1 - 0.738 \* Exp(-(wchange - 279.5) ~ 2 / 2 / 9.6 ~ 2) - 0.485 \* Exp(-(wchange - 286.1) ^ 2 / 2 / 1.57 ^ 2) - 0.243 \* Exp(-(wchange - 300.4) ^ 2 / 2 / 1.8 ^ 2) + 0.192 \* Exp(-(wchange - 333.2) ^ 2 / 2 / 4.26 ^ 2) - 0.167 \* Exp(-(wchange - 358.5) ^ 2 / 2 / 2 .01 ^ 2) + 0.097 \* Exp(-(wchange - 368) ^ 2 / 2 / 2.43 ^ 2)) FarthSun Rem ADD SMOOTHED FRAUNHOFER STRUCTURE Kelli ADD SMCOTHED FARMING/EK STRUCTURE S5 = Sqr((M \* M + 0.0018) / (1 + 0.0018)) S6 = Sqr((M \* M + 0.0003) / (1 + 0.0003)) S7 = Sqr((M \* M + 0.0074) / (1 + 0.0074)) A = T1 \* M / S5 + T2 \* N2 / S6 + T3 \* N3 / S7 + T4 \* N2 / S6 Rem TOTAL OPTICAL DEPTH A0 = T1 + T2 + T3 + T4 Rem TOTAL OPTICAL DEPTH FOR z2 = 0 AND alty = 0 D = M \* HIa \* Exp(-A)Rem DIRECT IRRADIANCE FROM GCS EQ. 1 D0 = Hla \* Exp(-A0)Rem DIRECT IRRADIANCE FOR z2 = 0 AND alty = 0 G = D + S1 \* M1 \* D0 '(HORIZONTAL PLANE IRRADIANCE AT SEA LEVEL AND NO ALBEDO CONTRIBUTION) alty = altstore local altitude to calculate local global irradiance

End If

Rem CALCULATES OPTICAL DEPTHS VERSUS WAVELENGTH. Rem 1 = RAYLEIGH SCATTERING Rem 2 = AEROSOL SCATTERING Rem 3 = OZONE ABSORPTION Rem 4 = AEROSOL ABSORPTION T1 = 1.221 \* (300 / wchange) ^ 4.27 Rem GCS EQ. 18 Rem K3=9.9405/(0.0445+EXP((wchange-300)/7.294)) Rem T3=woz\*K3

Rem GCS EQ.19 (USE THIS OPTION TO COMPARE WITH GCS MODEL) T2 = (0.08052 / 0.204) \* (0.205 + (wchange - 302.5) \* 0.000175) Rem PERSONAL COMMUNICATION FROM A.E.S. GREEN (1983) K3 = 9.788 \* 1.0556 / (0.0556 + Exp((wchange - 300) / 6.978)) T3 = woz \* K3Rem PERSONAL COMMUNICATION FROM A.E.S. GREEN (1983) Fise T4 = waod \* (0.034 - (wchange - 302.5) \* 0.00005) Rem Nathan's change End If \*\*\*\*\*\* Rem CALCULATES RELATIVE SPECIES CONCENTRAION VS. HEIGHT Rem 1 = RAYLEIGH SCATTERING Rem 2 = AEROSOL SCATTERING Rem 3 = OZONE ABSORPTION Rem 4 = AEROSOL ABSORPTION Rem 4 = AEROSOL ABSORPTION N1 = 1.437 / (0.437 + Exp(alty / 6.35)) N2 = 0.8208 / (-0.145 + Exp(alty / 0.952)) + 0.04 \* (1 + Exp(-16.33 / 3.09)) / (1 + Exp((alty - 16.33 / 3.09)) N3 = 0.13065 / (2.35 + Exp(alty / 2.66)) + 0.961 \* (1 + Exp(-22.51 / 4.92)) / (1 + Exp((alty - 22.51 / 4.92)) Rem N1, N2, N3 FROM GCS EQ. 9 AND TABLE 1 Rem CALCULATES S(wchange,z2,alty) RATIO OF IRRADIANCE AT ZENITH Rem ANGLE z2 TO IRRADIANCE AT ZENITH ANGLE 0 Rem wchange = WAVELENGTH z2 = SOLAR ZENITH ANGLE Rem alty = HEIGHT (KM) 1 = DOWN Rem Rem Rem 2 = UP P1 = (1.0226 / (M ^ 2 + 0.0226)) ^ 0.5 - 1 P2 = (1.0112 / (M ^ 2 + 0.0112)) ^ 0.5 - 1 Rem SG EQ. 11  $F1 = 1 / (1 + 84.37 * (T3 + T4) ^ 0.6776)$ F5 = 1 / (1 + 28.8 \* (T3 + T4) ^ 1.325) Rem SG EQ. 10 Kein SG E.a. 10 S1 = (F1 + (1 - F1) \* Exp(-T3 \* N3 ^ 2.392 \* P1)) \* Exp(-(0.5346 \* T1 \* N1 ^ 0.3475 + 0.6077 \* T2 \* N2 ^ 0.3445) \* P1) S2 = (F5 + (1 - F5) \* Exp(-T3 \* P2)) \* Exp(-(0.644 \* T1 \* N1 ^ 0.0795 + 0.102 \* T2) \* P2) Rem SG EQ. 9 \*\*\*\* Rem CALCULATES M(wchange,alty) RATIO OF DIFFUSE IRRADIANCE AT Rem HEIGHT alty TO DIRECT IRRADIANCE AT alty = 0 Rem 1 = DOWN Rem 2 = UP Rem N6 = 7.389/(6.389+EXP(0.921\*alty/6.35)) Rem SG EQ. 17 FOR N1 BAR A1 = 1.735 - 0.346 \* N1 ^ 5 A2 = 0.8041 \* T1 ^ A1 \* N6 A2 = 0.8041  $^{\circ}$  11  $^{\circ}$  A1  $^{\circ}$  A0 MO SG EQ. 15 A3 = 1 / (1 + 0.3264  $^{\circ}$  woz ^ 1.223  $^{\circ}$  N3 ^ (1 + 1.7  $^{\circ}$  T3)  $^{\circ}$  K3 ^ 0.7555) Rem G3D(wchange,alty) FOR DH MODEL FROM SG EQ. 13 (PREFERRED OPTION) Rem A3 = 1/(1+0.3747  $^{\circ}$  koz '1.223  $^{\circ}$  N3 '(1+1.5  $^{\circ}$  T3)  $^{\circ}$  K3 ^ 0.7555 Rem G3D(wchange,alty) FOR BD MODEL FROM SG EQ. 13 A4 = 1 / (1 + 1.554  $^{\circ}$  T4 ^ 0.88  $^{\circ}$  N2 ^ 0.49) Pom G4D(wchange alty) FOR SG EQ. 12 Rem G4D(wchange,alty) FROM SG EQ. 13 A5 = (A2 \* A3 + N2 ^ 0.564) \* 1.437 \* (T2 ^ 1.12) / A3 A5 = (A2 \* A3 + N2 ^ 0.564) \* 1.437 \* (T2 ^ 1.12) / A3 Rem F2D(wchange,alty) FROM SG EQ. 13 M1 = (A2 + A5) \* A3 \* A4 Rem SG EQ. 12 A6 = 1.1032 \* T1 ^ 1.735 \* (1 - N1) ^ 0.921 Rem F1U(wchange,alty) FROM SG EQ. 14 A7 = 2.027 \* T1 ^ 1.735 \* T2 ^ 1.12 \* (1 - N1) ^ 0.921 + 0.4373 \* T2 ^ 1.12 \* (1 - N2) ^ 0.564 Rem F2U(wchange,alty) FROM SG. 19 A8 = 1 / (1 + 0.1983 \* woz ^ 1.1181 \* K3 ^ 0.7555 \* N3) Rem G3I (wchange aut) FROM KSG. 0 13 (REFERRED OPTION) A8 = 1 / (1 + 0.1983 \* woz ^ 1.1181 \* K3 ^ 0.7555 \* N3) Rem G3U(wchange,aity) FOR DH FROM SG EQ. 13 (PREFERRED OPTION) Rem A8 = 1/(1+0.2248\*koz^1.1181\*K3^0.7555\*N3) Rem G3U(wchange,aity) FOR DB FROM SG EQ. 13 A9 = 1 / (1 + 6.2 \* T4 ^ 0.88 \* N2 ~ 0.356) Rem G4U(wchange,aity) FROM SG EQ. 13 M2 = (A6 + A7) \* A8 \* A9 Rem SG EQ. 12 Rem CALCULATES DIRECT IRRADIANCE Hla = 0.582 \* (300 / wchange) ^ 5 \* (Exp(9.102) - 1) / (Exp(9.102 \* 300 / wchange) - 1) Rem UNITS OF W NM^1 M^2 Rem EXTRATERRESTRIAL IRRADIANCE FROM SG TABLE 1 Rem Hla = 1.095\*(1-EXP(-0.6902\*EXP((wchange-300)/23.74))) Rem UNITS OF W NM^-1 M^-2 Rem EXTRATERRESTRIAL IRRADIANCE FROM GCS EQ. 17 Ha = Ha \* (1 - 0.73 \* Exp(-(wchange - 279.5) \* 2 / 2 / 2.96 \* 2) - 0.485 \* Exp(-(wchange - 286.1) \* 2 / 2 / 1.57 \* 2) - 0.243 \* Exp(-(wchange - 300.4) \* 2 / 2 / 1.8 \* 2) + 0.192 \* Exp(-(wchange - 333.2) \* 2 / 2 / 4.26 \* 2) - 0.167 \* Exp(-(wchange - 358.5) \* 2 / 2 / 2.01 \* 2) + 0.097 \* Exp(-(wchange - 368) \* 2 / 2 / 2.43 \* 2)) 'EarthSun Rem ADD SMOOTHED FRAUNHOFER STRUCTURE Rem ADD SMOOTHED FRAUNHOFER STRUCTURE S5 = Sqr((M \* M + 0.0018) / (1 + 0.0018)) S6 = Sqr((M \* M + 0.0003) / (1 + 0.0003)) S7 = Sqr((M \* M + 0.0074) / (1 + 0.0074)) A = T1 \* N1 / S5 + T2 \* N2 / S6 + T3 \* N3 / S7 + T4 \* N2 / S6 = T0 + T1 \* N1 / S5 + T2 \* N2 / S6 + T3 \* N3 / S7 + T4 \* N2 / S6

Rem TOTAL OPTICAL DEPTH A0 = T1 + T2 + T3 + T4

```
Rem TOTAL OPTICAL DEPTH FOR z2 = 0 AND alty = 0
         D = M * Hla * Exp(-A)
Rem DIRECT IRRADIANCE FROM GCS EQ. 1
           D0 = HIa * Exp(-A0)
           Rem DIRECT IRRADIANCE FOR z2 = 0 AND alty = 0
           Rem CALCULATES EFFECT OF NON-ZERO ALBEDO
          Rem 1 = DOWN
Rem 2 = UP
          If albedo = 0 Then GoTo 900
               albeud - 6 min Ser Sec
Rem B = ALBEDO
R = (0.4424 * T1 ^ 0.5626 / (1 + 0.2797 * woz ^ 1.0132 * K3 ^ 0.8404) + 0.1 * T2 ^ 0.88) / (1 + 3.7 * T4)
                Rem SG EQ. 28, 29
                \begin{array}{l} \text{Here} 30 \ \text{Le}_{-2,0} & 
                Rem SG EQ. 32, 33
B1 = R * albedo / (1 - R * albedo) * E1 * G
B2 = albedo / (1 - R * albedo) * E2 * G
900 Rem ALBEDO CONTRIBUTION FROM SG EQ. 25, 27, 31
          G1 = D + S1 * M1 * D0 + B1 Total Global downward irradiance at specified
         wavelength, altitude, zenith angle and albedo
           'Diffuse solar irradiance
         Diffuse solar intradiance q1 = 1 / (Sqr(1 - ((Sin(22) * Sin(22)) / (1 + (311 / 6371)) ^ 2))) 'eq 7 GSS 1974 with yi = 311 (Barton 1983) or q1 = 1.10 q2 = 1 / (Sqr(1 - ((Sin(22) * Sin(22)) / (1.06 * (1 + 0.106 * alty))))) bp = 7.48 / ((1 - (((Sin(22) ^ 4) / 1.148)) ^ 0.25) O = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp)) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * Exp(0.24 * koz * woz - ((wchange - 300) / bp) * q1 + (0.872 * (1 + 0.179 * alty + 0.0487 * ((T4 * N2) - 0.538) ^ 2)) * q2 = 1.62 * (T4 * N2) * (T4 * N2
           bdiffw = (Hla * Exp(-O)) + B1 'diffuse irradiance including altitude and albedo contribution
          If wchange < w2 Then
               bdiff = bdiff + (steps * bdiffw) 'cumulative diffuse irradiance
          Else
              bdiff = bdiff + bdiffw
          End If
          bdirw = D
          If wchange < w2 Then
                bdir = bdir + (steps * bdirw) 'cumulative direct irradiance
          Else
              bdir = bdir + bdirw
          End If
           'Global solar irradiance
         Girradu = (bdirw + bdiffw) * clouds 'global irradiance including cloud modification 
If wchange < w2 Then
               Girrad = Girrad + (steps * Girradw) 'cumulative global irradiance
          Else
               Girrad = Girrad + Girradw
          End If
           'Erythemal Action spectrum
         EryActionw = Ery(i) * Girradw
If wchange < w2 Then
                                                                                                 'Erythemal response at specified wavelength
               EryAction = EryAction + (steps * EryActionw) 'cumulative Erythemal response
          Else
               EryAction = EryAction + EryActionw
          End If
           'Diffuse Erythemal Action Spectrum
           edfActionw = Ery(i) * bdiffw
                                                                                             'Erythemal response at specified wavelength
           If wchange < w2 Then
               edfAction = edfAction + (steps * edfActionw) 'cumulative Erythemal response
          Else
                edfAction = edfAction + edfActionw
          End If
           Direct Erythemal Action Spectrum
           edrActionw = Ery(i) * bdirw
                                                                                           'Erythemal response at specified wavelength
           If wchange < w2 Then
               edrAction = edrAction + (steps * edrActionw) 'cumulative Erythemal response
          Else
               edrAction = edrAction + edrActionw
          End If
          'Actinic Action spectrum
ActActionw = Act(i) * Girradw 'Actinic response at specified wavelength
           If wchange < w2 Then
                ActAction = ActAction + (steps * ActActionw) 'cumulative Actinic response
          Else
                ActAction = ActAction + ActActionw
          End If
          'Diffuse Actinic Action spectrum

'Mationw – Act(i) * bdiffw 'Actinic response at specified wavelength
               AdfAction = AdfAction + (steps * AdfActionw) 'cumulative Actinic response
           Else
               AdfAction = AdfAction + AdfActionw
           End If
```

'Direct Actinic Action spectrum AdrActionw = Act(i) \* bdirw 'Actinic response at specified wavelength If wchange < w2 Then AdrAction = AdrAction + (steps \* AdrActionw) 'cumulative Actinic response Else AdrAction = AdrAction + AdrActionw End If Vitamin D3 Action Spectrum 'Vitamin D3 response at specified wavelength ViDActionw = ViD(i) \* Girradw If wchange < w2 Then ViDAction = ViDAction + (steps \* ViDActionw) 'cumulative Vitamin D3 response Else ViDAction = ViDAction + ViDActionw End If 'Vitamin D3 Diffuse Action Spectrum VdfActionw = ViD(i) \* bdiffw 'Vitar 'Vitamin D3 response at specified wavelength If wchange < w2 Then VdfAction = VdfAction + (steps \* VdfActionw) 'cumulative Vitamin D3 response Else VdfAction = VdfAction + VdfActionw End If 'Vitamin D3 Direct Action Spectrum VdrActionw = ViD(i) \* bdirw 'Vita 'Vitamin D3 response at specified wavelength If wchange < w2 Then VdrAction = VdrAction + (steps \* VdrActionw) 'cumulative Vitamin D3 response Else VdrAction = VdrAction + VdrActionw End If 'DNA Action Spectrum DNAActionw = DNA(i) \* Girradw 'DNA response at specified wavelength If wchange < w2 Then DNAAction = DNAAction + (steps \* DNAActionw) 'cumulative DNA response Else DNAAction = DNAAction + DNAActionw End If Diffuse DNA Action Spectrum DdfActionw = DNA(i) \* bdiffw 'DNA response at specified wavelength If wchange < w2 Then DdfAction = DdfAction + (steps \* DdfActionw) 'cumulative DNA response Else DdfAction = DdfAction + DdfActionw End If 'Direct DNA Action Spectrum DdrActionw = DNA(i) \* bdirw 'DNA response at specified wavelength If wchange < w2 Then DdrAction = DdrAction + (steps \* DdrActionw) 'cumulative DNA response Else DdrAction = DdrAction + DdrActionw End If 'Photoconjuct Action Spectrum pcoActionw = pco(i) \* Girradw If wchange < w2 Then 'pco response at specified wavelength pcoAction = pcoAction + (steps \* pcoActionw) 'cumulative pco response Flse pcoAction = pcoAction + pcoActionw End If 'Diffuse Photoconjuct Action Spectrum pdfActionw = pco(i) \* bdiffw 'pco response at specified wavelength If wchange < w2 Then pdfAction = pdfAction + (steps \* pdfActionw) 'cumulative pco response Else pdfAction = pdfAction + pdfActionw End If 'Direct Photoconjuct Action Spectrum pdrActionw = pco(i) \* bdirw 'pco res 'pco response at specified wavelength If wchange < w2 Then pdrAction = pdrAction + (steps \* pdrActionw) 'cumulative pco response Else pdrAction = pdrAction + pdrActionw End If Photokerititis Action Spectrum pkeActionw = pke(i) \* Girradw If wchange < w2 Then 'pke response at specified wavelength pkeAction = pkeAction + (steps \* pkeActionw) 'cumulative pke response Else pkeAction = pkeAction + pkeActionw End If 'Diffuse Photokerititis Action Spectrum kdfActionw = pke(i) \* bdiffw 'pke res If wchange < w2 Then 'pke response at specified wavelength kdfAction = kdfAction + (steps \* kdfActionw) 'cumulative pke response Else

kdfAction = kdfAction + kdfActionw End If Direct Photokerititis Action Spectrum kdrActionw = pke(i) \* bdirw 'pke response at specified wavelength If wchange < w2 Then kdrAction = kdrAction + (steps \* kdrActionw) 'cumulative pke response Else kdrAction = kdrAction + kdrActionw End If 'Fish Melanoma Action Spectrum fmlActionw = fml(i) \* Girradw 'f If wchange < w2 Then 'fml response at specified wavelength fmlAction = fmlAction + (steps \* fmlActionw) 'cumulative fml response Else fmlAction = fmlAction + fmlActionw End If 'Diffuse Fish Melanoma Action Spectrum fdfActionw = fml(i) \* bdiffw 'fml response at specified wavelength If wchange < w2 Then fdfAction = fdfAction + (steps \* fdfActionw) 'cumulative fml response Else fdfAction = fdfAction + fdfActionw End If 'Direct Fish Melanoma Action Spectrum fdrActionw = fml(i) \* bdirw 'fml respon 'fml response at specified wavelength If wchange < w2 Then fdrAction = fdrAction + (steps \* fdrActionw) 'cumulative fml response Else fdrAction = fdrAction + fdrActionw End If 'Cataract Action Spectrum catActionw = cat(i) \* Girradw 'cataract response at specified wavelength If wchange < w2 Then catAction = catAction + (steps \* catActionw) 'cumulative cataract response Else catAction = catAction + catActionw End If 'Diffuse Cataract Action Spectrum cdfActionw = cat(i) \* bdiffw 'cataract response at specified wavelength If wchange < w2 Then cdfAction = cdfAction + (steps \* cdfActionw) 'cumulative cataract response Else cdfAction = cdfAction + cdfActionw End If 'Direct Cataract Action Spectrum cdrActionw = cat(i) \* bdirw 'cataract response at specified wavelength If wchange < w2 Then cdrAction = cdrAction + (steps \* cdrActionw) 'cumulative cataract response Else cdrAction = cdrAction + cdrActionw End If 'NMSC Action Spectrum nmcActionw = nmc(i) \* Girradw 'NMSC response at specified wavelength If wchange < w2 Then nmcAction = nmcAction + (steps \* nmcActionw) 'cumulative NMSC response Else nmcAction = nmcAction + nmcActionw End If 'Diffuse NMSC Action Spectrum ndfActionw = nmc(i) \* bdiffw 'NMSC response at specified wavelength If wchange < w2 Then ndfAction = ndfAction + (steps \* ndfActionw) 'cumulative NMSC response Else ndfAction = ndfAction + ndfActionw End If 'Direct NMSC Action Spectrum ndrActionw = nmc(i) \* bdirw 'NMSC response at specified wavelength If wchange < w2 Then ndrAction = ndrAction + (steps \* ndrActionw) 'cumulative NMSC response Else ndrAction = ndrAction + ndrActionw End If 'Flint & Caldwell Action Spectrum fliActionw = fli(i) \* Girradw 'fli re 'fli response at specified wavelength If wchange < w2 Then fliAction = fliAction + (steps \* fliActionw) 'cumulative fli response Else fliAction = fliAction + fliActionw End If 'Diffuse Flint & Caldwell Action Spectrum ldfActionw = fli(i) \* bdiffw If wchange < w2 Then 'fli response at specified wavelength

ldfAction = ldfAction + (steps \* ldfActionw) 'cumulative fli response Else IdfAction = IdfAction + IdfActionw End If 'Direct Flint & Caldwell Action Spectrum IdrActionw = fli(i) \* bdirw 'fli response at specified wavelength If wchange < w2 Then IdrAction = IdrAction + (steps \* IdrActionw) 'cumulative fli response Else IdrAction = IdrAction + IdrActionw Ford If End If Else Rem Sun is below the horizon Rem Don't sum over the wavelength range Rem All spectra are 0 for this particular SZA kern All specific bdir = 0bdiff = 0Girrad = 0EryAction = 0ActAction = 0ViDAction = 0DNAAction = 0pcoAction = 0 pkeAction = 0fmlAction = 0 catAction = 0 nmcAction = 0 fliAction = 0edfAction = 0 edrAction = 0  $\begin{array}{l} AdfAction = 0\\ AdrAction = 0 \end{array}$ VdfAction = 0 VdrAction = 0 DdfAction = 0 DdrAction = 0 pdfAction = 0 pdrAction = 0 kdfAction = 0 kdrAction = 0 fdfAction = 0 fdrAction = 0cdfAction = 0cdrAction = 0 ndfAction = 0

ndrAction = 0ldfAction = 0ldrAction = 0

### End If Wave(i) = wchange

wchange = wchange + steps i = i + steps Loop

Loop

70 Rem The wavelength totals have been calculated for the given SZA

End Sub

# D.3 Three dimensional wireframe exposure models

Three dimensional wireframe models were developed for each of the face, neck, arm, hand and leg mannequin body parts. These models were used to represent both the ER and absolute  $UV_{ery}$  exposure on the three dimensional surfaces of the studied body parts. To list each model for each respective body part would repeat much of the same code, therefore only the code used to develop the face wireframe exposure model is listed here. Each of the face, neck, arm, hand and leg algorithms are however listed in the attached supplementary data CD-ROM. The algorithm listed below was written for use with MATLAB version 7.1.

%MASTER PROGRAM FOR FACIAL EXPOSURE RATIOS

### clear

56,67,107,109,109.5,110.5,111.5 . 5.50.49.5.50.5.54.5.66.108.109.110.111.112 . 166,140,125.5,114,106.5,101,96,93,89.5,87,84.5,81.5,79,76.5,74,70,69,68.5,72,75,80,78.5,73,66,62,48,46.5,53,55.5,54.5,51.5,48,47.5,49,52,47.5,48.5,53,54,52 52,54.5,55.5,54,51.5,51,52.5,56.5,91.5,111.5,112,112.5,113.5,114.5 57.5,58.5,57,53.5,53,55,60.5,113,113.5,115,115,116.5,116.5 168,161,135,121.5,112.5,106.5,100.5,96,91.5,89,86,83,80.5,78,74.5,70.5,70,77.5,80,83,84,85.5,85.5,83,75,70.5,68,67.5,66.5,64.5,62.5,61.5,60.25,60,62,61,61.5,62.5,62.5,61.5,67,116,118,118.5,118.5,119,119.5 ... 66,67,66,65,5,66,5,70,82,120,121,121,5,121,25,121,5,121,5,... 167,155,130,120,113,107,102,98,95,91,88,84.5,81,78,73,74,79,80.5,81.5,83.5,83.5,86,85,79.5,74.5,71,69.5,69,69,69,25,68.5,67.75,67.5,67.5,69,70,72,73,73.5, 73.5,76,80,122.5,125.25,125,125,125,126,126... 166.5,139,124.75,116.5,111,106,102,100,95,25,91.75,88,84.5,79.25,74.75,76.5,80,81.5,82.5,85,5,85,87,86.5,80,25,75.5,72.5,70,75,70,70.5,71.25,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.75,71.7 1.75,72.75,74.5,75.5,78,79,80,81.75,85.25,100.75,130,130.75,130.5,130.5,130,130,130,130 167,155,131,122,114.5,110.25,106,102.75,99.75,96,92.5,87.75,82.75,77.75,78,81.75,82.75,86,87.25,88.25,90.75,88.25,81.75,77.25,74.25,72.75,72.25,72.25,73.5,75,76.25,77.5,80,81,84.25,86,86.75,89.5,91.75,107,133.75,136,136.5,136,135.75,135,135,135,135.1. 166,145,129.75,121.25,115,111.5,108.5,104.75,102,99.5,94.5,88.5,81.75,81,84,86,89.5,95.25,95,97,92.25,85.75,80.25,77,75.75,75,75,25,76.5,79,81.75,83.5,86.25 90 5 92 75 93 5 96 75 97 5 101 75 116 141 75 143 5 144 144 143 5 143 5 143 5 143 143 166.25,140.5,129.5,123,117.75,114.75,112,109,107,105,102.5,93.5,86,87.25,89.5,93,97.5,104.25,103.25,98,92.25,86,82.5,81,81.75,83.5,87.25,90.75,93.5,98.5, 102.5,105,107.25,110,125,148,150,151.75,153.75,153,154,154,155,155.25,155.25,152.75 167,147,134.5,128,123.75,118.75,116.25,115,113.25,112.75,111,107.25,98,97.75,101.5,105,111.5,109,104.25,99,94.5,91.25,90,91.75,97.75,105,111.5,114.5,1 19.5,121,122.25,122.5 170,151.25,139.75,132.25,129.25,126.25,124.25,122.5,122.5,123.75,122.5,123.25,123.75,124.5,121.5,119.75,117.75,113.75,111.25,108.25,108,115.25,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,121.5,12 129.142.5.144.146.5.151 167,162,159,162,164,167,167.5,165.75,170.5.. 172.75,174.25,176,176.75,176... 5,50,49.5,50.5,54.5,66,108,109,110,111,112];

 $y = (-1)^{1}(8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1,8) + (1$ 

59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,59.22,5 22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,22,59,

22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.22,54.2 49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,49.22,4 

44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,44.22,4 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 22 44 2 39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,39.22,3

22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,39,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,22,34,

22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22, 34. 22,22,29.22,29.22,29.22,29.22,29.22,29.22,29.22

24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,24.22,2 22.24.22.24.22

19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19.22, 19. 22

... 14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14.22,14

4 22 4 22 4 22 4 22 4 22 4 22

1)\*(77,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257, 262,267,272,277,282,287,292,297,302,307,312,317,322 ... 77,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,

77.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,26 2,267,272,277,282,287,92,297,302,307,312,317,322 ...

78.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,26 2.267.272.277.282.287.292.297.302.307.312.317.322

79.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,26 2.267.272.277.282.287.292.297.302.307.312.317.322 80.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,26

2,267,272,277,282,287,292,297,302,307,312,317,322 ... 82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,26 7,272,277,282,287,292,297,302,307,312,317,322

84,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272,277,282,287,292,297,302,307,312,317,322 ...

72,277,282,287,292,297,302,307,312,317,322 ... 89.5,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,

272,277,282,287,292,297,302,307,312,317,322 ... 92.8,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,27

2,277,282,287,292,297,302,307,312,317,322 97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272,277,282,287,292,297,302,307,312,317,322 ...

101.8,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257 ...

108.8,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242 ... 117.4,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242 ...

129.9,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237 184,187,192,197,202,207,212,217,222 ...

189,197,202,207,212

100, 100, 202, 207, 02, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 247, 252, 257, 262. 267,272,277,282,287,292,297,302,307,312,317,322];

%specifiy color maps

cmap = colormap(hsv(101)); %can't index array at 0 must start at 1 gdmap = cmap; %grid data color map cmap = colormap(copper(100)); %face surface map

% Original plot of Contour positions plot3(x,y,z,'.','Markersize', 1) axis([0 350 -350 0 -350 0]) xlabel('x-axis') vlabel('v-axis') zlabel('z-axis')

% Surface meshing zm = -350:5:0; ym = -350:5:0; xm = 0.5:350

[xi,yi] = meshgrid(zm,ym); [xr,yr,zr]=griddata(z,y,x,xi,yi); mesh(zr,yr,xr) h = surf(zr,yr,xr,'LineStyle','none') colormap copper set(h, 'FaceLighting', 'phong', 'Facecolor', 'interp', 'AmbientStrength', 0.6); light('Position',[-1 1 1],'Style','infinite'); %light for face background grid off <sup>6</sup> Axis and background Setup set(gca, 'Color', 'k', 'XColor', [0.3,0.3,0.3], 'YColor', [0.3,0.3,0.3], 'ZColor', [0.3,0.3,0.3]) grid off axis([0 350 -350 0 -350 0]) xlabel('x-axis') ylabel('y-axis') zlabel('z-axis')

hidden off % turn off hidden contours behind face surface

hold on

%EXPOSURE RATIO CONTOURS

% CN1 x1 =

[168,142,124,115,106.5,101,98,95,92,90,87.5,84.5,82,79,76.5,74,72.5,72,72.5,72,70,65,60,52,46,41.5,43,48,52,52,51,47,47.5,50,51,48,50,53,55,53,51,50,51.5,56,67,107,109,109.5,111.5];

y1 = (-1)\*[89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,89.61,

 $1)^*(7^7, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 247, 252, 257, 262, 267, 272, 277, 282, 287, 292, 297, 302, 307, 312, 317, 322];$ 

top1 =

[100,100,96,92,88,84,82,80,79,78,80,81,82,83,82,81,69,56,57,59,75,91,95,99,86,74,47,21,36,52,67,81,53,25,47,69,47,24,48,72,64,55,36,18,18,17,17,22,26,26];

%[ex,ey,ez] = griddata(x1,y1,z1,top);

%mesh(ex,ey,ez) for n = 1:50

co = top1(n)/100;

%plot3(x1(n),y1(n),z1(n),'.','Markersize', 20,'Color',[0,co,0]); end

enu

%CN2

[166,140,123,112,105.5,99.5,95,92,90,87,84.5,81,79,76,73.5,70.5,70,69,70.5,72,71,65.5,62.5,56.5,45.5,41.5,43,48,51.5,51,49.5,46,46,48,49,47,47,51.5,53.5,51.5,50,49.5,50.5,54.5,66,108,109,110,111,112];

 $1)^{r}[77,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272,277,282,287,292,297,302,307,312,317,322];$ 

top2 =

[100,100,97,93,90,86,84,82,80,78,80,82,83,84,78,72,62,51,54,56,70,84,91,98,85,73,50,27,41,56,67,78,54,29,47,65,48,30,50,70,62,53,36,19,21,22,22,26,26,26]; % interpolated data

%CN3 x3 =

166,140,125.5,114,106.5,101,96,93,89.5,87,84.5,81.5,79,76.5,74,70,69,68.5,72,75,80,78.5,73,66,62,48,46.5,53,55.5,54.5,51.5,48,47.5,49,52,47.5,48.5,53,54.5,55,54.5,50,51.5,55,69,109.5,110.5,111,112,113];

z3 = (-1)\*[77.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,25 7,262,267,272,277,282,287,292,297,302,307,312,317,322];

top3 =

100,100,97,95,91,88,85,83,80,78,80,83,84,85,74,63,55,47,50,52,65,78,87,96,84,72,53,34,46,59,67,74,54,34,48,61,49,37,52,68,59,51,36,21,24,26,26,29,26,26];

%CN4

2+-(1)<sup>1</sup>/[78.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272,277,282,287,292,297,302,307,312,317,322];

top4 =

[100,100,98,96,93,89,87,85,81,77,81,84,85,87,70,53,48,42,46,49,61,72,84,95,83,72,56,40,51,62,67,71,55,39,48,58,51,43,54,66,57,49,36,23,27,31,31,33,26,26]; %CN5

x5 =

1)<sup>1</sup>[79.5,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272,277,282,287,292,297,302,307,312,317,322];

top5 =

[100,100,99,97,94,91,89,86,81,77,81,85,87,88,66,44,41,37,42,46,56,66,80,94,82,71,59,47,56,66,67,68,55,43,49,54,52,50,56,63,55,47,36,24,30,35,35,37,26,26]; %CN6

%CN x6 =

(168,161,135,121.5,112.5,106.5,100.5,96,91.5,89,86,83,80.5,78,74.5,70.5,70,77.5,80,83,84,85.5,85.5,83,75,70.5,68,67.5,66.5,64.5,62.5,61.5,60.25,60,62,61,61.5,62.5,62.5,61.5,65,10,118,118.5,118.5,119,119.5];

z6 = (-

7,262,267,272,277,282,287,292,297,302,307,312,317,322];

----=[100,100,99,99,96,93,90,87,82,76,81,86,88,89,62,35,34,33,38,43,51,60,76,92,81,70,62,54,61,69,67,64,56,48,49,50,53,56,59,61,53,45,36,26,33,39,40,41,26,26];

% CN7

,65,66,67,66,65.5,66.5,70,82,120,121,121.5,121.25,121.5,121.5]; y7 = (-

z7 = (-

1)\*[82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 247, 252, 257, 262 ,267,272,277,282,287,292,297,302,307,312,317,322];

top7 =

[100,100,100,100,97,95,92,89,82,76,82,88,89,90,58,26,27,28,34,39,47,54,73,91,81,70,65,60,66,73,67,61,56,52,49,46,54,62,61,59,51,43,35,28,36,44,44,44,44]; %[ex,ey,ez] = griddata(x1,y1,z1,top); %mesh(ex,ey,ez)

for n = 1:49

co = top7(n)/100;

%plot3(x7(n),y7(n),z7(n),'.','Markersize', 20,'Color',[0,co,0]); end

#### %CN8 x8 =

73.5,76,80,122.5,125.25,125,125,125,125,126,126]; y8 = (-

z8 = (-

1)<sup>\*</sup>[84,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272,277,282,287,292,297,302,307,312,317,322];

top8 =

[99,99,98,98,95,91,89,86,80,74,79,84,86,87,59,31,33,35,39,43,49,54,70,86,76,67,60,54,66,73,67,61,56,52,49,46,54,62,61,59,51,43,35,28,36,44,44,44,44];

#### %CN9 x9 =

166.5,139,124.75,116.5,111,106,102,100,95.25,91.75,88,84.5,79.25,74.75,76.5,80,81.5,82.5,85.5,85,87,86.5,80.25,75.5,72.5,70.75,70,70.5,71.25,71.75,71.75, 71.75,72.75,74.5,75.5,78,79,80,81.75,85.25,100.75,130,130.75,130.5,130.5,130,130,130]; v9 = (-

z9 = (-

7,272,277,282,287,292,297,302,307,312,317,322];

top9 = [98, 98, 97, 95, 92, 88, 86, 84, 78, 72, 76, 80, 82, 84, 60, 36, 39, 42, 45, 47, 51, 54, 67, 80, 72, 65, 56, 47, 66, 73, 67, 61, 56, 52, 49, 46, 54, 62, 61, 59, 51, 43, 35, 28, 36, 44, 44, 44];

%CN10 x10

3.5,75,76.25,77.5,80,81,84.25,86,86.75,89.5,91.75,107,133.75,136,136.5,136,135.75,135.5,135,135,135.5];

z10 = (-

1)\*189,5,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262, 267,272,277,282,287,292,297,302,307,312,317,322];

top 10 = [97, 97, 95, 93, 89, 85, 83, 81, 75, 69, 73, 77, 79, 81, 61, 42, 45, 49, 50, 51, 52, 54, 64, 75, 68, 62, 51, 40, 66, 73, 67, 61, 56, 52, 49, 46, 54, 62, 61, 59, 51, 43, 35, 28, 36, 44, 444];

### %CN11 x11 =

5,90.5,92.75,93.5,96.75,97.5,101.75,116,141.75,143.5,144,144,143.5,143.5,143.5,143,143];

z11 = (-

1)\*[92.8,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267 ,272,277,282,287,292,297,302,307,312,317,322];

top11 = [97,97,94,91,86,82,80,78,73,67,70,73,75,77,62,47,51,56,56,55,54,54,62,69,64,59,47,34,66,73,67,61,56,52,49,46,54,62,61,59,51,43,35,28,36,44,44];

%CN12 x12 =

[166.25,140.5,129.5,123,117.75,114.75,112,109,107,105,102.5,93.5,86,87.25,89.5,93,97.5,104.25,103.25,98,92.25,86,82.5,81,81.75,83.5,87.25,90.75,93.5,98.5,102.5,105,107.25,110,125,148,150,151.75,153.75,153,154,154,155,155.25,155.25,152.75]; y12 = (-

z12 = (-1)\*197,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247,252,257,262,267,272, 277,282,287,292,297,302,307,312,317,322];

top12 = [96,96,92,88,83,78,77,75,70,65,67,70,72,74,63,52,58,63,61,59,56,53,59,64,60,57,42,27,66,73,67,61,56,52,49,46,54,62,61,59,51,43,35,28,36,44];

% CN13 x13 =

top13 = [95,95,90,86,80,75,74,73,68,63,65,66,68,71,64,57,64,70,67,63,58,53,56,59,56,54,37,21,66,73,67,61];

%CN14 x14

 $=\![170,151.25,139.75,132.25,129.25,126.25,124.25,122.5,122.25,123.75,122.5,123.25,123.75,124.5,121.5,119.75,117.75,113.75,111.25,108.25,108,115.25,121.5,129,142.5,144,146.5,151];$ 

01,22,142,−11\*[107,112,17,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242];

top14 = [94,94,89,84,78,72,71,70,66,61,62,62,65,68,65,63,70,77,72,67,60,53,53,53,52,52,33,14]; %[ex,ey,ez] = griddata(x1,y1,z1,top); %mesh(ex,ey,ez) for n = 1:28

co = top14(n)/100;

%plot3(x14(n),y14(n),z14(n),'.','Markersize', 20,'Color',[0,co,0]); end

%CN15

x15 =

[168,155.5,144.5,142,139.75,138.5,136.25,136.5,136.75,137,138.25,139.25,141,142.75,142.75,145.5,149.5,151.5,151.25,148.75,148.5,149,151,150,150.75,154]

top15 = [94,94,89,84,78,72,71,70,66,61,62,62,65,68,65,63,70,77,72,67,60,53,53,53,52,52];

%CN16

top16 = [94,94,89,84,78,72,71,70,66,61,62,62,65,68,65,63,70,77,72,67,60,53];

## %CN17

x17 = [167,162,159,162,164,167,167.5,165.75,170.5]; y17 = (-1)\*[170,170,170,170,170,170,170,170,170]; z17 = (-1)\*[184,187,192,197,202,207,212,217,222];

top17 = [94,94,89,84,78,72,71,70,66];

### %CN18

x18 = [172.75,174.25,176,176.75,176]; y18 = (-1)\*[175,175,175,175,175]; z18 = (-1)\*[189,197,202,207,212];

top18 = [94,94,89,84,78];

```
%INTERPOLATED CONTOUR LINES
% CN1
%cn1a = plot3(x1,y1,z1,'-g');
% 1mm interpolated contour lines for CN1
cn1z = min(z1):1:max(z1);
for n = 1:length(cn1z)
 cn1y(n) = -89.61;
end
cn1xi = interp1(z1,x1,cn1z,'spline');
%cn1 = plot3(cn1xi,cn1y,cn1z,'Linewidth',0.75);
%COLOURING CONTOUR CN1
if (z1(50) < z1(1))
 st = -1;
else
 st = 1;
end
cn1z2 = z1(1):st:z1(50);
for n= 1:length(cn1z2)
 cn1y2(n) = -89.61;
end
cn1xi2 = interp1(z1,x1,cn1z2,'spline');
stp = 1;
for k = 1:49
 ncval = top1(k); %starting point of 5 colour bands
 proval = ncval/100; %progressive point of 5 colour bands
ncval2 = top1(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
   colx(1) = cn1xi2(j);
colx(2) = cn1xi2(j+1);
coly(1) = cn1y2(j);
   coly(2) = cn1y2(j+1);
colz(1) = cn1z2(j);
```

```
colz(2) = cn1z2(j+1);
        cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cval = ((cval+pcval)/2; %average between two points for a colour
          cvalp = round(cvalp*100)+1;
          pcval = cval;
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
     end
stp = stp+5;
% CN2
%cn2a = plot3(x2,y2,z2,'-g');
% 1mm interpolated contour lines for CN2
cn2z = min(z2):1:max(z2);
for n = 1:length(cn2z)
    cn2y(n) = -95.01;
end
cn2xi = interp1(z2,x2,cn2z,'spline');
 %cn2 = plot3(cn2xi,cn2y,cn2z,'Linewidth',0.75);
%COLOURING CONTOUR CN2
if (z2(50) < z2(1))
    st = -1;
 else
   st = 1;
end
 cn2z2 = z2(1):st:z2(50);
for n= 1:length(cn2z2)
cn2y2(n) = -95.01;
end
cn2xi2 = interp1(z2,x2,cn2z2,'spline');
stp = 1;
for k = 1:49
   or k = 1:49

ncval = top2(k); %starting point of 5 colour bands

pcval = ncval/100; %progressive point for each band

ncval2 = top2(k+1); %end point of 5 colour bands

for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS

colx(1) = cn2xi2(j);

colx(2) = cn2xi2(j+1);

coly(2) = cn2y2(j+1);

coly(2) = cn2y2(j+1);

colx(1) = cn2y2(j):
        colz(1) = cn2z2(j);
colz(2) = cn2z2(j+1);
        cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
         cvalp = round(cvalp*100)+1;
          pcval = cval:
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
     end
stp = stp+5;
end
********
% CN3 %STARTS at -77.5 in z NOT -77
%cn3a = plot3(x3,y3,z3,'-g');
% 1mm interpolated contour lines for CN3
cn3z = min(z3):1:max(z3);
for n = 1:length(cn3z)
    cn3y(n) = -100;
end
cn3xi = interp1(z3,x3,cn3z,'spline');
%cn3 = plot3(cn3xi,cn3y,cn3z,'Linewidth',0.75);
%COLOURING CONTOUR CN3
if (z3(50) < z3(1))
st = -1;
else
st = 1;
end
cn3z2pre = z3(2):st:z3(50);
cn3z2(1) = -77.5;
cn3z2(2) = -78;
cn3z2(3) = -79;
cn3z2(4) = -80;
cn3z2(5) = -81;
cn3z2(6) = -82;
 for padd = 7:(length(cn3z2pre)+5)
    cn3z2(padd) = cn3z2pre(padd-5);
end
for n= 1:length(cn3z2)
    cn3y2(n) = -100;
end
cn3xi2 = interp1(z3,x3,cn3z2,'spline');
 stp = 1;
for k = 1:49
     ncval = top3(k); %starting point of 5 colour bands
    http://www.intername.org/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/actions/
```

```
coly(1) = cn3y2(j);
coly(2) = cn3y2(j+1);
          colz(1) = cn3z2(j);
colz(2) = cn3z2(j+1);
          cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
            cvalp = round(cvalp*100)+1;
          pcval = cval;
plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
      end
 stp = stp+5;
end
********
% CN4 %STARTS at -78.5 in z NOT -77
%cn4a = plot3(x4,y4,z4,'-g');
% 1mm interpolated contour lines for CN4
cn4z = min(z4):1:max(z4);
for n = 1:length(cn4z)
      cn4y(n) = -105;
end
 cn4xi = interp1(z4,x4,cn4z,'spline');
  %cn4 = plot3(cn4xi,cn4y,cn4z,'Linewidth',0.75);
 %COLOURING CONTOUR CN4
if (z4(50) < z4(1))
st = -1;
else
st = 1;
 end
end
cn422pre = z4(2):st:z4(50);
cn422(1) = -78.5;
cn422(2) = -79.2;
cn422(3) = -79.9;
cn422(4) = -80.6;
cn422(5) = -81.3;
cn422(6) = -82;
cn422(6) = -82;
 for padd = 7:(length(cn4z2pre)+5)

cn4z2(padd) = cn4z2pre(padd-5);
  end
for n= 1:length(cn4z2)
cn4y2(n) = -105;
 end
cn4xi2 = interp1(z4,x4,cn4z2,'spline');
stp = 1;
for k = 1:49
    or k = 1:49

ncval = top4(k); %starting point of 5 colour bands

pcval = ncval/100; %progressive point for each band

ncval2 = top4(k+1); %end point of 5 colour bands

for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS

colx(1) = cn4xi2(j);

colx(2) = cn4xi2(j+1);

coly(1) = cn4y2(j);

coly(2) = cn4y2(j+1);

colz(2) = cn4y2(j+1);

colz(2) = cn4z2(j+1);

colz(2) = cn4z2(j+1);
          cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp*100)+1;
           pcval = cval;
            plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
      end
  stp = stp+5;
% CN5 %STARTS at -79.5 in z NOT -77
  %cn5a = plot3(x5,y5,z5,'-g');
% 1mm interpolated contour lines for CN5
cn5z = min(z5):1:max(z5);
for n = 1:length(cn5z)
cn5y(n) = -110;
  end
cn5xi = interp1(z5,x5,cn5z,'spline');
%cn5 = plot3(cn5xi,cn5y,cn5z,'Linewidth',0.75);
 %COLOURING CONTOUR CN5
 if (z5(50) < z5(1))
st = -1;
else
      st = 1;
 end
end

cn5z2pre = z5(2):st:z5(50);

cn5z2(1) = -79.5;

cn5z2(2) = -80;

cn5z2(3) = -80.5;

cn5z2(3) = -80.5;
cn5z2(4) = -81;
cn5z2(5) = -81.5;
cn5z2(6) = -82;
for padd = 7:(length(cn5z2pre)+5)
cn5z2(padd) = cn5z2pre(padd-5);
 end
 for n= 1:length(cn5z2)
```

```
cn5y2(n) = -110;
    end
 cn5xi2 = interp1(z5,x5,cn5z2,'spline');
 stp = 1;
for k = 1:49
          or k = 1:49

ncval = top5(k); %starting point of 5 colour bands

pcval = ncval/100; %progressive point for each band

ncval2 = top5(k+1); %end point of 5 colour bands

for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS

colx(1) = cn5xi2(j);

colx(2) = cn5xi2(j+1);

colx(1) = cn5xi2(j+1);

colx(1) = cn5xi2(j+1);

colx(2) = cn5xi2
                    \begin{aligned} & \text{CO}(x_2) = \text{CO}(y_1), & \text{CO}(y_1) = \text{CO}(y_1), & \text{CO}(y_1) = \text{CO}(y_2), & \text{CO}(y_1) = \text{CO}(y_1), & \text{CO}(y_1) = \text{
                    cvalp = (cval+pcval)/2; %average between two points for a colour
cvalp = round(cvalp*100)+1;
           plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end
    stp = stp+5;
 end
%******
  % CN6 %STARTS at -80.5 in z NOT -77
  %cn6a = plot3(x6,y6,z6,'-g');
% 1mm interpolated contour lines for CN6
    cn6z = min(z6):1:max(z6);
 for n = 1:length(cn6z)
cn6y(n) = -115;
    end
 cn6xi = interp1(z6,x6,cn6z,'spline');
%cn6 = plot3(cn6xi,cn6y,cn6z,'Linewidth',0.75);
    %COLOURING CONTOUR CN6
  if (z6(50) < z6(1))
             st = -1;
  else
 st = 1;
end
 cn6z2pre = z6(2):st:z6(50);
cn622pre = 20(2).

cn622(1) = -80.5;

cn622(2) = -80.8;

cn622(3) = -81.1;

cn622(4) = -81.4;

cn622(5) = -81.7;

cn622(5) = -81.7;
  cn6z2(6) = -82;
for padd = 7:(length(cn6z2pre)+5)
           cn6z2(padd) = cn6z2pre(padd-5);
  end
  for n= 1:length(cn6z2)
           cn6y2(n) = -115;
 end
  cn6xi2 = interp1(z6,x6,cn6z2,'spline');
 stp = 1;
for k = 1:49
ncval = top6(k); %starting point of 5 colour bands
           https://www.interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com/interview.com
                    coly(2) = cn6y2(j+1);
colz(1) = cn6z2(j);
                      colz(2) = cn6z2(j+1);
                    cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
cvalp = round(cvalp*100)+1;
                      pcval = cval:
                    plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
             end
  stp = stp+5;
  % CN7
  % Civ7
%cn7a = plot3(x7,y7,z7,'-g');
% 1mm interpolated contour lines for CN7
 cn7z = min(z7):1:max(z7);
for n = 1:length(cn7z)
           cn7y(n) = -120;
 end
  cn7xi = interp1(z7,x7,cn7z,'spline');
    %cn7 = plot3(cn7xi,cn7y,cn7z,'Linewidth',0.75);
  %COLOURING CONTOUR CN7
 if (z7(49) < z7(1))
st = -1;
  else
           st = 1;
```

end cn7z2 = z7(1):st:z7(49); for n= 1:length(cn7z2) cn7y2(n) = -120; end cn7xi2 = interp1(z7,x7,cn7z2,'spline'); cn7C0L = plot3(cn7xi2,cn7y2,cn7z2,r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN7 stp = 1; for k = 1:48 or k = 1:48 ncval = top7(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = top7(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn7xi2(j); colx(2) = cn7xi2(j+1); coly(1) = cn7y2(j); coly(2) = cn7y2(j+1); coly(1) = cn7y2(j+1); colz(1) = cn7z2(j);colz(2) = cn7z2(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %\*\*\*\*\*\*\* % CN8 %cn8a = plot3(x8,y8,z8,'-g'); % 1mm interpolated contour lines for CN8 cn8z = min(z8):1:max(z8); for n = 1:length(cn8z) cn8y(n) = -125; end cn8xi = interp1(z8,x8,cn8z,'spline'); %cn8 = plot3(cn8xi,cn8y,cn8z,'Linewidth',0.75); %COLOURING CONTOUR CN8 if (z8(49) < z8(1)) st = -1; else st = 1; end cn8z2pre = z8(2):st:z8(49); %STARTS at z = -84 not -82 cn8z2(1) = -84; cn8z2(2) = -84.6; cn8z2(3) = -85.2; cn8z2(4) = -85.8; cn8z2(5) = -86.4; cn8z2(6) = -87; for padd = 7:(length(cn8z2pre)+5) cn8z2(padd) = cn8z2pre(padd-5); end for n= 1:length(cn8z2) cn8y2(n) = -125; end cn8xi2 = interp1(z8,x8,cn8z2,'spline'); %cn8COL = plot3(cn8xi2,cn8y2,cn8z2,'r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN8 stp = 1; for k = 1:48 ncval = top8(k); %starting point of 5 colour bands coly(1) = cn8y2(j);coly(1) = cn8y2(j+1); colz(1) = cn8y2(j+1); colz(1) = cn8z2(j); colz(2) = cn8z2(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100;cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %\*\*\*\*\*\* % CN9 %cn9a = plot3(x9,y9,z9,'-g'); % 1mm interpolated contour lines for CN9 cn9z = min(z9):1:max(z9); for n = 1:length(cn9z) cn9y(n) = -130; end cn9xi = interp1(z9,x9,cn9z,'spline'); %cn9 = plot3(cn9xi,cn9y,cn9z,'Linewidth',0.75); %COLOURING CONTOUR CN9 if (z9(48) < z9(1))

```
st = -1:
else
  st = 1;
end
cn9z2 = z9(1):st:z9(48);
for n= 1:length(cn9z2)
  cn9y2(n) = -130;
end
cn9xi2 = interp1(z9,x9,cn9z2,'spline');
%cn9COL = plot3(cn9xi2,cn9y2,cn9z2,'r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN7
stp = 1:
for k = 1:47
  ncval = top9(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = top9(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn9xi2(j);
estp:(2) = cn9xi2(j);
    colx(2) = cn9xi2(j+1);
coly(1) = cn9y2(j);
     coly(2) = cn9y2(j+1);
    colz(1) = cn9z2(j);
colz(2) = cn9z2(j+1);
    cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
     cvalp = round(cvalp*100)+1;
     pcval = cval:
     plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
  end
stp = stp+5;
% CN10
%cn10a = plot3(x10,y10,z10,'-g');
% 1mm interpolated contour lines for CN10
cn10z = min(z10):1:max(z10);
for n = 1:length(cn10z)
  cn10y(n) = -135;
end
cn10xi = interp1(z10,x10,cn10z,'spline');
%cn10 = plot3(cn10xi,cn10y,cn10z,'Linewidth',0.75);
%COLOURING CONTOUR CN10
if (z10(48) < z10(1))
st = -1;
else
  st = 1;
end
cn10z2pre = z10(2):st:z10(48);
cn10z2(1) = -89.5;
cn10z2(2) = -90;
cn10z2(3) = -90.5;
cn10z2(4) = -91;
cn10z2(5) = -91.5;
cn10z2(5) = -92;
for padd = 7:(length(cn10z2pre)+5)
  cn10z2(padd) = cn10z2pre(padd-5);
end
for n= 1:length(cn10z2)
cn10y2(n) = -135;
end
on10xi2 = interp1(z10,x10,cn10z2,'spline');
%cn10COL = plot3(cn10xi2,cn10y2,cn10z2,r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN7
stp = 1;
for k = 1:47
  ncval = top10(k); %starting point of 5 colour bands
  ncval = top10(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = top10(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn10xi2(j);
colx(2) = cn10xi2(j+1);
coly(1) = cn10y2(j);
coly(2) = cn10y2(j+1);
colz(1) = cn10y2(j+1);
colz(1) = cn10y2(j+1);
     colz(2) = cn10z2(j+1);
     cval = ((pcval*100)+((ncval2-ncval)/5))/100;
     cvalp = (cval+pcval)/2; %average between two points for a colour
     cvalp = round(cvalp*100)+1;
     pcval = cval;
     plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
  end
stp = stp+5;
end
%******
% CN11
%cn11a = plot3(x11,y11,z11,'-g');
% 1mm interpolated contour lines for CN11
cn11z = min(z11):1:max(z11);
for n = 1:length(cn11z)
  cn11y(n) = -140;
end
cn11xi = interp1(z11,x11,cn11z,'spline');
%cn11 = plot3(cn11xi,cn11y,cn11z,'Linewidth',0.75);
```

%COLOURING CONTOUR CN11 if (z11(47) < z11(1)) st = -1; else st = 1; end cn11z2pre = z11(2):st:z11(47); cn11z2(1) = -92.8; cn11z2(1) = -93.64; cn11z2(3) = -94.48; cn11z2(4) = -95.32; cn11z2(5) = -96.16; cn11z2(6) = -97; for padd = 7:(length(cn11z2pre)+5) cn11z2(padd) = cn11z2pre(padd-5); end for n= 1:length(cn11z2) cn11y2(n) = -140; end cn11xi2 = interp1(z11,x11,cn11z2,'spline'); con11COL = plot3(cn11xi2,cn11y2,cn11z2,r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN7 stp = 1; for k = 1:46 bit K = 1.40 ncval = top11(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = top11(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn11xi2(j); colx(2) = cn11xi2(j+1); colx(1) = cn11xi2(j); coly(1) = cn11y2(j);coly(2) = cn11y2(j+1);colz(1) = cn11z2(j);colz(2) = cn11z2(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %\*\*\*\* % CN12 %cn12a = plot3(x12,y12,z12,'-g'); % 1mm interpolated contour lines for CN12 cn12z = min(z12):1:max(z12);for n = 1:length(cn12z) cn12y(n) = -145; end cn12xi = interp1(z12,x12,cn12z,'spline'); %cn12 = plot3(cn12xi,cn12y,cn12z,'Linewidth',0.75); %COLOURING CONTOUR CN12 if (z12(46) < z12(1)) st = -1: else st = 1; end cn12z2 = z12(1):st:z12(46); for n= 1:length(cn12z2) cn12y2(n) = -145; end cn12xi2 = interp1(z12,x12,cn12z2,'spline'); %cn12COL = plot3(cn12xi2,cn12y2,cn12z2,'r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN7 stp = 1; for k = 1:45 ncval = top12(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = top12(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn12xi2(); colx(2) = cn12xi2(); colx(2) = cn12xi2(); coly(1) = cn12y2(j); coly(2) = cn12y2(j); coly(2) = cn12y2(j+1); colz(1) = cn12z2(j);colz(2) = cn12z2(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %\*\*\*\*\*\*\* % CN13 %cn13a = plot3(x13,y13,z13,'-g'); % 1mm interpolated contour lines for CN13 cn13z = min(z13):1:max(z13);

for n = 1:length(cn13z) cn13y(n) = -150;

```
end
cn13xi = interp1(z13,x13,cn13z,'spline');
 %cn13 = plot3(cn13xi,cn13y,cn13z,'Linewidth',0.75);
%COLOURING CONTOUR CN13
if (z13(32) < z13(1))
   st = -1;
else
  st = 1;
end
end
cn13z2pre = z13(2):st:z13(32);
cn13z2(1) = -101.8;
cn13z2(2) = -102.84;
cn13z2(3) = -103.88;
cn13z2(4) = -104.92;
cn13z2(5) = -105.96;
cn13z2(6) = -107;
for padd = 7:(length(cn13z2pre)+5)
cn13z2(padd) = cn13z2pre(padd-5);
 end
for n= 1:length(cn13z2)
cn13y2(n) = -150;
 end
cn13xi2 = interp1(z13,x13,cn13z2,'spline');
 %cn13COL = plot3(cn13xi2,cn13y2,cn12z2,r'); %INTERPOLATED COORDINATES BETWEEN 1ST AND 2ND POINTS IN CN7
stp = 1;
for k = 1:31
   ncval = top13(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = top13(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %bIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn13xi2(j);
      colx(2) = cn13xi2(j+1);
     coly(1) = cn13y2(j+1),

coly(1) = cn13y2(j);

coly(2) = cn13y2(j+1);

colz(1) = cn13z2(j);

colz(2) = cn13z2(j+1);
     cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
      cvalp = round(cvalp*100)+1;
     pcval = cval;
plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
   end
stp = stp+5;
end
%******
% CN14
%cn14a = plot3(x14,y14,z14,'-g');
% 1mm interpolated contour lines for CN14
 cn14z = min(z14):1:max(z14);
for n = 1:length(cn14z)
   cn14y(n) = -155;
end
cn14xi = interp1(z14,x14,cn14z,'spline');
 %cn14 = plot3(cn14xi,cn14y,cn14z,'Linewidth',0.75);
 %COLOURING CONTOUR CN14
if (z14(28) < z14(1))
   st = -1;
else
  st = 1;
end
 cn14z2 = z14(1):st:z14(28);
for n= 1:length(cn14z2)
cn14y2(n) = -155;
end
cn14xi2 = interp1(z14,x14,cn14z2,'spline');
cn14xi2 = interp1(z14,x14,cn14z2;spline');
stp = 1;
for k = 1:27
ncval = top14(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = top14(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn14xi2();
colx(2) = cn14xi2(j+1);
coly(1) = cn14xi2(j+1);
coly(2) = cn14x2(j+1);
     coly(2) = cn14y2(j+1);
colz(1) = cn14z2(j);
     colz(2) = cn14z2(j+1);
cval = ((pcval*100)+((ncval2-ncval)/5))/100;
      cvalp = (cval+pcval)/2; %average between two points for a colour
cvalp = cound(cvalp*100)+1;
pcval = cval;
      plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
   end
 stp = stp+5;
end
%*******
% CN15
 %cn15a = plot3(x15,y15,z15,'-g');
% 1mm interpolated contour lines for CN15
cn15z = min(z15):1:max(z15);
```

D25

for n = 1:length(cn15z) cn15y(n) = -160; end cn15xi = interp1(z15,x15,cn15z,'spline'); %cn15 = plot3(cn15xi,cn15y,cn15z,'Linewidth',0.75); %COLOURING CONTOUR CN15 if (z15(26) < z15(1)) st = -1; else st = 1; end cn15z2pre = z15(2):st:z15(26); cn15z2(1) = -117.4; cn15z2(2) = -118.32; cn15z2(3) = -119.24; cn15z2(4) = -120.16; cn15z2(4) = -120.16; cn15z2(4) = -120.16; cn15z2(5) = -121.08; cn15z2(6) = -122; for padd = 7:(length(cn15z2pre)+5) cn15z2(padd) = cn15z2pre(padd-5); end for n= 1:length(cn15z2) cn15y2(n) = -160; end cn15xi2 = interp1(z15,x15,cn15z2,'spline'); stp = 1;for k = 1:25 ncval = top15(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = top15(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn15xi2(j); colx(2) = cn15xi2(j); colx(2) = cn15xi2(j); coly(2) = cn15y2(j); coly(2) = cn15y2(j+1); colz(2) = cn15y2(j+1); colz(2) = cn15y2(j+1); colz(2) = cn15y2(j+1); colz(2) = cn15y2(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %\*\*\*\*\*\*\* % CN16 %cn16a = plot3(x16,y16,z16,'-g'); % 1mm interpolated contour lines for CN16 cn16z = min(z16):1:max(z16); for n = 1:length(cn16z) cn16y(n) = -165; end cn16xi = interp1(z16,x16,cn16z,'spline'); %cn16 = plot3(cn16xi,cn16y,cn16z,'Linewidth',0.75); %COLOURING CONTOUR CN16 if (z16(22) < z16(1)) st = -1; else st = 1; end cn16z2pre = z16(2):st:z16(22); cn16z2(1) = -129.9; cn16z2(2) = -131.32; cn16z2(3) = -132.74; cn16z2(4) = -134.16; Ch16z2(4) = -134.16; cn16z2(5) = -135.58; cn16z2(6) = -137; for padd = 7:(length(cn16z2pre)+5) cn16z2(padd) = cn16z2pre(padd-5); end for n= 1:length(cn16z2) cn16y2(n) = -165; end cn16xi2 = interp1(z16,x16,cn16z2,'spline'); stp = 1; stp = 1; for k = 1:21 ncval = top16(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = top16(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn16xi2(j); colx(2) = cn16xi2(j+1); coly(1) = cn16y2(j); coly(2) = cn16y2(j); coly(2) = cn16y2(j+1);colz(1) = cn16z2(j);colz(2) = cn16z2(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval;

plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %\*\*\*\*\*\*\* % CN17 %cn17a = plot3(x17,y17,z17,'-g'); % 1mm interpolated contour lines for CN17 cn17z = min(z17):1:max(z17);for n = 1:length(cn17z) cn17y(n) = -170; end cn17xi = interp1(z17,x17,cn17z,'spline'); %cn17 = plot3(cn17xi,cn17y,cn17z,'Linewidth',0.75); %COLOURING CONTOUR CN17 if (z17(9) < z17(1)) st = -1; else st = 1; end cn17z2pre = z17(2):st:z17(9); cn17z2(1) = -184; cn17z2(2) = -184.6; cn17z2(3) = -185.2; cn17z2(4) = -185.8; cn17z2(5) = -186.4; cn17z2(6) = -187; for padd = 7:(length(cn17z2pre)+5)cn17z2(padd) = cn17z2pre(padd-5); end for n= 1:length(cn17z2) cn17y2(n) = -170;end cn17xi2 = interp1(z17,x17,cn17z2,'spline'); stp = 1: for k = 1:8 ncval = top17(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band poral = top17(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn17xi2(j); colx(1) = cn17xi2(j); colx(2) = cn17xi2(j+1); coly(1) = cn17y2(j); coly(2) = cn17y2(j+1); colz(1) = cn17z2(j+1); colz(2) = cn17z2(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %\*\*\*\*\*\*\* % CN18 %cn18a = plot3(x18,y18,z18,'-g'); % 1mm interpolated contour lines for CN18 cn18z = min(z18):1:max(z18);for n = 1:length(cn18z) cn18y(n) = -175; end cn18xi = interp1(z18,x18,cn18z,'spline'); %cn18 = plot3(cn18xi,cn18y,cn18z,'Linewidth',0.75); %COLOURING CONTOUR CN18 if (z18(5) < z18(1)) st = -1; else st = 1; end end cn18z2pre = z18(2):st:z18(5); cn18z2(1) = -189; cn18z2(2) = -190.6; cn18z2(3) = -192.2; cn18z2(4) = -193.8; ur102(2) = -105.5; cn18z2(5) = -195.4; cn18z2(6) = -197; for padd = 7:(length(cn18z2pre)+5) cn18z2(padd) = cn18z2pre(padd-5); end for n= 1:length(cn18z2) cn18y2(n) = -175; end cn18xi2 = interp1(z18,x18,cn18z2,'spline'); stp = 1;for k = 1:4 ncval = top18(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = top18(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS

colx(1) = cn18xi2(j);colx(2) = cn18xi2(j+1);coly(1) = cn18y2(j);coly(2) = cn18y2(j+1);colz(1) = cn18z2(j);colz(2) = cn18z2(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; % HORIZONTAL CONTOURS %FIRST COLUMN------%CX1  $\begin{array}{l} xx1 = [x1(2),x2(2),x3(2),x4(2),x5(2),x6(2),x7(1)]; \\ yx1 = [y1(2),y2(2),y3(2),y4(2),y5(2),y6(2),y7(1)]; \\ zx1 = [z1(2),z2(2),z3(2),z4(2),z5(2),z6(2),z7(1)]; \end{array}$ topx1 = [top7(1), top6(2), top5(2), top4(2), top3(2), top2(2), top1(2)];for n = 1:7co = top1(n)/100; %plot3(xx1(n),yx1(n),zx1(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX1 % 1mm interpolated contour lines for CX1 cn1yx = min(yx1):1:max(yx1);for n = 1:length(cn1yx) cn1zx(n) = zx1(1);end cn1xxi = interp1(yx1,xx1,cn1yx,'spline'); %cn1x = plot3(cn1xxi,cn1yx,cn1zx,'Linewidth',0.75); stp = 1: for k = 1:6 ncval = topx1(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = topx1(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn1xxi(j);
return(0); colx(2) = cn1xxi(j+1);coly(1) = cn1yx(j);coly(1) = cn1yx(j); coly(2) = cn1yx(j+1); colz(1) = cn1zx(j); colz(2) = cn1zx(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX2 xx2 = [x1(3), x2(3), x3(3), x4(3), x5(3), x6(3), x7(2), x8(2), x9(1)];yx2 = [y1(3),y2(3),y3(3),y4(3),y5(3),y6(3),y7(2),y8(2),y9(1)]; zx2 = [z1(3),z2(3),z3(3),z4(3),z5(3),z6(3),z7(2),z8(2),z9(1)]; topx2 = [top9(1),top8(2),top7(2),top6(3),top5(3),top4(3),top3(3),top2(3),top1(3)]; for n = 1:9 co = top1(n)/100; %plot3(xx2(n),yx2(n),zx2(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX2 % 1mm interpolated contour lines for CX2 cn2yx = min(yx2):1:max(yx2); for n = 1:length(cn2yx) cn2zx(n) = zx2(1);end cn2xxi = interp1(yx2,xx2,cn2yx,'spline'); %cn2x = plot3(cn2xxi,cn2yx,cn2zx,'Linewidth',0.75); stp = 1; for k = 1:8 or k = 1:8 ncval = topx2(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx2(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn2xxi(j); colx(2) = cn2xxi(j+1); coly(2) = cn2xxi(j+1); coly(2) = cn2xxi(j+1); colx(1) = cn2xxi(j+1); colx(2) = cn2xx colz(1) = cn2zx(j);colz(2) = cn2zx(j+1);

```
cval = ((pcval*100)+((ncval2-ncval)/5))/100;
         cvalp = (cval+pcval)/2; %average between two points for a colour
         cvalp = round(cvalp*100)+1;
         pcval = cval;
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
    end
 stp = stp+5;
end
%CX3
xx3 = [x1(4),x2(4),x3(4),x4(4),x5(4),x6(4),x7(3),x8(3),x9(2),x10(2),x11(1)];
yx3 = [y1(4),y2(4),y3(4),y4(4),y5(4),y6(4),y7(3),y8(3),y9(2),y10(2),y11(1)];
zx3 = [z1(4), z2(4), z3(4), z4(4), z5(4), z6(4), z7(3), z8(3), z9(2), z10(2), z11(1)];
topx3 = [top11(1), top10(2), top9(2), top8(3), top7(3), top6(4), top5(4), top4(4), top3(4), top2(4), top1(4)]; top3(4), top2(4), top1(4)]; top3(4), top3(4
for n = 1:11
    co = top1(n)/100;
    end
 %INTERPOLATED CONTOUR CX3
 % 1mm interpolated contour lines for CX3
 cn3yx = min(yx3):1:max(yx3);
for n = 1:length(cn3yx)
    cn3zx(n) = zx3(1);
end
cn3xxi = interp1(yx3,xx3,cn3yx,'spline');
%cn3x = plot3(cn3xxi,cn3yx,cn3zx,'Linewidth',0.75);
 stp = 1;
for k = 1:10
    ncval = topx3(k); %starting point of 5 colour bands
    proval = noval/100; %orrogressive point for each band
noval2 = topx3(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
       colx(1) = cn3xxi(j);
colx(2) = cn3xxi(j+1);
         coly(1) = cn3yx(j);
       coly(2) = cn3yx(j+1);
colz(1) = cn3zx(j);
       colz(2) = cn3zx(j+1);
cval = ((pcval*100)+((ncval2-ncval)/5))/100;
         cvalp = (cval+pcval)/2; %average between two points for a colour
         cvalp = round(cvalp*100)+1;
        pcval = cval:
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
    end
 stp = stp+5;
end
%CX4
 \begin{array}{l} xx4 = [x1(5),x2(5),x3(5),x4(5),x5(5),x6(5),x7(4),x8(4),x9(3),x10(3),x11(2),x12(1)];\\ yx4 = [y1(5),y2(5),y3(5),y4(5),y5(5),y6(5),y7(4),y8(4),y9(3),y10(3),y11(2),y12(1)];\\ zx4 = [z1(5),z2(5),z3(5),z4(5),z5(5),z6(5),z7(4),z8(4),z9(3),z10(3),z11(2),z12(1)];\\ \end{array}
 topx4 = [top12(1),top11(2),top10(3),top9(3),top8(4),top7(4),top6(5),top5(5),top4(5),top3(5),top2(5),top1(5)];
for n = 1.12
    co = top1(n)/100;
     %plot3(xx4(n),yx4(n),zx4(n),'.','Markersize', 20,'Color',[0,co,0]);
 end
%INTERPOLATED CONTOUR CX4
% 1mm interpolated contour lines for CX4
 cn4yx = min(yx4):1:max(yx4);
for n = 1:length(cn4yx)
    cn4zx(n) = zx4(1);
 end
cn4xxi = interp1(yx4,xx4,cn4yx,'spline');
%cn4x = plot3(cn4xxi,cn4yx,cn4zx,'Linewidth',0.75);
 stp = 1;
for k = 1:11
    ncval = topx4(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = topx4(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
        colx(1) = cn4xxi(j);
        colx(2) = cn4xxi(j+1);
coly(1) = cn4yx(j);
       coly(2) = cn4yx(j+1);
colz(1) = cn4zx(j);
colz(2) = cn4zx(j+1);
        cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
         cvalp = round(cvalp*100)+1;
         pcval = cval:
        plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
    end
stp = stp+5;
end
%CX5
```

xx5 = [x1(6), x2(6), x3(6), x4(6), x5(6), x6(6), x7(5), x8(5), x9(4), x10(4), x11(3), x12(2), x13(1)];

yx5 = [y1(6), y2(6), y3(6), y4(6), y5(6), y6(6), y7(5), y8(5), y9(4), y10(4), y11(3), y12(2), y13(1)];

zx5 = [z1(6), z2(6), z3(6), z4(6), z5(6), z6(6), z7(5), z8(5), z9(4), z10(4), z11(3), z12(2), z13(1)];

top x5 = [top 13(1), top 12(2), top 11(3), top 10(4), top 9(4), top 8(5), top 7(5), top 6(6), top 5(6), top 3(6), top 2(6), top 1(6)];for n = 1:13 co = top1(n)/100: %plot3(xx5(n),yx5(n),zx5(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX5 % 1mm interpolated contour lines for CX5 cn5yx = min(yx5):1:max(yx5); for n = 1:length(cn5yx) cn5zx(n) = zx5(1);end cn5xxi = interp1(yx5,xx5,cn5yx,'spline'); %cn5x = plot3(cn5xxi,cn5yx,cn5zx,'Linewidth',0.75); stp = 1; for k = 1:12 ncval = topx5(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx5(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn5xxi(j); colx(2) = cn5xxi(j+1);coly(1) = cn5yx(j);coly(2) = cn5yx(j+1);colz(1) = cn5zx(j);colz(2) = cn5zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX6 xx6 = [x1(7),x2(7),x3(7),x4(7),x5(7),x6(7),x7(6),x8(6),x9(5),x10(5),x11(4),x12(3),x13(2),x14(1)]; yx6 = [y1(7),y2(7),y3(7),y4(7),y5(7),y6(7),y7(6),y8(6),y9(5),y10(5),y11(4),y12(3),y13(2),y14(1)]; zx6 = [z1(7),z2(7),z3(7),z4(7),z5(7),z6(7),z7(6),z8(6),z9(5),z10(5),z11(4),z12(3),z13(2),z14(1)]; topx6 = [top14(1), top13(2), top12(3), top11(4), top10(5), top9(5), top8(6), top7(6), top6(7), top5(7), top4(7), top3(7), top2(7), top1(7)]; top10(5), top9(5), top8(6), top7(6), top6(7), top5(7), top4(7), top2(7), top1(7)]; top10(5), top10(5), top9(5), top8(6), top7(6), top6(7), top5(7), top4(7), top2(7), top1(7)]; top10(5), top8(6), top7(6), top6(7), top5(7), top4(7), top2(7), top2(7), top1(7)]; top10(5), top8(6), top7(6), top6(7), top5(7), top4(7), top2(7), top2(7), top1(7)]; top10(5), top8(6), top7(6), top6(7), top5(7), top4(7), top2(7), top1(7)]; top10(5), top8(6), top7(6), top6(7), top5(7), top4(7), top2(7), top2(7), top1(7)]; top10(5), top8(6), top7(6), top8(6), top7(6), top8(7), top4(7), top2(7), top2(7), top1(7)]; top10(5), top8(6), top8(6for n = 1.14co = top1(n)/100;%plot3(xx6(n),yx6(n),zx6(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX6 % 1mm interpolated contour lines for CX6 cn6yx = min(yx6):1:max(yx6); for n = 1:length(cn6yx) cn6zx(n) = zx6(1);end cn6xxi = interp1(yx6,xx6,cn6yx,'spline'); %cn6x = plot3(cn6xxi,cn6yx,cn6zx,'Linewidth',0.75); stp = 1; for k = 1:13 bit K = 1:13 ncval = topx6(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx6(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn6xxi(j); colx(2) = cn6xxi(j+1); colx(2) = cn6xxi(j+1); coly(1) = cn6yx(j);coly(2) = cn6yx(j+1);colz(1) = cn6zx(j);colz(2) = cn6zx(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX7 xx7 = [x1(8),x2(8),x3(8),x4(8),x5(8),x6(8),x7(7),x8(7),x9(6),x10(6),x11(5),x12(4),x13(3),x14(2)]; yx7 = [y1(8),y2(8),y3(8),y4(8),y5(8),y6(8),y7(7),y8(7),y9(6),y10(6),y11(5),y12(4),y13(3),y14(2)]; zx7 = [z1(8), z2(8), z3(8), z4(8), z5(8), z6(8), z7(7), z8(7), z9(6), z10(6), z11(5), z12(4), z13(3), z14(2)];topx7 = [top14(2), top13(3), top12(4), top11(5), top10(6), top9(6), top8(7), top7(7), top6(8), top5(8), top4(8), top3(8), top2(8), top1(8)]; top1(10), topfor n = 1:14 co = top1(n)/100;%plot3(xx7(n),yx7(n),zx7(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX7 % 1mm interpolated contour lines for CX7 cn7yx = min(yx7):1:max(yx7); for n = 1:length(cn7yx)

cn7zx(n) = zx7(1): end cn7xxi = interp1(yx7,xx7,cn7yx,'spline'); %cn7x = plot3(cn7xxi,cn7yx,cn7zx,'Linewidth',0.75); stp = 1; for k = 1:13 ncval = topx7(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx7(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn7xxi(j);colx(2) = cn7xxi(j+1);coly(1) = cn7yx(j);coly(2) = cn7yx(j+1);colz(1) = cn7zx(j);colz(2) = cn7zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX8 xx8 = [x1(9),x2(9),x3(9),x4(9),x5(9),x6(9),x7(8),x8(8),x9(7),x10(7),x11(6),x12(5),x13(4),x14(3),x15(1)]; yx8 = [y1(9),y2(9),y3(9),y4(9),y5(9),y6(9),y7(8),y8(8),y9(7),y10(7),y11(6),y12(5),y13(4),y14(3),y15(1)]; zx8 = [z1(9),z2(9),z3(9),z4(9),z5(9),z6(9),z7(8),z8(8),z9(7),z10(7),z11(6),z12(5),z13(4),z14(3),z15(1)]; topx8 = [top15(1), top14(3), top13(4), top12(5), top11(6), top10(7), top9(7), top8(8), top7(8), top5(9), top4(9), top3(9), top2(9), top1(9)]; top1(9), topfor n = 1:15 co = top1(n)/100%plot3(xx8(n),yx8(n),zx8(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX8 % 1mm interpolated contour lines for CX8 cn8yx = min(yx8):1:max(yx8); for n = 1:length(cn8yx) cn8zx(n) = zx8(1);end cn8xxi = interp1(yx8,xx8,cn8yx,'spline'); %cn8x = plot3(cn8xxi,cn8yx,cn8zx,'Linewidth',0.75); stp = 1: for k = 1:14 ncval = topx8(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band poral = topx8(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn8xxi(j); colx(2) = cn8xxi(j+1);coly(1) = cn8yx(j); coly(2) = cn8yx(j+1); colz(1) = cn8zx(j); colz(2) = cn8zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1;pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX9 xx9 = [x1(10), x2(10), x3(10), x4(10), x5(10), x6(10), x7(9), x8(9), x9(8), x10(8), x11(7), x12(6), x13(5), x14(4), x15(2)];yx9 = [y1(10),y2(10),y3(10),y4(10),y5(10),y6(10),y7(9),y8(9),y9(8),y10(8),y11(7),y12(6),y13(5),y14(4),y15(2)]; zx9 = [z1(10),z2(10),z3(10),z4(10),z5(10),z6(10),z7(9),z8(9),z9(8),z10(8),z11(7),z12(6),z13(5),z14(4),z15(2)]; topx9 = [top15(2), top14(4), top13(5), top12(6), top11(7), top10(8), top9(8), top8(9), top7(9), top6(10), top5(10), top4(10), top3(10), top2(10), top1(10)]; for n = 1:15co = top1(n)/100; %plot3(xx9(n),yx9(n),zx9(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX9 % 1mm interpolated contour lines for CX9 cn9yx = min(yx9):1:max(yx9); for n = 1:length(cn9yx) cn9zx(n) = zx9(1);end cn9xxi = interp1(yx9,xx9,cn9yx,'spline'); %cn9x = plot3(cn9xxi,cn9yx,cn9zx,'Linewidth',0.75); stp = 1; for k = 1:14 ncval = topx9(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx9(k+1); %end point of 5 colour bands for j = stp:(stp+4) %bvld pEIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn9xxi(j);

colx(2) = cn9xxi(j+1);coly(1) = cn9yx(j);coly(2) = cn9yx(j+1);colz(1) = cn9zx(j);colz(2) = cn9zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100;cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX10 xx10 = [x1(11), x2(11), x3(11), x4(11), x5(11), x6(11), x7(10), x8(10), x9(9), x10(9), x11(8), x12(7), x13(6), x14(5), x15(3)]; x11(8), x12(7), x15(8), x15(8yx10 = [y1(11),y2(11),y3(11),y4(11),y5(11),y6(11),y7(10),y8(10),y9(9),y10(9),y11(8),y12(7),y13(6),y14(5),y15(3)]; zx10 = [z1(11),z2(11),z3(11),z4(11),z5(11),z6(11),z7(10),z8(10),z9(9),z10(9),z11(8),z12(7),z13(6),z14(5),z15(3)]; topx10 = [top15(3), top14(5), top13(6), top12(7), top11(8), top10(9), top9(9), top8(10), top7(10), top6(11), top5(11), top4(11), top2(11), top2(11), top1(11)];for n = 1:15 co = top1(n)/100;end %INTERPOLATED CONTOUR CX10 % 1mm interpolated contour lines for CX10 cn10yx = min(yx10):1:max(yx10);for n = 1:length(cn10yx) cn10zx(n) = zx10(1); end cn10xxi = interp1(yx10,xx10,cn10yx,'spline'); %cn10x = plot3(cn10xxi,cn10yx,cn10zx,'Linewidth',0.75); stp = 1; for k = 1:14 ncval = topx10(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx10(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn10xxi(j);colx(2) = cn10xxi(j+1);coly(1) = cn10yx(j);coly(1) = cn10yx(j), coly(2) = cn10yx(j+1); colz(1) = cn10zx(j); colz(2) = cn10zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX11 xx11 = [x1(12),x2(12),x3(12),x4(12),x5(12),x6(12),x7(11),x8(11),x9(10),x10(10),x11(9),x12(8),x13(7),x14(6),x15(4),x16(1)]; yx11 = [y1(12),y2(12),y3(12),y4(12),y5(12),y6(12),y7(11),y8(11),y9(10),y10(10),y11(9),y12(8),y13(7),y14(6),y15(4),y16(1),y16(1),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10),y12(10 zx11 = [z1(12),z2(12),z3(12),z4(12),z5(12),z6(12),z7(11),z8(11),z9(10),z10(10),z11(9),z12(8),z13(7),z14(6),z15(4),z16(1)]; topx11 = [top16(1), top15(4), top14(6), top13(7), top12(8), top11(9), top10(10), top9(10), top8(11), top7(11), top6(12), top5(12), top3(12), top3(12), top2(12), top1(12)]; top11(12), top12(12), tofor n = 1.16co = top1(n)/100;%plot3(xx11(n),yx11(n),zx11(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX11 % 1mm interpolated contour lines for CX11 cn11yx = min(yx11):1:max(yx11); for n = 1:length(cn11yx) cn11zx(n) = zx11(1);end cn11xxi = interp1(yx11,xx11,cn11yx,'spline'); %cn11x = plot3(cn11xxi,cn11yx,cn11zx,'Linewidth',0.75); stp = 1: for k = 1:15 ncval = topx11(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx11(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn11xxi(j); colx(2) = cn11xxi(j+1);coly(1) = cn11yx(j);coly(2) = cn11yx(j+1);colz(1) = cn11zx(j);colz(2) = cn11zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;

D32

end

%CX12

xx12 = [x1(13), x2(13), x3(13), x4(13), x5(13), x6(13), x7(12), x8(12), x9(11), x10(11), x11(10), x12(9), x13(8), x14(7), x15(5), x16(2)]; x12(12), x12(12yx12 = [y1(13),y2(13),y3(13),y4(13),y5(13),y6(13),y7(12),y8(12),y9(11),y10(11),y11(10),y12(9),y13(8),y14(7),y15(5),y16(2)]; zx12 = [z1(13),z2(13),z3(13),z4(13),z5(13),z6(13),z7(12),z8(12),z9(11),z10(11),z11(10),z12(9),z13(8),z14(7),z15(5),z16(2)]; topx12 = [top16(2), top15(5), top14(7), top13(8), top12(9), top11(10), top10(11), top9(11), top8(12), top7(12), top6(13), top5(13), top4(13), top3(13), top2(13), top1(13)]; for n = 1:16co = top1(n)/100;%plot3(xx12(n),yx12(n),zx12(n),'.','Markersize', 20,'Color',[0,co,0]); %INTERPOLATED CONTOUR CX12 % 1mm interpolated contour lines for CX12 cn12yx = min(yx12):1:max(yx12); for n = 1:length(cn12yx) cn12zx(n) = zx12(1);end cn12xxi = interp1(yx12,xx12,cn12yx,'spline'); %cn12x = plot3(cn12xxi,cn12yx,cn12zx,'Linewidth',0.75); stp = 1; for k = 1:15 ncval = topx12(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx12(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn12xxi(i); colx(2) = cn12xxi(j+1);coly(1) = cn12yx(j);coly(2) = cn12yx(j+1);colz(1) = cn12zx(j);colz(2) = cn12zx(i+1): cval = ((pcval\*100)+((ncval2-ncval)/5))/100;cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX13 xx13 = [x1(14),x2(14),x3(14),x4(14),x5(14),x6(14),x7(13),x8(13),x9(12),x10(12),x11(11),x12(10),x13(9),x14(8),x15(6),x16(3)];  $\begin{array}{l} x_{13} = [z_{1}(14), z_{2}(14), y_{3}(14), y_{4}(14), y_{5}(14), y_{6}(14), y_{7}(13), y_{8}(13), y_{9}(12), y_{10}(12), y_{10}(12), y_{10}(12), y_{10}(13), y_{10}(13), y_{10}(13), y_{10}(12), y_{10}(12$ topx13 = [top16(3), top15(6), top14(8), top13(9), top12(10), top11(11), top10(12), top9(12), top8(13), top7(13), top6(14), top5(14), top4(14), top3(14), top2(14), top1(14)]; for n = 1:16co = top1(n)/100;%plot3(xx13(n),yx13(n),zx13(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX13 % 1mm interpolated contour lines for CX13 cn13yx = min(yx13):1:max(yx13);for n = 1:length(cn13yx) cn13zx(n) = zx13(1);end cn13xxi = interp1(yx13,xx13,cn13yx,'spline'); %cn13x = plot3(cn13xxi,cn13yx,cn13zx,'Linewidth',0.75); stp = 1; for k = 1:15 ncval = topx13(k); %starting point of 5 colour bands pcval = noval/100; %progressive point for each band ncval2 = topx13(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn13xxi(j);colx(2) = cn13xxi(j+1);coly(1) = cn13yx(j);coly(2) = cn13yx(j+1);colz(1) = cn13zx(j);colz(2) = cn13zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX14 xx14 = [x1(15), x2(15), x3(15), x4(15), x5(15), x6(15), x7(14), x8(14), x9(13), x10(13), x11(12), x12(11), x13(10), x14(9), x15(7), x16(4)]; x11(12), x12(11), x12(11), x13(10), x14(9), x15(7), x16(4)]; x11(12), x12(11), x12(1yx14 = [y1(15),y2(15),y3(15),y4(15),y5(15),y6(15),y7(14),y8(14),y9(13),y10(13),y11(12),y12(11),y13(10),y14(9),y15(7),y16(4)];

zx14 = [z1(15),z2(15),z3(15),z4(15),z5(15),z6(15),z7(14),z8(14),z9(13),z10(13),z11(12),z12(11),z13(10),z14(9),z15(7),z16(4);

topx14 = [top16(4), top15(7), top14(9), top13(10), top12(11), top11(12), top10(13), top9(13), top8(14), top7(14), top6(15), top5(15), top4(15), top3(15), top2(15), top1(15)]; top1(15), top1(15),for n = 1.16

co = top1(n)/100;

 $\label{eq:splot3} \ensuremath{\text{wplot3}}(xx14(n),yx14(n),zx14(n),'.','\ensuremath{\text{Markersize}}',\ 20,'\ensuremath{\text{Color}}',[0,co,0]);$ 

end

%INTERPOLATED CONTOUR CX14 % 1mm interpolated contour lines for CX14 cn14yx = min(yx14):1:max(yx14);for n = 1:length(cn14yx) cn14zx(n) = zx14(1);end cn14xxi = interp1(yx14,xx14,cn14yx,'spline'); %cn14x = plot3(cn14xxi,cn14yx,cn14zx,'Linewidth',0.75); stp = 1: for k = 1:15 ncval = topx14(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn14xxi(j); colx(2) = cn14xxi(j+1);coly(1) = cn14yx(j);coly(2) = cn14yx(j+1);colz(1) = cn14zx(j);colz(2) = cn14zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cvalplot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX15 xx15 = [x1(16), x2(16), x3(16), x4(16), x5(16), x6(16), x7(15), x8(15), x9(14), x10(14), x11(13), x12(12), x13(11), x14(10), x15(8), x16(5)], x15(12), x15yx15 = [y1(16),y2(16),y3(16),y4(16),y5(16),y6(16),y7(15),y8(15),y9(14),y10(14),y11(13),y12(12),y13(11),y14(10),y15(8),y16(5)]; zx15 = [z1(16),z2(16),z3(16),z4(16),z5(16),z6(16),z7(15),z8(15),z9(14),z10(14),z11(13),z12(12),z13(11),z14(10),z15(8),z16(5)]; topx15 =[top16(5),top15(8),top14(10),top13(11),top12(12),top11(13),top10(14),top9(14),top8(15),top7(15),top6(16),top5(16),top5(16),top3(16),top2(16),top1(16)]; for n = 1:16co = top1(n)/100;%plot3(xx15(n),yx15(n),zx15(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX15 % 1mm interpolated contour lines for CX15 cn15yx = min(yx15):1:max(yx15); for n = 1:length(cn15yx) cn15zx(n) = zx15(1);end cn15xxi = interp1(yx15,xx15,cn15yx,'spline'); %cn15x = plot3(cn15xxi,cn15yx,cn15zx,'Linewidth',0.75); stp = 1;for k = 1:15 ncval = topx15(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band noval2 = topx15(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn15xxi(j);colx(2) = cn15xxi(j+1);coly(1) = cn15yx(j);coly(2) = cn15yx(j);coly(2) = cn15yx(j+1);colz(1) = cn15zx(j);colz(2) = cn15zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX16 xr16 = [y1(17), x2(17), x3(17), x4(17), x5(17), x6(17), x7(16), x8(16), x9(15), x10(15), x11(14), x12(13), x13(12), x14(11), x15(9), x16(6)]; yx16 = [y1(17), y2(17), y3(17), y4(17), y5(17), y6(17), y7(16), y8(16), y9(15), y10(15), y11(14), y12(13), y13(12), y14(11), y15(9), y16(6)]; zx16 = [z1(17), z2(17), z3(17), z4(17), z5(17), z6(17), z7(16), z8(16), z9(15), z10(15), z11(14), z12(13), z13(12), z14(11), z15(9), z16(6)]; topx16 = [top16(6),top15(9),top14(11),top13(12),top12(13),top11(14),top10(15),top9(15),top8(16),top7(16),top6(17),top5(17),top4(17),top3(17),top2(17),top1(17)]; for n = 1:16co = top1(n)/100;%plot3(xx16(n),yx16(n),zx16(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX16 % 1mm interpolated contour lines for CX16 cn16yx = min(yx16):1:max(yx16); for n = 1:length(cn16yx) cn16zx(n) = zx16(1);end cn16xxi = interp1(yx16,xx16,cn16yx,'spline'); %cn16x = plot3(cn16xxi,cn16yx,cn16zx,'Linewidth',0.75);

stp = 1: for k = 1:15 ncval = topx16(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx16(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn16xxi(j); colx(2) = cn16xxi(j+1);coly(1) = cn16yx(j);coly(2) = cn16yx(j),coly(2) = cn16yx(j+1);colz(1) = cn16zx(j);colz(2) = cn16zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX17 x17 = [x1(18),x2(18),x3(18),x4(18),x5(18),x6(18),x7(17),x8(17),x9(16),x10(16),x11(15),x12(14),x13(13),x14(12),x15(10),x16(7)]; yx17 = [y1(18),y2(18),y3(18),y4(18),y5(18),y6(18),y7(17),y8(17),y9(16),y10(16),y11(15),y12(14),y13(13),y14(12),y15(10),y16(7)]; zx17 = [z1(18), z2(18), z3(18), z4(18), z5(18), z6(18), z7(17), z8(17), z9(16), z10(16), z11(15), z12(14), z13(13), z14(12), z15(10), z16(7)]; topx17 =[top16(7), top15(10), top14(12), top13(13), top12(14), top11(15), top10(16), top9(16), top8(17), top7(17), top6(18), top5(18), top4(18), top3(18), top2(18), top1(18)];for n = 1:16co = top1(n)/100;%plot3(xx17(n),yx17(n),zx17(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX17 % 1mm interpolated contour lines for CX17 cn17yx = min(yx17):1:max(yx17); for n = 1:length(cn17yx) cn17zx(n) = zx17(1);end cn17xxi = interp1(yx17,xx17,cn17yx,'spline'); %cn17x = plot3(cn17xxi,cn17yx,cn17zx,'Linewidth',0.75); stp = 1; for k = 1:15 ncval = topx17(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx17(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn17xxi(j);colx(2) = cn17xxi(j+1);coly(1) = cn17yx(j);coly(2) = cn17yx(j+1);coly(2) = cn17yx(j+1);colz(1) = cn17zx(j);colz(2) = cn17zx(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX18  $\begin{array}{l} xx18 = [x1(19),x2(19),x3(19),x4(19),x5(19),x6(19),x7(18),x8(18),x9(17),x10(17),x11(16),x12(15),x13(14),x14(13),x15(11),x16(8)]; \\ yx18 = [y1(19),y2(19),y3(19),y4(19),y5(19),y6(19),y7(18),y8(18),y9(17),y10(17),y11(16),y12(15),y13(14),y14(13),y15(11),y16(8)]; \\ \end{array}$ zx18 = [z1(19),z2(19),z3(19),z4(19),z5(19),z6(19),z7(18),z8(18),z9(17),z10(17),z11(16),z12(15),z13(14),z14(13),z15(11),z16(8)]; topx18 = [top 16(8), top 15(11), top 14(13), top 13(14), top 12(15), top 11(16), top 10(17), top 9(17), top 8(18), top 7(18), top 5(19), top 4(19), top 3(19), top 2(19), top 1(19)];for n = 1:16 co = top1(n)/100;%plot3(xx18(n),yx18(n),zx18(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX18 % 1mm interpolated contour lines for CX18 cn18yx = min(yx18):1:max(yx18); for n = 1:length(cn18yx) cn18zx(n) = zx18(1);end cn18xxi = interp1(yx18,xx18,cn18yx,'spline'); %cn18x = plot3(cn18xxi,cn18yx,cn18zx,'Linewidth',0.75); stp = 1; for k = 1:15 or k = 1:15 ncval = topx18(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx18(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn18xxi(j);colx(2) = cn18xxi(j+1);coly(1) = cn18yx(j);coly(2) = cn18yx(j+1);

colz(1) = cn18zx(j);colz(2) = cn18zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX19 xx19 = [x1(20), x2(20), x3(20), x4(20), x5(20), x6(20), x7(19), x8(19), x9(18), x10(18), x11(17), x12(16), x13(15), x14(14), x15(12), x16(9)]; yx19 = [y1(20), y2(20), y3(20), y4(20), y5(20), y6(20), y7(19), y8(19), y9(18), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(9)]; yx19 = [y1(20), y2(20), y3(20), y4(20), y5(20), y6(20), y7(19), y8(19), y9(18), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(9)]; yx19 = [y1(20), y2(20), y3(20), y4(20), y5(20), y6(20), y7(19), y8(19), y9(18), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(9)]; yx19 = [y1(20), y2(20), y3(20), y4(20), y5(20), y6(20), y7(19), y8(19), y9(18), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(9)]; yx19 = [y1(20), y2(20), y3(20), y4(20), y5(20), y6(20), y7(19), y8(19), y9(18), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(9)]; yx19 = [y1(20), y2(20), y3(20), y4(20), y5(20), y6(20), y7(19), y8(19), y9(18), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(9)]; yx19 = [y1(20), y2(20), y3(20), y2(20), y6(20), y7(19), y8(19), y10(18), y11(17), y12(16), y13(15), y14(14), y15(12), y16(16), y16(16zx19 = [z1(20), z2(20), z3(20), z4(20), z5(20), z6(20), z7(19), z8(19), z9(18), z10(18), z11(17), z12(16), z13(15), z14(14), z15(12), z16(9)]; topx19 = [top16(9), top15(12), top14(14), top13(15), top12(16), top11(17), top10(18), top9(18), top8(19), top7(19), top6(20), top5(20), top4(20), top3(20), top2(20), top12(20), top12(for n = 1:16 co = top1(n)/100;%plot3(xx19(n),yx19(n),zx19(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX19 % 1mm interpolated contour lines for CX19

cn19yx = min(yx19):1:max(yx19);for n = 1:length(cn19yx) cn19zx(n) = zx19(1);end cn19xxi = interp1(yx19,xx19,cn19yx,'spline'); %cn19x = plot3(cn19xxi,cn19yx,cn19zx,'Linewidth',0.75);

stp = 1; for k = 1:15

or k = 1:15 ncval = topx19(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx19(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn19xxi(j);colx(2) = cn19xxi(j+1);coly(1) = cn19yx(j);coly(2) = cn19yx(j+1);colz(1) = cn19zx(j);colz(2) = cn19zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100;cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end

stp = stp+5; end

## %CX20

xx20 = [x1(21),x2(21),x3(21),x4(21),x5(21),x6(21),x7(20),x8(20),x9(19),x10(19),x11(18),x12(17),x13(16),x14(15),x15(13),x16(10)]; yz20 = [y1(21),y2(21),y3(21),y4(21),y5(21),y6(21),y7(20),y8(20),y9(19),y10(19),y11(18),y12(17),y13(16),y14(15),y15(13),y16(10)]; zx20 = [z1(21),z2(21),z3(21),z4(21),z5(21),z6(21),z7(20),z8(20),z9(19),z10(19),z11(18),z12(17),z13(16),z14(15),z15(13),z16(10)];

### topx20 =

[top16(10),top15(13),top14(15),top13(16),top12(17),top11(18),top10(19),top9(19),top8(20),top7(20),top5(21),top5(21),top4(21),top3(21),top2(21),top1(21)]; for n = 1:16

co = top1(n)/100;

%plot3(xx20(n),yx20(n),zx20(n),'.','Markersize', 20,'Color',[0,co,0]); end

%INTERPOLATED CONTOUR CX20 % 1mm interpolated contour lines for CX20 cn20yx = min(yx20):1:max(yx20); for n = 1:length(cn20yx) cn20zx(n) = zx20(1);end cn20xxi = interp1(yx20,xx20,cn20yx,'spline'); %cn20x = plot3(cn20xxi,cn20yx,cn20zx,'Linewidth',0.75);

stp = 1; for k = 1:15 ncval = topx20(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx20(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn20xxi(j); colx(2) = cn20xxi(j+1); colx(2) = cn20xxi(j+1); coly(1) = cn20yx(j);coly(2) = cn20yx(j+1);colz(1) = cn20zx(j);colz(2) = cn20zx(i+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end

%CX21

xx21 = [x1(22),x2(22),x3(22),x4(22),x5(22),x6(22),x7(21),x8(21),x9(20),x10(20),x11(19),x12(18),x13(17),x14(16),x15(14),x16(11)]; yx21 = [y1(22),y2(22),y3(22),y4(22),y5(22),y6(22),y7(21),y8(21),y9(20),y10(20),y11(19),y12(18),y13(17),y14(16),y15(14),y16(11)]; zx21 = [z1(22),z2(22),z3(22),z4(22),z5(22),z6(22),z7(21),z8(21),z9(20),z10(20),z11(19),z12(18),z13(17),z14(16),z15(14),z16(11)]; topx21 [iop16(11).top15(14),top14(16),top13(17),top12(18),top11(19),top10(20),top9(20),top8(21),top7(21),top6(22),top5(22),top4(22),top3(22),top2(22),top1(22)]; for n = 1:16 co = top1(n)/100;%plot3(xx21(n),yx21(n),zx21(n),'.','Markersize', 20,'Color',[0,co,0]); %INTERPOLATED CONTOUR CX21 % 1mm interpolated contour lines for CX21 cn21yx = min(yx21):1:max(yx21); for n = 1:length(cn21yx) cn21zx(n) = zx21(1);end cn21xxi = interp1(yx21,xx21,cn21yx,'spline'); %cn21x = plot3(cn21xxi,cn21yx,cn21zx,'Linewidth',0.75); stp = 1; for k = 1:15 ncval = topx21(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx21(k+1); %end point of 5 colour bands colx(2) = cn21xxi(j+1);coly(1) = cn21yx(j);coly(2) = cn21yx(j+1);colz(1) = cn21zx(j);colz(2) = cn21zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX22 xx22 = [x1(23),x2(23),x3(23),x4(23),x5(23),x6(23),x7(22),x8(22),x9(21),x10(21),x11(20),x12(19),x13(18),x14(17),x15(15),x16(12),x17(2)]; yz2 = [y1(23),y2(23),y3(23),y4(23),y5(23),y6(23),y7(22),y8(22),y9(21),y10(21),y11(20),y12(19),y13(18),y14(17),y15(15),y16(12),y17(2)]; zx22 = [z1(23),z2(23),z3(23),z4(23),z5(23),z6(23),z7(22),z8(22),z9(21),z10(21),z11(20),z12(19),z13(18),z14(17),z15(15),z16(12),z17(2)]; topx22 = (top172), top16(12), top15(15), top14(17), top13(18), top12(19), top11(20), top10(21), top9(21), top8(22), top7(22), top6(23), top4(23), top4(23), top3(23), top2(23), top1(23), top3(23), 3)]; for n = 1:17 co = top1(n)/100;%plot3(xx22(n),yx22(n),zx22(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX22 % 1mm interpolated contour lines for CX22 cn22yx = min(yx22):1:max(yx22); for n = 1:length(cn22yx) cn22zx(n) = zx22(1); end cn22xxi = interp1(yx22,xx22,cn22yx,'spline'); %cn22x = plot3(cn22xxi,cn22yx,cn22zx,'Linewidth',0.75); stp = 1;for k = 1:16 ncval = topx22(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx22(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn22xxi(j); colx(2) = cn22xxi(j+1); coly(1) = cn22xxi(j+1); coly(1) = cn22xxi(j+1); coly(2) = cn22yx(j+1);colz(1) = cn22zx(j);colz(2) = cn22zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX23 xx23 = [x1(24),x2(24),x3(24),x4(24),x5(24),x6(24),x7(23),x8(23),x9(22),x10(22),x11(21),x12(20),x13(19),x14(18),x15(16),x16(13),x17(3)]; yx23 = [y1(24),y2(24),y3(24),y4(24),y5(24),y6(24),y7(23),y8(23),y9(22),y10(22),y11(21),y12(20),y13(19),y14(18),y15(16),y16(13),y17(3)]; zx23 = [z1(24),z2(24),z3(24),z4(24),z5(24),z6(24),z7(23),z8(23),z9(22),z10(22),z11(21),z12(20),z13(19),z14(18),z15(16),z16(13),z17(3);

topx23

[top17(3), top16(13), top15(16), top14(18), top13(19), top12(20), top11(21), top10(22), top9(22), top8(23), top7(23), top6(24), top5(24), top3(24), top2(24), top1(22), top1(24)];

for n = 1:17 co = top1(n)/100;%plot3(xx23(n),yx23(n),zx23(n),'.','Markersize', 20,'Color',[0,co,0]); %INTERPOLATED CONTOUR CX23 % 1mm interpolated contour lines for CX23 cn23yx = min(yx23):1:max(yx23); for n = 1:length(cn23yx) cn23zx(n) = zx23(1);end cn23xxi = interp1(yx23,xx23,cn23yx,'spline'); %cn23x = plot3(cn23xxi,cn23yx,cn23zx,'Linewidth',0.75); stp = 1; for k = 1:16 or k = 1:10
ncval = topx23(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = topx23(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn23xxi(j);
colx(2) = cn23xxi(j+1);
colx(1) = cn23xxi(j); coly(1) = cn23yx(j);coly(2) = cn23yx(j+1);colz(1) = cn23zx(j);colz(2) = cn23zx(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX24 xx24 = [x1(25),x2(25),x3(25),x4(25),x5(25),x6(25),x7(24),x8(24),x9(23),x10(23),x11(22),x12(21),x13(20),x14(19),x15(17),x16(14),x17(4),x18(2)]; yx24 = [y1(25),y2(25),y3(25),y4(25),y5(25),y6(25),y7(24),y8(24),y9(23),y10(23),y11(22),y12(21),y13(20),y14(19),y15(17),y16(14),y17(4),y18(2)]; zx24 = [z1(25),z2(25),z3(25),z4(25),z5(25),z6(25),z7(24),z8(24),z9(23),z10(23),z11(22),z12(21),z13(20),z14(19),z15(17),z16(14),z17(4),z18(2)]; top x24 = [top 18(2), top 17(4), top 16(14), top 15(17), top 14(19), top 13(20), top 12(21), top 11(22), top 10(23), top 9(23), top 8(24), top 7(24), top 6(25), top 5(25), top 4(25), top 3(25), top 2(25), top 10(23), top5),top1(25)]; for n = 1:18 co = top1(n)/100;%plot3(xx24(n),yx24(n),zx24(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX24 % 1mm interpolated contour lines for CX24 cn24yx = min(yx24):1:max(yx24);for n = 1:length(cn24yx) cn24zx(n) = zx24(1);end cn24xxi = interp1(yx24,xx24,cn24yx,'spline'); %cn24x = plot3(cn24xxi,cn24yx,cn24zx,'Linewidth',0.75); stp = 1; for k = 1:17 

 ork = 1.17
 cval = topx24(k);
 %starting point of 5 colour bands

 pcval = ncval/100;
 %progressive point for each band

 ncval2 = topx24(k+1);
 %end point of 5 colour bands

 for j = stp:(stp+4)
 %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS

 colx(1) = cn24xxi(j);colx(2) = cn24xxi(j+1);coly(1) = cn24yx(j);coly(2) = cn24yx(j+1);colz(1) = cn24zx(i): colz(2) = cn24zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX25 xx25 = [x1(26),x2(26),x3(26),x4(26),x5(26),x6(26),x7(25),x8(25),x9(24),x10(24),x11(23),x12(22),x13(21),x14(20),x15(18),x16(15),x17(5),x18(3)]; yx25 = [y1(26),y2(26),y3(26),y4(26),y5(26),y6(26),y7(25),y8(25),y9(24),y10(24),y11(23),y12(22),y13(21),y14(20),y15(18),y16(15),y17(5),y18(3)]; zx25 = [z1(26),z2(26),z3(26),z4(26),z5(26),z6(26),z7(25),z8(25),z9(24),z10(24),z11(23),z12(22),z13(21),z14(20),z15(18),z16(15),z17(5),z18(3); topx25 = [top18(3), top17(5), top16(15), top15(18), top14(20), top13(21), top12(22), top11(23), top10(24), top8(25), top7(25), top6(26), top5(26), top4(26), top3(26), top2(26), top2(26), top3(26), top3(26),top1(26)]; for n = 1:18  $\label{eq:constraint} \begin{array}{l} co = top1(n)/100; \\ \mbox{\%plot3}(xx25(n),yx25(n),zx25(n),'.','Markersize', 20,'Color',[0,co,0]); \\ \end{array}$ end %INTERPOLATED CONTOUR CX25

% 1mm interpolated contour lines for CX25

cn25yx = min(yx25):1:max(yx25);

for n = 1:length(cn25yx) cn25zx(n) = zx25(1);end cn25xxi = interp1(yx25,xx25,cn25yx,'spline'); %cn25x = plot3(cn25xxi,cn25yx,cn25zx,'Linewidth',0.75); stp = 1;for k = 1:17or k = 1:17 ncval = topx25(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx25(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn25xxi(j);colx(2) = cn25xxi(j+1);coly(1) = cn25yx(j);coly(2) = cn25yx(j+1);colz(1) = cn25zx(j);colz(2) = cn25zx(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX26 xx26 = [x1(27),x2(27),x3(27),x4(27),x5(27),x6(27),x7(26),x8(26),x9(25),x10(25),x11(24),x12(23),x13(22),x14(21),x15(19),x16(16),x17(6),x18(4)]; yx26 = [y1(27),y2(27),y3(27),y4(27),y5(27),y6(27),y7(26),y8(26),y9(25),y10(25),y11(24),y12(23),y13(22),y14(21),y15(19),y16(16),y17(6),y18(4)] zx26 = [z1(27), z2(27), z3(27), z4(27), z5(27), z6(27), z7(26), z8(26), z9(25), z10(25), z11(24), z12(23), z13(22), z14(21), z15(19), z16(16), z17(6), z18(4)]; z12(23), z13(22), z14(21), z15(19), z16(16), z16(16), z18(16), z18(16topx26 = [top18(4),top17(6),top16(16),top15(19),top14(21),top13(22),top12(23),top11(24),top10(25),top8(26),top7(26),top6(27),top5(27),top4(27),top3(27),top2(27),top2(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3(27),top3 7),top1(27)]; for n = 1:18 co = top1(n)/100;%plot3(xx26(n),yx26(n),zx26(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX26 % 1mm interpolated contour lines for CX26 cn26yx = min(yx26):1:max(yx26);for n = 1:length(cn26yx) cn26zx(n) = zx26(1);end cn26xxi = interp1(vx26.xx26.cn26vx.'spline'); %cn26x = plot3(cn26xxi,cn26yx,cn26zx,'Linewidth',0.75); stp = 1;for k = 1:17 or k = 1:17 ncval = topx26(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx26(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn26xxi(j); colx(2) = cn26xxi(j); colx(2) = cn26xxi(i+1);coly(1) = cn26yx(j);coly(2) = cn26yx(j+1);colz(1) = cn26zx(j);colz(2) = cn26zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX27 xx27 = [x1(28),x2(28),x3(28),x4(28),x5(28),x6(28),x7(27),x8(27),x9(26),x10(26),x11(25),x12(24),x13(23),x14(22),x15(20),x16(17),x17(7),x18(5)]; yx27 = [y1(28),y2(28),y3(28),y4(28),y5(28),y6(28),y7(27),y8(27),y9(26),y10(26),y11(25),y12(24),y13(23),y14(22),y15(20),y16(17),y17(7),y18(5)]; zx27 = [z1(28),z2(28),z3(28),z4(28),z5(28),z6(28),z7(27),z8(27),z9(26),z10(26),z11(25),z12(24),z13(23),z14(22),z15(20),z16(17),z17(7),z18(5)]; topx27 =[top18(5),top17(7),top16(17),top15(20),top14(22),top13(23),top12(24),top11(25),top10(26),top9(26),top8(27),top7(27),top6(28),top5(28),top4(28),top3(28),top2(28),top2(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3(28),top3 8),top1(28)]; for n = 1:18  $\begin{array}{l} co=top1(n)/100; \\ \%plot3(xx27(n),yx27(n),zx27(n),'.','Markersize', 20,'Color',[0,co,0]); \end{array}$ end %INTERPOLATED CONTOUR CX27 % 1mm interpolated contour lines for CX27 cn27yx = min(yx27):1:max(yx27); for n = 1:length(cn27yx) cn27zx(n) = zx27(1);end cn27xxi = interp1(yx27,xx27,cn27yx,'spline'); %cn27x = plot3(cn27xxi,cn27yx,cn27zx,'Linewidth',0.75);

stp = 1; for k = 1:17

ncval = topx27(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx27(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn27xxi(j); colx(2) = cn27xxi(j+1); coly(2) = cn27xxi(j+1); coly(2) = cn27xxi(j+1); coly(2) = cn27yx(j+1);colz(1) = cn27zx(j);colz(2) = cn27zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100;cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX28 xx28 = [x1(29),x2(29),x3(29),x4(29),x5(29),x6(29),x7(28),x8(28),x9(27),x10(27),x11(26),x12(25),x13(24),x14(23),x15(21),x16(18),x17(8)]; yz8 = [11(29), y2(29), y3(29), y4(29), y5(29), y6(29), y7(28), y8(28), y9(27), y10(27), y11(26), y12(25), y13(24), y14(23), y15(21), y16(18), y17(8)] zx28 = [z1(29), z2(29), z3(29), z4(29), z5(29), z6(29), z7(28), z8(28), z9(27), z10(27), z10(27), z12(25), z13(24), z14(23), z15(21), z16(18), z17(8)]; topx28 [top17(8), top16(18), top15(21), top14(23), top13(24), top12(25), top11(26), top10(27), top9(27), top9(28), top7(28), top6(29), top5(29), top4(29), top3(29), top2(29), top1(28), top1(29)]; for n = 1:17 co = top1(n)/100: %plot3(xx28(n),yx28(n),zx28(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX28 % 1mm interpolated contour lines for CX28 cn28yx = min(yx28):1:max(yx28); for n = 1:length(cn28yx) cn28zx(n) = zx28(1); end cn28xxi = interp1(yx28,xx28,cn28yx,'spline'); %cn28x = plot3(cn28xxi,cn28yx,cn28zx,'Linewidth',0.75); stp = 1: for k = 1:16 bit K = 1:10
 reval = topx28(k); %starting point of 5 colour bands
 pcval = ncval/100; %progressive point for each band
 ncval2 = topx28(k+1); %end point of 5 colour bands
 for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
 colx(1) = cn28xxi(j);
 reval(0) = cn28xxi(j); colx(2) = cn28xxi(j+1);coly(1) = cn28yx(j);coly(2) = cn28yx(j+1);colz(1) = cn28zx(j);colz(2) = cn28zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX29 xx29 = [x1(30), x2(30), x3(30), x4(30), x5(30), x6(30), x7(29), x8(29), x9(28), x10(28), x11(27), x12(26), x13(25), x14(24), x15(22), x16(19), x17(9)]; x12(26), x12(26), x12(26), x14(24), x15(22), x16(19), x17(9)]; x12(26), x1 $yx29 = [y1(30), y2(30), y3(30), y4(30), y5(30), y6(30), y7(29), y8(29), y9(28), y10(28), y11(27), y12(26), y13(25), y14(24), y15(22), y16(19), y17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(30), z2(30), z3(30), z4(30), z5(30), z6(30), z7(29), z8(29), z9(28), z10(28), z11(27), z12(26), z13(25), z14(24), z15(22), z16(19), z17(9)]; \\ zx29 = [z1(20), z1(20), z1$ topx29 =(top17(9),top16(19),top15(22),top14(24),top13(25),top12(26),top11(27),top10(28),top9(28),top8(29),top7(29),top6(30),top5(30),top3(30),top3(30),top2(30),top1(30),top1(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3(30),top3 0)]; for n = 1:17 co = top1(n)/100;%plot3(xx29(n),yx29(n),zx29(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX29 % 1mm interpolated contour lines for CX29 cn29yx = min(yx29):1:max(yx29); for n = 1:length(cn29yx) cn29zx(n) = zx29(1);end cn29xxi = interp1(yx29,xx29,cn29yx,'spline'); %cn29x = plot3(cn29xxi,cn29yx,cn29zx,'Linewidth',0.75); stp = 1; for k = 1:16 or k = 1:10
ncval = topx29(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = topx29(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn29xxi(j);
colx(2) = cn29xxi(j+1);
colx(1) = cn29xxi(j); coly(1) = cn29yx(j);coly(2) = cn29yx(j+1);
colz(1) = cn29zx(j);colz(2) = cn29zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end

stp = stp+5;

end

%CX30

 $\begin{aligned} xx30 = [x1(31), x2(31), x3(31), x4(31), x5(31), x6(31), x7(30), x8(30), x9(29), x10(29), x11(28), x12(27), x13(26), x14(25), x15(23), x16(20)]; \\ yx30 = [y1(31), y2(31), y3(31), y4(31), y5(31), y6(31), y7(30), y8(30), y9(29), y10(29), y11(28), y12(27), y13(26), y14(25), y15(23), y16(20)]; \end{aligned}$ zx30 = [z1(31),z2(31),z3(31),z4(31),z5(31),z6(31),z7(30),z8(30),z9(29),z10(29),z11(28),z12(27),z13(26),z14(25),z15(23),z16(20)];

#### topx30 =

[top16(20), top15(23), top14(25), top13(26), top12(27), top11(28), top10(29), top9(29), top8(30), top7(30), top6(31), top5(31), top3(31), top3(31), top2(31), top1(31)]; top3(31), top3(for n = 1:16 co = top1(n)/100;

%plot3(xx30(n),yx30(n),zx30(n),'.','Markersize', 20,'Color',[0,co,0]); end

%INTERPOLATED CONTOUR CX30 % 1mm interpolated contour lines for CX30 cn30yx = min(yx30):1:max(yx30);for n = 1:length(cn30yx) cn30zx(n) = zx30(1);end cn30xxi = interp1(yx30,xx30,cn30yx,'spline');

%cn30x = plot3(cn30xxi,cn30yx,cn30zx,'Linewidth',0.75);

stp = 1; for k = 1:15

or k = 1:15 ncval = topx30(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx30(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn30xxi(j);colx(2) = cn30xxi(j+1);coly(1) = cn30yx(j);coly(2) = cn30yx(j+1);colz(1) = cn30zx(j);colz(2) = cn30zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100;cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end

stp = stp+5; end

%CX31

xx31 = [x1(32),x2(32),x3(32),x4(32),x5(32),x6(32),x7(31),x8(31),x9(30),x10(30),x11(29),x12(28),x13(27),x14(26),x15(24),x16(21)]; yx31 = [y1(32),y2(32),y3(32),y4(32),y5(32),y6(32),y7(31),y8(31),y9(30),y10(30),y11(29),y12(28),y13(27),y14(26),y15(24),y16(21)]; zx31 = [z1(32),z2(32),z3(32),z4(32),z5(32),z6(32),z7(31),z8(31),z9(30),z10(30),z11(29),z12(28),z13(27),z14(26),z15(24),z16(21)];

#### topx31 =

[co16(21),top15(24),top14(26),top13(27),top12(28),top11(29),top10(30),top9(30),top8(31),top7(31),top6(32),top5(32),top3(32),top3(32),top2(32),top1(32)]; for n = 1:16

co = top1(n)/100;

%plot3(xx31(n),yx31(n),zx31(n),'.','Markersize', 20,'Color',[0,co,0]); end

%INTERPOLATED CONTOUR CX31 % 1mm interpolated contour lines for CX31 cn31yx = min(yx31):1:max(yx31); for n = 1:length(cn31yx) cn31zx(n) = zx31(1);end cn31xxi = interp1(yx31,xx31,cn31yx,'spline'); %cn31x = plot3(cn31xxi,cn31yx,cn31zx,'Linewidth',0.75);

stp = 1; for k = 1:15 ncval = topx31(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx31(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn31xxi(j); colx(2) = cn31xxi(j+1); colx(2) = cn31xxi(j+1); coly(1) = cn31yx(j);coly(2) = cn31yx(j+1);colz(1) = cn31zx(j);colz(2) = cn31zx(i+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end

%CX32

 $\begin{aligned} xx32 = [x1(33), x2(33), x3(33), x4(33), x5(33), x6(33), x7(32), x8(32), x9(31), x10(31), x11(30), x12(29), x13(28), x14(27), x15(25), x16(22)]; \\ yx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [y1(33), y2(33), y3(33), y4(33), y5(33), y6(33), y7(32), y8(32), y9(31), y10(31), y11(30), y12(29), y13(28), y14(27), y15(25), y16(22)]; \\ xx32 = [x1(33), x2(33), x3(3), y3(3), y3(3), y3(3), y3(3), y1(32), y1(32),$ zx32 = [z1(33),z2(33),z3(33),z4(33),z5(33),z6(33),z7(32),z8(32),z9(31),z10(31),z11(30),z12(29),z13(28),z14(27),z15(25),z16(22)]; topx32 top16(22),top15(25),top14(27),top13(28),top12(29),top11(30),top10(31),top9(31),top8(32),top7(32),top6(33),top5(33),top4(33),top3(33),top2(33),top1(33)]; for n = 1:16 co = top1(n)/100;%plot3(xx32(n),yx32(n),zx32(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX32 % 1mm interpolated contour lines for CX32 cn32yx = min(yx32):1:max(yx32);for n = 1:length(cn32yx) cn32zx(n) = zx32(1);end cn32xxi = interp1(yx32,xx32,cn32yx,'spline'); %cn32x = plot3(cn32xxi,cn32yx,cn32zx,'Linewidth',0.75); stp = 1; for k = 1:15 of K = 1:15 ncval = topx32(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx32(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn32xxi(j); colx(2) = cn32xxi(j+1);coly(1) = cn32yx(j);coly(2) = cn32yx(j+1);colz(1) = cn32zx(j);colz(2) = cn32zx(i+1): cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX33 xx33 = [x1(34),x2(34),x3(34),x4(34),x5(34),x6(34),x7(33),x8(33),x9(32),x10(32),x11(31),x12(30),x13(29),x14(28),x15(26)];  $\begin{array}{l} x_{33} = [r(34), z(34), y(34), y(34), y(5(34), y(5(34), y(5(34), y(33), y(33), y(33), y(32), r(1(31), r(1(3)), r$ topx33 = [top15(26), top14(28), top13(29), top12(30), top11(31), top10(32), top9(32), top8(33), top7(33), top6(34), top5(34), top4(34), top3(34), top2(34), top1(34)]; for n = 1:15co = top1(n)/100;%plot3(xx33(n),yx33(n),zx33(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX33 % 1mm interpolated contour lines for CX33 cn33yx = min(yx33):1:max(yx33); for n = 1:length(cn33yx) cn33zx(n) = zx33(1);end cn33xxi = interp1(yx33,xx33,cn33yx,'spline'); %cn33x = plot3(cn33xxi,cn33yx,cn33zx,'Linewidth',0.75); stp = 1; for k = 1:14 ncval = topx33(k); %starting point of 5 colour bands ncval = topx33(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx33(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn33xxi(j); colx(2) = cn33xxi(j+1); coly(1) = cn33xx(j); coly(2) = cn33xx(j+1); colz(2) = cn33xx(j+1); colz(2) = cn33zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX34

xx34 = [x1(35),x2(35),x3(35),x4(35),x5(35),x6(35),x7(34),x8(34),x9(33),x10(33),x11(32),x12(31),x13(30)]; yx34 = [y1(35),y2(35),y3(35),y4(35),y5(35),y6(35),y7(34),y8(34),y9(33),y10(33),y11(32),y12(31),y13(30)] zx34 = [z1(35),z2(35),z3(35),z4(35),z5(35),z6(35),z7(34),z8(34),z9(33),z10(33),z11(32),z12(31),z13(30)];

topx34 = [top13(30), top12(31), top11(32), top10(33), top9(33), top8(34), top7(34), top6(35), top5(35), top4(35), top3(35), top2(35), top1(35)]; top10(33), top10(3for n = 1:13

co = top1(n)/100:

%plot3(xx34(n),yx34(n),zx34(n),'.','Markersize', 20,'Color',[0,co,0]);

%INTERPOLATED CONTOUR CX34 % 1mm interpolated contour lines for CX34 cn34yx = min(yx34):1:max(yx34);for n = 1:length(cn34yx) cn34zx(n) = zx34(1);end cn34xxi = interp1(yx34,xx34,cn34yx,'spline'); %cn34x = plot3(cn34xxi,cn34yx,cn34zx,'Linewidth',0.75); stp = 1; for k = 1:12ncval = topx34(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx34(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn34xxi(j);colx(2) = cn34xxi(j+1);coly(1) = cn34yx(j);coly(2) = cn34yx(j+1);colz(1) = cn34zx(j);colz(2) = cn34zx(j+1)cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX35 xx35 = [x1(36),x2(36),x3(36),x4(36),x5(36),x6(36),x7(35),x8(35),x9(34),x10(34),x11(33),x12(32),x13(31)]; yx35 = [y1(36),y2(36),y3(36),y4(36),y5(36),y6(36),y7(35),y8(35),y9(34),y10(34),y11(33),y12(32),y13(31)]; zx35 = [z1(36), z2(36), z3(36), z4(36), z5(36), z6(36), z7(35), z8(35), z9(34), z10(34), z11(33), z12(32), z13(31)] = [z1(36), z2(36), z3(36), z3(36topx35 = [top13(31), top12(32), top11(33), top10(34), top9(34), top8(35), top7(35), top6(36), top5(36), top4(36), top3(36), top2(36), top1(36)];for n = 1:13 co = top1(n)/100;%plot3(xx35(n),yx35(n),zx35(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX35 % 1mm interpolated contour lines for CX35 cn35yx = min(yx35):1:max(yx35); for n = 1:length(cn35yx) cn35zx(n) = zx35(1);end cn35xxi = interp1(yx35,xx35,cn35yx,'spline'); %cn35x = plot3(cn35xxi,cn35yx,cn35zx,'Linewidth',0.75); stp = 1;for k = 1:12 ncval = topx35(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band noval2 = topx35(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn35xxi(j);colx(2) = cn35xxi(j+1);coly(1) = cn35yx(j); coly(2) = cn35yx(j+1); coly(2) = cn35yx(j+1); colz(1) = cn35zx(j); colz(2) = cn35zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX36  $\begin{aligned} xx36 &= [x1(37), x2(37), x3(37), x4(37), x5(37), x6(37), x7(36), x8(36), x9(35), x10(35), x11(34), x12(33), x13(32)];\\ yx36 &= [y1(37), y2(37), y3(37), y4(37), y5(37), y6(37), y7(36), y8(36), y9(35), y10(35), y11(34), y12(33), y13(32)]; \end{aligned}$ zx36 = [z1(37),z2(37),z3(37),z4(37),z5(37),z6(37),z7(36),z8(36),z9(35),z10(35),z11(34),z12(33),z13(32)]; topx36 = [top13(32),top12(33),top11(34),top10(35),top9(35),top8(36),top7(36),top6(37),top5(37),top4(37),top3(37),top2(37),top1(37)]; for n = 1:13 co = top1(n)/100;%plot3(xx36(n),yx36(n),zx36(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX36 % 1mm interpolated contour lines for CX36 cn36yx = min(yx36):1:max(yx36); for n = 1:length(cn36yx) cn36zx(n) = zx36(1);end cn36xxi = interp1(yx36,xx36,cn36yx,'spline'); %cn36x = plot3(cn36xxi,cn36yx,cn36zx,'Linewidth',0.75);

stp = 1;

end

for k = 1:12 ncval = topx36(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx36(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn36xxi(j);colx(2) = cn36xxi(j+1);coly(1) = cn36yx(j);coly(2) = cn36yx(j+1);colz(1) = cn36zx(j);colz(2) = cn36zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX37 xx37 = [x1(38),x2(38),x3(38),x4(38),x5(38),x6(38),x7(37),x8(37),x9(36),x10(36),x11(35),x12(34)]; yx37 = [y1(38),y2(38),y3(38),y4(38),y5(38),y6(38),y7(37),y8(37),y9(36),y10(36),y11(35),y12(34)]; zx37 = [z1(38),z2(38),z3(38),z4(38),z5(38),z6(38),z7(37),z8(37),z9(36),z10(36),z11(35),z12(34)]; topx37 = [top12(34), top11(35), top10(36), top9(36), top8(37), top7(37), top6(38), top5(38), top4(38), top3(38), top2(38), top1(38)]; for n = 1:12co = top1(n)/100;%plot3(xx37(n),yx37(n),zx37(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX37 % 1mm interpolated contour lines for CX37 cn37yx = min(yx37):1:max(yx37); for n = 1:length(cn37yx) cn37zx(n) = zx37(1);end cn37xxi = interp1(yx37,xx37,cn37yx,'spline'); %cn37x = plot3(cn37xxi,cn37yx,cn37zx,'Linewidth',0.75); stp = 1; for k = 1:11 or k = 1:11 ncval = topx37(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx37(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn37xxi(j); colx(2) = cn37xxi(j); colx(2) = cn37xxi(j); coly(1) = cn37yx(j);coly(2) = cn37yx(j+1);colz(1) = cn37zx(j);colz(2) = cn37zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX38 xx38 = [x1(39),x2(39),x3(39),x4(39),x5(39),x6(39),x7(38),x8(38),x9(37),x10(37),x11(36),x12(35)]; yx38 = [y1(39),y2(39),y3(39),y4(39),y5(39),y6(39),y7(38),y8(38),y9(37),y10(37),y11(36),y12(35)] zx38 = [z1(39), z2(39), z3(39), z4(39), z5(39), z6(39), z7(38), z8(38), z9(37), z10(37), z11(36), z12(35)]; z12(35), ztopx38 = [top12(35), top11(36), top10(37), top9(37), top8(38), top7(38), top6(39), top5(39), top4(39), top3(39), top2(39), top1(39)]; top3(39), top3(39),for n = 1.12co = top1(n)/100;%plot3(xx38(n),yx38(n),zx38(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX38 % 1mm interpolated contour lines for CX38 cn38yx = min(yx38):1:max(yx38); for n = 1:length(cn38yx) cn38zx(n) = zx38(1);end cn38xxi = interp1(yx38,xx38,cn38yx,'spline'); %cn38x = plot3(cn38xxi,cn38yx,cn38zx,'Linewidth',0.75); stp = 1;for k = 1:11 or k = 1:11 ncval = topx38(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx38(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn38xxi(j);colx(2) = cn38xxi(j+1);coly(1) = cn38yx(j); coly(2) = cn38yx(j+1); colz(1) = cn38zx(j); colz(2) = cn38zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100;

```
cvalp = (cval+pcval)/2; %average between two points for a colour
         cvalp = round(cvalp*100)+1;
         pcval = cval:
        plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
     end
stp = stp+5
 end
 %CX39
 \begin{array}{l} xx39 = [x1(40), x2(40), x3(40), x4(40), x5(40), x6(40), x7(39), x8(39), x9(38), x10(38), x11(37), x12(36)]; \\ yx39 = [y1(40), y2(40), y3(40), y4(40), y5(40), y6(40), y7(39), y8(39), y9(38), y10(38), y11(37), y12(36)]; \\ zx39 = [z1(40), z2(40), z3(40), z4(40), z5(40), z6(40), z7(39), z8(39), z9(38), z10(38), z11(37), z12(36)]; \\ \end{array}
 topx39 = [top12(36), top11(37), top10(38), top9(38), top8(39), top7(39), top6(40), top5(40), top4(40), top3(40), top2(40), top1(40)];
for n = 1:12
    co = top1(n)/100
     %plot3(xx39(n),yx39(n),zx39(n),'.','Markersize', 20,'Color',[0,co,0]);
 end
 %INTERPOLATED CONTOUR CX39
 % 1mm interpolated contour lines for CX39
cn39yx = min(yx39):1:max(yx39);
for n = 1:length(cn39yx)
    cn39zx(n) = zx39(1);
 end
cn39xxi = interp1(yx39,xx39,cn39yx,'spline');
%cn39x = plot3(cn39xxi,cn39yx,cn39zx,'Linewidth',0.75);
stp = 1;
for k = 1:11
    ncval = topx39(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
    pcval = hcval/too, %plogtessive point of each bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn39xxi(j);
colx(2) = cn39xxi(j+1);
coly(1) = cn39xxi(j;
         coly(2) = cn39yx(j+1);
         colz(1) = cn39zx(j)
         colz(2) = cn39zx(j+1);
        cval = ((pcval*100)+((ncval2-ncval)/5))/100;
cvalp = (cval+pcval)/2; %average between two points for a colour
         cvalp = round(cvalp*100)+1;
         pcval = cval;
        plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
     end
stp = stp+5;
end
 %CX40
xx40 = [x1(41), x2(41), x3(41), x4(41), x5(41), x6(41), x7(40), x8(40), x9(39), x10(39), x11(38), x12(37)];
 \begin{array}{l} y_{x40} = [y_1(41), y_2(41), y_3(41), y_5(41), y_6(41), y_7(40), y_8(40), y_9(30), y_1(103), y_1(38), y_1(23), y
topx40 = [top12(37), top11(38), top10(39), top9(39), top8(40), top7(40), top6(41), top5(41), top4(41), top3(41), top2(41), top1(41)]; for n = 1:12
     co = top1(n)/100;
     %plot3(xx40(n),yx40(n),zx40(n),'.','Markersize', 20,'Color',[0,co,0]);
 end
 %INTERPOLATED CONTOUR CX40
% 1mm interpolated contour lines for CX40
cn40yx = min(yx40):1:max(yx40);
 for n = 1:length(cn40yx)
    cn40zx(n) = zx40(1);
end
cn40xxi = interp1(yx40,xx40,cn40yx,'spline');
%cn40x = plot3(cn40xxi,cn40yx,cn40zx,'Linewidth',0.75);
stp = 1;
for k = 1:11
    ncval = topx40(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = topx40(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn40xxi(j);
colx(2) = cn40xxi(j+1);
colx(1) = cn40xxi(j);
        coly(1) = cn40yx(j);
coly(2) = cn40yx(j+1);
        colz(1) = cn40zx(j);
colz(2) = cn40zx(j+1);
         cval = ((pcval*100)+((ncval2-ncval)/5))/100;
        cvalp = (cval+pcval)/2; %average between two points for a colour
cvalp = round(cvalp*100)+1;
         pcval = cval;
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
     end
stp = stp+5;
end
 %CX41
xx41 = [x1(42), x2(42), x3(42), x4(42), x5(42), x6(42), x7(41), x8(41), x9(40), x10(40), x11(39), x12(38)];
```

 $<sup>\</sup>begin{aligned} yx41 &= [y1(42), y2(42), y3(42), y4(42), y5(42), y6(42), y7(41), y8(41), y9(40), y10(40), y11(39), y12(38)];\\ zx41 &= [z1(42), z2(42), z3(42), z4(42), z5(42), z6(42), z7(41), z8(41), z9(40), z10(40), z11(39), z12(38)]; \end{aligned}$ 

topx41 = [top12(38), top11(39), top10(40), top9(40), top8(41), top7(41), top6(42), top5(42), top4(42), top3(42), top2(42), top1(42)];for n = 1:12 co = top1(n)/100;%plot3(xx41(n),yx41(n),zx41(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX41 % 1mm interpolated contour lines for CX41 cn41yx = min(yx41):1:max(yx41);for n = 1:length(cn41yx) cn41zx(n) = zx41(1);end cn41xxi = interp1(yx41,xx41,cn41yx,'spline'); %cn41x = plot3(cn41xxi,cn41yx,cn41zx,'Linewidth',0.75); stp = 1: for k = 1:11 ncval = topx41(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx41(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn41xxi(j);colx(2) = cn41xxi(j+1);coly(1) = cn41yx(j);coly(2) = cn41yx(j);coly(2) = cn41yx(j+1);colz(1) = cn41zx(j);colz(2) = cn41zx(j+1); cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX42 xx42 = [x1(43),x2(43),x3(43),x4(43),x5(43),x6(43),x7(42),x8(42),x9(41),x10(41),x11(40),x12(39)]; yx42 = [y1(43),y2(43),y3(43),y4(43),y5(43),y6(43),y7(42),y8(42),y9(41),y10(41),y11(40),y12(39)]; zx42 = [z1(43),z2(43),z3(43),z4(43),z5(43),z6(43),z7(42),z8(42),z9(41),z10(41),z11(40),z12(39)]; topx42 = [top12(39), top11(40), top10(41), top9(41), top8(42), top7(42), top6(43), top5(43), top4(43), top3(43), top2(43), top1(43)]; top3(43), top3(43),for n = 1:12 co = top1(n)/100;%plot3(xx42(n),yx42(n),zx42(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX42 % 1mm interpolated contour lines for CX42 cn42yx = min(yx42):1:max(yx42); for n = 1:length(cn42yx) cn42zx(n) = zx42(1);end cn42xxi = interp1(yx42,xx42,cn42yx,'spline'); %cn42x = plot3(cn42xxi,cn42yx,cn42zx,'Linewidth',0.75); stp = 1; for k = 1:11 ncval = topx42(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx42(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn42xxi(j);colx(2) = cn42xxi(j+1);coly(1) = cn42yx(j);coly(2) = cn42yx(j+1);colz(1) = cn42zx(i): colz(2) = cn42zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX43  $\begin{array}{l} xx43 = [x1(44), x2(44), x3(44), x4(44), x5(44), x6(44), x7(43), x8(43), x9(42), x10(42), x11(41), x12(40)]; \\ yx43 = [y1(44), y2(44), y3(44), y4(44), y5(44), y6(44), y7(43), y8(43), y9(42), y10(42), y11(41), y12(40)]; \\ zx43 = [z1(44), z2(44), z3(44), z4(44), z5(44), z6(44), z7(43), z8(43), z9(42), z10(42), z11(41), z12(40)]; \\ \end{array}$ topx43 = [top12(40), top11(41), top10(42), top9(42), top8(43), top7(43), top6(44), top5(44), top4(44), top3(44), top2(44), top1(44)];for n = 1:12 co = top1(n)/100;%plot3(xx43(n),yx43(n),zx43(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX43 % 1mm interpolated contour lines for CX43 cn43yx = min(yx43):1:max(yx43); for n = 1:length(cn43yx) cn43zx(n) = zx43(1);

```
cn43xxi = interp1(yx43,xx43,cn43yx,'spline');
 %cn43x = plot3(cn43xxi,cn43yx,cn43zx,'Linewidth',0.75);
stp = 1;
for k = 1:11
    or k = 1:11
ncval = topx43(k); %starting point of 5 colour bands
pcval = ncval/100; %progressive point for each band
ncval2 = topx43(k+1); %end point of 5 colour bands
for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
colx(1) = cn43xxi(j);
colx(2) = cn43xxi(j);
colx(2) = cn43xxi(j);
colx(2) = cn43xxi(j);
        coly(1) = cn43yx(j);
coly(2) = cn43yx(j+1);
       colz(1) = cn43zx(j);
colz(2) = cn43zx(j+1);
         cval = ((pcval*100)+((ncval2-ncval)/5))/100;
       cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp*100)+1;
         pcval = cval;
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
     end
stp = stp+5;
end
%CX44
xx44 = [x1(45), x2(45), x3(45), x4(45), x5(45), x6(45), x7(44), x8(44), x9(43), x10(43), x11(42), x12(41)];
yx44 = [y1(45),y2(45),y3(45),y4(45),y5(45),y6(45),y7(44),y8(44),y9(43),y10(43),y11(42),y12(41)];
zx44 = [z1(45),z2(45),z3(45),z4(45),z5(45),z6(45),z7(44),z8(44),z9(43),z10(43),z11(42),z12(41)];
topx44 = [top12(41), top11(42), top10(43), top9(43), top8(44), top7(44), top6(45), top5(45), top4(45), top3(45), top2(45), top1(45)]; for n = 1:12
    co = top1(n)/100;
     %plot3(xx44(n),yx44(n),zx44(n),'.','Markersize', 20,'Color',[0,co,0]);
end
 %INTERPOLATED CONTOUR CX44
 % 1mm interpolated contour lines for CX44
cn44yx = min(yx44):1:max(yx44);
 for n = 1:length(cn44yx)
    cn44zx(n) = zx44(1);
end
cn44xxi = interp1(yx44,xx44,cn44yx,'spline');
 %cn44x = plot3(cn44xxi,cn44yx,cn44zx,'Linewidth',0.75);
stp = 1;
for k = 1:11
   ncval = topx44(k); %starting point of 5 colour bands

pcval = ncval/100; %progressive point for each band

ncval2 = topx44(k+1); %end point of 5 colour bands

for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS

colx(1) = cn44xxi(j);

colx(2) = cn44xxi(j);

colx(2) = cn44xxi(j);
       coly(1) = cn44yx(j);
coly(2) = cn44yx(j);
coly(2) = cn44yx(j+1);
colz(1) = cn44zx(j);
        colz(2) = cn44zx(i+1);
        cval = ((pcval*100)+((ncval2-ncval)/5))/100;
       cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp*100)+1;
         pcval = cval;
         plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0]
    end
 stp = stp+5;
end
%CX45
xx45 = [x1(46), x2(46), x3(46), x4(46), x5(46), x6(46), x7(45), x8(45), x9(44), x10(44), x11(43), x12(42)]
yx45 = [y1(46),y2(46),y3(46),y4(46),y5(46),y6(46),y7(45),y8(45),y9(44),y10(44),y11(43),y12(42)]
zx45 = [z1(46), z2(46), z3(46), z4(46), z5(46), z6(46), z7(45), z8(45), z9(44), z10(44), z11(43), z12(42)]
topx45 = [top12(42), top11(43), top10(44), top9(44), top8(45), top7(45), top6(46), top5(46), top4(46), top3(46), top2(46), top1(46)]; top3(46), 
for n = 1:12
    co = top1(n)/100;
    %plot3(xx45(n),yx45(n),zx45(n),'.','Markersize', 20,'Color',[0,co,0]);
end
%INTERPOLATED CONTOUR CX45
 % 1mm interpolated contour lines for CX45
cn45yx = min(yx45):1:max(yx45);
for n = 1:length(cn45yx)
    cn45zx(n) = zx45(1);
 end
cn45xxi = interp1(yx45,xx45,cn45yx,'spline');
 %cn45x = plot3(cn45xxi,cn45yx,cn45zx,'Linewidth',0.75);
 stp = 1;
for k = 1:11
    or k = 1:11

ncval = topx45(k); %starting point of 5 colour bands

pcval = ncval/100; %progressive point for each band

ncval2 = topx45(k+1); %end point of 5 colour bands

for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS
         colx(1) = cn45xxi(j);
         colx(2) = cn45xxi(j+1);
```

end

coly(1) = cn45yx(j);coly(2) = cn45yx(j+1);colz(1) = cn45zx(j);colz(2) = cn45zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX46  $\begin{array}{l} xx46 = [x1(47), x2(47), x3(47), x4(47), x5(47), x6(47), x7(46), x8(46), x9(45), x10(45), x11(44), x12(43)];\\ yx46 = [y1(47), y2(47), y3(47), y4(47), y5(47), y6(47), y7(46), y8(46), y9(45), y10(45), y11(44), y12(43)];\\ zx46 = [z1(47), z2(47), z3(47), z4(47), z5(47), z6(47), z7(46), z8(46), z9(45), z10(45), z11(44), z12(43)];\\ \end{array}$ topx46 = [top12(43), top11(44), top10(45), top9(45), top8(46), top7(46), top6(47), top5(47), top4(47), top3(47), top2(47), top1(47)];for n = 1:12 co = top1(n)/100: %plot3(xx46(n),yx46(n),zx46(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX46 % 1mm interpolated contour lines for CX46 cn46yx = min(yx46):1:max(yx46); for n = 1:length(cn46yx) cn46zx(n) = zx46(1);end cn46xxi = interp1(yx46,xx46,cn46yx,'spline'); %cn46x = plot3(cn46xxi,cn46yx,cn46zx,'Linewidth',0.75); stp = 1; for k = 1:11 ncval = topx46(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band poral = hora/not/static provide a state of a state colx(1) = cn46xxi(j+1);colx(2) = cn46xxi(j+1);coly(1) = cn46yx(j);coly(2) = cn46yx(j+1);colz(1) = cn46zx(j);colz(2) = cn46zx(j+1);cval = ((pr-val\*100)+((ncval2-ncval)/5))/100; cval = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cvalplot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end %CX47 xx47 = [x1(48), x2(48), x3(48), x4(48), x5(48), x6(48), x7(47), x8(47), x9(46), x10(46), x11(45), x12(44)];xy47 = [z1(48),y2(48),y3(48),y3(48),y5(48),y5(48),y7(47),y8(47),y9(45),y10(46),y11(45),y12(44)]; zx47 = [z1(48),z2(48),z3(48),z3(48),z5(48),z6(48),z7(47),z8(47),z9(46),z10(46),z11(45),z12(44)]; topx47 = [top12(44), top11(45), top10(46), top9(46), top8(47), top7(47), top6(48), top5(48), top4(48), top3(48), top2(48), top1(48)]; top3(48), top3(48),for n = 1:12 co = top1(n)/100;%plot3(xx47(n),yx47(n),zx47(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX47 % 1mm interpolated contour lines for CX47 cn47yx = min(yx47):1:max(yx47); for n = 1:length(cn47yx) cn47zx(n) = zx47(1);end cn47xxi = interp1(yx47,xx47,cn47yx,'spline'); %cn47x = plot3(cn47xxi,cn47yx,cn47zx,'Linewidth',0.75); stp = 1; for k = 1:11 ncval = topx47(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx47(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn47xxi(j); colx(2) = cn47xxi(j+1); colx(2) = cn47xxi(j+1); coly(1) = cn47yx(j);coly(2) = cn47yx(j+1);colz(1) = cn47zx(j);colz(2) = cn47zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval; plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end

%CX48

 $\begin{array}{l} xx48 = [x1(49), x2(49), x3(49), x4(49), x5(49), x6(49), x7(48), x8(48), x9(47), x10(47), x11(46), x12(45)]; \\ xx48 = [y1(49), y2(49), y3(49), y4(49), y5(49), y6(49), y7(48), y8(48), y9(47), y10(47), y11(46), y12(45)]; \\ xx48 = [z1(49), z2(49), z3(49), z4(49), z5(49), z6(49), z7(48), z8(48), z9(47), z10(47), z11(46), z12(45)]; \\ \end{array}$ topx48 = [top12(45), top11(46), top10(47), top9(47), top8(48), top7(48), top6(49), top5(49), top4(49), top3(49), top2(49), top1(49)]; top3(49), top3(49),for n = 1:12co = top1(n)/100; %plot3(xx48(n),yx48(n),zx48(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX48 % 1mm interpolated contour lines for CX48 cn48yx = min(yx48):1:max(yx48); for n = 1:length(cn48yx) cn48zx(n) = zx48(1);end cn48xxi = interp1(yx48,xx48,cn48yx,'spline'); %cn48x = plot3(cn48xxi,cn48yx,cn48zx,'Linewidth',0.75); stp = 1; for k = 1:11 or k = 1:11 ncval = topx48(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band ncval2 = topx48(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn48xxi(j);colx(2) = cn48xxi(j+1);coly(1) = cn48yx(j);coly(2) = cn48yx(j+1);colz(1) = cn48zx(j);colz(2) = cn48zx(j+1);cval = ((pcval\*100)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5; end %CX49 xx49 = [x1(50), x2(50), x3(50), x4(50), x5(50), x6(50), x7(49), x8(49), x9(48), x10(48), x11(47), x12(46)];x49 = [z1(50),z2(50),z3(50),z4(50),z5(50),z6(50),z7(49),z8(49),z9(49),z1(48),z11(47),z12(40)], x49 = [z1(50),z2(50),z3(50),z4(50),z5(50),z6(50),z7(49),z8(49),z9(48),z10(48),z11(47),z12(46)]; topx49 = [top12(46), top11(47), top10(48), top9(48), top8(49), top7(49), top6(50), top5(50), top4(50), top3(50), top2(50), top1(50)];for n = 1:12co = top1(n)/100; %plot3(xx49(n),yx49(n),zx49(n),'.','Markersize', 20,'Color',[0,co,0]); end %INTERPOLATED CONTOUR CX49 % 1mm interpolated contour lines for CX49 cn49yx = min(yx49):1:max(yx49); for n = 1:length(cn49yx) cn49zx(n) = zx49(1);end cn49xxi = interp1(yx49,xx49,cn49yx,'spline'); %cn49x = plot3(cn49xxi,cn49yx,cn49zx,'Linewidth',0.75); stp = 1;for k = 1:11 ncval = topx49(k); %starting point of 5 colour bands pcval = ncval/100; %progressive point for each band noval2 = topx49(k+1); %end point of 5 colour bands for j = stp:(stp+4) %DIVIDE FIRST INTERVAL INTO 5 COLOUR BANDS colx(1) = cn49xxi(j); colx(2) = cn49xi(j+1); coly(1) = cn49xi(j+1); coly(2) = cn49yx(j+1); colz(1) = cn49yx(j+1);colz(2) = cn49zx(j+1);cval = ((pcval\*10)+((ncval2-ncval)/5))/100; cvalp = (cval+pcval)/2; %average between two points for a colour cvalp = round(cvalp\*100)+1; pcval = cval: plot3(colx,coly,colz,'Color',[gdmap(cvalp,1),gdmap(cvalp,2),gdmap(cvalp,3)],'Linewidth',0.75); %[0,cvalp,0] end stp = stp+5;end

%%plot3(x13,y13,z13,'-b',x13,y13,z13,'\*b','markersize',3); %colorbar

#### D.4 Playground exposure model

As for the exposure model presented for the face above, only one of several playground exposure models is presented in this code listing. The code below is the HBSHS playground sky view model. Albedo, winter and summer solstice shade density and UV exposure models are provided in the attached supplementary data CD-ROM. The algorithm was developed for use with MATLAB version 7.1.

```
%HBSHS grounds and buildings
clear
% Axis and background Setup
set(gca,'Color',[1,1,1],'XColor',[0.3,0.3,0.3],'YColor',[0.3,0.3,0.3],'ZColor',[0.3,0.3,0.3])
axis([-5 217.5 -5 173 0 310])
 xlabel('x-axis')
ylabel('y-axis')
zlabel('z-axis')
grid off
hold on
%front and east fence
x = 0:0.1:212.5;
for c = 1:2126;
xl(c) = 0;
  xl2(c) = 304.4;
end
line(x,xl)
line(x,xl2)
%side fences
y = 0:0.1:304.4;
for c = 1:3045;
  yl2(c) = 0;
yl3(c) = 212.5;
end
line(yl2,y)
line(yl3,y)
%pool fence
x2 = 168.3:0.1:212.5;
for c = 1:443;
x2l(c) = 35.8;
end
line(x2,x2l)
xx = 0:0.1:35.8;
for c = 1:359;
xxl(c) = 168.3;
end
line(xxl,xx)
%admin
a = 8.8:0.1:24;
for c = 1:153;
     al(c) = 44.5;
     al2(c) = 79.5;
end
line (al,a)
line (al2,a)
a2 = 24:0.1:26.5;
for c = 1:26;
  a2l(c) = 55;
  a2l2(c) = 79.5;
end
line(a2l,a2)
line(a2l2,a2)
ax = 44.5:0.1:79.5;
for c = 1:351
axl(c) = 8.8;
axl2(c) = 24; %30
end
line (ax,axl)
line (ax,axl2)
ax2 = 55:0.1:79.5;
for c = 1:246;
ax2l(c) = 26.5;
end
```

line(ax2,ax2l) %library l = 11.9:0.1:43.8; for c = 1:320II(c) = 105.2; II2(c) = 128.6; end line (II,I) line (II2,I) lx = 105.2:0.1:128.6; for c = 1:235|x|(c) = 11.9; |x|2(c) = 43.8; end line (lx,lxl) line (lx,lxl2) %C Block c1 = 30:0.1:74.4; for c = 1:445; cl(c) = 53.6; cl2(c) = 43.5; end c2 = 30:0.1:33; cl3(c) = 46.5; end line(cl3,c2) c3 = 44:0.1:74.4; for c = 1:305; cl4(c) = 46.5; %45.1 end line(cl4,c3) c4 = 76.9:0.1:91.9; for c = 1:151; c4l2(c) = 46.5; end line(c4l2,c4)  $\begin{array}{l} \text{me}(\text{C412,C4})\\ \text{c5} = 74.4:0.1:91.9;\\ \text{for } \text{c} = 1:176;\\ \text{c5l}(\text{c}) = 43.5;\\ \text{c5l2}(\text{c}) = 53.6;\\ \text{end} \end{array}$ end line(c5l,c5) line(c5l2,c5) cx2 = 46.5:0.1:53.6;for c = 1:72; cxl3(c) = 33;cxl4(c) = 44;end line(cx2,cxl3) line(cx2,cxl4) line(cl,c1) line(cl2,c1) cx1 = 43.5:0.1:53.6; for c = 1:102; cxl(c) = 30; cxl2(c) = 91.9; end line(cx1,cxl) line(cx1,cxl2) cx3 = 46.5:0.1:53.6; for c = 1:72; cx3l(c) = 74.4; cx3l2(c) = 76.9; end line(cx3,cx3l) line(cx3,cx3l2) %E block e = 34:0.1:61.5; for c = 1:276; el(c) = 28.5; ei(c) = 20.5, el2(c) = 16.1; end line(el,e) ex = 16.1:0.1:28.5; for a 4:125. for c = 1:125; ex1(c) = 34; ex2(c) = 61.5; end line(ex,ex1) line(ex,ex2) %B block b = 33:0.1:92.6; for c = 1:597; bl(c) = 89.5; bl2(c) = 77.5;

end end line(bl,b) line(bl2,b) b2 = 33:0.1:73.4; for c = 1:405; bl4(c) = 80.7; end bl4(c) = 80.7; end line(bl4,b2) b3 = 77:0.1:80.3; for c = 1:34; bl3(c) = 80.7; end DI3(C) = 80.7;end line(bl3,b3) b5 = 83.8:0.1:92.6;for c = 1:89; b5l(c) = 80.7;end b5l(c) = 80.7;end line(b5l,b5) bx = 77.5:0.1:89.5;for c = 1:121 bx1(c) = 33;bx2(c) = 92.6;end end line(bx,bx1) line(bx,bx1) line(bx,bx2) bx2 = 80.7:0.1:89.5; for c = 1:89; bx2(c) = 73.4; bx212(c) = 77; bx213(c) = 83.8; bx214(c) = 80.3; end line(bx2 bx2)) line(bx2,bx2l) line(bx2,bx2l2) line(bx2,bx2l3) line(bx2,bx2l4) h2i(c) -end hx5 = 22:0.1:47.5; for c = 1:256; hx5l(c) = 160.8; hx5l(c) = 160.8;end line (hx5l,hx5) hx6 = 158.6:0.1:160.8;for c = 1:23 hx6l(c) = 22;and end line(hx6,hx6l) hx7 = 159.3:0.1:160.8;for c = 1:16hx7l(c) = 47.5; end line(hx7,hx7l) h5 = 47.5:0.1:54; for c = 1:66; h5l(c) = 159.3; end line(h5l,h5) line (hl,h) line (h2l,h2) hx = 138.6:0.1:159.3; for c = 1:208; hxl(c) = 54; cod  $\begin{array}{l} hxl(c) = 54;\\ end\\ line (hx,hxl)\\ hx2 = 138.6:0.1:141.1;\\ for c = 1:26\\ hx2l(c) = 18.1;\\ end\\ line (hx2,hx2l)\\ h3 = 12.4:0.1:18.1;\\ for c = 1:58\\ h3l(c) = 141.1;\\ end\\ line (h3l,h3)\\ hx3 = 141.1:0.1:145;\\ for c = 1:40\\ hx3l(c) = 12.4;\\ end\\ line (hx3,hx3l)\\ line (hx3,hx3l)\\ \end{array}$ end line (hx3,hx3l) h4 = 12.4:0.1:14.1;for c = 1:18 h4l(c) = 145; end

line (h4l,h4) hx4 = 145:0.1:158.6; for c = 1:137 hx4l(c) = 14.1; end line (hx4,hx4l) %Art t = 58.7:0.1:74.4; for c = 1:158; tl(c) = 138.2;  $\begin{array}{l} tl(c) = 138.2;\\ end\\ t2 = 62.4; 0.1;74.4;\\ for c = 1:121;\\ tl2(c) = 135.8;\\ tl5(c) = 156.3;\\ tl6(c) = 158.2;\\ end \end{array}$ end t3 = 58.7:0.1:62.4; for c = 1:38; tl3(c) = 140.3; end line(tl,t) line(tl2,t2) line(tl3,t3) line(tl5,t2) line(tl6,t2) tx = 135.8:0.1:138.2; for c = 1:25; txl(c) = 62.4; end end line(tx2,tx2l) tx4 = 135.8:0.1:158.2; for c = 1:225; txl4(c) = 74.4; end end line(tx4,txl4) tx8 = 140.3:0.1:158.2; for c = 1:180; tx8l(c) = 62.4;end line(tx8,tx8l) %D Block d = 55.3:0.1:93; for c = 1:378; dl(c) = 113.9; dl2(c) = 101.5; end line(dl,d) line(d,d) line(dl2,d) d2 = 77.2:0.1:84.2;for c = 1:71; d2l(c) = 107.9;d21(c) = 107.3; end line(d2l,d2) dx = 101.5:0.1:113.9; %102.3 for c = 1:125; dxl(c) = 55.3; dxl(3)c) = 93; end dxl3(c) = 93; end line(dx,dxl) line(dx,dxl3) dx2 = 107.9:0.1:113.9; for c = 1:61; dx2l(c) = 84.2; dx2l2(c) = 77.2; end end line(dx2,dx2l) line(dx2,dx2l2) %man arts m = 49:0.1:74.4; for c = 1:255; ml(c) = 195.2; ml(c) = 195.2;end line(ml,m) m2 = 47.5:0.1:74.4;for c = 1:270; m2l(c) = 172.9;end end end line(m2l,m2) m3 = 39:0.1:47.5; for c = 1:86; m3l(c) = 169.3; end end line(m3l,m3) m4 = 39:0.1:49;

for c = 1:101; m4l(c) = 199.5; end end line(m4l,m4) mx = 169.3:0.1:172.9; for c = 1:37; mxl(c) = 47.5; end end line(mx,mxl) mx2 = 195.2:0.1:199.5; for c = 1:44; mx2l(c) = 49; end line(mx2,mx2l) mx3 = 169.3:0.1:199.5; for c = 1:303; mx3l(c) = 39; ntx3(c) = 39, end line(mx3,mx3l) mx4 = 172.9:0.1:195.2; for c = 1:224; mx4l(c) = 74.4; end end line(mx4,mx4l) %fence shed f = 45.5:0.1:58.5; for c = 1:131; fl(c) = 207; fl2(c) = 211.5; end line(fl,f) line(fi,f) line(fi2,f) fx = 207:0.1:211.5; for c = 1:46; fxl(c) = 45.5; fxl2(c) = 58.5; end line(fx,fxl) line(fx,fxl2) %man arts shed %man arts sned s = 39:0.1:43.8; for c = 1:49; sl(c) = 200; sl2(c) = 208; end line(sl,s) line(sl2,s) sx = 200:0.1:208; for c = 1:81; sxl(c) = 39; sxl2(c) = 43.8; end line(sx,sxl) line(sx,sxl2) %pool toilet l8 = 12:0.1:23; for c = 1:111; ll8(c)= 172; end line(ll8,l8) line(II8,I8) |8x = 168.3:0.1:172;for c = 1:38; |8x|(c) = 12; |9x|(c) = 23;end line(l8x,l8xl) line(l8x,l9xl) %pool canteen pc = 1:0.1:6;for c = 1:51; pcl(c) = 171; pcl2(c) = 176;end line(pcl2,pc) line(pcl2,pc) pcx = 171:0.1:176; for c = 1:51; pcxl(c) = 1; pcxl(c) = 6;pcxl2(c) = 6; end line(pcx,pcxl) line(pcx,pcxl2) %pool shed ps = 25.9:0.1:34.3; for c = 1:85; psl(c) = 201.9; psl2(c) = 211; cod end line(psl,ps)

line(psl2,ps) psx = 201.9:0.1:211; for c = 1:92; psxl(c) = 25.9; psxl2(c) = 34.3; end line(psx,psxl) line(psx,psxl2) %pool p = 11:0.1:22.5; for c = 1:116; pl(c) = 176.5; pl2(c) = 201.5;  $p_{12}(c) = 201.5,$ end line(pl,p)  $p_{x} = 176.5:0.1:201.5;$ for c = 1:251; $r_{12}(c) = 14;$ pxl(c) = 11; pxl2(c) = 22.5; end line(px,pxl) line(px,pxl2) %H Block h = 84.2:0.1:110.4; for c = 1:263; hl(c) = 185.6; hl2(c) = 182.8; hl3(c) = 197.8; end line(hl,h) line(hl2,h) line(hl3,h)  $\begin{aligned} &\text{Ine}(n13,n) \\ &\text{hxx} = 182.8:0.1:197.8; \\ &\text{for } c = 1:151; \\ &\text{hxx}|(c) = 84.2; \\ &\text{hxx}|2(c) = 110.4; \end{aligned}$ end line(hxx,hxxl) line(hxx,hxxl2) %G Block g = 77.2:0.1:83.5; for c = 1:64; gl(c) = 142.3; gl2(c) = 172.5; gl3(c) = 169.9; gl4(c) = 140; end end line(gl,g) line(gl2,g) line(g|2,g) line(g|3,g) g2 = 77.2:0.1:92.4; for c = 1:153; g2|(c) = 150.2; g2|2(c) = 150.2; g2|3(c) = 152.2; c3|3(c) = 152.2; g2l4(c) = 162.6; end line(g2l,g2) line(g2l2,g2) line(g2l3,g2) line(g2l4,g2) g3 = 83.5:0.1:100.6; for c = 1:172; g3l(c) = 140; g3l2(c) = 172.5; end end line(g3l,g3) g4 = 93:0.1:100.6; for c = 1:77; g4l(c) = 142.3; g4l2(c) = 170.3; end end line(g4l,g4) line(g41, g4) g6 = 100.6:0.1:102.7;for c = 1:22; g6|(c) = 147.8;end bine(cc| cc)end line(g6l,g6) g7 = 102.7:0.1:107.5; for c = 1:49; g7l(c) = 144.9; end line(c7t c7t c7t) end line(g7l,g7) g9 = 100.6:0.1:107.5; for c = 1:70; g9l(c) = 165.6; end

line(g9l,g9) gx = 140:0.1:152.2; for c = 1:123 gxl(c) = 77.2;  $\begin{array}{l} gxl(c)=77.2;\\ end\\ line(gx,gxl)\\ gx2=150.2:0.1:164.6;\\ for c=1:145;\\ gx2l(c)=92.4;\\ end\\ line(gx2,gx2l)\\ gx3=162.6:0.1:172.5;\\ for c=1:100;\\ gx3l(c)=77.2;\\ end\\ line(gx3,gx3l)\\ gx4=140:0.1:142.3;\\ for c=1:24;\\ \end{array}$ for c = 1:24; gx4l(c) = 83.5; gx4(c) = 63.5; end line(gx4,gx4l) gx5 = 169.9:0.1:172.5; for c = 1:27; gx5l(c) = 83.5; end end line(gx5, gx5I) gx6 = 140:0.1:142.3;for c = 1:24; gx6I(c) = 93;end line(cxc0 = xc0) end line(gx6,gx6l) gx7 = 170.3:0.1:172.5; for c = 1:23; gx7l(c) = 93; end iv(cr2 = r.7) end line(gx7,gx7l) gx8 = 140:0.1:147.8; for c = 1:79; gx8l(c) = 100.6; end end line(gx8,gx8l) gx9 = 144.9:0.1:147.8; for c = 1:30 gx9l(c) = 102.7; end line(gr2 = 0) ena line(gx9,gx9l) gx10 = 165.6:0.1:172.5; for c = 1:70; gx10l(c) = 100.6; end line(gx10,gx10l) gx11 = 144.9:0.1:165.6; for c = 1:208;gx11l(c) = 107.5; end line(gx11,gx11l) %L Block j = 77.2:0.1:114.2; for c = 1:371; jl(c) = 23.5; jl2(c) = 25.6; jl3(c) = 34.4; end end line(jl,j) line(jl2,j) line(ii2,j) line(ii3,j) jx = 23.5:0.1:34.4;for c = 1:110; jxl(c) = 77.2;jxl2(c) = 114.2;end end line(jx,jxl) line(jx,jxl2) %tuckshop k = 68.1:0.1:80.3; for c = 1:123; kl(c) = 58.2; kl2(c) = 72.6; end line(kl,k) line(kl,k) line(kl2,k) kx = 58.2:0.1:72.6; for c = 1:145; kxl(c) = 68.1; kxl2(c) = 73; kxl3(c) = 80.3; end end line(kx,kxl) line(kx,kxl2) line(kx,kxl3)

w = 98.3:0.1:108; w = 50.5.0 11100, for c = 1:98; wl(c) = 104.9; wl2(c) = 125.8; end line(wl,w) line(Wi,W) line(Wl2,W) W2 = 98.3:0.1:99.9;for c = 1:17; W2l(c) = 112.6;W2l2(c) = 119.3;end end line(w2l,w2) line(w2l2,w2) wx = 104.9:0.1:112.6; for c = 1:78; wxl(c) = 98.3; wx1(c) = 98.3, end line(wx,wxl) wx2 = 119.3:0.1:125.8; for c = 1:66; wx2l(c) = 98.3; ord wx2(c) = 98.3, end line(wx2,wx2l) wx3 = 104.9:0.1:125.8; for c = 1:210; wx3l(c) = 108; end line(wx3,wx3l) wx4 = 112.6:0.1:119.3; for c = 1:68; wx4l(c) = 99.9; end line(wx4,wx4l) %m block i = 106.4:0.1:140.6; I = 106.4(0.11)4for c = 1:343; il(c) = 5.4; il2(c) = 14.5; il3(c) = 16.9; end line(il,i)  $\begin{array}{ll} line(i|i,i) \\ line(i|2,i) \\ line(i|3,i) \\ ix = 5.4:0.1:16.9; \\ for c = 1:16; \\ ixl(c) = 106.4; \\ ixl(c) = 140.6; \\ end \\ line(ix,ixl) \\ line(ix,ixl) \end{array}$ %marine shed o = 199:0.1:214; for c = 1:151; ol(c) = 196.2; ol2(c) = 205.7; end line(ol,o)  $\begin{aligned} & \text{line}(01,0) \\ & \text{line}(012,0) \\ & \text{ox} = 196.2:0.1:205.7; \\ & \text{for } c = 1:96; \\ & \text{ox}1(c) = 199; \\ & \text{ox}12(c) = 214; \end{aligned}$ end line(ox,oxl) line(ox,oxl2) %external staircases v = 42.5:0.1:52; for c = 1:96; vl(c) = 75.5; end line(vl,v) vx = 75.5:0.1:77.5; for c = 1:21; vxl(c) = 42.5; vxl2(c) = 52; end line(vx,vxl)  $\begin{aligned} & \text{line}(vx,vxl) \\ & \text{line}(vx,vxl2) \\ & v2 = 53.3:0.1:55.3; \\ & \text{for } c = 1:21; \\ & v2l(c) = 103.3; \\ & v2l2(c) = 101.8; \end{aligned}$ end end line(v2l,v2) line(v2l2,v2) vx2 = 101.8:0.1:103.3; for c = 1:16; vx2l(c) = 53.3; cod end line(vx2,vx2l)

v3 = 43.8:0.1:46.3; for c = 1:26; v3l(c) = 39.6;end line(v3l.v3) vx3 = 39.6:0.1:43.5; for c = 1:40; vx3l(c) = 43.8: vx3l2(c) = 46.3;end line(vx3,vx3l) line(vx3,vx3l2)

sitex =

173.178.183.188.193.198.203.208.5.10.15.20.25.37.64.42.64.47.64.53.64.58.64.63.64.68.64.73.64.78.64.83.64.83.64.83.64.88.64.93.64.98.64.103.64.108.64.113.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64.118.64. 4,123.64,128.64,133.64,138.64,143.64,148.64,153.64,158.64,163.64

208,203,198,193,188,183,178,174,5,163,64,158,64,153,64,148,64,143,64,138,64,133,64,128,64,123,64,118,64,113,64,108,64,103,64,98,64,93,64,88,64,83,64,43,2,38,2,33,2,28,2,23,2,18,2,13,2,8,2,5 ...

5,10,15,20,25,30,35,40,82.79,87.79,92.79,97.79,102.79,133.44,138.44,163.29,174.5,203,209 ... 209,203,174.5,163,29,133.44,102.79,97.79,91.79.86,79,81.79,40,35,30,25,20,16,9.5 ...

208,203,198,193,188,183,178,174.5,169.5,163.29,137.44,133.44,102.79,97.79,82.79,74.49,69.49,64.49,59.49,40,35,30,25,20,15,10,5 ...

198.5,193.5,188.5,183.5,178.5,174.5,169.5,163.29,137.44,133.44,102.79,97.79,92.79,87.79,82.79,77.79,64.49,54.49,44.49,39.49,34.49,30,25,20,15,10,5 ... 198.5,193.5,188.5,183.5,178.5,174.5,169.5,163.29,137.44,133.44,99.79,92.79,79.79,64.49,54.49,49.49,49,49,49,49,49,29.49,34.49,29.79,15,10,5 ...

5,10,15,29,79,34,79,39,79,44,79,49,79,54,79,59,79,64,79,69,79,74,79,79,79,92,79,97,89,100.11,133,44,137,44,163,29,209,5 ... 206,5,201.5,163,29,137,44,133,44,128,44,123,44,118,44,113,64,100,11,95,11,90,11,79,79,74,79,69,79,59,79,54,79,44,79,39,05,34,35,29,35,15,10,5

97,202,206.5

00,522,197,168,29,163,29,158,29,153,29,148,29,143,29,138,79,133,79,127,79,123,79,118,79,113,79,108,79,103,79,98,79,93,99,89,79,79,79,79,79,79,64 79,61.19,54.79,44.35,39.35,34.35,29.35,15,10,5

5,10,15,29,35,34,35,39,35,44,35,54,79,60,79,65,79,70,79,75,79,79,79,90,35,95,35,100,35,105,35,110,35,115,35,120,35,125,35,130,35,135,35,143,29,158,29,1 63.29,168.29,196.9,201.6,205.2

207.5,202.5,197.5,168.29,163.29,158.29,135.35,130.35,125.35,120.35,115.35,110.35,105.35,100.35,95.35,90.35,79.79,74.79,69.79,64.79,59.79,54.79,44.35,39.35,34.35,29.35,24.35,19.35,14.35,9.9,5.5... 6,10,15,20,25,30,35,40,45,54,6,59,6,64,6,69,6,74,6,79,79,90,3,95,3,100,3,106,3,110,3,115,3,124,3,129,3,134,3,158,4,163,4,168,4,197,5,202,5,207,5

207.5,203.8,198.8,193.8,188.8,183.8,178.8,173.8,168.8,163.8,158.8,153.8,148.8,143.8,138.8,133.8,128.8,123.8,118.8,113.8,108.8,103.8,98.8,93.8,88.8,83.8,78.8,73.8,56.9,51.9,46.9,44.9,39.9,34.9,29.9,24.9,19.9,14.9,9.9,5.4 ...

5.9,9.9,14.9,19.9,24.54,39.6,44.8,55.1,73.8,79.8,84.8,89.8,94.8,99.8,104.8,118.9,123.9,128.9,133.9,138.9,155.18,160.18,174.9,180.4,184.9,188.9,195.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,20 06.5 206.53,201.53,184.85,179.85,174.85,163,158,152.8,138.9,133.9,128.9,123.9,118.9,113.9,108.9,103.9,98.9,93.9,79.3,74.3,69.3,64.3,59.3,54.3,45.4,39.9,34.9,24

.3,19.3,14.3,9.3,4.3 ... 4.3,9.3,14.3,19.3,24.8,34.9,39.9,45.3,55.4,60.4,65.4,70.4,75.4,78.6,92.7,97.7,103.2,108.2,113.2,118.2,123.2,128.2,133.2,138.2,151.7,157.7,160.7,173.4,178.4,1 83.4,201.5,206.5

206.5.201.5.183.4.176.4.173.4.137.3.132.3.127.3.122.3.115.1.110.1.105.1.100.1.95.1.90.1.85.1.80.1.73.6.70.1.65.1.60.1.55.6.50.1.45.1.40.1.35.1.24.3.19.3.14. 3.9.3.4.3 .

3.9.3, 14.3, 19.3, 25, 35, 1, 40, 1, 45, 1, 50, 1, 55, 1, 60, 1, 65, 1, 70, 1, 75, 1, 80, 1, 85, 1, 90, 1, 95, 1, 100, 1, 127, 3, 132, 3, 137, 3, 142, 3, 146, 3, 173, 4, 183, 4, 201, 5, 206, 5, 206, 5, 201, 5, 183, 6, 178, 6, 178, 6, 142, 3, 137, 3, 132, 3, 127, 8, 100, 1, 95, 1, 90, 1, 85, 1, 80, 1, 75, 1, 70, 1, 65, 1, 60, 1, 55, 1, 50, 1, 45, 1, 40, 1, 35, 1, 25, 20, 14, 9, 9, 8, 4, 7

4.5, 15.76, 20.76, 24.66, 35.13, 40.13, 45.13, 50.13, 55.13, 60.13, 65.13, 70.13, 75.13, 80.13, 85.13, 90.13, 95.13, 100.13, 105.13, 110.23, 115.33, 120.43, 125.53, 130.63, 135.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 10 .73,140.83,145,93,151.03,156,13,161.23,166.33,171.43,176.53,181.63,186.73,191.83,196,93,202.03,207.13... 207.13,202.03,196.93,191.83,186.73,181.63,176.53,156.53,136.53,116.53,96.53,76.53,56.53,36.53,31.53,26.53,21.53,16.63,4.5...

4.5,16.63,21.63,26.63,31.63,36.63 ...

4.5.16.63.21.63.26.63.31.63.36.63 ... 4.5,16.63,22.63,26.63,31.63,36.63

4.5,16.63,21.63,26.63,31.63,36.63,56.53,76.53,96.53,116.53,136.53,156.53,176.53,196.53,207.53 ... 4.5,9.5,14.5,19.5,22.9,26.9,31.9,36.9 ...

4.5,9.5,14.5,18.5,22.9,26.9,31.9,36.9 ... 4595145195229269319369

4.5,9.5,14.5,19.5,22.9,26.9,31.9,36.9,56.53,76.13,95.73,115.33,134.93,154.53,174.13,193.73,208.23 ...

208.23, 193.73, 174.13, 154.53, 134.93, 115.33, 95.73, 76.13, 56.53, 36.9, 19.5, 4.5. 4.5, 19.5, 36.9, 56.53, 76.13, 95.73, 115.33, 134.93, 154.53, 174.13, 193.73, 208.23 ...

208.23,193.73,174.13,154.53,134.93,115.33,95.73,76.13,56.53,36.9,19.5,4.5 ...

4.5,19.5,36.9,56.53,76.13,95.73,115.33,134.93,154.53,174.13,193.73,208.73 ... 208.73,193.73,174.13,154.53,134.93,115.33,95.73,76.13,56.53,36.9,19.5,4.5 ...

4.5,19.5,36.9,56.5,76.1,95.7,115.3,134.9,154.5,174.1,193.7,208.7

208.7,193.7,174.1,154.5,134.9,115.3,95.7,76.1,56.5,36.9,19.5,4.5];

111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111 1.111.111

126,126,126,126,126,126,...

141,141,141,141,141,141,141,141 ... 146,146,146,146,146,146,146,146,146 ... 151,151,151,151,151,151,151,151 ... 

0.0.0,0,0,0,0 ... 0.0.0.0.0.0 ... 0,0,0,0,0,0 .. 0,0,0,0,0,0,0,0,0 ... 0.0.0.0.0.0.0.0 .. 0.0.0.0.0.0.0.0. 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ... 0.0,0,0,0,0,0,0,0,0,0,0 .. 0,0,0,0,0,0,0,0,0,0,0,0,0 ...

0,0,0,0,0,0,0,0,0,0,0,0 0.0.0.0.0.0.0.0.0.0.0.0... 0,0,0,0,0,0,0,0,0,0,0,0,0 ... 000000000000

0,0,0,0,0,0,0,0,0,0,0,0,0];

[5,10,15,20,25,37.64,42.64,47.64,53.64,58.64,63.64,68.64,73.64,78.64,83.64,88.64,93.64,98.64,103.64,108.64,113.64,118.64,123.64,128.64,133.64,138.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,143.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.64,144.65,8.2,13.2,18.2,23.2,28.2,33.2,38.2,43.2,83.64,88.64,93.64,98.64,103.64,108.64,113.64,118.64,123.64,128.64,133.64,138.64,143.64,148.64,153.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,163.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,158.64,

64,174.5,178,183,188,193,198,203,208

5,10,15,20,25,30,35,40,82,79,87.79,92.79,97.79,102.79,133,44,138,44,163,29,174,5,203,209 ... 5,9,16,20,25,30,35,40,81,79,86,79,91.79,97.79,102.79,133,44,163,29,174,5,203,209 ...

5,10,15,20,25,30,35,40,59.49,64.49,69.49,74.49,82.79,97.79,102.79,133.44,137.44,163.29,169.5,174.5,178,183,188,193,198,203,208. 5,10,15,20,25,30,34,49,39,49,44,49,54,49,64,49,77,79,82,79,87,79,92,79,97,79,102,79,133,44,137,44,163,29,169,5,174,5,178,5,183,5,188,5,193,5,198,5,...

510.15.29.79, 34.49, 39.49, 44.94.49.49, 54.49, 64.49, 79.79, 92.79, 93.79, 133.44, 137.44, 163.29, 169.5, 174.5, 178.5, 183.5, 183.5, 193.5, 198.5 ...

5,10,15,29.79,34.79,39.79,44.79,49.79,54.79,59.79,64.79,69.79,74.79,79.79,92.79,97.89,100.11,133.44,137.44,163.29,209.5

97,202,206.5

5.10.15.29.35.34.35.39.35.44.35.54.79.61.19.64.79.69.79.74.79.79.79.89.79.93.99.98.79.103.79.108.79.113.79.118.79.123.79.127.79.133.79.138.79.143.29.14 8.29,153.29,158.29,163.29,168.29,197,202,206.5

5.10.15.29.35.34.35.39.35.44.35.54.79.60.79.65.79.70.79.75.79.79.90.35.95.35.100.35.105.35.110.35.115.35.120.35.125.35.130.35.135.35.143.29.158.29.1 63.29,168.29,196.9,201.6,205.2 ...

5.158.29.163.29.168.29.197.5.202.5.207.5

6,10,15,20,25,30,35,40,45,54,6,59,6,64,6,69,6,74,6,79,79,90,3,95,3,100,3,106,3,110,3,115,3,124,3,129,3,134,3,158,4,163,4,168,4,197,5,202,5,207,5,100,3,106,3,110,3,115,3,124,3,129,3,134,3,158,4,163,4,163,4,164,197,5,202,5,207,5,100,3,106,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,110,3,11 5.4, 9.9, 14.9, 19.9, 24.9, 29.9, 34.9, 39.9, 34.9, 39.9, 44.9, 46.9, 51.9, 56.9, 73.8, 78.8, 83.8, 88.8, 93.8, 98.8, 103.8, 108.8, 113.8, 118.8, 123.8, 128.8, 133.8, 143.8, 143.8, 153.8, 158.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 159.8, 1.8,163.8,168.8,173.8,178.8,183.8,188.8,193.8,198.8,203.8,207.5 .

5.9,9.9,14.9,19.9,24.54,39.6,44.8,55.1,73.8,79.8,84.8,89.8,94.8,99.8,104.8,118.9,123.9,128.9,133.9,138.9,155.18,160.18,174.9,180.4,184.9,188.9,195.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,201.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,200.5,20 06.5.

4.3,9.3,14.3,19.3,24.3,34.9,39.9,45.4,54.3,59.3,64.3,69.3,74.3,79.3,93.9,98.9,103.9,108.9,113.9,118.9,123.9,128.9,133.9,138.9,152.8,158,163,174.85,179.85,18 4.85,201.53,206.53 ... 4.3,9.3,14.3,19.3,24.8,34.9,39.9,45.3,55.4,60.4,65.4,70.4,75.4,78.6,92.7,97.7,103.2,108.2,113.2,118.2,123.2,128.2,133.2,138.2,151.7,157.7,160.7,173.4,178.4,1

83.4,201.5,206.5

4.3,9.3,14.3,19.3,24.3,35.1,40.1,45.1,50.1,55.6,60.1,65.1,70.1,73.6,80.1,85.1,90.1,95.1,100.1,105.1,110.1,115.1,122.3,127.3,132.3,137.3,173.4,176.4,183.4,201 .5.206.5

4.3,9.3,14.3,19.3,25,35.1,40.1,45.1,50.1,55.1,60.1,65.1,70.1,75.1,80.1,85.1,90.1,95.1,100.1,127.3,132.3,137.3,142.3,146.3,173.4,178.4,183.4,201.5,206.5 4.7,9.8,14.9,20,25,35.1,40.1,45.1,50.1,55.1,60.1,65.1,70.1,75.1,80.1,85.1,90.1,95.1,100.1,127.8,132.3,137.3,142.3,168.6,173.6,178.6,183.6,201.5,206.5

4.5, 15.76, 20.76, 24.66, 35.13, 40.13, 45.13, 50.13, 55.13, 60.13, 65.13, 70.13, 75.13, 80.13, 85.13, 90.13, 95.13, 100.13, 105.13, 110.23, 115.33, 120.43, 125.53, 130.63, 135.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 100.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 105.13, 10 .73,140.83,145,93,151.03,156.13,161.23,166.33,171.43,176.53,181.63,186.73,191.83,196.93,202.03,207.13 ... 4.5,16.63,21.53,26.53,31.53,36.53,56.53,76.53,96.53,116.53,136.53,156.53,176.53,181.63,186.73,191.83,196.93,202.03,207.13 ...

4.5,16.63,21.63,26.63,31.63,36.63 ...

4.5.16.63.21.63.26.63.31.63.36.63 ...

4.5,16.63,22.63,26.63,31.63,36.63

4.5,16.63,21.63,26.63,31.63,36.63,56.53,76.53,96.53,116.53,136.53,156.53,176.53,196.53,207.53 ... 4.5,9.5,14.5,19.5,22.9,26.9,31.9,36.9 ...

4.5,9.5,14.5,18.5,22.9,26.9,31.9,36.9 ... 4.5,9.5,14.5,19.5,22.9,26.9,31.9,36.9 ... 4.5,9.5,14.5,19.5,22.9,26.9,31.9,36.9,36.9,36.9,36.9,36.13,95.73,115.33,134.93,154.53,174.13,193.73,208.23 ... 4.5,19.5,36.9,56.53,76.13,95.73,115.33,134.93,154.53,174.13,193.73,208.23 ... 4.5,195,56.9,56.53,76.13,95.73,115.33,134.93,154.53,174.13,193.73,208.23 ... 4.5,19.5,36.9,56.53,76.13,95.73,115.33,134.93,154.53,174.13,193.73,208.23 ...  $4.5, 19.5, 36.9, 56.53, 76.13, 95.73, 115.33, 134.93, 154.53, 174.13, 193.73, 208.73\ldots$ 4.5,19.5,36.9,56.53,76.13,95.73,115.33,134.93,154.53,174.13,193.73,208.73 ... 4.5,19.5,36.9,56.5,76.1,95.7,115.3,134.9,154.5,174.1,193.7,208.7 ... 4.5, 19.5, 36.9, 56.5, 76.1, 95.7, 115.3, 134.9, 154.5, 174.1, 193.7, 208.7] 111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111 1.111.111 121,121,121,121,121,121 ... 126,126,126,126,126,126 ... 146,146,146,146,146,146,146,146,146 .. 151,151,151,151,151,151,151,151,151 .. skyvw = [73,30,39,85,90,88,85,82,80,76,79,77,76,70,65,49,52,49,42,40,50,56,59,54,58,73,82,86,87,88,87,44,68,50,36,48,46,35,49 ... 5,69,61,74,83,88,85,85,73,59,40,57,64,60,64,48,67,63,70,27 ... 67,60,74,83,79,85,86,78,54,65,56,66,63,63,53,68,73,17 ... 74,69,73,75,79,83,82,74,76,7,17,58,64,64,59,13,43,35,70,80,84,86,86,81,59,59 ... 83,80,72,69,70,77,79,73,53,37,53,14,15,17,17,15,58,14,27,56,70,78,82,83,82,78 ... 80,77,54,48,75,68,37,4,35,64,24,33,5,58,14,24,46,61,67,70,73,74,75 ... 81,76,40,41,73,62,28,5,34,52,56,66,64,29,37,30,10,59,13,42,69 ... 77,75,48,41,73,59,15,28,31,62,46,6,30,51,10,30,43,56,54,46,10,43,64,70 . 7,72,35,40,71,62,31,19,48,55,28,27,29,46,9,46,52,58,57,49,29,25,14,48,36,33,77,73 ... 64,64,34,40,71,65,35,16,54,52,38,53,30,27,42,11,33,36,41,29,9,4,39,28,31,30,30,39,51,41,46,79,62 ... 63,62,28,43,71,64,33,19,45,8,29,59,33,28,47,29,3,4,7,11,8,18,45,43,55,61,55,52,82,79 ... 55,57,43,51,60,67,72,60,10,32,48,24,40,59,33,27,37,32,31,9,8,8,47,32,66,65,44,81,85 ... 47,58,45,59,68,72,70,56,26,17,1,0,1,40,19,26,34,24,0,2,24,12,17,27,26,38,55,37,73,83 ... 51,59,49,12,4,9,5,10,5,2,3,0,1,1,1,2,3,4,1,1,4,2,4,5,6,0,0,0,5,5,1,8,3,1,7,31,63,69,78,80 ... 48,51,49,35,4,34,14,19,36,17,1,2,3,3,1,8,15,9,31,26,47,46,60,64,28,67,73,79,83 ... 39,40,37,49,14,13,33,6,30,53,62,61,53,18,6,6,4,2,17,17,7,16,22,14,29,54,14,40,70,17,69,81 40,38,32,39,4,13,39,32,40,52,66,66,59,45,26,26,24,6,10,12,26,25,27,10,7,44,13,41,56,28,68,82 ... 41,39,38,34,14,24,51,51,38,40,39,43,66,59,52,56,52,50,61,55,41,12,35,42,46,19,45,73,37,69,78 ... 51,40,45,37,5,32,63,67,60,52,61,69,74,60,76,75,76,75,72,40,57,57,43,13,78,80,40,69,75 ... 52,22,27,26,8,35,66,66,62,64,72,78,81,82,83,84,82,82,82,43,60,69,59,72,79,79,43,70,82 ... 38,5,24,3,32,66,71,65,66,77,81,84,85,87,87,86,86,86,83,75,72,72,69,38,36,35,31,31,30,30,34,39,44,74,56,40,51,81,85 ... 47,7,69,69,67,55,73,83,87,84,82,82,84,84,83,84,84,85,90 47.33.75.79.79.74 48,34,76,83,84,84 . 48,31,73,85,86,86 39,31,74,86,88,88,92,93,94,94,94,94,93,89,80 ... 59,24,32,74,78,88,90,90 ... 80,52,63,81,88,89,91,91 .. 90,88,89,91,92,91,92,92 .. 94,94,93,94,94,93,94,93,94,94,94,95,94,94,93,90,63 ... 92,94,92,91,90,91,91,91,90,94,91,88 97,96,92,44,71,68,74,85,80,84,88,89 94,95,94,89,86,84,85,89,85,87,89,90 ... 95,96,96,96,95,94,94,94,95,95,95,95,94 ... 95,96,97,96,96,96,96,96,96,96,96,96,96 95.96.96.97.96.95.95.94.93.93.94.95 90,95,95,96,94,70,86,84,56,59,83,93];

```
\mathsf{v} = [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95];
```

figure(1) whitebg('w'); % Surface meshing xm = 0:0.5:215; ym = 0:0.5:310; zm = 0:0.5:100;

[xi,yi] = meshgrid(xm,ym); [xr,yr,zr]=griddata(sx,sy,skyvw,xi,yi); %mesh(xr,yr,zr); h = contourf(xr,yr,zr,v,'LineStyle','none'); %surfc(xr,yr,zr,'LineStyle','none') colormap jet(19) grid off

axis equal tight axis([-5 217.5 -5 310 0 0.1]) %plot3(sitex,sitey,sitez,'r+','MarkerSize', 2,'MarkerFacecolor', 'r') xlabel(western fence (m)') ylabel('northern fence (m)') zlabel('') view([[0 0 20]);

#### D.5 Playground sky view image processing algorithm

Each of the 822 playground survey site composite images were run through the following algorithm to determine sky view up to  $32^{\circ}$  in ZA. The code was developed in MATLAB version 7.1. The following algorithm requires the MATLAB image processing toolbox to run correctly.

```
% Image processing algorithm to estimate sky view
clear
    for T = 1:1
    IMname = 'site808' %image name to process
IMpathI = 'C:\nathan\phD\photos\skyview\HBSHS\proco\cloudaff'
    IMnameM = 'mask'
                                        %image name SZA mask
    IMpath = 'C:\nathan\phD\photos\skyview\HBSHS\proco'
    jpg = fullfile(IMpathI,[IMname,'.jpg','']);
    png = fullfile(IMpath,[IMnameM,'.bmp',"]);
    RGB = imread(jpg);
[X,map] = rgb2ind(RGB,256);
[Z,map2] = imread(png);
    K = Z;
[m,n] = size(X);
    [levels, colpart] = size(map); %determine the number of colour levels
    redmap = zeros(256,3);
    greenmap = zeros(256,3);
bluemap = zeros(256,3);
    cloudmapBR = zeros(256,3);
    % ADD GROUND MASK TO IMAGE
    maskCNT = 0; %no. of masked pixels
    for y = 1:m
for i = 1:n
        mapval = (Z(y,i));
        mapval = (2(y,i),
mapval = mapval +1;
if mapval == 1 %if part of black image mask
X(y,i) = map2(1); %mask ground view
maskCNT = maskCNT +1;
        end
      end
    end
%*******
    %
    %algorithm for splitting the image into its R G B levels and pixel transitions (texture)
    maxcloudBR = 0; %initilise greatest cloud value in cloud map (blue - red)
    diff = 0;
olddiff = 0;
    transition = 0;
    trans1 = 0
    trans2 = 0;
    trans3 = 0:
    trans4 = 0:
    trans5 = 0;
    Bmask = 0;
    pixCNT = 0;
    skyCNT = 0;
    for y = 1:m
      for i = 1:n
pixCNT = pixCNT +1;
        mapval = double(X(y,i));
        mapval = mapval + 1;
redmap(mapval,1) = map(mapval,1);
                                                           %JPEG map starts at 0 MATLAB map starts at 1
        greenmap(mapval, ?) = map(mapval, ?);
bluemap(mapval,2) = map(mapval,2);
bluemap(mapval,3) = map(mapval,3);
       diff = abs(map(mapval,3) - map(mapval,1)); %look at changes in pixel level (texture) [Blue - Red]
if double(X(y,i)) == 0
           %don't count as a valid transition between pixels
          olddiff = diff:
          Bmask =1;
        else
if Bmask == 0
```

```
transition = diff-olddiff;
        if transition < 0.05
          trans1 = trans1+1; %increment level 1 texture change
        end
        if transition \leq 0.1 & transition > 0.05
          trans2 = trans2+1; %increment level 2 texture change
        end
        if transition <= 0.15 & transition > 0.1
trans3 = trans3+1; %increment level 3 texture change
        end
        if transition <= 0.2 & transition > 0.15
          trans4 = trans4+1; %increment level 4 of texture change
        end
        if transition <= 1 & transition > 0.2
          trans5 = trans5+1;
                                  %increment level 5 of texture change
        end
      end
      Bmask =0:
      olddiff = diff;
    end
   if map(mapval,3) - map(mapval,1) < 0
                                                      %blue - red
      cloudmapBR(mapval,1) = 0;
cloudmapBR(mapval,2) = 0;
      cloudmapBR(mapval,3) = 0;
    else
      cloudmapBR(mapval,1) = map(mapval,3) - map(mapval,1);
      cloudmapBR(mapval,2) = map(mapval,3) - map(mapval,1);
cloudmapBR(mapval,3) = map(mapval,3) - map(mapval,1);
if cloudmapBR(mapval,1) > maxcloudBR % assign maxcloudBR as the brightest blue sky pixel in image (greatest level of blue-red)
        maxcloudBR = cloudmapBR(mapval,1);
      end
    end
    % if map(mapval,3) - map(mapval,1) == 0 then must be a masked pixel OR a BLACK image pixel
  end
end
pixCNT = pixCNT - maskCNT; %total no. of potential sky pixels in the 90o tp 32.3o SZA range photographed (64% of total skyview)
%
% increase contrast in cloud map (scale max cloud value as 1,1,1 - white)
                  %cumulative sum of BR image pixels (less mask)
imsum = 0;
bluesum = 0;
                 %cumulative sum of sky pixels
                 %cumulative sum of image pixels (less mask)
dullsum = 0;
skypixCNT = 0; %counter for sky pixels
for v = 1:256
  imdev(v,1) = 2;
                    %ALL IMAGE PIXELS
 bluedev(v,1) = 2; %ONLY SKY PIXELS
dulldev(v,1) = 2; %RED LEVEL OF ALL PIXEL
end
if maxcloudBR > 0.4
  thres = 0.9; %threshold for cloud determination in Bright sky
else
 % if opaque(T) > 0.8
    thres = 0.4; %threshold for cloud determination in Dull sky with > 80% cloud cover
  %end
end
for j = 1:256
  n j = 1.200
cloudmapBR(j,1) = 1- (cloudmapBR(j,1)/maxcloudBR); %cloud is white 1,1,1, sky is less with the MAXIMUM SKY BLUE ASSIGNED 0,0,0
cloudmapBR(j,2) = 1- (cloudmapBR(j,2)/maxcloudBR);
cloudmapBR(j,3) = 1- (cloudmapBR(j,3)/maxcloudBR);
is the (f(x)) = 10 - (cloudmapBR(j,3)/maxcloudBR);
  imdev(j,1) = cloudmapBR(j,1);
dulldev(j,1) = map(j,1); %measure image brightness in red
  if cloudmapBR(j,1) < thres %threshold for sky OR cloud CLASSIFICATION
      bluedev(j,1) = cloudmapBR(j,1);
skypixCNT = skypixCNT + 1; %COLOUR MAP SKY VALUES NOT PIXELS
cloudmapBR(j,1) = 0;
      cloudmapBR(j,2) = 0;
      cloudmapBR(j,3) = 1;
  else
      cloudmapBR(j,1) = 1;
      cloudmapBR(j,2) = 1;
      cloudmapBR(j,3) = 1;
  end
end
imSD = std(imdev);
for q = 1:256
 if bluedev(q, 1) \sim = 2 %ONLY COUNT AS A SKY PIXEL IF BELOW THRESHOLD bluesum = bluesum + bluedev(q, 1);
  end
  imsum = imsum + imdev(q,1);
  dullsum = dullsum + dulldev(q,1);
end
imaverage = imsum/256;
dullaverage = dullsum/256;
blueaverage = bluesum/skypixCNT; %average blueness of those pixels classified as sky pixels
blueSD = std(bluedev);
%***
```

end

Appendix E. Measured UV transmission of playground shade cloths

Table E.1: Percentage UV transmission measured under playground shade cloth structures. Protected measurements were made approximately 0.5 m directly underneath the shade cloth using a broadband meter (Solar Light Co., model 3D, Philadelphia, PA 19126). UV transmission estimates include the meter measurement uncertainty of  $\pm 17\%$ . Protection Factors for shade cloth structures were calculated as the ratio of unprotected modelled UV<sub>ery</sub> exposure located at sites in proximity to each respective structure for both the winter solstice (21 June 2008) and summer solstice (21 December 2008) to modelled UV<sub>ery</sub> for protected sites located underneath the shade cloth structures. The modelled UV<sub>ery</sub> for protected sites located underneath their respective structures were dependent upon the total sky view at those sites. Therefore while some playground shade structures were covered with low UV transmission shade cloths, their overall shape and region of the sky covered at the modelled sites protected PF for some structures. Figures E.1 through to E.8 depict each shade cloth structure found in the HBSHS playground.

| Shade structure      | Unprotected | Protected | UV transmission | PF         |  |
|----------------------|-------------|-----------|-----------------|------------|--|
|                      | UV          | UV        | (%)             | winter /   |  |
|                      | (med/hr)    | (med/hr)  |                 | summer     |  |
| Bus shelter (blue)   | 2.55        | 0.27      | $11 \pm 2$      | 3.0 / 3.0  |  |
| Oval steps (red)     | 3.36        | 0.17      | $5 \pm 1$       | 2.8 / 2.2  |  |
| Quadrangle (plastic) | 2.09        | 0.05      | $2\pm0$         | 5.3 / 16.3 |  |
| H Block (green)      | 3.35        | 0.25      | $7 \pm 1$       | 1.2 / 1.7  |  |
| H block (dark green) | 3.47        | 0.27      | $8 \pm 1$       | 1.4 / 1.6  |  |
| M Block (red)        | 2.83        | 0.19      | $7 \pm 1$       | 2.1 / 2.1  |  |
| C Block (green)      | 0.36        | 2.53      | $14 \pm 2$      | 1.1 / 1.1  |  |
| Art (green)          | 0.20        | 3.04      | $7 \pm 1$       | 1.9 / 2.4  |  |





Figure E.1: Bus shelter shade cloth structure.

Figure E.2: Oval steps shade cloth structure.



Figure E.3: Quadrangle plastic shelter structure.

Figure E.4: H Block shade cloth sails (light green).



Figure E.5: H block shade cloth sails (dark green).



Figure E.6: M Block shade cloth sail.



Figure E.7: C Block shade cloth sail.



Figure E.8: Art block shade cloth sail.

## Appendix F. Student diaries

Attached are copies of student diaries for each of the face, neck, arm, hand and leg. Students were asked to mark on the respective body part model in each diary where dosimeters were worn. Dosimeter sites were however limited to a selected number of regions on the body. A map of the school region was also included with each student diary. This map is also included here.

Personal Diary HBSHS - face

## School Region List (refer to school map):

Region 1 - Indoors or Classroom

Region 2 - Under Building or Covered Area – M block (Maths/Science) Region 3 - Under Building or Covered Area – L block (Music) Region 4 - Under Building or Covered Area – C block (Home Ec) Region 5 - Under Building or Covered Area – B block (Computers) Region 6 - Under Building or Covered Area – D block (Chinese) Region 7 - Under Building or Covered Area – G block (First Year Centre) Region 8 - Under Building or Covered Area – G block (Art) Region 9 - Under Building or Covered Area – F block (Manual Arts) Region 10 - Under Building or Covered Area - H block (Manual Arts / Drama) Region 11 - Under Building or Covered Area – Agriculture Region 12 - Under Building or Covered Area – Canteen Region 13 - Under Building or Covered Area – Library Region 14 - Under Building or Covered Area – Office Region 15 – Near Buildings Science / Music / Maths / C Block Region 16 - Near Buildings C Block / B Block / Canteen / Office Region 17 – Near buildings B Block / D block / Library Region 18 - Near buildings D block / Fist year Centre / Art / Toilet Block Region 19 - Near buildings Manual Arts / Drama / First Year Centre Region 20 - Near buildings Library / Great Hall / Office front

| Date:                    | Dosimeter Location (approx. position): |
|--------------------------|----------------------------------------|
| Weather:                 |                                        |
| School locations (1-25): |                                        |
| Before School:           |                                        |
|                          |                                        |
| Period 1:                | Vertex                                 |
|                          | Hetter 10                              |
| Period 2:                |                                        |
| First Desser             |                                        |
| FIRST Recess:            |                                        |
| Period 3:                |                                        |
| Tenou 5.                 | Ear                                    |
| Second Recess:           |                                        |
|                          |                                        |
| Period 4:                |                                        |
|                          |                                        |
| Hat use:                 | Neck                                   |
| No hat                   |                                        |
| 🗅 Cap                    |                                        |
| Broadbrim                |                                        |
| Legionaries              |                                        |

Personal Diary HBSHS - neck

## School Region List (refer to school map):

Region 1 - Indoors or Classroom

Region 2 - Under Building or Covered Area – M block (Maths/Science) Region 3 - Under Building or Covered Area – L block (Music) Region 4 - Under Building or Covered Area – C block (Home Ec) Region 5 - Under Building or Covered Area – B block (Computers) Region 6 - Under Building or Covered Area – D block (Chinese) Region 7 - Under Building or Covered Area – G block (First Year Centre) Region 8 - Under Building or Covered Area – G block (Art) Region 9 - Under Building or Covered Area – F block (Manual Arts) Region 10 - Under Building or Covered Area - H block (Manual Arts / Drama) Region 11 - Under Building or Covered Area – Agriculture Region 12 - Under Building or Covered Area – Canteen Region 13 - Under Building or Covered Area – Library Region 14 - Under Building or Covered Area – Office Region 15 – Near Buildings Science / Music / Maths / C Block Region 16 - Near Buildings C Block / B Block / Canteen / Office Region 17 – Near buildings B Block / D block / Library Region 18 - Near buildings D block / Fist year Centre / Art / Toilet Block Region 19 - Near buildings Manual Arts / Drama / First Year Centre Region 20 - Near buildings Library / Great Hall / Office front

| Date:                    | Dosimeter Location (approx. position): |
|--------------------------|----------------------------------------|
| Weather:                 |                                        |
| School locations (1-25): |                                        |
| Before School:           |                                        |
| Period 1:                | Upper neck                             |
| Period 2:                | Neck side                              |
| First Recess:            |                                        |
| Period 3:                | Shoulder                               |
| Second Recess:           | Lower neck                             |
| Period 4:                |                                        |
| Hat use:                 |                                        |
| No hat                   |                                        |
| □ Cap                    |                                        |
| Broadbrim                |                                        |
| Legionaries              |                                        |

Personal Diary HBSHS - arm

## School Region List (refer to school map):

Region 1 - Indoors or Classroom

Region 2 - Under Building or Covered Area – M block (Maths/Science) Region 3 - Under Building or Covered Area – L block (Music) Region 4 - Under Building or Covered Area – C block (Home Ec) Region 5 - Under Building or Covered Area – B block (Computers) Region 6 - Under Building or Covered Area – D block (Chinese) Region 7 - Under Building or Covered Area – G block (First Year Centre) Region 8 - Under Building or Covered Area – G block (Art) Region 9 - Under Building or Covered Area – F block (Manual Arts) Region 10 - Under Building or Covered Area - H block (Manual Arts / Drama) Region 11 - Under Building or Covered Area – Agriculture Region 12 - Under Building or Covered Area – Canteen Region 13 - Under Building or Covered Area – Library Region 14 - Under Building or Covered Area – Office Region 15 – Near Buildings Science / Music / Maths / C Block Region 16 - Near Buildings C Block / B Block / Canteen / Office Region 17 – Near buildings B Block / D block / Library Region 18 - Near buildings D block / Fist year Centre / Art / Toilet Block Region 19 - Near buildings Manual Arts / Drama / First Year Centre Region 20 - Near buildings Library / Great Hall / Office front

| Date:                    | Dosimeter Location (ap | prox. position): |
|--------------------------|------------------------|------------------|
| Weather:                 |                        |                  |
| School locations (1-25): |                        |                  |
| Before School:           |                        |                  |
| Period 1:                | Shoulder               | Shoulder         |
| Period 2:                |                        |                  |
| First Recess:            |                        |                  |
| Period 3:                |                        |                  |
| Second Recess:           | T.                     | E                |
| Period 4:                | orearm                 | Forea            |
| Hat use:                 |                        |                  |
| No hat                   | Wriet                  |                  |
| □ Cap                    | VVIISL                 | *                |
| Broadbrim                |                        |                  |
| Legionaries              |                        |                  |

Personal Diary HBSHS - hand

## School Region List (refer to school map):

Region 1 - Indoors or Classroom

Region 2 - Under Building or Covered Area – M block (Maths/Science) Region 3 - Under Building or Covered Area – L block (Music) Region 4 - Under Building or Covered Area – C block (Home Ec) Region 5 - Under Building or Covered Area – B block (Computers) Region 6 - Under Building or Covered Area – D block (Chinese) Region 7 - Under Building or Covered Area – G block (First Year Centre) Region 8 - Under Building or Covered Area – G block (Art) Region 9 - Under Building or Covered Area – F block (Manual Arts) Region 10 - Under Building or Covered Area - H block (Manual Arts / Drama) Region 11 - Under Building or Covered Area – Agriculture Region 12 - Under Building or Covered Area – Canteen Region 13 - Under Building or Covered Area – Library Region 14 - Under Building or Covered Area – Office Region 15 – Near Buildings Science / Music / Maths / C Block Region 16 - Near Buildings C Block / B Block / Canteen / Office Region 17 - Near buildings B Block / D block / Library Region 18 - Near buildings D block / Fist year Centre / Art / Toilet Block Region 19 - Near buildings Manual Arts / Drama / First Year Centre Region 20 - Near buildings Library / Great Hall / Office front

| Date:                    | Dosimeter Location (approx. position): |
|--------------------------|----------------------------------------|
| Weather:                 |                                        |
| School locations (1-25): |                                        |
| Before School:           | Ihumb                                  |
| Period 1:                | Wrist                                  |
| Period 2:                | Hand back                              |
| First Recess:            | Thumb                                  |
| Period 3:                |                                        |
| Second Recess:           | Hand back                              |
| Period 4:                | VVIISL                                 |
|                          | Thumb 🎊 🖉                              |
| □ No hat                 | Palm                                   |
|                          |                                        |
| Broadbrim                | Hand back                              |
| Legionaries              | Wrist                                  |

Personal Diary HBSHS - leg

## School Region List (refer to school map):

Region 1 - Indoors or Classroom

Region 2 - Under Building or Covered Area – M block (Maths/Science) Region 3 - Under Building or Covered Area – L block (Music) Region 4 - Under Building or Covered Area – C block (Home Ec) Region 5 - Under Building or Covered Area – B block (Computers) Region 6 - Under Building or Covered Area – D block (Chinese) Region 7 - Under Building or Covered Area – G block (First Year Centre) Region 8 - Under Building or Covered Area – G block (Art) Region 9 - Under Building or Covered Area – F block (Manual Arts) Region 10 - Under Building or Covered Area - H block (Manual Arts / Drama) Region 11 - Under Building or Covered Area – Agriculture Region 12 - Under Building or Covered Area – Canteen Region 13 - Under Building or Covered Area – Library Region 14 - Under Building or Covered Area – Office Region 15 – Near Buildings Science / Music / Maths / C Block Region 16 - Near Buildings C Block / B Block / Canteen / Office Region 17 – Near buildings B Block / D block / Library Region 18 - Near buildings D block / Fist year Centre / Art / Toilet Block Region 19 - Near buildings Manual Arts / Drama / First Year Centre Region 20 - Near buildings Library / Great Hall / Office front

| Date:                    | <b>Dosimeter Location (a</b> | pprox. position): |
|--------------------------|------------------------------|-------------------|
| Weather:                 |                              |                   |
| School locations (1-25): |                              |                   |
| Belore School.           |                              |                   |
| Period 1:                | Thigh                        | Thigh             |
| Period 2:                | Knee                         |                   |
| First Recess:            |                              | Calf muscle       |
| Period 3:                | Shin                         |                   |
| Second Recess:           |                              |                   |
| Period 4:                | Ankle                        | Ankle             |
| Hat use:                 |                              |                   |
| No hat                   |                              |                   |
| □ Cap                    |                              |                   |
| Broadbrim                |                              |                   |
| Legionaries              |                              |                   |



Appendix G. Measurements of body surface exposure ratio listed by individual trial

# G.1 Facial exposure ratios

# Table G.1.1: 18 February 2006, SZA 0°-30°, 4/8 cumulus.

|              | Cn1 | Cn2 | Cn3 | Cn4 | Cn5        | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 Cn17 | Cn12 | Cn13 | Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|--------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----------|------|------|------|------|------|------|------|
|              | 100 |     |     |     | 100        |     |     |     |     |           |      |      |      |      |      |      |      |
| Cx1<br>Cx2   | 82  |     |     |     | 98         |     |     |     |     |           |      |      |      |      |      |      |      |
| Cx3          | 02  |     |     |     |            |     |     |     |     | 66        |      |      |      |      |      |      |      |
| Cx4<br>Cx5   | 64  |     |     |     | 78         |     |     |     |     | 59        |      |      |      |      |      |      |      |
| Cx6          | 46  |     |     |     | 55         |     |     |     |     | 40        |      |      |      |      |      |      |      |
| Cx7<br>Cx8   | 58  |     |     |     | 54         |     |     |     |     | 42        |      |      |      |      |      |      |      |
| Cx9          | 11  |     |     |     | <b>E</b> 4 |     |     |     |     | 34        |      |      |      |      |      |      |      |
| Cx10         | 44  |     |     |     | 54         |     |     |     |     | 38        |      |      |      |      |      |      |      |
| Cx12         | 42  |     |     |     | 49         |     |     |     |     | 36        |      |      |      |      |      |      |      |
| Cx13         | 46  |     |     |     | 56         |     |     |     |     | 30        |      |      |      |      |      |      |      |
| Cx15         | 28  |     |     |     | 22         |     |     |     |     | 45        |      |      |      |      |      |      |      |
| Cx17         | 20  |     |     |     | 22         |     |     |     |     | 9         |      |      |      |      |      |      |      |
| Cx18<br>Cx19 |     |     |     |     | 5          |     |     |     |     | 7         |      |      |      |      |      |      |      |
| Cx20         |     |     |     |     | 5          |     |     |     |     | ,         |      |      |      |      |      |      |      |
| Cx21<br>Cx22 |     |     |     |     |            |     |     |     |     | 10        |      |      |      |      |      | 58   |      |
| Cx23         |     |     |     |     |            |     |     |     |     | 34        |      |      |      |      |      |      |      |
| Cx24<br>Cx25 | 46  |     |     |     | 42         |     |     |     |     | 45        |      |      |      |      |      | 18   |      |
| Cx26         |     |     |     |     |            |     |     |     |     | 10        |      |      |      |      |      | 11   |      |
| Cx27<br>Cx28 | 6   |     |     |     | 24         |     |     |     |     | 24        |      |      |      |      |      | 17   |      |
| Cx29         | 0   |     |     |     | 27         |     |     |     |     | 13        |      |      |      |      |      | .,   |      |
| Cx30         | 29  |     |     |     | 36         |     |     |     |     | 12        |      |      |      |      |      |      |      |
| Cx32         | 13  |     |     |     | 23         |     |     |     |     | 12        |      |      |      |      |      |      |      |
| Cx33         | 22  |     |     |     | 25         |     |     |     |     | 13        |      |      |      |      |      |      |      |
| Cx35         | 55  |     |     |     | 25         |     |     |     |     | 12        |      |      |      |      |      |      |      |
| Cx36         | 7   |     |     |     | 10         |     |     |     |     | 16        |      |      |      |      |      |      |      |
| Cx38         |     |     |     |     | 25         |     |     |     |     | 10        |      |      |      |      |      |      |      |
| Cx39         | 20  |     |     |     |            |     |     |     |     | 12        |      |      |      |      |      |      |      |
| Cx40<br>Cx41 | 29  |     |     |     |            |     |     |     |     | 12        |      |      |      |      |      |      |      |
| Cx42         | 8   |     |     |     | 9          |     |     |     |     |           |      |      |      |      |      |      |      |
| Cx43<br>Cx44 | 2   |     |     |     |            |     |     |     |     | 19        |      |      |      |      |      |      |      |
| Cx45         | 2   |     |     |     |            |     |     |     |     | 19        |      |      |      |      |      |      |      |
| Cx46         | 3   |     |     |     | 8          |     |     |     |     | 00        |      |      |      |      |      |      |      |
| Cx47<br>Cx48 | 6   |     |     |     | 11         |     |     |     |     | 20        |      |      |      |      |      |      |      |
| Cx49         | 5   |     |     |     | ••         |     |     |     |     | 25        |      |      |      |      |      |      |      |

Table G.1.2: 12 March 2007, SZA 0°-30°, 1/8 cirrus.

| Cx1 64<br>Cx2                                                                                                                                                                                                    | 73 | 100 100 |    |    |    |    |    |    |    |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|----|----|----|----|----|----|----|----|
| Cx3 87<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx18<br>Cx19<br>Cx20<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx28<br>Cx29 | 78 | 87      | 84 | 74 | 89 |    | 14 | 14 | 25 | 69 |
| Cx30 28<br>Cx31<br>Cx32<br>Cx33<br>Cx34<br>Cx35<br>Cx36<br>Cx37<br>Cx38<br>Cx39<br>Cx40<br>Cx41<br>Cx42<br>Cx43<br>Cx44<br>Cx45<br>Cx44<br>Cx45<br>Cx46<br>Cx47<br>Cx48<br>Cx49                                  | 37 | 32      | 19 |    | 14 | 12 |    |    |    |    |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn16 Cn17 Cn18
| Table G.1.3: | 21 February 2008 | , SZA 0°-30°, | 4/8-2/8 | cumulus. |
|--------------|------------------|---------------|---------|----------|
|--------------|------------------|---------------|---------|----------|

| 100     | 82 |    | 77 |    |     |    |    |    |    |    |    |    |    |    |    |    |
|---------|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|
| Cx1 70  | 94 |    | 89 |    | 100 |    |    |    |    |    |    |    |    |    |    |    |
| Cx2     | 80 |    | 85 |    | 57  |    | 70 |    |    |    |    |    |    |    |    |    |
| Cx3     | 90 |    |    |    | 87  |    | 58 |    | 55 |    |    |    |    |    |    |    |
| Cx4     | 74 |    | 78 |    |     |    | 46 |    | 74 |    |    |    |    |    |    |    |
| Cx5     |    |    |    |    | 79  |    |    |    |    |    | 65 |    |    |    |    |    |
| Cx6     | 53 |    |    |    |     |    |    |    | 28 |    | 40 | 54 |    |    |    |    |
| Cx7     |    |    | 47 |    |     |    | 49 |    |    | 42 |    | 50 |    |    |    |    |
| Cx8     | 58 |    |    |    |     |    |    |    |    |    | 38 | 48 | 34 |    |    |    |
| Cx9     |    |    |    |    | 45  |    |    |    | 42 |    |    |    | 43 |    |    |    |
| Cx10    | 52 |    | 50 |    |     |    | 54 |    |    |    |    | 36 |    |    |    |    |
| Cx11    |    |    |    |    |     |    |    | 45 |    |    |    |    |    | 36 |    |    |
| Cx12    | 45 |    |    |    | 49  |    |    |    | 29 | 33 | 29 | 27 | 36 | 34 |    |    |
| Cx13    |    |    |    |    |     |    | 54 |    |    |    |    |    |    |    |    |    |
| Cx14    | 34 |    |    |    |     |    | 69 |    |    |    |    |    | 29 |    |    |    |
| Cx15    |    |    | 43 |    | 42  |    |    |    |    | 48 |    | 22 |    | 22 |    |    |
| Cx16    | 27 |    |    |    |     |    | 4  |    |    |    | 35 |    |    |    |    |    |
| Cx17    |    |    | 3  |    |     |    |    |    |    | 14 |    | 22 |    | 23 |    |    |
| Cx18    | 6  |    |    |    | 10  |    |    |    |    |    |    |    | 19 |    |    |    |
| Cx19    |    |    | 8  |    |     |    |    |    | 9  |    | 15 | 26 |    |    |    |    |
| Cx20 59 | 11 |    |    |    |     |    |    |    |    |    |    |    |    | 18 |    |    |
| Cx21    |    |    | 7  |    |     | 14 |    |    | 8  |    |    | 25 | 14 |    | 60 |    |
| Cx22 70 |    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |    |
| Cx23 59 | 32 |    |    | 31 |     | 35 |    |    | 40 |    | 29 |    | 21 |    |    |    |
| Cx24    | 34 |    | 52 |    |     | 34 |    |    |    |    |    | 17 |    | 19 |    | 27 |
| Cx25 27 | 47 |    |    |    |     | 43 |    |    | 47 |    | 22 |    |    |    |    |    |
| Cx26    |    | 42 |    |    |     |    |    |    |    |    |    | 25 | 20 |    | 13 | 19 |
| Cx27    | 8  |    | 30 |    |     | 35 |    |    | 29 |    | 24 |    |    |    |    | 9  |
| Cx28    |    |    |    |    |     |    |    |    |    |    |    | 16 | 12 | 24 |    |    |
| Cx29    | 19 |    |    |    |     | 28 |    |    | 17 |    |    | 17 |    |    | 8  |    |
| Cx30    |    |    | 36 |    | 35  |    |    |    |    |    | 17 |    |    |    |    |    |
| Cx31    | 46 |    |    |    |     | 26 |    |    | 10 |    |    | 15 |    | 17 |    |    |
| Cx32    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |    |
| Cx33    | 8  |    |    |    |     | 23 |    |    | 14 | 15 | 13 | 6  |    |    |    |    |
| Cx34    |    |    | 27 |    |     |    |    |    |    |    |    |    |    |    |    |    |
| Cx35    | 28 |    |    |    |     | 14 |    |    | 18 | 17 | 15 |    |    |    |    |    |
| Cx36    |    |    |    | 12 |     |    |    |    |    |    |    |    |    |    |    |    |
| Cx37    | 7  |    |    |    |     |    | 16 |    | 19 | 16 |    |    |    |    |    |    |
| Cx38    |    |    | 15 |    | 27  | 19 |    |    |    | 11 |    |    |    |    |    |    |
| Cx39    | 29 |    |    |    |     |    |    |    | 12 | 13 |    |    |    |    |    |    |
| Cx40    |    |    | 36 |    |     |    |    | 11 | 7  |    |    |    |    |    |    |    |
| Cx41    | 16 |    |    |    |     |    | 11 |    |    | 20 |    |    |    |    |    |    |
| Cx42    |    |    |    | 10 | 8   | 7  | 3  | 10 |    |    |    |    |    |    |    |    |
| Cx43    | 5  |    |    |    |     |    |    |    |    | 20 |    |    |    |    |    |    |
| Cx44 1  | 1  | 35 | 2  |    | 5   |    |    | 17 |    |    |    |    |    |    |    |    |
| Cx45    | 3  |    |    |    |     |    |    |    |    | 23 |    |    |    |    |    |    |
| Cx46    |    |    |    |    | 9   |    |    | 18 |    |    |    |    |    |    |    |    |
| Cx47    | 7  |    |    |    |     |    |    |    |    | 25 |    |    |    |    |    |    |
| Cx48    |    |    |    |    | 14  |    |    | 14 |    |    |    |    |    |    |    |    |
| Cv40    | 0  |    | 11 |    |     |    |    |    |    | 30 |    |    |    |    |    |    |

| Table G.1.4: | 25 January 2008, SZA 0°-30° | , 2/8-5/8 cumulus / altocumulus. |
|--------------|-----------------------------|----------------------------------|
|--------------|-----------------------------|----------------------------------|

|      | 100 |    | 85 |     | 96 |    |    |    |            |    |    |    |    |    |
|------|-----|----|----|-----|----|----|----|----|------------|----|----|----|----|----|
| Cx1  | 100 |    | 90 |     |    |    | 58 |    |            |    |    |    |    |    |
| Cx2  | 100 |    | 77 |     |    | 71 |    | 86 |            |    |    |    |    |    |
| Cx3  | 80  |    |    | 64  |    |    | 68 | 87 |            |    |    |    |    |    |
| Cx4  | 78  |    |    | 100 |    |    |    | 94 | 69         |    |    |    |    |    |
| Cx5  |     |    |    | 56  |    |    |    | 41 | 79         |    |    |    |    |    |
| Cx6  | 70  |    |    |     |    |    |    |    |            | 55 |    |    |    |    |
| Cx7  |     |    |    | 50  |    |    | 56 | 67 | 49         | 53 |    |    |    |    |
| Cx8  | 38  |    |    |     |    |    |    |    |            | 48 | 50 |    |    |    |
| Cx9  |     |    |    | 58  |    |    |    | 62 |            |    | 51 |    |    |    |
| Cx10 | 51  |    |    |     |    |    |    | -  |            |    | 31 |    |    |    |
| Cx11 |     |    |    | 88  |    |    | 84 | 45 |            | 45 |    | 45 |    |    |
| Cx12 | 30  |    |    |     |    |    | -  | -  |            | -  |    | -  |    |    |
| Cx13 |     |    |    | 50  |    |    |    | 69 |            |    | 46 | 40 |    |    |
| Cx14 | 56  |    |    |     |    |    |    | 60 |            |    |    |    |    |    |
| Cx15 |     |    |    | 59  |    |    |    | 43 |            | 28 |    |    |    |    |
| Cx16 | 32  |    |    |     |    |    |    |    |            |    |    | 23 |    |    |
| Cx17 |     |    |    | 5   |    |    |    | 7  |            |    | 29 |    |    |    |
| Cx18 | 17  |    |    | 8   |    |    |    |    |            | 27 | _0 | 22 |    |    |
| Cx19 | .,  |    |    | 0   |    |    |    | 16 |            | 21 |    | ~~ |    |    |
| Cx20 | 23  |    |    | 7   |    |    |    | 10 |            | 32 | 23 | 20 |    |    |
| Cx21 | 20  |    |    | '   |    |    | 15 | 21 |            | 02 | 20 | 20 |    |    |
| Cx22 | 55  | 42 |    | 17  |    |    | 10 | 21 |            |    | 21 |    | 75 |    |
| Cx23 | 40  | 74 |    | .,  |    |    |    | 31 |            | 32 | 21 |    | 10 |    |
| Cx24 | 55  |    |    | 55  |    |    |    | 40 |            | 02 |    |    | 22 | 35 |
| Cx25 | 19  |    |    | 44  |    |    | 53 | 40 |            |    |    |    | ~~ | 00 |
| Cx26 | 10  |    | 38 | ••  |    |    | 00 | 29 |            | 26 |    |    | 12 | 31 |
| Cx27 | 5   |    | 00 |     |    |    |    | 20 |            | 18 | 31 |    | 12 | 01 |
| Cx28 | U   |    |    | 25  |    |    |    | 24 |            | 19 | 01 |    | 26 |    |
| Cx29 | 12  |    |    | 20  |    |    | 26 |    |            | 18 |    |    | 20 |    |
| Cx30 | 12  |    |    | 45  |    |    | 20 | 15 | 12         | 15 |    | 24 |    |    |
| Cx31 | 40  |    |    | 10  |    |    |    | 10 |            | 10 |    |    |    |    |
| Cx32 |     |    |    | 33  |    |    |    | 20 | 13         | 8  |    | 12 |    |    |
| Cx33 | 5   |    |    | 00  |    |    | 18 | 20 | 10         | Ū  |    |    |    |    |
| Cx34 | U   |    |    | 25  |    |    | 10 | 19 | 16         |    |    |    |    |    |
| Cx35 | 25  |    |    | 20  |    |    |    | 10 | 10         |    |    |    |    |    |
| Cx36 | 20  |    |    | 16  |    |    |    | 21 |            |    |    |    |    |    |
| Cx37 | 7   |    |    | 10  |    |    | 26 |    | 17         |    |    |    |    |    |
| Cx38 | '   |    |    | 23  |    |    | 20 | 18 | 11         |    |    |    |    |    |
| Cx39 | 33  |    |    | 20  |    |    |    | 10 | 18         |    |    |    |    |    |
| Cx40 | 55  |    |    | 40  |    |    | 10 | 18 | 10         |    |    |    |    |    |
| Cy41 | 21  |    |    | 40  |    |    | 15 | 5  | 17         |    |    |    |    |    |
| Cy42 | 21  |    |    | 6   |    | 3  | 6  | 11 | 17         |    |    |    |    |    |
| Cx43 | 4   |    |    | 0   | 4  | 5  | 8  |    | 20         |    |    |    |    |    |
| Cy44 | 4   |    |    | 2   | 4  |    | 0  | 29 | 25         |    |    |    |    |    |
| Cx45 | 1   |    | 2  | 5   |    |    |    | 20 | 32         |    |    |    |    |    |
| Cx46 |     |    | 2  | 7   |    |    | 15 | 17 | 52         |    |    |    |    |    |
| Cx47 |     |    |    | '   |    |    | 15 | 17 | 33         |    |    |    |    |    |
| Cx48 |     |    |    | 12  |    |    |    | 10 | 55         |    |    |    |    |    |
| Cy49 |     |    |    | 10  |    |    | 18 | 13 | 27         |    |    |    |    |    |
| 0,43 |     |    |    |     |    |    | 10 |    | <b>Z</b> 1 |    |    |    |    |    |

| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx12 |    |    | 27<br>22 | 28<br>18 |
|---------------------------------------------------------------------------------------------|----|----|----------|----------|
| Cx14                                                                                        | 29 |    | 14       | 17       |
| Cx15                                                                                        | 00 |    | 40       |          |
| Cx16<br>Cx17                                                                                | 23 |    | 13       | 12       |
| Cx18                                                                                        |    |    | 14       |          |
| Cx19                                                                                        | 9  | 10 | 4.4      |          |
| Cx20<br>Cx21                                                                                | 8  | 10 | 14       |          |
| Cx22                                                                                        | -  |    | 15       | 31       |
| Cx23                                                                                        | 21 | 18 |          |          |
| Cx24<br>Cx25                                                                                | 34 |    |          |          |
| Cx26                                                                                        |    |    |          | 7        |
| Cx27                                                                                        | 18 | 10 |          | 10       |
| Cx28<br>Cx29                                                                                | 9  | 10 |          | 16       |
| Cx30                                                                                        | 5  | 10 |          | 15       |
| Cx31                                                                                        | 9  |    |          |          |
| Cx32<br>Cx33                                                                                | ٩  |    |          | 8        |
| Cx34                                                                                        | 9  |    |          |          |
| Cx35                                                                                        | 12 |    |          |          |
| Cx36                                                                                        | 0  |    |          |          |
| Cx37<br>Cx38                                                                                | 9  |    |          |          |
| Cx39                                                                                        | 9  |    |          |          |
| Cx40                                                                                        |    |    |          |          |
| Cx41                                                                                        |    |    |          |          |
| Cx42<br>Cx43                                                                                |    |    |          |          |
| Cx44                                                                                        |    |    |          |          |
| Cx45                                                                                        |    |    |          |          |
| Cx46                                                                                        |    |    |          |          |
| Cx47                                                                                        |    |    |          |          |
| Cx49                                                                                        |    |    |          |          |

Table G.1.5: 14 November 2007, SZA 0°-30°, 1/8-3/8 cumulus.

|                                              | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 ( | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|----------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|------|------|------|------|------|------|------|------|
| 0.4                                          | 100 |     |     |     |     |     |     |     |     |        |      |      |      |      |      |      |      |      |
| Cx1<br>Cx2                                   | 62  |     |     |     |     |     |     |     |     |        |      |      |      |      |      |      |      |      |
| Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7              | 54  |     |     |     |     |     |     |     |     | 7      | 72   |      |      |      |      |      |      |      |
| Cx8<br>Cx9<br>Cx10<br>Cx11                   | 48  |     |     |     |     |     |     |     |     |        |      |      |      |      |      |      |      |      |
| Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16         | 45  |     |     |     |     |     |     |     |     | 5      | 53   |      |      |      |      |      |      |      |
| Cx17<br>Cx18<br>Cx19                         | 45  |     |     |     |     |     |     |     |     | 2      | 24   |      |      |      |      |      |      |      |
| Cx20<br>Cx21<br>Cx22                         | 60  |     |     |     |     |     |     |     |     |        |      |      |      |      |      |      | 58   |      |
| Cx23<br>Cx24<br>Cx25<br>Cx26                 | 61  |     |     |     |     |     |     |     |     | 6      | 63   |      |      |      |      |      | 36   |      |
| Cx27<br>Cx28<br>Cx29<br>Cx30                 | 18  |     |     |     |     |     |     |     |     | 3      | 30   |      |      |      |      |      |      |      |
| Cx31<br>Cx32<br>Cx33<br>Cx34<br>Cx35<br>Cx36 | 48  |     |     |     |     |     |     |     |     | 2      | 20   |      |      |      |      |      |      |      |
| Cx37<br>Cx38<br>Cx39<br>Cx40<br>Cx41         | 54  |     |     |     |     |     |     |     |     | 1      | 14   |      |      |      |      |      |      |      |
| Cx42<br>Cx43<br>Cx44<br>Cx45<br>Cx46         | 2   |     |     |     |     |     |     |     |     | 3      | 35   |      |      |      |      |      |      |      |
| Cx47<br>Cx48<br>Cx49                         | 22  |     |     |     |     |     |     |     |     | 3      | 36   |      |      |      |      |      |      |      |

Table G.1.6:19 June 2006, SZA 30°-50°, 8/8 cumulonimbus / altocumulus.

|                    | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| Cx1                | 100 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
| Cx2<br>Cx3<br>Cx4  | 88  |     |     |     |     |     |     |     |     |      | 45   |      |      |      |      |      |      |      |
| Cx5<br>Cx6<br>Cx7  | 60  |     |     |     |     |     |     |     |     |      | 54   |      |      |      |      |      |      |      |
| Cx8<br>Cx9<br>Cx10 |     |     |     |     |     |     |     |     |     |      | 47   |      |      |      |      |      |      |      |
| Cx11<br>Cx12       | 68  |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
| Cx13<br>Cx14       |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
| Cx15<br>Cx16       |     |     |     |     |     |     |     |     |     |      | 59   |      |      |      |      |      |      |      |
| Cx17<br>Cx18       | 34  |     |     |     |     |     |     |     |     |      | 21   |      |      |      |      |      |      |      |
| Cx20<br>Cx21       | 54  |     |     |     |     |     |     |     |     |      | 21   |      |      |      |      |      | 50   |      |
| Cx22<br>Cx23       | 69  |     |     |     |     |     |     |     |     |      | 35   |      |      |      |      |      |      |      |
| Cx24<br>Cx25       | 51  |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      | 39   |
| Cx26<br>Cx27       |     |     |     |     |     |     |     |     |     |      | 43   |      |      |      |      |      | 20   |      |
| Cx29<br>Cx30       | 54  |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      | 29   |      |
| Cx31<br>Cx32       | 0.  |     |     |     |     |     |     |     |     |      | 27   |      |      |      |      |      |      |      |
| Cx33<br>Cx34       | 55  |     |     |     |     |     | 33  |     |     |      |      |      |      |      |      |      |      |      |
| Cx35<br>Cx36       |     |     |     |     |     |     |     |     |     |      | 31   |      |      |      |      |      |      |      |
| Cx37<br>Cx38       | 32  |     |     |     |     |     |     |     |     |      | 26   |      |      |      |      |      |      |      |
| Cx40<br>Cx41       | 52  |     |     |     |     |     |     |     |     |      | 20   |      |      |      |      |      |      |      |
| Cx42<br>Cx43       | 01  |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
| Cx44<br>Cx45       | 3   |     |     |     |     |     |     |     |     |      | 39   |      |      |      |      |      |      |      |
| Cx46<br>Cx47       | 7   |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
| Cx48<br>Cx49       | 17  |     |     |     |     |     |     |     |     |      | 30   |      |      |      |      |      |      |      |

Table G.1.7: 22 June 2006, SZA 30°-50°, 7/8-8/8 cumulonimbus.

### Table G.1.8: 16 September 2005, SZA 30°-50°.

| Cx1       | 100      |            |     |
|-----------|----------|------------|-----|
| Cx2       |          | 100        |     |
| Cx3       |          |            |     |
| Cx4       |          | 100        |     |
| Cx5       | 71       |            |     |
| Cx6       |          | 90         |     |
| Cx7       | 65       |            | 88  |
| Cx8       |          | 79         |     |
| Cx9       | 62       |            | 70  |
| Cx10      |          | 58         |     |
| CX11      | 66       | 77         | 53  |
| Cx12      | 60       | 11         | E 4 |
|           | 69       | 90         | 51  |
| Cx15      | 66       | 02         | 40  |
| Cx16      | 00       | 12         | -0  |
| Cx17      | 35       |            | 42  |
| Cx18      |          | 13         |     |
| Cx19      | 38       |            | 48  |
| Cx20      |          | 21         |     |
| Cx21      | 82       |            | 42  |
| Cx22      |          | 33         |     |
| Cx23      | 98       |            | 60  |
| Cx24      |          | 83         |     |
| Cx25      | 56       |            | 47  |
| Cx26      | <u>_</u> | 51         | ~~  |
| CX27      | 9        | 20         | 32  |
|           | 24       | 39         | 22  |
| Cv30      | 31       | 54         | 32  |
| Cx31      | 67       | 54         | 31  |
| Cx32      | 01       | 40         | 01  |
| Cx33      | 12       |            | 6   |
| Cx34      |          | 31         |     |
| Cx35      | 50       |            |     |
| Cx36      |          | 26         |     |
| Cx37      | 11       |            |     |
| Cx38      |          | 42         |     |
| Cx39      | 54       |            |     |
| Cx40      | <u>.</u> | 38         |     |
| CX41      | 34       |            |     |
| Cv42      | 0        |            |     |
| $C_{YAA}$ | 0        | 12         |     |
| Cy45      |          | 15         |     |
| Cx46      | 8        | 24         |     |
| Cx47      | 0        | <b>L</b> T |     |
| Cx48      | 12       | 25         |     |
| Cx49      |          | -          |     |
|           |          |            |     |

|                                                                                      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|--------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9                          |     | 66  |     | 70  |     | 70  |     | 67  |     | 75   | 66   | 75   | 48   |      |      |      |      |      |
| Cx10<br>Cx11<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx16<br>Cx17<br>Cx18<br>Cx19 |     | 16  |     | 48  |     | 54  |     |     |     | 59   |      | 47   | 33   | 29   | 33   | 32   |      |      |
| Cx20<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx28<br>Cx29         |     | 47  |     | 53  |     | 57  |     | 58  |     | 58   |      | 52   | 43   | 36   | 28   |      | 20   | 24   |
| Cx30<br>Cx31<br>Cx32<br>Cx33<br>Cx34<br>Cx35<br>Cx36<br>Cx36<br>Cx37<br>Cx38<br>Cx39 |     | 44  |     | 45  |     | 39  |     | 30  |     | 19   |      | 18   | 20   | 19   |      | 20   |      |      |
| Cx40<br>Cx41<br>Cx42<br>Cx43<br>Cx44<br>Cx45<br>Cx46<br>Cx47<br>Cx48<br>Cx49         |     | 16  |     | 16  |     | 19  |     | 14  |     |      |      |      |      |      |      |      |      |      |

Table G.1.9: 5 October 2006, SZA 30°-50°, 3/8 cumulus.

#### Table G.1.10: 18 December 2007, SZA 30°-50°, 7/8-8/8 cumulonimbus / stratus.

| Cx1  |    |         |     |     |     |    |    |
|------|----|---------|-----|-----|-----|----|----|
| Cx2  |    |         | 92  |     |     |    |    |
| Cx3  |    |         | 76  |     |     |    |    |
| Cx4  |    | 100     | 59  | 71  |     |    |    |
| Cx5  |    |         |     | 63  |     |    |    |
| Cx6  |    | 48      | 48  | 60  | 62  |    |    |
| Cx7  |    |         |     |     | 51  |    |    |
| Cx8  |    |         | 85  | 67  | 0.  |    |    |
| Cx9  |    | 50      |     | 0.  | 35  |    |    |
| Cx10 |    | 00      | 48  | 38  | 00  |    |    |
| Cx11 |    | 38      | 10  | 00  |     | 38 |    |
| Cx12 |    | 00      | 51  | 36  | 35  | 37 |    |
| Cx13 |    | 52      | 01  | 00  | 00  | 07 |    |
| Cx14 |    | 02      | 75  | 34  | 27  | 31 |    |
| Cx15 |    | 65      | 10  | 04  | 21  | 01 |    |
| Cx16 |    | 00      | 16  |     | 27  | 28 |    |
| Cy17 |    |         | 10  | 27  | 21  | 20 |    |
| Cv18 | 21 |         | 10  | 21  | 26  | 44 |    |
| Cx10 | 21 |         | 15  | 10  | 20  | 41 |    |
| Cx19 | 22 |         | 10  | 19  | 24  |    |    |
| Cx20 | 23 | 10      | 19  | 25  | 31  |    |    |
| CX21 | 20 | 19      | 20  | 25  | 07  | 40 |    |
| CXZZ | 30 |         | 30  | 46  | 37  | 40 | 77 |
| CX23 | 37 |         | 4.4 | 46  | 24  |    | 11 |
| CX24 | 73 |         | 44  | 47  | 34  | 40 | 20 |
| CX25 | 10 |         | 10  | 47  | 0.4 | 18 | 30 |
| CX26 | 19 |         | 42  | 00  | 24  |    | ~  |
| CX27 |    |         | ~~  | 28  | ~-  |    | 31 |
| CX28 |    | ~ ~     | 29  |     | 25  | 32 |    |
| CX29 |    | 34      |     | 22  | 25  |    |    |
| CX30 |    |         | 22  | 4.0 | 28  | 25 |    |
| Cx31 |    | 44      |     | 18  |     |    |    |
| CX32 |    |         | 22  | 4.0 |     | 14 |    |
| CX33 |    | 29      |     | 16  |     |    |    |
| CX34 |    | <i></i> | 31  |     |     |    |    |
| CX35 |    | 31      |     | 35  |     |    |    |
| Cx36 |    |         | 24  |     |     |    |    |
| Cx37 |    | 23      |     | 22  |     |    |    |
| Cx38 |    |         | 26  | 19  |     |    |    |
| Cx39 |    | 29      |     | 22  |     |    |    |
| Cx40 |    |         | 18  |     |     |    |    |
| Cx41 |    | 23      | 10  | 26  |     |    |    |
| Cx42 |    |         |     |     |     |    |    |
| Cx43 |    | 5       | 19  | 29  |     |    |    |
| Cx44 |    |         |     |     |     |    |    |
| Cx45 |    | 14      | 24  | 30  |     |    |    |
| Cx46 |    |         |     |     |     |    |    |
| Cx47 |    | 17      | 24  | 47  |     |    |    |
| Cx48 |    |         |     |     |     |    |    |
| Cx49 |    | 21      | 25  | 35  |     |    |    |
|      |    |         |     |     |     |    |    |

# Table G.1.11: 16 October 2007, SZA 30°-50°, clear.

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8           | Cn9 | Cn10 C | n11 | Cn12 | Cn13 | Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|------|-----|-----|-----|-----|-----|-----|-----|---------------|-----|--------|-----|------|------|------|------|------|------|------|
|      |     |     | 69  |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
| Cx1  |     |     | 97  |     |     |     |     | 70            |     |        |     |      |      |      |      |      |      |      |
| Cx2  |     |     |     |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
| Cx3  |     |     | 69  |     |     |     |     | 63            |     |        |     |      | 65   |      |      |      |      |      |
| Cx5  |     |     |     |     |     |     |     | 60            |     |        |     |      | 05   |      |      |      |      |      |
| Cx6  |     |     | 61  |     |     |     |     |               |     |        |     |      | 56   |      |      |      |      |      |
| Cx7  |     |     | 45  |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
|      |     |     | 45  |     |     |     |     | 55            |     |        |     |      | 30   |      | 16   |      |      |      |
| Cx10 |     |     |     |     |     |     |     |               |     |        |     |      | 55   |      | 40   |      |      |      |
| Cx11 |     |     |     |     |     |     |     | 60            |     |        |     |      |      |      | 46   |      |      |      |
| Cx12 |     |     |     |     |     |     |     |               |     |        |     |      | 32   |      |      |      |      |      |
| Cx13 |     |     |     |     |     |     |     | 57            |     |        |     |      |      |      |      |      |      |      |
| Cx15 |     |     |     |     |     |     |     | 49            |     |        |     |      | 37   |      |      |      |      |      |
| Cx16 |     |     |     |     |     |     |     |               |     |        |     |      |      |      | 32   |      |      |      |
| Cx17 |     |     |     |     |     |     |     | •             |     |        |     |      | 00   |      |      |      |      |      |
| Cx10 |     |     |     |     |     |     |     | 9             |     |        |     |      | 26   |      |      |      |      |      |
| Cx20 |     |     |     |     |     |     |     | 16            |     |        |     |      |      |      |      |      |      |      |
| Cx21 |     |     | 27  |     |     |     |     |               |     |        |     |      | 44   |      |      |      |      |      |
| Cx22 |     |     | 40  |     |     |     |     | o <del></del> |     |        |     |      |      |      |      |      |      |      |
| Cx23 |     |     | 46  |     |     |     |     | 37            |     |        |     |      | 38   |      |      |      |      |      |
| Cx25 |     |     | 36  |     |     |     |     | 49            |     |        |     |      | 50   |      | 17   |      |      |      |
| Cx26 |     |     |     |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
| Cx27 |     |     | 4.0 |     |     |     |     |               |     |        |     |      | ~~   |      | 31   |      |      |      |
| Cx28 |     |     | 16  |     |     |     |     | 34            |     |        |     |      | 22   |      |      |      |      |      |
| Cx30 |     |     |     |     |     |     |     |               |     |        |     |      |      |      | 30   |      |      |      |
| Cx31 |     |     | 35  |     |     |     |     | 30            |     |        |     |      | 21   |      |      |      |      |      |
| Cx32 |     |     | •   |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
| Cx33 |     |     | 8   |     |     |     |     | 24            |     |        |     |      | 15   |      |      |      |      |      |
| Cx35 |     |     | 37  |     |     |     |     | 24            |     |        |     |      | 18   |      |      |      |      |      |
| Cx36 |     |     | -   |     |     |     |     |               |     |        |     |      | -    |      |      |      |      |      |
| Cx37 |     |     | 4.0 |     |     |     |     | 19            |     |        |     |      |      |      |      |      |      |      |
| Cx38 |     |     | 18  |     |     |     |     | 21            |     |        |     |      |      |      |      |      |      |      |
| Cx40 |     |     | 35  |     |     |     |     | 21            |     |        |     |      |      |      |      |      |      |      |
| Cx41 |     |     |     |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
| Cx42 |     |     | 17  |     |     |     |     | 8             |     |        |     |      |      |      |      |      |      |      |
| Cx43 |     |     |     |     |     |     |     | 11            |     |        |     |      |      |      |      |      |      |      |
| Cx45 |     |     |     |     |     |     |     | 11            |     |        |     |      |      |      |      |      |      |      |
| Cx46 |     |     |     |     |     |     |     | 21            |     |        |     |      |      |      |      |      |      |      |
| Cx47 |     |     |     |     |     |     |     |               |     |        |     |      |      |      |      |      |      |      |
| Cx48 |     |     |     |     |     |     |     | 26            |     |        |     |      |      |      |      |      |      |      |
| CX49 |     |     |     |     |     |     |     | 20            |     |        |     |      |      |      |      |      |      |      |

| Table G.1.12: | 16 October 2007 | , SZA 50°-80°, clear. |
|---------------|-----------------|-----------------------|
|---------------|-----------------|-----------------------|

| Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn16 Cn17 Cn18 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------------------------------|
|     |     | 81  |     | 100 |     |     |     |     |                                              |

| Cx1          |                |    |    | 74  |    |     |    |    |    |    |    |    |    |
|--------------|----------------|----|----|-----|----|-----|----|----|----|----|----|----|----|
| Cx2          |                |    |    |     |    |     |    |    |    |    |    |    |    |
| Cx3          |                |    |    |     |    |     |    |    |    |    |    |    |    |
| Cx4          |                |    |    |     |    | 63  | 77 |    |    |    |    |    |    |
| Cx5          |                |    |    |     |    |     | 88 |    |    |    |    |    |    |
| Cx6          |                |    |    |     |    |     |    |    | 90 |    |    |    |    |
| Cx7          |                |    |    |     |    |     |    |    | 72 |    |    |    |    |
| Cx8          |                |    |    |     |    | 66  |    | 78 |    |    |    |    |    |
| Cx9          |                |    |    |     |    |     |    |    |    |    |    |    |    |
| Cx10         |                |    |    | 39  |    |     |    | 48 |    | 66 |    |    |    |
| Cx11         |                |    |    |     |    | 74  |    |    |    |    | 70 |    |    |
| Cx12         |                |    |    | 55  |    |     |    |    | 53 |    |    |    |    |
| Cx13         |                |    |    |     |    | 60  |    |    |    |    | 62 |    |    |
| Cx14         |                |    |    | 54  |    |     |    | 52 |    | 53 |    |    |    |
| Cx15         |                |    |    |     |    |     |    |    |    |    | 54 |    |    |
| Cx16         |                |    |    | 18  |    |     | 53 | 32 |    |    |    |    |    |
| Cx17         |                |    |    |     |    |     |    |    | 43 |    | 26 |    |    |
| Cx18         |                |    |    |     |    |     |    | 45 |    | 31 |    |    |    |
| Cx19         |                |    |    |     | 18 |     |    |    |    | 0. | 29 |    |    |
| Cx20         |                |    |    |     |    |     |    | 11 | 49 |    |    |    |    |
| Cx21         |                |    |    | 25  |    |     |    |    | 10 | 23 | 52 |    |    |
| Cx22         | 30             |    |    | 20  | 38 |     |    |    |    | 20 | 02 |    |    |
| Cx23         | 00             |    |    |     | 00 |     |    |    | 49 | 49 |    |    | 60 |
| Cx24         |                |    |    | 83  |    |     |    | 52 | 40 | 40 | 31 |    | 00 |
| Cx25         | 46             |    |    | 51  |    | 82  |    | 52 |    |    | 51 | 16 | 46 |
| Cx26         | <del>1</del> 0 |    |    | 51  |    | 02  |    |    | 50 |    |    | 10 | 40 |
| Cx27         |                |    |    | 37  |    |     |    | 51 | 50 | 10 |    |    | 40 |
| Cv28         |                |    |    | 57  |    | 47  |    | 51 | 40 | 43 |    |    | 40 |
| Cx20         |                |    |    |     |    | 47  |    | 22 | 40 | 24 |    | 25 |    |
| Cx20         |                |    |    | 40  |    | 22  |    | 22 |    | 34 |    | 25 |    |
| Cx30         |                |    |    | 40  |    | 33  |    | 20 | 27 |    | 27 |    |    |
| Cx31         |                |    |    | FC  |    | 22  |    | 20 | 21 |    | 57 |    |    |
| Cx32         |                |    |    | 50  |    | 33  |    | 24 | 0  |    |    |    |    |
| Cx33         |                |    |    |     |    | 22  |    | 24 | 0  |    |    |    |    |
| CX34<br>Cx25 |                |    |    | 20  |    | 22  |    | 44 |    |    |    |    |    |
| CX35         |                |    |    | 39  |    | 45  |    | 41 |    |    |    |    |    |
| CX30         |                |    |    | 07  |    | 45  |    |    |    |    |    |    |    |
| CX37         |                |    |    | 37  |    | 00  | 05 |    |    |    |    |    |    |
| CX38         |                |    |    |     |    | 36  | 25 |    |    |    |    |    |    |
| CX39         |                | 45 |    | ~ ( |    | 4.0 | 23 |    |    |    |    |    |    |
| Cx40         |                |    |    | 24  |    | 18  | ~~ |    |    |    |    |    |    |
| Cx41         |                | 47 |    |     |    |     | 38 |    |    |    |    |    |    |
| Cx42         |                |    |    |     |    |     |    |    |    |    |    |    |    |
| Cx43         |                |    |    |     | 43 |     | 36 |    |    |    |    |    |    |
| Cx44         |                |    | 14 |     |    |     |    |    |    |    |    |    |    |
| Cx45         |                |    |    |     | 35 |     | 27 |    |    |    |    |    |    |
| Cx46         |                |    | 14 |     |    |     |    |    |    |    |    |    |    |
| Cx47         |                |    |    |     | 46 |     | 58 |    |    |    |    |    |    |
| Cx48         |                |    | 32 |     |    |     |    |    |    |    |    |    |    |
| Cx49         |                |    |    |     | 33 |     | 43 |    |    |    |    |    |    |

# Table G.1.13: 27 May 2005, SZA 50°-80°.

| Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn16 Cn1 | ' Cn18 |
|----------------------------------------------------------------------------|--------|
|----------------------------------------------------------------------------|--------|

|      | 100 |     |            |
|------|-----|-----|------------|
| Cx1  | 400 | 73  |            |
| Cx2  | 100 | 100 |            |
| Cx4  | 100 | 100 |            |
| Cx5  |     | 84  |            |
| Cx6  | 78  |     | 75         |
| Cx7  |     | 80  |            |
| Cx8  | 94  |     | 63         |
| Cx9  | 22  | 90  | 400        |
| Cx10 | 88  | 75  | 100        |
| Cx12 | 88  | 75  | 68         |
| Cx13 |     | 83  | 00         |
| Cx14 | 92  |     | 53         |
| Cx15 |     | 82  |            |
| Cx16 | 56  |     | 34         |
| Cx17 | 44  | 11  | <b>0</b> 4 |
| Cv10 | 41  | 24  | 94         |
| Cx20 | 67  | 34  | 37         |
| Cx21 | 01  | 42  | 51         |
| Cx22 | 100 | -   | 77         |
| Cx23 |     | 59  |            |
| Cx24 | 33  |     | 44         |
| Cx25 |     | 79  | 10         |
| CX26 | 25  | 56  | 43         |
| Cy28 | 21  | 90  | 61         |
| Cx29 | 21  | 52  | 01         |
| Cx30 | 65  | 02  | 30         |
| Cx31 |     | 59  |            |
| Cx32 | 39  |     | 34         |
| Cx33 |     | 45  |            |
| CX34 | 64  | 20  |            |
| Cx36 | 22  | 39  |            |
| Cx37 |     | 41  |            |
| Cx38 | 36  |     |            |
| Cx39 |     | 63  |            |
| Cx40 | 62  |     |            |
| Cx41 | 22  | 25  |            |
| Cx42 | 29  | 0   |            |
| Cx43 | 7   | 0   |            |
| Cx45 | 1   |     |            |
| Cx46 | -   |     |            |
| Cx47 | 13  | 16  |            |
| Cx48 |     |     |            |
| Cx49 | 28  | 37  |            |

## Table G.1.14: 27 August 2007, SZA 50°-80°, 1/8 cumulus.

|              | Cn1 | Cn2    | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9       | Cn10 Cn | n11 Cr | 12 Cn1 | 3 Cn14 | Cn15 | Cn16 | Cn17 | Cn18 |
|--------------|-----|--------|-----|-----|-----|-----|-----|-----|-----------|---------|--------|--------|--------|------|------|------|------|
| 0.1          |     | 100    |     | 83  |     |     |     |     |           |         |        |        |        |      |      |      |      |
| Cx2<br>Cx3   |     | 96     |     | 100 |     |     |     |     | 100<br>79 |         |        |        |        |      |      |      |      |
| Cx4<br>Cx5   |     | 94     |     |     |     |     |     |     | 92        |         |        | 97     |        |      |      |      |      |
| Cx6<br>Cx7   |     | 73     |     |     |     |     |     |     | 94        |         |        | 72     |        |      |      |      |      |
| Cx8<br>Cx9   |     | 73     |     |     |     |     |     |     | 86        |         |        |        |        |      |      |      |      |
| Cx10<br>Cx11 |     | 78     |     |     |     |     |     |     | 79        |         |        | 76     |        |      | 65   |      |      |
| Cx12<br>Cx13 |     | 65     |     |     |     |     |     |     | 66        |         |        | 56     |        |      | 59   |      |      |
| Cx14<br>Cx15 |     | 77     |     |     |     |     |     |     | 77        |         |        |        |        |      |      |      |      |
| Cx16<br>Cx17 |     | 58     |     |     |     |     |     |     | 28        |         |        | 57     |        |      | 57   |      |      |
| Cx18<br>Cx19 |     | 29     |     |     |     |     |     |     | 39        |         |        | 54     |        |      | 43   |      |      |
| Cx20<br>Cx21 |     | 61     |     |     |     |     |     |     | 39        |         |        |        |        |      |      |      |      |
| Cx22<br>Cx23 |     | 53     |     |     |     |     |     |     |           |         | 58     |        |        |      |      |      | 69   |
| Cx24<br>Cx25 |     | 75     |     |     |     |     |     |     | 64        |         | 83     |        |        |      |      |      | 48   |
| Cx26<br>Cx27 |     | 26     |     |     |     |     |     |     | 73        |         |        |        |        |      |      |      | 34   |
| Cx28<br>Cx29 |     | 15     |     |     |     |     |     |     | 51        |         | 23     |        |        |      |      |      |      |
| Cx30<br>Cx31 |     | 63     |     |     |     |     |     |     |           |         |        |        |        |      | 37   |      |      |
| Cx32<br>Cx33 |     | 39     |     |     |     |     |     |     | 44        |         | 33     | i      |        |      |      |      |      |
| Cx34<br>Cx35 |     | 72     |     |     |     |     |     |     | 30        |         | 38     | ł      |        |      |      |      |      |
| Cx36<br>Cx37 |     | 15     |     |     |     |     |     |     |           |         |        |        |        |      |      |      |      |
| Cx38<br>Cx39 |     | 66     |     |     |     |     |     |     | 35        |         | 32     |        |        |      |      |      |      |
| Cx40<br>Cx41 |     | 33     |     |     |     | 38  |     |     | 22        |         | 44     |        |        |      |      |      |      |
| Cx42<br>Cx43 |     | 10     |     |     |     |     |     |     | 0<br>28   |         |        |        |        |      |      |      |      |
| Cx44<br>Cx45 |     | 0<br>1 |     |     |     |     |     |     | 40        |         |        |        |        |      |      |      |      |
| Cx46<br>Cx47 |     |        |     |     |     |     |     |     |           |         |        |        |        |      |      |      |      |
| Cx48<br>Cx49 |     | 16     |     |     |     |     |     |     | 52        |         |        |        |        |      |      |      |      |
|              |     |        |     |     |     |     |     |     |           |         |        |        |        |      |      |      |      |

### G.2 Neck exposure ratios

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1  | 5   |     | 4   | 17  | 6   | 16  | 7   |     |     |
| Cx2  | 6   |     | 9   |     | 11  |     | 10  |     |     |
| Cx3  | 9   |     | 11  |     | 9   |     | 10  |     |     |
| Cx4  | 13  |     | 12  |     | 13  |     | 11  |     |     |
| Cx5  | 13  |     | 10  |     | 16  |     | 15  |     |     |
| Cx6  | 12  |     | 12  |     | 16  |     | 15  |     |     |
| Cx7  | 14  |     | 15  |     | 17  |     | 17  |     |     |
| Cx8  | 15  |     | 15  |     | 17  |     | 21  |     |     |
| Cx9  | 15  |     | 17  |     | 21  |     | 23  |     |     |
| Cx10 | 16  |     | 18  |     | 22  |     | 34  |     |     |
| Cx11 | 21  |     | 19  |     | 26  |     | 28  |     | 44  |
| Cx12 | 18  |     | 20  |     | 25  |     | 30  |     | 39  |
| Cx13 | 16  |     | 21  |     | 21  |     | 31  |     | 33  |

### Table G.2.1: 14 November 2007, 0°-30°, 1/8-3/8 cumulus.

Table G.2.3: 25 January 2008, 0°-30°, 2/8-5/8 cumulus / altocumulus.

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1  |     | 11  |     | 10  |     | 14  |     |     |     |
| Cx2  |     | 17  |     | 15  |     | 18  |     |     |     |
| Cx3  |     | 33  |     | 23  |     | 22  |     |     |     |
| Cx4  |     | 23  |     | 26  |     | 27  |     |     |     |
| Cx5  |     | 26  |     | 33  |     | 29  | 32  |     |     |
| Cx6  |     | 28  |     | 37  |     | 28  | 24  |     |     |
| Cx7  |     | 24  |     | 33  |     | 54  | 36  |     |     |
| Cx8  |     | 19  |     | 33  |     | 39  | 48  |     |     |
| Cx9  |     | 28  |     | 34  |     | 51  |     |     |     |
| Cx10 |     | 52  |     | 25  |     | 55  |     | 53  |     |
| Cx11 |     | 47  |     | 47  |     | 39  |     | 51  | 67  |
| Cx12 |     | 32  |     | 35  |     | 49  |     | 50  |     |
| Cx13 |     | 32  |     | 39  |     | 41  |     | 43  |     |

### Table G.2.4: 18 December 2007, 30°-50°, 7/8-8/8 cumulonimbus / stratus.

|      | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1  |     | 14  |     | 13  |     | 13  |     |     |     |
| Cx2  |     | 21  |     | 21  |     | 16  |     |     |     |
| Cx3  |     | 24  |     | 23  |     | 23  |     |     |     |
| Cx4  |     | 32  |     | 30  |     | 27  |     |     |     |
| Cx5  |     | 38  |     | 35  |     | 32  |     |     |     |
| Cx6  |     | 33  |     | 37  |     | 35  |     |     |     |
| Cx7  |     | 56  |     | 33  |     | 35  |     |     |     |
| Cx8  |     | 35  |     | 32  |     | 47  |     |     |     |
| Cx9  |     | 37  |     | 38  |     | 44  |     |     |     |
| Cx10 |     | 33  |     | 44  |     | 44  |     | 62  |     |
| Cx11 |     | 40  |     | 30  |     | 40  |     | 49  | 53  |
| Cx12 |     | 43  |     | 69  |     | 42  |     | 59  |     |
| Cx13 |     | 38  |     | 42  |     | 44  |     | 48  |     |

|              | Cn1 | Cn2 | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cx1          | 19  |     |     |     |     |     |     |     |     |
| Cx3<br>Cx4   | 43  |     |     |     |     |     |     |     |     |
| Cx5<br>Cx6   | 49  |     | 49  |     | 47  |     | 48  |     |     |
| Cx7<br>Cx8   | 59  |     | 48  |     | 62  |     | 57  |     |     |
| Cx9<br>Cx10  | 58  |     | 56  |     | 66  |     | 69  |     |     |
| Cx10<br>Cx11 | 45  |     | 60  |     | 63  |     | 77  |     | 86  |
| Cx12         | 62  |     | 00  |     | 68  |     | 68  |     | 73  |

# Table G.2.5: 27 August 2007, 50°-80°, 1/8 cumulus.

 Table G.3.1:
 13 December 2007, 0°-30°, 5/8-7/8 cumulonimbus / altocumulus / cirrus.

 Cn1
 Cn2
 Cn3
 Cn4
 Cn5
 Cn6
 Cn7
 Cn8
 Cn9
 Cn10
 Cn11
 Cn12
 Cn13
 Cn14
 Cn15
 Cn20
 Cn21
 Cn22
 Cn23

| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13 |        |    |    |    |           |     |    |    |    |    |    |        |        |   |   |   | 5 | ٩  |
|-----------------------------------------------------------------------------------------------------------|--------|----|----|----|-----------|-----|----|----|----|----|----|--------|--------|---|---|---|---|----|
| Cx14 18                                                                                                   | 9      | 6  | 7  | 21 | 5         | 20  | 15 |    | 8  |    |    |        |        |   |   |   | 8 | 13 |
| Cx15 25                                                                                                   | 43     | 43 | 31 | 54 | 23        | 35  | 31 | 13 | 17 | 13 |    |        |        |   | 3 | 4 | 9 | 10 |
| Cx16 13                                                                                                   | 23     | 38 | 39 | 61 | 49        | 37  | 32 | 20 | 23 | 17 |    |        |        | 3 |   | 3 | 6 | 7  |
| Cx17 12                                                                                                   | 19     | 29 | 30 | 54 | 60        | 40  | a  | 27 | 21 | 19 | 8  | 4      | 3      | ~ |   |   | - | 7  |
|                                                                                                           | 13     | 19 | 27 | 38 | 36        | 44  | 42 | 23 | 22 | 13 | 13 | 0      | 5      | 3 |   | 2 | 5 | 6  |
| Cy20 5                                                                                                    | 0<br>0 | 19 | 29 | 30 | 40<br>//1 | 40  | 30 | 20 | 23 |    | 10 | 0<br>6 | 5<br>1 | 1 |   | 3 | 5 |    |
| Cx21                                                                                                      | 0      | 10 | 18 | 29 | 43        | a   | a  | 40 |    |    | 10 | 6      | 3      | 4 |   |   |   |    |
| Cx22                                                                                                      |        |    |    |    | 35        | ŭ., |    |    |    |    |    | 5      | 4      | 4 |   |   |   |    |
| Cx23                                                                                                      |        |    |    |    | 27        |     |    |    |    |    |    | 5      |        | 6 |   |   |   |    |
| Cx24                                                                                                      |        |    |    |    |           |     |    |    |    |    |    | 7      | 3      | 4 |   |   |   |    |
| Cx25                                                                                                      |        |    |    |    |           |     |    |    |    |    |    |        |        | 3 |   |   |   |    |
| Cx26                                                                                                      |        |    |    |    |           |     |    |    |    |    |    | ~      | 4      | ~ |   |   |   |    |
| CX27                                                                                                      |        |    |    |    |           |     |    |    |    |    |    | 8      | 4      | 3 |   |   |   |    |
| UX20                                                                                                      |        |    |    |    |           |     |    |    |    |    |    |        | 4      |   |   |   |   |    |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn20 Cn21 Cn22 Cn23

Table G.3.2: 1 February 2008, 0°-30°, 3/8-5/8 cumulus.

Table G.3.3: 30 April 2007,  $30^{\circ}$ - $50^{\circ}$ , clear.

| Cx1     |    |    |    |    |    |    |    |    |    |    |   |   |   |   |    |
|---------|----|----|----|----|----|----|----|----|----|----|---|---|---|---|----|
| Cx2     |    | 0  |    |    |    |    |    |    |    |    |   |   |   |   |    |
| Cx3     |    |    |    | 0  |    |    | 0  |    |    |    |   |   |   |   |    |
| Cx4     |    |    |    |    |    |    |    |    | 0  |    |   |   |   |   |    |
| Cx5     |    | 0  |    | 0  |    |    |    |    |    |    |   |   |   |   |    |
| Cx6 0   |    |    |    |    |    |    | 0  |    |    |    |   | 0 |   |   |    |
| Cx7     |    | 0  |    |    |    |    |    |    |    |    |   |   |   |   |    |
| Cx8     |    |    |    |    |    |    | 0  |    | 0  |    |   |   | 0 | 0 |    |
| Cx9 0   | 0  | 0  |    | 0  |    |    |    |    |    |    |   |   |   |   |    |
| Cx10    |    |    |    |    | 0  | 0  | а  |    |    |    | 0 |   |   | 0 |    |
| Cx11 0  | 0  | 0  | 0  |    |    |    |    |    | 0  |    |   |   | 0 |   |    |
| Cx12    |    |    |    | 15 |    |    |    |    |    |    |   |   |   | 5 |    |
| Cx13 19 | 0  | 13 |    |    |    | 13 | 7  |    |    |    | 0 |   |   | 5 | 13 |
| Cx14 16 | 25 | 43 |    | 0  |    |    | 0  |    | 0  |    |   |   |   |   | 10 |
| Cx15 21 |    |    |    | 35 |    | 28 |    | 16 | 5  |    | 2 |   | 0 |   | 5  |
| Cx16 17 | 21 | 38 |    |    | 47 | 23 | 25 |    |    |    |   |   |   |   |    |
| Cx17    | 0  | 39 | 17 |    | 51 |    |    |    |    |    |   |   |   |   |    |
| Cx18 3  |    |    |    | 37 |    |    |    |    | 24 |    |   |   |   | 2 |    |
| Cx19    |    |    |    |    |    | 46 |    |    | 17 | 13 |   | 0 |   |   |    |
| Cx20 0  |    |    | 33 | 39 |    | 0  |    |    | 14 |    | 4 |   |   |   |    |
| Cx21    |    |    |    | 0  |    | 29 |    |    |    |    |   |   |   |   |    |
| Cx22    |    |    |    |    |    |    |    |    |    |    | 1 |   |   |   |    |
| Cx23    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |    |
| Cx24    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |    |
| Cx25    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |    |
| Cx26    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |    |
| Cx27    |    |    |    |    |    |    |    |    |    | 12 | 2 |   |   |   |    |
| Cx28    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |    |

| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13 1<br>Cx14 19<br>Cx15 23<br>Cx16 19<br>Cx17 17<br>Cx18 10<br>Cx19 8<br>Cx20 8<br>Cx20<br>Cx23 | 0<br>1<br>28<br>25<br>23<br>17<br>20 | 1<br>14<br>30<br>37<br>38<br>33<br>29<br>20 | 1<br>8<br>44<br>51<br>40<br>41<br>33<br>24<br>23 | 1<br>33<br>49<br>54<br>46<br>45<br>48<br>42<br>39 | 5<br>31<br>47<br>48<br>45<br>49<br>51<br>47<br>39<br>30 | 2<br>26<br>42<br>45<br>49<br>37<br>37<br>51<br>38 | 8<br>40<br>45<br>35<br>35<br>55 | 1<br>11<br>35<br>36<br>34<br>36<br>34<br>47 | 1<br>11<br>25<br>30<br>32<br>22<br>28 | 5<br>18<br>25<br>20<br>17 | 7<br>19<br>14<br>13 | 5<br>11<br>10<br>9<br>7 | 3<br>7<br>6<br>5<br>5 | 3<br>4<br>5<br>6<br>7 | 6<br>7<br>6 | 1<br>10<br>15<br>8<br>6<br>7 | 1<br>13<br>17<br>14<br>9<br>8<br>8 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------------|---------------------------------------|---------------------------|---------------------|-------------------------|-----------------------|-----------------------|-------------|------------------------------|------------------------------------|
| Cx20 0                                                                                                                                                                                   |                                      | 20                                          | 24                                               | 39                                                | 47                                                      | 38                                                |                                 | 47                                          |                                       |                           | 10                  | 9                       | 5                     | 6                     |             |                              |                                    |
| Cx22                                                                                                                                                                                     |                                      |                                             |                                                  |                                                   | 39                                                      |                                                   |                                 |                                             |                                       |                           |                     | 7                       | 5                     | -                     |             |                              |                                    |
| Cx23                                                                                                                                                                                     |                                      |                                             |                                                  |                                                   | 30                                                      |                                                   |                                 |                                             |                                       |                           |                     |                         |                       | 7                     |             |                              |                                    |
| Cx24                                                                                                                                                                                     |                                      |                                             |                                                  |                                                   |                                                         |                                                   |                                 |                                             |                                       |                           |                     |                         |                       | 6                     |             |                              |                                    |
| CX25                                                                                                                                                                                     |                                      |                                             |                                                  |                                                   |                                                         |                                                   |                                 |                                             |                                       |                           |                     | 11                      | 4                     |                       |             |                              |                                    |
| Cx26<br>Cx27                                                                                                                                                                             |                                      |                                             |                                                  |                                                   |                                                         |                                                   |                                 |                                             |                                       |                           |                     | 10                      | 6                     | 5                     |             |                              |                                    |
| Cx28                                                                                                                                                                                     |                                      |                                             |                                                  |                                                   |                                                         |                                                   |                                 |                                             |                                       |                           |                     | 15                      | 5                     | U                     |             |                              |                                    |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn20 Cn21 Cn22 Cn23

Table G.3.4: 2 April 2008, 30°-50°, 1/8-2/8 cumulus.

| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13<br>Cx14 27 |    | 30 |          |    |          | 66       |          | 43       | 25       | 46       |    | 13       | 2  |    |    |    | 20<br>24<br>23 |
|----------------------------------------------------------------------------------------------------------------------|----|----|----------|----|----------|----------|----------|----------|----------|----------|----|----------|----|----|----|----|----------------|
| Cx15 32                                                                                                              |    | 55 |          |    |          | 00       |          | 40       |          | 40<br>65 |    | 15       |    | 13 | 12 | 14 | 25             |
| Cx16                                                                                                                 | 48 | 47 | 55       | 67 | 50       | 74       | 87<br>65 | 76       | 66<br>54 |          |    | 23       |    |    |    | 11 | 10             |
| Cx18 19                                                                                                              | 21 | 41 | 55       | 54 | 39       | 74       | 60       |          | 54       | 49       | 41 | 37       |    | 13 |    |    | 19             |
| Cx19 12                                                                                                              | 11 | 32 | 20       | 52 | 51       | 63       | 88       | 57<br>66 |          |          | 43 | 22       | 10 |    |    |    |                |
| Cx20 11<br>Cx21                                                                                                      | 25 |    | 30<br>25 |    | 55<br>52 | 56<br>65 |          | 00       |          |          | 40 | 35<br>35 | 10 |    |    |    |                |
| Cx22                                                                                                                 |    |    |          |    |          |          |          |          |          |          |    |          | 12 |    |    |    |                |
| Cx23<br>Cx24                                                                                                         |    |    |          |    |          |          |          |          |          |          |    |          | 12 |    |    |    |                |
| Cx25                                                                                                                 |    |    |          |    |          |          |          |          |          |          |    |          | 20 |    |    |    |                |
| Cx27                                                                                                                 |    |    |          |    |          |          |          |          |          |          |    |          | 20 |    |    |    |                |
| Cx28                                                                                                                 |    |    |          |    |          |          |          |          |          |          |    |          | 21 |    |    |    |                |

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12 Cn13 Cn14 Cn15 Cn20 Cn21 Cn22 Cn23

Table G.3.5: 18 July 2007, 50°-80°, clear.

Table G.3.6: 12 July 2007, 50°-80°, clear.

| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16 | 20<br>33 | 31 |    | 6<br>61 |    | 11<br>64<br>71 |    | 49 | 49 |    |    |    |
|---------------------------------------------------------------------------------------------------------------------|----------|----|----|---------|----|----------------|----|----|----|----|----|----|
| Cx17                                                                                                                | 26       |    | 51 | 56      | 70 | 57             | 63 |    |    | 24 |    | 16 |
| Cx18                                                                                                                | 25       | 55 | -  |         | -  | 77             |    | 60 |    |    |    | -  |
| Cx19                                                                                                                | 16       | 47 |    | 68      |    | 75             |    | 44 |    |    |    | 26 |
| Cx20                                                                                                                | 18       | 34 |    |         |    | 56             |    |    |    |    | 24 |    |
| Cx21                                                                                                                |          | 33 | 43 | 56      |    |                |    |    |    |    | 24 |    |
| Cx22                                                                                                                |          |    |    | 45      |    |                |    |    |    |    | 19 |    |
| Cx23                                                                                                                |          |    |    | 45      |    |                |    |    |    |    |    |    |
| Cx25                                                                                                                |          |    |    |         |    |                |    |    |    |    | 29 |    |
| Cx26                                                                                                                |          |    |    |         |    |                |    |    |    |    | 20 |    |
| Cx27                                                                                                                |          |    |    |         |    |                |    |    |    |    |    |    |
| Cx28                                                                                                                |          |    |    |         |    |                |    |    |    |    | 46 |    |

#### G.4 Hand exposure ratios

| Cx1    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   | 4 |   |   | 4 |    |   |    |
|--------|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|---|----|
| Cx2    |    |    |    |    | 22 |    |    |    |    |    |    |   |   |   |   |   |   | 4 |   |    |   |    |
| Cx3    |    |    |    |    |    | 42 |    |    |    |    |    |   |   |   | 8 |   | 3 |   |   | 13 |   |    |
| Cx4    |    |    |    | 11 | 31 | 45 |    |    |    |    |    |   |   |   | 6 |   |   | 3 |   |    |   |    |
| Cx5    |    |    |    | 37 | 49 | 48 | 37 | 35 | 30 | 27 |    |   |   |   | 7 |   |   | 3 |   | 14 |   |    |
| Cx6    |    |    |    |    | 65 |    | 35 | 34 | 24 | 15 |    |   |   |   | 5 |   |   |   |   |    |   |    |
| Cx7    |    |    |    | 52 | 76 |    | 62 |    | 44 | 26 |    |   |   |   | 2 |   |   |   |   |    |   |    |
| Cx8    |    |    | 20 | 69 |    |    | 52 |    | 46 | 30 | 11 |   |   |   | 2 |   |   |   |   | 3  |   |    |
| Cx9    |    | 16 |    | 76 | 73 |    | 73 |    | 50 | 42 | 34 |   | 2 | 5 |   |   |   |   |   |    | 5 |    |
| C10    | 29 |    | 57 | 66 | 75 |    | 72 |    | 48 | 52 | 53 | 6 | 2 | 2 |   | 1 |   |   | 2 |    | 3 | 10 |
| C11    | 42 | 69 | 51 | 57 | 75 |    | 71 |    | 61 | 56 | 53 |   |   |   | 1 |   |   |   | 2 | 1  |   | 6  |
| C12    |    | 31 | 63 | 47 | 65 |    | 63 |    | 56 |    | 38 |   |   |   |   |   | 2 |   |   |    | 1 | 6  |
| C13 32 | 65 | 29 | 10 | 42 |    | 33 | 70 |    | 40 |    | 23 |   |   |   | 3 |   |   | 2 |   |    |   | 3  |
| C14    | 26 | 22 |    | 37 | 67 | 9  | 62 |    | 61 | 8  |    |   |   | 2 |   |   | 5 |   | 8 |    |   |    |
| C15    |    | 17 |    | 30 | 65 |    |    | 10 |    |    |    |   |   |   | 5 |   |   |   |   |    |   |    |
| C16    |    |    |    | 41 | 54 | 3  | 58 |    | 29 | 28 |    |   |   |   |   |   | 8 | 3 |   |    |   |    |
| C17    |    |    |    | 37 | 17 |    | 41 |    | 14 |    |    |   |   |   |   |   |   |   |   |    |   |    |
| C18    |    |    |    | 46 |    |    | 11 |    | 7  |    |    |   |   |   |   |   |   |   |   |    |   |    |
| C19    |    |    |    | 41 |    |    | 11 |    | 9  |    |    |   |   |   |   |   |   |   |   |    |   |    |
| C20    |    |    |    |    |    |    | 9  |    |    |    |    |   |   |   |   |   |   |   |   |    |   |    |
|        |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |    |   |    |

Table G.4.1: 21 November 2007, 0°-30°, 2/8-3/8 cumulus.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

Table G.4.2: 1 February 2008, 0°-30°, 3/8-5/8 cumulus.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

| Cx1 |    |    |    |    |    |    |    |    |    |    |    |    |   |    |   |   |    |   |   |    |   |    |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|---|---|----|---|---|----|---|----|
| Cx2 |    |    |    |    |    |    |    |    |    |    |    |    |   |    | 9 |   | 4  | 4 |   | 12 |   |    |
| Cx3 |    |    |    |    | 31 |    |    |    |    |    |    |    |   |    | 9 |   |    |   |   | 12 |   |    |
| Cx4 |    |    |    | 32 | 42 | 49 |    |    |    |    |    |    |   |    | 9 |   |    |   |   | 16 |   |    |
| Cx5 |    |    |    | 51 | 58 | 51 | 41 | 37 | 37 | 24 |    |    |   |    | 6 |   | 4  | 5 |   | 20 |   |    |
| Cx6 |    |    |    | 56 |    | 63 | 37 | 42 | 35 | 14 |    |    |   |    | 6 |   |    |   |   | 15 |   |    |
| Cx7 |    |    |    | 62 |    | 64 |    | 48 | 38 |    |    |    |   |    | 3 |   |    | 4 |   |    |   |    |
| Cx8 |    |    |    |    |    |    |    |    |    | 31 | 15 | 9  |   | 14 | 2 |   |    |   |   | 7  |   |    |
| Cx9 |    | 21 | 40 | 63 |    | 69 | 66 |    | 50 |    |    |    | 2 | 6  |   |   |    |   | 2 |    | 9 |    |
| C10 |    |    |    | 61 |    |    |    |    |    | 49 | 50 | 10 |   | 2  |   | 2 |    |   | 3 |    | 5 |    |
| C11 | 48 | 66 | 65 |    | 74 | 65 | 58 | 52 | 58 |    |    |    |   |    | 2 |   | 2  |   |   |    | 2 | 11 |
| C12 | 64 | 54 | 67 | 51 |    |    |    |    |    | 56 | 36 |    |   |    |   |   |    |   | 4 |    |   | 8  |
| C13 | 62 | 37 | 11 | 52 | 54 | 30 | 56 | 32 | 40 |    |    |    |   |    |   |   |    |   |   |    |   | 3  |
| C14 | 21 | 17 |    | 33 | 59 | 25 | 59 | 14 | 44 | 43 |    |    |   |    | 5 |   | 8  |   |   |    |   | 3  |
| C15 |    | 14 |    |    | 60 | 8  |    |    | 42 | 47 |    |    |   |    |   |   |    |   |   |    |   |    |
| C16 |    |    |    | 39 | 54 | 7  | 51 | 4  |    | 34 |    |    |   |    |   | 2 |    | 5 |   |    |   |    |
| C17 |    |    |    | 50 | 28 |    | 41 |    | 20 |    |    |    |   |    |   |   | 22 |   |   |    |   |    |
| C18 |    |    |    | 53 |    |    | 16 |    | 9  |    |    |    |   |    |   |   |    |   |   |    |   |    |
| C19 |    |    |    | 48 |    |    | 11 |    | 12 |    |    |    |   |    |   |   |    |   |   |    |   |    |
| C20 |    |    |    |    |    |    |    |    |    |    |    |    |   |    |   |   |    |   |   |    |   |    |
|     |    |    |    |    |    |    |    |    |    |    |    |    |   |    |   |   |    |   |   |    |   |    |

Table G.4.3: 2 April 2008, 30°-50°, 1/8-2/8 cumulus.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

| Cx1    |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   | 6  |   |    | 15 |    |    |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|---|----|----|---|----|---|----|----|----|----|
| Cx2    |    |    |    |    | 31 |    |    |    |    |    |    |    |   |    | 12 |   |    | 6 |    |    |    |    |
| Cx3    |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   | 5  |   | 12 | 20 |    |    |
| Cx4    |    |    |    | 21 | 46 | 57 |    |    |    |    |    |    |   |    | 10 | 5 |    |   |    | 22 |    |    |
| Cx5    |    |    |    | 50 |    |    | 45 | 42 | 44 | 33 |    |    |   |    |    |   | 5  |   |    |    |    |    |
| Cx6    |    |    |    | 61 | 62 | 70 | 53 | 45 |    | 18 |    |    |   |    |    |   |    | 6 |    |    |    |    |
| Cx7    |    |    |    | 64 | 74 |    |    | 56 |    | 32 |    |    |   |    | 5  | 4 |    |   | 6  |    |    |    |
| Cx8    |    |    | 35 |    |    |    | 61 | 55 | 53 | 41 | 25 | 10 |   | 20 |    |   | 2  |   |    |    |    |    |
| Cx9    |    | 34 |    | 52 | 76 | 70 | 70 |    | 58 |    | 34 |    | 3 | 7  | 2  |   | 1  |   |    |    | 10 |    |
| C10    | 47 |    | 61 | 67 | 66 |    |    | 58 |    | 52 |    |    |   |    |    |   |    | 3 |    | 3  |    | 20 |
| C11    |    | 66 |    |    |    |    | 71 |    | 51 | 53 | 58 |    |   |    | 3  |   | 3  |   |    |    |    | 13 |
| C12 39 |    | 64 | 67 | 53 | 70 | 60 | 46 | 53 | 56 |    |    |    | 4 |    |    |   |    |   | 11 |    | 5  |    |
| C13    | 69 | 31 | 10 |    |    | 37 |    |    | 51 | 32 | 33 |    |   |    |    |   |    |   |    |    |    | 9  |
| C14    | 47 |    |    | 52 | 72 |    | 60 | 10 |    |    |    |    |   |    | 8  |   |    |   | 15 |    |    |    |
| C15    |    | 16 |    | 48 | 68 |    |    |    | 60 |    |    |    |   | 4  |    |   | 17 |   |    |    |    |    |
| C16    |    |    |    |    | 60 | 15 | 61 | 11 |    |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C17    |    |    |    | 51 | 31 |    | 45 |    | 20 |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C18    |    |    |    | 60 |    |    | 24 |    |    |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C19    |    |    |    | 57 |    |    | 15 |    | 14 |    |    |    |   |    |    |   |    |   |    |    |    |    |
| C20    |    |    |    |    |    |    | 15 |    |    |    |    |    |   |    |    |   |    |   |    |    |    |    |

Table G.4.4: 28 August 2007, 50°-80°, 4/8-5/8 cirrus.

Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

| Cx1 |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   |    |    |    |    |    |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|----|---|----|----|----|----|----|
| Cx2 |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   |    | 3  |    |    |    |
| Cx3 |    |    |    |    | 60 |    |    |    |    |    |    |    |   |    |    | 3 |    |    |    |    |    |
| Cx4 |    |    |    |    |    | 60 |    |    |    |    |    |    |   |    | 17 |   |    | 7  |    | 39 |    |
| Cx5 |    |    |    | 58 |    | 71 |    | 60 |    | 41 |    |    |   |    |    |   |    |    |    |    |    |
| Cx6 |    |    |    |    | 57 |    |    | 53 |    | 27 |    |    |   |    |    | 7 |    | 10 |    |    |    |
| Cx7 |    |    |    |    |    |    | 71 |    | 45 |    |    |    |   |    |    |   |    |    |    | 0  |    |
| Cx8 |    |    |    | 53 | 84 |    |    |    | 68 |    | 35 | 17 |   | 17 | 0  |   | 0  |    |    |    |    |
| Cx9 |    |    |    |    | 75 |    | 80 |    | 58 |    |    |    | 0 |    |    | 0 |    | 0  |    | 3  |    |
| C10 |    |    | 58 |    | 73 |    | 42 |    | 59 |    |    |    |   | 0  |    | 0 |    | 0  |    |    | 41 |
| C11 |    | 67 |    |    | 60 |    | 66 |    | 56 |    |    |    | 5 |    | 2  |   |    |    | 6  |    |    |
| C12 |    |    | 70 | 52 | 58 |    | 78 |    | 63 |    |    |    |   |    |    |   |    |    |    |    | 20 |
| C13 |    |    | 10 |    | 68 |    | 62 |    | 53 |    | 34 |    |   |    |    |   |    |    | 20 |    |    |
| C14 | 42 | 31 |    | 40 | 72 | 7  | 77 |    |    |    |    |    |   |    | 15 |   | 12 |    |    |    |    |
| C15 |    |    |    |    | 60 |    | 73 |    | 60 |    |    |    |   |    |    |   |    |    |    |    |    |
| C16 |    |    |    | 76 | 67 | 20 |    |    |    |    |    |    |   |    |    |   |    |    |    |    |    |
| C17 |    |    |    |    | 34 |    | 61 |    |    |    |    |    |   |    |    |   | 26 |    |    |    |    |
| C18 |    |    |    | 65 |    |    |    |    | 8  |    |    |    |   |    |    |   |    |    |    |    |    |
| C19 |    |    |    |    |    |    | 36 |    |    |    |    |    |   |    |    |   |    |    |    |    |    |
| C20 |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |   |    |    |    |    |    |

# G.5 Leg exposure ratios

|                   | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8         | Cn9         | Cn10    | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 |
|-------------------|-----|-----|-----|-----|-----|-------------|-------------|---------|------|------|------|------|------|
| Cx1<br>Cx2<br>Cx3 |     |     |     |     | 1   | 7<br>6<br>9 | 6<br>6<br>5 | 9<br>22 |      |      |      |      |      |
| Cx4               |     | 0   | 0   | 1   | 3   | 10          | 5           |         | 0    | 0    | 0    | 0    | 0    |
| Cx5               | 0   | 3   | 2   | 2   | 4   | 11          |             |         |      | 0    | 0    | 0    | 0    |
| Cx6               | 1   | 6   | 4   | 4   | 5   | 10          |             |         | 0    | 0    | 0    | 0    | 0    |
| Cx7               | 6   | 8   | 8   | 6   | 8   | 9           |             |         | 7    | 12   | 13   | 9    | 1    |
| Cx8               |     | 11  | 12  | 10  | 11  | 9           |             |         | 10   | 13   | 16   | 13   | 7    |
| Cx9               |     | 13  | 15  | 14  | 15  | 10          |             |         | 10   | 10   | 15   | 12   | 9    |
| Cx10              |     | 15  | 19  | 17  | 18  | 9           |             |         | 8    | 8    | 11   | 11   | 19   |
| Cx11              |     | 14  | 19  | 19  | 19  | 10          |             |         | 8    | 6    | 7    | 11   | 17   |
| Cx12              |     | 20  | 23  | 19  | 16  | 7           |             |         | 7    | 6    | 6    | 13   | 15   |
| Cx13              |     | 23  | 20  | 21  | 16  | 12          |             |         | 6    | 8    | 8    | 15   | 15   |
| Cx14              |     | 21  | 21  | 20  | 14  | 12          |             |         | 7    | 7    | 9    | 16   | 13   |
| Cx15              |     | 20  | 20  | 19  | 14  | 14          |             |         | 9    | 8    | 9    | 14   | 16   |
| Cx16              |     | 20  | 19  | 18  | 14  | 13          |             |         | 9    | 8    | 9    | 13   |      |
| Cx17              |     |     | 16  | 16  | 14  | 16          |             |         | 11   | 10   | 9    | 12   |      |
| Cx18              |     |     | 16  | 18  | 15  | 17          |             |         | 9    | 9    | 9    | 12   |      |
| Cx19              |     |     | 15  | 15  | 15  | 24          |             |         | 8    | 10   | 9    | 11   |      |
| Cx20              |     |     | 13  | 15  | 15  |             |             |         | 7    | 8    | 9    | 10   |      |
| Cx21              |     |     | 15  | 16  | 17  |             |             |         | 6    | 10   | 9    | 8    |      |
| Cx22              |     |     |     | 16  | 17  |             |             |         | 7    | 9    | 10   | 11   |      |
| Cx23              |     |     |     | 17  | 16  |             |             |         | 7    | 9    | 10   | 11   |      |
| Cx24              |     |     |     | 18  | 17  |             |             |         | 6    | 10   | 9    | 12   |      |
| Cx25              |     |     |     | 14  | 16  |             |             |         | 8    | 9    | 10   | 13   |      |
| Cx26              |     |     |     | 14  | 19  |             |             |         | 8    | 10   | 11   | 14   |      |
| Cx27              |     |     |     |     | 24  |             |             |         | 8    | 11   | 10   | 13   |      |
| Cx28              |     |     |     |     | 16  |             |             |         | 7    | 11   | 11   | 12   |      |
| Cx29              |     |     |     |     |     |             |             |         | 9    | 10   | 12   |      |      |
| Cx30              |     |     |     |     |     |             |             |         | 10   | 10   | 12   |      |      |
| Cx31              |     |     |     |     |     |             |             |         | 10   | 11   | 16   |      |      |
| Cx32              |     |     |     |     |     |             |             |         | 9    | 10   | 13   |      |      |
| Cx33              |     |     |     |     |     |             |             |         |      | 10   | 12   |      |      |

# Table G.5.1: 13 November 2007, $0^{\circ}$ -30°, 2/8 cumulus.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cn3 | Cn4                                                                  | Cn5                                                                                          | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|-----|-----|-----|------|------|------|------|------|------|
| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx18<br>Cx10<br>Cx21<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx28<br>Cx20<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx3<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx16<br>Cx17<br>Cx18<br>Cx20<br>Cx21<br>Cx21<br>Cx21<br>Cx22<br>Cx23<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx28<br>Cx20<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx26<br>Cx27<br>Cx27<br>Cx26<br>Cx27<br>Cx27<br>Cx26<br>Cx27<br>Cx27<br>Cx27<br>Cx27<br>Cx27<br>Cx27<br>Cx27<br>Cx27 |     | 14<br>17<br>19<br>24<br>25<br>11<br>34<br>35<br>34<br>33<br>28<br>27 | 12<br>16<br>22<br>29<br>32<br>37<br>39<br>34<br>39<br>33<br>30<br>24<br>31<br>28<br>23<br>26 | 30  |     |     |     |      |      |      |      |      |      |

## Table G.5.2: 1 February 2008, 0°-30°, 3/8-5/8 cumulus.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cn3                        | Cn4                                                                            | Cn5                                                                                                           | Cn6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cn7                                                                                                           | Cn8                                                                                                             | Cn9                         | Cn10             | Cn11                                                                                                                   | Cn12                                                                                                                               | Cn13                                                                                                                      | Cn14                                                                                                                         | Cn15                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Cx1<br>Cx2<br>Cx3<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx13<br>Cx14<br>Cx15<br>Cx16<br>Cx17<br>Cx18<br>Cx19<br>Cx20<br>Cx21<br>Cx22<br>Cx23<br>Cx24<br>Cx25<br>Cx26<br>Cx27<br>Cx22<br>Cx22<br>Cx23<br>Cx4<br>Cx5<br>Cx6<br>Cx7<br>Cx8<br>Cx7<br>Cx8<br>Cx7<br>Cx8<br>Cx9<br>Cx10<br>Cx11<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx14<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx13<br>Cx14<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx14<br>Cx12<br>Cx20<br>Cx20<br>Cx20<br>Cx20<br>Cx21<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx12<br>Cx12 | Cn3<br>6<br>13<br>21<br>25 | 4<br>11<br>15<br>22<br>8<br>34<br>37<br>52<br>43<br>44<br>37<br>33<br>39<br>36 | Cn5<br>5<br>9<br>13<br>18<br>29<br>33<br>34<br>29<br>45<br>44<br>47<br>39<br>22<br>27<br>29<br>34<br>21<br>32 | Cn6<br>6<br>8<br>13<br>15<br>21<br>18<br>29<br>38<br>31<br>38<br>36<br>44<br>8<br>32<br>31<br>35<br>31<br>28<br>32<br>33<br>35<br>31<br>28<br>32<br>32<br>32<br>33<br>32<br>33<br>32<br>33<br>35<br>36<br>35<br>36<br>35<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>36<br>37<br>38<br>37<br>38<br>37<br>38<br>37<br>37<br>38<br>37<br>38<br>37<br>38<br>37<br>38<br>37<br>38<br>37<br>37<br>38<br>37<br>38<br>37<br>38<br>37<br>37<br>38<br>37<br>38<br>37<br>38<br>37<br>37<br>38<br>37<br>37<br>38<br>37<br>37<br>37<br>38<br>37<br>37<br>37<br>37<br>37<br>37<br>38<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37 | Cn7<br>4<br>9<br>12<br>13<br>20<br>25<br>38<br>42<br>33<br>36<br>33<br>30<br>45<br>41<br>48<br>36<br>37<br>39 | Cn8<br>17<br>21<br>23<br>25<br>31<br>25<br>21<br>22<br>23<br>22<br>27<br>28<br>35<br>30<br>40<br>35<br>46<br>41 | Cn9<br>13<br>11<br>11<br>10 | Cn10<br>18<br>35 | Cn11<br>14<br>16<br>17<br>17<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>13<br>12<br>11<br>11<br>11<br>13<br>16 | Cn12<br>20<br>22<br>20<br>17<br>10<br>12<br>13<br>13<br>12<br>15<br>14<br>14<br>14<br>14<br>14<br>15<br>14<br>16<br>15<br>15<br>16 | Cn13<br>17<br>25<br>28<br>26<br>25<br>a<br>21<br>21<br>a<br>a<br>21<br>20<br>15<br>16<br>16<br>17<br>18<br>19<br>24<br>19 | Cn14<br>37<br>38<br>22<br>44<br>42<br>43<br>48<br>46<br>40<br>36<br>35<br>22<br>26<br>27<br>26<br>23<br>29<br>32<br>29<br>33 | 9<br>19<br>30<br>29<br>30<br>42<br>45<br>31<br>35<br>33<br>33 |
| Cx25<br>Cx26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                |                                                                                                               | 33<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37<br>39                                                                                                      |                                                                                                                 |                             |                  | 13<br>16                                                                                                               | 15<br>16                                                                                                                           | 24<br>19                                                                                                                  | 29<br>33                                                                                                                     |                                                               |
| Cx27<br>Cx28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43<br>44                                                                                                      |                                                                                                                 |                             |                  | 13<br>15                                                                                                               | 18<br>17                                                                                                                           | 23<br>25<br>22                                                                                                            | 26<br>25                                                                                                                     |                                                               |
| Cx30<br>Cx31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                 |                             |                  | 16<br>14                                                                                                               | 19<br>21                                                                                                                           | 23<br>23<br>22                                                                                                            |                                                                                                                              |                                                               |
| Cx32<br>Cx33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                 |                             |                  | 15                                                                                                                     | 19<br>14                                                                                                                           | 28<br>25                                                                                                                  |                                                                                                                              |                                                               |

### Table G.5.3: 4 March 2008, 30°-50°, 3/8-2/8 cumulus.

| Table G.5.4: | 6 August 2007, | $50^{\circ}$ - $80^{\circ}$ , clear. |
|--------------|----------------|--------------------------------------|
|--------------|----------------|--------------------------------------|

|                          | Cn3      | Cn4      | Cn5      | Cn6      | Cn7            | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13 | Cn14 | Cn15 |
|--------------------------|----------|----------|----------|----------|----------------|-----|-----|------|------|------|------|------|------|
| Cx1<br>Cx2<br>Cx3<br>Cx4 |          |          |          |          | 12<br>19<br>22 |     |     |      |      |      |      |      |      |
| Cx5<br>Cx6<br>Cx7        | 43<br>50 |          | 42       | 35<br>36 | 40             |     |     |      |      |      |      |      |      |
| Cx8<br>Cx9               | 00       | 47<br>63 | 15       | 00       | 58             |     |     |      |      |      |      |      |      |
| Cx10<br>Cx11             |          | 64       | 42       | 58       | 48<br>55       |     |     |      |      |      |      |      |      |
| Cx12<br>Cx13<br>Cx14     |          | 62       | 70<br>53 |          | 46             |     |     |      |      |      |      |      |      |
| Cx15<br>Cx16             |          | 43<br>62 | 60       | 59       | 40             |     |     |      |      |      |      |      |      |
| Cx17<br>Cx18             |          |          | 56       | 59       | 44             |     |     |      |      |      |      |      |      |
| Cx19<br>Cx20<br>Cx21     |          |          | 46       | 51       | 57<br>57       |     |     |      |      |      |      |      |      |
| Cx22<br>Cx22<br>Cx23     |          |          |          | 65<br>54 | 60             |     |     |      |      |      |      |      |      |
| Cx24<br>Cx25             |          |          |          | 49       | 58             |     |     |      |      |      |      |      |      |
| Cx26<br>Cx27             |          |          |          | 51       | 61             |     |     |      |      |      |      |      |      |
| Cx28<br>Cx29<br>Cx30     |          |          |          |          | 50             |     |     |      |      |      |      |      |      |
| Cx31<br>Cx32             |          |          |          |          |                |     |     |      |      |      |      |      |      |
| Cx33                     |          |          |          |          |                |     |     |      |      |      |      |      |      |

- -

|      | Cn3 | Cn4 | Cn5 | Cn6 | Cn7 | Cn8 | Cn9 | Cn10 | Cn11 | Cn12 | Cn13       | Cn14       | Cn15 |
|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------------|------------|------|
| Cx1  |     |     |     |     |     | 33  | 24  |      |      |      |            |            |      |
| Cx2  |     |     |     |     |     | 20  |     |      |      |      |            |            |      |
| Cx4  |     |     |     |     |     | 30  |     |      |      |      |            |            |      |
| Cx5  |     | 35  |     |     |     |     |     |      |      |      | 47         |            |      |
| Cx6  |     |     |     |     |     |     |     |      |      |      |            |            |      |
| Cx7  |     |     | 38  |     |     |     |     |      | 32   |      | 50         | 36         | 51   |
| Cx8  |     | 42  | 70  | 44  |     |     |     |      | 0.4  | 07   | <b>F</b> 4 | 50         | 38   |
| Cx9  |     | 62  | 70  | 41  | 92  |     |     |      | 34   | 37   | 51<br>27   | 56         | 77   |
| Cx10 |     | 02  | 62  | 65  | 02  |     |     |      | 24   | 25   | 57         | 40         |      |
| Cx12 |     | 71  |     |     | 52  |     |     |      |      | 20   | 31         |            | 48   |
| Cx13 |     |     | 75  |     |     |     |     |      | 27   | 25   |            |            |      |
| Cx14 |     | 60  |     |     | 56  |     |     |      |      |      | 35         |            | 47   |
| Cx15 |     |     | 59  |     | 45  |     |     |      | 39   | 25   | 07         | 61         | 52   |
| Cx16 |     |     | 53  |     | 45  |     |     |      |      | 27   | 27         | 57         |      |
| Cx18 |     |     | 55  |     | 51  |     |     |      |      | 21   | 41         | 57         |      |
| Cx19 |     |     | 55  |     | 0.  |     |     |      |      | 33   | ••         | 42         |      |
| Cx20 |     |     |     |     |     |     |     |      |      |      | 45         |            |      |
| Cx21 |     |     | 49  |     |     |     |     |      |      | 24   |            |            |      |
| Cx22 |     |     |     | 51  |     |     |     |      |      | ~~   | 32         | 0 <b>7</b> |      |
| Cx23 |     |     |     | 52  |     |     |     |      |      | 33   | 26         | 37         |      |
| Cx24 |     |     |     | 52  |     |     |     |      |      |      | 20         | 53         |      |
| Cx26 |     |     |     | 02  | 53  |     |     |      |      |      | 42         | 00         |      |
| Cx27 |     |     |     |     |     |     |     |      |      |      |            | 45         |      |
| Cx28 |     |     |     |     |     |     |     |      |      |      | 49         |            |      |
| Cx29 |     |     |     |     |     |     |     |      |      |      |            |            |      |
| Cx30 |     |     |     |     |     |     |     |      |      |      | 41         |            |      |
| Cx31 |     |     |     |     |     |     |     |      |      |      | 40         |            |      |
| Cx33 |     |     |     |     |     |     |     |      |      |      | τu         |            |      |

# Table G.5.5: 2 August 2008, 50°-80°, clear.

### Appendix H. Surface model contour assignments



Figure H.1: Horizontal (Cx) and vertical (Cn) facial contour assignments.



Figure H.2: Horizontal (Cx) and vertical (Cn) neck contour assignments.



Figure H.3: View of three dimensional arm surface from behind the shoulder. Contours marked Cn1 through Cn23 are oriented along the arm's longitudinal axis. Contours Cn1, Cn5 and Cn10 are shown. Contours marked Cx10, Cx14 and Cx20 are also shown in the diagram. These contours formed complete bands around the arm surface and were numbered from the shoulder (figure right) to the wrist (figure left).



Figure H.4: Contours marked Cn1 through Cn23 represent the longitudinal contours extending from the wrist to the finger tips of the three dimensional hand surface. These contours start and end on the thumb. Contours banded about the hand surface and individual fingers start from the wrist and extend to the finger tip bands. Contours Cx5 and Cx8 are shown in the figure.



Figure H.5: Longitudinal leg contours extending from the upper thigh to the ankle start at Cn0 and end at Cn16. Contours Cn11 through Cn13 are shown in the figure for a forward facing view of the leg model showing the knee positioned to the upper right. Banded contours Cx1, Cx10, Cx20 and Cx30 show the thigh to ankle order in which these contours were labeled.

### Appendix I. Polynomial coefficients for facial horizontal contours

| Cx           | $\beta_1$             | $\beta_2$                                     | $\beta_3$                                    | $\beta_4$                                     | β <sub>5</sub>        | $\beta_6$                                     | β <sub>7</sub>                               |
|--------------|-----------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------|-----------------------------------------------|----------------------------------------------|
| Cx1          | -1.26018370309002E-19 | 7.74841918351686E-18                          | 2.56933786459068E-15                         | -4.75242471965701E-13                         | 3.91399886422726E-11  | -1.97762417771912E-09                         | 6.76149618367300E-08                         |
| Cx2          | -1.76786996960371E-19 | 6.34255098176379E-17                          | -1.03979548720293E-14                        | 1.03130444214024E-12                          | -6.90550094090475E-11 | 3.29805449252062E-09                          | -1.15714963797726E-07                        |
| Cx3          | 3.23253235143603E-21  | -1.49807827877126E-18                         | 3.17711733454850E-16                         | -4.08494191848433E-14                         | 3.55608832982661E-12  | -2.21714027310808E-10                         | 1.02139599887044E-08                         |
| Cx4          | -1.92958876824599E-21 | 9.40148906190649E-19                          | -2.09646449830958E-16                        | 2.83513912988723E-14                          | -2.59741230367796E-12 | 1.70568845015939E-10                          | -8.28537138433333E-09                        |
| Cx5          | -5.13960434153612E-23 | 2.67401164815220E-20                          | -6.35043475760039E-18                        | 9.11336842769909E-16                          | -8.81889822796553E-14 | 6.08206703545792E-12                          | -3.08213329351485E-10                        |
| Cx6          | -5.73672256116784E-23 | 3.59436153026322E-20                          | -1.02665050871653E-17                        | 1.77236542140447E-15                          | -2.06694561579329E-13 | 1.72382474939177E-11                          | -1.06157725502477E-09                        |
| Cx7          | -6.09420183281925E-23 | 3.76182174499130E-20                          | -1.06003792153762E-17                        | 1.80696959086181E-15                          | -2.08152094535847E-13 | 1.71444369847199E-11                          | -1.04191905000255E-09                        |
| Cx8          | -3.34939280855552E-23 | 2.03226198258984E-20                          | -5.62424149968268E-18                        | 9.39811399678183E-16                          | -1.05791577080774E-13 | 8.47402816983674E-12                          | -4.97338518792889E-10                        |
| Cx9          | -4.75296367717211E-23 | 2.96726148788336E-20                          | -8.47474757508879E-18                        | 1.46674446360350E-15                          | -1.71759690193709E-13 | 1.43909867887760E-11                          | -8.89651573693804E-10                        |
| Cx10         | -4.65137809422664E-23 | 2.92884658385785E-20                          | -8.44357264647979E-18                        | 1.47638939749881E-15                          | -1.74851964454794E-13 | 1.48349200791013E-11                          | -9.30069184702916E-10                        |
| Cx11         | 1.67433610017152E-24  | -1.33785732337546E-21                         | 4.87636210898657E-19                         | -1.07478317570640E-16                         | 1.60040323789313E-14  | -1.70325663146915E-12                         | 1.33648003546348E-10                         |
| Cx12         | 8.98332782679973E-24  | -6.18371062788157E-21                         | 1.95171016292515E-18                         | -3.74266602285382E-16                         | 4.87112340997749E-14  | -4.55257893695589E-12                         | 3.15275852533254E-10                         |
| Cx13         | 9.18350544178758E-24  | -6.34065380513282E-21                         | 2.00351462338897E-18                         | -3.83814049032393E-16                         | 4.97832982037798E-14  | -4.62438088442417E-12                         | 3.17342457771217E-10                         |
| Cx14         | 3.13463943656397E-24  | -2.04435527587301E-21                         | 6.06433856674738E-19                         | -1.08237985117596E-16                         | 1.29559041163820E-14  | -1.09711438827062E-12                         | 6.75375410681880E-11                         |
| Cx15         | 1.38405061711471E-23  | -9.31547674762272E-21                         | 2.86996238020524E-18                         | -5.36192254635880E-16                         | 6.78454556743743E-14  | -6.14988631116181E-12                         | 4.11977983770200E-10                         |
| Cx16         | 5.89656543156420E-24  | -4.15510233158562E-21                         | 1.34004970593938E-18                         | -2.62017548833661E-16                         | 3.46851544542358E-14  | -3.28771997790682E-12                         | 2.30163952802120E-10                         |
| Cx17         | -6.23146541673040E-24 | 4.17928179127543E-21                          | -1.28464639869391E-18                        | 2.39841950157917E-16                          | -3.03854436803958E-14 | 2.76424555421454E-12                          | -1.86372024407328E-10                        |
| Cx18         | -1.89806232688923E-24 | 1.27807130899342E-21                          | -3.93454829928534E-19                        | 7.33570277263668E-17                          | -9.25013124818617E-15 | 8.34444619507626E-13                          | -5.55573340836344E-11                        |
| Cx19         | 1.92089956012460E-24  | -1.26694314269758E-21                         | 3.82523426869504E-19                         | -7.00447234452108E-17                         | 8.68747407534955E-15  | -7.71947082356197E-13                         | 5.06912321566473E-11                         |
| Cx20         | 1.24960425273325E-24  | -8.20683530858806E-22                         | 2.45686297684421E-19                         | -4.43647330289592E-17                         | 5.38858009123962E-15  | -4.64756486038153E-13                         | 2.928/0486158853E-11                         |
| Cx21         | 2.09358061046873E-24  | -1.39099170702758E-21                         | 4.21634160064765E-19                         | -7.71863692005385E-17                         | 9.52175231654218E-15  | -8.36331357339466E-13                         | 5.38881896371942E-11                         |
| Cx22         | -2.06047284644551E-26 | -7.78818364057198E-24                         | 1.01487313351404E-20                         | -3.57768294007133E-18                         | 7.00415996725743E-16  | -8.97649940004537E-14                         | 8.08960363521222E-12                         |
| Cx23         | 7.9269/944900869E-25  | -6.51/3434620018/E-22                         | 2.43091591291141E-19                         | -5.459/68/1522620E-1/                         | 8.25819/92955846E-15  | -8.90/86/616150/9E-13                         | 7.07509009528238E-11                         |
| Cx24         | 5.14121952514994E-25  | -3.91838210409161E-22                         | 1.305/0/14008199E-19                         | -2.882/0491520854E-1/                         | 4.11192852094176E-15  | -4.18808440382919E-13                         | 3.1393604122/382E-11                         |
| Cx25         | 1.64359279642609E-24  | -1.29280234929177E-21                         | 4.66143818392984E-19                         | -1.020/4308158586E-16                         | 1.515995/6621629E-14  | -1.61523014814493E-12                         | 1.2/350310926925E-10                         |
| Cx26<br>Cr27 | 8./1115445124445E-25  | -0.80/0934812/093E-22                         | 2.48038348902330E-19<br>0.72002006282102E-21 | -5.43845822835481E-17                         | 8.0841001//88538E-15  | -8.01/85940/405/9E-15                         | 6./90/2006222803E-11                         |
| Cx27         | -1.91207330230309E-20 | 2.09030031927032E-23                          | -9.75092900282102E-21                        | 2.02013992044114E-18                          | -4.08081209857008E-10 | 3.91414902798110E-14                          | -5.48102055212407E-12                        |
| Cx28<br>Cr20 | 5.08323795050393E-25  | -3.85503598420353E-22                         | 1.55008020055742E-19                         | -2.80003528012058E-17                         | 3.98349344083838E-15  | -4.04483572914550E-13                         | 3.03010939927536E-11                         |
| Cx29<br>Cx20 | 4 42721740176608E 25  | -7.08301908200197E-22<br>2.60560777201787E-22 | 2.33109643379800E-19<br>1 27720485664847E 10 | -3.139/313239/234E-1/<br>2.05710060205004E-17 | 4 52660074075240E 15  | -0.65500755777524E-15<br>4 77627628465152E 12 | 4.94964041972200E-11<br>3.60027027242384E-11 |
| Cx21         | 1.30670020005387E 24  | 0 70606206547512E 22                          | 2 08582600815211E 10                         | 5 04602688872650E 17                          | 7 75517227807042E 15  | 7 24245777841871E 12                          | 4 00602064660802E 11                         |
| Cx31         | 2 15822722472878E 24  | 2 15580822062060E 21                          | 6 72525116825001E 10                         | 1 27570820028872050E-17                       | 1.62502259701299E 14  | 1 50228252000881E 12                          | 1.01005252174881E 10                         |
| Cx32         | 1 37825199695799E-23  | -8.86536866576811E-21                         | 2 61523354829100E-18                         | -4 68729441226116E-16                         | 5 70023476750305E-14  | -4 97467807257537E-12                         | 3 21346190652992E-10                         |
| Cx34         | -1 48481202794048F-22 | 8 06308461112913E-20                          | -2 00403669900136E-17                        | 3 01972296686671E-15                          | -3 08020929407281F-13 | 2 24922037818397E-11                          | -1 21260476668455E-09                        |
| Cx35         | -1.40401202794048E-22 | 8 78470704065911E-20                          | -2.00405005500150E-17                        | 3.27176661207699E-15                          | -3.32636669880122E-13 | 2 42045585643587E-11                          | -1.21200470000455E-09                        |
| Cx36         | -3.48210909487753E-22 | 1.90210076072934E-19                          | -4.75777279416577E-17                        | 7.21879058602185E-15                          | -7.41890920385789E-13 | 5.46192379962376E-11                          | -2.97099787256247E-09                        |
| Cx37         | -2 34444971762485E-22 | 1 24973445175252E-19                          | -3.05713743872624E-17                        | 4 54604776342873E-15                          | -4 58840890998142E-13 | 3 32389876992669E-11                          | -1 78203338133859E-09                        |
| Cx38         | 1.60199622153761E-22  | -6.22753741461689E-20                         | 9.90313934291133E-18                         | -7.28555001783814E-16                         | 3.33028139731728E-15  | 4.49549404160791E-12                          | -4.76907580601662E-10                        |
| Cx39         | -1.67555335990350E-22 | 1.03544030691382E-19                          | -2.86228376864376E-17                        | 4.72004585493130E-15                          | -5.20818386899005E-13 | 4.07953353223076E-11                          | -2.34501511393214E-09                        |
| Cx40         | -4.83015163868803E-22 | 2.61621178930879E-19                          | -6.49332827554276E-17                        | 9.78586596931402E-15                          | -1.00028229801965E-12 | 7.33613670241652E-11                          | -3.98249507764154E-09                        |
| Cx41         | 2.23780236830610E-22  | -9.84289037142033E-20                         | 1.92507174241877E-17                         | -2.18633235484520E-15                         | 1.56607795530752E-13  | -7.00353095836880E-12                         | 1.58173251893030E-10                         |
| Cx42         | -2.83455895354777E-22 | 1.33123550996526E-19                          | -2.84355819158924E-17                        | 3.65542851804461E-15                          | -3.15362212511260E-13 | 1.92767779086720E-11                          | -8.59127432472519E-10                        |
| Cx43         | -7.80786190088163E-23 | 3.74289209478168E-20                          | -8.18517170952919E-18                        | 1.08119683418811E-15                          | -9.62774315829374E-14 | 6.10812833317068E-12                          | -2.84506884611791E-10                        |
| Cx44         | -6.59248512566818E-23 | 3.12370440053111E-20                          | -6.73765157073522E-18                        | 8.75406071900619E-16                          | -7.63995391402392E-14 | 4.72781601691219E-12                          | -2.13421024060996E-10                        |
| Cx45         | -2.14229630759495E-22 | 1.06801790272618E-19                          | -2.44208594822776E-17                        | 3.39399696829560E-15                          | -3.20290879315512E-13 | 2.17156183408534E-11                          | -1.09143696930828E-09                        |
| Cx46         | -2.89486091253581E-22 | 1.46736129167388E-19                          | -3.41637465304405E-17                        | 4.84136338150619E-15                          | -4.66447090910099E-13 | 3.23216904070144E-11                          | -1.66158326480618E-09                        |
| Cx47         | -4.28559764351628E-22 | 2.20404624334861E-19                          | -5.20724149020984E-17                        | 7.48828687502258E-15                          | -7.32070582625333E-13 | 5.14622731850337E-11                          | -2.68296897233032E-09                        |
| Cx48         | -5.31745750708848E-22 | 2.73924302742926E-19                          | -6.48310976002550E-17                        | 9.34052269260316E-15                          | -9.14956008352480E-13 | 6.44523195692908E-11                          | -3.36752279390287E-09                        |
| Cx49         | -4.76979138015997E-22 | 2.45598343308759E-19                          | -5.81060716806892E-17                        | 8.36932385067433E-15                          | -8.19649235824916E-13 | 5.77279491187825E-11                          | -3.01552593021316E-09                        |

Table I.1: Equation 3.1 Coefficients  $\beta_1$  through  $\beta_9$  for the SZA range  $0^{\circ}$ -30°.

### Table I.2: Equation 3.1 Coefficients $\beta_8$ through $\beta_{14}$ for the SZA range $0^{\circ}$ -30°.

| Cx   | $\beta_8$             | β <sub>9</sub>        | $\beta_{10}$          | $\beta_{11}$          | $\beta_{12}$          | $\beta_{13}$          | $\beta_{14}$          |
|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Cv1  | -1.63099162180164E-06 | 2 82346525183224E-05  | -3 51761671876862E-04 | 3 13/182871053/0F-03  | -1 0763/6/57/6050E-02 | 8 74706668323634E-02  | -2 70759314402299E-01 |
| Cx2  | 3 02629545302704E-06  | -5 92294923397922F-05 | 8 63096983930746E-04  | -9 23154526505422F-03 | 7.06684395289166E-02  | -3 71937857644736E-01 | 1 26295611942048E+00  |
| Cx3  | -3.53628245591070E-07 | 9.27028149391212E-06  | -1.84023538410660E-04 | 2.74830699752556E-03  | -3.04712462837074E-02 | 2.45510690320386E-01  | -1.39182322069813E+00 |
| Cx4  | 3 02869554828917E=07  | -8 39569383870242E-06 | 1 76524010031897E-04  | -2 79686264843394E-03 | 3 29473677121780E-02  | -2 82403534804228E-01 | 1 70491039778105E+00  |
| Cx5  | 1.16715457727893E-08  | -3.33095593945042E-07 | 7.18807105166047E-06  | -1.17321204625896E-04 | 1.44538183335380E-03  | -1.33472702844352E-02 | 9.04532440374509E-02  |
| Cx6  | 4.91421780256289E-08  | -1.72436899375811E-06 | 4.59077466301514E-05  | -9.21885257190797E-04 | 1.37815028369228E-02  | -1.50020546047989E-01 | 1.14896036665289E+00  |
| Cx7  | 4.75321992837485E-08  | -1.64027567788375E-06 | 4.28282206135550E-05  | -8.40706383433164E-04 | 1.22437954304321E-02  | -1.29543313768737E-01 | 9.65481554903466E-01  |
| Cx8  | 2.16913183132122E-08  | -7.05402041567358E-07 | 1.69999037981838E-05  | -2.98769805824233E-04 | 3.72210527710328E-03  | -3.14152682050476E-02 | 1.67774052764705E-01  |
| Cx9  | 4.12499414740812E-08  | -1.44410448088364E-06 | 3.81368429540009E-05  | -7.53883142755577E-04 | 1.09935249895453E-02  | -1.15665228220988E-01 | 8.50992480457967E-01  |
| Cx10 | 4.38149154757834E-08  | -1.56205085422913E-06 | 4.21287509264288E-05  | -8.53513798644613E-04 | 1.28104421975053E-02  | -1.39381069590152E-01 | 1.06491617455865E+00  |
| Cx11 | -7.86060726567255E-09 | 3.48854227618470E-07  | -1.16681068060943E-05 | 2.91659125800330E-04  | -5.36234378804920E-03 | 7.07439384083824E-02  | -6.45833632139855E-01 |
| Cx12 | -1.64563267187657E-08 | 6.52184959027968E-07  | -1.96172501174462E-05 | 4.44479042341150E-04  | -7.47084909658262E-03 | 9.08750983215129E-02  | -7.70411016775176E-01 |
| Cx13 | -1.63603442154589E-08 | 6.38172994306002E-07  | -1.88259316670519E-05 | 4.16883015107086E-04  | -6.82794349204493E-03 | 8.07882983483470E-02  | -6.66620715378450E-01 |
| Cx14 | -3.05552629589378E-09 | 1.01363377841599E-07  | -2.42460392455258E-06 | 4.02189978191293E-05  | -4.23585076039564E-04 | 2.13836023433558E-03  | 4.88236951520776E-03  |
| Cx15 | -2.07417166596295E-08 | 7.90490136946525E-07  | -2.27964738496642E-05 | 4.93894383716924E-04  | -7.92546598003264E-03 | 9.21231646875212E-02  | -7.50826239936938E-01 |
| Cx16 | -1.21007005582546E-08 | 4.81134897874825E-07  | -1.44601805527717E-05 | 3.26064671787490E-04  | -5.43589793535943E-03 | 6.54459379424064E-02  | -5.49277587386775E-01 |
| Cx17 | 9.47580467040812E-09  | -3.66152374532899E-07 | 1.07558547600882E-05  | -2.38649636930986E-04 | 3.94646361498522E-03  | -4.76194782870999E-02 | 4.06460303058242E-01  |
| Cx18 | 2.77708336575520E-09  | -1.05020428957098E-07 | 3.00619260625064E-06  | -6.47612103909004E-05 | 1.03741241823948E-03  | -1.21250764634648E-02 | 1.00595814865681E-01  |
| Cx19 | -2.50125224308129E-09 | 9.33783556757510E-08  | -2.63514693803705E-06 | 5.57548632068333E-05  | -8.70300864885095E-04 | 9.76127864643024E-03  | -7.54489271051547E-02 |
| Cx20 | -1.36649157562813E-09 | 4.73187428285051E-08  | -1.20714691608149E-06 | 2.22842233090790E-05  | -2.88131440434137E-04 | 2.45767151845892E-03  | -1.20411618395845E-02 |
| Cx21 | -2.58681946401946E-09 | 9.30469404122719E-08  | -2.50380637416354E-06 | 5.00038528326179E-05  | -7.30703839570901E-04 | 7.64458960731637E-03  | -5.53372779700500E-02 |
| Cx22 | -5.31994194545929E-10 | 2.60280488894348E-08  | -9.54927547551187E-07 | 2.62422569859220E-05  | -5.34840424526770E-04 | 7.92353964915430E-03  | -8.25311703954456E-02 |
| Cx23 | -4.21078101670946E-09 | 1.89243971021709E-07  | -6.42303763679738E-06 | 1.63510855621899E-04  | -3.07876062140346E-03 | 4.19337150384447E-02  | -3.99694895704309E-01 |
| Cx24 | -1.75747024944500E-09 | 7.38540319392003E-08  | -2.32267434599259E-06 | 5.41319613829856E-05  | -9.20683744662010E-04 | 1.12291764187596E-02  | -9.70168834723945E-02 |
| Cx25 | -7.55489548737361E-09 | 3.39563993165124E-07  | -1.15537867777051E-05 | 2.95239438512423E-04  | -5.57800088104195E-03 | 7.59925919146181E-02  | -7.18834019484660E-01 |
| Cx26 | -4.03341646056238E-09 | 1.81415793783993E-07  | -6.18301968145983E-06 | 1.58550532419520E-04  | -3.01542699779204E-03 | 4.15607576152733E-02  | -4.00695492548023E-01 |
| Cx27 | 3.81324365879930E-10  | -2.01177208917881E-08 | 8.06339244611864E-07  | -2.44044709294853E-05 | 5.49924033969026E-04  | -9.01287100307001E-03 | 1.03713661743046E-01  |
| Cx28 | -1.70268791503599E-09 | 7.22545493693507E-08  | -2.31291688901005E-06 | 5.53720049520454E-05  | -9.74815739174836E-04 | 1.22768469857880E-02  | -1.05947188975633E-01 |
| Cx29 | -2.68592928493070E-09 | 1.10258952423952E-07  | -3.42102705893300E-06 | 7.95714458298775E-05  | -1.36508902469620E-03 | 1.68220889887683E-02  | -1.42914195745377E-01 |
| Cx30 | -2.13206154858483E-09 | 9.29305840074434E-08  | -3.05866361003173E-06 | 7.55304310610714E-05  | -1.37924642141494E-03 | 1.81711560296791E-02  | -1.66087302005870E-01 |
| Cx31 | -2.59118605438754E-09 | 1.01772166242679E-07  | -3.02885221069044E-06 | 6.78782774975189E-05  | -1.13015167937482E-03 | 1.36669247164439E-02  | -1.15844336303576E-01 |
| Cx32 | -5.19268390093453E-09 | 2.00201168414315E-07  | -5.83846749999887E-06 | 1.27884876111013E-04  | -2.07425962819782E-03 | 2.43519827973627E-02  | -1.99909384596931E-01 |
| Cx33 | -1.56205314046306E-08 | 5.75258963821579E-07  | -1.60337146068879E-05 | 3.35468545660953E-04  | -5.18618149461226E-03 | 5.77786278810626E-02  | -4.46913116460016E-01 |
| Cx34 | 4.90698724388122E-08  | -1.50070487271258E-06 | 3.46613341745867E-05  | -6.00013084164552E-04 | 7.67047008197715E-03  | -7.07536253582966E-02 | 4.55112358704764E-01  |
| Cx35 | 5.24335175850110E-08  | -1.59867918818968E-06 | 3.68408147983781E-05  | -6.37092970697553E-04 | 8.14992542532904E-03  | -7.53737284484754E-02 | 4.86966046305666E-01  |
| Cx36 | 1.21395013802231E-07  | -3.75168088975735E-06 | 8.76313081519705E-05  | -1.53525611027099E-03 | 1.98764087577513E-02  | -1.85772181262924E-01 | 1.21089310887638E+00  |
| Cx37 | 7.18681058721841E-08  | -2.19464401038839E-06 | 5.06964146320334E-05  | -8.79109064646219E-04 | 1.12797991808759E-02  | -1.04756003308438E-01 | 6.82102713395853E-01  |
| Cx38 | 2.80614137465836E-08  | -1.10746646214268E-06 | 3.09877007106433E-05  | -6.25587633049813E-04 | 9.10244922737972E-03  | -9.40502019360395E-02 | 6.70200883783974E-01  |

| Cx39 | 1.00753131695417E-07 | -3.26258148092728E-06 | 7.96652981470487E-05 | -1.45725407100859E-03 | 1.96934859778042E-02 | -1.92202225783928E-01 | 1.30824502584789E+00 |
|------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|
| Cx40 | 1.62728863506891E-07 | -5.04036466159933E-06 | 1.18281916803706E-04 | -2.08752506508527E-03 | 2.73097353592791E-02 | -2.58834235136735E-01 | 1.71701405853681E+00 |
| Cx41 | 1.80462724838439E-09 | -2.89270222033717E-07 | 1.17907449625605E-05 | -2.89230544400948E-04 | 4.77006828287522E-03 | -5.40186158242271E-02 | 4.13922015974922E-01 |
| Cx42 | 2.82996461101664E-08 | -6.90932312763917E-07 | 1.24224695207122E-05 | -1.61796058759179E-04 | 1.48149181826227E-03 | -9.02373943434196E-03 | 3.21232068535859E-02 |
| Cx43 | 9.87937233574444E-09 | -2.57028793428205E-07 | 4.99100805683067E-06 | -7.13989509879409E-05 | 7.34112257976654E-04 | -5.19950356471920E-03 | 2.35314206534108E-02 |
| Cx44 | 7.11954523920001E-09 | -1.75790584426894E-07 | 3.18414618531658E-06 | -4.14208142116401E-05 | 3.71837595155543E-04 | -2.13039797106118E-03 | 6.34163124375731E-03 |
| Cx45 | 4.13570327653732E-08 | -1.18970617056249E-06 | 2.59534311871308E-05 | -4.25632033861749E-04 | 5.15936778248186E-03 | -4.50010652204131E-02 | 2.71478048046600E-01 |
| Cx46 | 6.44235340565421E-08 | -1.89611035793773E-06 | 4.22906687952428E-05 | -7.08111580594730E-04 | 8.74427984259814E-03 | -7.74570495262747E-02 | 4.72611272947404E-01 |
| Cx47 | 1.05449462266097E-07 | -3.14448468026754E-06 | 7.10237782876681E-05 | -1.20389457891929E-03 | 1.50505639030390E-02 | -1.35066088367092E-01 | 8.36481917355885E-01 |
| Cx48 | 1.32656712726667E-07 | -3.96529698195156E-06 | 8.97922576995545E-05 | -1.52627399499256E-03 | 1.91410697382181E-02 | -1.72422889840868E-01 | 1.07293780089007E+00 |
| Cx49 | 1.18749391680499E-07 | -3.54738975302720E-06 | 8.02389061421187E-05 | -1.36118144367614E-03 | 1.70122551489175E-02 | -1.52365230723995E-01 | 9.39201824963427E-01 |

Table I.3: Equation 3.1 Coefficients  $\beta_{15}$  through  $\beta_{19}$  for the SZA range  $0^{\circ}$ -30°.

| Cx           | $\beta_{15}$                                  | $\beta_{16}$          | $\beta_{17}$                                  | $\beta_{18}$                                  | β <sub>19</sub>                              |
|--------------|-----------------------------------------------|-----------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|
| Cx1          | 5.80906034555732E-01                          | -8.68846070389097E-01 | 2.25672271899842E-02                          | 1.06988141993277E+01                          | 6.70183340304313E+01                         |
| Cx2          | -2.47664736171691E+00                         | 2.14407176575916E+00  | -6.21700496637760E-01                         | 7.57092399027650E+00                          | 7.71648147628635E+01                         |
| Cx3          | 5.28535913357688E+00                          | -1.24377769423931E+01 | 1.61283495806766E+01                          | -1.10860644068219E+01                         | 8.80269205843525E+01                         |
| Cx4          | -6.90309839862168E+00                         | 1.73640449440084E+01  | -2.38168101966121E+01                         | 1.24269501672393E+01                          | 8.32038618307148E+01                         |
| Cx5          | -4.27444359476805E-01                         | 1.28078152176811E+00  | -2.10762214625942E+00                         | -3.37679279202110E-01                         | 8.37854607225382E+01                         |
| Cx6          | -5.87316482951376E+00                         | 1.84749166538006E+01  | -3.14828933625439E+01                         | 2.08619514715416E+01                          | 7.84311700423514E+01                         |
| Cx7          | -4.84620844686137E+00                         | 1.52593882416178E+01  | -2.59511465758906E+01                         | 1.15863788876756E+01                          | 7.68681885193850E+01                         |
| Cx8          | -5.20278035137783E-01                         | 8.97769461279082E-01  | 1.75316818281798E-01                          | -1.33535620402435E+01                         | 7.89524037805045E+01                         |
| Cx9          | -4.19244860991787E+00                         | 1.29334387007999E+01  | -2.12489666562557E+01                         | 5.58959062809962E+00                          | 7.44843146062547E+01                         |
| Cx10         | -5.45507784542504E+00                         | 1./3999544389891E+01  | -2.98913208626570E+01                         | 1.51580081840055E+01                          | 7.14155448000515E±01                         |
| Cx12         | 4 20104721480605E+00                          | -1.40802299233934E+01 | 2.84030883393227E+01<br>2.72088204000282E+01  | -3.39189380733974E+01<br>3.42010008208628E+01 | 7.56407540042315E+01                         |
| Cx12         | 3.64059081143993E+00                          | -1.21723936504021E±01 | 2.75566933046190E±01                          | -2 53064991877276E±01                         | 7.42005027992384E±01                         |
| Cx14         | -1 20444125818937E-01                         | 5 13443182028137E-01  | -7 99375252482940F-01                         | -1.66131815437724E+00                         | 6 92483568813007E+01                         |
| Cx15         | 4.09214490902496E+00                          | -1.38619084907461E+01 | 2.59404201098272E+01                          | -2.58410465563547E+01                         | 7.07845420559507E+01                         |
| Cx16         | 3.04824663434877E+00                          | -1.03406915970865E+01 | 1.95645477927913E+01                          | -2.46413238740747E+01                         | 6.88639972674985E+01                         |
| Cx17         | -2.34509356242187E+00                         | 8.49077235542378E+00  | -1.62603670028736E+01                         | 3.52226980051100E+00                          | 6.14651163584451E+01                         |
| Cx18         | -5.69329887770431E-01                         | 2.04203360794048E+00  | -3.32716348923995E+00                         | -8.91827041774747E+00                         | 6.16214647303229E+01                         |
| Cx19         | 3.75605770442550E-01                          | -1.09196959942725E+00 | 2.22982951511399E+00                          | -1.19910105817158E+01                         | 6.13218009589387E+01                         |
| Cx20         | 1.68559156658743E-02                          | 1.24065013441319E-01  | -8.77100787532080E-02                         | -8.63933469987276E+00                         | 5.89842474315046E+01                         |
| Cx21         | 2.61501451093952E-01                          | -7.34532550445072E-01 | 1.32285067891459E+00                          | -6.86309559364764E+00                         | 6.51316795056087E+01                         |
| Cx22         | 5.73860748657050E-01                          | -2.45877051163707E+00 | 5.71629639747439E+00                          | -8.47416972050004E+00                         | 7.12480025374600E+01                         |
| Cx23         | 2.53807642150344E+00                          | -9.95299775854715E+00 | 2.14484351201060E+01                          | -2.40474068730441E+01                         | 6.30736775187257E+01                         |
| Cx24         | 5.92932267010363E-01                          | -2.48249501097061E+00 | 5.59563787331643E+00                          | -1.58098624808613E+00                         | 4.47684153340595E+01                         |
| Cx25         | 4.46099579861084E+00                          | -1.66915836431241E+01 | 3.35593940842551E+01                          | -3.12593053102971E+01                         | 3.18883956266696E+01                         |
| Cx26         | 2.56092475362328E+00                          | -1.00085/53543611E+01 | 2.1620/0588496/1E+01<br>8.70116741622480E+00  | -2.45665006156425E+01                         | 3.07/46/34659988E+01                         |
| Cx27         | -7.94908702807010E-01<br>5 85044252070002E 01 | 1 88876020804778E+00  | -8.70110741023480E+00<br>2.61822126222650E+00 | 2.51550750655071E+00<br>8.44007040828784E+00  | 2.30348093040033E+01                         |
| Cx20         | 7 85205756182282E 01                          | 2 54205210770887E+00  | 4 60044274268240E+00                          | 8 24600670720172E+00                          | 2.84900925272702E+01                         |
| Cx29         | 9.90425926012007E-01                          | -3 50493647503006E±00 | 6 51636318122218E±00                          | -5.66758785895852E±00                         | 2.84800833273793E+01<br>2.86840591225687E±01 |
| Cx31         | 6 51567748056256E-01                          | -2 23613138198828E+00 | 3 94835898219167E+00                          | 2 86903802260208E=01                          | 2 64925675591890E+01                         |
| Cx32         | 1.08883298819214E+00                          | -3.62519938528642E+00 | 6.51963547622624E+00                          | -5.29638782251859E+00                         | 2.47640054765047E+01                         |
| Cx33         | 2.27092743364006E+00                          | -6.98203478803683E+00 | 1.18526061369900E+01                          | -1.34200597534851E+01                         | 2.33290151542318E+01                         |
| Cx34         | -1.94275916542184E+00                         | 5.10717744490293E+00  | -7.14407618087967E+00                         | 2.67232079937544E+00                          | 1.94193757413914E+01                         |
| Cx35         | -2.08902949071630E+00                         | 5.50767370762293E+00  | -7.92931149119247E+00                         | 6.45128780512599E+00                          | 1.73591923333329E+01                         |
| Cx36         | -5.23234634814103E+00                         | 1.38809074695458E+01  | -1.99166561197516E+01                         | 1.21041563719811E+01                          | 1.43906192688675E+01                         |
| Cx37         | -2.97322123711151E+00                         | 8.07624490546923E+00  | -1.18985518539609E+01                         | 5.25136816790716E+00                          | 1.39616083542010E+01                         |
| Cx38         | -3.13759880886016E+00                         | 8.92471238316954E+00  | -1.37371745949210E+01                         | 1.09346939990095E+01                          | 1.17751227405944E+01                         |
| Cx39         | -5.88614569746990E+00                         | 1.61058576757813E+01  | -2.39863394505641E+01                         | 2.13437732839651E+01                          | 9.01443011850178E+00                         |
| Cx40         | -7.56574094051570E+00                         | 2.04135704058595E+01  | -3.00007370353833E+01                         | 2.38240362359301E+01                          | 6.54037916253368E+00                         |
| Cx41         | -2.05310856761011E+00                         | 6.08575464886078E+00  | -9.83067341796405E+00                         | 1.07457033718306E+01                          | 6.11249438591749E+00                         |
| Cx42         | -3.44732510861013E-02                         | -1.96092486960658E-01 | 5.60534515623717E-01                          | 1.82502432918537E+00                          | 5.11808486292043E+00                         |
| Cx43<br>Cr44 | -5.81652807867101E-02                         | 4.2453833018356/E-02  | 9.28880/88822688E-02                          | 5.5/312301833465E-02                          | 5.05018/198466/0E+00                         |
| Cx44         | 2.90940227308930E-05<br>1.07027605202282E+00  | -3.97031933404473E-02 | 2 20251005485424E+00                          | -1.20326390122831E-01                         | 1.02041366789409E+00<br>8.16560247012864E-01 |
| Cx45         | 1 87512244088266E+00                          | 4 45754770418520E+00  | 5 57050518705022E+00                          | 2 87282088161672E+00                          | 6.02420422082708E-01                         |
| Cx40<br>Cx47 | -3 38044548995641F±00                         | 8 22880774961962E±00  | -1.06229679574918F±01                         | 5.69616302598150F±00                          | 3 52712069630538E_01                         |
| Cx48         | -4.36334810650141E+00                         | 1.07090568671737E+01  | -1.39690398974517E+01                         | 7.58648430649223E+00                          | 1.23269323268032E-01                         |
| Cx49         | -3.76304453545913E+00                         | 9.03636614530995E+00  | -1.14407261075861E+01                         | 5.97484260112901E+00                          | 3.46599488253276E-01                         |

| Cx   | $\beta_1$             | $\beta_2$             | $\beta_3$             | $\beta_4$             | $\beta_5$             | $\beta_6$             | $\beta_7$             |
|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Cx1  | 8.90102607497261E-18  | -2.26665936795583E-15 | 2.60261824167473E-13  | -1.77558380259758E-11 | 7.97171209172970E-10  | -2.45685476261508E-08 | 5.22315251641399E-07  |
| Cx2  | 1.70331064501020E-19  | -6.49949206272372E-17 | 1.13445779556786E-14  | -1.20023759816611E-12 | 8.59771538580671E-11  | -4.41164125724937E-09 | 1.67298677487453E-07  |
| Cx3  | 5.33893012093240E-21  | -2.49906594221873E-18 | 5.35310354992221E-16  | -6.95213506284663E-14 | 6.11412798902004E-12  | -3.85209563598551E-10 | 1.79387631170514E-08  |
| Cx4  | 5.54321351636734E-22  | -2.50730087067411E-19 | 5.12234962345538E-17  | -6.23953116190176E-15 | 5.03473283363149E-13  | -2.82372348290061E-11 | 1.12006479928252E-09  |
| Cx5  | -5.23142718445267E-22 | 2.84973734833385E-19  | -7.10820696711963E-17 | 1.07545886191553E-14  | -1.10213392291021E-12 | 8.09122928724687E-11  | -4.38930345311106E-09 |
| Cx6  | -2.40272516034886E-23 | 1.22274982393741E-20  | -2.73526247794297E-18 | 3.47817404991278E-16  | -2.65982745229493E-14 | 1.08793710587844E-12  | 8.12994606866355E-13  |
| Cx7  | -1.56354470620423E-23 | 7.49295853496845E-21  | -1.52104840807566E-18 | 1.60708712806317E-16  | -7.31218208106268E-15 | -3.11618518818081E-13 | 7.39938964725985E-11  |
| Cx8  | 9.15842194567633E-24  | -6.41131479723837E-21 | 2.03189782469892E-18  | -3.86628538922208E-16 | 4.93557706816565E-14  | -4.47155950224587E-12 | 2.96491956461549E-10  |
| Cx9  | -2.58572612230634E-24 | 1.19062497569016E-21  | -2.22512336123047E-19 | 1.91151393728371E-17  | -1.31534746753903E-16 | -1.45852437340283E-13 | 1.70192065007426E-11  |
| Cx10 | -1.55326272572587E-23 | 9.69400580450985E-21  | -2.78265654157455E-18 | 4.87201157603648E-16  | -5.81724054197215E-14 | 5.01645043188636E-12  | -3.22700128593761E-10 |
| Cx11 | 7.36878553594077E-24  | -4.77789597963795E-21 | 1.41230269828344E-18  | -2.51882519003916E-16 | 3.02309965354218E-14  | -2.57801905218343E-12 | 1.60730423073887E-10  |
| Cx12 | 1.13282057030542E-23  | -7.42485061439778E-21 | 2.22147440901366E-18  | -4.01684038820987E-16 | 4.89791050148540E-14  | -4.25489247918132E-12 | 2.71223852990053E-10  |
| Cx13 | 1.40101192075777E-23  | -9.23692963575063E-21 | 2.78234111474411E-18  | -5.07034932581168E-16 | 6.23904805075941E-14  | -5.47871256130638E-12 | 3.53795368993954E-10  |
| Cx14 | 1.25010002577375E-23  | -8.43501172229155E-21 | 2.60518873719725E-18  | -4.87872745985357E-16 | 6.18586204544727E-14  | -5.61592337807799E-12 | 3.76506883822383E-10  |
| Cx15 | 9.53194604769944E-25  | -4.99984555788531E-22 | 1.06279082719208E-19  | -1.00299078603381E-17 | -1.08190396515472E-16 | 1.48922192480613E-13  | -2.04184558435153E-11 |
| Cx16 | -7.72662239060769E-24 | 5.31680346420078E-21  | -1.67657664147574E-18 | 3.20985739794936E-16  | -4.16722839226778E-14 | 3.88089764269676E-12  | -2.67484047372875E-10 |
| Cx17 | -1.71401896535617E-25 | 7.83508247414654E-23  | -9.59533838906074E-21 | -1.63180307915083E-18 | 7.47763897099825E-16  | -1.28654160957963E-13 | 1.36489903001998E-11  |
| Cx18 | 2.97392881984743E-24  | -1.86978892399509E-21 | 5.33861915705974E-19  | -9.15414814093427E-17 | 1.05023601080909E-14  | -8.49852976242541E-13 | 4.97881260246874E-11  |
| Cx19 | 5.04160807408248E-24  | -3.27640582034135E-21 | 9.73090491833341E-19  | -1.74962767931273E-16 | 2.12668175487025E-14  | -1.84818261709205E-12 | 1.18439536737883E-10  |
| Cx20 | 3.76891382902068E-24  | -2.47257289169679E-21 | 7.41828943802536E-19  | -1.34818035956351E-16 | 1.65703225618064E-14  | -1.45626417326318E-12 | 9.43366994026565E-11  |
| Cx21 | 1.99643631468378E-24  | -1.25462519868616E-21 | 3.57238165754056E-19  | -6.08662930939247E-17 | 6.89780783634371E-15  | -5.45918807956888E-13 | 3.07376918251041E-11  |
| Cx22 | -1.98436378814641E-24 | 1.43818997995534E-21  | -4.78010435379084E-19 | 9.65560085529615E-17  | -1.32429134967288E-14 | 1.30503281999662E-12  | -9.53706582391635E-11 |
| Cx23 | -4.18228196202486E-24 | 3.06337833164961E-21  | -1.02971698965284E-18 | 2.10494000456539E-16  | -2.92325345697231E-14 | 2.91808305026847E-12  | -2.16042679915849E-10 |
| Cx24 | -9.48102034746159E-25 | 7.55077878241094E-22  | -2.75988692939030E-19 | 6.13399507262893E-17  | -9.25873264194994E-15 | 1.00393739947547E-12  | -8.06670216487457E-11 |
| Cx25 | -2.23650969811101E-25 | 1.84969099622409E-22  | -7.04119738717052E-20 | 1.63285588671818E-17  | -2.57353716572026E-15 | 2.91265094834772E-13  | -2.43884171898832E-11 |
| Cx26 | -3.12631364759070E-25 | 2.43905826561401E-22  | -8.74823747845657E-20 | 1.91105159203469E-17  | -2.83911380688282E-15 | 3.03301582253820E-13  | -2.40200433653344E-11 |
| Cx27 | -7.38667539946217E-25 | 5.68517671194349E-22  | -2.00575009414963E-19 | 4.29754607037838E-17  | -6.24525686231210E-15 | 6.51041149031500E-13  | -5.02109223444818E-11 |
| Cx28 | -2.53952742222392E-24 | 1.87814295447151E-21  | -6.37369672438972E-19 | 1.31519124061423E-16  | -1.84330206376231E-14 | 1.85648448255481E-12  | -1.38630605336414E-10 |
| Cx29 | -2.20791213478821E-24 | 1.65036954478908E-21  | -5.66365289411192E-19 | 1.18249593210825E-16  | -1.67798245274368E-14 | 1.71220137707746E-12  | -1.29628127169297E-10 |
| Cx30 | 4.86264046480054E-24  | -3.14724975396215E-21 | 9.25854378696721E-19  | -1.63636160203335E-16 | 1.93424853369892E-14  | -1.60964990253420E-12 | 9.65543358806181E-11  |
| Cx31 | 2.48718566674882E-24  | -1.59494835891851E-21 | 4.63734110315375E-19  | -8.07139057698685E-17 | 9.34399561089141E-15  | -7.54852701918384E-13 | 4.32886819082587E-11  |
| Cx32 | -1.67569816687007E-24 | 1.22950644281726E-21  | -4.15419727469502E-19 | 8.56390239760206E-17  | -1.20307904071384E-14 | 1.21825606303280E-12  | -9.17208671646095E-11 |
| Cx33 | 6.88282503833339E-24  | -4.04517934973417E-21 | 1.07102966880866E-18  | -1.68025543717693E-16 | 1.72301866381085E-14  | -1.19340850522117E-12 | 5.46380649649329E-11  |
| Cx34 | 7.23090987408674E-23  | -4.02337495847702E-20 | 1.02658343697258E-17  | -1.59089040550786E-15 | 1.67152941806948E-13  | -1.25862834058879E-11 | 6.99903642316928E-10  |
| Cx35 | -7.30410834884548E-23 | 3.95051069807484E-20  | -9.77921971793164E-18 | 1.46774148132385E-15  | -1.49158837615527E-13 | 1.08562065423692E-11  | -5.83787014648601E-10 |
| Cx36 | -4.76389503598254E-23 | 2.58906150542297E-20  | -6.43986601544033E-18 | 9.70981976483683E-16  | -9.90803075839960E-14 | 7.23466758880221E-12  | -3.89764166036763E-10 |
| Cx37 | 2.56421544396566E-22  | -1.16015353610271E-19 | 2.36816321653816E-17  | -2.87677642149838E-15 | 2.30741924982405E-13  | -1.27890681149227E-11 | 4.95763191875525E-10  |
| Cx38 | 5.11628773376607E-22  | -2.36386819129361E-19 | 4.95581834674727E-17  | -6.23357167928455E-15 | 5.23981982582934E-13  | -3.10173815184829E-11 | 1.32632870250761E-09  |
| Cx39 | 2.87674751175497E-22  | -1.22185488381685E-19 | 2.27990630492273E-17  | -2.41549721851597E-15 | 1.53400081701305E-13  | -5.13150978303514E-12 | -1.61927590912416E-11 |
| Cx40 | -1.89019461903838E-22 | 1.24311732956656E-19  | -3.57119764060914E-17 | 6.03144396738389E-15  | -6.74885313026363E-13 | 5.32170224940193E-11  | -3.06173892904308E-09 |
| Cx41 | -2.36296067089273E-22 | 1.47494172525094E-19  | -4.09043104747005E-17 | 6.73390030478278E-15  | -7.38804276640133E-13 | 5.73349537474803E-11  | -3.25391613183671E-09 |
| Cx42 | 3.33011139382469E-22  | -1.45945400666326E-19 | 2.84999256486295E-17  | -3.24536192976219E-15 | 2.35283545651817E-13  | -1.09276509077086E-11 | 2.87682117442014E-10  |
| Cx43 | -1.35069968210494E-22 | 6.68045116427305E-20  | -1.51486731070396E-17 | 2.08743234500018E-15  | -1.95309374905288E-13 | 1.31324045447885E-11  | -6.55022052835564E-10 |
| Cx44 | 9.54128066972098E-24  | 1.56740153176725E-21  | -1.88475569565366E-18 | 4.84806835814571E-16  | -6.77124869642894E-14 | 6.13411907666654E-12  | -3.88014239115965E-10 |
| Cx45 | -3.84621588783914E-23 | 1.87519654655388E-20  | -4.17642574203446E-18 | 5.62662519031325E-16  | -5.11768789205374E-14 | 3.32107380708313E-12  | -1.58417956063114E-10 |
| Cx46 | 3.09532859001063E-23  | -6.42278830527858E-21 | -7.11423114345550E-19 | 4.17988446164691E-16  | -7.09708698513403E-14 | 7.03277721723610E-12  | -4.68479985307469E-10 |
| Cx47 | -7.42753922574821E-23 | 4.30338360323789E-20  | -1.13227600759269E-17 | 1.79487449005129E-15  | -1.91628062829427E-13 | 1.45843180376833E-11  | -8.16508352276746E-10 |
| Cx48 | -3.81401159611805E-23 | 2.40698146424946E-20  | -6./4103117836029E-18 | 1.12021675864566E-15  | -1.24066184351812E-13 | 9.72230797604700E-12  | -5.57463311894665E-10 |
| CX49 | -0.40036817754600E-23 | 5.70530335017763E-20  | -9.0000408115228E-18  | 1.51/304552528//E-15  | -1.00/03858045508E-13 | 1.2145202191018/E-11  | -0./59698322685/2E-10 |

Table I.4: Equation 3.1 Coefficients  $\beta_1$  through  $\beta_9$  for the SZA range 30°-50°.

Table I.5: Equation 3.1 Coefficients  $\beta_8$  through  $\beta_{14}$  for the SZA range 30°-50°.

| Cx   | $\beta_8$                                    | β <sub>9</sub>                               | $\beta_{10}$          | $\beta_{11}$                                  | $\beta_{12}$          | $\beta_{13}$                                   | $\beta_{14}$          |
|------|----------------------------------------------|----------------------------------------------|-----------------------|-----------------------------------------------|-----------------------|------------------------------------------------|-----------------------|
| Cx1  | -7.33573934996983E-06                        | 5.59679688937685E-05                         | 8.79566796906517E-05  | -7.90492297959423E-03                         | 1.01483540850358E-01  | -7.28461005180423E-01                          | 3.26430334937267E+00  |
| Cx2  | -4.76871820933651E-06                        | 1.02909158955823E-04                         | -1.68056474184858E-03 | 2.06150751220595E-02                          | -1.87184115462002E-01 | 1.22922421471134E+00                           | -5.64085264355265E+00 |
| Cx3  | -6.28085089006147E-07                        | 1.66573582546921E-05                         | -3.34589273272571E-04 | 5.05470465087902E-03                          | -5.66179300726465E-02 | 4.59529300698768E-01                           | -2.61119765581491E+00 |
| Cx4  | -3.11189294812744E-08                        | 5.72679816812324E-07                         | -5.55647809996109E-06 | -2.16276666453233E-05                         | 1.64639603584450E-03  | -2.71335715406777E-02                          | 2.50616007194817E-01  |
| Cx5  | 1.78913951808553E-07                         | -5.51918299021203E-06                        | 1.28818122868541E-04  | -2.25914918474071E-03                         | 2.93611332508671E-02  | -2.76624766492598E-01                          | 1.82782861444850E+00  |
| Cx6  | -3.08954563415986E-09                        | 2.11581362696875E-07                         | -8.23204922852916E-06 | 2.13307841755655E-04                          | -3.82256650124491E-03 | 4.74098504152691E-02                           | -3.98845813457820E-01 |
| Cx7  | -5.85508306655756E-09                        | 2.85637071111299E-07                         | -9.54980484094633E-06 | 2.25619194227099E-04                          | -3.77842895863597E-03 | 4.42755795679480E-02                           | -3.53622244915886E-01 |
| Cx8  | -1.46196699848930E-08                        | 5.39202275493103E-07                         | -1.48397039099257E-05 | 3.01759603171925E-04                          | -4.45470873420462E-03 | 4.65193345130189E-02                           | -3.31815343937319E-01 |
| Cx9  | -1.05208096599144E-09                        | 4.08907501961877E-08                         | -1.00422151576031E-06 | 1.35741935074688E-05                          | -1.69578840669288E-05 | -2.85846806168600E-03                          | 5.20482327399539E-02  |
| Cx10 | 1.57671422354072E-08                         | -5.89984063359541E-07                        | 1.69133709217076E-05  | -3.68870865149244E-04                         | 6.02862373382390E-03  | -7.20106998368413E-02                          | 6.04985999158401E-01  |
| Cx11 | -7.42318906000068E-09                        | 2.54398417749753E-07                         | -6.41316673649124E-06 | 1.16479516176720E-04                          | -1.46744839032297E-03 | 1.19652111458636E-02                           | -5.43090856331555E-02 |
| Cx12 | -1.28727866597629E-08                        | 4.56793832927428E-07                         | -1.20634726407035E-05 | 2.34000284735229E-04                          | -3.25913662435516E-03 | 3.14966254734737E-02                           | -2.01189426834231E-01 |
| Cx13 | -1.70611070439093E-08                        | 6.17624199382531E-07                         | -1.67357922588038E-05 | 3.35918336670390E-04                          | -4.90396422726918E-03 | 5.06866176621120E-02                           | -3.57606734530982E-01 |
| Cx14 | -1.89505734595659E-08                        | 7.20970397094362E-07                         | -2.07143804706565E-05 | 4.45878757054157E-04                          | -7.07842130065418E-03 | 8.07898643488409E-02                           | -6.36999955326890E-01 |
| Cx15 | 1.61985586729517E-09                         | -8.72041012223273E-08                        | 3.34407770613053E-06  | -9.26143474731804E-05                         | 1.84324293712684E-03  | -2.58333758590151E-02                          | 2.45669489556421E-01  |
| Cx16 | 1.38771437181457E-08                         | -5.45898221389329E-07                        | 1.62781263837558E-05  | -3.65254138955271E-04                         | 6.07571702237246E-03  | -7.31194923719276E-02                          | 6.13363825540651E-01  |
| Cx17 | -9.97990744851200E-10                        | 5.24895550392426E-08                         | -2.01880774278935E-06 | 5.68616528228167E-05                          | -1.16091119351276E-03 | 1.68090681655818E-02                           | -1.66567060739191E-01 |
| Cx18 | -2.13075284315542E-09                        | 6.62026183715491E-08                         | -1.45446383979936E-06 | 2.10795855480194E-05                          | -1.58333736727261E-04 | -4.68157806215204E-04                          | 2.54358028150404E-02  |
| Cx19 | -5.69029360804683E-09                        | 2.06339870218107E-07                         | -5.64096826543750E-06 | 1.15268478975151E-04                          | -1.73081669593783E-03 | 1.85656047228504E-02                           | -1.35956460726414E-01 |
| Cx20 | -4.57588579901433E-09                        | 1.67098114815328E-07                         | -4.57845369445730E-06 | 9.29602437358616E-05                          | -1.36498009552190E-03 | 1.38741464623526E-02                           | -8.96904867746460E-02 |
| Cx21 | -1.22263893947891E-09                        | 3.27944363863042E-08                         | -4.99439057760150E-07 | -4.84041917655005E-08                         | 1.95846359268109E-04  | -4.75993403305307E-03                          | 5.97771191355316E-02  |
| Cx22 | 5.25901975455053E-09                         | -2.20536998357878E-07                        | 7.03539206847249E-06  | -1.69635250286729E-04                         | 3.04958636211741E-03  | -3.99730578993259E-02                          | 3.69191633746605E-01  |
| Cx23 | 1.20658030893796E-08                         | -5.12004969206703E-07                        | 1.64988791006539E-05  | -4.00631425804973E-04                         | 7.21894662860270E-03  | -9.41809756726868E-02                          | 8.57435485514809E-01  |
| Cx24 | 4.88379263172473E-09                         | -2.24330824234022E-07                        | 7.81154608525177E-06  | -2.04585927635759E-04                         | 3.96882633510715E-03  | -5.56760538178542E-02                          | 5.45193720804118E-01  |
| Cx25 | 1.53418735757095E-09                         | -7.28964849767045E-08                        | 2.60907221748508E-06  | -6.96097584286572E-05                         | 1.35820938712161E-03  | -1.88084748809760E-02                          | 1.76702154525486E-01  |
| Cx26 | 1.43260023618191E-09                         | -6.47053502020117E-08                        | 2.20684449726107E-06  | -5.62067488268398E-05                         | 1.04723068298039E-03  | -1.38090026254295E-02                          | 1.22408225899670E-01  |
| Cx27 | 2.91214011147674E-09                         | -1.27820448163894E-07                        | 4.23817846996275E-06  | -1.05143290040367E-04                         | 1.91635572414558E-03  | -2.49231524873758E-02                          | 2.21321421991624E-01  |
| Cx28 | 7.80623459172837E-09                         | -3.338349680812/3E-0/                        | 1.08349543561094E-05  | -2.64/5595/993306E-04                         | 4.79359195486504E-03  | -6.26801040571112E-02                          | 5.69469604998294E-01  |
| Cx29 | 7.40568933949065E-09                         | -3.21544099580388E-07                        | 1.06025168792160E-05  | -2.63378450621234E-04                         | 4.85119014380566E-03  | -6.45909385523170E-02                          | 5.98460779708135E-01  |
| Cx30 | -4.19233501/06890E-09                        | 1.29645306065028E-07                         | -2./1205/5632963/E-06 | 3.26119600297866E-05                          | -3.65464541344966E-05 | -5.9/265293118852E-03                          | 1.04881241494372E-01  |
| CX31 | -1./440040151100/E-09                        | 4.67606917220967E-08                         | -6./0818851623932E-07 | -2.8/505/00505160E-06                         | 3.73003979825224E-04  | -8.70973538497611E-03                          | 1.10257599261915E-01  |
| Cx32 | 5.21999421/4/869E-09                         | -2.260/2/95845482E-0/                        | 7.441/42/5116148E-06  | -1.8458/956316899E-04                         | 3.39315900/0/524E-03  | -4.50183512064547E-02                          | 4.143/0408/316/1E-01  |
| Cx33 | -1.42105037108419E-09                        | 4.51255485514085E-10<br>0.16949072220909E-07 | 1.05418280828185E-00  | -/.5081/214002534E-05                         | 1.8898/061080096E-05  | -3.05123/10580122E-02                          | 3.20498576559845E-01  |
| Cx34 | -2.91838933342110E-08                        | 7.215420012229696E-07                        | -2.101/30029//080E-03 | 2.00882007280402E.04                          | -4.76470626914093E-03 | 4.24180024085770E-02                           | -2.49/4/0993/4030E-01 |
| Cx35 | 2.33893227747403E-06                         | -7.21343991627329E-07                        | 1.07007233798833E=03  | -2.90880007280402E-04                         | 3.73700130073400E-03  | -5.52455247507090E-02                          | 1.20054252010450E.01  |
| Cx30 | 1.3/4039389042/9E-08<br>1.21242020282284E-08 | -4.80130270034428E-07                        | 1.10565159084571E=05  | -1.89824024804302E-04<br>2.00682755087184E-05 | 2.40390903348004E-03  | -2.19709957581249E-02                          | 1.39834332819038E-01  |
| Cx37 | -1.31343939383284E-08                        | 2.14381441090505E-07                         | -1.15505858190452E-00 | -3.90083733087184E-03                         | 5 11852210175212E 04  | -1.04214432236112E-02                          | 1.38992303842348E-01  |
| Cx30 | -4.12801147249505E-08                        | 9.20213419072473E-07<br>6.28076550784567E-07 | -1.44545591871105E-05 | 4 50172471420001E 04                          | 7.02852255721208E.02  | -0.85303404309782E-03                          | 5 40215028604601E 01  |
| Cx40 | 1.12855552509572E=08                         | 4 20622040812754E 06                         | 1.01272042602801E-04  | 1 92125764624691E-04                          | 2 40427160766874E 02  | 2 27780004072070E 01                           | 1 40580566200442E+00  |
| Cr40 | 1.37524551120644E 07                         | 4 26262700601825E 06                         | 1.01373942093891E=04  | 1 84000800227024E 02                          | 2.4042/100/008/4E-02  | 2.21730094073970E-01                           | 1.49589500500442E+00  |
| Cx42 | -7 27750278063569E-10                        | -7.76822467695538E-07                        | 1.05040217205700E=04  | -3 15288283728741F-04                         | 5 162/3621261522E-03  | -2.21321733370734E=01<br>-5 72577751269552E=02 | A 26441110834720E-01  |
| Cx43 | 2 46620068306487E-08                         | -7.06346944239660E-07                        | 1 53894689506554E-05  | -2 53232157446410F-04                         | 3 10050578888290E-03  | -2.75726254979029E-02                          | 1 71740681051595E-01  |
| Cx44 | 1 77801129160117E-08                         | -6 01055789287200E-07                        | 1 50865496030879E-05  | -2 80452515612742E-04                         | 3 81977772170950E-03  | -3 73695375555190E-02                          | 2 54484942452612E-01  |
| Cx45 | 5.63727075431713E-09                         | -1.50216498682292E-07                        | 2.97820831960917E-06  | -4.31082099942982E-05                         | 4.38050897399617E-04  | -2.87354663370160E-03                          | 9.51274940447385E-03  |

| Cx46 | 2.22020126102527E-08 | -7.68395657871824E-07 | 1.96190594935826E-05 | -3.69280740329937E-04 | 5.07314947827541E-03 | -4.98768288903957E-02 | 3.39987547002542E-01 |
|------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|
| Cx47 | 3.41962987380915E-08 | -1.07869590313074E-06 | 2.55982702285769E-05 | -4.53093153638141E-04 | 5.88423794805952E-03 | -5.46440203330983E-02 | 3.49473651741971E-01 |
| Cx48 | 2.38217212408637E-08 | -7.64800178332367E-07 | 1.84471254250957E-05 | -3.31824140054685E-04 | 4.38504014734261E-03 | -4.15711137237177E-02 | 2.73006659002593E-01 |
| Cx49 | 2.81829202410828E-08 | -8.86482505108171E-07 | 2.10214433272337E-05 | -3.72846333144013E-04 | 4.87069285556032E-03 | -4.57489460138222E-02 | 2.98264607147215E-01 |

Table I.6: Equation 3.1 Coefficients  $\beta_{15}$  through  $\beta_{19}$  for the SZA range  $30^{\circ}$ - $50^{\circ}$ .

|              | -                                             |                                              | •                     |                       | -                    |
|--------------|-----------------------------------------------|----------------------------------------------|-----------------------|-----------------------|----------------------|
| Cx           | $\beta_{15}$                                  | $\beta_{16}$                                 | $\beta_{17}$          | $\beta_{18}$          | $\beta_{19}$         |
| Cv1          | -9 106210/3652760E±00                         | 1 /0500852180302E±01                         | -1 28470468183070E±01 | 4 39757021102360E±00  | 9 96976022004871E±01 |
| Cx2          | 1 71936610820933E+01                          | -3 22008825836157E+01                        | 3 25384801396282E+01  | -1 46830936965180E+01 | 9 42104634581734E+01 |
| Cx3          | 9 87331805567662E+00                          | =2 29931238406555E+01                        | 2 90306842677919E+01  | -1 72219308875385E+01 | 8 77945247947520E+01 |
| Cx4          | -1.40236631852648E+00                         | 4.58111854746920E+00                         | -7.82343193963670E+00 | 4.43422479172173E+00  | 7.71626280024777E+01 |
| Cx5          | -8.06033166059294E+00                         | 2.19634113687618E+01                         | -3.24719041676640E+01 | 1.92302554580187E+01  | 6.81811695088754E+01 |
| Cx6          | 2.18780064604054E+00                          | -7.31447883456757E+00                        | 1.31976557619261E+01  | -1.06121302631463E+01 | 6.97609554843342E+01 |
| Cx7          | 1.84763747649166E+00                          | -5.91461639653962E+00                        | 1.03130504495326E+01  | -8.81631252485183E+00 | 6.63204547894656E+01 |
| Cx8          | 1.54543738850387E+00                          | -4.41659410161971E+00                        | 6.97067732352878E+00  | -6.72886474774478E+00 | 6.47927667129006E+01 |
| Cx9          | -4.38898126749350E-01                         | 1.90582116727443E+00                         | -3.99187231802767E+00 | 1.63182662201800E+00  | 6.14552840345691E+01 |
| Cx10         | -3.37547529804289E+00                         | 1.14872677647629E+01                         | -2.08972540930483E+01 | 1.39228106219806E+01  | 6.13446232720807E+01 |
| Cx11         | 7.18159876283164E-02                          | 3.82404779558776E-01                         | -1.49598960026170E+00 | -9.00152750907779E-01 | 6.57160171419323E+01 |
| Cx12         | 7.95415557829884E-01                          | -1.77650565526895E+00                        | 1.92043035833456E+00  | -3.48215821062379E+00 | 6.80172455330306E+01 |
| Cx13         | 1.64280377911393E+00                          | -4.60405216269997E+00                        | 6.99903914569764E+00  | -7.21295554427432E+00 | 6.96929447742130E+01 |
| Cx14         | 3.25683381457479E+00                          | -9.79971980338901E+00                        | 1.64360632274263E+01  | -2.66754676945502E+01 | 6.92710942400946E+01 |
| Cx15         | -1.49474167295523E+00                         | 5.33556230514559E+00                         | -9.83284473721530E+00 | 4.68012071498659E+00  | 6.48726279326555E+01 |
| Cx16         | -3.39104245895946E+00                         | 1.13598390839789E+01                         | -2.01762400628302E+01 | 1.31469024786786E+01  | 4.86415239726332E+01 |
| Cx17         | 1.07051604265509E+00                          | -4.12123614167156E+00                        | 8.37322879131111E+00  | -7.25475934568328E+00 | 3.63229655852971E+01 |
| Cx18         | -2.80138750517245E-01                         | 1.52361392922768E+00                         | -3.66040830376774E+00 | -1.03700066309228E+00 | 3.62328509423050E+01 |
| Cx19         | 6.31081237861808E-01                          | -1.64792592096046E+00                        | 2.36077187049122E+00  | -6.20156269210225E+00 | 3.81300191800347E+01 |
| Cx20         | 2.98161557144693E-01                          | -9.63814075980025E-02                        | -1.00229624702728E+00 | -9.30036313232856E+00 | 5.95279963642815E+01 |
| Cx21         | -4.30195438440388E-01                         | 1.71050590067549E+00                         | -3.45338061039724E+00 | -1.98082800126908E+00 | 8.15282943791795E+01 |
| Cx22         | -2.28122208557006E+00                         | 8.71215858510519E+00                         | -1.81192343483092E+01 | 1.11859654020/4/E+01  | 8.6/444285339835E+01 |
| Cx23         | -5.15902374982399E+00                         | 1.89307893520143E+01                         | -3./3/6/209/01692E+01 | 2.00148/15131020E+01  | 9.20919555681896E+01 |
| Cx24         | -3.53930834333996E+00                         | 1.40804157645026E+01                         | -2.96661139983861E+01 | 1.892161/2128105E+01  | 7.16099044435658E+01 |
| Cx25         | -1.05308840020773E+00                         | 3.00/81400012291E+00                         | -0.10030110941318E+00 | 1.90345105411740E+00  | 2.22040076645065E+01 |
| Cx20<br>Cr27 | -0./2913/44238041E-01                         | 2.012/3898008918E+00<br>4.14208104448142E+00 | -2.32124/22300111E+00 | 5.01122705005900E=05  | 5.55949970045005E+01 |
| Cx27         | -1.23090993877442E+00<br>2 20508204620001E+00 | 4.14298104448145E+00                         | -0.77084118729108E+00 | 1 80027277067188E+00  | 1.68001556027220E+01 |
| Cx20         | -3 64959319348921E±00                         | 1 34995235089644E±01                         | -2 66546468790150E±01 | 2 1418411587010/F±01  | 2 69433777265003F±01 |
| Cx30         | -8 75212519467623E-01                         | 3 86513949105526E+00                         | -8 46109613484651E+00 | 5 63349244995099E+00  | 4 75879286701921E+01 |
| Cx31         | -8 22894531688934F-01                         | 3 50129328344143E+00                         | -7 37806739921534E+00 | 1 08794454013312E+00  | 6 57222533336726E+01 |
| Cx32         | -2.49724073917863E+00                         | 9.06000998673815E+00                         | -1.73889069121129E+01 | 1.22468530231397E+01  | 3.75746797621207E+01 |
| Cx33         | -2.11779932801955E+00                         | 8.20683776707868E+00                         | -1.65131089456972E+01 | 1.32550337030242E+01  | 9.56051967698836E+00 |
| Cx34         | 9.01883485970289E-01                          | -1.74795227264938E+00                        | 1.34033289163079E+00  | -6.90468221378888E-01 | 3.08601764490281E+01 |
| Cx35         | -1.02336324009725E+00                         | 2.78463809744362E+00                         | -4.13178684847563E+00 | 1.58813546267021E+00  | 4.96550163656225E+01 |
| Cx36         | -5.90598574232561E-01                         | 1.53147428819967E+00                         | -2.14091734773356E+00 | 1.43833003934831E+00  | 1.78401769075476E+01 |
| Cx37         | -7.27290818428125E-01                         | 2.24686930696252E+00                         | -3.67503114479430E+00 | 3.84233745759650E+00  | 1.06288311473455E+01 |
| Cx38         | -8.45133801966107E-01                         | 3.14410455508885E+00                         | -5.81821671490039E+00 | 2.81624668754650E+00  | 3.23097408499033E+01 |
| Cx39         | -2.62148551656150E+00                         | 7.59320978567322E+00                         | -1.17604093696302E+01 | 5.03912848593752E+00  | 5.29242309110120E+01 |
| Cx40         | -6.47281046456228E+00                         | 1.70890252329674E+01                         | -2.42731045820735E+01 | 1.38705122948608E+01  | 4.21233265490814E+01 |
| Cx41         | -5.96004775833770E+00                         | 1.52378815500966E+01                         | -2.04848746913850E+01 | 6.01142183204719E+00  | 3.24692088396955E+01 |
| Cx42         | -2.05536795897913E+00                         | 5.98144215489123E+00                         | -9.29792523462192E+00 | 5.70254891539100E+00  | 2.01388523743560E+01 |
| Cx43         | -7.09858898874785E-01                         | 1.79354903062217E+00                         | -2.44750235423461E+00 | 1.68207756804931E+00  | 7.82684751092830E+00 |
| Cx44         | -1.14944136485236E+00                         | 3.19170394449988E+00                         | -4.79723179692883E+00 | 3.05440142015571E+00  | 1.57319120534249E+00 |
| Cx45         | 6.61875337665719E-03                          | -1.63405519135120E-01                        | 4.56419941774205E-01  | -4.09318870332561E-01 | 2.07160336683950E+00 |
| Cx46         | -1.53009584181509E+00                         | 4.21072555006248E+00                         | -6.25877247695867E+00 | 4.20724054071509E+00  | 7.46090908786306E+00 |
| Cx47         | -1.45900484374474E+00                         | 3.68298351881020E+00                         | -4.9/021849611265E+00 | 2.82253460518731E+00  | 8.65161691023054E+00 |
| Cx48         | -1.18063674252525E+00                         | 3.11564180509997E+00                         | -4.43973769300035E+00 | 3.29066843975674E+00  | 1.16530173491765E+01 |
| LX49         | -L.282/5100592904E±00                         | 1.1/109/01/001/9E±00                         | =4./8/84/228/0500E±00 | 1.497.30709827207E±00 | L 107/400053/05/E±01 |
| Cx   | $\beta_1$                                    | $\beta_2$             | $\beta_3$              | $\beta_4$                                     | $\beta_5$             | $\beta_6$                                    | β <sub>7</sub>                                |
|------|----------------------------------------------|-----------------------|------------------------|-----------------------------------------------|-----------------------|----------------------------------------------|-----------------------------------------------|
| Cx1  | -6.51104076416401E-19                        | 1.87496431895462E-16  | -2.47909721330226E-14  | 1.99705371733207E-12                          | -1.09686442415836E-10 | 4.35584389142960E-09                         | -1.29394689146134E-07                         |
| Cx2  | -4.75150160221520E-21                        | 1.90680104957772E-18  | -3.46739816601049E-16  | 3.79220750183651E-14                          | -2.79004575346969E-12 | 1.46256523853147E-10                         | -5.64193342327957E-09                         |
| Cx3  | 3.64694872818833E-22                         | -1.67107185516345E-19 | 3.51771815602492E-17   | -4.50714100881997E-15                         | 3.92555886400443E-13  | -2.45839973262423E-11                        | 1.14205157129311E-09                          |
| Cx4  | 1.56711467289525E-22                         | -7.39778355985225E-20 | 1.59118664161011E-17   | -2.06435320034744E-15                         | 1.80253476995834E-13  | -1.11932520652017E-11                        | 5.09326165549693E-10                          |
| Cx5  | -4.02361639726682E-24                        | 1.00313191107260E-21  | 4.16352018444652E-20   | -5.00018064141675E-17                         | 9.58720140339665E-15  | -1.03297520262047E-12                        | 7.41331233458469E-11                          |
| Cx6  | -7.26950448686496E-24                        | 4.03301692549786E-21  | -1.01885916190416E-18  | 1.55214859542430E-16                          | -1.59191022197809E-14 | 1.16239911288357E-12                         | -6.23334254228075E-11                         |
| Cx7  | 4.97431039984709E-25                         | -6.13973807352882E-22 | 2.53663595867228E-19   | -5.60327624539073E-17                         | 7.81757043201794E-15  | -7.46574528733522E-13                        | 5.09763501902651E-11                          |
| Cx8  | 9.94229484002091E-24                         | -6.21919632902462E-21 | 1.78166944088237E-18   | -3.09677675805913E-16                         | 3.64710848057207E-14  | -3.07830104311965E-12                        | 1.92079781028480E-10                          |
| Cx9  | 2.34917012776363E-24                         | -1.64162251779440E-21 | 5.20333227330995E-19   | -9.92416046063892E-17                         | 1.27334571292014E-14  | -1.16352006031905E-12                        | 7.81531606562979E-11                          |
| Cx10 | 5.39437226466843E-23                         | -3.46542588321369E-20 | 1.01894506607319E-17   | -1.81648827756593E-15                         | 2.19246151274412E-13  | -1.89487497317651E-11                        | 1.20957021642555E-09                          |
| Cx11 | 8.96054973992133E-24                         | -5.75695097954597E-21 | 1.68370674026907E-18   | -2.96594462838948E-16                         | 3.50860132705968E-14  | -2.94152614945639E-12                        | 1.79718231097538E-10                          |
| Cx12 | 5.30409993811664E-24                         | -3.41586558365512E-21 | 1.00070235333234E-18   | -1.76400402659620E-16                         | 2.08519531818449E-14  | -1.74322963131176E-12                        | 1.05873031364707E-10                          |
| Cx13 | 5.13358396712481E-24                         | -3.33197527701394E-21 | 9.84661058892768E-19   | -1.75287117220445E-16                         | 2.09555294646554E-14  | -1.77526688413386E-12                        | 1.09564135635508E-10                          |
| Cx14 | 5.95626019314930E-24                         | -3.84864156755011E-21 | 1.13177930152461E-18   | -2.00388728487324E-16                         | 2.38119589536250E-14  | -2.00344090053352E-12                        | 1.22662214278128E-10                          |
| Cx15 | 8.26832814335403E-24                         | -5.27966502459547E-21 | 1.52992461047676E-18   | -2.65900967062570E-16                         | 3.08511213672295E-14  | -2.51516409643767E-12                        | 1.47504983262444E-10                          |
| Cx16 | 4.44589602697987E-24                         | -2.80171915154251E-21 | 7.97980725057089E-19   | -1.35531075010758E-16                         | 1.52360061142084E-14  | -1.18737428143933E-12                        | 6.50361731364348E-11                          |
| Cx17 | 5.06634715576856E-25                         | -2.93766826320561E-22 | 7.58436696448548E-20   | -1.14368560175956E-17                         | 1.10646586020259E-15  | -7.03729066359085E-14                        | 2.81361610768809E-12                          |
| Cx18 | 1.67953967707070E-23                         | -1.10239691517374E-20 | 3.31224592262473E-18   | -6.03665547142065E-16                         | 7.45521512379295E-14  | -6.60155615480343E-12                        | 4.32552399094864E-10                          |
| Cx19 | 2.17460910263207E-25                         | 8.52507463049356E-23  | -9.96551354980969E-20  | 3.26946514102039E-17                          | -5.96162161461614E-15 | 7.09479787472050E-13                         | -5.90829630820828E-11                         |
| Cx20 | 9.02091711179192E-24                         | -5.74017943223136E-21 | 1.66493863528064E-18   | -2.91513220064242E-16                         | 3.43960612438739E-14  | -2.89165238183477E-12                        | 1.78597528215747E-10                          |
| Cx21 | 6.46709978495496E-24                         | -4.11436615084280E-21 | 1.19097944916031E-18   | -2.07558042874635E-16                         | 2.42823704731744E-14  | -2.01278397085567E-12                        | 1.21572218238804E-10                          |
| Cx22 | -4.70272803928249E-24                        | 3.369/6/1280/588E-21  | -1.106604/5439562E-18  | 2.20690800057977E-16                          | -2.98586432022315E-14 | 2.89976659804398E-12                         | -2.0859/1/5564691E-10                         |
| Cx23 | 3.44665484863041E-26                         | 1.021891/3129342E-23  | -1.606838511184/3E-20  | 6.02525352898315E-18                          | -1.24123536569128E-15 | 1.6686/9/9223/48E-13                         | -1.5/413385098/01E-11                         |
| Cx24 | -3.4148416/9/6622E-25                        | 2.5490381203///2E-22  | -8./4502/6028514/E-20  | 1.82958069669039E-17                          | -2.61146598/6888/E-15 | 2.69478186396009E-13                         | -2.0//1125//1/480E-11                         |
| Cx25 | -9.06288842138347E-25                        | 7.047/012/015994E-22  | -2.51339/990/66/2E-19  | 5.44562/48920530E-1/                          | -8.00505552552794E-15 | 8.443/5949442/83E-13                         | -0.59122043054810E-11                         |
| Cx26 | -9.31301/8359/35/E-25                        | 7.25790160328905E-22  | -2.59105856289159E-19  | 5.61280222995798E-17                          | -8.23/81405962504E-15 | 8.00252928525044E-15                         | -0./303518232/521E-11                         |
| Cx27 | -5.90502/4901349/E-25                        | 4.09102/44383043E-22  | -1./05849/02/3195E-19  | 5./594582/498/9/E-1/                          | -5.0008500/200049E-15 | 5.98540502051951E-15<br>0.42828814000422E-12 | -4./112013411/320E-11                         |
| Cx28 | -1.5//16959/5905/E-24                        | 1.00343403201380E-21  | -3.53653557/06/003E-19 | 0.8413490301/399E-1/                          | -9.47372012000493E-13 | 9.43636614000422E-13                         | -0.97380090743980E-11                         |
| Cx29 | -2.53110539079048E-24                        | 1.70370299290002E-21  | -5.0/52051/4/0951E-19  | 1.140555250/440/E-10                          | -1.5/185009450020E-14 | 1.34/3046/324406E-12                         | -1.12641330336740E-10<br>8.47633503045615E-11 |
| Cx30 | 2.01212222425705E 24                         | -2.33963773323179E-21 | 5 02400882678670E 10   | -1.54510529582715E-10<br>1.00724687822206E-16 | 1.00073910044313E-14  | -1.30300032707401E-12                        | 8.47022303043013E-11<br>8.08214525111170E-11  |
| Cx31 | 2.51212225425705E-24<br>2.50420705010504E-24 | 1 76617524240446E 21  | 5 52207772270026E 10   | -1.09724087852290E-10                         | 1.3/1/2/1/219/13E-14  | 1 26045045040217E 12                         | 8.08214525111170E-11<br>8.70242628000767E-11  |
| Cx32 | -1 22863002906085E-23                        | 7 7/683211622250E-21  | -2 23715503738258E-18  | 3 92028/32870282E-16                          | -4 65583126869990E-14 | 3 96/179539/1952F-12                         | -2 49651313024915E-10                         |
| Cx34 | 1 75178724450659E-22                         | -9 59059260811851E-20 | 2 40202028563875E-17   | =3 64589964226832E-10                         | 3 74525782857059E-13  | -2 75398612987009E-11                        | 1 49525957797917E-09                          |
| Cx35 | 1 16525482355897E-22                         | -6 27892876804298E-20 | 1 54744032515682E-17   | -2 310/67803/7337E-15                         | 2 33377617298542E-13  | -1 68659380991731E-11                        | 8 99/87003729///5E-10                         |
| Cx36 | 2.76890965030689E-23                         | -1.40146296855467E-20 | 3.22319053838587E-18   | -4.45340828956243E-16                         | 4.11691645701066E-14  | -2.68290291862018E-12                        | 1.26413061765269E-10                          |
| Cx37 | -6.24755507593486E-23                        | 3.35093704903888E-20  | -8.23709467467072E-18  | 1.22879656058275E-15                          | -1.24166979603686E-13 | 8.98284532070088E-12                         | -4.79511111487634E-10                         |
| Cx38 | 3.14627419340237E-22                         | -1.42482814393413E-19 | 2.91060222339736E-17   | -3.53720584995961E-15                         | 2.83668564270137E-13  | -1.57028279977798E-11                        | 6.06569930145617E-10                          |
| Cx39 | 7.96250556719701E-22                         | -3.53143071466379E-19 | 7.01200945651495E-17   | -8.18479204888099E-15                         | 6.17647036266868E-13  | -3.09224663469278E-11                        | 9.83787069595946E-10                          |
| Cx40 | 5.74960671905989E-22                         | -2.69079547739827E-19 | 5.73081923601215E-17   | -7.35153397502013E-15                         | 6.33616736162449E-13  | -3.87527885761412E-11                        | 1.73177425015894E-09                          |
| Cx41 | -2.75392978393749E-22                        | 1.21778428724871E-19  | -2.40453658852573E-17  | 2.77807676031439E-15                          | -2.05638029420182E-13 | 9.89291169577306E-12                         | -2.83628478616773E-10                         |
| Cx42 | -1.52741108898012E-22                        | 7.41251150363403E-20  | -1.64700877732222E-17  | 2.22038467719204E-15                          | -2.02899976017588E-13 | 1.32979998446697E-11                         | -6.45032681300501E-10                         |
| Cx43 | -5.50888070678418E-22                        | 2.64828075103087E-19  | -5.81568160165438E-17  | 7.72753915783890E-15                          | -6.93696916493128E-13 | 4.44901043469990E-11                         | -2.10234919053330E-09                         |
| Cx44 | -2.32423553081621E-22                        | 1.13113340866203E-19  | -2.51570987922691E-17  | 3.38680684022874E-15                          | -3.08167510429584E-13 | 2.00410583315221E-11                         | -9.60629221228803E-10                         |
| Cx45 | -1.84561121822049E-24                        | 4.77937190877324E-21  | -1.98369549081101E-18  | 3.99627303890563E-16                          | -4.93036118687137E-14 | 4.11250353907255E-12                         | -2.44070202077565E-10                         |
| Cx46 | 1.37270466559028E-23                         | -3.58940306169709E-21 | 1.03553033208947E-19   | 8.00443153000845E-17                          | -1.58217158086773E-14 | 1.57943632996980E-12                         | -1.01665961560773E-10                         |
| Cx47 | -7.04964379069883E-23                        | 3.48186005447464E-20  | -7.80703822911619E-18  | 1.05069797667095E-15                          | -9.45454021504949E-14 | 5.99582371572963E-12                         | -2.75097945689674E-10                         |
| Cx48 | 3.77565334163765E-22                         | -1.81293233445801E-19 | 3.98114112596106E-17   | -5.29830734634427E-15                         | 4.77431680753758E-13  | -3.08275659428150E-11                        | 1.47243530343562E-09                          |
| Cx49 | 7 93065040023392E=23                         | -3 82401300605404E-20 | 8 43438435930240E=18   | -1 12830682272531E-15                         | 1.02368318352406E=13  | -6 67488094953981E-12                        | 3 23498013359086E-10                          |

Table I.7: Equation 3.1 Coefficients  $\beta_1$  through  $\beta_9$  for the SZA range 50°-80°.

Table I.8: Equation 3.1 Coefficients  $\beta_8$  through  $\beta_{14}$  for the SZA range 50°-80°.

| Cx   | $\beta_8$               | β <sub>9</sub>                               | $\beta_{10}$          | $\beta_{11}$            | $\beta_{12}$          | $\beta_{13}$                                 | $\beta_{14}$                                  |
|------|-------------------------|----------------------------------------------|-----------------------|-------------------------|-----------------------|----------------------------------------------|-----------------------------------------------|
| Cx1  | 2.93251610976187E-06    | -5.11814568934431E-05                        | 6.87988688577352E-04  | -7.05468742241052E-03   | 5.40629495202368E-02  | -2.99652723094407E-01                        | 1.14701099158153E+00                          |
| Cx2  | 1.63055822613881E-07    | -3.55984984907857E-06                        | 5.87510515326780E-05  | -7.28419403341756E-04   | 6.69314263313765E-03  | -4.45659370583229E-02                        | 2.07775563626199E-01                          |
| Cx3  | -4.00282752017597E-08   | 1.06648995821422E-06                         | -2.16048874825790E-05 | 3.30681619614187E-04    | -3.77389908396688E-03 | 3.14198044929137E-02                         | -1.84352649026255E-01                         |
| Cx4  | -1.72475004318977E-08   | 4.37167044308178E-07                         | -8.27913740941206E-06 | 1.16154426614260E-04    | -1.18831971458559E-03 | 8.63298586306805E-03                         | -4.23737072134175E-02                         |
| Cx5  | -3.77630936245482E-09   | 1.40508790466439E-07                         | -3.86169164431435E-06 | 7.83515963965445E-05    | -1.16101025889539E-03 | 1.22912938158255E-02                         | -8.96061117732939E-02                         |
| Cx6  | 2.49671756398408E-09    | -7.52604953768174E-08                        | 1.70765864733159E-06  | -2.89807450320875E-05   | 3.63208596782994E-04  | -3.30041031855811E-03                        | 2.13232115080966E-02                          |
| Cx7  | -2.54853003475650E-09   | 9.43327444011676E-08                         | -2.58891962042275E-06 | 5.22897346948454E-05    | -7.63648573343375E-04 | 7.80938160631511E-03                         | -5.27979027750138E-02                         |
| Cx8  | -9.00990532405295E-09   | 3.19940683132063E-07                         | -8.59439375413430E-06 | 1.73257335951605E-04    | -2.57953823426960E-03 | 2.76247782912603E-02                         | -2.04094747422390E-01                         |
| Cx9  | -3.92590945944238E-09   | 1.48576226678045E-07                         | -4.23396178951251E-06 | 9.01336327646501E-05    | -1.41044536125879E-03 | 1.57956491761437E-02                         | -1.21344378550502E-01                         |
| Cx10 | -5.79863838312711E-08   | 2.10246297770500E-06                         | -5.76277000632419E-05 | 1.18539789272571E-03    | -1.80368105740036E-02 | 1.98410606748440E-01                         | -1.52476321641844E+00                         |
| Cx11 | -8.09921717598549E-09   | 2.69192248658679E-07                         | -6.51556430314708E-06 | 1.11409175887967E-04    | -1.25883383599063E-03 | 7.75867107670665E-03                         | 1.22895441413492E-04                          |
| Cx12 | -4.71984223049927E-09   | 1.53924023584976E-07                         | -3.60122964218444E-06 | 5.76196728038697E-05    | -5.53886302397216E-04 | 1.49779827997341E-03                         | 3.48363808632332E-02                          |
| Cx13 | -4.98457735570879E-09   | 1.67054795177940E-07                         | -4.06863189980131E-06 | 6.97050624713564E-05    | -7.80526552365537E-04 | 4.54522214563453E-03                         | 6.07256092279837E-03                          |
| Cx14 | -5.52703601884141E-09   | 1.82990753085180E-07                         | -4.38299488994640E-06 | 7.31726660357891E-05    | -7.79215410484797E-04 | 3.83063948167185E-03                         | 1.78144147491262E-02                          |
| Cx15 | -6.24855586778750E-09   | 1.88077877646940E-07                         | -3.81454010184355E-06 | 4.38182458371113E-05    | -1.03156493232501E-05 | -8.82141805237505E-03                        | 1.52551418690633E-01                          |
| Cx16 | -2.45802810997126E-09   | 5.89331313274768E-08                         | -5.82295158646494E-07 | -1.43159243730356E-05   | 7.09285201560691E-04  | -1.44057721645338E-02                        | 1.72465986337900E-01                          |
| Cx17 | -5.35694538904701E-11   | -9.21999121506015E-10                        | 9.73760702621401E-08  | -3.24624283010687E-06   | 6.25247727277809E-05  | -7.36136190422101E-04                        | 4.90589164251490E-03                          |
| Cx18 | -2.13372887936369E-08   | 7.98530639507540E-07                         | -2.26765769790749E-05 | 4.85399969149330E-04    | -7.72352523967743E-03 | 8.93104662934428E-02                         | -7.25220784901475E-01                         |
| Cx19 | 3.56714150699915E-09    | -1.58929572779452E-07                        | 5.25840755854262E-06  | -1.28874331101523E-04   | 2.31464137445201E-03  | -2.98731170406524E-02                        | 2.68644223082776E-01                          |
| Cx20 | -8.23703908551809E-09   | 2.85557232318161E-07                         | -7.43316485614801E-06 | 1.44108370270011E-04    | -2.04872538215514E-03 | 2.08417154287409E-02                         | -1.46304790395056E-01                         |
| Cx21 | -5.41675273061622E-09   | 1.78056000066716E-07                         | -4.26486492987481E-06 | 7.22171630889789E-05    | -8.07829279963295E-04 | 4.87987442981688E-03                         | 2.04230360270750E-03                          |
| Cx22 | 1.13068/2953803/E-08    | -4.652/0856/92200E-0/                        | 1.45319626458290E-05  | -3.42035537320515E-04   | 5.97825797803474E-03  | -/.5/803615/04188E-02                        | 6.72286046091355E-01                          |
| Cx23 | 1.08043259727165E-09    | -5.49045441174762E-08                        | 2.07595556637077E-06  | -5.80857836636249E-05   | 1.18355103913825E-03  | -1.70556223124542E-02                        | 1.65620762585540E-01                          |
| Cx24 | 1.21/2//340458/9E-09    | -5.4609/86//995/1E-08                        | 1.8/00615610932/E-06  | -4.82446/91980060E-05   | 9.13/46222931662E-04  | -1.21508/384/619/E-02                        | 1.04868286612929E-01                          |
| Cx25 | 3.87063958930362E-09    | -1.72124423039292E-07                        | 5.78890150259029E-06  | -1.45992737616119E-04   | 2.71601891648073E-03  | -3.63168630655170E-02                        | 3.35617602523791E-01                          |
| Cx26 | 3.92/3555/416498E-09    | -1./3265991944345E-0/                        | 5.//346/31988524E-06  | -1.44152826326952E-04   | 2.656584/1431655E-03  | -3.5301/646416228E-02                        | 3.26955066812092E-01                          |
| Cx27 | 2.78180711537248E-09    | -1.23992040325018E-07                        | 4.10/215/4039080E-00  | -1.04//30/8163042E-04   | 1.94130034213054E-03  | -2.59065810504858E-02                        | 2.40805862931770E-01                          |
| Cx28 | 5.88599100418401E-09    | -1.6440042566/010E-0/                        | 5.2/501098308059E-00  | -1.2/344821298/98E-04   | 2.27821995274319E-03  | -2.95088652444570E-02                        | 2.6/59/245109/33E-01                          |
| Cx29 | 0.20030194088380E-09    | -2.585950/9505420E-0/                        | 8.18443535027040E-00  | -1.9519551000/408E-04   | 3.4588/590430/28E-03  | -4.453200045800/1E-02                        | 4.03011/19429850E-01                          |
| Cx30 | -3.90021998098381E-09   | 1.33330010818810E-07                         | -5.50255115979089E-00 | 0.15908/44448293E-05    | -/.6566041/469//0E-04 | 0.33903094144302E-03                         | -5.01521950045588E-02                         |
| Cx31 | -3.99308093903013E-09   | 1.466/60099403/3E-0/                         | -4.18320707301042E-00 | 1.27706650068620E-03    | -1.30442918033330E-03 | 2 71201246052282E 02                         | -1.17/33090303924E-01                         |
| Cx32 | -4.00207780347330E-09   | 1.85409550100078E-07                         | -3.30770283844239E-00 | 2 262858082670755 04    | -2.18193898007743E-03 | 2.71291340932382E-02                         | -2.30993493337491E-01                         |
| Cx35 | 1.182/3349/49342E-08    | -4.24013233389130E-07                        | 1.13499411083888E-03  | -2.30363606207073E=04   | 5.36920263474391E-03  | -5.95255081488070E-02                        | 5.04900529001570E-01                          |
| Cx34 | -0.09334340202942E-08   | 1.878/03923409/0E-00<br>1.08844551704163E-06 | -4.5750759029579E-05  | 4 25628070608007E 04    | -9.80382912837130E-03 | 4.02708162605104E-02                         | -3.97337381030127E-01<br>3.15668854466272E-01 |
| Cx35 | 4 24022066541607E 00    | 1.07722751005524E-07                         | 1 87604051005045E 06  | 2 12260006226057E 05    | 1 23871066566704E 04  | 2 21028748152022E 04                         | 0 25272652458740E 02                          |
| Cx30 | 1.01822540050126E.08    | 5 78252722156040E 07                         | 1 21072240022808E 05  | 2.1051408187107E-04     | 2 72472660140650E 02  | 2.31928748132933E-04<br>2.20000040050278E-02 | 1 44021020100622E 01                          |
| Cx28 | 1.50245126147681E-08    | 2 52875525846121E 07                         | 1.02644542516716E.06  | 5 69212966429249E 05    | 1 58870050457281E 02  | 2.10562406014874E-02                         | 1.95124202480171E 01                          |
| Cx39 | -1.50706511734401E-08   | -2 17680983608439E-07                        | 1.91511107670705E-05  | -5.53624588091041E-04   | 9 68910871048796E-03  | -1 11894149975170E-01                        | 8 57078939678447F-01                          |
| Cx40 | -5 73586970357375E-08   | 1 41328359389310E-06                         | -2 57622202951875E-05 | 3 42081630782736E-04    | -3 21329213787946E-03 | 2 02193265880973E-02                         | -7 54167594831222F-02                         |
| Cx40 | 2 31326710198579E-00    | 1 84669231456711E-07                         | -9 68258708775692E-06 | 2 54708404661414E-04    | -4 30617661746202E-03 | 4 90099627503852E-02                         | -3 72988957709539E-01                         |
| Cx42 | 2.35540129907762E-08    | -6.52216649373010E-07                        | 1.36887742951190E-05  | -2.16142491086276F-04   | 2.53036869902029E-03  | -2.14778368857692E-02                        | 1.28154948754701F-01                          |
|      | 10000 1012, 90770211 00 | 0.0 == 100 . 99790101 07                     |                       | 2.1.01.12.0,10002702.01 |                       | 211 11 12 2303 707 213 02                    |                                               |

| Cx43 | 7.44112940799791E-08  | -1.98602271322411E-06 | 3.99316523093826E-05  | -6.00002503414499E-04 | 6.63477719136129E-03  | -5.27326339074460E-02 | 2.91422611881418E-01  |
|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Cx44 | 3.44979131608071E-08  | -9.34234207193642E-07 | 1.90515806647158E-05  | -2.89983131547585E-04 | 3.23941298419243E-03  | -2.58741081390387E-02 | 1.42429768726867E-01  |
| Cx45 | 1.05941302295969E-08  | -3.40808751565512E-07 | 8.14801925937172E-06  | -1.43839709607697E-04 | 1.84496297638712E-03  | -1.67241647639955E-02 | 1.02637621520781E-01  |
| Cx46 | 4.56036111849250E-09  | -1.47288547539449E-07 | 3.46638170627430E-06  | -5.93438517090554E-05 | 7.28802007990146E-04  | -6.24412544592396E-03 | 3.56348449193593E-02  |
| Cx47 | 9.21874621598892E-09  | -2.24559646924053E-07 | 3.88874367365758E-06  | -4.53164272270136E-05 | 3.03594663295734E-04  | -3.06408204116480E-04 | -1.36134317172727E-02 |
| Cx48 | -5.29561137719730E-08 | 1.44629361347903E-06  | -3.00367346917417E-05 | 4.72029731229356E-04  | -5.54896847318041E-03 | 4.78391103241274E-02  | -2.92847634032969E-01 |
| Cx49 | -1.18910371168775E-08 | 3.35320767956905E-07  | -7.28776104858843E-06 | 1.21813155925326E-04  | -1.54965548026851E-03 | 1.46733623639778E-02  | -9.92558956452748E-02 |
|      |                       |                       |                       |                       |                       |                       |                       |

Table I.9: Equation 3.1 Coefficients  $\beta_{15}$  through  $\beta_{19}$  for the SZA range 50°-80°.

| Cx   | $\beta_{15}$          | $\beta_{16}$           | $\beta_{17}$          | $\beta_{18}$          | β <sub>19</sub>      |
|------|-----------------------|------------------------|-----------------------|-----------------------|----------------------|
| Cx1  | -2.85214424080768E+00 | 4.23339241270116E+00   | -3.28175601535287E+00 | 1.02543022316111E+00  | 9.99401106581239E+01 |
| Cx2  | -6.44468967586559E-01 | 1.23145383378299E+00   | -1.24410501520985E+00 | -3.68107215620365E-01 | 9.99504304539794E+01 |
| Cx3  | 7.20955045877184E-01  | -1.71536772996416E+00  | 2.26411172826267E+00  | -2.70348986927948E+00 | 1.00136836033653E+02 |
| Cx4  | 1.24794855182908E-01  | -1.46654054780163E-01  | -1.17924124886270E-02 | -1.51628902172452E+00 | 9.99550107059646E+01 |
| Cx5  | 4.23987404334402E-01  | -1.18820896044364E+00  | 1.82650576478466E+00  | -2.57084094581797E+00 | 8.91658059181360E+01 |
| Cx6  | -9.70297391660795E-02 | 3.05853906636672E-01   | -4.53090857227484E-01 | -1.18560470212099E+00 | 7.79225035047620E+01 |
| Cx7  | 2.10636112639638E-01  | -3.78080300357467E-01  | 3.01310949150427E-01  | -3.62922284507242E+00 | 8.59348252799968E+01 |
| Cx8  | 9.73269675547708E-01  | -2.70577168034521E+00  | 4.27193663225557E+00  | -8.79611819894550E+00 | 9.43930994358033E+01 |
| Cx9  | 5.97628845312800E-01  | -1.70290423271108E+00  | 2.77968498111654E+00  | -6.17972802652497E+00 | 9.12585961456030E+01 |
| Cx10 | 7.77888604213175E+00  | -2.43702552131107E+01  | 4.15156260128766E+01  | -3.28925866571444E+01 | 9.28378960404893E+01 |
| Cx11 | -3.94717400192226E-01 | 2.83921580557948E+00   | -7.90040794946460E+00 | 3.94680131105166E+00  | 8.60808507301643E+01 |
| Cx12 | -4.95744274274894E-01 | 2.90343837100292E+00   | -7.35337105113215E+00 | 9.09496379268228E-01  | 8.63010793613184E+01 |
| Cx13 | -3.11797714475486E-01 | 2.16085679580652E+00   | -5.81195049351315E+00 | 6.96467950761575E-01  | 8.85945559241109E+01 |
| Cx14 | -4.07817342352737E-01 | 2.58859401353424E+00   | -6.89636803806906E+00 | 2.97395954688713E+00  | 9.03553065017480E+01 |
| Cx15 | -1.31380892516917E+00 | 6.20667563085732E+00   | -1.47709357451284E+01 | 1.26885135611659E+01  | 7.08292911124598E+01 |
| Cx16 | -1.26296128699928E+00 | 5.41968871824028E+00   | -1.22889491143527E+01 | 1.22456840208484E+01  | 5.35859792606086E+01 |
| Cx17 | -1.21728433765279E-02 | -4.59314587159565E-02  | 2.83215881153986E-01  | -1.21558093601362E+00 | 4.91584852682642E+01 |
| Cx18 | 3.92824405169250E+00  | -1.31284065914963E+01  | 2.41047552498314E+01  | -2.21768337291629E+01 | 4.43754965741874E+01 |
| Cx19 | -1.60623806622770E+00 | 5.92669385039241E+00   | -1.17405074896216E+01 | 7.67265608334503E+00  | 5.20892005117507E+01 |
| Cx20 | 6.71489074884432E-01  | -1.85390718922590E+00  | 2.68795506928345E+00  | -2.70978129939654E+00 | 6.71674004993942E+01 |
| Cx21 | -2.78845312716769E-01 | 2.00826030812247E+00   | -5.39416162494373E+00 | -1.46728188190031E+00 | 8.26994125246891E+01 |
| Cx22 | -3.95996339798237E+00 | 1.43066487239216E+01   | -2.74824917859551E+01 | 1.20567957201460E+01  | 9.57427905692140E+01 |
| Cx23 | -1.00098234479992E+00 | 3.30202693301375E+00   | -4.94930576628235E+00 | 1.94157666718052E+00  | 6.71414854951858E+01 |
| Cx24 | -5.00596218265433E-01 | 8.22095065352346E-01   | 1.01548995796139E-01  | 1.07778493700442E+01  | 3.46174010583113E+01 |
| Cx25 | -2.02212296950058E+00 | 7.30682366766044E+00   | -1.45415448058364E+01 | 1.84912875197139E+01  | 2.68266708361827E+01 |
| Cx26 | -2.00958448867272E+00 | 7.61617285172148E+00   | -1.56746429673782E+01 | 1.38444533817906E+01  | 2.22408814565744E+01 |
| Cx27 | -1.48596636580908E+00 | 5.65973751188158E+00   | -1.16383802535132E+01 | 9.49952452229357E+00  | 2.08395488953647E+01 |
| Cx28 | -1.61912844438753E+00 | 6.07143267543810E+00   | -1.22015654110359E+01 | 8.54472541616946E+00  | 1.87768808638551E+01 |
| Cx29 | -2.44122245397437E+00 | 9.17575758230783E+00   | -1.87147390564707E+01 | 1.51388390045399E+01  | 3.96797353087730E+01 |
| Cx30 | 2.42990550412346E-02  | 4.39210146889902E-01   | -1.84264185608818E+00 | 1.90316202471678E+00  | 6.43949871453163E+01 |
| Cx31 | 5.98328717536525E-01  | -1.83188907488388E+00  | 2.98573036045919E+00  | -2.33087275090230E+00 | 5.22275508903819E+01 |
| Cx32 | 1.38013190438135E+00  | -4.93989349413642E+00  | 9.54408047445878E+00  | -7.81599107172068E+00 | 4.04388618450765E+01 |
| Cx33 | -1.56492025567354E+00 | 4.92835236753652E+00   | -8.49387233803741E+00 | 7.44123642395162E+00  | 5.10479286750595E+01 |
| Cx34 | 2.57641734755927E+00  | -6.84877398959587E+00  | 9.65649814559911E+00  | -3.23960764273494E+00 | 6.48366594284011E+01 |
| Cx35 | 1.35474524892342E+00  | -3.64816756892349E+00  | 5.21837378156938E+00  | -2.60794056487231E-01 | 4.34758512915249E+01 |
| Cx36 | -5.85868820347877E-02 | 1.13920471594063E-01   | -1.43040300934263E-01 | 3.23314292030919E+00  | 2.20214678065030E+01 |
| Cx37 | -5.73301042419372E-01 | 1.44524292604461E+00   | -1.74140301706415E+00 | -3.29063593037854E+00 | 2.88439306785994E+01 |
| Cx38 | -9.67447105330606E-01 | 2.97821218974307E+00   | -4.87230001503456E+00 | 4.46799798363280E+00  | 3.55192674013255E+01 |
| Cx39 | -4.21021588972203E+00 | 1.23571259764726E+01   | -1.95781699514000E+01 | 1.79507350150139E+01  | 4.71997267264467E+01 |
| Cx40 | 9.97701993069893E-02  | 3.43484424075757E-01   | -1.24564330359987E+00 | -1.85424408036949E+00 | 6.17505802594285E+01 |
| Cx41 | 1.82281935917594E+00  | -5.29659327915854E+00  | 8.37065563062064E+00  | -9.28486015769019E+00 | 4.67458407513863E+01 |
| Cx42 | -5.16349861023430E-01 | 1.32684198678003E+00   | -1.82621324381224E+00 | -7.25237337224396E-01 | 2.88450515134513E+01 |
| Cx43 | -1.07217482962428E+00 | 2.47677231119309E+00   | -3.06814854596593E+00 | -6.00848281582010E-01 | 1.78096357871568E+01 |
| Cx44 | -5.15691842961005E-01 | 1.16062570001801E+00   | -1.29964273529730E+00 | -1.46518029194435E+00 | 6.92160459846392E+00 |
| Cx45 | -4.00298469164902E-01 | 9.08919249321628E-01   | -1.05048920118429E+00 | 4./8834247169152E-01  | 9.58061421085633E-01 |
| Cx46 | -1.20120558844665E-01 | 2.47/06985506183E-01   | -1.4/844416901593E-01 | -7.08023085269094E-01 | /.00139393856//3E+00 |
| Cx47 | 1.1984/999114358E-01  | -4.4 /864812649495E-01 | 8.630349/2420541E-01  | -1.8100511/345009E+00 | 1.308/4/66080719E+01 |
| Cx48 | 1.20030300185164E+00  | -3.039/033809/308E+00  | 4.38188443838154E+00  | -5.55511042500665E+00 | 2.13108009538/38E+01 |
| CX49 | 4.402102900/0014E-01  | -1.100/9134004512E+00  | 1.6951/0443031/0E+00  | -4.00294270501822E+00 | 2.8120040348/304E+01 |

Appendix J. Photographs of ground and standing surfaces located in the model playground.

Table J.1: Sample ground surface images.

Ground surface

Light coloured pavers



Dark coloured pavers



Concrete



## Bitumen



# Blue metal paving dust



Grass



Table J.2: Sample vertical standing surface images.

Standing surface

White fibreboard



Light coloured brick



Dark coloured brick

# White painted brick

Brown painted paling

White painted paling







# White painted blocks



## White painted weatherboard



# Yellow painted sleepers



Stone work



Light coloured garden block



## Dark coloured garden block



Thick vegetation



## Appendix K. Playground buildings

Table K.1: School buildings in the model school playground.

Building

Administration





E block

M Block



## L Block







## C Block

Canteen

B Block

## D Block







#### Toilet Block

Library

G Block

#### Art Block







## Great Hall

H Block

Manual arts workshops

# Manual arts storage sheds

Oval storage shed

Pool storage

Pool toilet block









Pool Canteen



#### Appendix L. Playground sky view image set

#### L.1 Processed sky view

Table L.1: Hervey Bay State High School playground sky view site locations, sky/cloud threshold (blue-red pixel threshold), and site sky view estimate listed as a percentage. Site sky view was determined from each site location processed image up to  $32.3^{\circ}$  in ZA and estimated by ground observation above  $32.3^{\circ}$  in ZA. Estimates of sky view for playground sites covered by shade cloths were determined from the measured UV transmission of each playground shade cloth (Appendix E). Site locations listed in the table refer to playground locations where the sky view was surveyed (Figure L.1). Site locations were sorted into survey (traverse) lines according to position from the western fence. Each survey line was separated by 5 m when located near buildings and 20 m over the school's open playground environment. Each site location listed in each survey line starts from the northern fence and ends at the southern fence with site locations from separated by approximately 5 m and 20 m. Variations in site locations from Figure L.1.

| Survey line | e 1 (5 m from | western fence                                                                                                                               | line)     |          | Survey line 2 (10 m from western fence line) |           |                                                          |           |          |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------------------------------------------|-----------|----------------------------------------------------------|-----------|----------|
| Site        | sky/cld       | processed                                                                                                                                   | estimated | site     | Site                                         | Sky/cld   | processed                                                | estimated | site     |
|             | threshold     | sky-view                                                                                                                                    | sky-view  | sky-view |                                              | threshold | sky-view                                                 | sky-view  | sky-view |
|             |               | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td><td></td><td></td><td><za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<></td></za32.3°<> | >ZA32.3°  |          |                                              |           | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<> | >ZA32.3°  |          |
|             |               | (%)                                                                                                                                         | (%)       | (%)      |                                              |           | (%)                                                      | (%)       | (%)      |
| 0           | 0.65          | 37                                                                                                                                          | 36        | 73       | 56                                           | 0.8       | 45                                                       | 30        | 75       |
| 1           | 0.85          | 25                                                                                                                                          | 5         | 30       | 55                                           | 0.7       | 40                                                       | 29        | 69       |
| 2           | 0.85          | 34                                                                                                                                          | 5         | 39       | 54                                           | 0.7       | 37                                                       | 24        | 61       |
| 3           | 0.85          | 49                                                                                                                                          | 36        | 85       | 53                                           | 0.8       | 44                                                       | 30        | 74       |
| 4           | 0.85          | 54                                                                                                                                          | 36        | 90       | 52                                           | 0.8       | 49                                                       | 34        | 83       |
| 5           | 0.8           | 52                                                                                                                                          | 36        | 88       | 51                                           | 0.8       | 52                                                       | 36        | 88       |
| 6           | 0.8           | 49                                                                                                                                          | 36        | 85       | 50                                           | 0.7       | 49                                                       | 36        | 85       |
| 7           | 0.8           | 46                                                                                                                                          | 36        | 82       | 49                                           | 0.8       | 49                                                       | 36        | 85       |
| 8           | 0.8           | 44                                                                                                                                          | 36        | 80       | 48                                           | 0.8       | 39                                                       | 34        | 73       |
| 9           | 0.8           | 40                                                                                                                                          | 36        | 76       | 47                                           | 0.8       | 26                                                       | 33        | 59       |
| 10          | 0.8           | 43                                                                                                                                          | 36        | 79       | 46                                           | 0.8       | 26                                                       | 32        | 58       |
| 11          | 0.8           | 41                                                                                                                                          | 36        | 77       | 45                                           | 0.8       | 25                                                       | 32        | 57       |
| 12          | 0.8           | 40                                                                                                                                          | 36        | 76       | 44                                           | 0.8       | 25                                                       | 33        | 58       |
| 13          | 0.8           | 35                                                                                                                                          | 35        | 70       | 43                                           | 0.8       | 24                                                       | 32        | 56       |
| 14          | 0.8           | 30                                                                                                                                          | 35        | 65       | 42                                           | 0.8       | 11                                                       | 26        | 37       |
| 15          | 0.8           | 14                                                                                                                                          | 35        | 49       | 41                                           | 0.8       | 11                                                       | 26        | 37       |
| 16          | 0.8           | 19                                                                                                                                          | 33        | 52       | 40                                           | 0.8       | 14                                                       | 26        | 40       |
| 17          | 0.8           | 19                                                                                                                                          | 30        | 49       | 39                                           | 0.8       | 16                                                       | 27        | 43       |
| 18          | 0.8           | 12                                                                                                                                          | 30        | 42       | 38                                           | 0.8       | 12                                                       | 30        | 42       |
| 19          | 0.9           | 10                                                                                                                                          | 30        | 40       | 37                                           | 0.8       | 28                                                       | 33        | 61       |
| 20          | 0.8           | 19                                                                                                                                          | 31        | 50       | 36                                           | 0.8       | 32                                                       | 34        | 66       |
| 21          | 0.8           | 25                                                                                                                                          | 31        | 56       | 35                                           | 0.8       | 33                                                       | 36        | 69       |

|                                                                                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                      | 59                                                                                                                                                                                     | 34                                                                                                                                                                                                                       | 0.8                                                                                                                        | 32                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                      | 54                                                                                                                                                                                     | 33                                                                                                                                                                                                                       | 0.8                                                                                                                        | 39                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                      |
| 24                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                      | 58                                                                                                                                                                                     | 32                                                                                                                                                                                                                       | 0.8                                                                                                                        | 44                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                      |
| 25                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                      | 73                                                                                                                                                                                     | 31                                                                                                                                                                                                                       | 0.8                                                                                                                        | 43                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                      |
| 26                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 82                                                                                                                                                                                     | 340                                                                                                                                                                                                                      | 0.7                                                                                                                        | 32                                                                                                                                                                                                                                                          | 32                                                                                                                                                                                                                                                                             | 64                                                                                                                                                                                                                      |
| 27                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 86                                                                                                                                                                                     | 339                                                                                                                                                                                                                      | 0.7                                                                                                                        | 39                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                             | 76                                                                                                                                                                                                                      |
| 28                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 87                                                                                                                                                                                     | 338                                                                                                                                                                                                                      | 0.7                                                                                                                        | 3/                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 70                                                                                                                                                                                                                      |
| 20                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 88                                                                                                                                                                                     | 337                                                                                                                                                                                                                      | 0.7                                                                                                                        | 33                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 69                                                                                                                                                                                                                      |
| 30                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 87                                                                                                                                                                                     | 336                                                                                                                                                                                                                      | 0.7                                                                                                                        | 33                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 69                                                                                                                                                                                                                      |
| 30                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                      | 44                                                                                                                                                                                     | 225                                                                                                                                                                                                                      | 0.7                                                                                                                        | 21                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 67                                                                                                                                                                                                                      |
| 323                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                      | 44                                                                                                                                                                                     | 224                                                                                                                                                                                                                      | 0.7                                                                                                                        | 20                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                             | 62                                                                                                                                                                                                                      |
| 320                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                      | 50                                                                                                                                                                                     | 222                                                                                                                                                                                                                      | 0.7                                                                                                                        | 20                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                             | 03<br>50                                                                                                                                                                                                                |
| 327                                                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                      | 50                                                                                                                                                                                     | 333                                                                                                                                                                                                                      | 0.8                                                                                                                        | 28                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                      |
| 328                                                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                      | 30                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
| 329                                                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                      | 48                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
| 330                                                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                      | 46                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
| 331                                                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                      | 35                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
| 332                                                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                      | 49                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
| Survey line                                                                                                                                                                                                    | e 3 (15 m from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n western fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e line)                                                                                                                                                                                                                                 |                                                                                                                                                                                        | Survey line                                                                                                                                                                                                              | e 4 (20 m from                                                                                                             | n western fenc                                                                                                                                                                                                                                              | e line)                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                         |
| site                                                                                                                                                                                                           | Sky/cld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | estimated                                                                                                                                                                                                                               | site                                                                                                                                                                                   | Site                                                                                                                                                                                                                     | Sky/cld                                                                                                                    | processed                                                                                                                                                                                                                                                   | estimated                                                                                                                                                                                                                                                                      | site                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                | threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sky-view                                                                                                                                                                                                                                | sky-view                                                                                                                                                                               |                                                                                                                                                                                                                          | threshold                                                                                                                  | sky-view                                                                                                                                                                                                                                                    | sky-view                                                                                                                                                                                                                                                                       | sky-view                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td><td></td><td></td><td><za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<></td></za32.3°<>                                                                                                                                                                                                                                                                                                                                                                                                                                       | >ZA32.3°                                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                            | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<>                                                                                                                                                                                                    | >ZA32.3°                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%)                                                                                                                                                                                                                                     | (%)                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                            | (%)                                                                                                                                                                                                                                                         | (%)                                                                                                                                                                                                                                                                            | (%)                                                                                                                                                                                                                     |
| 57                                                                                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                      | 73                                                                                                                                                                                     | 104x                                                                                                                                                                                                                     | 0.8                                                                                                                        | 40                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                             | 67                                                                                                                                                                                                                      |
| 58                                                                                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                      | 59                                                                                                                                                                                     | 105x                                                                                                                                                                                                                     | 0.8                                                                                                                        | 37                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                                      |
| 59                                                                                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                      | 74                                                                                                                                                                                     | 103x                                                                                                                                                                                                                     | 0.8                                                                                                                        | 43                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                             | 74                                                                                                                                                                                                                      |
| 60                                                                                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                      | 82                                                                                                                                                                                     | 134                                                                                                                                                                                                                      | 0.95                                                                                                                       | 50                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                             | 83                                                                                                                                                                                                                      |
| 61                                                                                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                      | 83                                                                                                                                                                                     | 83                                                                                                                                                                                                                       | 0.8                                                                                                                        | 46                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                      |
| 62                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 86                                                                                                                                                                                     | 82                                                                                                                                                                                                                       | 0.0                                                                                                                        | 51                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                             | 85                                                                                                                                                                                                                      |
| 63                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 85                                                                                                                                                                                     | 81                                                                                                                                                                                                                       | 0.9                                                                                                                        | 50                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 86                                                                                                                                                                                                                      |
| 64                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                      | 85<br>77                                                                                                                                                                               | 80                                                                                                                                                                                                                       | 0.9                                                                                                                        | 42                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                      |
| 04                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                      | 50                                                                                                                                                                                     | 80<br>70                                                                                                                                                                                                                 | 0.9                                                                                                                        | 42                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                             | 70<br>54                                                                                                                                                                                                                |
| 65                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                      | 59                                                                                                                                                                                     | 79                                                                                                                                                                                                                       | 0.9                                                                                                                        | 20                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                             | 54                                                                                                                                                                                                                      |
| 66                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                      | 40                                                                                                                                                                                     | /8                                                                                                                                                                                                                       | 0.9                                                                                                                        | 30                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                             | 65                                                                                                                                                                                                                      |
| 67                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                      | 57                                                                                                                                                                                     | 77                                                                                                                                                                                                                       | 0.9                                                                                                                        | 21                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                      |
| 68                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 64                                                                                                                                                                                     | 76                                                                                                                                                                                                                       | 0.8                                                                                                                        | 30                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 66                                                                                                                                                                                                                      |
| 69                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 60                                                                                                                                                                                     | 75                                                                                                                                                                                                                       | 0.8                                                                                                                        | 27                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 63                                                                                                                                                                                                                      |
| 70                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 64                                                                                                                                                                                     | 74                                                                                                                                                                                                                       | 0.8                                                                                                                        | 27                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                             | 63                                                                                                                                                                                                                      |
| 71                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                      | 48                                                                                                                                                                                     | 73                                                                                                                                                                                                                       | 0.8                                                                                                                        | 22                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                             | 53                                                                                                                                                                                                                      |
| 72                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                      | 67                                                                                                                                                                                     | 342                                                                                                                                                                                                                      | 0.8                                                                                                                        | 33                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                             | 68                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |
| 341                                                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                                                                                                                                                      | 63                                                                                                                                                                                     | 351                                                                                                                                                                                                                      | 0.7                                                                                                                        | 36                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                             | 73                                                                                                                                                                                                                      |
| 341<br>352                                                                                                                                                                                                     | 0.65<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33<br>37                                                                                                                                                                                                                                | 63<br>70                                                                                                                                                                               | 351<br>354                                                                                                                                                                                                               | 0.7<br>0.7                                                                                                                 | 36<br>9                                                                                                                                                                                                                                                     | 37<br>8                                                                                                                                                                                                                                                                        | 73<br>17                                                                                                                                                                                                                |
| 341<br>352<br>353                                                                                                                                                                                              | 0.65<br>0.65<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>33<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33<br>37<br>16                                                                                                                                                                                                                          | 63<br>70<br>27                                                                                                                                                                         | 351<br>354                                                                                                                                                                                                               | 0.7<br>0.7                                                                                                                 | 36<br>9                                                                                                                                                                                                                                                     | 37<br>8                                                                                                                                                                                                                                                                        | 73<br>17                                                                                                                                                                                                                |
| 341<br>352<br>353<br>Survey line                                                                                                                                                                               | 0.65<br>0.65<br>0.75<br>2 5 (25 m from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30<br>33<br>11<br>western fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33<br>37<br>16<br>e line)                                                                                                                                                                                                               | 63<br>70<br>27                                                                                                                                                                         | 351<br>354<br>Survey line                                                                                                                                                                                                | 0.7<br>0.7<br>e 6 (30 m from                                                                                               | 36<br>9                                                                                                                                                                                                                                                     | 37<br>8<br>e line)                                                                                                                                                                                                                                                             | 73<br>17                                                                                                                                                                                                                |
| 341<br>352<br>353<br>Survey line<br>Site                                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30<br>33<br>11<br>western fence<br>processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33<br>37<br>16<br>e line)<br>estimated                                                                                                                                                                                                  | 63<br>70<br>27<br>site                                                                                                                                                                 | 351<br>354<br>Survey line<br>Site                                                                                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld                                                                                    | 36<br>9<br>n western fence<br>processed                                                                                                                                                                                                                     | 37<br>8<br>e line)<br>estimated                                                                                                                                                                                                                                                | 73<br>17<br>site                                                                                                                                                                                                        |
| 341<br>352<br>353<br>Survey line<br>Site                                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>33<br>11<br>western fence<br>processed<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33<br>37<br>16<br>e line)<br>estimated<br>sky-yiew                                                                                                                                                                                      | 63<br>70<br>27<br>site<br>sky-view                                                                                                                                                     | 351<br>354<br>Survey line<br>Site                                                                                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold                                                                       | 36<br>9<br>n western fence<br>processed<br>sky-view                                                                                                                                                                                                         | 37<br>8<br>e line)<br>estimated<br>sky-view                                                                                                                                                                                                                                    | 73<br>17<br>site<br>sky-view                                                                                                                                                                                            |
| 341<br>352<br>353<br>Survey line<br>Site                                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>33<br>11<br>n western fence<br>processed<br>sky-view<br><za32.3°< td=""><td>33 <math display="block">37</math> <math display="block">16</math> e line) estimated sky-view &gt;ZA32.3°</td><td>63<br/>70<br/>27<br/>site<br/>sky-view</td><td>351<br/>354<br/>Survey line<br/>Site</td><td>0.7<br/>0.7<br/>e 6 (30 m from<br/>sky/cld<br/>threshold</td><td>36<br/>9<br/>n western fence<br/>processed<br/>sky-view<br/><za32.3°< td=""><td>8<br/>e line)<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°</td><td>73<br/>17<br/>site<br/>sky-view</td></za32.3°<></td></za32.3°<> | 33 $37$ $16$ e line) estimated sky-view >ZA32.3°                                                                                                                                                                                        | 63<br>70<br>27<br>site<br>sky-view                                                                                                                                                     | 351<br>354<br>Survey line<br>Site                                                                                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold                                                                       | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°< td=""><td>8<br/>e line)<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°</td><td>73<br/>17<br/>site<br/>sky-view</td></za32.3°<>                                                                 | 8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°                                                                                                                                                                                                                              | 73<br>17<br>site<br>sky-view                                                                                                                                                                                            |
| 341<br>352<br>353<br>Survey line<br>Site                                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>33<br>11<br>processed<br>sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)                                                                                                                                                                              | 63<br>70<br>27<br>site<br>sky-view<br>(%)                                                                                                                                              | 351<br>354<br>Survey line<br>Site                                                                                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold                                                                       | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                                                                                                                         | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)                                                                                                                                                                                                                 | 73<br>17<br>site<br>sky-view<br>(%)                                                                                                                                                                                     |
| 341<br>352<br>353<br>Survey line<br>Site                                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>33<br>11<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28                                                                                                                                                                        | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74                                                                                                                                        | 351<br>354<br>Survey line<br>Site                                                                                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold                                                                       | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48</za32.3°<br>                                                                                                                                                                  | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35                                                                                                                                                                                                           | 73<br>17<br>site<br>sky-view<br>(%)<br>83                                                                                                                                                                               |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>33<br>11<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26                                                                                                                                                                  | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69                                                                                                                                  | 351<br>354<br>Survey line<br>Site<br>142<br>141                                                                                                                                                                          | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold                                                                       | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35</za32.3°<br>                                                                                                                                                           | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35                                                                                                                                                                                                           | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80                                                                                                                                                                         |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x                                                                                                                                                       | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27                                                                                                                                                            | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73                                                                                                                            | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140                                                                                                                                                                   | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8                                                  | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38</za32.3°<br>                                                                                                                                                                       | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34                                                                                                                                                                                               | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72                                                                                                                                                                   |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111                                                                                                                                                | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29                                                                                                                                                      | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75                                                                                                                      | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139                                                                                                                                                            | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                    | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34</za32.3°<br>                                                                                                                                                                | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35                                                                                                                                                                                         | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69                                                                                                                                                             |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109                                                                                                                                  | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>46<br/>47</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32                                                                                                                                                | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79                                                                                                                | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138                                                                                                                                                     | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                      | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34</za32.3°<br>                                                                                                                                                         | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36                                                                                                                                                                                   | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70                                                                                                                                                       |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109                                                                                                                                  | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>47</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36                                                                                                                                          | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83                                                                                                          | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137                                                                                                                                              | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41</za32.3°<br>                                                                                                                                                  | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36                                                                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77                                                                                                                                                 |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107                                                                                                                    | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36                                                                                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82                                                                                                    | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137<br>137                                                                                                                                       | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>34<br/>41<br/>43</za32.3°<br>                                                                                                                 | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36                                                                                                                                                                       | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>70<br>77                                                                                                                                     |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107                                                                                                                    | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>28</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>26                                                                                                                        | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74                                                                                              | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>127                                                                                                                               | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>27</za32.3°<br>                                                                                                                 | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                         | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>79<br>72                                                                                                                               |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>02                                                                                                       | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                          | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36                                                                                                                  | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7                                                                                         | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>125                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28</za32.3°<br>                                                                                                                             | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>52                                                                                                                               |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>22                                                                                                 | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                             | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>0<br>0                                                                                                        | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7                                                                                         | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135                                                                                                                        | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28</za32.3°<br>                                                                                                          | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                   | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>53                                                                                                                         |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92                                                                                                 | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>0<br>0                                                                                                        | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6                                                                                    | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x                                                                                                                | 0.7<br>0.7<br>e 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>28</za32.3°<br>                                                                                                               | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>25<br>20<br>22<br>20<br>22                                                                                                                       | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37                                                                                                                         |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>20                                                                                     | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                        | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>0<br>0<br>0                                                                                                   | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7                                                                               | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>121                                                                                                 | 0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                   | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>20</za32.3°<br>                                                                                                               | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>25<br>20<br>33                                                                                                                                   | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53                                                                                                                   |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90                                                                                     | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>7<br/>6</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 33\\ 37\\ 16\\ \hline \\ estimated\\ sky-view\\ >ZA32.3^{\circ}\\ (\%)\\ 28\\ 26\\ 27\\ 29\\ 32\\ 36\\ 36\\ 36\\ 36\\ 0\\ 0\\ 0\\ 11\\ \end{array}$                                                                   | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17                                                                         | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>136<br>135<br>119x<br>102x<br>101x                                                                                                       | 0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                   | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10</za32.3°<br>                                                                                     | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>33<br>4                                                                                                                              | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14                                                                                                 |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89                                                                               | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>22<br/>22</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 33 \\ 37 \\ 16 \\ \hline \\ estimated \\ sky-view \\ >ZA32.3^{\circ} \\ (\%) \\ 28 \\ 26 \\ 27 \\ 29 \\ 32 \\ 36 \\ 36 \\ 36 \\ 0 \\ 0 \\ 0 \\ 11 \\ 36 \\ 6 \\ \end{array}$                                          | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58                                                                   | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>136<br>135<br>119x<br>102x<br>101x<br>100                                                                                                | 0.7<br>0.7<br>8 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12</za32.3°<br>                                                                              | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14                                                                                                 |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88                                                                         | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 33\\ 37\\ 16\\ \hline \\ estimated\\ sky-view\\ >ZA32.3^{\circ}\\ (\%)\\ 28\\ 26\\ 27\\ 29\\ 32\\ 36\\ 36\\ 36\\ 36\\ 0\\ 0\\ 0\\ 11\\ 36\\ 36\\ 36\\ \end{array}$                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>7<br>17<br>58<br>64                                                        | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x                                                                                  | 0.7<br>0.7<br>8 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15</za32.3°<br>                                                                       | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>25<br>20<br>33<br>4<br>3<br>2                                                                                                        | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17                                                                                     |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87                                                                   | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                             | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>0<br>0<br>0<br>11<br>36<br>36<br>36<br>36<br>36<br>36                                                         | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64                                                       | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>98x                                                                                  | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8            | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15</za32.3°<br>                                                                | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17                                                                   |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>88<br>87<br>85                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>47<br/>46<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                      | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                  | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>64<br>59                                           | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>136<br>135<br>119x<br>101x<br>100<br>99x<br>98x<br>97x                                                                                   | 0.7<br>0.7<br>8 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16</za32.3°<br>                                                                                   | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17                                                                         |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>85<br>86                                                       | 0.65<br>0.65<br>0.75<br>2 5 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                        | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>59<br>13                                           | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>98x<br>97x<br>96x                                                             | 0.7<br>0.7<br>8 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14</za32.3°<br>                                                         | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17                                                       |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>85<br>86<br>84                                                 | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.8<br>0.8<br>0.9<br>0.8<br>0.9<br>0.8<br>0.9<br>0.9<br>0.9 | 30<br>30<br>33<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13<br/>22</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                 | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>5<br>8<br>6<br>4<br>6<br>4<br>59<br>13<br>43           | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>97x<br>96x<br>95                                                               | 0.7<br>0.7<br>8 6 (30 m from<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14<br/>22</za32.3°<br>                                           | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>325<br>20<br>33<br>4<br>3<br>2<br>2<br>1<br>1<br>36                                                                                  | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>15<br>58                                                       |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>89<br>88<br>87<br>85<br>86<br>84<br>344                                    | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13<br/>22<br/>17</za32.3°<br>                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 33\\ 37\\ 16\\ \hline \\ estimated\\ sky-view\\ >ZA32.3^{\circ}\\ (\%)\\ 28\\ 26\\ 27\\ 29\\ 32\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>59<br>13<br>43<br>35                | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>99x<br>99x<br>97x<br>96x<br>95<br>96                                          | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8            | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14<br/>22<br/>14</za32.3°<br>                                    | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>32<br>20<br>33<br>4<br>3<br>2<br>2<br>1<br>1<br>36<br>0                                                                        | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>17<br>15<br>58<br>14                                           |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>85<br>86<br>84<br>344<br>343                                   | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>46<br/>47<br/>47<br/>46<br/>47<br/>46<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13<br/>22<br/>17<br/>35</za32.3°<br>                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 33\\ 37\\ 16\\ \hline \\ estimated\\ sky-view\\ >ZA32.3^{\circ}\\ (\%)\\ 28\\ 26\\ 27\\ 29\\ 32\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>7<br>58<br>64<br>64<br>64<br>59<br>13<br>43<br>35<br>70                    | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>99x<br>99x<br>97x<br>95<br>96<br>94                                    | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8            | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14<br/>22<br/>14<br/>16</za32.3°<br>                                    | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>15<br>58<br>14<br>27                                                       |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>85<br>86<br>84<br>344<br>343<br>345                            | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13<br/>22<br/>17<br/>35<br/>44</za32.3°<br>                                                                                                                                                                                                                                                                                                              | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>59<br>13<br>43<br>35<br>70<br>80                   | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>99x<br>99x<br>99x<br>99x<br>99x<br>99x<br>99x<br>9                     | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8            | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14<br/>22<br/>14<br/>16<br/>30</za32.3°<br>                             | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                             | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>17<br>15<br>58<br>14<br>27<br>56                   |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>85<br>86<br>84<br>344<br>343<br>345<br>346                     | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.85<br>0.8<br>0.8<br>0.8<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13<br/>22<br/>17<br/>35<br/>44<br/>48</za32.3°<br>                                                                                                                                                                                                                                                                                                                            | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>59<br>13<br>43<br>35<br>70<br>80<br>84             | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>99x<br>99x<br>99x<br>97x<br>96x<br>95<br>96<br>94<br>362<br>361               | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8            | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14<br/>22<br/>14<br/>16<br/>30<br/>37</za32.3°<br>                      | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>25<br>20<br>33<br>4<br>3<br>2<br>2<br>1<br>1<br>36<br>0<br>11<br>26<br>33                                                      | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>15<br>58<br>14<br>27<br>56<br>70                                           |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>88<br>87<br>85<br>86<br>84<br>344<br>343<br>345<br>346<br>347              | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.85<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>28<br/>24<br/>13<br/>22<br/>17<br/>35<br/>44<br/>48<br/>50</za32.3°<br>                                                                                                                                                                                                                                                                                                                     | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                    | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>59<br>13<br>43<br>35<br>70<br>80<br>84<br>86       | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>99x<br>99x<br>99x<br>97x<br>96x<br>95<br>96<br>94<br>362<br>361<br>360 | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                          | 36<br>9<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>16<br/>14<br/>22<br/>14<br/>16<br/>30<br/>37<br/>42</za32.3°<br>                                  | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>34<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>25<br>20<br>33<br>4<br>3<br>2<br>2<br>1<br>1<br>36<br>0<br>11<br>26<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>3 | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>15<br>58<br>14<br>27<br>56<br>70<br>78                         |
| 341<br>352<br>353<br>Survey line<br>Site<br>133x<br>132x<br>111<br>110<br>109<br>108<br>107<br>106<br>93<br>92<br>91<br>90<br>89<br>89<br>88<br>87<br>85<br>86<br>84<br>344<br>343<br>345<br>346<br>347<br>348 | 0.65<br>0.65<br>0.75<br>25 (25 m from<br>sky/cld<br>threshold<br>0.85<br>0.85<br>0.85<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>30<br>31<br>11<br>1 western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>46<br/>43<br/>46<br/>47<br/>47<br/>46<br/>38<br/>7<br/>6<br/>7<br/>6<br/>22<br/>28<br/>28<br/>24<br/>13<br/>22<br/>17<br/>35<br/>44<br/>48<br/>50<br/>50</za32.3°<br>                                                                                                                                                                                                                                                                                                                     | 33<br>37<br>16<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>28<br>26<br>27<br>29<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>0<br>21<br>18<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 63<br>70<br>27<br>site<br>sky-view<br>(%)<br>74<br>69<br>73<br>75<br>79<br>83<br>82<br>74<br>7<br>6<br>7<br>17<br>58<br>64<br>64<br>59<br>13<br>43<br>35<br>70<br>80<br>84<br>86<br>86 | 351<br>354<br>Survey line<br>Site<br>142<br>141<br>140<br>139<br>138<br>137r<br>137<br>136<br>135<br>119x<br>102x<br>101x<br>100<br>99x<br>99x<br>99x<br>99x<br>97x<br>96x<br>95<br>96<br>94<br>362<br>361<br>360<br>359 | 0.7<br>0.7<br>0.7<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                          | 36<br>9<br>n western fence<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>48<br/>35<br/>38<br/>34<br/>41<br/>43<br/>37<br/>28<br/>17<br/>20<br/>10<br/>12<br/>15<br/>15<br/>15<br/>16<br/>14<br/>22<br/>14<br/>16<br/>30<br/>37<br/>42<br/>46</za32.3°<br> | 37<br>8<br>e line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>35<br>35<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>25<br>20<br>33<br>4<br>3<br>2<br>2<br>1<br>1<br>36<br>0<br>11<br>26<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>3                   | 73<br>17<br>site<br>sky-view<br>(%)<br>83<br>80<br>72<br>69<br>70<br>77<br>79<br>73<br>53<br>37<br>53<br>37<br>53<br>37<br>53<br>14<br>15<br>17<br>17<br>17<br>17<br>17<br>15<br>58<br>14<br>27<br>56<br>70<br>78<br>82 |

| 349          | 0.8                                    | 45                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 81                      | 358                | 0.7                                    | 47                                                                                                                            | 36                                       | 83                      |
|--------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|--------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|
| 350          | 0.75                                   | 28                                                                                                                                                                                                                                                                                                                                  | 31                                                   | 59                      | 357                | 0.7                                    | 46                                                                                                                            | 36                                       | 82                      |
| 355          | 0.75                                   | 25                                                                                                                                                                                                                                                                                                                                  | 34                                                   | 59                      | 356                | 0.7                                    | 42                                                                                                                            | 36                                       | 78                      |
| Survey lin   | e 7 (35 m fror                         | n western fenc                                                                                                                                                                                                                                                                                                                      | e line)                                              |                         | Survey lin         | e 8 (40 m fror                         | n western fenc                                                                                                                | e line)                                  |                         |
| Site         | Sky/cld                                | processed                                                                                                                                                                                                                                                                                                                           | estimated                                            | site                    | Site               | Sky/cld                                | processed                                                                                                                     | estimated                                | site                    |
| bite         | threshold                              | sky-view                                                                                                                                                                                                                                                                                                                            | sky-view                                             | sky-view                | bite               | threshold                              | sky-view                                                                                                                      | sky-view                                 | sky-view                |
|              | lineshold                              | <za32.3°< td=""><td><math>&gt;7A323^{\circ}</math></td><td>sity them</td><td></td><td>linebiloid</td><td><za32.3°< td=""><td>&gt;7.432.3°</td><td>ship the ti</td></za32.3°<></td></za32.3°<>                                                                                                                                       | $>7A323^{\circ}$                                     | sity them               |                    | linebiloid                             | <za32.3°< td=""><td>&gt;7.432.3°</td><td>ship the ti</td></za32.3°<>                                                          | >7.432.3°                                | ship the ti             |
|              |                                        | (%)                                                                                                                                                                                                                                                                                                                                 | (%)                                                  | (%)                     |                    |                                        | (%)                                                                                                                           | (%)                                      | (%)                     |
| 128v         | 0.75                                   | 44                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 80                      | 120x               | 0.85                                   | (70)                                                                                                                          | 36                                       | <u>(/0)</u><br>81       |
| 120X<br>127x | 0.75                                   | 44                                                                                                                                                                                                                                                                                                                                  | 30                                                   | 80<br>77                | 129X<br>120x       | 0.85                                   | 43                                                                                                                            | 30                                       | 76                      |
| 12/X<br>126v | 0.8                                    | 41                                                                                                                                                                                                                                                                                                                                  | 30                                                   | 51                      | 130X               | 0.8                                    | 40                                                                                                                            | 10                                       | 10                      |
| 126x<br>125  | 0.8                                    | 27                                                                                                                                                                                                                                                                                                                                  | 27                                                   | 54<br>49                | 151X<br>142        | 0.8                                    | 22                                                                                                                            | 18                                       | 40                      |
| 125x         | 0.8                                    | 29                                                                                                                                                                                                                                                                                                                                  | 19                                                   | 48                      | 145                | 0.8                                    | 23                                                                                                                            | 18                                       | 41                      |
| 124x         | 0.8                                    | 39                                                                                                                                                                                                                                                                                                                                  | 36                                                   | /5                      | 144                | 0.85                                   | 37                                                                                                                            | 36                                       | 13                      |
| 123x         | 0.8                                    | 32                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 68                      | 145                | 0.85                                   | 27                                                                                                                            | 35                                       | 62                      |
| 122x         | 0.8                                    | 21                                                                                                                                                                                                                                                                                                                                  | 16                                                   | 37                      | 146                | 0.8                                    | 17                                                                                                                            | 11                                       | 28                      |
| 121x         | 0.8                                    | 4                                                                                                                                                                                                                                                                                                                                   | 0                                                    | 4                       | 147                | 0.8                                    | 5                                                                                                                             | 0                                        | 5                       |
| 120x         | 0.8                                    | 18                                                                                                                                                                                                                                                                                                                                  | 17                                                   | 35                      | 148                | 0.8                                    | 17                                                                                                                            | 17                                       | 34                      |
| 118x         | 0.8                                    | 28                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 64                      | 149                | 0.8                                    | 18                                                                                                                            | 34                                       | 52                      |
| 117x         | 0.8                                    | 14                                                                                                                                                                                                                                                                                                                                  | 10                                                   | 24                      | 150                | 0.8                                    | 22                                                                                                                            | 34                                       | 56                      |
| 116x         | 0.8                                    | 16                                                                                                                                                                                                                                                                                                                                  | 17                                                   | 33                      | 151                | 0.8                                    | 30                                                                                                                            | 36                                       | 66                      |
| 115x         | 0.8                                    | 5                                                                                                                                                                                                                                                                                                                                   | 0                                                    | 5                       | 152                | 0.8                                    | 28                                                                                                                            | 36                                       | 64                      |
| 113x         | 0.8                                    | 23                                                                                                                                                                                                                                                                                                                                  | 35                                                   | 58                      | 153                | 0.8                                    | 13                                                                                                                            | 16                                       | 29                      |
| 114x         | 0.8                                    | 14                                                                                                                                                                                                                                                                                                                                  | 0                                                    | 14                      | 154                | 0.8                                    | 13                                                                                                                            | 24                                       | 37                      |
| 114A<br>112v | 0.8                                    | 14                                                                                                                                                                                                                                                                                                                                  | 10                                                   | 24                      | 155                | 0.8                                    | 0                                                                                                                             | 27                                       | 30                      |
| 112X<br>262  | 0.8                                    | 14                                                                                                                                                                                                                                                                                                                                  | 10                                                   | 24                      | 155                | 0.8                                    | 0                                                                                                                             | 1                                        | 50                      |
| 303          | 0.8                                    | 20                                                                                                                                                                                                                                                                                                                                  | 20                                                   | 40                      | 150                | 0.8                                    | 9                                                                                                                             | 1                                        | 10                      |
| 364          | 0.8                                    | 28                                                                                                                                                                                                                                                                                                                                  | 33                                                   | 61                      | 158                | 0.8                                    | 24                                                                                                                            | 35                                       | 59                      |
| 365          | 0.8                                    | 31                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 67                      | 159                | 0.8                                    | 13                                                                                                                            | 0                                        | 13                      |
| 366          | 0.8                                    | 34                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 70                      | 157                | 0.8                                    | 12                                                                                                                            | 30                                       | 42                      |
| 367          | 0.8                                    | 37                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 73                      | 381                | 0.8                                    | 34                                                                                                                            | 35                                       | 69                      |
| 368          | 0.8                                    | 38                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 74                      |                    |                                        |                                                                                                                               |                                          |                         |
| 369          | 0.8                                    | 39                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 75                      |                    |                                        |                                                                                                                               |                                          |                         |
| Survey lin   | e 9 (45 m fror                         | n western fenc                                                                                                                                                                                                                                                                                                                      | e line)                                              |                         | Survey lin         | e 10 (50 m fro                         | om western fen                                                                                                                | ce line)                                 |                         |
| Site         | Skv/cld                                | processed                                                                                                                                                                                                                                                                                                                           | estimated                                            | site                    | Site               | Skv/cld                                | processed                                                                                                                     | estimated                                | site                    |
|              | threshold                              | sky-view                                                                                                                                                                                                                                                                                                                            | sky-view                                             | sky-view                | ~~~~               | threshold                              | sky-view                                                                                                                      | sky-view                                 | sky-view                |
|              | unesitoid                              | <7432.30                                                                                                                                                                                                                                                                                                                            | $>7 \Delta 32 3^{\circ}$                             | sky view                |                    | unconoid                               | <7432.30                                                                                                                      | >7432.30                                 | Sky view                |
|              |                                        | (%)                                                                                                                                                                                                                                                                                                                                 | (%)                                                  | (%)                     |                    |                                        | (%)                                                                                                                           | (%)                                      | (%)                     |
| 191          | 0.8                                    | (70)                                                                                                                                                                                                                                                                                                                                | 24                                                   | (70)                    | 192                | 0.8                                    | (70)                                                                                                                          | 22                                       | 72                      |
| 181          | 0.8                                    | 45                                                                                                                                                                                                                                                                                                                                  | 34<br>26                                             | 75                      | 102                | 0.8                                    | 41                                                                                                                            | 32<br>25                                 | 75                      |
| 180          | 0.8                                    | 39                                                                                                                                                                                                                                                                                                                                  | 30                                                   | /5                      | 185                | 0.8                                    | 37                                                                                                                            | 35                                       | 12                      |
| 179          | 0.8                                    | 21                                                                                                                                                                                                                                                                                                                                  | 27                                                   | 48                      | 184                | 0.8                                    | 1/                                                                                                                            | 18                                       | 35                      |
| 1/8          | 0.8                                    | 23                                                                                                                                                                                                                                                                                                                                  | 18                                                   | 41                      | 185                | 0.8                                    | 22                                                                                                                            | 18                                       | 40                      |
| 177          | 0.8                                    | 37                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 73                      | 186                | 0.8                                    | 35                                                                                                                            | 36                                       | 71                      |
| 176          | 0.8                                    | 29                                                                                                                                                                                                                                                                                                                                  | 30                                                   | 59                      | 87                 | 0.8                                    | 27                                                                                                                            | 35                                       | 62                      |
| 175          | 0.8                                    | 15                                                                                                                                                                                                                                                                                                                                  | 0                                                    | 15                      | 188                | 0.8                                    | 17                                                                                                                            | 14                                       | 31                      |
| 174          | 0.8                                    | 13                                                                                                                                                                                                                                                                                                                                  | 15                                                   | 28                      | 189                | 0.8                                    | 12                                                                                                                            | 7                                        | 19                      |
| 173          | 0.8                                    | 8                                                                                                                                                                                                                                                                                                                                   | 23                                                   | 31                      | 190                | 0.8                                    | 17                                                                                                                            | 31                                       | 48                      |
| 172          | 0.8                                    | 27                                                                                                                                                                                                                                                                                                                                  | 35                                                   | 62                      | 191                | 0.8                                    | 20                                                                                                                            | 35                                       | 55                      |
| 171          | 0.8                                    | 14                                                                                                                                                                                                                                                                                                                                  | 32                                                   | 46                      | 192                | 0.8                                    | 10                                                                                                                            | 18                                       | 28                      |
| 170          | 0.8                                    | 5                                                                                                                                                                                                                                                                                                                                   | 1                                                    | 6                       | 193                | 0.8                                    | 13                                                                                                                            | 14                                       | 27                      |
| 169          | 0.8                                    | 13                                                                                                                                                                                                                                                                                                                                  | 17                                                   | 30                      | 194                | 0.8                                    | 14                                                                                                                            | 15                                       | 29                      |
| 168          | 0.8                                    | 18                                                                                                                                                                                                                                                                                                                                  | 33                                                   | 51                      | 195                | 0.8                                    | 19                                                                                                                            | 27                                       | 46                      |
| 167          | 0.8                                    | 10                                                                                                                                                                                                                                                                                                                                  | 0                                                    | 10                      | 196                | 0.8                                    | 9                                                                                                                             | 0                                        | 9                       |
| 166          | 0.8                                    | 10                                                                                                                                                                                                                                                                                                                                  | 19                                                   | 20                      | 107                | 0.8                                    | 12                                                                                                                            | 34                                       | 16                      |
| 165          | 0.8                                    | 12                                                                                                                                                                                                                                                                                                                                  | 10                                                   | 30<br>42                | 197                | 0.8                                    | 12                                                                                                                            | 26                                       | 40<br>50                |
| 105          | 0.8                                    | 20                                                                                                                                                                                                                                                                                                                                  | 23                                                   | 43                      | 190                | 0.8                                    | 10                                                                                                                            | 30                                       | 52                      |
| 164          | 0.8                                    | 20                                                                                                                                                                                                                                                                                                                                  | 30                                                   | 50                      | 199                | 0.75                                   | 22                                                                                                                            | 30                                       | 58                      |
| 163          | 0.8                                    | 20                                                                                                                                                                                                                                                                                                                                  | 34                                                   | 54                      | 200                | 0.8                                    | 22                                                                                                                            | 35                                       | 57                      |
| 162          | 0.8                                    | 19                                                                                                                                                                                                                                                                                                                                  | 27                                                   | 46                      | 201                | 0.8                                    | 23                                                                                                                            | 26                                       | 49                      |
| 161          | 0.8                                    | 10                                                                                                                                                                                                                                                                                                                                  | 0                                                    | 10                      | 202                | 0.8                                    | 19                                                                                                                            | 10                                       | 29                      |
| 160          | 0.8                                    | 17                                                                                                                                                                                                                                                                                                                                  | 26                                                   | 43                      | 203                | 0.8                                    | 11                                                                                                                            | 14                                       | 25                      |
| 380          | 0.8                                    | 28                                                                                                                                                                                                                                                                                                                                  | 36                                                   | 64                      | 204                | 0.8                                    | 8                                                                                                                             | 13                                       | 21                      |
| 379          | 0.8                                    | 36                                                                                                                                                                                                                                                                                                                                  | 34                                                   | 70                      | 205                | 0.8                                    | 22                                                                                                                            | 26                                       | 48                      |
|              |                                        |                                                                                                                                                                                                                                                                                                                                     |                                                      |                         | 206                | 0.8                                    | 16                                                                                                                            | 20                                       | 36                      |
|              |                                        |                                                                                                                                                                                                                                                                                                                                     |                                                      |                         | 376                | 0.8                                    | 15                                                                                                                            | 18                                       | 33                      |
|              |                                        |                                                                                                                                                                                                                                                                                                                                     |                                                      |                         | 377                | 0.8                                    | 41                                                                                                                            | 36                                       | 77                      |
|              |                                        |                                                                                                                                                                                                                                                                                                                                     |                                                      |                         | 378                | 0.8                                    | 37                                                                                                                            | 36                                       | 73                      |
| Survey lin   |                                        |                                                                                                                                                                                                                                                                                                                                     |                                                      |                         | C 1'               | 10.00                                  |                                                                                                                               | 1. \                                     |                         |
|              | e 11 (55 m fr                          | m western fen                                                                                                                                                                                                                                                                                                                       | ce line)                                             |                         | Shrvey he          | e [2 (60 m tro                         | im western ten                                                                                                                | ice line)                                |                         |
| Site         | e 11 (55 m fro                         | om western fen                                                                                                                                                                                                                                                                                                                      | ce line)                                             | site                    | Survey lin         | e 12 (60  m from  12)                  | processed                                                                                                                     | estimated                                | site                    |
| Site         | e 11 (55 m fro<br>Sky/cld              | processed                                                                                                                                                                                                                                                                                                                           | estimated                                            | site                    | Survey lin<br>Site | e 12 (60 m fro<br>Sky/cld              | processed                                                                                                                     | estimated                                | site                    |
| Site         | e 11 (55 m fro<br>Sky/cld<br>threshold | processed<br>sky-view                                                                                                                                                                                                                                                                                                               | estimated<br>sky-view                                | site<br>sky-view        | Site               | e 12 (60 m fro<br>Sky/cld<br>threshold | processed<br>sky-view                                                                                                         | estimated<br>sky-view                    | site<br>sky-view        |
| Site         | e 11 (55 m fro<br>Sky/cld<br>threshold | processed<br>sky-view<br><za32.3°< td=""><td>estimated<br/>sky-view<br/>&gt;ZA32.3°</td><td>site<br/>sky-view</td><td>Site</td><td>e 12 (60 m fro<br/>Sky/cld<br/>threshold</td><td>processed<br/>sky-view<br/><za32.3°< td=""><td>estimated<br/>sky-view<br/>&gt;ZA32.3°</td><td>site<br/>sky-view</td></za32.3°<></td></za32.3°<> | estimated<br>sky-view<br>>ZA32.3°                    | site<br>sky-view        | Site               | e 12 (60 m fro<br>Sky/cld<br>threshold | processed<br>sky-view<br><za32.3°< td=""><td>estimated<br/>sky-view<br/>&gt;ZA32.3°</td><td>site<br/>sky-view</td></za32.3°<> | estimated<br>sky-view<br>>ZA32.3°        | site<br>sky-view        |
| Site         | e 11 (55 m fro<br>Sky/cld<br>threshold | processed<br>sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                                                                                                                                                                                                                               | ce line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%) | site<br>sky-view<br>(%) | Site               | e 12 (60 m fro<br>Sky/cld<br>threshold | processed<br>sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                         | estimated<br>sky-view<br>>ZA32.3°<br>(%) | site<br>sky-view<br>(%) |

| 235                                                                                                                                                                                                                                                      | 0.8                                                                             | 37                                                                                                                                                                                                                                                              | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                                                                                                                                                                 | 237x                                                                                                                                                                                                           | 0.8                                                                             | 33                                                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                                                 | 62                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 234                                                                                                                                                                                                                                                      | 0.8                                                                             | 18                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                 | 238x                                                                                                                                                                                                           | 0.8                                                                             | 17                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                             |
| 233                                                                                                                                                                                                                                                      | 0.8                                                                             | 22                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                 | 239x                                                                                                                                                                                                           | 0.8                                                                             | 25                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                 | 43                                                                                                                                                                                             |
| 232                                                                                                                                                                                                                                                      | 0.8                                                                             | 35                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                                                                                                                                                                                 | 240x                                                                                                                                                                                                           | 0.8                                                                             | 35                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                 | 71                                                                                                                                                                                             |
| 231                                                                                                                                                                                                                                                      | 0.8                                                                             | 29                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                 | 241x                                                                                                                                                                                                           | 0.8                                                                             | 29                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                 | 64                                                                                                                                                                                             |
| 230                                                                                                                                                                                                                                                      | 0.8                                                                             | 20                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                 | 242x                                                                                                                                                                                                           | 0.8                                                                             | 18                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                 | 33                                                                                                                                                                                             |
| 229                                                                                                                                                                                                                                                      | 0.8                                                                             | 9                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                 | 243x                                                                                                                                                                                                           | 0.8                                                                             | 11                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                             |
| 228                                                                                                                                                                                                                                                      | 0.8                                                                             | 20                                                                                                                                                                                                                                                              | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                                                                                                                                                                 | 244x                                                                                                                                                                                                           | 0.8                                                                             | 15                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                             |
| 227                                                                                                                                                                                                                                                      | 0.8                                                                             | 17                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                 | 245x                                                                                                                                                                                                           | 0.8                                                                             | 7                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                              |
| 226                                                                                                                                                                                                                                                      | 0.8                                                                             | 14                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38                                                                                                                                                                                                 | 246x                                                                                                                                                                                                           | 0.8                                                                             | 15                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                 | 29                                                                                                                                                                                             |
| 225                                                                                                                                                                                                                                                      | 0.8                                                                             | 18                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                 | 247x                                                                                                                                                                                                           | 0.8                                                                             | 24                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                 | 59                                                                                                                                                                                             |
| 224                                                                                                                                                                                                                                                      | 0.8                                                                             | 16                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                 | 248x                                                                                                                                                                                                           | 0.8                                                                             | 18                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                 | 33                                                                                                                                                                                             |
| 223                                                                                                                                                                                                                                                      | 0.8                                                                             | 12                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                 | 249x                                                                                                                                                                                                           | 0.8                                                                             | 12                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                             |
| 222                                                                                                                                                                                                                                                      | 0.8                                                                             | 17                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                 | 250x                                                                                                                                                                                                           | 0.8                                                                             | 15                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                                                                             |
| 221                                                                                                                                                                                                                                                      | 0.8                                                                             | 10                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                 | 251x                                                                                                                                                                                                           | 0.8                                                                             | 9                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                 | 29                                                                                                                                                                                             |
| 220                                                                                                                                                                                                                                                      | 0.8                                                                             | 16                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                 | 252x                                                                                                                                                                                                           | 0.8                                                                             | 3                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                              |
| 219                                                                                                                                                                                                                                                      | 0.8                                                                             | 19                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                 | 253x                                                                                                                                                                                                           | 0.8                                                                             | 4                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                              |
| 218                                                                                                                                                                                                                                                      | 0.8                                                                             | 19                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                 | 254x                                                                                                                                                                                                           | 0.8                                                                             | 3                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                              |
| 217                                                                                                                                                                                                                                                      | 0.8                                                                             | 18                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                 | 256                                                                                                                                                                                                            | 0.8                                                                             | 7                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                             |
| 216                                                                                                                                                                                                                                                      | 0.8                                                                             | 8                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                  | 257                                                                                                                                                                                                            | 0.8                                                                             | 4                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                              |
| 215                                                                                                                                                                                                                                                      | 0.8                                                                             | 3                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                  | 258                                                                                                                                                                                                            | 0.8                                                                             | 8                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                             |
| 214                                                                                                                                                                                                                                                      | 0.8                                                                             | 15                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                 | 259                                                                                                                                                                                                            | 0.85                                                                            | 14                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                             |
| 213                                                                                                                                                                                                                                                      | 0.8                                                                             | 14                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                 | 260                                                                                                                                                                                                            | 0.8                                                                             | 8                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                 | 43                                                                                                                                                                                             |
| 212                                                                                                                                                                                                                                                      | 0.75                                                                            | 13                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                 | 261                                                                                                                                                                                                            | 0.8                                                                             | 20                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                 | 55                                                                                                                                                                                             |
| 211                                                                                                                                                                                                                                                      | 0.75                                                                            | 13                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                 | 262                                                                                                                                                                                                            | 0.8                                                                             | 30                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                 | 61                                                                                                                                                                                             |
| 210                                                                                                                                                                                                                                                      | 0.75                                                                            | 12                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                 | 263                                                                                                                                                                                                            | 0.8                                                                             | 25                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                 | 55                                                                                                                                                                                             |
| 209                                                                                                                                                                                                                                                      | 0.8                                                                             | 19                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                 | 372                                                                                                                                                                                                            | 0.8                                                                             | 29                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                                                 | 52                                                                                                                                                                                             |
| 208                                                                                                                                                                                                                                                      | 0.8                                                                             | 24                                                                                                                                                                                                                                                              | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                 | 371                                                                                                                                                                                                            | 0.8                                                                             | 46                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                 | 82                                                                                                                                                                                             |
| 207                                                                                                                                                                                                                                                      | 0.8                                                                             | 21                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                 | 370                                                                                                                                                                                                            | 0.8                                                                             | 43                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                 | /9                                                                                                                                                                                             |
| 3/5                                                                                                                                                                                                                                                      | 0.7                                                                             | 20                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
| 374                                                                                                                                                                                                                                                      | 0.8                                                                             | 43                                                                                                                                                                                                                                                              | 30<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
| 3/3<br>Summer 1:                                                                                                                                                                                                                                         | 0.8                                                                             | 21<br>                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62                                                                                                                                                                                                 | C                                                                                                                                                                                                              | - 14 (70 f                                                                      |                                                                                                                                                                                                                                                                   | 1:                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |
| Survey III                                                                                                                                                                                                                                               | Slav/old                                                                        | processed                                                                                                                                                                                                                                                       | astimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sito                                                                                                                                                                                               | Survey Into                                                                                                                                                                                                    | Sky/old                                                                         | processed                                                                                                                                                                                                                                                         | ce inte)                                                                                                                                                                                                                                                                                           | cito                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                          | SKV/CIU                                                                         | processed                                                                                                                                                                                                                                                       | estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SILE                                                                                                                                                                                               | Sile                                                                                                                                                                                                           | SKy/Clu                                                                         | processed                                                                                                                                                                                                                                                         | estimated                                                                                                                                                                                                                                                                                          | site                                                                                                                                                                                           |
| Sile                                                                                                                                                                                                                                                     | threshold                                                                       | sky_view                                                                                                                                                                                                                                                        | sky_view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sky_view                                                                                                                                                                                           |                                                                                                                                                                                                                | threshold                                                                       | ekv-view                                                                                                                                                                                                                                                          | sky_view                                                                                                                                                                                                                                                                                           | cky_view                                                                                                                                                                                       |
| Site                                                                                                                                                                                                                                                     | threshold                                                                       | sky-view                                                                                                                                                                                                                                                        | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sky-view                                                                                                                                                                                           |                                                                                                                                                                                                                | threshold                                                                       | sky-view                                                                                                                                                                                                                                                          | sky-view                                                                                                                                                                                                                                                                                           | sky-view                                                                                                                                                                                       |
| Sile                                                                                                                                                                                                                                                     | threshold                                                                       | sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                                                                                                                                                                        | sky-view<br>>ZA32.3°<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sky-view                                                                                                                                                                                           |                                                                                                                                                                                                                | threshold                                                                       | sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                                                                                                                                                                          | sky-view<br>>ZA32.3°<br>(%)                                                                                                                                                                                                                                                                        | sky-view                                                                                                                                                                                       |
| 291                                                                                                                                                                                                                                                      | threshold                                                                       | sky-view<br><za32.3°<br>(%)<br/>30</za32.3°<br>                                                                                                                                                                                                                 | sky-view<br>>ZA32.3°<br>(%)<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sky-view<br>(%)<br>55                                                                                                                                                                              | 292                                                                                                                                                                                                            | threshold                                                                       | sky-view<br><za32.3°<br>(%)<br/>27</za32.3°<br>                                                                                                                                                                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>20                                                                                                                                                                                                                                                                  | sky-view<br>(%)<br>47                                                                                                                                                                          |
| 291<br>290                                                                                                                                                                                                                                               | threshold<br>0.8<br>0.8                                                         | sky-view<br><za32.3°<br>(%)<br/>30<br/>34</za32.3°<br>                                                                                                                                                                                                          | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sky-view<br>(%)<br>55<br>57                                                                                                                                                                        | 292<br>293                                                                                                                                                                                                     | threshold<br>0.8<br>0.8                                                         | sky-view<br><za32.3°<br>(%)<br/>27<br/>31</za32.3°<br>                                                                                                                                                                                                            | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27                                                                                                                                                                                                                                                            | sky-view<br>(%)<br>47<br>58                                                                                                                                                                    |
| 291<br>290<br>289                                                                                                                                                                                                                                        | 0.8<br>0.8<br>0.8                                                               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16</za32.3°<br>                                                                                                                                                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sky-view<br>(%)<br>55<br>57<br>43                                                                                                                                                                  | 292<br>293<br>294                                                                                                                                                                                              | threshold<br>0.8<br>0.8<br>0.8                                                  | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18</za32.3°<br>                                                                                                                                                                                                     | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27                                                                                                                                                                                                                                                      | sky-view<br>(%)<br>47<br>58<br>45                                                                                                                                                              |
| 291<br>290<br>289<br>288                                                                                                                                                                                                                                 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                    | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18</za32.3°<br>                                                                                                                                                                                            | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sky-view<br>(%)<br>55<br>57<br>43<br>51                                                                                                                                                            | 292<br>293<br>294<br>295                                                                                                                                                                                       | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                    | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27</za32.3°<br>                                                                                                                                                                                              | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32                                                                                                                                                                                                                                                | sky-view<br>(%)<br>47<br>58<br>45<br>59                                                                                                                                                        |
| 291<br>290<br>289<br>288<br>287                                                                                                                                                                                                                          | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                      | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24</za32.3°<br>                                                                                                                                                                                     | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60                                                                                                                                                      | 292<br>293<br>294<br>295<br>296                                                                                                                                                                                | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                             | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32</za32.3°<br>                                                                                                                                                                                       | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36                                                                                                                                                                                                                                          | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68                                                                                                                                                  |
| 291<br>290<br>289<br>288<br>287<br>286                                                                                                                                                                                                                   | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31</za32.3°<br>                                                                                                                                                                              | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67                                                                                                                                                | 292<br>293<br>294<br>295<br>296<br>297                                                                                                                                                                         | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>32<br/>36</za32.3°<br>                                                                                                                                                                         | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36                                                                                                                                                                                                                              | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72                                                                                                                                            |
| 291<br>290<br>289<br>288<br>287<br>286<br>285                                                                                                                                                                                                            | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36</za32.3°<br>                                                                                                                                                                       | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72                                                                                                                                          | 292<br>293<br>294<br>295<br>296<br>297<br>298                                                                                                                                                                  | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24</za32.3°<br>                                                                                                                                                                         | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                            | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70                                                                                                                                      |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284                                                                                                                                                                                                     | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25</za32.3°<br>                                                                                                                                                                | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60                                                                                                                                    | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299                                                                                                                                                           | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22</za32.3°<br>                                                                                                                                                                  | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34                                                                                                                                                                                                      | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56                                                                                                                                |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283                                                                                                                                                                                              | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7</za32.3°<br>                                                                                                                                                          | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10                                                                                                                              | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300                                                                                                                                                    | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10</za32.3°<br>                                                                                                                                                           | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16                                                                                                                                                                                                      | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26                                                                                                                          |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282                                                                                                                                                                                       | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16</za32.3°<br>                                                                                                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>35<br>3<br>3<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32                                                                                                                        | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301                                                                                                                                             | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8</za32.3°<br>                                                                                                                                                     | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9                                                                                                                                                                                                 | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17                                                                                                                    |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281                                                                                                                                                                                | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14</za32.3°<br>                                                                                                                                            | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>3<br>16<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48                                                                                                                  | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302                                                                                                                                      | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1</za32.3°<br>                                                                                                                                               | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0                                                                                                                                                                                            | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1                                                                                                               |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280                                                                                                                                                                         | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10</za32.3°<br>                                                                                                                                     | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>3<br>16<br>34<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24                                                                                                            | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303                                                                                                                               | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0</za32.3°<br>                                                                                                                                         | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0                                                                                                                                                                                       | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0                                                                                                          |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>285<br>284<br>283<br>282<br>281<br>280<br>279                                                                                                                                                    | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17</za32.3°<br>                                                                                                                              | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>3<br>16<br>34<br>14<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40                                                                                                      | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304                                                                                                                        | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1</za32.3°<br>                                                                                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0                                                                                                                                                                             | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1                                                                                                     |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278                                                                                                                                                           | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24</za32.3°<br>                                                                                                                       | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>3<br>16<br>34<br>14<br>23<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59                                                                                                | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305                                                                                                                 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11</za32.3°<br>                                                                                                                            | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29                                                                                                                                                                       | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40                                                                                               |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277                                                                                                                                                    | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19</za32.3°<br>                                                                                                                | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>3<br>16<br>34<br>14<br>23<br>35<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33                                                                                          | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306                                                                                                          | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10</za32.3°<br>                                                                                                                     | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29<br>9<br>9                                                                                                                                                       | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19                                                                                         |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276                                                                                                                                             | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11</za32.3°<br>                                                                                                         | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27                                                                                    | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307                                                                                                   | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9</za32.3°<br>                                                                                                               | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>17                                                                                                                                           | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26                                                                                   |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275                                                                                                                        | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/></za32.3°<br>                                                                                             | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>37                                                                        | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308                                                                                            | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11</za32.3°<br>                                                                                                        | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29<br>9<br>17<br>23                                                                                                                                          | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34                                                                             |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274                                                                                                                               | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11</za32.3°<br>                                                                                           | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>2                                                                   | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309                                                                                     | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>2</za32.3°<br>                                                                                            | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29<br>9<br>17<br>23<br>17                                                                                                                                          | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24                                                                       |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273                                                                                                                        | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>11<br/>3</za32.3°<br>                                                                        | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5  | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310                                                                              | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0</za32.3°<br>                                                                                            | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29<br>9<br>17<br>23<br>17<br>0                                                                                                                                     | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2                                                             |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>275<br>274<br>273<br>272                                                                                                   | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>2<br/>4</za32.3°<br>                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>16<br>24<br>21<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1                                                              | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311                                                                       | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2</za32.3°<br>                                                                                      | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>29<br>9<br>17<br>23<br>17<br>0<br>0<br>0                                                                                                                                | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>1                                                        |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>275<br>274<br>273<br>272<br>271                                                                                            | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5</za32.3°<br>                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>2                                                    | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>212                                                         | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6</za32.3°<br>                                                                          | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18                                                                                                                     | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12                                                 |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>275<br>274<br>275<br>274<br>273<br>272<br>271<br>270<br>260                                                                | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5</za32.3°<br>                                                             | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8                                               | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>214                                                  | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>10</za32.3°<br>                                                                   | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>29<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18<br>6<br>7                                                                                                                 | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17                                           |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>275<br>274<br>275<br>274<br>275<br>274<br>272<br>271<br>270<br>269                                                         | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>5<br/>2</za32.3°<br>                                                 | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4                                          | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>215                                           | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>10<br/>0</za32.3°<br>                                                             | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18<br>6<br>7                                                                                                  | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27                                     |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>275<br>274<br>275<br>274<br>275<br>274<br>275<br>274<br>270<br>269<br>268<br>267                                           | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>2<br/>6</za32.3°<br>                                                 | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7                                     | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>218                                    | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>10<br/>9<br/>8</za32.3°<br>                                                       | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18<br>6<br>7<br>18                                                                                       | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26                               |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266                                                         | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>2<br/>6<br/>16</za32.3°<br>                                          | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32                               | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317                             | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>10<br/>9<br/>8<br/>22</za32.3°<br>                                                | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18<br>6<br>7<br>18<br>18                                                                         | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38                         |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273<br>277<br>276<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266<br>265                             | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>2<br/>6<br/>16<br/>30</za32.3°<br>                                   | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32<br>66                         | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317<br>316                      | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>6<br/>10<br/>9<br/>8<br/>22<br/>22<br/>22</za32.3°<br>                            | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                  | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38<br>55                   |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273<br>277<br>276<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266<br>265<br>264                      | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>2<br/>6<br/>16<br/>30<br/>29</za32.3°<br>                            | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32<br>66<br>66<br>65             | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317<br>316<br>321               | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>10<br/>9<br/>8<br/>22<br/>22<br/>17</za32.3°<br>                                  | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                  | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38<br>55<br>37             |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273<br>277<br>276<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266<br>265<br>264<br>324               | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>2<br/>6<br/>16<br/>30<br/>29<br/>21</za32.3°<br>                     | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16<br>36<br>36<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32<br>66<br>65<br>44             | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317<br>316<br>321<br>320        | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>10<br/>9<br/>8<br/>22<br/>22<br/>17<br/>39</za32.3°<br>                           | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                  | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38<br>55<br>37<br>73       |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273<br>277<br>276<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266<br>265<br>264<br>324<br>323        | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>2<br/>6<br/>16<br/>30<br/>29<br/>21<br/>45</za32.3°<br>              | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>37<br>37<br>37<br>37<br>38<br>38<br>37<br>38<br>38<br>36<br>36<br>36<br>36<br>37<br>37<br>38<br>38<br>36<br>36<br>37<br>38<br>38<br>36<br>36<br>36<br>36<br>37<br>37<br>38<br>38<br>36<br>36<br>36<br>36<br>36<br>36<br>37<br>37<br>38<br>38<br>36<br>36<br>36<br>36<br>36<br>36<br>37<br>38<br>37<br>38<br>38<br>36<br>36<br>36<br>36<br>36<br>37<br>37<br>38<br>38<br>36<br>36<br>36<br>37<br>38<br>37<br>38<br>37<br>38<br>38<br>38<br>36<br>36<br>37<br>38<br>37<br>38<br>37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38 | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32<br>66<br>65<br>44<br>81       | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317<br>316<br>321<br>320<br>319 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>6<br/>10<br/>9<br/>8<br/>22<br/>22<br/>22<br/>17<br/>39<br/>47</za32.3°<br>       | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>18<br>6<br>7<br>18<br>18<br>16<br>33<br>20<br>0<br>34<br>36 | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38<br>55<br>37<br>73<br>83 |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273<br>277<br>276<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266<br>265<br>264<br>324<br>323<br>322 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>30<br/>34<br/>16<br/>18<br/>24<br/>31<br/>36<br/>25<br/>7<br/>16<br/>14<br/>10<br/>17<br/>24<br/>19<br/>11<br/>13<br/>11<br/>3<br/>1<br/>5<br/>5<br/>5<br/>5<br/>2<br/>6<br/>16<br/>30<br/>29<br/>21<br/>45<br/>49</za32.3°<br> | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32<br>66<br>65<br>44<br>81<br>85 | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317<br>316<br>321<br>320<br>319 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>6<br/>10<br/>9<br/>8<br/>8<br/>22<br/>22<br/>22<br/>17<br/>39<br/>47</za32.3°<br> | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18<br>6<br>7<br>18<br>18<br>16<br>33<br>20<br>0<br>34<br>36                                                   | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38<br>55<br>37<br>73<br>83 |
| 291<br>290<br>289<br>288<br>287<br>286<br>285<br>284<br>283<br>282<br>281<br>280<br>279<br>278<br>277<br>276<br>275<br>274<br>273<br>277<br>276<br>275<br>274<br>273<br>272<br>271<br>270<br>269<br>268<br>267<br>266<br>265<br>264<br>324<br>323<br>322 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br>$<\mathbb{Z}A32.3^{\circ}$<br>(%)<br>30<br>34<br>16<br>18<br>24<br>31<br>36<br>25<br>7<br>16<br>14<br>10<br>17<br>24<br>19<br>11<br>13<br>11<br>13<br>11<br>3<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>6<br>16<br>30<br>29<br>21<br>45<br>49      | sky-view<br>>ZA32.3°<br>(%)<br>25<br>23<br>27<br>33<br>36<br>36<br>36<br>36<br>36<br>35<br>3<br>16<br>34<br>14<br>23<br>35<br>14<br>16<br>24<br>21<br>0<br>0<br>0<br>4<br>3<br>3<br>2<br>1<br>16<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sky-view<br>(%)<br>55<br>57<br>43<br>51<br>60<br>67<br>72<br>60<br>10<br>32<br>48<br>24<br>40<br>59<br>33<br>27<br>37<br>32<br>3<br>1<br>9<br>8<br>8<br>4<br>7<br>32<br>66<br>65<br>44<br>81<br>85 | 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>318<br>317<br>316<br>321<br>320<br>319 | threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | sky-view<br><za32.3°<br>(%)<br/>27<br/>31<br/>18<br/>27<br/>32<br/>36<br/>24<br/>22<br/>10<br/>8<br/>1<br/>0<br/>1<br/>11<br/>10<br/>9<br/>11<br/>7<br/>0<br/>2<br/>6<br/>6<br/>6<br/>10<br/>9<br/>8<br/>22<br/>22<br/>22<br/>17<br/>39<br/>47</za32.3°<br>       | sky-view<br>>ZA32.3°<br>(%)<br>20<br>27<br>27<br>32<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>16<br>9<br>0<br>0<br>0<br>0<br>0<br>29<br>9<br>9<br>17<br>23<br>17<br>0<br>0<br>0<br>18<br>6<br>7<br>18<br>18<br>16<br>33<br>20<br>0<br>34<br>36                                                  | sky-view<br>(%)<br>47<br>58<br>45<br>59<br>68<br>72<br>70<br>56<br>26<br>17<br>1<br>0<br>1<br>40<br>19<br>26<br>34<br>24<br>0<br>2<br>24<br>12<br>17<br>27<br>26<br>38<br>55<br>37<br>73<br>83 |

| Survey line | e 15 (76 m fro                   | om western fen                                                                                                                                     | ce line)              |                  | Survey lir | ne 16 (81 m fro      | om western fen                                                                       | ce line)              |                  |
|-------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|------------|----------------------|--------------------------------------------------------------------------------------|-----------------------|------------------|
| Site        | sky/cld<br>threshold             | processed<br>sky-view                                                                                                                              | estimated<br>sky-view | site<br>sky-view | Site       | sky/cld<br>threshold | processed<br>sky-view                                                                | estimated<br>sky-view | site<br>sky-view |
|             |                                  | <za32.3°< td=""><td>&gt;ZA32.3°</td><td>(01)</td><td></td><td></td><td><za32.3°< td=""><td>&gt;ZA32.3°</td><td>(0)</td></za32.3°<></td></za32.3°<> | >ZA32.3°              | (01)             |            |                      | <za32.3°< td=""><td>&gt;ZA32.3°</td><td>(0)</td></za32.3°<>                          | >ZA32.3°              | (0)              |
| 421         | 0.8                              | <u>(%)</u><br>27                                                                                                                                   | <u>(%)</u><br>24      | <u>(%)</u><br>51 | 422        | 0.8                  | <u>(%)</u><br>24                                                                     | <u>(%)</u><br>24      | (%)              |
| 421         | 0.8                              | 30                                                                                                                                                 | 24<br>29              | 59               | 422        | 0.8                  | 24<br>27                                                                             | 24                    | 40<br>51         |
| 419         | 0.8                              | 20                                                                                                                                                 | 29                    | 49               | 424        | 0.8                  | 27                                                                                   | 22                    | 49               |
| 418         | 0.8                              | 11                                                                                                                                                 | 1                     | 12               | 425        | 0.8                  | 14                                                                                   | 21                    | 35               |
| 417         | 0.8                              | 4                                                                                                                                                  | 0                     | 4                | 426        | 0.8                  | 1                                                                                    | 3                     | 4                |
| 416         | 0.8                              | 9                                                                                                                                                  | 0                     | 9                | 427        | 0.8                  | 10                                                                                   | 24                    | 34               |
| 415         | 0.8                              | 5                                                                                                                                                  | 0                     | 5                | 428        | 0.8                  | 5                                                                                    | 9                     | 14               |
| 414         | 0.8                              | 10                                                                                                                                                 | 0                     | 10               | 429        | 0.8                  | /                                                                                    | 12                    | 19               |
| 415         | 0.8                              | 3                                                                                                                                                  | 0                     | 2                | 430        | 0.8                  | 12                                                                                   | 24<br>10              | 17               |
| 411         | 0.8                              | 3                                                                                                                                                  | 0                     | 3                | 432        | 0.8                  | 1                                                                                    | 0                     | 1                |
| 410         | 0.9                              | 0                                                                                                                                                  | 0                     | 0                | 433        | 0.8                  | 2                                                                                    | 0                     | 2                |
| 409         | 0.8                              | 1                                                                                                                                                  | 0                     | 1                | 434        | 0.8                  | 3                                                                                    | 0                     | 3                |
| 408         | 0.8                              | 1                                                                                                                                                  | 0                     | 1                | 435        | 0.8                  | 3                                                                                    | 0                     | 3                |
| 407         | 0.8                              | 1                                                                                                                                                  | 0                     | 1                | 436        | 0.8                  | 1                                                                                    | 0                     | 1                |
| 406         | 0.8                              | 2                                                                                                                                                  | 0                     | 2                | 437        | 0.9                  | 1                                                                                    | ·/                    | 8                |
| 403         | 0.8                              | 3                                                                                                                                                  | 0                     | 3                | 430        | 0.9                  | 1                                                                                    | 0<br>5                | 0                |
| 403         | 0.9                              | 1                                                                                                                                                  | 0                     | 1                | 440        | 0.8                  | 13                                                                                   | 18                    | 31               |
| 402         | 0.9                              | 1                                                                                                                                                  | 0                     | 1                | 441        | 0.8                  | 6                                                                                    | 20                    | 26               |
| 401         | 0.8                              | 3                                                                                                                                                  | 1                     | 4                | 442        | 0.8                  | 13                                                                                   | 34                    | 47               |
| 400         | 0.8                              | 2                                                                                                                                                  | 0                     | 2                | 443        | 0.8                  | 12                                                                                   | 34                    | 46               |
| 399         | 0.8                              | 3                                                                                                                                                  | 1                     | 4                | 444        | 0.8                  | 25                                                                                   | 35                    | 60               |
| 398         | 0.8                              | 5                                                                                                                                                  | 0                     | 5                | 445        | 0.8                  | 29                                                                                   | 35                    | 60<br>29         |
| 397         | 0.8                              | 6                                                                                                                                                  | 0                     | 0                | 440        | 0.8                  | 20                                                                                   | 8<br>36               | 28<br>67         |
| 390         | 0.8                              | 0                                                                                                                                                  | 0                     | 0                | 447        | 0.8                  | 37                                                                                   | 36                    | 73               |
| 394         | 0.8                              | 0                                                                                                                                                  | 0                     | Ő                | 449        | 0.8                  | 43                                                                                   | 36                    | 79               |
| 393         | 0.8                              | 5                                                                                                                                                  | 0                     | 5                | 450        | 0.8                  | 47                                                                                   | 36                    | 83               |
| 392         | 0.8                              | 5                                                                                                                                                  | 0                     | 5                |            |                      |                                                                                      |                       |                  |
| 391         | 0.8                              | 1                                                                                                                                                  | 0                     | 1                |            |                      |                                                                                      |                       |                  |
| 390         | 0.9                              | 8                                                                                                                                                  | 0                     | 8                |            |                      |                                                                                      |                       |                  |
| 389         | 0.8                              | 3                                                                                                                                                  | 0                     | 3                |            |                      |                                                                                      |                       |                  |
| 387         | 0.8                              | 1<br>7                                                                                                                                             | 0                     | 1<br>7           |            |                      |                                                                                      |                       |                  |
| 386         | 0.8                              | ,<br>17                                                                                                                                            | 14                    | 31               |            |                      |                                                                                      |                       |                  |
| 385         | 0.8                              | 29                                                                                                                                                 | 34                    | 63               |            |                      |                                                                                      |                       |                  |
| 384         | 0.8                              | 34                                                                                                                                                 | 35                    | 69               |            |                      |                                                                                      |                       |                  |
| 383         | 0.8                              | 42                                                                                                                                                 | 36                    | 78               |            |                      |                                                                                      |                       |                  |
| 382         | 0.8                              | 44                                                                                                                                                 | 36                    | 80               | G 1'       | 10 (01 6             |                                                                                      | 1.                    |                  |
| Survey line | $\frac{1}{(86 \text{ m from })}$ | m western fen                                                                                                                                      | ce line)              | aita             | Survey lif | Shu/ald              | om western fen                                                                       | ice line)             | aita             |
| Sile        | threshold                        | sky-view                                                                                                                                           | sky-view              | she<br>sky-view  | Sile       | threshold            | sky-view                                                                             | sky-view              | she<br>sky-view  |
|             | unesnoid                         | <ZA32.3°                                                                                                                                           | $>ZA32.3^{\circ}$     | sky view         |            | uneshold             | <za32.3°< td=""><td><math>&gt;ZA32.3^{\circ}</math></td><td>Sky view</td></za32.3°<> | $>ZA32.3^{\circ}$     | Sky view         |
|             |                                  | (%)                                                                                                                                                | (%)                   | (%)              |            |                      | (%)                                                                                  | (%)                   | (%)              |
| 482         | 0.8                              | 17                                                                                                                                                 | 22                    | 39               | 483        | 0.8                  | 18                                                                                   | 22                    | 40               |
| 481         | 0.8                              | 18                                                                                                                                                 | 22                    | 40               | 484        | 0.8                  | 19                                                                                   | 19                    | 38               |
| 480         | 0.8                              | 17                                                                                                                                                 | 20                    | 37               | 485        | 0.8                  | 14                                                                                   | 18                    | 32               |
| 479         | 0.9                              | 25                                                                                                                                                 | 24                    | 49               | 480        | 0.8                  | 10                                                                                   | 23                    | 39               |
| 478<br>477  | 0.9                              | 5                                                                                                                                                  | 9                     | 14               | 487        | 0.8                  | 1                                                                                    | 5<br>7                | 4                |
| 476         | 0.8                              | 10                                                                                                                                                 | 23                    | 33               | 489        | 0.8                  | 16                                                                                   | 23                    | 39               |
| 475         | 0.8                              | 6                                                                                                                                                  | 0                     | 6                | 489x       | 0.8                  | 16                                                                                   | 16                    | 32               |
| 474         | 0.8                              | 12                                                                                                                                                 | 18                    | 30               | 490        | 0.8                  | 17                                                                                   | 23                    | 40               |
| 473         | 0.8                              | 19                                                                                                                                                 | 34                    | 53               | 491        | 0.8                  | 23                                                                                   | 29                    | 52               |
| 472         | 0.8                              | 26                                                                                                                                                 | 36                    | 62               | 492        | 0.8                  | 30                                                                                   | 36                    | 66               |
| 471         | 0.85                             | 26                                                                                                                                                 | 35                    | 61<br>52         | 493        | 0.8                  | 30                                                                                   | 36                    | 66<br>50         |
| 470<br>469  | 0.85                             | 21<br>11                                                                                                                                           | 5∠<br>7               | 35<br>18         | 494        | 0.8                  | 24<br>24                                                                             | 33<br>21              | 39<br>15         |
| 468         | 0.8                              | 6                                                                                                                                                  | 0                     | 6                | 496        | 0.8                  | 24<br>16                                                                             | 10                    | 26               |
| 467         | 0.8                              | 6                                                                                                                                                  | Ő                     | 6                | 497        | 0.8                  | 17                                                                                   | 9                     | 26               |
| 466         | 0.8                              | 4                                                                                                                                                  | 0                     | 4                | 498        | 0.8                  | 15                                                                                   | 9                     | 24               |
| 465         | 0.8                              | 2                                                                                                                                                  | 0                     | 2                | 499        | 0.8                  | 6                                                                                    | 0                     | 6                |
| 464         | 0.8                              | 6                                                                                                                                                  | 11                    | 17               | 500        | 0.8                  | 6                                                                                    | 4                     | 10               |
| 463         | 0.8                              | 6                                                                                                                                                  | 11                    | 17               | 501        | 0.8                  | 8                                                                                    | 4                     | 12               |

| 462         | 0.8            | 4                                                                                                                                           | 3         | 7        | 502         | 0.8            | 8                                                        | 18        | 26       |
|-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------|----------------|----------------------------------------------------------|-----------|----------|
| 461         | 0.8            | 8                                                                                                                                           | 8         | 16       | 503         | 0.8            | 11                                                       | 14        | 25       |
| 460         | 0.8            | 9                                                                                                                                           | 13        | 22       | 504         | 0.8            | 13                                                       | 14        | 27       |
| 459         | 0.8            | 5                                                                                                                                           | 9         | 14       | 505         | 0.8            | 5                                                        | 5         | 10       |
| 458         | 0.8            | 11                                                                                                                                          | 18        | 29       | 506         | 0.8            | 6                                                        | 1         | 7        |
| 457         | 0.8            | 19                                                                                                                                          | 35        | 54       | 507         | 0.8            | 13                                                       | 31        | 44       |
| 456         | 0.8            | 7                                                                                                                                           | 11        | 14       | 508         | 0.8            | 6                                                        | 20        | 13       |
| 455         | 0.8            | 29                                                                                                                                          | 11        | 40       | 509         | 0.8            | 21                                                       | 20        | 41       |
| 454         | 0.8            | 34<br>16                                                                                                                                    | 30        | 70<br>17 | 510         | 0.8            | 27                                                       | 29        | 20       |
| 435         | 0.8            | 34                                                                                                                                          | 35        | 17<br>60 | 512         | 0.8            | 14                                                       | 14        | 20<br>68 |
| 452         | 0.8            | 34<br>46                                                                                                                                    | 35        | 81       | 513         | 0.8            | 33<br>47                                                 | 35        | 82       |
| Survey line | 19 (96 m fro   | m western fen                                                                                                                               | ce line)  | 01       | Survey line | 20(101  m fr)  | om western fe                                            | nce line) | 02       |
| Site        | Sky/cld        | processed                                                                                                                                   | estimated | site     | Site        | Sky/cld        | processed                                                | estimated | site     |
|             | threshold      | sky-view                                                                                                                                    | sky-view  | sky-view |             | threshold      | sky-view                                                 | sky-view  | sky-view |
|             |                | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td><td></td><td></td><td><za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<></td></za32.3°<> | >ZA32.3°  |          |             |                | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<> | >ZA32.3°  |          |
|             |                | (%)                                                                                                                                         | (%)       | (%)      |             |                | (%)                                                      | (%)       | (%)      |
| 514         | 0.8            | 19                                                                                                                                          | 22        | 41       | 546         | 0.8            | 25                                                       | 26        | 51       |
| 515         | 0.8            | 21                                                                                                                                          | 18        | 39       | 547         | 0.8            | 19                                                       | 21        | 40       |
| 516         | 0.8            | 19                                                                                                                                          | 19        | 38       | 548         | 0.8            | 20                                                       | 25        | 45       |
| 517         | 0.8            | 13                                                                                                                                          | 21        | 34       | 549         | 0.8            | 14                                                       | 23        | 37       |
| 518         | 0.8            | 4                                                                                                                                           | 10        | 14       | 550         | 0.8            | 3                                                        | 2         | 5        |
| 519         | 0.8            | 11                                                                                                                                          | 13        | 24       | 551         | 0.8            | 14                                                       | 18        | 32       |
| 520         | 0.8            | 22                                                                                                                                          | 29        | 51       | 552<br>553  | 0.8            | 27                                                       | 30<br>25  | 63<br>67 |
| 523         | 0.8            | 18                                                                                                                                          | 20        | 38       | 554         | 0.9            | 32                                                       | 33        | 60       |
| 523<br>524  | 0.8            | 20                                                                                                                                          | 20        | 40       | 555         | 0.8            | 30                                                       | 22        | 52       |
| 525         | 0.8            | 23                                                                                                                                          | 16        | 39       | 556         | 0.8            | 34                                                       | 22        | 61       |
| 526         | 0.8            | 26                                                                                                                                          | 17        | 43       | 557         | 0.8            | 36                                                       | 33        | 69       |
| 527         | 0.8            | 31                                                                                                                                          | 35        | 66       | 558         | 0.8            | 39                                                       | 35        | 74       |
| 528         | 0.8            | 28                                                                                                                                          | 31        | 59       | 559         | 0.8            | 34                                                       | 26        | 60       |
| 529         | 0.8            | 22                                                                                                                                          | 30        | 52       | 560         | 0.9            | 40                                                       | 36        | 76       |
| 530         | 0.8            | 23                                                                                                                                          | 33        | 56       | 561         | 0.8            | 39                                                       | 36        | 75       |
| 531         | 0.8            | 19                                                                                                                                          | 33        | 52       | 562         | 0.8            | 41                                                       | 35        | 76       |
| 532         | 0.8            | 18                                                                                                                                          | 32        | 50       | 563         | 0.8            | 40                                                       | 35        | 75       |
| 533         | 0.8            | 26                                                                                                                                          | 35        | 61       | 564         | 0.8            | 36                                                       | 36        | 72       |
| 534         | 0.8            | 24                                                                                                                                          | 31        | 55       | 565         | 0.8            | 16                                                       | 24        | 40       |
| 535         | 0.8            | 12                                                                                                                                          | 29        | 41       | 500         | 0.8            | 30                                                       | 27        | 57       |
| 530         | 0.8            | 6                                                                                                                                           | 0         | 12       | 569         | 0.8            | 25                                                       | 32        | 57       |
| 538         | 0.8            | 18                                                                                                                                          | 29        | 33<br>42 | 569         | 0.8            | 20                                                       | 23        | 43       |
| 539         | 0.8            | 23                                                                                                                                          | 23        | 46       | 570         | 0.8            | 42                                                       | 36        | 78       |
| 540         | 0.8            | 10                                                                                                                                          | 9         | 19       | 571         | 0.8            | 44                                                       | 36        | 80       |
| 541         | 0.8            | 26                                                                                                                                          | 19        | 45       | 572         | 0.8            | 24                                                       | 16        | 40       |
| 542         | 0.8            | 37                                                                                                                                          | 36        | 73       | 573         | 0.8            | 34                                                       | 35        | 69       |
| 543         | 0.8            | 20                                                                                                                                          | 17        | 37       | 574         | 0.9            | 43                                                       | 32        | 75       |
| 544         | 0.8            | 34                                                                                                                                          | 35        | 69       |             |                |                                                          |           |          |
| 545         | 0.8            | 48                                                                                                                                          | 30        | 78       |             |                |                                                          |           |          |
| Survey line | e 21 (106 m fr | om western fe                                                                                                                               | nce line) |          | Survey line | e 22 (111 m fr | om western fe                                            | nce line) |          |
| Site        | Sky/cld        | processed                                                                                                                                   | estimated | site     | Site        | Sky/cld        | processed                                                | estimated | site     |
|             | threshold      | sky-view                                                                                                                                    | sky-view  | sky-view |             | threshold      | sky-view                                                 | sky-view  | sky-view |
|             |                | < ZA32.3                                                                                                                                    | >ZA32.3   | (0/)     |             |                | < ZA32.5                                                 | >LA32.3   | (0/)     |
| 603         | 0.8            | (%)                                                                                                                                         | (%)       | (%)      | 604         | 0.8            | (%)                                                      | (%)       | 38       |
| 602         | 0.8            | 8                                                                                                                                           | 14        | 22       | 605         | 0.8            | 4                                                        | 1         | 5        |
| 601         | 0.8            | 11                                                                                                                                          | 16        | 27       | 606         | 0.8            | 6                                                        | 18        | 24       |
| 600         | 0.8            | 8                                                                                                                                           | 18        | 26       | 607         | 0.8            | 3                                                        | 0         | 3        |
| 599         | 0.8            | 3                                                                                                                                           | 5         | 8        | 608         | 0.8            | 16                                                       | 16        | 32       |
| 598         | 0.8            | 17                                                                                                                                          | 18        | 35       | 609         | 0.8            | 31                                                       | 35        | 66       |
| 597         | 0.8            | 30                                                                                                                                          | 36        | 66       | 610         | 0.8            | 36                                                       | 35        | 71       |
| 596         | 0.8            | 32                                                                                                                                          | 34        | 66       | 611         | 0.8            | 38                                                       | 27        | 65       |
| 595         | 0.8            | 32                                                                                                                                          | 30        | 62       | 612         | 0.8            | 39                                                       | 27        | 66       |
| 594         | 0.8            | 35                                                                                                                                          | 29        | 64       | 613         | 0.8            | 42                                                       | 35        | 77       |
| 593         | 0.8            | 38                                                                                                                                          | 34        | 72       | 614         | 0.8            | 45                                                       | 36        | 81       |
| 592         | 0.8            | 42                                                                                                                                          | 36        | 78       | 615         | 0.8            | 48                                                       | 36        | 84       |
| 591<br>500  | 0.8            | 45<br>46                                                                                                                                    | 30<br>26  | 81<br>82 | 010<br>617  | 0.8            | 49<br>51                                                 | 30<br>26  | 85<br>97 |
| 590<br>580  | 0.8            | 40<br>47                                                                                                                                    | 30<br>36  | 82<br>83 | 01/<br>618  | 0.8            | 51                                                       | 30<br>36  | 81<br>87 |
| 588         | 0.8            | +/<br>48                                                                                                                                    | 36        | 83<br>84 | 619         | 0.8            | 50                                                       | 36        | 86       |
| 587         | 0.8            | 46                                                                                                                                          | 36        | 82       | 620         | 0.8            | 50                                                       | 36        | 86       |
|             |                | -                                                                                                                                           |           | -        |             |                |                                                          |           |          |

| 586          | 0.8                                 | 46                                                                                                                                          | 36                        | 82       | 621         | 0.8                                 | 50                                                       | 36                        | 86       |
|--------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|-------------|-------------------------------------|----------------------------------------------------------|---------------------------|----------|
| 585          | 0.8                                 | 46                                                                                                                                          | 36                        | 82       | 622         | 0.8                                 | 47                                                       | 36                        | 83       |
| 584          | 0.8                                 | 26                                                                                                                                          | 17                        | 43       | 623         | 0.8                                 | 39                                                       | 36                        | 75       |
| 583          | 0.8                                 | 33                                                                                                                                          | 27                        | 60       | 624         | 0.8                                 | 36                                                       | 36                        | 72       |
| 582          | 0.8                                 | 34                                                                                                                                          | 35                        | 69       | 625         | 0.8                                 | 37                                                       | 35                        | 72       |
| 581          | 0.8                                 | 24                                                                                                                                          | 35                        | 59       | 626         | 0.8                                 | 3/                                                       | 35                        | 69       |
| 580          | 0.8                                 | 24                                                                                                                                          | 35                        | 39<br>70 | 627         | 0.8                                 | 22                                                       | 55                        | 29       |
| 570          | 0.8                                 | 12                                                                                                                                          | 30                        | 72       | 628         | 0.8                                 | 32                                                       | 6                         | 36       |
| 579          | 0.8                                 | 43                                                                                                                                          | 30                        | 79       | 628         | 0.8                                 | 30                                                       | 0                         | 30       |
| 5/8          | 0.8                                 | 43                                                                                                                                          | 30                        | 19       | 629         | 0.8                                 | 29                                                       | 6                         | 35       |
| 577          | 0.8                                 | 26                                                                                                                                          | 1/                        | 43       | 630         | 0.8                                 | 25                                                       | 6                         | 31       |
| 5/6          | 0.8                                 | 34                                                                                                                                          | 36                        | /0       | 631         | 0.8                                 | 25                                                       | 6                         | 31       |
| 575          | 0.8                                 | 47                                                                                                                                          | 35                        | 82       | 632         | 0.8                                 | 24                                                       | 6                         | 30       |
|              |                                     |                                                                                                                                             |                           |          | 633         | 0.8                                 | 24                                                       | 6                         | 30       |
|              |                                     |                                                                                                                                             |                           |          | 634         | 0.8                                 | 28                                                       | 6                         | 34       |
|              |                                     |                                                                                                                                             |                           |          | 635         | 0.8                                 | 33                                                       | 6                         | 39       |
|              |                                     |                                                                                                                                             |                           |          | 636         | 0.8                                 | 38                                                       | 6                         | 44       |
|              |                                     |                                                                                                                                             |                           |          | 637         | 0.8                                 | 38                                                       | 36                        | 74       |
|              |                                     |                                                                                                                                             |                           |          | 638         | 0.8                                 | 36                                                       | 20                        | 56       |
|              |                                     |                                                                                                                                             |                           |          | 639         | 0.8                                 | 26                                                       | 14                        | 40       |
|              |                                     |                                                                                                                                             |                           |          | 640         | 0.8                                 | 33                                                       | 18                        | 51       |
|              |                                     |                                                                                                                                             |                           |          | 641         | 0.8                                 | 45                                                       | 36                        | 81       |
|              |                                     |                                                                                                                                             |                           |          | 642         | 0.8                                 | 49                                                       | 36                        | 85       |
| Survey line  | e 23 (116 m fr                      | om western fe                                                                                                                               | nce line)                 |          | Survey line | e 24 (121 m fr                      | om western fe                                            | nce line)                 |          |
| Site         | Sky/cld                             | processed                                                                                                                                   | estimated                 | site     | Site        | sky/cld                             | processed                                                | estimated                 | site     |
| bite         | threshold                           | sky-view                                                                                                                                    | sky-view                  | sky-view | bite        | threshold                           | sky-view                                                 | sky-view                  | sky-view |
|              | unesnoid                            | $<7\Delta32.3^{\circ}$                                                                                                                      | $\sqrt{7}$ $\Delta$ 32 3° | SKy-view |             | unesitoid                           | $<7\Delta323^{\circ}$                                    | $\sqrt{7}$ $\Delta$ 32 3° | SKy-view |
|              |                                     | (0/2)                                                                                                                                       | (%)                       | (%)      |             |                                     | (0/2)                                                    | (0/2)                     | (%)      |
| 667          | 0.8                                 | 20                                                                                                                                          | 18                        | 47       | 662         | 0.8                                 | 20                                                       | 18                        | (70)     |
| 661          | 0.8                                 | 4                                                                                                                                           | 2                         | 7        | 664         | 0.8                                 | 29                                                       | 10                        | 22       |
| 660          | 0.8                                 | 4                                                                                                                                           | 3                         | /<br>60  | 665         | 0.8                                 | 21                                                       | 12                        | 33       |
| 660          | 0.8                                 | 33                                                                                                                                          | 30                        | 69       | 005         | 0.8                                 | 39                                                       | 30                        | 75       |
| 659          | 0.8                                 | 33                                                                                                                                          | 30                        | 69       | 000         | 0.8                                 | 43                                                       | 30                        | 79       |
| 658          | 0.8                                 | 32                                                                                                                                          | 35                        | 6/       | 667         | 0.8                                 | 44                                                       | 35                        | 79       |
| 657          | 0.8                                 | 34                                                                                                                                          | 21                        | 55       | 668         | 0.8                                 | 44                                                       | 30                        | 74       |
| 656          | 0.9                                 | 38                                                                                                                                          | 35                        | 73       |             |                                     |                                                          |                           |          |
| 655          | 0.9                                 | 47                                                                                                                                          | 36                        | 83       |             |                                     |                                                          |                           |          |
| 654          | 0.9                                 | 51                                                                                                                                          | 36                        | 87       |             |                                     |                                                          |                           |          |
| 653          | 0.9                                 | 48                                                                                                                                          | 36                        | 84       |             |                                     |                                                          |                           |          |
| 652          | 0.9                                 | 46                                                                                                                                          | 36                        | 82       |             |                                     |                                                          |                           |          |
| 651          | 0.9                                 | 46                                                                                                                                          | 36                        | 82       |             |                                     |                                                          |                           |          |
| 650          | 0.9                                 | 48                                                                                                                                          | 36                        | 84       |             |                                     |                                                          |                           |          |
| 649          | 0.9                                 | 48                                                                                                                                          | 36                        | 84       |             |                                     |                                                          |                           |          |
| 648          | 0.9                                 | 47                                                                                                                                          | 36                        | 83       |             |                                     |                                                          |                           |          |
| 647          | 0.9                                 | 48                                                                                                                                          | 36                        | 84       |             |                                     |                                                          |                           |          |
| 646          | 0.9                                 | 48                                                                                                                                          | 36                        | 84       |             |                                     |                                                          |                           |          |
| 645          | 0.9                                 | 49                                                                                                                                          | 36                        | 85       |             |                                     |                                                          |                           |          |
| 643          | 0.9                                 | 54                                                                                                                                          | 36                        | 90       |             |                                     |                                                          |                           |          |
| Survey line  | e 25 (126 m fr                      | om western fe                                                                                                                               | nce line)                 |          | Survey line | e 26 (131 m fr                      | om western fe                                            | nce line)                 |          |
| Site         | Sky/cld                             | processed                                                                                                                                   | estimated                 | site     | Site        | skv/cld                             | processed                                                | estimated                 | site     |
|              | threshold                           | sky-view                                                                                                                                    | sky-view                  | sky-view |             | threshold                           | sky-view                                                 | sky-view                  | sky-view |
|              |                                     | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td><td></td><td></td><td><za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<></td></za32.3°<> | >ZA32.3°                  |          |             |                                     | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<> | >ZA32.3°                  |          |
|              |                                     | (%)                                                                                                                                         | (%)                       | (%)      |             |                                     | (%)                                                      | (%)                       | (%)      |
| 674          | 0.8                                 | 30                                                                                                                                          | 18                        | 48       | 675         | 0.8                                 | 30                                                       | 18                        | 48       |
| 673          | 0.8                                 | 21                                                                                                                                          | 13                        | 34       | 676         | 0.8                                 | 18                                                       | 13                        | 31       |
| 672          | 0.8                                 | 40                                                                                                                                          | 36                        | 76       | 677         | 0.8                                 | 38                                                       | 35                        | 73       |
| 671          | 0.8                                 | 47                                                                                                                                          | 36                        | 83       | 678         | 0.8                                 | 49                                                       | 36                        | 85       |
| 670          | 0.8                                 | 18                                                                                                                                          | 36                        | 84       | 679         | 0.8                                 | 50                                                       | 36                        | 86       |
| 669          | 0.8                                 | 48                                                                                                                                          | 36                        | 84       | 680         | 0.8                                 | 50                                                       | 36                        | 86       |
| Survey line  | $\frac{0.0}{27.(136 \text{ m fr})}$ | om western fe                                                                                                                               | nce line)                 | 04       | Survey line | $-\frac{0.0}{28(141 \text{ m fr})}$ | om western fe                                            | nce line)                 | 00       |
| Survey lille | 21 (130 III II<br>alay/old          | processed                                                                                                                                   | estimated                 | cito     | Survey IIII | 20 (141 III II<br>slav/cld          | processed                                                | estimated                 | cito     |
| Sile         | sky/ciu                             | processed                                                                                                                                   | -last ani and             | site     | Sile        | sky/ciu                             | processed                                                | -1                        | site     |
|              | unesnoid                            | SKy-VIEW                                                                                                                                    | SKy-view                  | sky-view |             | unesnoid                            | SKy-VIEW                                                 | xy-view                   | sky-view |
|              |                                     | $< LA32.5^{-}$                                                                                                                              | $> LA32.5^{-}$            | (0/)     |             |                                     | $< LA32.5^{-}$                                           | $> LA32.5^{-}$            | (0/2)    |
| <u>(01</u>   | 0.9                                 | (%)                                                                                                                                         | (%)                       | (%)      | (0)         | 0.8                                 | (%)                                                      | (%)                       | (%)      |
| 081          | 0.8                                 | 25                                                                                                                                          | 14                        | 39       | 696         | 0.8                                 | 30                                                       | 25                        | 59       |
| 682          | 0.8                                 | 1/                                                                                                                                          | 14                        | 31       | 697         | 0.8                                 | 14                                                       | 10                        | 24       |
| 683          | 0.8                                 | 38                                                                                                                                          | 36                        | 74       | 698         | 0.8                                 | 22                                                       | 10                        | 32       |
| 684          | 0.8                                 | 50                                                                                                                                          | 36                        | 86       | 699         | 0.8                                 | 40                                                       | 34                        | 74       |
| 685          | 0.8                                 | 52                                                                                                                                          | 36                        | 88       | 700         | 0.8                                 | 42                                                       | 36                        | 78       |
| 686          | 0.8                                 | 52                                                                                                                                          | 36                        | 88       | 701         | 0.8                                 | 52                                                       | 36                        | 88       |
| 687          | 0.8                                 | 56                                                                                                                                          | 36                        | 92       | 702         | 0.8                                 | 54                                                       | 36                        | 90       |
| 600          | 0.8                                 | 57                                                                                                                                          | 36                        | 93       | 703         | 0.8                                 | 54                                                       | 36                        | 90       |
| 088          | 0.0                                 |                                                                                                                                             |                           |          |             |                                     |                                                          |                           |          |

| 009                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 690                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| 691                                                                                                                                                                                | 08.                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| 692                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| 693                                                                                                                                                                                | 0.8                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| 694                                                                                                                                                                                | 0.8                                                                                                                                       | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| 695                                                                                                                                                                                | 08                                                                                                                                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| Survey li                                                                                                                                                                          | ne 29 (146 m fr                                                                                                                           | rom western fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ence line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Survey li                                                                                                                                                                   | ne 30 (151 m f                                                                                                | rom western fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ence line)                                                                                                                                 |                                                                                                                                                                                  |
| Site                                                                                                                                                                               | Sky/cld                                                                                                                                   | processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site                                                                                                                                                                        | skv/cld                                                                                                       | processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | estimated                                                                                                                                  | site                                                                                                                                                                             |
|                                                                                                                                                                                    | threshold                                                                                                                                 | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                           | threshold                                                                                                     | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sky-view                                                                                                                                   | sky-view                                                                                                                                                                         |
|                                                                                                                                                                                    | unconora                                                                                                                                  | <za32.3°< td=""><td><math>&gt;ZA32.3^{\circ}</math></td><td>sity them</td><td></td><td>unconora</td><td><za32.3°< td=""><td><math>&gt;ZA32.3^{\circ}</math></td><td>Shij Hell</td></za32.3°<></td></za32.3°<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $>ZA32.3^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sity them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             | unconora                                                                                                      | <za32.3°< td=""><td><math>&gt;ZA32.3^{\circ}</math></td><td>Shij Hell</td></za32.3°<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $>ZA32.3^{\circ}$                                                                                                                          | Shij Hell                                                                                                                                                                        |
|                                                                                                                                                                                    |                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                               | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%)                                                                                                                                        | (%)                                                                                                                                                                              |
| 704                                                                                                                                                                                | 0.8                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 712                                                                                                                                                                         | 0.8                                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 90                                                                                                                                                                               |
| 705                                                                                                                                                                                | 0.8                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 713                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 705                                                                                                                                                                                | 0.8                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 714                                                                                                                                                                         | 0.8                                                                                                           | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 89                                                                                                                                                                               |
| 700                                                                                                                                                                                | 0.8                                                                                                                                       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 715                                                                                                                                                                         | 0.8                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 91                                                                                                                                                                               |
| 707                                                                                                                                                                                | 0.8                                                                                                                                       | 40<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 176                                                                                                                                                                         | 0.8                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 02                                                                                                                                                                               |
| 708                                                                                                                                                                                | 0.8                                                                                                                                       | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 717                                                                                                                                                                         | 0.8                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 92                                                                                                                                                                               |
| 710                                                                                                                                                                                | 0.8                                                                                                                                       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 718                                                                                                                                                                         | 0.8                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 02                                                                                                                                                                               |
| 710                                                                                                                                                                                | 0.8                                                                                                                                       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 710                                                                                                                                                                         | 0.8                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 92                                                                                                                                                                               |
| Survey li                                                                                                                                                                          | $\frac{0.0}{100}$                                                                                                                         | rom wastern fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JU<br>noo lino)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Survey li                                                                                                                                                                   | $\frac{0.0}{176}$                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JU<br>moo lino)                                                                                                                            | 92                                                                                                                                                                               |
| Survey II                                                                                                                                                                          | -1/-14                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nce nne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -:4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Survey II                                                                                                                                                                   | -1/-1-1                                                                                                       | toni western ie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            | -:                                                                                                                                                                               |
| Site                                                                                                                                                                               | sky/cld                                                                                                                                   | processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site                                                                                                                                                                        | sky/cld                                                                                                       | processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | estimated                                                                                                                                  | site                                                                                                                                                                             |
|                                                                                                                                                                                    | threshold                                                                                                                                 | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             | threshold                                                                                                     | sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sky-view                                                                                                                                   | sky-view                                                                                                                                                                         |
|                                                                                                                                                                                    |                                                                                                                                           | <za32.3"< td=""><td>&gt;ZA32.3*</td><td>(0)</td><td></td><td></td><td><za32.3< td=""><td>&gt;ZA32.3"</td><td>(0)</td></za32.3<></td></za32.3"<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >ZA32.3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                               | <za32.3< td=""><td>&gt;ZA32.3"</td><td>(0)</td></za32.3<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >ZA32.3"                                                                                                                                   | (0)                                                                                                                                                                              |
|                                                                                                                                                                                    |                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                               | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%)                                                                                                                                        | (%)                                                                                                                                                                              |
| 720                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 737                                                                                                                                                                         | 0.9                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 92                                                                                                                                                                               |
| 721                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 738                                                                                                                                                                         | 0.9                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 94                                                                                                                                                                               |
| 722                                                                                                                                                                                | 0.8                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 739                                                                                                                                                                         | 0.9                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 92                                                                                                                                                                               |
| 723                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 740                                                                                                                                                                         | 0.9                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 91                                                                                                                                                                               |
| 724                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 741                                                                                                                                                                         | 0.9                                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 90                                                                                                                                                                               |
| 725                                                                                                                                                                                | 0.8                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 742                                                                                                                                                                         | 0.9                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 91                                                                                                                                                                               |
| 726                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 743                                                                                                                                                                         | 0.9                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 91                                                                                                                                                                               |
| 727                                                                                                                                                                                | 0.8                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 744                                                                                                                                                                         | 0.9                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 91                                                                                                                                                                               |
| 728                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 745                                                                                                                                                                         | 0.9                                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 90                                                                                                                                                                               |
| 729                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 746                                                                                                                                                                         | 0.9                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 94                                                                                                                                                                               |
| 730                                                                                                                                                                                | 0.8                                                                                                                                       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 747                                                                                                                                                                         | 0.8                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 91                                                                                                                                                                               |
|                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                  |
| 731                                                                                                                                                                                | 0.8                                                                                                                                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 748                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 731<br>732                                                                                                                                                                         | 0.8<br>0.8                                                                                                                                | 59<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 748                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 731<br>732<br>733                                                                                                                                                                  | 0.8<br>0.8<br>0.8                                                                                                                         | 59<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95<br>94<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 748                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 731<br>732<br>733<br>734                                                                                                                                                           | 0.8<br>0.8<br>0.8<br>0.8                                                                                                                  | 59<br>58<br>58<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95<br>94<br>94<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 748                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 731<br>732<br>733<br>734<br>735                                                                                                                                                    | 0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                           | 59<br>58<br>58<br>57<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95<br>94<br>94<br>93<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 748                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 731<br>732<br>733<br>734<br>735<br>736                                                                                                                                             | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                             | 59<br>58<br>58<br>57<br>54<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36<br>36<br>36<br>36<br>36<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95<br>94<br>93<br>90<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 748                                                                                                                                                                         | 0.8                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                                         | 88                                                                                                                                                                               |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li                                                                                                                                | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>ne 33 (196 m fr                                                                   | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>36<br>36<br>36<br>36<br>26<br>ence line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95<br>94<br>93<br>90<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 748<br>Survey li                                                                                                                                                            | 0.8<br>ne 34 (216 m fr                                                                                        | 52<br>rom western fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br>ence line)                                                                                                                           | 88                                                                                                                                                                               |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site                                                                                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br><u>0.8</u><br><u>ne 33 (196 m fr</u><br>sky/cld                                                 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>36<br>36<br>36<br>36<br>26<br>mce line)<br>estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95<br>94<br>94<br>93<br>90<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 748<br>Survey li<br>Site                                                                                                                                                    | 0.8<br>ne 34 (216 m fr<br>Sky/cld                                                                             | 52<br>rom western fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br>ence line)<br>estimated                                                                                                              | 88<br>                                                                                                                                                                           |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site                                                                                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br><u>ne 33 (196 m fn</u><br>sky/cld<br>threshold                                           | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36<br>36<br>36<br>36<br>26<br>ence line)<br>estimated<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95<br>94<br>93<br>90<br>63<br>site<br>skv-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 748<br>Survey li<br>Site                                                                                                                                                    | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold                                                                | 52<br>rom western fe<br>processed<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36<br>ence line)<br>estimated<br>skv-view                                                                                                  | 88<br>site<br>sky-view                                                                                                                                                           |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site                                                                                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>33 (196 m fn<br>sky/cld<br>threshold                                       | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32 3°<="" td=""><td>36<br/>36<br/>36<br/>36<br/>26<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32 3°</td><td>95<br/>94<br/>93<br/>90<br/>63<br/>site<br/>sky-view</td><td>748<br/>Survey li<br/>Site</td><td>0.8<br/>ne 34 (216 m fr<br/>Sky/cld<br/>threshold</td><td>52<br/>rom western fe<br/>processed<br/>sky-view<br/><za32 3°<="" td=""><td>36<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32 3°</td><td>88<br/>site<br/>sky-view</td></za32></td></za32>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>36<br>36<br>36<br>26<br>ence line)<br>estimated<br>sky-view<br>>ZA32 3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 748<br>Survey li<br>Site                                                                                                                                                    | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold                                                                | 52<br>rom western fe<br>processed<br>sky-view<br><za32 3°<="" td=""><td>36<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32 3°</td><td>88<br/>site<br/>sky-view</td></za32>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32 3°                                                                                      | 88<br>site<br>sky-view                                                                                                                                                           |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site                                                                                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br><u>0.8</u><br><u>0.8</u><br><u>0.8</u><br><u>sky/cld</u><br>threshold                           | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°< td=""><td>36<br/>36<br/>36<br/>36<br/>26<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°<br/>(%)</td><td>95<br/>94<br/>93<br/>90<br/>63<br/>site<br/>sky-view</td><td>748<br/>Survey li<br/>Site</td><td>0.8<br/>ne 34 (216 m fi<br/>Sky/cld<br/>threshold</td><td>52<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)</za32.3°<br></td><td>36<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°<br/>(%)</td><td>88<br/>site<br/>sky-view<br/>(%)</td></za32.3°<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 748<br>Survey li<br>Site                                                                                                                                                    | 0.8<br>ne 34 (216 m fi<br>Sky/cld<br>threshold                                                                | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)                                                                               | 88<br>site<br>sky-view<br>(%)                                                                                                                                                    |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site                                                                                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br><u>0.8</u><br><u>0.8</u><br><u>sky/cld</u><br>threshold                                         | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 748<br>Survey li<br>Site                                                                                                                                                    | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold                                                                | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36                                                                         | 88<br>site<br>sky-view<br>(%)<br>94                                                                                                                                              |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site                                                                                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 748<br>Survey li<br>Site<br>771<br>770                                                                                                                                      | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold                                                                | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36                                                                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95                                                                                                                                        |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751                                                                                                   | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br><u>ne 33 (196 m fi</u><br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36<br>36<br>36<br>36<br>26<br>mce line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 748<br>Survey li<br>Site<br>771<br>770<br>769                                                                                                                               | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8                                           | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36                                                             | 88<br>site<br>sky-view<br>(%)<br>94                                                                                                                                              |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752                                                                                            | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fr<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36<br>36<br>36<br>36<br>26<br>mce line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768                                                                                                                        | 0.8<br><u>ne 34 (216 m fi</u><br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8                             | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36                                                 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89                                                                                                                            |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752x                                                                                    | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767                                                                                                                 | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                      | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36                                                         | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>89                                                                                                                      |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>753                                                                       | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766                                                                                                          | 0.8<br><u>ne 34 (216 m fr</u><br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                         | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84                                                                                                                |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752x<br>752x<br>753<br>754                                                              | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>768<br>767<br>766<br>765                                                                                     | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>40</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85                                                                                                          |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752x<br>753<br>754<br>755                                                               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>766<br>765<br>764                                                                                     | 0.8<br><u>ne 34 (216 m fi</u><br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>52</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>80                                                                                                    |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752x<br>753<br>754<br>755<br>756                                                        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>762                                                                                     | 0.8<br><u>ne 34 (216 m fi</u><br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85                                                                                              |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757                                    | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fr<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762                                                                | 0.8<br>ne 34 (216 m fi<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>85<br>87                                                                                  |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758                                    | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fr<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>761                                                                       | 0.8<br>ne 34 (216 m fi<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>52</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>85<br>87<br>85<br>87<br>80                                                                |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759                      | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fi<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>761<br>760                                                  | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>85<br>87<br>89<br>90                                                          |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li         | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fi<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>54<br/>57<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li                                     | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>53<br/>54</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>85<br>87<br>89<br>90                                                          |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li         | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fr<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>model and a start of the start</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>769<br>766<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site                      | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>51<br/>53<br/>54</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>90                                                                |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fi<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sty-view<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>54<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55</za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site                             | 0.8<br><u>ne 34 (216 m fr</u><br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>processed<br/>sky-view<br/><za32.3°< td=""><td>36<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°<br/>(%)<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36</td><td>88<br/>site<br/>sky-view<br/>(%)<br/>94<br/>95<br/>94<br/>95<br/>94<br/>89<br/>86<br/>84<br/>85<br/>89<br/>85<br/>87<br/>89<br/>90<br/>site</td></za32.3°<></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>90<br>site                                                        |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fi<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>(%)<br/>61<br/>60<br/>56<br/>28<br/>52<br/>53<br/>rom western fe<br/>(%)<br/>61<br/>60<br/>56<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>(%)<br/>61<br/>60<br/>52<br/>53<br/>rom western fe<br/>processed<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>(%)<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>(%)<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view</za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89<br>site<br>sky-view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site                             | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>85<br>87<br>89<br>90<br>90<br>site<br>sky-view                                            |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fr<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fet<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fet<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fet<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fet<br/>(%)<br/>(%)<br/>(%)<br/>(%)<br/>(%)<br/>(%)<br/>(%)<br/>(%)</za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site                                           | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>85<br>87<br>89<br>90<br>site<br>sky-view                                                  |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>Sky-view<br/>S</za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br> | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>80<br>85<br>80<br>85<br>80<br>85<br>85<br>80<br>85<br>85<br>80<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site                             | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°< td=""><td>36<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°<br/>(%)<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36</td><td>88<br/>site<br/>sky-view<br/>(%)<br/>94<br/>95<br/>94<br/>89<br/>86<br/>84<br/>85<br/>89<br/>85<br/>87<br/>89<br/>85<br/>87<br/>89<br/>90<br/>site<br/>sky-view<br/>(%)</td></za32.3°<></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br> | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>85<br>87<br>89<br>90<br>site<br>sky-view<br>(%)                               |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>56<br/>56<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57</za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89<br>site<br>sky-view<br>(%)<br>95<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site                      | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>59<br/>59<br/>59<br/>59<br/>59<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>59<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°< td=""><td>36<br/>ence line)<br/>estimated<br/>sky-view<br/>&gt;ZA32.3°<br/>(%)<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36<br/>36</td><td>88<br/>site<br/>sky-view<br/>(%)<br/>94<br/>95<br/>94<br/>89<br/>86<br/>84<br/>85<br/>89<br/>85<br/>87<br/>89<br/>85<br/>87<br/>89<br/>90<br/>90<br/>90<br/>site<br/>sky-view<br/>(%)<br/>95</td></za32.3°<></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                       | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>85<br>87<br>89<br>90<br>90<br>90<br>site<br>sky-view<br>(%)<br>95             |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>196 m fi<br>sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | 59<br>58<br>58<br>57<br>54<br>37<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>56<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57<br/>57</za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36         36         36         36         26         estimated         sky-view         >ZA32.3°         (%)         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         < | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89<br>95<br>95<br>96<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>765<br>764<br>763<br>762<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site        | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>54<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>58<br/>59<br/>58<br/>59<br/>58<br/>59<br/>58<br/>59<br/>58<br/>59<br/>58<br/>59<br/>58<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>50<br/>50<br/>51<br/>53<br/>50<br/>54<br/>57<br/>56<br/>57<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>55<br/>50<br/>51<br/>53<br/>55<br/>55<br/>55<br/>55<br/>55<br/>50<br/>51<br/>53<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55<br/>55</za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                   | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>85<br>87<br>89<br>90<br>90<br>site<br>sky-view<br>(%)<br>95<br>96<br>97       |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>753<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>55<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>55<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>55<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>55<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>Sy 56<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>Sy 56<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/>Sy 59<br/>60<br/>60<br/>60<br/>59<br/>60<br/>60<br/>60<br/>60<br/>59<br/>60<br/>60<br/>60<br/>60<br/>59<br/>60<br/>60<br/>60<br/>60<br/>60<br/>59<br/>60<br/>60<br/>60<br/>60<br/>59<br/>60<br/>60<br/>60<br/>60<br/>60<br/>60<br/>60<br/>60<br/>60<br/>60</za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36         36         36         36         26         estimated         sky-view         >ZA32.3°         (%)         36         36         36         36         36         36         36         36         36         36         36         36         37         34         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         < | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89<br>92<br>92<br>92<br>92<br>92<br>92<br>93<br>94<br>97<br>96<br>95<br>96<br>96<br>96<br>96                                                                                                                                                                                                                                                                                                                                                                                                                               | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site<br>795<br>794<br>793<br>793               | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>60<br/>61<br/>61<br/>61<br/>61<br/>61<br/>61<br/>61<br/>61<br/>61<br/>61</za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                        | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>90<br>90<br>site<br>sky-view<br>(%)<br>95<br>96<br>97             |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)</za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36<br>36<br>36<br>36<br>26<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>34<br>34<br>34<br>36<br>33<br>34<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                              | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>90<br>95<br>96<br>96<br>96<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                     | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site<br>795<br>794<br>793<br>792               | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>48<br/>49<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>51<br/>53<br/>54<br/>rocessed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>59<br/>50<br/>51<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>50<br/>51<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>53<br/>54<br/>rocessed<br/>sky-view<br/>(%)<br/>55<br/>56<br/>56<br/>56<br/>57<br/>56<br/>57<br/>57<br/>56<br/>56<br/>56<br/>57<br/>56<br/>56<br/>56<br/>57<br/>57<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56<br/>56</za32.3°<br></za32.3°<br></za32.3°<br>                                                                                                                                                       | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>90<br>site<br>sky-view<br>(%)<br>95<br>96<br>97<br>96             |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site               | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>60<br/>60<br/>60<br/>60<br/>60<br/>60<br/>59<br/>59<br/>50<br/>59<br/>50<br/>59<br/>50<br/>50<br/>50<br/>50<br/>50<br/>50<br/>50<br/>50<br/>50<br/>50</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36         36         36         36         26         estimated         sky-view         >ZA32.3°         (%)         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         < | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>95<br>96<br>96<br>95<br>96<br>95<br>95                                                                                                                                                                                                                                                                                                                                                                                                 | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site<br>795<br>794<br>793<br>792<br>791        | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>53<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>54<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>60<br/>61<br/>60<br/>60<br/>60<br/>60<br/>60</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>90<br>90<br>site<br>sky-view<br>(%)<br>95<br>96<br>97<br>96<br>96 |
| 731<br>732<br>733<br>734<br>735<br>736<br>Survey li<br>Site<br>749<br>750<br>751<br>752<br>752<br>752<br>752<br>754<br>755<br>756<br>757<br>758<br>759<br>Survey li<br>Site        | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                      | 59<br>58<br>58<br>57<br>54<br>37<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>61<br/>60<br/>56<br/>28<br/>36<br/>34<br/>40<br/>49<br/>47<br/>50<br/>52<br/>53<br/>rom western fe<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>60<br/>60<br/>60<br/>60<br/>60<br/>59<br/>58</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 36 \\ 36 \\ 36 \\ 36 \\ 26 \\ \hline estimated \\ sky-view \\ >ZA32.3^{\circ} \\ (\%) \\ \hline 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 33 \\ 34 \\ 36 \\ 33 \\ 34 \\ 36 \\ 36$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95<br>94<br>94<br>93<br>90<br>63<br>site<br>sky-view<br>(%)<br>97<br>96<br>92<br>44<br>71<br>68<br>74<br>85<br>80<br>84<br>85<br>80<br>84<br>85<br>80<br>84<br>88<br>89<br>site<br>sky-view<br>(%)<br>95<br>96<br>96<br>96<br>96<br>95<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 748<br>Survey li<br>Site<br>771<br>770<br>769<br>768<br>767<br>766<br>765<br>764<br>763<br>762<br>761<br>760<br>Survey li<br>Site<br>795<br>794<br>793<br>792<br>791<br>790 | 0.8<br>ne 34 (216 m fr<br>Sky/cld<br>threshold<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8        | 52<br>rom western fe<br>processed<br>sky-view<br><za32.3°<br>(%)<br/>58<br/>59<br/>58<br/>59<br/>58<br/>53<br/>50<br/>51<br/>53<br/>50<br/>51<br/>53<br/>54<br/>processed<br/>sky-view<br/><za32.3°<br>(%)<br/>59<br/>60<br/>61<br/>60<br/>60<br/>60<br/>60<br/>60</za32.3°<br></za32.3°<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36<br>ence line)<br>estimated<br>sky-view<br>>ZA32.3°<br>(%)<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                   | 88<br>site<br>sky-view<br>(%)<br>94<br>95<br>94<br>95<br>94<br>89<br>86<br>84<br>85<br>89<br>85<br>87<br>89<br>90<br>site<br>sky-view<br>(%)<br>95<br>96<br>96<br>96<br>96       |

| 778    | 0.8              | 58                                                                                                                                          | 36         | 94       | 789                                            | 0.9       | 60                                                       | 36        | 96       |
|--------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|------------------------------------------------|-----------|----------------------------------------------------------|-----------|----------|
| 779    | 0.8              | 58                                                                                                                                          | 36         | 94       | 788                                            | 0.9       | 60                                                       | 36        | 96       |
| 780    | 0.9              | 59                                                                                                                                          | 36         | 95       | 787                                            | 0.9       | 60                                                       | 36        | 96       |
| 781    | 0.9              | 59                                                                                                                                          | 36         | 95       | 786                                            | 0.9       | 60                                                       | 36        | 96       |
| 782    | 0.9              | 59                                                                                                                                          | 36         | 95       | 785                                            | 0.9       | 60                                                       | 36        | 96       |
| 783    | 0.9              | 58                                                                                                                                          | 36         | 94       | 784                                            | 0.9       | 60                                                       | 36        | 96       |
| Survey | line 37 (276 m f | rom western fe                                                                                                                              | ence line) |          | Survey line 38 (296 m from western fence line) |           |                                                          |           |          |
| Site   | Sky/cld          | processed                                                                                                                                   | estimated  | site     | Site                                           | sky/cld   | processed                                                | estimated | site     |
|        | threshold        | sky-view                                                                                                                                    | sky-view   | sky-view |                                                | threshold | sky-view                                                 | sky-view  | sky-view |
|        |                  | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td><td></td><td></td><td><za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<></td></za32.3°<> | >ZA32.3°   |          |                                                |           | <za32.3°< td=""><td>&gt;ZA32.3°</td><td></td></za32.3°<> | >ZA32.3°  |          |
|        |                  | (%)                                                                                                                                         | (%)        | (%)      |                                                |           | (%)                                                      | (%)       | (%)      |
| 796    | 0.9              | 59                                                                                                                                          | 36         | 95       | 819                                            | 0.9       | 54                                                       | 36        | 90       |
| 797    | 0.9              | 60                                                                                                                                          | 36         | 96       | 818                                            | 0.9       | 59                                                       | 36        | 95       |
| 798    | 0.9              | 60                                                                                                                                          | 36         | 96       | 817                                            | 0.9       | 59                                                       | 36        | 95       |
| 799    | 0.9              | 61                                                                                                                                          | 36         | 97       | 816                                            | 0.9       | 60                                                       | 36        | 96       |
| 800    | 0.9              | 60                                                                                                                                          | 36         | 96       | 815                                            | 0.9       | 58                                                       | 36        | 94       |
| 801    | 0.9              | 59                                                                                                                                          | 36         | 95       | 814                                            | 0.9       | 40                                                       | 30        | 70       |
| 802    | 0.9              | 59                                                                                                                                          | 36         | 95       | 813                                            | 0.9       | 51                                                       | 35        | 86       |
| 803    | 0.9              | 58                                                                                                                                          | 36         | 94       | 812                                            | 0.9       | 49                                                       | 35        | 84       |
| 804    | 0.9              | 57                                                                                                                                          | 36         | 93       | 811                                            | 0.9       | 31                                                       | 25        | 56       |
| 805    | 0.9              | 57                                                                                                                                          | 36         | 93       | 810                                            | 0.9       | 34                                                       | 25        | 59       |
| 806    | 0.9              | 58                                                                                                                                          | 36         | 94       | 809                                            | 0.9       | 47                                                       | 36        | 83       |
| 807    | 0.9              | 59                                                                                                                                          | 36         | 95       | 808                                            | 0.9       | 57                                                       | 36        | 93       |

| 8i9 8i8 8i7 8i6 8i5 8i4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 <sup>i</sup> 3 8 <sup>i</sup> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 811                                                                                                                     | 810                                                                                              | 809                                                                                  | 808                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 796 797 798 799 800 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 802 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 804                                                                                                                     | 805                                                                                              | 806                                                                                  | 807                                                         |
| 795 794 793 792 791 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 789 788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 787                                                                                                                     | 786                                                                                              | 785                                                                                  | 784                                                         |
| 712 773 774 775 776 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 778 779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 780                                                                                                                     | 781                                                                                              | 782                                                                                  | 783                                                         |
| 771 770 789 788 787 788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 765 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 763                                                                                                                     | 762                                                                                              | 761                                                                                  | 760                                                         |
| 749 750 751 752 752× 753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 754 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 756                                                                                                                     | 757                                                                                              | 758                                                                                  | 759                                                         |
| 748 747 746 745 744 743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 742 741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 740                                                                                                                     | 739                                                                                              | 738                                                                                  | 737                                                         |
| 720 721 722 723724725 728 727 728 729 730<br>712 713 714 715716717 718 719<br>704 705 706 707 708 709 710 711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 731 732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 733                                                                                                                     | 734                                                                                              | 735                                                                                  | 736                                                         |
| 636 637 649 639 700 701 702 703<br>631 682 683 684 685 686 687 688 689<br>675 676 677 678 679 680<br>674 673 672 671 670 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 690 691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 692                                                                                                                     | 693                                                                                              | 694                                                                                  | 695                                                         |
| B63         D64         B65         B65         B54           B62         D61         B60         B59         B58         B57         B58         B55         B54           B04         B65         B68         B57         B58         B55         B54         B55         B54           B04         B65         B58         B57         B58         B54         B55         B54         B52         B54         B53         B52         B54         B55         B54         B53         B54         B55         B55                | 653         652           22         624         625         626         627         628         629           584         583         582         581         582         581           585         586         567         586         586         567         586           25         524         523         521         520         519         51           1500         501         502         503         504         505           55         164         463         452         451         450         451 | 651<br>630 631 632 633 1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 650 649<br>634 635 636 637<br>580 579 578 5<br>570 571 5<br>570 571 5<br>98 509 510 5<br>455 454 | 648 647 646 644<br>638639640 641<br>77 576<br>72 573<br>16 515<br>11 512<br>1453 452 | 5 643<br>1 642<br>5 575<br>5 574<br>5 514<br>2 513<br>2 451 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 437 438 439 440 441<br>2 401 400 399 398 397 396 39<br>11 312 313 314 315<br>12 271 270 269 268 267<br>53x 254 x 256 257 258 259 26                                                                                                                                                                                                                                                                                                                                                                                      | 442 443<br>5 394 393 392 39<br>318 317<br>266 26<br>261 262                                                             | 444 445 4<br>1 390 389 388 38<br>7 316<br>35 264<br>2 263                                        | 46 447 448 449<br>77 386 385 384 3<br>321 32<br>324 32<br>372 371                    | 9 450<br>83 382<br>10 319<br>13 322<br>1370                 |
| 236         235         233         232         231         229         229         226         227         226         225         224         22021           182         183184         185186         187         188         189190         191         192         198         194         195         196         197         198           181         180179         178177         175         174         173         172         174         175         174         174         175         175         174         173         172         174         175         168         168         168         168         168         168         168         168         174         175         172         174         175         172         174         175         175         174         175         175         175         175         174         175         168         168         168         168         168         168         168         168         168         168         168         168         175         174         174         174         174         174         175         175         175         175         175         175         176 | 19 218 217 216 215 214 213 273<br>98 199 200 201 202 203 204<br>166 165 164 163 162 161<br>158 159<br>113 1143                                                                                                                                                                                                                                                                                                                                                                                                           | 2 211 210 209 208<br>2 211 210 209 208<br>1 80<br>1 1 1 2<br>1 1 2<br>1 1 2<br>1 1 2                                    | 3 207<br>5 206<br>0<br>2<br>2<br>2<br>2<br>2<br>363 364 365 36                                   | 375 37<br>376 37<br>380<br>6 367 369 369 7                                           | 4 373<br>7 378<br>3379<br>381                               |
| 142         141         140         139         1381         1371         136         135         119x         1002x         101x         1000x         939         98         97         98x           133x         132x         111         10         10         100         101x         1000x         93y         98x         91x         98x         98x         98x         98x         98x         91x         98y         98         98         91         90         98         88         87         79         77         76         75         55         56         67         68         69         92         91         90         92         91         90         79         77         76         75         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         56         57         5                 | 95 96<br>85 86<br>74<br>70 71<br>2 41 40 39 38 37 36 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94<br>84<br>73<br>72<br>5 34 33 32 31                                                                                   | 362 361 360 35<br>364 343 345 346<br>344 342<br>341<br>341                                       | 9 358 357 356<br>3 347 348 349 35<br>3 337 336 335 33                                | 50 355<br>51 354<br>52 353<br>34 333                        |

## L.2 Playground sky view site locations

Figure L.1: Hervey Bay State High School identifier codes for sky view survey sites.

#### L.3 Sky view survey images

Table L.2: Unprocessed images (upper part) and processed sky view (lower part) listed according to site identifier codes (Figure L.1). Processed images include the horizon mask (black).







Survey line 3 (15 m from western fence line)



#### 

PANer S

66

69









352



Survey line 5 (25 m from western fence line)









|                                                   |             | The second     |
|---------------------------------------------------|-------------|----------------|
|                                                   |             | - and the last |
| 160<br>Survey line 10 (50 m from western fence li | 380<br>ine) | 379            |
|                                                   |             |                |
|                                                   |             |                |
|                                                   |             |                |
|                                                   |             |                |
| 185                                               | 186         | 187            |
|                                                   |             |                |
| 188                                               | 189         | 190            |
|                                                   |             |                |
|                                                   |             |                |
| 191                                               | 192         | 193            |
|                                                   |             |                |
|                                                   |             |                |
| 194                                               |             |                |
| to start have                                     |             |                |
| 197                                               | 198         | 199            |
|                                                   |             |                |
| 200                                               | 201         | 202            |
|                                                   |             |                |
|                                                   |             |                |
| 203                                               | 204         | 205            |
|                                                   |             |                |
|                                                   |             |                |
| 206                                               | 376         | 377            |



378 Survey line 11 (55 m from western fence line)












| Contraction of the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kine and a second |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 431                                                                                                             | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| No.                                                                                                             | And the second states of the s |                   |
| 434                                                                                                             | 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436               |
| and the second second                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 437                                                                                                             | 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 439               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 440                                                                                                             | 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 442               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                 | Part I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 446                                                                                                             | 447<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 448               |
| Survey line 17 (86 m from western fence li                                                                      | ine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 492                                                                                                             | 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 490               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 479                                                                                                             | 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 477               |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 476                                                                                                             | 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 474               |







Survey line 20 (101 m from western fence line)



Survey line 21 (106 m from western fence line)



Survey line 22 (111 m from western fence line)





643



L34











Appendix M. Shade density templates

Figure M.1.1 and Figure M.1.2 are the shade density templates compared with each playground survey site to determine playground shade density for the winter solstice, 21 June 2008 and summer solstice, 21 December 2008 respectively. Tables M.1.1 and M.1.2 list the SZA and azimuth position of the sun (Michalsky 1988) and pixel positions used to plot the respective solar position onto each template in Figures M.1.1 and M.1.2.



Figure M.1.1: Shade template for 21 June 2008 (arrows show solar position).



Figure M.1.2: Shade template for 21 December 2008 (arrows show solar position, lines show solar azimuth position only at the respective times).

| Time    | SZA(°) | Pixels from top | Azimuth (°) | Pixels from left |
|---------|--------|-----------------|-------------|------------------|
| 8:30am  | 69     | 162             | 49          | 415              |
| 9:35am  | 59     | 121             | 37          | 350              |
| 10:50am | 51     | 88              | 18          | 247              |
| 11:45am | 49     | 80              | 2           | 161              |
| 12:40pm | 50     | 84              | 345         | 69               |
| 1:35pm  | 55     | 104             | 330         | 1932             |
| 2:30pm  | 62     | 133             | 318         | 1867             |

Table M.1.1: SZA, azimuth and pixel positions used to develop 21 June 2008 shade template.

Table M.1.2: SZA, azimuth and pixel positions used to develop 21 December 2008 shade template.

| Time    | SZA(°) | Pixels from top | Azimuth (°) | Pixels from left |
|---------|--------|-----------------|-------------|------------------|
| 8:30am  | 45     | 63              | 82          | 593              |
| 9:35am  | 30     | outside limit   | 87          | 620              |
| 10:50am | 13     | outside limit   | 85          | 609              |
| 11:45am | 2      | outside limit   | 11          | 209              |
| 12:40pm | 12     | outside limit   | 276         | 1640             |
| 1:35pm  | 25     | outside limit   | 271         | 1613             |
| 2:30pm  | 37     | 28              | 276         | 1640             |

Appendix N. Ozone concentrations for Hervey Bay

| June | Ozone concentration | December | Ozone concentration |
|------|---------------------|----------|---------------------|
| 2007 | (DU)                | 2007     | (DU)                |
| 1    | 250                 | 1        | 297                 |
| 2    | 255                 | 2        | 292                 |
| 3    | 259                 | 3        | 287                 |
| 4    | na                  | 4        | 289                 |
| 5    | 250                 | 5        | 278                 |
| 6    | 268                 | 6        | 278                 |
| 7    | 286                 | 7        | 278                 |
| 8    | 293                 | 8        | 280                 |
| 9    | 303                 | 9        | 283                 |
| 10   | 286                 | 10       | 280                 |
| 11   | 274                 | 11       | 277                 |
| 12   | 261                 | 12       | 280                 |
| 13   | 256                 | 13       | na                  |
| 14   | 268                 | 14       | 286                 |
| 15   | 273                 | 15       | 280                 |
| 16   | 269                 | 16       | 272                 |
| 17   | 259                 | 17       | 277                 |
| 18   | 262                 | 18       | 283                 |
| 19   | 265                 | 19       | 270                 |
| 20   | 254                 | 20       | 269                 |
| 21   | 259                 | 21       | 270                 |
| 22   | 269                 | 22       | 264                 |
| 23   | 284                 | 23       | 266                 |
| 24   | 284                 | 24       | 261                 |
| 25   | 275                 | 25       | 268                 |
| 26   | 258                 | 26       | 256                 |
| 27   | 282                 | 27       | 264                 |
| 28   | 301                 | 28       | 265                 |
| 29   | 286                 | 29       | 275                 |
| 30   | 281                 | 30       | 263                 |
|      |                     | 31       | 267                 |

Table N.1: OMI (TOMS 2008) ozone concentrations listed for Hervey Bay ( $25^{\circ}$ S,  $153^{\circ}$ E), June 2007 and December 2007.

## Appendix O. Playground site albedo, shade and UV exposure data

Table O.1: The table presents playground site data used to produce Figures 4.4, 4.7, 4.8, 4.9 and 4.10 for playground survey lines 1 through 37. Data is arranged in each survey line from sites located on the playground northern fenceline to sites located on the southern fenceline. Figure L.1 gives playground site codes referred to in the table.

| Survey | v line 1 (5 n           | n from weste       | ern fence li               | ne)                        |                       |                       | Survey | / line 2 (10     | m from wes         | tern fence                 | line)                      |                        |                       |
|--------|-------------------------|--------------------|----------------------------|----------------------------|-----------------------|-----------------------|--------|------------------|--------------------|----------------------------|----------------------------|------------------------|-----------------------|
| Site   | Ground<br>Albedo<br>(%) | Standing<br>Albedo | Winter<br>shade<br>density | Summer<br>shade<br>density | Winter<br>UV<br>(SED) | Summer<br>UV<br>(SED) | Site   | Ground<br>Albedo | Standing<br>Albedo | Winter<br>shade<br>density | Summer<br>shade<br>density | Winter<br>UV<br>(SED)  | Summer<br>UV<br>(SED) |
| 0      | 10                      | 0                  | 3                          | 2                          | 10.6                  | 45.4                  | 56     | 4                | 0                  | 4                          | 2                          | 9.8                    | 45.6                  |
| 1      | 6                       | 0                  | 1 89                       | 5 67                       | 37                    | 17.1                  | 55     | 7                | 0                  | 4                          | 3                          | 8.6                    | 38.5                  |
| 2      | 6                       | 0                  | 5.67                       | 5 34                       | 45                    | 17.1                  | 54     | 7                | 0                  | 4                          | 3                          | 8.6                    | 35.7                  |
| 3      | 10                      | 15                 | 2                          | 0                          | 13.0                  | 58.9                  | 53     | 7                | 0                  | 378                        | 1                          | 11.0                   | 49.0                  |
| 1      | 7                       | 0                  | 1                          | 0                          | 13.7                  | 59.9                  | 52     | 10               | 0                  | 1                          | 0                          | 13.0                   | 47.0<br>57.8          |
| 5      | 1                       | 0                  | 0                          | 0                          | 14.5                  | 58.9                  | 51     | 7                | 0                  | 2                          | 0                          | 12.3                   | 59.2                  |
| 6      | 4                       | 0                  | 0                          | 0                          | 14.2                  | 57.9                  | 50     | 7                | 0                  | $\frac{2}{2}$              | 0                          | 11.0                   | 58.2                  |
| 7      | 4                       | 0                  | 0                          | 0                          | 13.0                  | 56.9                  | 19     | 7                | 0                  | 1                          | 0                          | 13.1                   | 58.2                  |
| 8      | 4                       | 0                  | 1                          | 2                          | 13.5                  | 17 3                  | 48     | 7                | 0                  | 0                          | 1                          | 13.1                   | 51.0                  |
| 0      | 7                       | 0                  | 2                          | 0                          | 11.0                  | 55.1                  | 40     | 1                | 0                  | 4                          | 3                          | 8.0                    | 35.8                  |
| 10     | 1                       | 0                  | 2                          | 0                          | 12.5                  | 55.8                  | 47     | 4                | 0                  | 4                          | 1                          | 7.5                    | 34.1                  |
| 11     | 4                       | 0                  | 2                          | 1                          | 12.5                  | 52.1                  | 45     | 4                | 0                  | 5                          | 7                          | 7.3                    | 10.6                  |
| 12     | 4                       | 0                  | 2                          | 0                          | 12.0                  | 54.8                  | 43     | 4                | 0                  | 5                          | 2                          | 7.5                    | 19.0                  |
| 12     | 4                       | 0                  | 1                          | 2                          | 12.2                  | 13.0                  | 44     | 4                | 0                  | 3                          | 2                          | 7. <del>4</del><br>8.0 | 40.8                  |
| 13     | 4                       | 0                  | 2                          | 2                          | 0.5                   | 45.9                  | 43     | 4                | 2 75               | 1                          | 5                          | 0.9                    | 18.7                  |
| 14     | 4                       | 15                 | 3                          | 3                          | 9.5                   | 30.9                  | 42     | 4                | 2.75               | 4                          | 6                          | 7.5                    | 10.2                  |
| 15     | 4                       | 1.5                | 4                          | -                          | 6.5                   | 27.8                  | 40     | 4                | 2.75               | 6                          | 6                          | 5.0                    | 10.2                  |
| 10     | 4                       | 0                  | 0                          | 3                          | 0.5<br>5.0            | 26.2                  | 20     | 4                | 2.75               | 6                          | 4                          | 5.5                    | 19.2                  |
| 17     | 4                       | 3 25               | 7                          | 3                          | 1.2                   | 20.0                  | 29     | 4                | 2.75               | 5                          | 4                          | 5.0                    | 26.5                  |
| 10     | 4                       | 5.25               | 1                          | 4                          | 4.5                   | 29.0                  | 27     | 4                | 0                  | 5                          | 4                          | 0.8                    | 20.5                  |
| 20     | 4                       | 0.5                | 4                          | 3                          | 5.0                   | 23.2                  | 26     | 4                | 0                  | 5                          | 2                          | 7.7                    | 43.4                  |
| 20     | 4                       | 0                  | 5                          | 4                          | 3.3<br>7 2            | 32.2                  | 25     | 4                | 0                  | 6                          | 2                          | /.1<br>8.2             | 41.5                  |
| 21     | 4                       | 0                  | 1                          | 3                          | 7.4                   | 24.7                  | 24     | 4                | 0                  | 2                          | 1                          | 0.2                    | 49.4                  |
| 22     | 4                       | 0                  | 4                          | 4                          | /.0                   | 34.4<br>25.4          | 22     | 10               | 0                  | 2                          | 5                          | 9.4                    | 54.0                  |
| 23     | 4                       | 4                  | 4                          | 2                          | 0.3<br>77             | 55.4<br>42.1          | 22     | 4                | 0                  | 4                          | 0                          | 9.5                    | 34.4<br>47.2          |
| 24     | 10                      | 1.75               | 4                          | 4                          | 7.7                   | 45.1                  | 21     | 4                | 0                  | 1                          | 2                          | 13.5                   | 47.5<br>56.4          |
| 25     | 4                       | 0                  | 2                          | 4                          | 10.4                  | 560                   | 240    | 10               | 0 75               | 6                          | 0                          | 12.2                   | 51.2                  |
| 20     | 4                       | 0                  | 5                          | 0                          | 10.4                  | 50.9                  | 220    | 10               | 0.75               | 2                          | 0                          | 0.0                    | 55.2                  |
| 21     | 10                      | 0                  | 1                          | 0                          | 13.2                  | J0.0<br>59.6          | 229    | 10               | 0                  | 2 67                       | 0                          | 11.0                   | 33.3<br>45.0          |
| 20     | 4                       | 0                  | 0                          | 0                          | 14.4                  | 58.0                  | 227    | 10               | 0                  | 2.07                       | 2.07                       | 11.5                   | 43.0                  |
| 29     | 4                       | 0                  | 1                          | 0                          | 14.5                  | 50.9                  | 226    | 10               | 0                  | 2.07                       | 2.07                       | 11.2                   | 44.7                  |
| 205    | 10                      | 15                 | 1                          | 0                          | 14.1<br>57            | 39.2                  | 225    | 10               | 0                  | 2.70                       | 2.07                       | 11.1                   | 44.7                  |
| 323    | 10                      | 1.5                | 0                          | 4                          | 3.7<br>11.4           | 29.8                  | 224    | 10               | 0                  | 2.07                       | 2.07                       | 10.5                   | 44.0                  |
| 227    | 4                       | 15                 | 2                          | 0                          | 0.2                   | 32.0<br>42.0          | 222    | 10               | 0                  | 2.70                       | 2.07                       | 10.5                   | 42.0                  |
| 228    | 4                       | 1.5                | 2 80                       | 1                          | 9.2                   | 43.0                  | 333    | 10               | 0                  | 1                          | 4.07                       | 11.1                   | 51.1                  |
| 220    | 4                       | 1.5                | 5.09<br>1.79               | 2                          | 5.5                   | 33.5                  |        |                  |                    |                            |                            |                        |                       |
| 329    | 4                       | 0                  | 4.70                       | 1                          | 6.0                   | 40.0                  |        |                  |                    |                            |                            |                        |                       |
| 221    | 4                       | 15                 | 5.70                       | 2                          | 4.0                   | 21.8                  |        |                  |                    |                            |                            |                        |                       |
| 222    | 4                       | 1.5                | 5.70                       | 5                          | 4.0                   | 18.2                  |        |                  |                    |                            |                            |                        |                       |
| 332    | 4                       | 0                  | 5                          | 0                          | 0.5                   | 10.2                  |        |                  |                    |                            |                            |                        |                       |
| Survey | line 3 (15              | m from wes         | tern fence                 | line)                      |                       |                       | Survey | / line 4 (20     | m from wes         | tern fence                 | line)                      |                        |                       |
| Site   | Ground                  | Standing           | Winter                     | Summer                     | Winter                | Summer                | Site   | Ground           | Standing           | Winter                     | Summer                     | Winter                 | Summer                |
|        | Albedo                  | Albedo             | shade                      | shade                      | UV                    | UV                    |        | Albedo           | Albedo             | shade                      | shade                      | UV                     | UV                    |
|        | (%)                     | (%)                | density                    | density                    | (SED)                 | (SED)                 |        | (%)              | (%)                | density                    | density                    | (SED)                  | (SED)                 |
| 57     | 4                       | 0                  | 5                          | 3                          | 8.9                   | 39.6                  | 104x   | 4                | 1.75               | 2                          | 1                          | 11.7                   | 48.9                  |
| 58     | 7                       | 1.75               | 5                          | 2                          | 8.5                   | 38.9                  | 105x   | 7                | 1.5                | 5                          | 4                          | 8.5                    | 35.2                  |
| 59     | 7                       | 0.5                | 3                          | 2                          | 10.9                  | 44.6                  | 103x   | 7                | 0                  | 4                          | 2                          | 10.0                   | 47.7                  |
| 60     | 7                       | 0                  | 2                          | 1                          | 11.5                  | 51.8                  | 134    | 7                | 0                  | 2                          | 1                          | 11.7                   | 52.2                  |
| 61     | 7                       | 0                  | 3                          | 0                          | 11.5                  | 57.5                  | 83     | 7                | 0                  | 5                          | 0                          | 9.4                    | 56.1                  |
| 62     | 7                       | 0                  | 4                          | 0                          | 10.7                  | 58.5                  | 82     | 7                | 0                  | 2                          | 0                          | 12.9                   | 58.2                  |
|        |                         |                    |                            |                            |                       |                       |        |                  |                    |                            |                            |                        |                       |

| 62                                                                                                                                                  | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                              | 59.2                                                                                                                                                                                       | 01                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.4                                                                                                                                                                                                                                                                                   | 50 5                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05                                                                                                                                                  | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.9                                                                                                                                                                                                                                                                                                              | 38.2                                                                                                                                                                                       | 01                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.4                                                                                                                                                                                                                                                                                   | 38.3                                                                                                                                                                               |
| 64                                                                                                                                                  | /                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                              | 55.4                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                 | /                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.5                                                                                                                                                                                                                                                                                   | 55.8                                                                                                                                                                               |
| 65                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2                                                                                                                                                                                                                                                                                                               | 44.3                                                                                                                                                                                       | 79                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                    | 1.75                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5                                                                                                                                                                                                                                                                                    | 46.4                                                                                                                                                                               |
| 66                                                                                                                                                  | 4                                                                                                                                                                                | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1                                                                                                                                                                                                                                                                                                               | 27.2                                                                                                                                                                                       | 78                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.1                                                                                                                                                                                                                                                                                    | 50.7                                                                                                                                                                               |
| 67                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97                                                                                                                                                                                                                                                                                                                | 39.1                                                                                                                                                                                       | 77                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 3 25                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113                                                                                                                                                                                                                                                                                    | 44 7                                                                                                                                                                               |
| 69                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                                                                                                                                                                                                                                                                                              | 40.2                                                                                                                                                                                       | 76                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2                                                                                                                                                                                                                                                                                   | 19.2                                                                                                                                                                               |
| 00                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                                                                                                                                                                                                                                                                                              | 49.5                                                                                                                                                                                       | 70                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2                                                                                                                                                                                                                                                                                   | 40.5                                                                                                                                                                               |
| 69                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8                                                                                                                                                                                                                                                                                                               | 44.7                                                                                                                                                                                       | 75                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.9                                                                                                                                                                                                                                                                                    | 50.3                                                                                                                                                                               |
| 70                                                                                                                                                  | 10                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9                                                                                                                                                                                                                                                                                                               | 49.8                                                                                                                                                                                       | 74                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.2                                                                                                                                                                                                                                                                                    | 50.8                                                                                                                                                                               |
| 71                                                                                                                                                  | 10                                                                                                                                                                               | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9                                                                                                                                                                                                                                                                                                               | 35.9                                                                                                                                                                                       | 73                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5                                                                                                                                                                                                                                                                                    | 47.3                                                                                                                                                                               |
| 72                                                                                                                                                  | 10                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86                                                                                                                                                                                                                                                                                                                | 52.2                                                                                                                                                                                       | 342                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0.75                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 1                                                                                                                                                                                                                                                                                    | 527                                                                                                                                                                                |
| 72                                                                                                                                                  | 10                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0<br>6.7                                                                                                                                                                                                                                                                                                        | 52.2                                                                                                                                                                                       | 342                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0.75                                                                                                                                                                                                                                                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.0                                                                                                                                                                                                                                                                                   | 52.7                                                                                                                                                                               |
| 341                                                                                                                                                 | 10                                                                                                                                                                               | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5                                                                                                                                                                                                                                                                                                               | 47.9                                                                                                                                                                                       | 351                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.0                                                                                                                                                                                                                                                                                   | 54.3                                                                                                                                                                               |
| 352                                                                                                                                                 | 10                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.7                                                                                                                                                                                                                                                                                                              | 53.2                                                                                                                                                                                       | 354                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 1.75                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                                                                                    | 9.0                                                                                                                                                                                |
| 353                                                                                                                                                 | 4                                                                                                                                                                                | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                | 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4                                                                                                                                                                                                                                                                                                               | 15.5                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
|                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| Survey                                                                                                                                              | line 5 (25                                                                                                                                                                       | m from wes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tern fence                                                                                                                                                       | line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            | Survey                                                                                                                                                                                                                                                                                             | line 6 (30                                                                                                                                                                                                                                                           | m from west                                                                                                                                                                                                                                                  | tern fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | line)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| Site                                                                                                                                                | Ground                                                                                                                                                                           | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter                                                                                                                                                           | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter                                                                                                                                                                                                                                                                                                            | Summer                                                                                                                                                                                     | Sito                                                                                                                                                                                                                                                                                               | Ground                                                                                                                                                                                                                                                               | Standing                                                                                                                                                                                                                                                     | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter                                                                                                                                                                                                                                                                                 | Summer                                                                                                                                                                             |
| Site                                                                                                                                                |                                                                                                                                                                                  | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w inter                                                                                                                                                          | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | winter                                                                                                                                                                                                                                                                                                            | Summer                                                                                                                                                                                     | Sile                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      | Standing                                                                                                                                                                                                                                                     | w inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                   | winter                                                                                                                                                                                                                                                                                 | Julinei                                                                                                                                                                            |
|                                                                                                                                                     | Albedo                                                                                                                                                                           | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shade                                                                                                                                                            | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UV                                                                                                                                                                                                                                                                                                                | UV                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    | Albedo                                                                                                                                                                                                                                                               | Albedo                                                                                                                                                                                                                                                       | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | shade                                                                                                                                                                                                                                                                                                                                                                                                                                    | UV                                                                                                                                                                                                                                                                                     | UV                                                                                                                                                                                 |
|                                                                                                                                                     | (%)                                                                                                                                                                              | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | density                                                                                                                                                          | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (SED)                                                                                                                                                                                                                                                                                                             | (SED)                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    | (%)                                                                                                                                                                                                                                                                  | (%)                                                                                                                                                                                                                                                          | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | density                                                                                                                                                                                                                                                                                                                                                                                                                                  | (SED)                                                                                                                                                                                                                                                                                  | (SED)                                                                                                                                                                              |
| 133x                                                                                                                                                | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.9                                                                                                                                                                                                                                                                                                              | 46.3                                                                                                                                                                                       | 142                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.0                                                                                                                                                                                                                                                                                   | 49.8                                                                                                                                                                               |
| 122                                                                                                                                                 | 7                                                                                                                                                                                | ů<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7                                                                                                                                                                                                                                                                                                               | 41.4                                                                                                                                                                                       | 141                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | Õ                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.4                                                                                                                                                                                                                                                                                   | 55 1                                                                                                                                                                               |
| 132X                                                                                                                                                | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.7                                                                                                                                                                                                                                                                                                               | 41.4                                                                                                                                                                                       | 141                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.4                                                                                                                                                                                                                                                                                   | 55.1                                                                                                                                                                               |
| 111                                                                                                                                                 | /                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.9                                                                                                                                                                                                                                                                                                              | 47.3                                                                                                                                                                                       | 140                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.2                                                                                                                                                                                                                                                                                   | 53.7                                                                                                                                                                               |
| 110                                                                                                                                                 | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.1                                                                                                                                                                                                                                                                                                              | 54.7                                                                                                                                                                                       | 139                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5                                                                                                                                                                                                                                                                                    | 49.6                                                                                                                                                                               |
| 109                                                                                                                                                 | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                                                                                                                                                                                                                                                                                              | 56.1                                                                                                                                                                                       | 138                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.6                                                                                                                                                                                                                                                                                    | 44.1                                                                                                                                                                               |
| 108                                                                                                                                                 | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.8                                                                                                                                                                                                                                                                                                              | 57.5                                                                                                                                                                                       | 137r                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                   | 52 /                                                                                                                                                                               |
| 100                                                                                                                                                 | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                                                                                                                                                                                                                                                                                                              | 57.5                                                                                                                                                                                       | 127                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.5                                                                                                                                                                                                                                                                                   | 52.4                                                                                                                                                                               |
| 107                                                                                                                                                 | /                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.6                                                                                                                                                                                                                                                                                                              | 57.1                                                                                                                                                                                       | 137                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.6                                                                                                                                                                                                                                                                                   | 56.1                                                                                                                                                                               |
| 106                                                                                                                                                 | 7                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.8                                                                                                                                                                                                                                                                                                              | 54.4                                                                                                                                                                                       | 136                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.1                                                                                                                                                                                                                                                                                   | 54.0                                                                                                                                                                               |
| 93                                                                                                                                                  | 10                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                                                                                                               | 5.5                                                                                                                                                                                        | 135                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.0                                                                                                                                                                                                                                                                                   | 33.1                                                                                                                                                                               |
| 92                                                                                                                                                  | 10                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                               | 21                                                                                                                                                                                         | 119x                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                                                                                                                                                                                                                                                                                     | 18.9                                                                                                                                                                               |
| 01                                                                                                                                                  | 10                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                | í<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                        | 102-                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | J.J<br>7 5                                                                                                                                                                                                                                                                             | 10.7                                                                                                                                                                               |
| 91                                                                                                                                                  | 10                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                               | 5.5                                                                                                                                                                                        | 102X                                                                                                                                                                                                                                                                                               | /                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                    | 40.4                                                                                                                                                                               |
| 90                                                                                                                                                  | 10                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                                                                                                                                                                                                                                                                                               | 11.3                                                                                                                                                                                       | 101x                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                    | 10.2                                                                                                                                                                               |
| 89                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.3                                                                                                                                                                                                                                                                                                               | 48.6                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6                                                                                                                                                                                                                                                                                    | 14.5                                                                                                                                                                               |
| 88                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.5                                                                                                                                                                                                                                                                                                              | 41.8                                                                                                                                                                                       | 00v                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1                                                                                                                                                                                                                                                                                    | 15.2                                                                                                                                                                               |
| 00                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                                                                                                                                                                                                                                                                                              | F0.7                                                                                                                                                                                       | 00-                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7                                                                                                                                                                                                                                                                                    | 15.2                                                                                                                                                                               |
| 87                                                                                                                                                  | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                                                                                                                                                                                                                                                                                              | 50.7                                                                                                                                                                                       | 98x                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                    | 15.2                                                                                                                                                                               |
| 85                                                                                                                                                  | 6                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8                                                                                                                                                                                                                                                                                                               | 49.1                                                                                                                                                                                       | 97x                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.4                                                                                                                                                                                                                                                                                    | 15.2                                                                                                                                                                               |
| 86                                                                                                                                                  | 10                                                                                                                                                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.7                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                                        | 96x                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                    | 17.5                                                                                                                                                                               |
| 84                                                                                                                                                  | 10                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                | 34.9                                                                                                                                                                                       | 95                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8                                                                                                                                                                                                                                                                                    | 48 7                                                                                                                                                                               |
| 244                                                                                                                                                 | 10                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5                                                                                                                                                                                                                                                                                                               | 22.1                                                                                                                                                                                       | )5                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 1.5                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                                                                                                                                    | 40.7                                                                                                                                                                               |
| 344                                                                                                                                                 | 4                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6                                                                                                                                                                                                                                                                                                               | 22.1                                                                                                                                                                                       | 96                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 1.5                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                                                                                                                                    | 4.9                                                                                                                                                                                |
| 343                                                                                                                                                 | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.4                                                                                                                                                                                                                                                                                                               | 52.7                                                                                                                                                                                       | 94                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8                                                                                                                                                                                                                                                                                    | 17.8                                                                                                                                                                               |
| 345                                                                                                                                                 | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4                                                                                                                                                                                                                                                                                                              | 56.2                                                                                                                                                                                       | 362                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.7                                                                                                                                                                                                                                                                                    | 28.1                                                                                                                                                                               |
| 346                                                                                                                                                 | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.1                                                                                                                                                                                                                                                                                                              | 57 5                                                                                                                                                                                       | 361                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84                                                                                                                                                                                                                                                                                     | 527                                                                                                                                                                                |
| 247                                                                                                                                                 | 1                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.2                                                                                                                                                                                                                                                                                                              | 59.0                                                                                                                                                                                       | 260                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                                                                                                                                                                                                                                                                                    | 55.5                                                                                                                                                                               |
| 547                                                                                                                                                 | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5                                                                                                                                                                                                                                                                                                              | 38.2                                                                                                                                                                                       | 300                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.8                                                                                                                                                                                                                                                                                    | 55.5                                                                                                                                                                               |
| 348                                                                                                                                                 | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.3                                                                                                                                                                                                                                                                                                              | 58.2                                                                                                                                                                                       | 359                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.5                                                                                                                                                                                                                                                                                   | 56.9                                                                                                                                                                               |
| 349                                                                                                                                                 | 4                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.8                                                                                                                                                                                                                                                                                                              | 56.5                                                                                                                                                                                       | 358                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.6                                                                                                                                                                                                                                                                                   | 57.2                                                                                                                                                                               |
| 350                                                                                                                                                 | 10                                                                                                                                                                               | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3                                                                                                                                                                                                                                                                                                              | 35.6                                                                                                                                                                                       | 357                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.9                                                                                                                                                                                                                                                                                   | 56.9                                                                                                                                                                               |
| 255                                                                                                                                                 | 10                                                                                                                                                                               | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                               | 21.4                                                                                                                                                                                       | 256                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.7                                                                                                                                                                                                                                                                                   | 55.5                                                                                                                                                                               |
| 333                                                                                                                                                 | 10                                                                                                                                                                               | 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                | 4./0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.7                                                                                                                                                                                                                                                                                  | 55.5                                                                                                                                                                               |
| Survey                                                                                                                                              | line 7 (35                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.1                                                                                                                                                                                                                                                                                                               | 51.4                                                                                                                                                                                       | 550                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.4                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    |
| Cit-                                                                                                                                                | 1110 / 1.3.3                                                                                                                                                                     | m from wee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tern fence                                                                                                                                                       | line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.1                                                                                                                                                                                                                                                                                                               | 51.4                                                                                                                                                                                       | Survey                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                    | 0<br>m from west                                                                                                                                                                                                                                             | 0<br>tern fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U<br>line)                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    |
| Site                                                                                                                                                | <u>C</u> 1                                                                                                                                                                       | m from wes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tern fence                                                                                                                                                       | line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.1                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                          | Survey                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                    | 0<br>m from west                                                                                                                                                                                                                                             | 0<br>tern fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>line)                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    |
|                                                                                                                                                     | Ground                                                                                                                                                                           | m from wes<br>Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tern fence<br>Winter                                                                                                                                             | line)<br>Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter                                                                                                                                                                                                                                                                                                            | Summer                                                                                                                                                                                     | Survey<br>Site                                                                                                                                                                                                                                                                                     | 4<br>line 8 (40<br>Ground                                                                                                                                                                                                                                            | 0<br>m from west<br>Standing                                                                                                                                                                                                                                 | 0<br>tern fence<br>Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>line)<br>Summer                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.4<br>Winter                                                                                                                                                                                                                                                                         | Summer                                                                                                                                                                             |
|                                                                                                                                                     | Ground<br>Albedo                                                                                                                                                                 | m from wes<br>Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tern fence<br>Winter<br>shade                                                                                                                                    | line)<br>Summer<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>UV                                                                                                                                                                                                                                                                                                      | Summer<br>UV                                                                                                                                                                               | Survey<br>Site                                                                                                                                                                                                                                                                                     | 4<br><u>line 8 (40</u><br>Ground<br>Albedo                                                                                                                                                                                                                           | 0<br>m from west<br>Standing<br>Albedo                                                                                                                                                                                                                       | 0<br>tern fence<br>Winter<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>line)<br>Summer<br>shade                                                                                                                                                                                                                                                                                                                                                                                                            | 13.4<br>Winter<br>UV                                                                                                                                                                                                                                                                   | Summer<br>UV                                                                                                                                                                       |
|                                                                                                                                                     | Ground<br>Albedo<br>(%)                                                                                                                                                          | m from wes<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tern fence<br>Winter<br>shade<br>density                                                                                                                         | line)<br>Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter<br>UV<br>(SED)                                                                                                                                                                                                                                                                                             | Summer<br>UV<br>(SED)                                                                                                                                                                      | Survey<br>Site                                                                                                                                                                                                                                                                                     | 4<br><u>r line 8 (40</u><br>Ground<br>Albedo<br>(%)                                                                                                                                                                                                                  | 0<br>m from west<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                | 0<br>tern fence<br>Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>line)<br>Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                 | 13.4<br>Winter<br>UV<br>(SED)                                                                                                                                                                                                                                                          | Summer<br>UV<br>(SED)                                                                                                                                                              |
| 128x                                                                                                                                                | Ground<br>Albedo<br>(%)                                                                                                                                                          | m from wes<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tern fence<br>Winter<br>shade<br>density                                                                                                                         | line)<br>Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter<br>UV<br>(SED)                                                                                                                                                                                                                                                                                             | Summer<br>UV<br>(SED)                                                                                                                                                                      | Survey<br>Site                                                                                                                                                                                                                                                                                     | 4<br><u>r line 8 (40</u><br><u>Ground</u><br><u>Albedo</u><br><u>(%)</u><br><u>8</u>                                                                                                                                                                                 | 0<br>m from west<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                | 0<br>tern fence<br>Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | line)<br>Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                      | Winter<br>UV<br>(SED)                                                                                                                                                                                                                                                                  | Summer<br>UV<br>(SED)                                                                                                                                                              |
| 128x                                                                                                                                                | Ground<br>Albedo<br>(%)<br>8                                                                                                                                                     | m from wes<br>Standing<br>Albedo<br>(%)<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tern fence<br>Winter<br>shade<br>density<br>1                                                                                                                    | line)<br>Summer<br>shade<br>density<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)<br>13.4                                                                                                                                                                                                                                                                                     | Summer<br>UV<br>(SED)<br>53.5                                                                                                                                                              | Survey<br>Site                                                                                                                                                                                                                                                                                     | 4<br><u>f line 8 (40</u><br>Ground<br>Albedo<br>(%)<br>8                                                                                                                                                                                                             | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0                                                                                                                                                                                                           | 0<br>tern fence<br>Winter<br>shade<br>density<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>line)<br>Summer<br>shade<br>density<br>0                                                                                                                                                                                                                                                                                                                                                                                            | 13.4<br>Winter<br>UV<br>(SED)<br>12.7                                                                                                                                                                                                                                                  | Summer<br>UV<br>(SED)<br>56.9                                                                                                                                                      |
| 128x<br>127x                                                                                                                                        | Ground<br>Albedo<br>(%)<br>8<br>8                                                                                                                                                | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tern fence<br>Winter<br>shade<br>density<br>1<br>2                                                                                                               | line)<br>Summer<br>shade<br>density<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>UV<br>(SED)<br>13.4<br>12.0                                                                                                                                                                                                                                                                             | Summer<br>UV<br>(SED)<br>53.5<br>54.1                                                                                                                                                      | Survey<br>Site<br>129x<br>130x                                                                                                                                                                                                                                                                     | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8                                                                                                                                                                                                                               | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0                                                                                                                                                                                                      | 0<br>Winter<br>shade<br>density<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | line)<br>Summer<br>shade<br>density<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                            | 13.4<br>Winter<br>UV<br>(SED)<br>12.7<br>11.9                                                                                                                                                                                                                                          | Summer<br>UV<br>(SED)<br>56.9<br>53.8                                                                                                                                              |
| 128x<br>127x<br>126x                                                                                                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>8<br>7                                                                                                                                      | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3                                                                                                          | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5                                                                                                                                                                                                                                                                      | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5                                                                                                                                              | Survey<br>Site<br>129x<br>130x<br>131x                                                                                                                                                                                                                                                             | 4<br><u>line 8 (40</u><br><u>Ground</u><br><u>Albedo</u><br>(%)<br>8<br>8<br>7                                                                                                                                                                                       | 0<br>m from wess<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5                                                                                                                                                                                               | 0<br><u>winter</u><br>shade<br><u>density</u><br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                           | 13.4<br>Winter<br>UV<br>(SED)<br>12.7<br>11.9<br>8.2                                                                                                                                                                                                                                   | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6                                                                                                                                      |
| 128x<br>127x<br>126x<br>125x                                                                                                                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7                                                                                                                                 | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7                                                                                                     | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0                                                                                                                                                                                                                                                               | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9                                                                                                                                      | Survey<br>Site<br>129x<br>130x<br>131x<br>143                                                                                                                                                                                                                                                      | 4<br>line 8 (40<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7                                                                                                                                                                                                       | 0<br>m from wess<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75                                                                                                                                                                                       | 0<br>tern fence 2<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6                                                                                                                                                                                                                                                                                                                                                                                      | Winter           UV           (SED)           12.7           11.9           8.2           4.2                                                                                                                                                                                          | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5                                                                                                                              |
| 128x<br>127x<br>126x<br>125x<br>124x                                                                                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7                                                                                                                            | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>1.5<br>0.75<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5                                                                                                | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9                                                                                                                                                                                                                                                        | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7                                                                                                                              | S30<br>Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144                                                                                                                                                                                                                                        | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7                                                                                                                                                                                                           | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0                                                                                                                                                                                  | 0<br>tern fence 3<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0                                                                                                                                                                                                                                                                                                                                                                        | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2                                                                                                                                                                           | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0                                                                                                                      |
| 128x<br>127x<br>126x<br>125x<br>124x                                                                                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7                                                                                                                       | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>1.5<br>0.75<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2                                                                                           | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0                                                                                                                                                                                                                                                | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.2                                                                                                                      | S30<br>Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144                                                                                                                                                                                                                                        | 4<br><u>line 8 (40</u><br><u>Ground</u><br><u>Albedo</u><br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                   | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0                                                                                                                                                                                  | 0<br>Winter<br>shade<br>density<br>1<br>2<br>7<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                        | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2                                                                                                                                                                           | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2                                                                                                              |
| 128x<br>127x<br>126x<br>125x<br>124x<br>124x                                                                                                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7                                                                                                                       | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2                                                                                           | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0                                                                                                                                                                                                                                                | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3                                                                                                                      | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145                                                                                                                                                                                                                                        | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7                                                                                                                                                                                                           | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0                                                                                                                                                                        | 0<br>tern fence 2<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                       | line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                   | 13.4<br>Winter<br>UV<br>(SED)<br>12.7<br>11.9<br>8.2<br>4.2<br>10.2<br>11.3                                                                                                                                                                                                            | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2                                                                                                              |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x                                                                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10                                                                                                            | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1                                                                                      | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>0<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0<br>8.9                                                                                                                                                                                                                                         | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3                                                                                                              | Survey           Site           129x           130x           131x           143           144           145           146                                                                                                                                                                         | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10                                                                                                                                                                                                | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                         | 0<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>0<br>6                                                                                                                                                                                                                                                                                                                                                              | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4                                                                                                                                              | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1                                                                                                      |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x                                                                                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10                                                                                                      | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7                                                             | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0<br>8.9<br>0.4                                                                                                                                                                                                                                  | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4                                                                                                       | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145<br>146<br>147                                                                                                                                                                                                                          | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10                                                                                                                                                                                     | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                      | 0<br>tern fence<br>winter<br>shade<br>density<br>1<br>2<br>7<br>4<br>2<br>0<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                         | line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>0<br>6<br>7                                                                                                                                                                                                                                                                                                                                                         | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5                                                                                                                                | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8                                                                                               |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x                                                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10                                                                                               | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>7<br>7<br>7                                                                  | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0<br>8.9<br>0.4<br>3.6                                                                                                                                                                                                                           | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3                                                                                               | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145<br>146<br>147<br>148                                                                                                                                                                                                                   | 4<br>r line 8 (40)<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10                                                                                                                                                                        | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                      | 0<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>0<br>6<br>7<br>7                                                                                                                                                                                                                                                                                                                                                        | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5                                                                                                                  | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9                                                                                       |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x                                                                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>7                                                                                     | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>7<br>7<br>4                                                                  | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>7<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0<br>8.9<br>0.4<br>3.6<br>8 2                                                                                                                                                                                                                    | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9                                                                                       | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145<br>146<br>147<br>148<br>149                                                                                                                                                                                                            | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7                                                                                                                                                                                    | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>2.25                                                                                                                                                      | 0<br>Vern fence<br>Winter<br>shade<br>density<br>1<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>0<br>0<br>6<br>7<br>7<br>3                                                                                                                                                                                                                                                                                                                                         | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5           5.4                                                                                                    | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9                                                                               |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x                                                                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>10                                                                                    | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>2                                              | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>7<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>13.4<br>12.0<br>9.5<br>5.0<br>9.9<br>12.0<br>8.9<br>0.4<br>3.6<br>8.2<br>6.4                                                                                                                                                                                                             | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9                                                                                       | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150                                                                                                                                                                                                     | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>7<br>7                                                                                                                                                               | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>2.25                                                                                                                                 | 0<br>tern fence Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                        | line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>7<br>7<br>7<br>3<br>2                                                                                                                                                                                                                                                                                                                                          | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5           5.4                                                                                                    | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>20.7                                                                       |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x                                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>7<br>10                                                                               | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1                         | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>7<br>7<br>4<br>3                                                             | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4                                                                                                                  | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8                                                                               | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150                                                                                                                                                                                                     | 4<br>r line 8 (40)<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7                                                                                                                                                         | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25                                                                                                                                    | 0<br>tern fence :<br>winter<br>shade<br>density<br>1<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>7<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>0<br>6<br>7<br>7<br>3<br>2                                                                                                                                                                                                                                                                                                                                     | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5           5.4           7.0                                                                                      | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7                                                                       |
| 128x<br>127x<br>126x<br>125x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>7<br>10<br>7<br>7                                                                | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6                                         | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6                                                                                                    | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8                                                                       | 330           Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151                                                                                     | 4<br>r line 8 (40<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                        | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0                                                                                                                                         | 0<br>Vern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>7<br>6<br>4                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>7<br>7<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                                              | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           5.4           7.0           8.4                                                                                      | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6                                                               |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x<br>115x                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>7<br>10<br>7                                                                | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6                               | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7                                                                                      | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>1.8                                                                | Survey<br>Site<br>129x<br>130x<br>131x<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152                                                                                                                                                                                       | 4<br>Ground<br>Albedo<br>(%)<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                             | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>0                                                                                                                          | 0<br>Vern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>0<br>0<br>6<br>7<br>7<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>2<br>6<br>0<br>0<br>0<br>0<br>0<br>1<br>2<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                              | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5           5.4           7.0           8.4           12.1                                                         | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9                                                       |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x<br>115x                                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>7<br>10<br>6                                                                | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.75<br>0<br>0<br>1.75<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6                               | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>5<br>6<br>7<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.2                                                                       | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>16.8<br>1.8<br>48.7                                                | Survey           Site           129x           130x           131x           143           145           146           147           148           149           150           151           152                                                                                                   | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>7<br>7<br>7<br>10                                                                                                                                                         | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>1                                                                                                                | 0<br>tern fence :<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>2<br>0<br>7<br>7<br>7<br>7<br>6<br>4<br>0<br>2<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                | 0<br>line)<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                 | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5           5.4           7.0           8.4           12.7                                                         | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5                                               |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x<br>115x<br>113x                                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>7<br>10<br>7                                                                | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1.5<br>0<br>1 | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6<br>1<br>0                     | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>7<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0                                                         | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>1.8<br>48.7<br>4.0                                                 | 330           Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153                                                         | 4<br>r line 8 (40)<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                       | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               | 0<br>Vern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>7<br>7<br>6<br>4<br>2<br>7<br>7<br>7<br>6<br>4<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                               | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>4<br>5<br>6<br>0<br>0<br>6<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                      | Winter           UV           (SED)           12.7           11.9           8.2           4.2           10.2           11.3           8.4           0.5           3.5           5.4           7.0           8.4           12.1           7.1                                           | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>20.5                                       |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x<br>115x<br>113x<br>114x                                | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>7<br>10<br>7<br>10                                                               | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6<br>1<br>0                     | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>7<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0                                                         | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>16.8<br>16.8<br>18<br>48.7<br>4.9                                  | 336           Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153                                                         | 4<br>r line 8 (40<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                | 0<br>tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                        | bit           Summer           shade           density           0           1           2           6           0           6           7           3           2           1           0           6           7           3           2           1           0           6           4                                                                                                                                               | 13.4         Winter         UV         (SED)         12.7         11.9         8.2         4.2         10.2         11.3         8.4         0.5         3.5         5.4         7.0         8.4         12.1         7.1         3.8                                                  | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>28.5                                       |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>115x<br>115x<br>113x<br>114x<br>112x                        | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>7<br>10<br>6<br>10<br>10<br>10                                              | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>1.75<br>0<br>1.75<br>0<br>1.75<br>0<br>1.75<br>0<br>1.75<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6<br>1<br>0<br>7                | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0           2.5                                           | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>1.8<br>48.7<br>4.9<br>27.9                                         | Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153           154           155                                           | 4<br>Ground<br>Albedo<br>(%)<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>4                                                                                                                                               | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>1<br>0<br>2                                                                                                      | 0<br>tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                      | Iine)           Summer           shade           density           0           1           2           6           0           6           7           3           2           1           0           6           7           3           2           1           0           6           4                                                                                                                                             | 13.4         Winter         UV         (SED)         12.7         11.9         8.2         4.2         10.2         11.3         8.4         0.5         3.5         5.4         7.0         8.4         12.1         7.1         3.8         3.1                                      | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>28.5<br>28.5<br>24.7                       |
| 128x<br>127x<br>126x<br>125x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x<br>115x<br>115x<br>113x<br>114x<br>112x<br>363 | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>7<br>10<br>7<br>10                                                               | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.75<br>0<br>0<br>1.75<br>0<br>0<br>1.75<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>1<br>0<br>7<br>6                | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>3<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0           2.5           5.9                             | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>16.8<br>16.8<br>1.8<br>48.7<br>4.9<br>27.9<br>21.6                 | Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153           154           155           156                             | 4<br>r line 8 (40)<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>10<br>10<br>7<br>7<br>10<br>10<br>7<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>1.75<br>0<br>0<br>1.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>tern fence :<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>6<br>4<br>0<br>7<br>7<br>6<br>4<br>0<br>7<br>7<br>6<br>4<br>0<br>7<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                 | 0           Summer           shade           density           0           1           2           6           0           6           7           3           2           1           0           6           7           3           2           1           0           6           4           6                                                                                                                                     | Winter         UV         (SED)         12.7         11.9         8.2         4.2         10.2         11.3         8.4         0.5         3.5         5.4         7.0         8.4         12.1         7.1         3.8         3.1         2.3                                       | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>28.5<br>24.7<br>8.9                        |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>116x<br>115x<br>113x<br>114x<br>112x<br>363<br>364          | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>10<br>7<br>10<br>6<br>10<br>10<br>6<br>4<br>4                          | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6<br>1<br>0<br>7<br>6<br>6<br>6 | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>3<br>6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0           2.5           5.9           7.4               | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>16.8<br>16.8<br>18<br>48.7<br>4.9<br>27.9<br>21.6<br>46.6          | 336           Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153           154           155           156           158 | 4<br>Fine 8 (40)<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>10<br>7<br>7<br>10<br>6                                                                                                | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>2.25<br>2.25<br>0<br>0<br>1<br>0<br>2<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                            | 0<br>tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>7<br>6<br>4<br>0<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>7<br>4<br>2<br>7<br>7<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                   | Iine)           Summer           shade           density           0           1           2           6           0           6           7           3           2           1           0           6           7           3           2           1           0           6           4           6           1                                                                                                                     | 13.4         Winter         UV         (SED)         12.7         11.9         8.2         4.2         10.2         11.3         8.4         0.5         3.5         5.4         7.0         8.4         12.1         7.1         3.8         3.1         2.3         11.2             | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>28.5<br>24.7<br>8.9<br>46.1                |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>116x<br>115x<br>115x<br>114x<br>112x<br>363<br>364                  | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>10<br>7<br>10<br>6<br>10<br>10<br>6<br>10<br>10<br>4<br>4<br>4    | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6<br>1<br>0<br>7<br>6<br>6<br>6 | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0           2.5           5.9           7.4               | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>16.8<br>1.8<br>48.7<br>4.9<br>27.9<br>21.6<br>46.6<br>48.7         | 330           Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153           154           155           156           158 | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>10<br>6<br>10<br>6<br>10                                                                                                         | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                               | 0<br>tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>6<br>4<br>0<br>2<br>7<br>6<br>4<br>0<br>2<br>7<br>6<br>4<br>1<br>1<br>2<br>2<br>7<br>6<br>4<br>1<br>2<br>2<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 0<br>Summer<br>shade<br>density<br>0<br>1<br>2<br>6<br>0<br>0<br>6<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>4<br>4<br>6<br>1<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>1<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>0<br>0<br>7<br>7<br>3<br>2<br>1<br>0<br>6<br>0<br>0<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                        | 13.4         Winter         UV         (SED)         12.7         11.9         8.2         4.2         10.2         11.3         8.4         0.5         3.5         5.4         7.0         8.4         12.1         7.1         3.8         3.1         2.3         11.2         6.5 | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>28.5<br>24.7<br>8.9<br>46.1                |
| 128x<br>127x<br>126x<br>125x<br>124x<br>123x<br>122x<br>121x<br>120x<br>118x<br>117x<br>118x<br>115x<br>113x<br>114x<br>112x<br>363<br>364<br>365   | Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>10<br>6<br>10<br>10<br>6<br>10<br>10<br>4<br>4<br>4 | m from wes<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0<br>0<br>1.5<br>0<br>0<br>1.75<br>0<br>1.5<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>3<br>7<br>5<br>2<br>1<br>7<br>5<br>2<br>1<br>7<br>7<br>4<br>3<br>6<br>6<br>6<br>1<br>0<br>7<br>6<br>6<br>4 | line)<br>Summer<br>shade<br>density<br>1<br>1<br>1<br>4<br>0<br>0<br>6<br>7<br>7<br>0<br>5<br>6<br>7<br>0<br>7<br>3<br>6<br>1<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>1<br>4<br>1<br>1<br>1<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter           UV           (SED)           13.4           12.0           9.5           5.0           9.9           12.0           8.9           0.4           3.6           8.2           6.4           3.6           0.7           10.3           7.0           2.5           5.9           7.4           9.4 | Summer<br>UV<br>(SED)<br>53.5<br>54.1<br>44.5<br>25.9<br>54.7<br>52.3<br>18.3<br>1.4<br>12.3<br>50.9<br>16.8<br>16.8<br>16.8<br>16.8<br>1.8<br>48.7<br>4.9<br>27.9<br>21.6<br>46.6<br>48.7 | Survey           Site           129x           130x           131x           143           144           145           146           147           148           149           150           151           152           153           154           155           156           158           159 | 4<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                       | 0<br>m from west<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                      | 0<br>tern fence<br>Winter<br>shade<br>density<br>1<br>2<br>2<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>7<br>6<br>4<br>0<br>2<br>7<br>6<br>1<br>1<br>2<br>2<br>7<br>4<br>2<br>7<br>6<br>1<br>1<br>2<br>2<br>7<br>6<br>4<br>2<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                          | 0           Summer           shade           density           0           1           2           6           0           6           7           3           2           1           0           6           7           3           2           1           0           6           4           6           1           7           3           2           1           0           6           4           6           1           7 | 13.4         Winter         UV         (SED)         12.7         11.9         8.2         4.2         10.2         11.3         8.4         0.5         3.5         5.4         7.0         8.4         12.1         7.1         3.8         3.1         2.3         11.2         6.5 | Summer<br>UV<br>(SED)<br>56.9<br>53.8<br>36.6<br>17.5<br>54.0<br>50.2<br>15.1<br>1.8<br>11.9<br>36.9<br>39.7<br>48.6<br>50.9<br>15.5<br>28.5<br>28.5<br>24.7<br>8.9<br>46.1<br>4.6 |

| 367<br>368<br>369                                                                                                                                                                                                  | 4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.5<br>11.6<br>12.8                                                                                                                                                                                                                    | 50.7<br>51.1<br>51.4                                                                                                                                                                                                                      | 381                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                        | 7.1                                                                                                                                                                                                                                                                                                                                                                     | 52.6                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Survey                                                                                                                                                                                                             | line 9 (45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m from wes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tern fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | Survey                                                                                                                                                                                                                                                                         | v line 10 (50                                                                                                                                                                   | 0 m from we                                                                                                                                                                                                                                                                                                                                                                                                                                  | stern fence                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e line)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                      |
| Site                                                                                                                                                                                                               | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter                                                                                                                                                                                                                                  | Summer                                                                                                                                                                                                                                    | Site                                                                                                                                                                                                                                                                           | Ground                                                                                                                                                                          | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Summer                                                                                                                                                                                                                                                   | Winter                                                                                                                                                                                                                                                                                                                                                                  | Summer                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UV<br>(SED)                                                                                                                                                                                                                             | UV<br>(SED)                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                | Albedo                                                                                                                                                                          | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                       | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | shade                                                                                                                                                                                                                                                    | UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                             | UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                                          |
| 101                                                                                                                                                                                                                | (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | defisity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3ED)                                                                                                                                                                                                                                   | (3ED)                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                            | (70)                                                                                                                                                                            | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                          | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | density                                                                                                                                                                                                                                                  | (3ED)                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                      |
| 181<br>180                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.8                                                                                                                                                                                                                                    | 41.3<br>54.8                                                                                                                                                                                                                              | 182<br>183                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                        | 10.4<br>9.3                                                                                                                                                                                                                                                                                                                                                             | 34.6<br>47.9                                                                                                                                                                                                                                                                                                                                                                                         |
| 179                                                                                                                                                                                                                | 0<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.8                                                                                                                                                                                                                                     | 27.4                                                                                                                                                                                                                                      | 183                                                                                                                                                                                                                                                                            | 0<br>7                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                        | 5.3                                                                                                                                                                                                                                                                                                                                                                     | 17.5                                                                                                                                                                                                                                                                                                                                                                                                 |
| 178                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2                                                                                                                                                                                                                                     | 14.2                                                                                                                                                                                                                                      | 185                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                        | 4.1                                                                                                                                                                                                                                                                                                                                                                     | 13.9                                                                                                                                                                                                                                                                                                                                                                                                 |
| 177                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.2                                                                                                                                                                                                                                    | 54.0                                                                                                                                                                                                                                      | 186                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                        | 10.2                                                                                                                                                                                                                                                                                                                                                                    | 53.3                                                                                                                                                                                                                                                                                                                                                                                                 |
| 176                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.5                                                                                                                                                                                                                                    | 49.7<br>× 2                                                                                                                                                                                                                               | 87                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                    | 48.9                                                                                                                                                                                                                                                                                                                                                                                                 |
| 173                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                     | 8.3<br>9.8                                                                                                                                                                                                                                | 188                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                     | 6.7                                                                                                                                                                                                                                                                                                                                                                                                  |
| 173                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2                                                                                                                                                                                                                                     | 21.6                                                                                                                                                                                                                                      | 190                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                        | 5.0                                                                                                                                                                                                                                                                                                                                                                     | 31.2                                                                                                                                                                                                                                                                                                                                                                                                 |
| 172                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4                                                                                                                                                                                                                                     | 50.3                                                                                                                                                                                                                                      | 191                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                        | 5.7                                                                                                                                                                                                                                                                                                                                                                     | 43.1                                                                                                                                                                                                                                                                                                                                                                                                 |
| 171                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.1                                                                                                                                                                                                                                     | 30.7                                                                                                                                                                                                                                      | 192                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                        | 2.9                                                                                                                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                 |
| 170                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                                     | 7.5                                                                                                                                                                                                                                       | 193                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>7                                                                                                                                                                                                                                                   | 4.3                                                                                                                                                                                                                                                                                                                                                                     | 14.9                                                                                                                                                                                                                                                                                                                                                                                                 |
| 169                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3                                                                                                                                                                                                                                     | 36.2                                                                                                                                                                                                                                      | 194                                                                                                                                                                                                                                                                            | 10<br>7                                                                                                                                                                         | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                        | 3.0<br>4.7                                                                                                                                                                                                                                                                                                                                                              | 25.9                                                                                                                                                                                                                                                                                                                                                                                                 |
| 167                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8                                                                                                                                                                                                                                     | 3.5                                                                                                                                                                                                                                       | 196                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                              | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                        | 2.6                                                                                                                                                                                                                                                                                                                                                                     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                  |
| 166                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3                                                                                                                                                                                                                                     | 30.3                                                                                                                                                                                                                                      | 197                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                        | 6.2                                                                                                                                                                                                                                                                                                                                                                     | 37.3                                                                                                                                                                                                                                                                                                                                                                                                 |
| 165                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9                                                                                                                                                                                                                                     | 34.6                                                                                                                                                                                                                                      | 198                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                        | 8.9                                                                                                                                                                                                                                                                                                                                                                     | 42.7                                                                                                                                                                                                                                                                                                                                                                                                 |
| 164<br>163                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4<br>10.1                                                                                                                                                                                                                             | 47.2                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                    | 40.0<br>39.6                                                                                                                                                                                                                                                                                                                                                                                         |
| 162                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4                                                                                                                                                                                                                                     | 25.4                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                        | 9.1                                                                                                                                                                                                                                                                                                                                                                     | 31.5                                                                                                                                                                                                                                                                                                                                                                                                 |
| 161                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9                                                                                                                                                                                                                                     | 3.5                                                                                                                                                                                                                                       | 202                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                               | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                        | 4.6                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                 |
| 160                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5                                                                                                                                                                                                                                     | 37.9                                                                                                                                                                                                                                      | 203                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                        | 2.6                                                                                                                                                                                                                                                                                                                                                                     | 13.9                                                                                                                                                                                                                                                                                                                                                                                                 |
| 380                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                     | 50.9                                                                                                                                                                                                                                      | 204                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                 |
| 379                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.0                                                                                                                                                                                                                                    | 48.3                                                                                                                                                                                                                                      | 205                                                                                                                                                                                                                                                                            | 10<br>6                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                        | 5.0<br>4.8                                                                                                                                                                                                                                                                                                                                                              | 45.5                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | 376                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                        | 3.4                                                                                                                                                                                                                                                                                                                                                                     | 22.6                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         | <i>42</i> .0                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | 377                                                                                                                                                                                                                                                                            | ,<br>7                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                        | 11.8                                                                                                                                                                                                                                                                                                                                                                    | 55.4                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | 377<br>378                                                                                                                                                                                                                                                                     | 7<br>7<br>7                                                                                                                                                                     | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0                                                                                                                                                                                                                                                   | 11.8<br>13.0                                                                                                                                                                                                                                                                                                                                                            | 55.4<br>54.0                                                                                                                                                                                                                                                                                                                                                                                         |
| Survey                                                                                                                                                                                                             | v line 11 (55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 m from we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stern fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | 377<br>378<br>Survey                                                                                                                                                                                                                                                           | 7<br>7<br>7<br>1 line 12 (60                                                                                                                                                    | 0<br>0<br>0 m from we                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>e line)                                                                                                                                                                                                                                        | 11.8<br>13.0                                                                                                                                                                                                                                                                                                                                                            | 55.4<br>54.0                                                                                                                                                                                                                                                                                                                                                                                         |
| Survey<br>Site                                                                                                                                                                                                     | v line 11 (5:<br>Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 m from we<br>Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stern fence<br>Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e line)<br>Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter                                                                                                                                                                                                                                  | Summer                                                                                                                                                                                                                                    | 377<br>378<br>Survey<br>Site                                                                                                                                                                                                                                                   | 7<br>7<br>7<br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u>                                                         | 0<br>0<br>0 m from we<br>Standing                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>0<br>estern fence<br>Winter                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>e line)<br>Summer                                                                                                                                                                                                                              | 11.8<br>13.0<br>Winter                                                                                                                                                                                                                                                                                                                                                  | 55.4<br>54.0                                                                                                                                                                                                                                                                                                                                                                                         |
| Survey<br>Site                                                                                                                                                                                                     | dine 11 (5:<br>Ground<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 m from we<br>Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stern fence<br>Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e line)<br>Summer<br>shade<br>deneity                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)                                                                                                                                                                                                                   | Summer<br>UV<br>(SED)                                                                                                                                                                                                                     | 377<br>378<br>Survey<br>Site                                                                                                                                                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo                                                                                                                                                 | 0<br>0<br>0 m from we<br>Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>0<br>estern fence<br>Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>e line)<br>Summer<br>shade<br>density                                                                                                                                                                                                          | 11.8<br>13.0<br>Winter<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                   | 55.4<br>54.0<br>Summer<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                |
| Survey<br>Site                                                                                                                                                                                                     | r line 11 (5:<br>Ground<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 m from we<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | estern fence<br>Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e line)<br>Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)                                                                                                                                                                                                                   | Summer<br>UV<br>(SED)<br>45.7                                                                                                                                                                                                             | 377<br>378<br>Survey<br>Site                                                                                                                                                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>summer<br>shade<br>density                                                                                                                                                                                                                     | 11.8<br>13.0<br>Winter<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                   | 55.4<br>54.0<br>Summer<br>UV<br>(SED)<br>42.3                                                                                                                                                                                                                                                                                                                                                        |
| Survey<br>Site                                                                                                                                                                                                     | v line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stern fence<br>Winter<br>shade<br>density<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e line)<br>Summer<br>shade<br>density<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Winter<br>UV<br>(SED)<br>7.9<br>7.7                                                                                                                                                                                                     | Summer<br>UV<br>(SED)<br>45.7<br>39.8                                                                                                                                                                                                     | 377<br>378<br>Survey<br>Site<br>236x<br>237x                                                                                                                                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8                                                                                                                                | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>0<br>winter fence<br>Winter<br>shade<br>density<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>e line)<br>Summer<br>shade<br>density<br>2<br>0                                                                                                                                                                                                | Winter<br>UV<br>(SED)<br>7.6<br>7.5                                                                                                                                                                                                                                                                                                                                     | 55.4<br>54.0<br>Summer<br>UV<br>(SED)<br>42.3<br>50.3                                                                                                                                                                                                                                                                                                                                                |
| Survey<br>Site<br>236<br>235<br>234                                                                                                                                                                                | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7                                                                                                                                                                                              | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2                                                                                                                                                                                             | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x                                                                                                                                                                                                                           | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7                                                                                                                           | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75                                                                                                                                                                                                                                                                                                                                                                         | 3<br>0<br>winter fence<br>Winter<br>shade<br>density<br>5<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5                                                                                                                                                                                                      | Winter<br>UV<br>(SED)<br>7.6<br>7.5<br>3.0                                                                                                                                                                                                                                                                                                                              | 55.4<br>54.0<br>Summer<br>UV<br>(SED)<br>42.3<br>50.3<br>15.7                                                                                                                                                                                                                                                                                                                                        |
| Survey<br>Site<br>236<br>235<br>234<br>233                                                                                                                                                                         | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1                                                                                                                                                                                       | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9                                                                                                                                                                                     | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x                                                                                                                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7                                                                                                                      | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                 | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6                                                                                                                                                                                                 | Winter<br>UV<br>(SED)<br>7.6<br>7.5<br>3.0<br>4.4                                                                                                                                                                                                                                                                                                                       | 55.4<br>54.0<br>Summer<br>UV<br>(SED)<br>42.3<br>50.3<br>15.7<br>18.0                                                                                                                                                                                                                                                                                                                                |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231                                                                                                                                                           | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6                                                                                                                                                                       | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2                                                                                                                                                                     | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x                                                                                                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7                                                                                                            | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75<br>0                                                                                                                                                                                                                                                                                                                                                            | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>7.6<br>7.5<br>3.0<br>4.4<br>10.1                                                                                                                                                                                                                                                                                                               | Summer<br>UV<br>(SED)<br>42.3<br>50.3<br>15.7<br>18.0<br>53.3<br>50.0                                                                                                                                                                                                                                                                                                                                |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230                                                                                                                                                    | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                 | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8                                                                                                                                                                | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8                                                                                                                                                             | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x                                                                                                                                                                                           | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10                                                                                                      | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>1.75                                                                                                                                                                                                                                                                                                                                               | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>7.6<br>7.5<br>3.0<br>4.4<br>10.1<br>10.5<br>8.6                                                                                                                                                                                                                                                                                                | Summer<br>UV<br>(SED)<br>42.3<br>50.3<br>15.7<br>18.0<br>53.3<br>50.9<br>17.0                                                                                                                                                                                                                                                                                                                        |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229                                                                                                                                             | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>2<br>1<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7                                                                                                                                                         | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6                                                                                                                                                      | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x                                                                                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10                                                                                           | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>1.75<br>0.5                                                                                                                                                                                                                                                                                                                                        | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>7.6<br>7.5<br>3.0<br>4.4<br>10.1<br>10.5<br>8.6<br>2.0                                                                                                                                                                                                                                                                                         | 55.4           54.0           Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7                                                                                                                                                                                                             |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228                                                                                                                                      | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7                                                                                                                                                                                                                                                                                                                                                                                                   | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>2<br>1<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6                                                                                                                                                  | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4                                                                                                                                              | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>240x<br>241x<br>241x<br>242x<br>243x<br>244x                                                                                                                                                                           | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7                                                                      | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                   | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2                                                                                                                                                                        | Winter           UV           (SED)           7.6           7.5           3.0           4.4           10.1           10.5           8.6           2.0           4.6                                                                                                                                                                                                     | 55.4         54.0           Summer         UV           (SED)         42.3           50.3         15.7           18.0         53.3           50.9         17.0           6.7         37.6                                                                                                                                                                                                            |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227                                                                                                                               | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                         | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>2<br>1<br>7<br>7<br>6<br>4<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96                                                                                                                                                                                                                                                                                                                                                                                                               | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>5.5                                                                                                                                    | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1                                                                                                                              | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>245x<br>245x                                                                                                                                                           | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7                                                                      | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>1.75<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                              | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5<br>500                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6<br>86<br>6                                                                                                                                     | Winter<br>UV<br>(SED)<br>7.6<br>7.5<br>3.0<br>4.4<br>10.1<br>10.5<br>8.6<br>2.0<br>4.6<br>1.9<br>2.2                                                                                                                                                                                                                                                                    | 55.4           54.0           Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           6.6                                                                                                                                                                  |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225                                                                                                                 | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                         | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>0.5<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>1.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7 9                                                                                                                             | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8                                                                                                                      | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>245x<br>245x<br>245x<br>247x                                                                                                                                           | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7                                                                 | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                              | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>0                                                                                                                                   | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5                                                                                                                                                                                      | 55.4           54.0           Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           10.6           49.2                                                                                                                                                  |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224                                                                                                          | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7<br>10                                                                                                                                                                                                                                                                                                                                                                                              | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0                                                                                                                      | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9                                                                                                              | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>242x<br>244x<br>245x<br>245x<br>247x<br>247x<br>248x                                                                                                                   | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10                                                                      | 0<br>0<br>0 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>1.75                                                                                                                                                                                                                                                                                                       | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6                                                                                                                                   | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0                                                                                                                                                                          | Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           10.6           49.2           17.0                                                                                                                                                                 |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223                                                                                                   | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                       | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8                                                                                                               | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5                                                                                                       | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>243x<br>244x<br>245x<br>245x<br>247x<br>248x<br>249x                                                                                                                   | 7<br>7<br>7<br>Ground Albedo<br>(%)<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>10                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>1.5<br>0.75                                                                                                                                                                                                                                                                                                                        | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7                                                                                                                              | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9                                                                                                                                                              | Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           10.6           49.2           17.0           9.8                                                                                                                                                   |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222                                                                                            | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                     | 5 m from we           Standing           Albedo           (%)           0           0           1.5           0.75           0           1.75           0.5           0           1.5           1.5           0.5           0           0.75           0           0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stern fence<br>winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3                                                                                                        | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9                                                                                               | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>241x<br>242x<br>243x<br>244x<br>243x<br>244x<br>245x<br>246x<br>247x<br>248x<br>249x<br>250x                                                                                           | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>6                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                           | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2                                                                                                                         | 11.8         13.0         Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8                                                                                                                        | Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           10.6           49.2           17.0           9.8           40.3                                                                                                                                    |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>222<br>221                                                                       | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                        | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>2.5                                                                                          | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.2                                                                               | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>243x<br>245x<br>245x<br>247x<br>248x<br>249x<br>250x<br>251x<br>252                                                                                                    | 7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>7<br>10<br>10<br>6<br>6<br>6                                 | 0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                    | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>4                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>8<br>summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7                                                                                                 | 11.8         13.0         Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.2                                                                                                | 55.4           54.0           Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           10.6           49.2           17.0           9.8           40.3           23.2                                                                                       |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219                                                                       | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                               | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4.96<br>3<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                    | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>5<br>3                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6 4                                                                                   | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0                                                                       | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>245x<br>244x<br>245x<br>246x<br>247x<br>248x<br>249x<br>250x<br>251x<br>253x                                                                                           | 7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>6<br>6<br>10                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                     | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>4<br>7<br>7                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>8<br>summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7                                                                                       | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4                                                                                                              | 55.4           54.0           Summer           UV           (SED)           42.3           50.3           15.7           18.0           53.3           50.9           17.0           6.7           37.6           3.3           10.6           49.2           17.0           9.8           40.3           23.2           1.1           1.4                                                           |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218                                                                | 7 line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                    | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4.96<br>3<br>7<br>6<br>6<br>4.96<br>3<br>7<br>7<br>6<br>4.96<br>3<br>7<br>7<br>6<br>4.96<br>3<br>7<br>7<br>8<br>7<br>6<br>4.96<br>6<br>4.96<br>6<br>4.96<br>7<br>7<br>7<br>7<br>8<br>7<br>7<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                             | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>5<br>3<br>3                                                                                                                                                                                                                                                                                                                                                               | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1                                                                            | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8                                                               | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>245x<br>244x<br>245x<br>246x<br>247x<br>248x<br>249x<br>251x<br>251x<br>252x<br>253x<br>254x                                                                           | 7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>6<br>6<br>10<br>10<br>10<br>10                          | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>4<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                             | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>4                                                                                                | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7                                                                                                  | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8                                                                                          |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217                                                         | r line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                    | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>6<br>6<br>4.96<br>3<br>7<br>6<br>6<br>4<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>5<br>3<br>3<br>4                                                                                                                                                                                                                                                                                                                                                          | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6                                                                     | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3                                                       | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>237x<br>240x<br>241x<br>242x<br>240x<br>241x<br>242x<br>244x<br>245x<br>246x<br>247x<br>248x<br>249x<br>251x<br>251x<br>253x<br>254x<br>256                                                                            | 7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>10<br>6<br>6<br>10<br>10<br>10<br>4                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>4<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                        | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>2<br>4<br>7<br>7                                                             | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1                                                                                      | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8                                                                              |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217<br>216                                                  | r line 11 (5:<br>Ground<br>Albedo<br>(%)<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                         | 5 m from we           Standing           Albedo           (%)           0           0.1.5           0.75           0           1.75           0.5           0           1.5           0.5           0           1.5           0.5           0           1.5           1.5           0.75           0           1.5           1.5           0.75           0           0           0           0           1.5           1.5           0.75           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                       | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4<br>3<br>7<br>7<br>6<br>6<br>4<br>3<br>7<br>7<br>6<br>6<br>4<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>7<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6<br>1.1                                                              | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3<br>3.1                                                | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>240x<br>241x<br>242x<br>240x<br>241x<br>242x<br>244x<br>245x<br>246x<br>247x<br>246x<br>247x<br>248x<br>246x<br>250x<br>251x<br>252x<br>253x<br>254x<br>256<br>257                                                     | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>10<br>6<br>6<br>6<br>10<br>10<br>10<br>4<br>6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                            | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>4<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                 | 0<br>0<br>8<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>2<br>4<br>7<br>7<br>7                                                                   | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1         0.8                                                                          | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8         2.8                                                                  |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217<br>216<br>215<br>214                                    | v line 11 (5)           Ground           Albedo           (%)           8           7           7           7           70           10           10           7           7           10           10           7           7           7           7           7           7           7           7           7           7           7           7           7           6                                                                                                                                 | 5 m from we<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>1.5<br>0.5<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>6<br>4<br>3<br>4<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6<br>1.1<br>0.4<br>4.0                                                | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3<br>3.1<br>1.4<br>24.6                                 | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>240x<br>241x<br>242x<br>241x<br>242x<br>244x<br>245x<br>244x<br>245x<br>244x<br>245x<br>246x<br>247x<br>246x<br>247x<br>250x<br>251x<br>252x<br>254x<br>257<br>258                                                     | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>10<br>10<br>10<br>6<br>6<br>6<br>10<br>10<br>10<br>4<br>6<br>6<br>6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                             | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6                                                                                                                                                                                                                                                           | 0<br>0<br>8<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>2<br>4<br>7<br>7<br>7<br>4<br>7<br>7<br>5<br>2                                          | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1         0.8         1.9         5.6                                                  | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8         2.8         14.1         39.0                                        |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217<br>216<br>215<br>214<br>213                             | Ime 11 (5)           Ground           Albedo           (%)           8           7           7           7           10           10           7           7           10           7           7           7           7           7           7           7           7           7           7           7           7           7           6           6                                                                                                                                                  | 5 m from we           Standing           Albedo           (%)           0           0.1.5           0.75           0           1.75           0.5           0           1.5           1.5           0.5           0           1.5           1.5           1.5           1.5           1.5           1.5           1.5           0.75           0           0           0           0           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>6<br>4<br>3<br>4<br>6<br>7<br>7<br>6<br>6<br>6<br>4<br>3<br>7<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                           | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>3<br>3<br>4<br>7<br>5<br>5<br>3<br>3<br>4<br>7<br>5<br>5<br>3<br>3<br>4<br>7<br>5<br>5<br>3<br>3<br>4<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6<br>1.1<br>0.4<br>4.0<br>4.1                                         | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3<br>3.1<br>1.4<br>24.6<br>29.6                         | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>240x<br>241x<br>242x<br>241x<br>242x<br>244x<br>245x<br>244x<br>245x<br>244x<br>245x<br>246x<br>247x<br>246x<br>247x<br>250x<br>251x<br>251x<br>251x<br>2557<br>258<br>259<br>260                                      | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10<br>10<br>10<br>7<br>7<br>7<br>7                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                             | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>4<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                    | 0<br>0<br>8<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>4<br>7<br>7<br>4<br>7<br>7<br>5<br>2<br>2<br>2                                          | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1         0.8         1.9         5.6         5.4                                      | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8         2.8         14.1         39.9                                        |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217<br>216<br>215<br>214<br>213<br>212                      | Ime 11 (5)           Ground           Albedo           (%)           8           7           7           7           70           10           7           7           10           7           7           7           7           7           7           7           7           7           7           7           7           7           6           6           6           6           6                                                                                                              | 5 m from we           Standing           Albedo           (%)           0           0.1.5           0.75           0           1.75           0.5           0           1.5           1.5           0.5           0           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           0.75           0           0           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>6<br>4<br>3<br>4<br>6<br>6<br>4<br>3<br>4<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                 | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>3<br>3<br>3                                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6<br>1.1<br>0.4<br>4.0<br>4.1<br>3.2                                  | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3<br>3.1<br>1.4<br>24.6<br>29.6<br>30.6                 | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>240x<br>241x<br>242x<br>241x<br>242x<br>243x<br>244x<br>245x<br>244x<br>245x<br>244x<br>245x<br>246x<br>247x<br>250x<br>251x<br>250x<br>251x<br>255x<br>257<br>258<br>259<br>260<br>261                                | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 0<br>0<br>8 line)<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>7<br>4<br>7<br>7<br>5<br>2<br>2<br>2<br>2     | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1         0.8         1.9         5.6         5.4         5.7                          | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8         2.8         14.1         39.9         39.5         43.3              |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217<br>216<br>215<br>214<br>213<br>212<br>211               | Iine 11 (5:           Ground           Albedo           (%)           8           7           7           7           7           10           10           7           7           70           7           7           7           7           7           7           7           7           7           7           6           6           6           6           6           6           6           6           6           6           6           6           6           6           6           6 | 5 m from we           Standing           Albedo           (%)           0           0.1.5           0.75           0           1.75           0.5           0           1.5           1.5           0.5           0           1.5           1.5           1.5           1.5           0.75           0           0           0           2           2           2           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4<br>3<br>4<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>4<br>9<br>6<br>4<br>3<br>4<br>4<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                          | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>3<br>3<br>5                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6<br>1.1<br>0.4<br>4.0<br>4.1<br>3.2<br>5.8                           | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3<br>3.1<br>1.4<br>24.6<br>29.6<br>30.6<br>21.2         | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>244x<br>245x<br>244x<br>245x<br>244x<br>245x<br>245x<br>244x<br>245x<br>246x<br>250x<br>251x<br>250x<br>251x<br>252x<br>253x<br>254x<br>2558<br>259<br>260<br>261<br>262       | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.5<br>0.75<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                    | 0<br>0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>7<br>4<br>7<br>7<br>5<br>2<br>2<br>2<br>2<br>0<br>0 | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1         0.8         1.9         5.6         5.4         5.7         9.8              | 55.4         54.0         Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8         2.8         14.1         39.9         39.5         43.3         49.6 |
| Survey<br>Site<br>236<br>235<br>234<br>233<br>232<br>231<br>230<br>229<br>228<br>227<br>226<br>225<br>224<br>223<br>222<br>221<br>220<br>219<br>218<br>217<br>216<br>215<br>214<br>213<br>212<br>211<br>210<br>205 | Iine 11 (5:           Ground           Albedo           (%)           8           7           7           7           7           10           10           7           7           70           7           7           7           7           7           7           7           7           7           6           6           6           6           6           6           6           6           6                                                                                                 | 5 m from we           Standing           Albedo           (%)           0           0.1.5           0.75           0           1.75           0.5           0           1.5           1.5           0.5           0           1.5           1.5           0.75           0           0           1.5           1.5           0.75           0           0           2           2           2           2           2           2           2           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>2<br>2<br>1<br>7<br>7<br>6<br>4.96<br>4.96<br>3<br>7<br>7<br>6<br>6<br>4.96<br>3<br>7<br>7<br>6<br>6<br>6<br>4<br>3<br>4<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | e line)<br>Summer<br>shade<br>density<br>1<br>2<br>6<br>7<br>0<br>0<br>0<br>5<br>7<br>1<br>1.96<br>4.96<br>2<br>6<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>5<br>5<br>3<br>3<br>4<br>4<br>7<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>7<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>3<br>3<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                | Winter<br>UV<br>(SED)<br>7.9<br>7.7<br>3.7<br>4.1<br>11.3<br>10.6<br>8.8<br>1.7<br>5.6<br>5.5<br>6.1<br>7.9<br>7.0<br>2.8<br>4.3<br>2.3<br>3.6<br>6.4<br>7.1<br>4.6<br>1.1<br>0.4<br>4.0<br>4.1<br>3.2<br>5.8<br>4.3<br>2.5<br>8<br>4.3 | Summer<br>UV<br>(SED)<br>45.7<br>39.8<br>17.2<br>13.9<br>53.3<br>51.2<br>20.8<br>5.6<br>44.4<br>38.0<br>24.1<br>42.8<br>15.9<br>9.5<br>22.9<br>14.5<br>21.3<br>27.0<br>28.8<br>19.3<br>3.1<br>1.4<br>24.6<br>29.6<br>30.6<br>21.2<br>27.2 | 377<br>378<br>Survey<br>Site<br>236x<br>237x<br>238x<br>239x<br>240x<br>241x<br>242x<br>243x<br>240x<br>241x<br>242x<br>243x<br>244x<br>245x<br>245x<br>245x<br>245x<br>246x<br>250x<br>251x<br>250x<br>251x<br>252x<br>254x<br>2558<br>259<br>260<br>261<br>262<br>263<br>263 | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 3<br>0<br>estern fence<br>Winter<br>shade<br>density<br>5<br>5<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5.88<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>7<br>3<br>2<br>1<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>6<br>5<br>8<br>8<br>0<br>0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 0<br>0<br>0<br>Summer<br>shade<br>density<br>2<br>0<br>5<br>6<br>0<br>0<br>5<br>6<br>0<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>6.86<br>6.86<br>0<br>6<br>7<br>2<br>4<br>7<br>7<br>7<br>5<br>2<br>2<br>2<br>2<br>0<br>3<br>3           | Winter         UV         (SED)         7.6         7.5         3.0         4.4         10.1         10.5         8.6         2.0         4.6         1.9         3.3         11.5         9.0         2.9         4.8         6.2         0.3         0.4         0.7         1.1         0.8         1.9         5.6         5.4         5.7         9.8         10.4 | Summer         UV         (SED)         42.3         50.3         15.7         18.0         53.3         50.9         17.0         6.7         37.6         3.3         10.6         49.2         17.0         9.8         40.3         23.2         1.1         1.4         16.8         3.8         2.8         14.1         39.9         39.5         43.3         49.6         38.4              |

| 208        | 1                         | 0           | 4            | 2            | 8.0            | 41.6         | 371   | 7            | 0           | 0           | 0       | 13.0           | 57.1        |
|------------|---------------------------|-------------|--------------|--------------|----------------|--------------|-------|--------------|-------------|-------------|---------|----------------|-------------|
| 208        | 4                         | 15          | 4            | 2            | 8.0<br>6.9     | 41.0<br>14.1 | 370   | 7            | 0           | 0           | 0       | 13.9           | 56.1        |
| 375        | 7                         | 0           | 7            | 2            | 47             | 36.3         | 570   | 1            | 0           | 0           | 0       | 15.0           | 50.1        |
| 374        | 7                         | 0           | 0            | 0            | 13.6           | 56.1         |       |              |             |             |         |                |             |
| 373        | 7                         | 0           | 0            | 0            | 11.0           | 50.2         |       |              |             |             |         |                |             |
| 515        | /                         | 0           | 0            | 0            | 11.7           | 50.2         |       |              |             |             |         |                |             |
| Survey     | / line 13 (6              | 5 m from we | estern fence | e line)      |                |              | Surve | v line 14 (7 | 0 m from we | estern fenc | e line) |                |             |
| Site       | Ground                    | Standing    | Winter       | Summer       | Winter         | Summer       | Site  | Ground       | Standing    | Winter      | Summer  | Winter         | Summer      |
|            | Albedo                    | Albedo      | shade        | shade        | UV             | ŨV           |       | Albedo       | Albedo      | shade       | shade   | UV             | ŨV          |
|            | (%)                       | (%)         | density      | density      | (SED)          | (SED)        |       | (%)          | (%)         | density     | density | (SED)          | (SED)       |
| 291        | 8                         | 0           | 6            | 1            | 6.2            | 42.5         | 292   | 8            | 0           | 6           | 4       | 6.1            | 30.5        |
| 290        | 8                         | Õ           | 6            | 2            | 6.4            | 42.2         | 293   | 8            | Õ           | 5           | 5       | 8.3            | 30.8        |
| 289        | 8                         | 0           | 6            | 3            | 5.5            | 29.5         | 294   | 8            | 0           | 6           | 3       | 5.6            | 30.2        |
| 288        | 4                         | 0           | 7            | 2            | 5.2            | 41.8         | 295   | 4            | 0           | 7           | 1       | 6.0            | 43.1        |
| 287        | 4                         | 0           | 7            | 1            | 6.1            | 47.9         | 296   | 4            | 0           | 5           | 0       | 8.3            | 52.0        |
| 286        | 7                         | 0           | 6            | 1            | 8.1            | 50.6         | 297   | 7            | 0           | 4           | 0       | 10.0           | 53.7        |
| 285        | 7                         | 0           | 4            | 0            | 10.1           | 53.7         | 298   | 7            | 0           | 3           | 0       | 10.3           | 53.0        |
| 284        | 7                         | 0           | 1            | 0            | 11.3           | 49.5         | 299   | 7            | 0           | 2           | 0       | 9.0            | 48.1        |
| 283        | 10                        | 2.25        | 6.86         | 7            | 1.1            | 3.5          | 300   | 10           | 1.75        | 3.58        | 5       | 5.6            | 17.6        |
| 282        | 10                        | 0.5         | 7            | 7            | 3.3            | 11.2         | 301   | 10           | 0.5         | 7           | 7       | 1.8            | 6.0         |
| 281        | 7                         | 0           | 7            | 0            | 5.0            | 45.3         | 302   | 10           | 0           | 7           | 7       | 0.1            | 0.4         |
| 280        | 7                         | 0           | 5.98         | 3.92         | 3.6            | 22.8         | 303   | 10           | 0           | 7           | 7       | 0.0            | 0.0         |
| 279        | 7                         | 0           | 4.92         | 3.92         | 6.4            | 28.3         | 304   | 10           | 0           | 7           | 7       | 0.1            | 0.4         |
| 278        | 7                         | 0           | 1.98         | 0            | 10.0           | 49.2         | 305   | 7            | 0           | 7           | 3       | 4.1            | 28.4        |
| 277        | 10                        | 1.5         | 0            | 6            | 9.0            | 17.0         | 306   | 10           | 1.5         | 3           | 6       | 4.9            | 12.1        |
| 276        | 10                        | 0.75        | 7            | 7            | 2.8            | 9.5          | 307   | 10           | 0.75        | 7           | 7       | 2.7            | 9.1         |
| 275        | 6                         | 0           | 7            | 2            | 3.8            | 32.6         | 308   | 6            | 0           | 7           | 4       | 3.5            | 23.0        |
| 274        | 6                         | 0           | 4            | 5            | 5.2            | 17.4         | 309   | 6            | 0           | 3           | 4       | 5.2            | 22.7        |
| 273        | 10                        | 0           | 6            | 7            | 1.5            | 1.1          | 310   | 10           | 0           | 7           | 7       | 0.0            | 0.0         |
| 272        | 10                        | 0           | 7            | 7            | 0.1            | 0.4          | 311   | 10           | 0           | 7           | 7       | 0.2            | 0.7         |
| 271        | 10                        | 0           | 7            | 2            | 0.9            | 25.2         | 312   | 10           | 0           | 7           | 2       | 2.5            | 28.8        |
| 270        | 4                         | 0           | 7            | 7            | 0.8            | 2.7          | 313   | 4            | 2.25        | 7           | 5       | 1.2            | 13.2        |
| 269        | 7                         | 1.75        | 7            | 6            | 0.8            | 4.2          | 314   | 7            | 1.5         | 7           | 4       | 1.8            | 20.3        |
| 268        | 4                         | 5.5         | 7            | 7            | 0.4            | 1.4          | 315   | 10           | 0           | 6           | 3       | 3.9            | 29.0        |
| 267        | 10                        | 0           | 7            | 6            | 0.7            | 3.8          | 318   | 10           | 0.5         | 7           | 7       | 2.7            | 9.1         |
| 266        | 10                        | 0.75        | 7            | 7            | 3.3            | 11.2         | 317   | 6            | 0           | 4.65        | 5.58    | 5.6            | 18.0        |
| 265        | 6                         | 0           | 0.93         | 0            | 11.9           | 51.5         | 316   | 4            | 0           | 1           | 2       | 10.7           | 42.9        |
| 264        | 4                         | 0           | 0            | 0            | 12.1           | 51.0         | 321   | 7            | 2.25        | 7           | 3       | 3.8            | 27.7        |
| 324        | 7                         | 0           | 7            | 1            | 4.5            | 38.6         | 320   | 7            | 0           | 4           | 1       | 9.2            | 51.0        |
| 323        | 7                         | 0           | 1            | 0            | 13.5           | 56.8         | 319   | 7            | 0           | 1           | 0       | 12.9           | 57.5        |
| 322        | 7                         | 0           | 1            | 0            | 13.9           | 58.2         |       |              |             |             |         |                |             |
| G          | 1. 15 (7                  | <i>c c</i>  |              | <b>1</b> • \ |                |              | G     | 1. 1.6 (0)   | 1 0         |             | 1.      |                |             |
| Survey     | $\frac{1}{1}$ line 15 (7) | 6 m from we | estern fence | e line)      | <b>XX</b> 7' 4 | C            | Surve | y line 16 (8 | 1 m from we | estern fenc | e line) | <b>XX</b> 7' 4 |             |
| Site       | Albada                    | Standing    | winter       | Summer       | Winter         | Summer       | Site  | Albada       | Standing    | winter      | Summer  | winter         | Summer      |
|            | Albedo                    | Albedo      | danaity      | donaitu      |                |              |       | Albedo       | Albedo      | donaity     | domoity | (SED)          | UV<br>(SED) |
| 401        | (%)                       | (%)         | density      | density      | (SED)          | (SED)        | 422   | (%)          | (%)         | density     | aensity | (SED)          | (SED)       |
| 421        | 8                         | 0           | 5            | 1            | 7.6            | 41.1         | 422   | 8            | 0           | 7           | 2       | 5.0            | 34.2        |
| 420        | 8                         | 0           | 0            | 3            | 1.3            | 39.0         | 423   | 8            | 0           |             | 2       | 5.5            | 37.0        |
| 419        | 8<br>10                   | 0           | 07           | 4            | 5.0<br>1.2     | 30.2         | 424   | 0            | 0           | 0<br>5      | 3       | 0.0<br>5 1     | 31.5        |
| 410        | 10                        | 2.23        | 7            | 7            | 1.2            | 4.2          | 425   | 10           | 15          | 5           | 4       | 0.4            | 21.5        |
| 417<br>416 | 10                        | 1.J<br>2.75 | 7            | 7            | 0.4            | 3.2          | 420   | 7            | 0           | 1           | 6       | 5.8            | 1.4         |
| 410        | 10                        | 2.75        | 6            | 7            | 0.9            | 3.2          | 427   | 10           | 1.25        | 4           | 6       | J.0<br>1.5     | 17.1        |
| 415        | 10                        | 0           | 6            | 7            | 1.2            | 3.5          | 428   | 10           | 1.25        | 7           | 4       | 2.0            | 21.0        |
| 413        | 10                        | 0           | 6            | 7            | 0.7            | 1.8          | 430   | 7            | 0           | 7           | 4       | 2.0            | 21.0        |
| 413        | 10                        | 1 75        | 6            | 7            | 1.3            | 0.7          | 430   | 10           | 0           | 5           | 4       | 3.7            | 19.6        |
| 412        | 10                        | 3.25        | 7            | 7            | 0.3            | 1.1          | 432   | 10           | 4 75        | 7           | 7       | 0.1            | 0.4         |
| 410        | 10                        | 1.25        | 7            | 7            | 0.0            | 0.0          | 433   | 10           | 2           | 7           | 7       | 0.1            | 0.4         |
| 410        | 10                        | 0.5         | 7            | 7            | 0.0            | 0.0          | 433   | 10           | 0           | 7           | 7       | 0.2            | 1.1         |
| 409        | 10                        | 0.5         | 7            | 7            | 0.1            | 0.4          | 435   | 10           | 0           | 7           | 7       | 0.3            | 1.1         |
| 407        | 10                        | 4.75        | ,<br>7       | ,<br>7       | 0.1            | 0.4          | 436   | 10           | 1.75        | ,<br>7      | ,<br>7  | 0.1            | 0.4         |
| 406        | 10                        | 4.75        | ,<br>7       | ,<br>7       | 0.2            | 0.7          | 437   | 4            | 0           | ,<br>7      | ,<br>7  | 0.8            | 2.7         |
| 405        | 10                        | 0           | ,<br>7       | ,<br>7       | 0.3            | 1.1          | 438   | 4            | Ő           | ,<br>7      | ,<br>7  | 1.5            | 5.2         |
| 404        | 10                        | õ           | 7            | 7            | 0.4            | 1.4          | 439   | 4            | 1.75        | 7           | 7       | 0.9            | 3.1         |
| 403        | 10                        | õ           | 7            | 7            | 0.1            | 0.4          | 440   | 7            | 0           | 7           | 4       | 3.2            | 20.0        |
| 402        | 10                        | 0.5         | 7            | 7            | 0.1            | 0.4          | 441   | 10           | Ő           | 7           | 4       | 2.7            | 18.3        |
| 401        | 10                        | 0           | 7            | 7            | 0.4            | 1.4          | 442   | 6            | õ           | 7           | 2       | 4.8            | 36.1        |
| 400        | 10                        | 0           | 7            | 7            | 0.2            | 0.7          | 443   | 6            | 2.25        | 4           | 3       | 7.5            | 30.8        |
| 399        | 10                        | 0           | 7            | 7            | 0.4            | 1.4          | 444   | 7            | 0           | 7           | 2       | 6.2            | 44.9        |
|            | 10                        | 0           | 7            | 7            | 0.5            | 18           | 445   | 7            | 0           | 3           | 0       | 10.4           | 50.9        |
| 398        | 10                        | 0           | /            | /            | 0.5            | 1.0          | 115   | ,            | 0           | 5           | 0       | 10.4           | 50.7        |

| 397                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.6                                                                                                                                     | 2.1                                                                                                                                                         | 446                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 6                                                                                                                                              | 7                                                                                                                | 4.1                                                                                                                                              | 9.8                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 396                                                                                                              | 10                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.0                                                                                                                                     | 0.0                                                                                                                                                         | 447                                                                                                                                   | 7                                                                                                           | 0                                                                                                        | 3                                                                                                                                              | 1                                                                                                                | 10.4                                                                                                                                             | 48.9                                                                                                                                                 |
| 370                                                                                                              | 10                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                    | ,                                                                                                                             | 0.0                                                                                                                                     | 0.0                                                                                                                                                         | 447                                                                                                                                   | ,                                                                                                           | 0                                                                                                        | 5                                                                                                                                              | 1                                                                                                                | 10.4                                                                                                                                             | 40.9                                                                                                                                                 |
| 395                                                                                                              | 10                                                                                                                                            | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                                                                                                                                                                                    | /                                                                                                                             | 0.0                                                                                                                                     | 0.0                                                                                                                                                         | 448                                                                                                                                   | /                                                                                                           | 0                                                                                                        | 2                                                                                                                                              | 1                                                                                                                | 11.5                                                                                                                                             | 51.0                                                                                                                                                 |
| 394                                                                                                              | 10                                                                                                                                            | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.0                                                                                                                                     | 0.0                                                                                                                                                         | 449                                                                                                                                   | 7                                                                                                           | 0                                                                                                        | 2                                                                                                                                              | 0                                                                                                                | 12.2                                                                                                                                             | 56.1                                                                                                                                                 |
| 202                                                                                                              | 10                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                    | 6                                                                                                                             | 0.5                                                                                                                                     | 19                                                                                                                                                          | 450                                                                                                                                   | 7                                                                                                           | 0                                                                                                        | 0                                                                                                                                              | 0                                                                                                                | 14.0                                                                                                                                             | 57 5                                                                                                                                                 |
| 393                                                                                                              | 10                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /                                                                                                                                                                                    | 0                                                                                                                             | 0.5                                                                                                                                     | 4.0                                                                                                                                                         | 430                                                                                                                                   | /                                                                                                           | 0                                                                                                        | 0                                                                                                                                              | 0                                                                                                                | 14.0                                                                                                                                             | 57.5                                                                                                                                                 |
| 392                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.5                                                                                                                                     | 1.8                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 391                                                                                                              | 10                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.1                                                                                                                                     | 04                                                                                                                                                          |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 200                                                                                                              | 10                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                    | 6                                                                                                                             | 1.0                                                                                                                                     | 4.2                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 390                                                                                                              | 10                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                    | 0                                                                                                                             | 1.0                                                                                                                                     | 4.2                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 389                                                                                                              | 10                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                    | 7                                                                                                                             | 0.5                                                                                                                                     | 1.1                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 388                                                                                                              | 10                                                                                                                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.1                                                                                                                                     | 0.4                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 207                                                                                                              | 10                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , , ,                                                                                                                                                                                | ,                                                                                                                             | 0.1                                                                                                                                     | 0.4                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 387                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 6                                                                                                                             | 0.7                                                                                                                                     | 5.5                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 386                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 6                                                                                                                             | 3.2                                                                                                                                     | 15.4                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 295                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                    | 2                                                                                                                             | 10.4                                                                                                                                    | 46.1                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 365                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                    | 2                                                                                                                             | 10.4                                                                                                                                    | 40.1                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 384                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                    | 2                                                                                                                             | 11.0                                                                                                                                    | 48.2                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 383                                                                                                              | 7                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                    | 0                                                                                                                             | 119                                                                                                                                     | 55.8                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 202                                                                                                              |                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                    | 0                                                                                                                             | 10.0                                                                                                                                    | 56.0                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| 382                                                                                                              | /                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                    | 0                                                                                                                             | 12.2                                                                                                                                    | 50.4                                                                                                                                                        |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                         |                                                                                                                                                             |                                                                                                                                       |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  |                                                                                                                                                      |
| Survey                                                                                                           | v line 17 (8                                                                                                                                  | 6 m from we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | estern fence                                                                                                                                                                         | e line)                                                                                                                       |                                                                                                                                         |                                                                                                                                                             | Survey                                                                                                                                | / line 18 (9                                                                                                | 1 m from we                                                                                              | stern fence                                                                                                                                    | line)                                                                                                            |                                                                                                                                                  |                                                                                                                                                      |
| Burve                                                                                                            | y inte 17 (0                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stern renew                                                                                                                                                                          | c inic)                                                                                                                       |                                                                                                                                         | ~                                                                                                                                                           | Survey                                                                                                                                |                                                                                                             |                                                                                                          |                                                                                                                                                |                                                                                                                  |                                                                                                                                                  | ~                                                                                                                                                    |
| Site                                                                                                             | Ground                                                                                                                                        | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter                                                                                                                                                                               | Summer                                                                                                                        | Winter                                                                                                                                  | Summer                                                                                                                                                      | Site                                                                                                                                  | Ground                                                                                                      | Standing                                                                                                 | Winter                                                                                                                                         | Summer                                                                                                           | Winter                                                                                                                                           | Summer                                                                                                                                               |
|                                                                                                                  | Albedo                                                                                                                                        | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | shade                                                                                                                                                                                | shade                                                                                                                         | UV                                                                                                                                      | UV                                                                                                                                                          |                                                                                                                                       | Albedo                                                                                                      | Albedo                                                                                                   | shade                                                                                                                                          | shade                                                                                                            | UV                                                                                                                                               | UV                                                                                                                                                   |
|                                                                                                                  | (0/,)                                                                                                                                         | (0/,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | donaity                                                                                                                                                                              | donaity                                                                                                                       | (SED)                                                                                                                                   | (SED)                                                                                                                                                       |                                                                                                                                       | (0/,)                                                                                                       | (0/)                                                                                                     | donaity                                                                                                                                        | donaity                                                                                                          | (SED)                                                                                                                                            | (SED)                                                                                                                                                |
|                                                                                                                  | (%)                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | density                                                                                                                                                                              | density                                                                                                                       | (SED)                                                                                                                                   | (SED)                                                                                                                                                       |                                                                                                                                       | (%)                                                                                                         | (%)                                                                                                      | density                                                                                                                                        | density                                                                                                          | (SED)                                                                                                                                            | (SED)                                                                                                                                                |
| 482                                                                                                              | 8                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                    | 2                                                                                                                             | 4.0                                                                                                                                     | 34.0                                                                                                                                                        | 483                                                                                                                                   | 4                                                                                                           | 0                                                                                                        | 6                                                                                                                                              | 2                                                                                                                | 4.2                                                                                                                                              | 34.1                                                                                                                                                 |
| 481                                                                                                              | 8                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 3                                                                                                                             | 4.1                                                                                                                                     | 28 5                                                                                                                                                        | 484                                                                                                                                   | 4                                                                                                           | 0                                                                                                        | 7                                                                                                                                              | 6                                                                                                                | 3.9                                                                                                                                              | 184                                                                                                                                                  |
| 400                                                                                                              | 4                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,<br>E                                                                                                                                                                               | 6                                                                                                                             | F 1                                                                                                                                     | 10.0                                                                                                                                                        | 405                                                                                                                                   |                                                                                                             | 0                                                                                                        | ,<br>F                                                                                                                                         | 7                                                                                                                | 1.5                                                                                                                                              | 11.0                                                                                                                                                 |
| 480                                                                                                              | 4                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                    | 0                                                                                                                             | 5.1                                                                                                                                     | 18.0                                                                                                                                                        | 485                                                                                                                                   | 4                                                                                                           | U                                                                                                        | 5                                                                                                                                              | /                                                                                                                | 4.6                                                                                                                                              | 11.0                                                                                                                                                 |
| 479                                                                                                              | 6                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                    | 5                                                                                                                             | 6.4                                                                                                                                     | 24.8                                                                                                                                                        | 486                                                                                                                                   | 6                                                                                                           | 0                                                                                                        | 6                                                                                                                                              | 5                                                                                                                | 4.4                                                                                                                                              | 24.6                                                                                                                                                 |
| 178                                                                                                              | 10                                                                                                                                            | 1 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 7                                                                                                                             | 15                                                                                                                                      | 19                                                                                                                                                          | 187                                                                                                                                   | 10                                                                                                          | 15                                                                                                       | 7                                                                                                                                              | 7                                                                                                                | 0.4                                                                                                                                              | 1.4                                                                                                                                                  |
| +/0                                                                                                              | 10                                                                                                                                            | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                    | <i>'</i>                                                                                                                      | 1.0                                                                                                                                     | 4.7                                                                                                                                                         | +0/                                                                                                                                   | 10                                                                                                          | 1.5                                                                                                      | <i>'</i>                                                                                                                                       | ,                                                                                                                | 0.4                                                                                                                                              | 1.4                                                                                                                                                  |
| 477                                                                                                              | 4                                                                                                                                             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 7                                                                                                                             | 1.3                                                                                                                                     | 4.5                                                                                                                                                         | 488                                                                                                                                   | 4                                                                                                           | 0.75                                                                                                     | 7                                                                                                                                              | 7                                                                                                                | 1.3                                                                                                                                              | 4.5                                                                                                                                                  |
| 476                                                                                                              | 7                                                                                                                                             | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                    | 5                                                                                                                             | 4.6                                                                                                                                     | 19.9                                                                                                                                                        | 489                                                                                                                                   | 7                                                                                                           | 0                                                                                                        | 6                                                                                                                                              | 2                                                                                                                | 4.2                                                                                                                                              | 34.4                                                                                                                                                 |
| 175                                                                                                              | 10                                                                                                                                            | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                    | 7                                                                                                                             | 1.0                                                                                                                                     | 2.1                                                                                                                                                         | 480.                                                                                                                                  | 10                                                                                                          | 1 25                                                                                                     | 2                                                                                                                                              | 4                                                                                                                | 6.6                                                                                                                                              | 25.6                                                                                                                                                 |
| 4/5                                                                                                              | 10                                                                                                                                            | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                    | /                                                                                                                             | 1.8                                                                                                                                     | 2.1                                                                                                                                                         | 489X                                                                                                                                  | 10                                                                                                          | 1.25                                                                                                     | 3                                                                                                                                              | 4                                                                                                                | 0.0                                                                                                                                              | 25.0                                                                                                                                                 |
| 474                                                                                                              | 6                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                    | 3                                                                                                                             | 3.1                                                                                                                                     | 22.7                                                                                                                                                        | 490                                                                                                                                   | 6                                                                                                           | 0                                                                                                        | 7                                                                                                                                              | 3                                                                                                                | 4.1                                                                                                                                              | 28.4                                                                                                                                                 |
| 173                                                                                                              | 7                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 3                                                                                                                             | 55                                                                                                                                      | 30 /                                                                                                                                                        | /01                                                                                                                                   | 6                                                                                                           | 0                                                                                                        | 7                                                                                                                                              | 3                                                                                                                | 54                                                                                                                                               | 32.5                                                                                                                                                 |
| 475                                                                                                              | ,                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                    | 5                                                                                                                             | 5.5                                                                                                                                     | J). <del>4</del>                                                                                                                                            | 471                                                                                                                                   | 0                                                                                                           | 0                                                                                                        | ,                                                                                                                                              | 5                                                                                                                | 5.4                                                                                                                                              | 52.5                                                                                                                                                 |
| 472                                                                                                              | 4                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                    | 1                                                                                                                             | 10.2                                                                                                                                    | 48.6                                                                                                                                                        | 492                                                                                                                                   | 4                                                                                                           | 0                                                                                                        | 3                                                                                                                                              | 1                                                                                                                | 9.6                                                                                                                                              | 48.3                                                                                                                                                 |
| 471                                                                                                              | 4                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                    | 2                                                                                                                             | 9.6                                                                                                                                     | 45.0                                                                                                                                                        | 493                                                                                                                                   | 4                                                                                                           | 0                                                                                                        | 3                                                                                                                                              | 0                                                                                                                | 9.6                                                                                                                                              | 51.4                                                                                                                                                 |
| 470                                                                                                              | 7                                                                                                                                             | 1 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                    | 2                                                                                                                             | 7.0                                                                                                                                     | 42.0                                                                                                                                                        | 404                                                                                                                                   | 7                                                                                                           | 1 75                                                                                                     | 1                                                                                                                                              | 2                                                                                                                | 10.5                                                                                                                                             | 10 6                                                                                                                                                 |
| 470                                                                                                              | /                                                                                                                                             | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                    | 2                                                                                                                             | 1.9                                                                                                                                     | 42.9                                                                                                                                                        | 494                                                                                                                                   | /                                                                                                           | 1.75                                                                                                     | 1                                                                                                                                              | Z                                                                                                                | 10.5                                                                                                                                             | 40.0                                                                                                                                                 |
| 469                                                                                                              | 10                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                    | 6                                                                                                                             | 5.7                                                                                                                                     | 11.7                                                                                                                                                        | 495                                                                                                                                   | 10                                                                                                          | 1                                                                                                        | 3                                                                                                                                              | 3                                                                                                                | 8.6                                                                                                                                              | 35.5                                                                                                                                                 |
| 468                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.6                                                                                                                                     | 21                                                                                                                                                          | 496                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 6                                                                                                                                              | 4                                                                                                                | 3.8                                                                                                                                              | 23.3                                                                                                                                                 |
| 100                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                    | 7                                                                                                                             | 1.0                                                                                                                                     | 2.1                                                                                                                                                         | 107                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 5                                                                                                                                              | -                                                                                                                | 1.0                                                                                                                                              | 20.0                                                                                                                                                 |
| 467                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                    | /                                                                                                                             | 1.0                                                                                                                                     | 2.1                                                                                                                                                         | 497                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | Э                                                                                                                                              | 5                                                                                                                | 4.2                                                                                                                                              | 20.3                                                                                                                                                 |
| 466                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.4                                                                                                                                     | 1.4                                                                                                                                                         | 498                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 6                                                                                                                                              | 4                                                                                                                | 3.6                                                                                                                                              | 22.6                                                                                                                                                 |
| 165                                                                                                              | 10                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 0.2                                                                                                                                     | 07                                                                                                                                                          | 400                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 5                                                                                                                                              | 7                                                                                                                | 2.1                                                                                                                                              | 2.1                                                                                                                                                  |
| 403                                                                                                              | 10                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                                                                                                                                                                                    | /                                                                                                                             | 0.2                                                                                                                                     | 0.7                                                                                                                                                         | 499                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 3                                                                                                                                              | /                                                                                                                | 2.1                                                                                                                                              | 2.1                                                                                                                                                  |
| 464                                                                                                              | 10                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 7                                                                                                                             | 1.8                                                                                                                                     | 6.0                                                                                                                                                         | 500                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 7                                                                                                                                              | 7                                                                                                                | 1.0                                                                                                                                              | 3.5                                                                                                                                                  |
| 463                                                                                                              | 4                                                                                                                                             | 1 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 3                                                                                                                             | 17                                                                                                                                      | 25.7                                                                                                                                                        | 501                                                                                                                                   | 10                                                                                                          | 0                                                                                                        | 7                                                                                                                                              | 5                                                                                                                | 12                                                                                                                                               | 11.8                                                                                                                                                 |
| 460                                                                                                              | 4                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                    | 6                                                                                                                             | 0.7                                                                                                                                     | ,<br>                                                                                                                                                       | 501                                                                                                                                   | 4                                                                                                           | 1 75                                                                                                     | 7                                                                                                                                              | 5                                                                                                                | 2.7                                                                                                                                              | 17.4                                                                                                                                                 |
| 462                                                                                                              | 4                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                                                                                                                                                                                    | 0                                                                                                                             | 0.7                                                                                                                                     | 5.5                                                                                                                                                         | 502                                                                                                                                   | 4                                                                                                           | 1./5                                                                                                     | /                                                                                                                                              | 5                                                                                                                | 2.7                                                                                                                                              | 17.4                                                                                                                                                 |
| 461                                                                                                              | 4                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                    | 4                                                                                                                             | 1.6                                                                                                                                     | 14.8                                                                                                                                                        | 503                                                                                                                                   | 7                                                                                                           | 1.75                                                                                                     | 4                                                                                                                                              | 5                                                                                                                | 5.2                                                                                                                                              | 20.0                                                                                                                                                 |
| 460                                                                                                              | 7                                                                                                                                             | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 5                                                                                                                             | 23                                                                                                                                      | 124                                                                                                                                                         | 504                                                                                                                                   | 4                                                                                                           | 3 75                                                                                                     | 6                                                                                                                                              | 7                                                                                                                | 3.1                                                                                                                                              | 03                                                                                                                                                   |
| 400                                                                                                              | 10                                                                                                                                            | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                    | 5                                                                                                                             | 2.5                                                                                                                                     | 12.4                                                                                                                                                        | 504                                                                                                                                   | -                                                                                                           | 5.75                                                                                                     | 0                                                                                                                                              | 1                                                                                                                | 5.1                                                                                                                                              | ).5                                                                                                                                                  |
| 459                                                                                                              | 10                                                                                                                                            | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 4                                                                                                                             | 1.5                                                                                                                                     | 14.3                                                                                                                                                        | 505                                                                                                                                   | 10                                                                                                          | 2.25                                                                                                     | 1                                                                                                                                              | 6                                                                                                                | 1.0                                                                                                                                              | 8.2                                                                                                                                                  |
| 458                                                                                                              | 10                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                    | 4                                                                                                                             | 3.0                                                                                                                                     | 19.4                                                                                                                                                        | 506                                                                                                                                   | 10                                                                                                          | 0.5                                                                                                      | 7                                                                                                                                              | 7                                                                                                                | 0.7                                                                                                                                              | 2.5                                                                                                                                                  |
| 157                                                                                                              | 6                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                    | 3                                                                                                                             | 77                                                                                                                                      | 38.2                                                                                                                                                        | 507                                                                                                                                   | 4                                                                                                           | 0.25                                                                                                     | 6                                                                                                                                              | 2                                                                                                                | 57                                                                                                                                               | 35.0                                                                                                                                                 |
| +37                                                                                                              | 10                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                    | 5                                                                                                                             |                                                                                                                                         | 10.2                                                                                                                                                        | 507                                                                                                                                   | +                                                                                                           | 0.25                                                                                                     | 0                                                                                                                                              | 4                                                                                                                | 5.1                                                                                                                                              | 55.0                                                                                                                                                 |
| 456                                                                                                              | 10                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                    | 6                                                                                                                             | 5.1                                                                                                                                     | 103                                                                                                                                                         | E00                                                                                                                                   | 10                                                                                                          | 1                                                                                                        | 4                                                                                                                                              | 6                                                                                                                | 4                                                                                                                                                | 9.9                                                                                                                                                  |
| 455                                                                                                              | 7                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                         | 10.5                                                                                                                                                        | 508                                                                                                                                   | 10                                                                                                          | 1                                                                                                        | 4                                                                                                                                              | 0                                                                                                                | 7.1                                                                                                                                              |                                                                                                                                                      |
| 151                                                                                                              | /                                                                                                                                             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                    | 2.76                                                                                                                          | 4.1                                                                                                                                     | 28.7                                                                                                                                                        | 508<br>509                                                                                                                            | 10<br>7                                                                                                     | 1<br>0.75                                                                                                | 4<br>7                                                                                                                                         | 3                                                                                                                | 4.2                                                                                                                                              | 29.4                                                                                                                                                 |
| 404                                                                                                              | 7                                                                                                                                             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>1 84                                                                                                                                                                            | 2.76                                                                                                                          | 4.1                                                                                                                                     | 28.7                                                                                                                                                        | 508<br>509<br>510                                                                                                                     | 10<br>7<br>7                                                                                                | 1<br>0.75<br>0                                                                                           | 4<br>7<br>0.92                                                                                                                                 | 3<br>2 76                                                                                                        | 4.2                                                                                                                                              | 29.4<br>33.0                                                                                                                                         |
| 1                                                                                                                | 7                                                                                                                                             | 0.75<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7<br>1.84                                                                                                                                                                            | 2.76<br>0                                                                                                                     | 4.1<br>11.3                                                                                                                             | 28.7<br>53.0                                                                                                                                                | 508<br>509<br>510                                                                                                                     | 10<br>7<br>7                                                                                                | 1<br>0.75<br>0                                                                                           | 4<br>7<br>0.92                                                                                                                                 | 3<br>2.76                                                                                                        | 4.2<br>10.2                                                                                                                                      | 29.4<br>33.0                                                                                                                                         |
| 453                                                                                                              | 7<br>10                                                                                                                                       | 0.75<br>0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>1.84<br>1                                                                                                                                                                       | 2.76<br>0<br>7                                                                                                                | 4.1<br>11.3<br>7.2                                                                                                                      | 28.7<br>53.0<br>6.0                                                                                                                                         | 508<br>509<br>510<br>511                                                                                                              | 10<br>7<br>7<br>10                                                                                          | 1<br>0.75<br>0<br>1                                                                                      | 4<br>7<br>0.92<br>5.68                                                                                                                         | 3<br>2.76<br>3.92                                                                                                | 4.2<br>10.2<br>3.4                                                                                                                               | 29.4<br>33.0<br>24.6                                                                                                                                 |
| 453<br>452                                                                                                       | 7<br>10<br>7                                                                                                                                  | 0.75<br>0<br>1.5<br>0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>1.84<br>1<br>7                                                                                                                                                                  | 2.76<br>0<br>7<br>0                                                                                                           | 4.1<br>11.3<br>7.2<br>7.1                                                                                                               | 28.7<br>53.0<br>6.0<br>52.8                                                                                                                                 | 508<br>509<br>510<br>511<br>512                                                                                                       | 10<br>7<br>7<br>10<br>7                                                                                     | 1<br>0.75<br>0<br>1<br>0                                                                                 | 4<br>7<br>0.92<br>5.68<br>7                                                                                                                    | 3<br>2.76<br>3.92<br>0                                                                                           | 4.2<br>10.2<br>3.4<br>7.0                                                                                                                        | 29.4<br>33.0<br>24.6<br>52.3                                                                                                                         |
| 453<br>452                                                                                                       | 7<br>10<br>7                                                                                                                                  | 0.75<br>0<br>1.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>1.84<br>1<br>7                                                                                                                                                                  | 2.76<br>0<br>7<br>0                                                                                                           | 4.1<br>11.3<br>7.2<br>7.1                                                                                                               | 28.7<br>53.0<br>6.0<br>52.8                                                                                                                                 | 508<br>509<br>510<br>511<br>512<br>512                                                                                                | 10<br>7<br>7<br>10<br>7                                                                                     | 1<br>0.75<br>0<br>1<br>0                                                                                 | 4<br>7<br>0.92<br>5.68<br>7                                                                                                                    | 3<br>2.76<br>3.92<br>0                                                                                           | 4.2<br>10.2<br>3.4<br>7.0                                                                                                                        | 29.4<br>33.0<br>24.6<br>52.3                                                                                                                         |
| 453<br>452<br>451                                                                                                | 7<br>10<br>7<br>7                                                                                                                             | 0.75<br>0<br>1.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>1.84<br>1<br>7<br>0                                                                                                                                                             | 2.76<br>0<br>7<br>0<br>2                                                                                                      | 4.1<br>11.3<br>7.2<br>7.1<br>13.8                                                                                                       | 28.7<br>53.0<br>6.0<br>52.8<br>47.9                                                                                                                         | 508<br>509<br>510<br>511<br>512<br>513                                                                                                | 10<br>7<br>7<br>10<br>7<br>7                                                                                | 1<br>0.75<br>0<br>1<br>0<br>0                                                                            | 4<br>7<br>0.92<br>5.68<br>7<br>0                                                                                                               | 3<br>2.76<br>3.92<br>0<br>1                                                                                      | 4.2<br>10.2<br>3.4<br>7.0<br>13.9                                                                                                                | 29.4<br>33.0<br>24.6<br>52.3<br>51.3                                                                                                                 |
| 453<br>452<br>451                                                                                                | 7<br>10<br>7<br>7                                                                                                                             | 0.75<br>0<br>1.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>1.84<br>1<br>7<br>0                                                                                                                                                             | 2.76<br>0<br>7<br>0<br>2                                                                                                      | 4.1<br>11.3<br>7.2<br>7.1<br>13.8                                                                                                       | 28.7<br>53.0<br>6.0<br>52.8<br>47.9                                                                                                                         | 508<br>509<br>510<br>511<br>512<br>513                                                                                                | 10<br>7<br>7<br>10<br>7<br>7                                                                                | 1<br>0.75<br>0<br>1<br>0<br>0                                                                            | 4<br>7<br>0.92<br>5.68<br>7<br>0                                                                                                               | 3<br>2.76<br>3.92<br>0<br>1                                                                                      | 4.2<br>10.2<br>3.4<br>7.0<br>13.9                                                                                                                | 29.4<br>33.0<br>24.6<br>52.3<br>51.3                                                                                                                 |
| 453<br>452<br>451<br>Survey                                                                                      | 7<br>10<br>7<br>7<br>8                                                                                                                        | 0.75<br>0<br>1.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>1.84<br>1<br>7<br>0                                                                                                                                                             | 2.76<br>0<br>7<br>0<br>2                                                                                                      | 4.1<br>11.3<br>7.2<br>7.1<br>13.8                                                                                                       | 28.7<br>53.0<br>6.0<br>52.8<br>47.9                                                                                                                         | 508<br>509<br>510<br>511<br>512<br>513                                                                                                | 10<br>7<br>7<br>10<br>7<br>7<br>2                                                                           | 1<br>0.75<br>0<br>1<br>0<br>0                                                                            | 4<br>7<br>0.92<br>5.68<br>7<br>0                                                                                                               | 3<br>2.76<br>3.92<br>0<br>1                                                                                      | 4.2<br>10.2<br>3.4<br>7.0<br>13.9                                                                                                                | 29.4<br>33.0<br>24.6<br>52.3<br>51.3                                                                                                                 |
| 453<br>452<br>451<br>Survey                                                                                      | 7<br>10<br>7<br>7<br>9 line 19 (9                                                                                                             | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7<br>1.84<br>1<br>7<br>0<br>estern fence                                                                                                                                             | 2.76<br>0<br>7<br>0<br>2<br>e line)                                                                                           | 4.1<br>11.3<br>7.2<br>7.1<br>13.8                                                                                                       | 28.7<br>53.0<br>6.0<br>52.8<br>47.9                                                                                                                         | 508<br>509<br>510<br>511<br>512<br>513<br>Survey                                                                                      | 10<br>7<br>7<br>10<br>7<br>7<br>7                                                                           | 1<br>0.75<br>0<br>1<br>0<br>0                                                                            | 4<br>7<br>0.92<br>5.68<br>7<br>0                                                                                                               | 3<br>2.76<br>3.92<br>0<br>1<br>ce line)                                                                          | 4.2<br>10.2<br>3.4<br>7.0<br>13.9                                                                                                                | 29.4<br>33.0<br>24.6<br>52.3<br>51.3                                                                                                                 |
| 453<br>452<br>451<br><u>Survey</u><br>Site                                                                       | 7<br>10<br>7<br>7<br><u>y line 19 (9</u><br><u>Ground</u>                                                                                     | 0.75<br>0<br>1.5<br>0.5<br>0<br><u>6 m from we</u><br>Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter                                                                                                                                   | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer                                                                                 | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter                                                                                             | 28.7<br>53.0<br>6.0<br>52.8<br>47.9                                                                                                                         | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>7<br><u>7</u><br><u>7</u><br>7<br><u>7</u><br>7<br><u>7</u><br>7<br>7       | 1<br>0.75<br>0<br>1<br>0<br>0<br>01 m from w<br>Standing                                                 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br><u>vestern fene</u><br>Winter                                                                              | 3<br>2.76<br>3.92<br>0<br>1<br>ce line)<br>Summer                                                                | 4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter                                                                                                      | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer                                                                                                       |
| 453<br>452<br>451<br><u>Survey</u><br>Site                                                                       | 7<br>10<br>7<br>7<br><u>y line 19 (9</u><br>Ground<br>Albedo                                                                                  | 0.75<br>0<br>1.5<br>0.5<br>0<br><u>6 m from we</u><br><u>Standing</u><br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade                                                                                                                          | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade                                                                        | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV                                                                                       | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV                                                                                                         | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>01 m from w<br>Standing<br>Albedo                                       | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern feno<br>Winter<br>shade                                                                            | 3<br>2.76<br>3.92<br>0<br>1<br>ce line)<br>Summer<br>shade                                                       | 4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV                                                                                                | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV                                                                                                 |
| 453<br>452<br>451<br>Survey<br>Site                                                                              | 7<br>10<br>7<br>7<br>7<br>9<br>10<br>(9<br>9<br>Ground<br>Albedo<br>(9<br>(9)                                                                 | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density                                                                                                                               | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>depoitty                                                            | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)                                                                              | 28.7<br>28.7<br>53.0<br>6.0<br>52.8<br>47.9                                                                                                                 | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>/ line 20 (1)<br>Ground<br>Albedo                                           | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>01 m from w<br>Standing<br>Albedo<br>(%)                           | 4<br>7<br>0.92<br>5.68<br>7<br>0<br><u>vestern fend</u><br>Winter<br>shade<br>density                                                          | 3<br>2.76<br>3.92<br>0<br>1<br>summer<br>shade<br>denoity                                                        | 4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV                                                                                                | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)                                                                                        |
| 453<br>452<br>451<br>Survey<br>Site                                                                              | 7<br>10<br>7<br>7<br>7<br><u>y line 19 (9</u><br><u>Ground</u><br>Albedo<br>(%)                                                               | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density                                                                                                               | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density                                                             | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)                                                                              | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)                                                                                                | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>/ line 20 (1)<br>Ground<br>Albedo<br>(%)                                    | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>01 m from w<br>Standing<br>Albedo<br>(%)                           | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density                                                                 | 3<br>2.76<br>3.92<br>0<br>1<br>summer<br>shade<br>density                                                        | 4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)                                                                                       | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)                                                                                        |
| 453<br>452<br>451<br>Survey<br>Site<br>514                                                                       | 7<br>7<br>7<br>7<br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u>                              | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7                                                                                                          | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4                                                        | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2                                                                       | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5                                                                                        | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>/ line 20 (10<br>Ground<br>Albedo<br>(%)<br>4                               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>1 m from w<br>Standing<br>Albedo<br>(%)<br>0                  | 4<br>7.0.92<br>5.68<br>7<br>0<br>winter<br>shade<br>density<br>3                                                                               | 3<br>2.76<br>3.92<br>0<br>1<br>summer<br>shade<br>density<br>3                                                   | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0                                                                         | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0                                                                                |
| 453<br>452<br>451<br>Survey<br>Site                                                                              | 7<br>10<br>7<br>7<br>9<br>Ground<br>Albedo<br>(%)<br>4<br>6                                                                                   | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5                                                                                                                     | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4                                                        | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5                                                                | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9                                                                                | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>/ line 20 (1)<br>Ground<br>Albedo<br>(%)<br>4<br>6                     | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>3<br>5                                                       | 3<br>2.76<br>3.92<br>0<br>1<br>summer<br>shade<br>density<br>3<br>6                                              | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4                                                                  | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2                                                                        |
| 453<br>452<br>451<br>Survey<br>Site                                                                              | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6                                                                                   | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5                                                                                                     | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4                                                        | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5                                                                | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.2                                                                        | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site                                                                              | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>western fend<br>Winter<br>shade<br>density<br>3<br>5                                                       | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6                                              | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4                                                                  | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5                                                                |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516                                                         | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6                                                                              | 0.75<br>0<br>1.5<br>0.5<br>0<br>5<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5<br>6                                                                                                                | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5                                              | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0                                                         | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3                                                                        | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548                                                         | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6                  | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 4<br>7<br>0.92<br>5.68<br>7<br>0<br><u>vestern fene</u><br>winter<br>shade<br><u>density</u><br>3<br>5<br>6                                    | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5                                         | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8                                                           | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5                                                                |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517                                                  | 7<br>10<br>7<br>7<br>y line 19 (9<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6                                                              | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5<br>6<br>7                                                                                                           | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4                                         | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5                                                  | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7                                                                | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549                                                  | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 4<br>7<br>0.92<br>5.68<br>7<br>0<br><u>vestern fend</u><br>winter<br>shade<br>density<br>3<br>5<br>6<br>7                                      | 3<br>2.76<br>3.92<br>0<br>1<br><u>Summer</u><br>shade<br>density<br>3<br>6<br>5<br>3                             | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8                                                    | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3                                                        |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>512                                           | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>10                                                                        | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7                                                                                      | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4                                         | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5                                           | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.2                                                        | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550                                           | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>winter<br>shade<br>density<br>3<br>5<br>6<br>7                                                             | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7                               | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6                                             | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8                                                 |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518                                           | 7<br>10<br>7<br>7<br><b>y line 19 (9</b><br><b>Ground</b><br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10                                          | 0.75<br>0<br>1.5<br>0.5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>1<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>1<br>5<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7                                                                                                      | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6                                    | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5                                           | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3                                                        | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550                                           | 10<br>7<br>7<br>10<br>7<br>7<br>7<br><i>ine 20 (1)</i><br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10 | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br><u>vestern fene</u><br>winter<br>shade<br><u>density</u><br>3<br>5<br>6<br>7<br>6                          | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7                               | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6                                             | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8                                                 |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519                                    | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4                                                              | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>0<br>1.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>7                                                                                                 | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7                               | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5                                    | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2                                                 | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550<br>551                                    | 10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7           | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75          | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7                                   | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7                          | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3                                      | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2                                         |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520                             | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7                                                         | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>1.75<br>0.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>6                                                                                 | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3                          | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4                             | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2                                         | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550<br>551<br>552                             | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7<br>3                              | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2                     | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3                               | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7                                 |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520                             | 7<br>10<br>7<br>7<br>7<br><i>g</i> line 19 (9<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7<br>7                             | 0.75<br>0<br>1.5<br>0.5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>7<br>6<br>2                                                                                       | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3<br>2                     | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4<br>0.1                      | 28.7<br>28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2<br>41.9                         | 508<br>509<br>510<br>511<br>512<br>513<br>Site<br>546<br>547<br>548<br>549<br>550<br>551<br>552                                       | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>10<br>10<br>4        | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7<br>3<br>2                         | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2                     | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3                               | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7<br>50.2                         |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521                      | 7<br>7<br>7<br>7<br>7<br><i>g</i> line 19 (9<br><i>G</i> round<br><i>A</i> lbedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7<br>7              | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>7<br>6<br>3                                                                       | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3<br>2                     | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4<br>9.1                      | 28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2<br>41.8                                 | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553                      | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0     | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7<br>3<br>2                         | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2<br>1                | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3<br>11.6                       | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7<br>50.3                         |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>523               | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7<br>7<br>4                                               | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>7<br>6<br>3<br>4                                                                  | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3<br>2<br>4                | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4<br>9.1<br>6.5               | 28.7<br>28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2<br>41.8<br>26.0                 | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>551<br>552<br>553<br>554                      | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7<br>3<br>2<br>3                    | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2<br>1<br>5           | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3<br>11.6<br>10.6               | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7<br>50.3<br>31.2                 |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>523<br>524        | 7<br>10<br>7<br>7<br><b>g</b> line 19 (9<br><b>G</b> round<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7<br>7<br>4<br>4                | 0.75<br>0<br>1.5<br>0.5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7<br>1.84<br>1<br>7<br>0<br>winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>6<br>3<br>4<br>7                                                                                  | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3<br>2<br>4<br>5           | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4<br>9.1<br>6.5<br>4 1        | 28.7<br>28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2<br>41.8<br>26.0<br>21.6         | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554<br>555        | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br><u>vestern fend</u><br>winter<br>shade<br><u>density</u><br>3<br>5<br>6<br>7<br>6<br>7<br>3<br>2<br>3<br>4 | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2<br>1<br>5<br>5      | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3<br>11.6<br>10.6<br>8.8        | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7<br>50.3<br>31.2<br>28.5         |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>523<br>524<br>523 | 7<br>10<br>7<br>7<br>7<br>g line 19 (9<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7<br>7<br>4<br>4<br>7<br>7<br>4<br>4<br>7 | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>1.75<br>0.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>7<br>6<br>3<br>4<br>7<br>7                                                        | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3<br>2<br>4<br>5<br>4<br>5 | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4<br>9.1<br>6.5<br>4.1        | 28.7<br>28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2<br>41.8<br>26.0<br>21.6         | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554<br>555<br>554 | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7<br>3<br>2<br>3<br>4               | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2<br>1<br>5<br>5      | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3<br>11.6<br>10.6<br>8.8<br>8   | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7<br>50.3<br>31.2<br>28.5<br>27.4 |
| 453<br>452<br>451<br>Survey<br>Site<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>523<br>524<br>525 | 7<br>10<br>7<br>7<br>7<br>Ground<br>Albedo<br>(%)<br>4<br>6<br>6<br>6<br>10<br>4<br>7<br>7<br>4<br>4<br>7                                     | 0.75<br>0<br>1.5<br>0.5<br>0<br>6 m from we<br>Standing<br>Albedo<br>(%)<br>2<br>0<br>0<br>0<br>1.75<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7<br>1.84<br>1<br>7<br>0<br>estern fence<br>Winter<br>shade<br>density<br>7<br>5<br>6<br>7<br>7<br>7<br>6<br>3<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 2.76<br>0<br>7<br>0<br>2<br>e line)<br>Summer<br>shade<br>density<br>4<br>4<br>5<br>4<br>6<br>7<br>3<br>2<br>4<br>5<br>4      | 4.1<br>11.3<br>7.2<br>7.1<br>13.8<br>Winter<br>UV<br>(SED)<br>4.2<br>5.5<br>5.0<br>3.5<br>1.5<br>2.5<br>6.4<br>9.1<br>6.5<br>4.1<br>4.0 | 28.7<br>28.7<br>53.0<br>6.0<br>52.8<br>47.9<br>Summer<br>UV<br>(SED)<br>27.5<br>29.9<br>22.3<br>25.7<br>10.3<br>8.2<br>37.2<br>41.8<br>26.0<br>21.6<br>21.2 | 508<br>509<br>510<br>511<br>512<br>513<br>Survey<br>Site<br>546<br>547<br>548<br>549<br>550<br>551<br>552<br>553<br>554<br>555<br>556 | 10<br>7<br>7<br>10<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7               | 1<br>0.75<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>7<br>0.92<br>5.68<br>7<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>3<br>5<br>6<br>7<br>6<br>7<br>3<br>2<br>3<br>4<br>5          | 3<br>2.76<br>3.92<br>0<br>1<br>Summer<br>shade<br>density<br>3<br>6<br>5<br>3<br>7<br>7<br>2<br>1<br>5<br>5<br>4 | 4.1<br>4.2<br>10.2<br>3.4<br>7.0<br>13.9<br>Winter<br>UV<br>(SED)<br>9.0<br>6.4<br>5.8<br>3.8<br>1.6<br>3.3<br>9.3<br>11.6<br>10.6<br>8.8<br>8.5 | 29.4<br>33.0<br>24.6<br>52.3<br>51.3<br>Summer<br>UV<br>(SED)<br>37.0<br>19.2<br>25.5<br>32.3<br>1.8<br>11.2<br>45.7<br>50.3<br>31.2<br>28.5<br>37.4 |

| 527 | 4  | 0    | 4    | 1    | 8.4  | 48.3 | 558 | 4  | 0    | 6 | 0 | 7.9  | 54.1 |  |
|-----|----|------|------|------|------|------|-----|----|------|---|---|------|------|--|
| 528 | 4  | 2.25 | 3    | 1    | 8.9  | 43.6 | 559 | 4  | 1.5  | 1 | 3 | 11.5 | 40.4 |  |
| 529 | 4  | 0.5  | 6    | 4    | 5.5  | 31.1 | 560 | 10 | 0    | 3 | 0 | 11.7 | 55.3 |  |
| 530 | 7  | 0    | 2    | 2    | 9.9  | 43.5 | 561 | 4  | 0    | 0 | 0 | 13.1 | 54.4 |  |
| 531 | 7  | 0    | 5    | 4    | 7.7  | 33.2 | 562 | 4  | 0    | 1 | 0 | 13.1 | 54.8 |  |
| 532 | 7  | 2.25 | 4    | 2    | 8.7  | 39.9 | 563 | 4  | 0    | 1 | 1 | 13.0 | 53.1 |  |
| 533 | 7  | 0    | 4    | 1    | 8.8  | 48.5 | 564 | 4  | 0    | 2 | 0 | 11.3 | 53.4 |  |
| 534 | 7  | 0    | 3    | 2    | 8.6  | 43.1 | 565 | 7  | 0.5  | 7 | 5 | 4.1  | 23.8 |  |
| 535 | 7  | 3.25 | 5    | 4    | 6.6  | 29.9 | 566 | 7  | 0    | 6 | 5 | 6.8  | 29.7 |  |
| 536 | 10 | 0    | 7    | 6    | 1.2  | 9.5  | 567 | 6  | 0    | 5 | 2 | 7.2  | 43.8 |  |
| 537 | 7  | 1.75 | 7    | 4    | 3.6  | 27.6 | 568 | 10 | 1.5  | 6 | 2 | 4.8  | 39.5 |  |
| 538 | 7  | 0    | 4    | 5    | 7.6  | 25.2 | 569 | 4  | 1.75 | 5 | 4 | 3.7  | 19.9 |  |
| 539 | 10 | 0    | 6    | 7    | 6.0  | 16.1 | 570 | 4  | 0    | 4 | 0 | 10.6 | 55.5 |  |
| 540 | 10 | 0    | 7    | 4    | 2.0  | 20.3 | 571 | 4  | 0    | 0 | 0 | 13.7 | 56.2 |  |
| 541 | 4  | 0    | 7    | 4    | 4.6  | 24.7 | 572 | 10 | 1    | 0 | 5 | 9.7  | 22.5 |  |
| 542 | 4  | 0    | 2    | 0.92 | 11.5 | 52.5 | 573 | 4  | 0.5  | 7 | 0 | 7.1  | 52.5 |  |
| 543 | 10 | 1.5  | 2.84 | 3    | 7.8  | 32.8 | 574 | 7  | 0    | 0 | 1 | 13.2 | 51.4 |  |
| 544 | 7  | 0.5  | 7    | 0    | 7.1  | 52.8 |     |    |      |   |   |      |      |  |
| 545 | 7  | 0    | 0    | 2    | 13.5 | 46.9 |     |    |      |   |   |      |      |  |

Survey line 21 (106 m from western fence line)

Survey line 22 (111 m from western fence line)

....

6

| Site   | Albada      | Albedo      | winter     | Summer   | winter | Summer      | Site   | Albada     | Albada      | winter      | summer   | winter | Summer |
|--------|-------------|-------------|------------|----------|--------|-------------|--------|------------|-------------|-------------|----------|--------|--------|
|        | (04)        | (%)         | donaity    | donaity  |        | UV<br>(SED) |        | (04)       | (%)         | donaity     | donaity  |        |        |
| 602    | 10          | (%)         | 1          | 1        | 10.7   | (3ED)       | 604    | 10         | (70)        | 1           | 1        | 0.1    | 20.1   |
| 602    | 10          | 275         | 1          | 1        | 2 2    | 43.0        | 605    | 10         | 1.5         | 7           | 1        | 9.1    | 19.1   |
| 601    | 10          | 2.75        | 7          | 5        | 2.3    | 12.4        | 606    | 10         | 1.75        | 7           | 7        | 2.5    | 1.0    |
| 600    | 6           | 2.75        | 7          | 2        | 2.0    | 17.5        | 607    | 4          | 1.75        | 7           | 7        | 2.5    | 0.2    |
| 500    | 0           | 1.5         | 6          | 5        | 2.7    | 23.7        | 607    | 10         | 1.5         | 7           | I<br>C   | 0.5    | 1.1    |
| 509    | 10          | 1.5         | 0          | 0        | 2.0    | 0.2         | 608    | 10         | 0.75        | 2           | 0        | 3.5    | 14.5   |
| 507    | 10          | 0.75        | 1          | /        | 5.0    | 12.5        | 610    | 4          | 0           | 5           | 2        | 9.0    | 42.3   |
| 597    | 4           | 0           | 4          | 1        | 9.4    | 40.5        | 610    | 4          | 0           | 1           | 2        | 12.4   | 44.2   |
| 590    | 4           | 0           | 1          | 1        | 10.2   | 48.5        | 011    | 4          | 0           | 2           | 2        | 10.7   | 39.9   |
| 595    | 4           | 0           | 3          | 3        | 10.2   | 39.8        | 612    | 4          | 0           | 5           | 4        | 8.8    | 31.9   |
| 594    | 4           | 0           | 5          | 4        | 10.4   | 35.2        | 613    | 4          | 0           | 5           | 1        | 9.4    | 53.8   |
| 593    | 4           | 0           | 5          | 2        | 9.5    | 48.8        | 614    | 4          | 0           | 3           | 0        | 11.2   | 56.5   |
| 592    | 4           | 0           | 5          | 0        | 9.5    | 55.5        | 615    | 4          | 0           | 3           | 0        | 11.5   | 57.5   |
| 591    | 4           | 0           | 4          | 0        | 10.9   | 56.5        | 616    | 4          | 0           | 0           | 0        | 14.2   | 57.9   |
| 590    | 4           | 0           | 1          | 0        | 12.7   | 56.9        | 617    | 4          | 0           | 0           | 0        | 14.4   | 58.6   |
| 589    | 4           | 0           | 0          | 0        | 14.0   | 57.2        | 618    | 4          | 0           | 0           | 0        | 14.4   | 58.6   |
| 588    | 4           | 0           | 0          | 0        | 14.1   | 57.5        | 619    | 4          | 0           | 0           | 0        | 14.3   | 58.2   |
| 587    | 4           | 0           | 0          | 0        | 13.9   | 56.9        | 620    | 4          | 0           | 0           | 0        | 14.3   | 58.2   |
| 586    | 4           | 0           | 0          | 0        | 13.9   | 56.9        | 621    | 4          | 0           | 0           | 0        | 14.3   | 58.2   |
| 585    | 4           | 0           | 1          | 0        | 13.7   | 56.9        | 622    | 4          | 0           | 0           | 0        | 14.0   | 57.2   |
| 584    | 6           | 0.5         | 7          | 5        | 4.4    | 23.8        | 623    | 4          | 2           | 1           | 1        | 13.1   | 53.6   |
| 583    | 6           | 0           | 5          | 3        | 7.6    | 36.3        | 624    | 4          | 2           | 2           | 1        | 12.2   | 52.6   |
| 582    | 6           | 0           | 4.95       | 0        | 9.4    | 52.6        | 625    | 4          | 2           | 2           | 2        | 12.2   | 49.3   |
| 581    | 6           | 1.75        | 3          | 0        | 9.1    | 49.6        | 626    | 4          | 0           | 1           | 2        | 12.4   | 47.8   |
| 580    | 4           | 1.5         | 6          | 0        | 7.7    | 53.8        | 627    | 4          | 0           | 4           | 3.8      | 6.5    | 27.9   |
| 579    | 4           | 0           | 2          | 0        | 12.6   | 55.8        | 628    | 4          | 0           | 3.85        | 2.85     | 5.5    | 28.5   |
| 578    | 4           | 0           | 0.92       | 0        | 13.2   | 55.8        | 629    | 4          | 0           | 4.85        | 3.8      | 5.2    | 26.9   |
| 577    | 10          | 1.5         | 0          | 3        | 10.0   | 34.9        | 630    | 4          | 0.25        | 3.8         | 3.85     | 5.0    | 25.5   |
| 576    | 4           | 0.5         | 7          | 0        | 7.2    | 52.9        | 631    | 4          | 0.25        | 4.8         | 3.85     | 4.8    | 25.5   |
| 575    | 4           | 0           | 0          | 2        | 13.9   | 52.2        | 632    | 4          | 0.25        | 4.85        | 3.85     | 4.7    | 25.2   |
|        |             |             |            |          |        |             | 633    | 4          | 0.25        | 4.8         | 3.85     | 4.7    | 25.2   |
|        |             |             |            |          |        |             | 634    | 4          | 0.25        | 4.8         | 3.85     | 5.1    | 26.5   |
|        |             |             |            |          |        |             | 635    | 4          | 0           | 4.85        | 3.8      | 5.6    | 28.3   |
|        |             |             |            |          |        |             | 636    | 4          | 0           | 3.8         | 3.8      | 6.3    | 30.0   |
|        |             |             |            |          |        |             | 637    | 4          | 0           | 4.8         | 0        | 9.2    | 54.1   |
|        |             |             |            |          |        |             | 638    | 4          | 0           | 0           | 3        | 11.2   | 38.7   |
|        |             |             |            |          |        |             | 639    | 4          | 2           | 5           | 4        | 5.6    | 28.2   |
|        |             |             |            |          |        |             | 640    | 4          | 2           | 5           | 4        | 6.7    | 32.0   |
|        |             |             |            |          |        |             | 641    | 4          | 0           | 4           | 0        | 10.9   | 56.5   |
|        |             |             |            |          |        |             | 642    | 4          | 0           | 0           | 1        | 14.2   | 56.5   |
|        |             |             |            |          |        |             | -      |            |             |             |          |        |        |
| Survey | line 23 (11 | 16 m from w | estern fen | ce line) |        |             | Survey | line 24 (1 | 21 m from w | estern fend | ce line) |        |        |
| Site   | Ground      | Standing    | Winter     | Summer   | Winter | Summer      | Site   | Ground     | Standing    | Winter      | Summer   | Winter | Summer |
|        | Albedo      | Albedo      | shade      | shade    | UV     | UV          |        | Albedo     | Albedo      | shade       | shade    | UV     | UV     |
|        | (%)         | (%)         | density    | density  | (SED)  | (SED)       |        | (%)        | (%)         | density     | density  | (SED)  | (SED)  |
| 662    | 10          | 1.5         | 0          | 1        | 10.4   | 42.3        | 663    | 10         | 1.5         | 0           | 1        | 10.4   | 42.3   |
| 661    | 10          | 1.5         | 7          | 7        | 0.7    | 2.5         | 664    | 10         | 0.75        | 7           | 7        | 3.4    | 11.6   |
|        |             |             |            |          |        |             | •      |            |             |             |          |        |        |

| 660                                                                                                                                                                          | -                                                                                                                            |                                                                                             | -                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | -                                                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                     | ~                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              | 6                                                                                                                            | 0                                                                                           | 3                                                                                                            | 1                                                                                                                                                                                                                                                                 | 9.9                                                                                                                                                                                         | 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 665                                                                                                                         | 6                                                                                                                                                                                                                                   | 0                                                                                                                                       | 5                                                                                                                                                                                                                   | 0                                                                                                                                     | 9.5                                                                                                                                                           | 54.6                                                                                                                                              |
| 659                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 2                                                                                                            | 0                                                                                                                                                                                                                                                                 | 11.8                                                                                                                                                                                        | 52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 666                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 13.6                                                                                                                                                          | 55.8                                                                                                                                              |
| 658                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 2                                                                                                            | 0                                                                                                                                                                                                                                                                 | 11.6                                                                                                                                                                                        | 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 667                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 1                                                                                                                                                                                                                   | 0                                                                                                                                     | 13/                                                                                                                                                           | 55.8                                                                                                                                              |
| 050                                                                                                                                                                          | +                                                                                                                            | 0                                                                                           | 2                                                                                                            | 5                                                                                                                                                                                                                                                                 | 11.0                                                                                                                                                                                        | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 669                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 1                                                                                                                                                                                                                   | 2                                                                                                                                     | 12.4                                                                                                                                                          | 110                                                                                                                                               |
| 05/                                                                                                                                                                          | 10                                                                                                                           | 0                                                                                           | 3                                                                                                            | 5                                                                                                                                                                                                                                                                 | 8.9                                                                                                                                                                                         | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 008                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 5                                                                                                                                     | 13.0                                                                                                                                                          | 44.9                                                                                                                                              |
| 656                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 5                                                                                                            | 1                                                                                                                                                                                                                                                                 | 8.9                                                                                                                                                                                         | 52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 655                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                        | 57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 654                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 144                                                                                                                                                                                         | 58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 652                                                                                                                                                                          |                                                                                                                              | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.4                                                                                                                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 653                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                        | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 652                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 13.9                                                                                                                                                                                        | 56.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 651                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 13.9                                                                                                                                                                                        | 56.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 650                                                                                                                                                                          | 1                                                                                                                            | õ                                                                                           | Ő                                                                                                            | Ő                                                                                                                                                                                                                                                                 | 1/1                                                                                                                                                                                         | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 030                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                        | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 649                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                        | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 648                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                        | 57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 647                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14 1                                                                                                                                                                                        | 57 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 612                                                                                                                                                                          | т<br>1                                                                                                                       | 0                                                                                           | 1                                                                                                            | 0                                                                                                                                                                                                                                                                 | 12.0                                                                                                                                                                                        | 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 040                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 1                                                                                                            | 0                                                                                                                                                                                                                                                                 | 15.9                                                                                                                                                                                        | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 645                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 1                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                        | 57.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| 643                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.7                                                                                                                                                                                        | 59.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
|                                                                                                                                                                              |                                                                                                                              | -                                                                                           | -                                                                                                            | -                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                   |
| C                                                                                                                                                                            | line 25 (1)                                                                                                                  | 76 m far                                                                                    | iontorn f.                                                                                                   | a lina)                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>C</b>                                                                                                                    | line DC (1)                                                                                                                                                                                                                         | 21 m fac                                                                                                                                | ionton f.                                                                                                                                                                                                           | a lina)                                                                                                                               |                                                                                                                                                               |                                                                                                                                                   |
| Survey                                                                                                                                                                       | line $25(1)$                                                                                                                 | 26 m from w                                                                                 | estern lend                                                                                                  | ce line)                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Survey                                                                                                                      | / line 26 (1.                                                                                                                                                                                                                       | 31 m from w                                                                                                                             | estern len                                                                                                                                                                                                          | ce line)                                                                                                                              |                                                                                                                                                               |                                                                                                                                                   |
| Site                                                                                                                                                                         | Ground                                                                                                                       | Standing                                                                                    | Winter                                                                                                       | Summer                                                                                                                                                                                                                                                            | Winter                                                                                                                                                                                      | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Site                                                                                                                        | Ground                                                                                                                                                                                                                              | Standing                                                                                                                                | Winter                                                                                                                                                                                                              | Summer                                                                                                                                | Winter                                                                                                                                                        | Summer                                                                                                                                            |
|                                                                                                                                                                              | Albedo                                                                                                                       | Albedo                                                                                      | shade                                                                                                        | shade                                                                                                                                                                                                                                                             | UV                                                                                                                                                                                          | UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | Albedo                                                                                                                                                                                                                              | Albedo                                                                                                                                  | shade                                                                                                                                                                                                               | shade                                                                                                                                 | UV                                                                                                                                                            | UV                                                                                                                                                |
|                                                                                                                                                                              | (%)                                                                                                                          | (%)                                                                                         | density                                                                                                      | density                                                                                                                                                                                                                                                           | (SED)                                                                                                                                                                                       | (SED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             | (%)                                                                                                                                                                                                                                 | (%)                                                                                                                                     | density                                                                                                                                                                                                             | density                                                                                                                               | (SED)                                                                                                                                                         | (SED)                                                                                                                                             |
|                                                                                                                                                                              | (70)                                                                                                                         | (70)                                                                                        | uclisity                                                                                                     | uclisity                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>(</i> <b>-</b> -                                                                                                         | (70)                                                                                                                                                                                                                                | (70)                                                                                                                                    | ouensity                                                                                                                                                                                                            | uensity                                                                                                                               |                                                                                                                                                               |                                                                                                                                                   |
| 674                                                                                                                                                                          | 10                                                                                                                           | 1.75                                                                                        | 0                                                                                                            | 1                                                                                                                                                                                                                                                                 | 10.5                                                                                                                                                                                        | 42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 675                                                                                                                         | 10                                                                                                                                                                                                                                  | 1.75                                                                                                                                    | 0                                                                                                                                                                                                                   | 1                                                                                                                                     | 10.5                                                                                                                                                          | 42.7                                                                                                                                              |
| 673                                                                                                                                                                          | 10                                                                                                                           | 0.75                                                                                        | 7                                                                                                            | 7                                                                                                                                                                                                                                                                 | 3.5                                                                                                                                                                                         | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 676                                                                                                                         | 10                                                                                                                                                                                                                                  | 0.75                                                                                                                                    | 7                                                                                                                                                                                                                   | 7                                                                                                                                     | 3.2                                                                                                                                                           | 10.9                                                                                                                                              |
| 672                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 6                                                                                                            | 0                                                                                                                                                                                                                                                                 | 9.0                                                                                                                                                                                         | 54.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 677                                                                                                                         | 4                                                                                                                                                                                                                                   | 0.5                                                                                                                                     | 5                                                                                                                                                                                                                   | 1                                                                                                                                     | 8.2                                                                                                                                                           | 50.9                                                                                                                                              |
| 671                                                                                                                                                                          | 4                                                                                                                            | õ                                                                                           | 0                                                                                                            | õ                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                        | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 670                                                                                                                         |                                                                                                                                                                                                                                     | 0.5                                                                                                                                     | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.0                                                                                                                                                          | 57.0                                                                                                                                              |
| 0/1                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | U                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                        | 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0/8                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | U                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.2                                                                                                                                                          | 57.9                                                                                                                                              |
| 670                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                        | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 679                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.3                                                                                                                                                          | 58.2                                                                                                                                              |
| 669                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 2                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                        | 52.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 680                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.3                                                                                                                                                          | 58.2                                                                                                                                              |
|                                                                                                                                                                              |                                                                                                                              | -                                                                                           | -                                                                                                            |                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                                                                                                                                     | -                                                                                                                                       | -                                                                                                                                                                                                                   | -                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                   |
| Summer                                                                                                                                                                       | line 27 (1                                                                                                                   | 36 m from                                                                                   | actorn for                                                                                                   | a lina)                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Summer                                                                                                                      | lino 20 (1                                                                                                                                                                                                                          | 11 m from                                                                                                                               | actorn for                                                                                                                                                                                                          | a lina)                                                                                                                               |                                                                                                                                                               |                                                                                                                                                   |
| Survey                                                                                                                                                                       | nne 27 (1                                                                                                                    | SO III IFOM W                                                                               | estern rend                                                                                                  | ce inie)                                                                                                                                                                                                                                                          |                                                                                                                                                                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Survey                                                                                                                      | / mie 28 (14                                                                                                                                                                                                                        | 41 III from W                                                                                                                           | estern ren                                                                                                                                                                                                          | le nne)                                                                                                                               |                                                                                                                                                               |                                                                                                                                                   |
| Site                                                                                                                                                                         | Ground                                                                                                                       | Standing                                                                                    | Winter                                                                                                       | Summer                                                                                                                                                                                                                                                            | Winter                                                                                                                                                                                      | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Site                                                                                                                        | Ground                                                                                                                                                                                                                              | Standing                                                                                                                                | Winter                                                                                                                                                                                                              | Summer                                                                                                                                | Winter                                                                                                                                                        | Summer                                                                                                                                            |
|                                                                                                                                                                              | Albedo                                                                                                                       | Albedo                                                                                      | shade                                                                                                        | shade                                                                                                                                                                                                                                                             | UV                                                                                                                                                                                          | UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | Albedo                                                                                                                                                                                                                              | Albedo                                                                                                                                  | shade                                                                                                                                                                                                               | shade                                                                                                                                 | UV                                                                                                                                                            | UV                                                                                                                                                |
|                                                                                                                                                                              | (%)                                                                                                                          | (%)                                                                                         | density                                                                                                      | density                                                                                                                                                                                                                                                           | (SED)                                                                                                                                                                                       | (SED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             | (%)                                                                                                                                                                                                                                 | (%)                                                                                                                                     | density                                                                                                                                                                                                             | density                                                                                                                               | (SED)                                                                                                                                                         | (SED)                                                                                                                                             |
|                                                                                                                                                                              | (70)                                                                                                                         | (70)                                                                                        | uensity                                                                                                      | uensity                                                                                                                                                                                                                                                           | (SED)                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | (70)                                                                                                                                                                                                                                | (70)                                                                                                                                    | uensity                                                                                                                                                                                                             | density                                                                                                                               |                                                                                                                                                               |                                                                                                                                                   |
| 681                                                                                                                                                                          | 10                                                                                                                           | 1.5                                                                                         | 0                                                                                                            | 3                                                                                                                                                                                                                                                                 | 9.6                                                                                                                                                                                         | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 696                                                                                                                         | 10                                                                                                                                                                                                                                  | 1.5                                                                                                                                     | 0                                                                                                                                                                                                                   | 3                                                                                                                                     | 11.7                                                                                                                                                          | 40.5                                                                                                                                              |
| 682                                                                                                                                                                          | 10                                                                                                                           | 2.5                                                                                         | 7                                                                                                            | 7                                                                                                                                                                                                                                                                 | 3.2                                                                                                                                                                                         | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 697                                                                                                                         | 10                                                                                                                                                                                                                                  | 2                                                                                                                                       | 5.79                                                                                                                                                                                                                | 5.79                                                                                                                                  | 3.9                                                                                                                                                           | 14.9                                                                                                                                              |
| 683                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 7                                                                                                            | 0                                                                                                                                                                                                                                                                 | 76                                                                                                                                                                                          | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 608                                                                                                                         | 10                                                                                                                                                                                                                                  | 2                                                                                                                                       | 5 86                                                                                                                                                                                                                | 5 79                                                                                                                                  | 4.6                                                                                                                                                           | 177                                                                                                                                               |
| 003                                                                                                                                                                          | +                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.2                                                                                                                                                                                        | 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 090                                                                                                                         | 10                                                                                                                                                                                                                                  | 2<br>0                                                                                                                                  | 2.00                                                                                                                                                                                                                | 5.17                                                                                                                                  | 4.0                                                                                                                                                           | 1/./<br>E/ 1                                                                                                                                      |
| 684                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.3                                                                                                                                                                                        | 58.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 699                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 3                                                                                                                                                                                                                   | 0                                                                                                                                     | 11.4                                                                                                                                                          | 54.1                                                                                                                                              |
| 685                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14.5                                                                                                                                                                                        | 58.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 700                                                                                                                         | 4                                                                                                                                                                                                                                   | 1                                                                                                                                       | 5                                                                                                                                                                                                                   | 0                                                                                                                                     | 10.3                                                                                                                                                          | 55.8                                                                                                                                              |
| 686                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 14 5                                                                                                                                                                                        | 58.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 701                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14 5                                                                                                                                                          | 58.9                                                                                                                                              |
| 207                                                                                                                                                                          |                                                                                                                              | 0                                                                                           | 1                                                                                                            | 0                                                                                                                                                                                                                                                                 | 147                                                                                                                                                                                         | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 702                                                                                                                         |                                                                                                                                                                                                                                     | Ő                                                                                                                                       | õ                                                                                                                                                                                                                   | 0                                                                                                                                     | 147                                                                                                                                                           | 50.6                                                                                                                                              |
| 08/                                                                                                                                                                          |                                                                                                                              |                                                                                             | 1                                                                                                            | U                                                                                                                                                                                                                                                                 | 14./                                                                                                                                                                                        | 00.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 702                                                                                                                         | 4                                                                                                                                                                                                                                   |                                                                                                                                         | U                                                                                                                                                                                                                   | U                                                                                                                                     | 14./                                                                                                                                                          | 39.0                                                                                                                                              |
|                                                                                                                                                                              | 4                                                                                                                            | 0                                                                                           |                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | -                                                                                                                                                                                                                                   | 0                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                               | 50.6                                                                                                                                              |
| 688                                                                                                                                                                          | 4                                                                                                                            | 0                                                                                           | 0                                                                                                            | 0                                                                                                                                                                                                                                                                 | 15.0                                                                                                                                                                                        | 60.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 59.0                                                                                                                                              |
| 688<br>689                                                                                                                                                                   | 4<br>4<br>4                                                                                                                  | 0                                                                                           | 0<br>0                                                                                                       | 0                                                                                                                                                                                                                                                                 | 15.0<br>15.1                                                                                                                                                                                | 60.6<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690                                                                                                                                                            | 4<br>4<br>4                                                                                                                  | 0 0 0                                                                                       | 0<br>0<br>0                                                                                                  | 0<br>0                                                                                                                                                                                                                                                            | 15.0<br>15.1                                                                                                                                                                                | 60.6<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690                                                                                                                                                            | 4<br>4<br>4<br>4                                                                                                             | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                                  | 0<br>0<br>0                                                                                                                                                                                                                                                       | 15.0<br>15.1<br>15.1                                                                                                                                                                        | 60.6<br>61.0<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691                                                                                                                                                     | 4<br>4<br>4<br>4<br>4                                                                                                        | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0                                                                                             | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                  | 15.0<br>15.1<br>15.1<br>15.1                                                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692                                                                                                                                              | 4<br>4<br>4<br>4<br>4                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0                                                                                        | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                             | 15.0<br>15.1<br>15.1<br>15.1<br>15.1                                                                                                                                                        | 60.6<br>61.0<br>61.0<br>61.0<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693                                                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0                                                                                        | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                             | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.1                                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693                                                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0                                                                                   | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                        | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0                                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693<br>694                                                                                                                                | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                   | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6                                                                                                                                        | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695                                                                                                                         | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1                                                                                                                                                                                                                         | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695                                                                                                                         | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1                                                                                                                                                                                                                              | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                         | 4                                                                                                                                                                                                                                   | 0                                                                                                                                       | 0                                                                                                                                                                                                                   | 0                                                                                                                                     | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey                                                                                                               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>ine 29 (1)                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>2<br>ce line)                                                                                                                                                                                                                  | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703<br>Survey                                                                                                               | 4<br>4                                                                                                                                                                                                                              | 0<br>0<br>51 m from v                                                                                                                   | 0<br>vestern fend                                                                                                                                                                                                   | 0<br>ce line)                                                                                                                         | 14.7                                                                                                                                                          | 39.0                                                                                                                                              |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey                                                                                                               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>7 cm d                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>cce line)                                                                                                                                                                                                                      | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7                                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Survey                                                                                                                      | 4<br><u>y line 30 (1:</u><br><u>Ground</u>                                                                                                                                                                                          | 51 m from w                                                                                                                             | 0<br>vestern feno<br>Winter                                                                                                                                                                                         | 0<br>ce line)                                                                                                                         | Winter                                                                                                                                                        | 57.0<br>Summer                                                                                                                                    |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>Cround                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>46 m from w<br>Standing                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>2<br>ce line)<br>Summer                                                                                                                                                                                                   | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter                                                                                                                      | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703<br>Survey<br>Site                                                                                                       | 4<br>y line 30 (1.<br>Ground                                                                                                                                                                                                        | 0<br>51 m from w<br>Standing                                                                                                            | 0<br>vestern fend<br>Winter                                                                                                                                                                                         | 0<br>ce line)<br>Summer                                                                                                               | 14.7<br>Winter                                                                                                                                                | Summer                                                                                                                                            |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>7 line 29 (1-<br>Ground<br>Albedo                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>vestern fence<br>Winter<br>shade                                | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade                                                                                                                                                                                                    | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV                                                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703<br>Survey<br>Site                                                                                                       | 4<br><u>y line 30 (1:</u><br><u>Ground</u><br>Albedo                                                                                                                                                                                | 0<br>0<br>51 m from w<br>Standing<br>Albedo                                                                                             | 0<br>vestern fend<br>Winter<br>shade                                                                                                                                                                                | 0<br>ce line)<br>Summer<br>shade                                                                                                      | 14.7<br>Winter<br>UV                                                                                                                                          | Summer<br>UV                                                                                                                                      |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>7 line 29 (1-<br>Ground<br>Albedo<br>(%)                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>summer<br>shade<br>density                                                                                                                                                                                                | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)                                                                                                       | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site                                                                                                       | 4<br>y line 30 (1)<br>Ground<br>Albedo<br>(%)                                                                                                                                                                                       | 51 m from w<br>Standing<br>Albedo<br>(%)                                                                                                | 0<br>vestern fend<br>Winter<br>shade<br>density                                                                                                                                                                     | 0<br>ce line)<br>Summer<br>shade<br>density                                                                                           | 14.7<br>Winter<br>UV<br>(SED)                                                                                                                                 | Summer<br>UV<br>(SED)                                                                                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>7<br>1ine 29 (1-<br>Ground<br>Albedo<br>(%)<br>4                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>46 m from w<br>Standing<br>Albedo<br>(%)<br>0            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1                                                                                                                                                                                           | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7                                                                                               | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site                                                                                                       | 4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7                                                                                                                                                                                  | 51 m from w<br>Standing<br>Albedo<br>(%)                                                                                                | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0                                                                                                                                                                | 0<br><u>see line)</u><br>Summer<br>shade<br>density<br>0                                                                              | Winter<br>UV<br>(SED)<br>14 7                                                                                                                                 | Summer<br>UV<br>(SED)<br>59.9                                                                                                                     |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site                                                                                                       | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>8<br>7<br>6<br>7<br>0<br>10                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2<br>70                                                                                                                                                                    | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7                                                                                               | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 703<br>Survey<br>Site<br>712<br>712                                                                                         | 4<br><u>y line 30 (1:</u><br><u>Ground</u><br><u>Albedo</u><br>(%)<br>7<br>7                                                                                                                                                        | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0                                                                                           | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0                                                                                                                                                                | 0<br><u>Summer</u><br>shade<br><u>density</u><br>0                                                                                    | 14.7<br>Winter<br>UV<br>(SED)<br>14.7                                                                                                                         | Summer<br>UV<br>(SED)<br>59.9                                                                                                                     |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>704                                                                                         | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2.79                                                                                                                                                                  | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3                                                                                        | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 703<br>Survey<br>Site<br>712<br>713                                                                                         | 4<br><u>y line 30 (1:</u><br><u>Ground</u><br><u>Albedo</u><br>(%)<br>7<br>7                                                                                                                                                        | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0                                                                                      | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0                                                                                                                                                           | 0<br>ce line)<br>Summer<br>shade<br>density<br>0<br>0                                                                                 | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5                                                                                                                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2                                                                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706                                                                                  | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7 (1-<br>Ground<br>Albedo<br>(%)<br>4<br>10<br>10 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>winter<br>shade<br>density<br>0<br>2.79<br>3.79 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br><u>Summer</u><br>shade<br>density<br>1<br>2.79<br>2.79                                                                                                                                                               | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4                                                                                 | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 703<br>Survey<br>Site<br>712<br>713<br>714                                                                                  | 4<br>4<br><u>y line 30 (1:</u><br><u>Ground</u><br><u>Albedo</u><br>(%)<br>7<br>7<br>7<br>7                                                                                                                                         | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0                                                                                      | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93                                                                                                                                                   | 0<br><u>Summer</u><br>shade<br><u>density</u><br>0<br>0<br>0                                                                          | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1                                                                                                         | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6                                                                                                     |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707                                                                           | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>0<br>10<br>4             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>winter<br>shade<br>density<br>0<br>2.79<br>3.79<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0                                                                                                                                                                 | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.4<br>13.6                                                                                | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715                                                                           | 4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>7                                                                                                                                                              | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0                                                                            | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1                                                                                                                                              | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7                                                                                                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3                                                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708                                                                    | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>10<br>10<br>4<br>4                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0                                                                                                                                                     | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8                                                                 | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176                                                                    | 4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4                                                                                                                                                              | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0                                                                            | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0                                                                                                                                         | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0                                                                         | Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9                                                                                                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3                                                                                     |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709                                                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>10<br>10<br>4<br>4<br>4                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                         | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8                                                                 | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717                                                             | 4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>4                                                                                                                                                                   | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0                                                                            | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0                                                                                                                                         | 0<br>ce line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.9                                                                                         | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3                                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709                                                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2.79<br>3.79<br>1<br>2<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0                                                                                                                                             | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6                                                         | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717                                                             | 4<br>4<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>4<br>4                                                                                                                                                                          | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0                                                                                                                                    | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8                                                                                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>59.9                                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710                                                      | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br><u>Summer</u><br>shade<br><u>density</u><br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                            | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8                                                         | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718                                                      | 4<br>4<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4                                                                                                                                                                | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                             | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | Winter           UV           (SED)           14.7           14.5           14.1           14.7           14.8           14.9           14.8           14.9   | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>59.9<br>60.3                                                                     |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711                                               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                         | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8                                         | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719                                               | 4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4                                                                                                                                               | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                           | ce line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Winter           UV           (SED)           14.7           14.5           14.1           14.7           14.9           14.9           14.9           14.9   | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3                                                                     |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711                                               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8                                                 | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719                                               | 4<br>4<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4                                                                                                                                                           | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                | ce line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9                                                                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711                                               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                             | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8                                                 | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>5                                          | 4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                     | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0                                                                                                                | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | Winter           UV           (SED)           14.7           14.5           14.1           14.7           14.9           14.9           14.9           14.9   | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey                                     | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                             | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8                                                 | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey                                     | 4<br>y line 30 (1)<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>y line 32 (1)                                                                                                                         | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                             | ce line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Winter           UV           (SED)           14.7           14.5           14.1           14.7           14.9           14.9           14.9                  | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3                                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                   | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8                                         | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site                             | 4<br>4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>y line 32 (1:<br>Ground                                                                                                          | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>76 m from w<br>Standing              | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>Shade<br>density                                                                       | ce line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.9<br>14.9<br>14.9<br>Winter                                                       | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>59.9                                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>10<br>4<br>4<br>4<br>4                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                          | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.4<br>13.6<br>13.8<br>14.6<br>13.8<br>14.6<br>14.8<br>14.8                                | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>Summer<br>UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site                             | 4<br>4<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>y line 32 (1'<br>Ground<br>Albedo                                                                                                                 | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | o<br>see line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9<br>14.9<br>14.9                                                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>0.3                                              |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8                         | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>Summer<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site                             | 4<br>4<br><u>y line 30 (1:</u><br><u>Ground</u><br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br><u>y line 32 (1'</u><br><u>Ground</u><br>Albedo<br>(%)                                                             | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                             | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>(SED)                                | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>Vummer<br>UV                             |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>4<br>4<br>4<br>4                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>ce line)<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8<br>Vinter<br>UV<br>(SED)                | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>59.9<br>Summer<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>717<br>715<br>717<br>718<br>719<br>Survey<br>Site                      | 4<br>4<br>y line 30 (1:<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>y line 32 (1:<br>Ground<br>Albedo<br>(%)                                                                                    | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | o<br>summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>UV<br>(SED)                                  | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>8<br>0.3                                 |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site<br>720                      | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>10<br>4<br>4<br>4<br>4                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>ce line)<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                        | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8                         | 60.6<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>59.9<br>Summer<br>UV<br>(SED)<br>61.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site<br>737                      | 4<br>4<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>y line 32 (1'<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60                                       |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site                             | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>10<br>10<br>10<br>4<br>4<br>4<br>4                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                          | 15.0<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8         | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>Summer<br>UV<br>(SED)<br>61.3<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site<br>737<br>738               | 4<br>4<br>4<br>4<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                     | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                    | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.5<br>15.0<br>15.2 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60                                       |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site<br>720<br>721<br>722        | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>Summer<br>shade<br>density<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                          | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8 | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>60.6<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>Summer<br>UV<br>(SED)<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0 | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site<br>737<br>738<br>739        | 4<br>4<br><u>y line 30 (1:</u><br><u>Ground</u><br>Albedo<br>(%)<br>7<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                  | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9                 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>Summer<br>UV<br>(SED)<br>60.6<br>61.3<br>60.3            |
| 688<br>689<br>690<br>691<br>692<br>693<br>694<br>695<br>Survey<br>Site<br>704<br>705<br>706<br>707<br>708<br>709<br>710<br>711<br>Survey<br>Site<br>720<br>721<br>722<br>722 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>2.79<br>2.79<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                   | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.0<br>14.6<br>13.7<br>Winter<br>UV<br>(SED)<br>13.7<br>9.3<br>9.4<br>13.6<br>13.8<br>14.6<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8 | 60.6<br>61.0<br>61.0<br>61.0<br>61.0<br>59.3<br>53.1<br>Summer<br>UV<br>(SED)<br>53.1<br>38.4<br>42.2<br>56.5<br>58.9<br>59.3<br>59.9<br>59.9<br>59.9<br>59.9<br>Summer<br>UV<br>(SED)<br>61.3<br>61.3<br>61.3<br>61.0<br>61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 703<br>Survey<br>Site<br>712<br>713<br>714<br>715<br>176<br>717<br>718<br>719<br>Survey<br>Site<br>737<br>738<br>739<br>740 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                  | 51 m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>1.93<br>1<br>0<br>0<br>0<br>0<br>0<br>vestern fend<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 14.7<br>Winter<br>UV<br>(SED)<br>14.7<br>14.5<br>14.1<br>14.7<br>14.9<br>14.8<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>15.0<br>15.2<br>14.9<br>14.2 | Summer<br>UV<br>(SED)<br>59.9<br>59.2<br>59.6<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>60.3<br>8<br>UV<br>(SED)<br>60.6<br>61.3<br>60.3<br>50.0 |

| 704                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 1                                                                                                                                                           | (1.0                                                                                                                                                                                                                                                                                                                                                                                           | 741                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147                                                                                                           | 50 (                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 724                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           | 741                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                                                                                                          | 59.6                                                                                                          |
| 125                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                                                                                                                           | 60.6                                                                                                                                                                                                                                                                                                                                                                                           | 742                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.8                                                                                                          | 59.9                                                                                                          |
| 726                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           | 743                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.8                                                                                                          | 59.9                                                                                                          |
| 727                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                                                                                                                           | 60.6                                                                                                                                                                                                                                                                                                                                                                                           | 744                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.8                                                                                                          | 59.9                                                                                                          |
| 728                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           | 745                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                                                                                                          | 59.6                                                                                                          |
| 729                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           | 746                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                          | 61.0                                                                                                          |
| 730                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           | 747                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.8                                                                                                          | 59.9                                                                                                          |
| 731                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2                                                                                                                                                           | 61.3                                                                                                                                                                                                                                                                                                                                                                                           | 748                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5                                                                                                          | 58.9                                                                                                          |
| 732                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           | / 10                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                          | 50.7                                                                                                          |
| 732                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 61.0                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
| 755                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                           | 01.0                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
| /34                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                                                                                                                           | 60.6                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
| 735                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                                                                                                                                                           | 59.6                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
| 736                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.0                                                                                                                                                           | 37.1                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
| Survey                                                                                                                                                                                                                                                                                                                                                                 | line 33 (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96 m from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | estern fen                                                                                                                                                                                                                                                                                                                                                                                                                               | ce line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                | Survey                                                                                                                                                                                                                                                                                                                                                   | y line 34 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 m from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vestern fend                                                                                                                                                                                                                                                                                                                                                                                                                             | ce line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                                                                                                               |
| Site                                                                                                                                                                                                                                                                                                                                                                   | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter                                                                                                                                                         | Summer                                                                                                                                                                                                                                                                                                                                                                                         | Site                                                                                                                                                                                                                                                                                                                                                     | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter                                                                                                        | Summer                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                        | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | shade                                                                                                                                                                                                                                                                                                                                                                                                                                    | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UV                                                                                                                                                             | UV                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shade                                                                                                                                                                                                                                                                                                                                                                                                                                    | shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UV                                                                                                            | UV                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                        | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | density                                                                                                                                                                                                                                                                                                                                                                                                                                  | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (SED)                                                                                                                                                          | (SED)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | density                                                                                                                                                                                                                                                                                                                                                                                                                                  | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (SED)                                                                                                         | (SED)                                                                                                         |
| 740                                                                                                                                                                                                                                                                                                                                                                    | (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (/0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.4                                                                                                                                                           | (3LD)                                                                                                                                                                                                                                                                                                                                                                                          | 771                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (SLD)                                                                                                         | (3LD)                                                                                                         |
| 749                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.4                                                                                                                                                           | 62.0                                                                                                                                                                                                                                                                                                                                                                                           | //1                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2                                                                                                          | 01.5                                                                                                          |
| /50                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.3                                                                                                                                                           | 61./                                                                                                                                                                                                                                                                                                                                                                                           | 770                                                                                                                                                                                                                                                                                                                                                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.3                                                                                                          | 61./                                                                                                          |
| 751                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.9                                                                                                                                                           | 60.3                                                                                                                                                                                                                                                                                                                                                                                           | 769                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                          | 61.0                                                                                                          |
| 752                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1                                                                                                                                                            | 22.9                                                                                                                                                                                                                                                                                                                                                                                           | 768                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.6                                                                                                          | 59.3                                                                                                          |
| 752x                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.1                                                                                                                                                           | 44.2                                                                                                                                                                                                                                                                                                                                                                                           | 767                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.1                                                                                                          | 58.2                                                                                                          |
| 753                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.8                                                                                                                                                            | 43.2                                                                                                                                                                                                                                                                                                                                                                                           | 766                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.1                                                                                                          | 57.5                                                                                                          |
| 754                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6                                                                                                                                                           | 45.2                                                                                                                                                                                                                                                                                                                                                                                           | 765                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.2                                                                                                          | 56.5                                                                                                          |
| 755                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.6                                                                                                                                                           | 57.9                                                                                                                                                                                                                                                                                                                                                                                           | 764                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4                                                                                                          | 59.3                                                                                                          |
| 756                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.0                                                                                                                                                           | 42.0                                                                                                                                                                                                                                                                                                                                                                                           | 762                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                                                                                                          | 52.0                                                                                                          |
| 750                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.2                                                                                                                                                           | 42.0                                                                                                                                                                                                                                                                                                                                                                                           | 703                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.2                                                                                                          | 55.2                                                                                                          |
| /5/                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4                                                                                                                                                           | 43.4                                                                                                                                                                                                                                                                                                                                                                                           | /62                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.7                                                                                                          | 57.2                                                                                                          |
| 758                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5                                                                                                                                                           | 58.9                                                                                                                                                                                                                                                                                                                                                                                           | 761                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.6                                                                                                          | 59.3                                                                                                          |
| 759                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.2                                                                                                                                                           | 59.3                                                                                                                                                                                                                                                                                                                                                                                           | 760                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                                                                                                          | 59.6                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                               |
| Survey                                                                                                                                                                                                                                                                                                                                                                 | line 35 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36 m from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | actorn fan                                                                                                                                                                                                                                                                                                                                                                                                                               | an lina)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                | Sumo                                                                                                                                                                                                                                                                                                                                                     | 1ima 26 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                          | an lime)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                                                                                                               |
| Survey                                                                                                                                                                                                                                                                                                                                                                 | mic 55 (2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jo m nom w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | estern ren                                                                                                                                                                                                                                                                                                                                                                                                                               | ce nne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                | Surve                                                                                                                                                                                                                                                                                                                                                    | / nne 50 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56 m from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | estern lend                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>ze nne)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                                                                                                               |
| Site                                                                                                                                                                                                                                                                                                                                                                   | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter                                                                                                                                                         | Summer                                                                                                                                                                                                                                                                                                                                                                                         | Site                                                                                                                                                                                                                                                                                                                                                     | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter                                                                                                        | Summer                                                                                                        |
| Site                                                                                                                                                                                                                                                                                                                                                                   | Ground<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                          | Summer<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV                                                                                                                                                   | Summer<br>UV                                                                                                                                                                                                                                                                                                                                                                                   | Site                                                                                                                                                                                                                                                                                                                                                     | Ground<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                          | Summer<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV                                                                                                  | Summer<br>UV                                                                                                  |
| Site                                                                                                                                                                                                                                                                                                                                                                   | Ground<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                          | Summer<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)                                                                                                                                          | Summer<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                          | Site                                                                                                                                                                                                                                                                                                                                                     | Ground<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standing<br>Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                          | Summer<br>shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)                                                                                         | Summer<br>UV<br>(SED)                                                                                         |
| Site                                                                                                                                                                                                                                                                                                                                                                   | Ground<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                               | Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)                                                                                                                                          | Summer<br>UV<br>(SED)                                                                                                                                                                                                                                                                                                                                                                          | Site                                                                                                                                                                                                                                                                                                                                                     | Ground<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standing<br>Albedo<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                               | Summer<br>shade<br>density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Winter<br>UV<br>(SED)                                                                                         | Summer<br>UV<br>(SED)                                                                                         |
| Survey           Site           772           772                                                                                                                                                                                                                                                                                                                      | Ground<br>Albedo<br>(%)<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standing<br>Albedo<br>(%)<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>shade<br>density<br>0                                                                                                                                                                                                                                                                                                                                                                                                          | Summer<br>shade<br>density<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>15.3                                                                                                                                  | Summer<br>UV<br>(SED)<br>61.7                                                                                                                                                                                                                                                                                                                                                                  | Site<br>795                                                                                                                                                                                                                                                                                                                                              | Ground<br>Albedo<br>(%)<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standing<br>Albedo<br>(%)<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>shade<br>density<br>0                                                                                                                                                                                                                                                                                                                                                                                                          | Summer<br>shade<br>density<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>15.3                                                                                 | Summer<br>UV<br>(SED)<br>61.7                                                                                 |
| Site<br>772<br>773                                                                                                                                                                                                                                                                                                                                                     | Ground<br>Albedo<br>(%)<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standing<br>Albedo<br>(%)<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                     | Summer<br>shade<br>density<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4                                                                                                                          | Summer<br>UV<br>(SED)<br>61.7<br>62.0                                                                                                                                                                                                                                                                                                                                                          | Site<br>795<br>794                                                                                                                                                                                                                                                                                                                                       | Ground<br>Albedo<br>(%)<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standing<br>Albedo<br>(%)<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                     | Summer<br>shade<br>density<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4                                                                         | Summer<br>UV<br>(SED)<br>61.7<br>62.0                                                                         |
| Site           772           773           774                                                                                                                                                                                                                                                                                                                         | Ground<br>Albedo<br>(%)<br>7<br>7<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standing<br>Albedo<br>(%)<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter<br>shade<br>density<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3                                                                                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7                                                                                                                                                                                                                                                                                                                                                  | Site<br>795<br>794<br>793                                                                                                                                                                                                                                                                                                                                | Ground<br>Albedo<br>(%)<br>7<br>7<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4                                                                 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0                                                                 |
| Site           772           773           774           775                                                                                                                                                                                                                                                                                                           | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                      | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3                                                                                                          | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7                                                                                                                                                                                                                                                                                                                                          | Survey           Site           795           794           793           792                                                                                                                                                                                                                                                                            | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                      | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3                                                         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7                                                         |
| Site           772           773           774           775           776                                                                                                                                                                                                                                                                                             | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                            | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.2                                                                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.3                                                                                                                                                                                                                                                                                                                                  | Survey           Site           795           794           793           792           791                                                                                                                                                                                                                                                              | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                            | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3                                                 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7                                                 |
| Starvey           Site           772           773           774           775           776           777                                                                                                                                                                                                                                                             | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                           | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                             | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.2<br>15.1                                                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.3<br>61.0                                                                                                                                                                                                                                                                                                                          | Survey           Site           795           794           793           792           791           790                                                                                                                                                                                                                                                | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                             | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3                                         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7                                         |
| Starves           772           773           774           775           776           777           778                                                                                                                                                                                                                                                              | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                         | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.2<br>15.1<br>15.1                                                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.3<br>61.0<br>61.0                                                                                                                                                                                                                                                                                                                  | Survey           Site           795           794           793           792           791           790           789                                                                                                                                                                                                                                  | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | So m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                              | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3                                 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7                                 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779                                                                                                                                                                                                                                                                                                                   | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                     | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1                                                                          | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0                                                                                                                                                                                                                                                                                                  | Survey           Site           795           794           793           792           791           790           789           788                                                                                                                                                                                                                    | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                          | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3                 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7                         |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780                                                                                                                                                                                                                                                                                                            | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                       | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2                                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3                                                                                                                                                                                                                                                                                                  | Site           795           794           793           792           791           790           789           788           787                                                                                                                                                                                                                       | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3                 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7                 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781                                                                                                                                                                                                                                                                                                     | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2                                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.2                                                                                                                                                                                                                                                                                          | Site           795           794           793           792           791           790           789           788           787           786                                                                                                                                                                                                         | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stom from w           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vestern Tende<br>Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                               | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7         |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>792                                                                                                                                                                                                                                                                                              | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                               | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2                                                          | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>(1.2                                                                                                                                                                                                                                                                                  | Site           795           794           793           792           791           790           789           788           787           786           787                                                                                                                                                                                           | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stom from w           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782                                                                                                                                                                                                                                                                                              | Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                       | Winter           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3                                                                                                                                                                                                                                                                                  | Site           795           794           793           792           791           790           789           788           787           786           785                                                                                                                                                                                           | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783                                                                                                                                                                                                                                                                                       | Interstep         Ground           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                               | Winter           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0                                                                                                                                                                                                                                                                  | Site           795           794           793           792           791           790           789           788           787           786           785           784                                                                                                                                                                             | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783                                                                                                                                                                                                                                                                                       | Interstep         Strength           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                     | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0                                                                                                                                                                                                                                                                          | 795           794           793           792           791           790           789           787           786           785           784                                                                                                                                                                                                          | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783<br>Survey                                                                                                                                                                                                                                                                             | Ime 35 (2.           Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           76 m from w                                                                                                                                                                                                                                                                                                                                                         | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3                                                                                                                                                                                                                                                                          | 795<br>794<br>793<br>792<br>791<br>790<br>789<br>788<br>787<br>786<br>785<br>784<br>Survey                                                                                                                                                                                                                                                               | (%)<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stom from w           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           96 m from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783<br>Survey<br>Site                                                                                                                                                                                                                                                                     | Ime 35 (2)           Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           7           7           7           6           9           10           9           10           11           12           13           14           15           16           17           17           17           17      10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0       | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>51.0                                                                                                                                                                                                                                                          | 795<br>794<br>793<br>792<br>791<br>790<br>789<br>788<br>787<br>786<br>785<br>784<br>Survey<br>Site                                                                                                                                                                                                                                                       | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S6 m from w           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 <t< td=""><td>Vinter<br/>shade<br/>density<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0</td><td>Winter<br/>UV<br/>(SED)<br/>15.3<br/>15.4<br/>15.4<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3</td><td>Summer<br/>UV<br/>(SED)<br/>61.7<br/>62.0<br/>62.0<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7</td></t<> | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| 772<br>773<br>774<br>775<br>776<br>777<br>778<br>779<br>780<br>781<br>782<br>783<br>Survey<br>Site                                                                                                                                                                                                                                                                     | Interstep         Stress           Ground         Albedo           Albedo         (%)           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         Ground           Albedo         Albedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0       | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>91.0<br>VV                                                                                                                                                                                                                                                    | Site           795           794           793           792           791           790           789           788           787           786           785           784           Survet                                                                                                                                                            | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | So m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           778           779           780           781           782           783           Survey           Site                                                                                                                                                           | Interstep         Stress           Ground         Albedo           Albedo         (%)           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         6           (%)         (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0       | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>91.0<br>VV<br>(SED)                                                                                                                                                                                                                           | Site           795           794           793           792           791           790           789           788           787           786           785           784           Survet           Site                                                                                                                                             | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | So m from w<br>Standing<br>Albedo<br>(%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site                                                                                                                                                                                       | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         6           (%)         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           76 m from w           Standing           Albedo           (%)           0                                                                                                                                                                                                                                                                                                                                           | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3                                                                                                                                                                                                                                 | Site           795           794           793           792           791           790           789           786           785           784           Survey           Site                                                                                                                                                                         | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           96 m from w           Standing           Albedo           (%)           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site                                                                                                                                                                                       | Ime 35 (2)           Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                       | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3<br>61.7                                                                                                                                                                                                                                         | Site           795           794           793           792           791           790           789           787           786           785           784           Surver           Site                                                                                                                                                           | Ville 38 (2)<br>Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           96 m from w           Standing           Albedo           (%)           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site                                                                                                                                                                                       | Ime 35 (2)           Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                               | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3<br>61.7<br>61.7                                                                                                                                                                                                                 | Site           795           794           793           792           791           790           789           787           786           785           784           Surve           Site                                                                                                                                                            | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           798           707                                                                                                                               | Ime 35 (2.           Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                           | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.1<br>Winter<br>UV<br>(SED)<br>15.2<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.2<br>61.3<br>61.2<br>61.3<br>61.2<br>61.3<br>61.2<br>61.3<br>61.2<br>61.3<br>61.2<br>61.2<br>61.2<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 | Site           795           794           793           792           791           790           789           787           786           785           784           Survet           819           818           817                                                                                                                                | Albedo         Constraint         Constraint< | S6 m from w           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           778           779           780           781           782           783           Survey           Site           796           797           798           799           790           797           798           799           790           791           792 | Interstep         Stress           Ground         Albedo           Albedo         (%)           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                           | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.7<br>(SED)<br>61.3<br>61.7<br>61.7<br>62.0                                                                                                                                                                                         | Site           795           794           793           792           791           790           789           788           787           786           785           784           Survet           Site           819           818           817           816                                                                                     | Alle 36 (2)           Ground           Albedo           (%)           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           798           799           800                                                                                                                 | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                           | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3<br>61.7<br>61.7<br>62.0<br>61.7                                                                                                                                                                                                 | Site           795           794           793           792           791           790           789           786           785           784           Survey           Site           819           818           817           816           815                                                                                                   | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           798           799           800           801                                                                                                   | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Xanding           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3<br>61.7<br>61.7<br>61.7<br>61.7<br>61.3                                                                                                                                                                                                 | Site           795           794           793           792           791           790           789           787           786           785           784           Surver           Site           819           818           817           816           815           814                                                                       | Alle 38 (2)           Ground           Albedo           (%)           7           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           798           799           800           801           802                                                                                     | Interstep         Stress         Carlot           Ground         Albedo         (%)         7           7         4         4         4         4           4         4         4         4         4           4         4         4         4         4           4         4         4         4         4           4         4         4         4         4           4         4         4         4         4           4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <t< td=""><td>Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0   </td><td>Vinter<br/>shade<br/>density<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>Summer<br/>shade<br/>density<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>Winter<br/>UV<br/>(SED)<br/>15.3<br/>15.4<br/>15.3<br/>15.2<br/>15.1<br/>15.1<br/>15.1<br/>15.2<br/>15.2<br/>15.2<br/>15.2</td><td>Summer<br/>UV<br/>(SED)<br/>61.7<br/>62.0<br/>61.7<br/>61.3<br/>61.0<br/>61.0<br/>61.0<br/>61.3<br/>61.3<br/>61.3<br/>61.3<br/>61.3<br/>61.0<br/>Summer<br/>UV<br/>(SED)<br/>61.3<br/>61.7<br/>61.7<br/>62.0<br/>61.7<br/>61.3<br/>61.3<br/>61.3</td><td>Site           795           794           793           792           791           790           789           787           786           785           784           Surver           819           818           817           816           815           814           813</td><td>Albedo         Constraint         Constraint&lt;</td><td>Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0</td><td>Vestern fend<br/>winter<br/>shade<br/>density<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td>Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1           2</td><td>Winter<br/>UV<br/>(SED)<br/>15.3<br/>15.4<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3<br/>15.3</td><td>Summer<br/>UV<br/>(SED)<br/>61.7<br/>62.0<br/>62.0<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7<br/>61.7</td></t<> | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0       | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>Summer<br>UV<br>(SED)<br>61.3<br>61.7<br>61.7<br>62.0<br>61.7<br>61.3<br>61.3<br>61.3                                                                                                                                                                         | Site           795           794           793           792           791           790           789           787           786           785           784           Surver           819           818           817           816           815           814           813                                                                        | Albedo         Constraint         Constraint< | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1           2                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           778           779           780           781           782           783           Survey           Site           796           797           798           799           800           801           802           803                                           | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                   | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>8<br>UV<br>(SED)<br>61.3<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0                                                                                                                                              | Site           795           794           793           792           791           790           789           787           786           785           784           Surver           819           818           817           816           815           814           813           812                                                          | Albedo         Constraint           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1           2           0                                                                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           778           779           780           781           782           783           Survey           Site           796           797           798           799           800           801           802           803           804                             | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                   | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                 | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>VV<br>(SED)<br>61.3<br>61.7<br>61.7<br>62.0<br>61.7<br>61.3<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>60.6                                                                                                                                           | Site           795           794           793           792           791           790           789           786           785           784           Survet           Site           819           818           817           816           815           814           813           812           811                                           | Ground<br>Albedo<br>(%)<br>7<br>7<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1           2                                                                                                                                                                                                                                                                                                             | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           798           800           801           802           803           804                                                                       | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Xanding           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                 | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.3<br>61.3<br>61.3<br>61.3<br>61.6<br>60.6                                                                                                                                                          | Site           795           794           793           792           791           790           789           786           785           784           Survey           Site           819           818           817           816           815           814           813           812           811           810                             | Alle 36 (2)           Ground           Albedo           (%)           7           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vinter shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                   | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1           2           4                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           798           799           800           801           802           803           804           805           806                             | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Xanding           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0             | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.0<br>VV<br>(SED)<br>61.3<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.3<br>61.7<br>61.3<br>61.0<br>61.6<br>60.6<br>60.6<br>61.0                                                                                                                                           | Site           795           794           793           792           791           790           789           787           786           785           784           Surver           Site           819           818           817           816           815           814           813           811           810           809               | Alle 38 (2)           Ground           Albedo           (%)           7           7           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1                                                                                                                                                                                                                                                                                                                         | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |
| Site           772           773           774           775           776           777           780           781           782           783           Survey           Site           796           797           780           801           802           803           804           805           806           807                                           | Interstep         Stress           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Xanding           Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Vinter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.2<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2                                                  | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>61.7<br>61.3<br>61.0<br>61.0<br>61.0<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.3<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.3<br>61.7<br>61.3<br>61.3<br>61.3<br>61.0<br>60.6<br>60.6<br>61.0<br>61.3                                                                                                                                  | Site           795           794           793           792           791           790           789           787           786           785           784           Surver           Site           819           818           817           816           815           814           813           812           811           810           809 | Albedo         Constraint           Ground         Albedo           (%)         7           7         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4           4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standing           Albedo           (%)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vestern fend<br>winter<br>shade<br>density<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                | Summer           shade           density           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1           2           4           1           0                                                                                                                                                                                                                                                                                                 | Winter<br>UV<br>(SED)<br>15.3<br>15.4<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3         | Summer<br>UV<br>(SED)<br>61.7<br>62.0<br>62.0<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7<br>61.7 |

## Appendix P. Additional facial UV exposures measured in the student population

Table P.1: Facial site exposure (SED) measured to students wearing (protected) and not wearing (unprotected) broad brimmed hats in region 24 (basketball courts) and region 22 (school oval) (Downs & Parisi 2008). The error given in the Table, t, is the 95% C.I.

| Trial 1 - 29       | 03.2007 SZ    | 4 29-3                  | 5° 253                 | DU.C         | lear. B | asketba  | 11      |        |     |     |     |     |                         |            |          | - |
|--------------------|---------------|-------------------------|------------------------|--------------|---------|----------|---------|--------|-----|-----|-----|-----|-------------------------|------------|----------|---|
| 11100 1 29.        | Protected     |                         | + t                    | FR           | Unn     | rotected |         |        |     |     |     |     |                         | + t        | FR       |   |
|                    | TOLECIEU      | х                       | <u> </u>               | 06           | onp     |          | L       |        |     |     |     |     | х                       | <u> </u>   | 0%       |   |
| Varter             |               |                         |                        | 70           | 0.0     | 65       |         |        |     |     |     |     | 7 9                     | 11.2       | 70<br>95 | - |
| Vertex             |               |                         |                        |              | 9.0     | 0.5      |         |        |     |     |     |     | 7.0                     | 11.2       | 00       |   |
| Forehead           |               |                         |                        |              | 4.4     |          |         |        |     |     |     |     | 4.4                     |            | 47       |   |
| Cheek              | 1.1           | 1.1                     |                        | 13           | 2.4     | 2.9      |         |        |     |     |     |     | 2.7                     | 2.2        | 30       |   |
| Chin               |               |                         |                        |              | 1.9     |          |         |        |     |     |     |     | 1.9                     |            | 22       |   |
| Side               | 1.0 0.7       | 0.9                     | 1.3                    | 10           | 1.0     |          |         |        |     |     |     |     | 1.0                     |            | 11       |   |
|                    |               |                         |                        |              |         |          |         |        |     |     |     |     |                         |            |          |   |
| Trial 2 - 30.      | 03.2007, SZA  | A 30-3                  | 6°, 257 I              | DU, CI       | ear, Ba | asketbal | 1       |        |     |     |     |     |                         |            |          |   |
|                    | Protected     | ⊽                       | + t                    | ER           | Únn     | rotected | 1       |        |     |     |     |     | v                       | + <b>t</b> | ER       | - |
|                    | Tioteeteu     | ~                       | ⊥ t                    | %            | Unp     | 10100100 | •       |        |     |     |     |     | 'n                      | ⊥ t        | %        |   |
| Vertex             |               |                         |                        |              | 7.8     |          |         |        |     |     |     |     | 7.8                     |            | 100      | - |
| Cheek              |               |                         |                        |              | 2.4     |          |         |        |     |     |     |     | 2.4                     |            | 31       |   |
| Side               |               |                         |                        |              | 2.6     |          |         |        |     |     |     |     | 2.6                     |            | 34       |   |
| Side               |               |                         |                        |              | 2.0     |          |         |        |     |     |     |     | 2.0                     |            | 54       |   |
| T 12 10            | 11 2006 07    | . 0 17                  | 200 D                  | 11 6 7       | 00      | 1 .      | 1 1     | 1.4    | 11  |     |     |     |                         |            |          |   |
| Trial 3 - 10.      | 11.2006, SZA  | 49-17                   | , 300 D                | <u>, 6-7</u> | 8 Cun   | nulonim  | ibus, B | asketb | all |     |     |     |                         |            |          | _ |
|                    | Protected     | x                       | ±t                     | ER           | Unp     | rotected |         |        |     |     |     |     | x                       | ±t         | ER       |   |
| <b></b>            |               |                         |                        | %            |         |          |         |        |     |     |     |     |                         |            | %        | _ |
| Vertex             |               |                         |                        |              | 7.1     |          |         |        |     |     |     |     | 7.1                     |            | 100      |   |
| Forehead           |               |                         |                        |              | 1.5     | 4.8      | 1.9     |        |     |     |     |     | 2.7                     | 3.7        | 40       |   |
| Cheek              |               |                         |                        |              | 1.5     | 1.6      |         |        |     |     |     |     | 1.6                     | 0.4        | 24       |   |
| Side               | 1.5           | 1.5                     |                        | 23           | 1.9     |          |         |        |     |     |     |     | 1.9                     |            | 28       |   |
|                    |               |                         |                        |              |         |          |         |        |     |     |     |     |                         |            |          |   |
| Trail 4 - 15.      | 08.2006, SZA  | A 40-43                 | 5°, 269 I              | DU, Cl       | ear, So | occer    |         |        |     |     |     |     |                         |            |          |   |
|                    | Protected     | v                       | + t                    | ER           | Unn     | rotected | 1       |        |     |     |     |     | v                       | + t        | ER       | - |
|                    | Trottetted    |                         | ⊥ t                    | %            | enp     | 10100100 |         |        |     |     |     |     |                         | ֥          | %        |   |
| Vertex             |               |                         |                        |              | 5.6     | 4.3      |         |        |     |     |     |     | 5.0                     | 5.8        | 89       | - |
| Forehead           |               |                         |                        |              | 2.4     | 1.2      |         |        |     |     |     |     | 1.8                     | 5.4        | 34       |   |
| Nose               | 19            | 19                      |                        | 35           | 2       | 1.2      |         |        |     |     |     |     | 110                     |            |          |   |
| Chaole             | 1.0 0.0       | 1.9                     | 0.4                    | 10           | 2.2     | 07       | 0.5     | 1.4    | 12  | 17  | 1.0 | 1.2 | 12                      | 0.4        | 22       |   |
| Cheek              | 1.0 0.9       | 1.0                     | 0.4                    | 19           | 1.2     | 1.2      | 0.5     | 1.4    | 1.5 | 1.7 | 1.0 | 1.2 | 1.2                     | 0.4        | 43<br>17 |   |
| Side               |               |                         |                        |              | 1.5     | 1.5      | 0.7     | 0.7    | 0.7 |     |     |     | 0.8                     | 0.5        | 1/       |   |
|                    |               |                         |                        |              |         |          | ~       |        |     |     |     |     |                         |            |          |   |
| Trail 5 - 23.      | .02.2007, SZA | A 17-2                  | 7°, 255 I              | DU, 5-'      | 7/8 Cu  | mulus,   | Soccer  |        |     |     |     |     |                         |            |          |   |
|                    | Protected     | $\overline{\mathbf{x}}$ | ±t                     | ER           | Unp     | rotected | 1       |        |     |     |     |     | $\overline{\mathbf{x}}$ | ±t         | ER       |   |
|                    |               |                         |                        | %            |         |          |         |        |     |     |     |     |                         |            | %        |   |
| Vertex             |               |                         |                        |              | 3.1     | 4.3      | 4.6     |        |     |     |     |     | 4.0                     | 1.6        | 87       |   |
| Forehead           |               |                         |                        |              | 3.2     | 1.3      |         |        |     |     |     |     | 2.3                     | 8.5        | 51       |   |
| Nose               | 1.3           | 1.3                     |                        | 29           | 1.0     | 1.3      |         |        |     |     |     |     | 1.1                     | 1.3        | 26       |   |
| Cheek              |               |                         |                        |              | 0.6     |          |         |        |     |     |     |     | 0.6                     |            | 12       |   |
| Chin               | 0.5           | 0.5                     |                        | 8            | 1.1     | 1.3      |         |        |     |     |     |     | 1.2                     | 0.9        | 28       |   |
|                    |               |                         |                        |              |         |          |         |        |     |     |     |     |                         |            |          |   |
| Trial 6 - 29       | 03 2007 SZ    | 4 43-54                 | 5° 253                 |              | ear So  | occer    |         |        |     |     |     |     |                         |            |          |   |
| Inar 0 2).         | Drotostad     |                         | J, <u>255</u>          | EP           | Unn     | rotooto  | 1       |        |     |     |     |     |                         | L 4        | ED       |   |
|                    | Protected     | х                       | ±ι                     | 6<br>%       | Unp     | rolected | 1       |        |     |     |     |     | х                       | ±ι         | EK       |   |
|                    |               |                         |                        | /0           |         |          |         |        |     |     |     |     |                         |            | %        | _ |
| Vertex             |               |                         |                        |              | 4.6     | 4.3      | 4.6     |        |     |     |     |     | 4.5                     | 0.4        | 98       |   |
| Nose               | 1.4           | 1.4                     |                        | 32           |         |          |         |        |     |     |     |     |                         |            |          |   |
| Cheek              | 1.0           | 1.0                     |                        | 22           | 1.4     | 1.9      | 1.7     | 1.8    |     |     |     |     | 1.7                     | 0.4        | 39       |   |
| Chin               | 1.1           | 1.1                     |                        | 26           |         |          |         |        |     |     |     |     |                         |            |          |   |
| Side               |               |                         |                        |              | 1.6     | 0.8      |         |        |     |     |     |     | 1.2                     | 3.6        | 28       |   |
|                    |               |                         |                        |              |         |          |         |        |     |     |     |     |                         |            |          |   |
| Trial 7 - 22       | 06 2006 57    | 4 50-5                  | 3° 264                 | DU 7-9       | 8/8 Cu  | muloni   | mhus    | Soccer |     |     |     |     |                         |            |          |   |
| 111ui / - 22.      | Drotostal     | =                       | ∠, <u>∠</u> 0+1<br>⊥ 4 | FP           | J.o.Cu  | rotasta  | 1       | 500001 |     |     |     |     | =                       | 14         | FR       | _ |
|                    | Protected     | х                       | Ξť                     | 0%           | Unp     | ouected  | 1       |        |     |     |     |     | х                       | ±ι         | %        |   |
|                    |               |                         |                        | /0           |         |          |         |        |     |     |     |     |                         |            | 70       | _ |
| Vertev             |               |                         |                        |              | 19      | 2.1      | 14      | 2.1    | 2.5 |     |     |     | 2.0                     | 04         | 92       |   |
| Vertex             | 0.7           | 07                      |                        | 33           | 1.9     | 2.1      | 1.4     | 2.1    | 2.5 |     |     |     | 2.0                     | 0.4        | 92       |   |
| Vertex<br>Forehead | 0.7           | 0.7                     |                        | 33           | 1.9     | 2.1      | 1.4     | 2.1    | 2.5 |     |     |     | 2.0                     | 0.4        | 92<br>81 |   |

| Cheek        | 0.5     | 0.6     | 0.6     | 0.4       | 22             | 0.7    | 1.0      | 0.7   |        |      | 0.8                     | 0.4 |   |
|--------------|---------|---------|---------|-----------|----------------|--------|----------|-------|--------|------|-------------------------|-----|---|
| Chin         |         |         |         |           |                | 0.6    | 0.9      |       |        |      | 0.8                     | 1.3 |   |
| Side         |         |         |         |           |                | 0.6    | 0.7      |       |        |      | 0.7                     | 0.4 |   |
| Trial 8 - 19 | .06.200 | )6, SZA | A 49-52 | 2°, 262 I | DU, 6-         | 8/8 Cu | muloni   | mbus, | Basket | ball |                         |     |   |
|              | Prot    | ected   | x       | ±t        | ER             | Unp    | rotected | 1     |        |      | x                       | ±t  | ] |
|              |         |         |         |           | %              | -      |          |       |        |      |                         |     |   |
| Vertex       |         |         |         |           |                | 1.8    | 1.8      | 1.6   | 2.0    | 2.2  | 1.9                     | 0.2 |   |
| Forehead     | 0.7     | 0.7     | 0.7     | 0         | 30             | 1.0    | 1.8      | 0.8   | 1.1    | 0.9  | 1.1                     | 0.4 | 4 |
| Nose         | 1.0     |         | 1.0     |           | 44             | 1.2    | 1.0      |       |        |      | 1.1                     | 0.9 | 4 |
| Chin         | 1.2     |         | 1.2     |           | 54             | 0.9    | 0.6      |       |        |      | 0.8                     | 1.3 |   |
| T: 10 10     | 11 200  | 07      | N 25 40 | 200 I     |                | 2/0 0  | 1 .      | 1     | a      |      |                         |     |   |
| Trial 9 - 10 | .11.200 | 16, SZA | 4 33-49 | 9°, 300 I | <b>J</b> U, 2- | 3/8 Cu | muloni   | mbus, | Soccer |      |                         |     |   |
|              | Prot    | ected   | x       | ±t        | ER             | Unpi   | rotected | 1     |        |      | $\overline{\mathbf{x}}$ | ±t  | ] |
|              |         |         |         |           | %              |        |          |       |        |      |                         |     |   |
| Vertex       |         |         |         |           |                | 0.8    | 1.1      |       |        |      | 0.9                     | 1.3 | ( |
| Forehead     |         |         |         |           |                | 0.7    |          |       |        |      | 0.7                     |     |   |
| Cheek        | 1.0     |         | 1.0     |           | 72             | 1.0    | 1.2      | 0.7   | 1.4    | 0.8  | 1.0                     | 0.3 | ' |
|              |         |         |         |           |                | 1.0    |          |       |        |      | 1.0                     |     |   |

## Appendix Q. Comparison of facial site incidence of BCC and SK to ER

Table Q.1: Measurements of facial exposure ratio and the density of facial basal cell carcinoma (BCC) and solar keratosis (SK).

| Facial site |                  |                        | Facial site ER |          |          |               | Observed Incidence        |                |
|-------------|------------------|------------------------|----------------|----------|----------|---------------|---------------------------|----------------|
| Diffey et   | Study facial     | Site description       | Measured       | Measured | Measured | Diffey et al. | BCC tumor                 | SK facial      |
| al. 1979    | sites            |                        | 0°-30°         | 30°-50°  | 50°-80°  | 1979          | density                   | incidence      |
| facial      |                  |                        | (%)            | (%)      | (%)      | (%)           | (Brodkin et al.           | (Nguyen et al. |
| sites       |                  |                        |                |          |          |               | 1969)                     | 1998)          |
|             |                  |                        |                |          |          |               | (tumors/cm <sup>2</sup> ) |                |
| 7           | cn1 / cx11       | forehead               |                | 66       |          | 58            | 0.96                      | 5              |
| 34          | cn1 / cx14       | lower forehead         |                |          | 92       | 34            | 2.9                       |                |
| 37          | cn2 / cx16       | between eyebrows       | 32             |          | 58       | 26            | 0.96                      |                |
|             |                  |                        |                |          |          |               |                           |                |
| 32          | cn1 / cx18       | nose top bridge        | 10             |          | 41       | 24            | 0.2                       |                |
| 28          | cn3 /cx22        | upper nose lateral     | 42             |          | 30       | 42            | 8.13                      |                |
| 25          | cn2/cx23         | nose lateral surface   | 40             | 0.2      |          | 51            | 8.13                      | 4              |
| 35          | cn1 /cx21        | nose apical ridge      | 27             | 82       |          | 66            | 10.36                     | 24             |
| 33          | cn1 /cx25        | nose tip               | 27             | 56       |          | 64            | 8.52                      | 0              |
| 22          | cn4 / cx26       | nose nostrii           | 40             | 26       | 16       | 54            | 3.34                      |                |
| 23          | $cn_3 / cx_{23}$ | above nostrii          | 47             | 50       | 40       | 62<br>50      | 3.34                      |                |
| 30          | cli4 /cx24       | nose ana               |                | 33       |          | 39            | 0.90                      | 0              |
| 21          | cn5/cx29         | perialar               | 51             |          |          | 10            | 12.57                     | 0              |
| 34          | CII3/ CX24       | maxmary                | 34             |          |          | 34            | 2.9                       | 30             |
| 15          | cn6/cx31         | nasolahial fold        |                | 30       |          | 31            | 0.83                      | 0              |
| 20          | cn1/cx29         | philtrum               |                | 31       |          | 2             | 2.9                       | 0              |
| 20          | chi/cx2)         | pinitum                |                | 51       |          | 2             | 2.7                       |                |
|             | cn1/cx32         | upper lip              |                |          | 39       |               |                           | 0              |
| 24          | cn5/cx33         | outer upper lip        |                |          | 57       | 61            | 8.13                      | 0              |
| 19          | cn1/cx36         | lower lip              |                |          | 22       | 1             | 0.36                      | 23             |
| 18          | cn4 / cx36       | outer lower lip        |                |          |          | 1             | 0.36                      |                |
|             |                  | 1                      |                |          |          |               |                           |                |
| 17          | cn1 /cx41        | chin                   |                | 34       |          | 34            | 0.62                      |                |
| 16          | cn6 / cx41       | chin side              |                | 41       | 43       | 28            | 0.62                      |                |
|             |                  |                        |                |          |          |               |                           |                |
| 6           | cn12 / cx14      | above outer eybrow     | 29             | 47       |          | 41            | 0.96                      |                |
| 8           | cn7 / cx15       | above inner eyebrow    | 42             |          | 82       | 56            | 0.96                      |                |
| 31          | cn3 / cx 19      | below inner eyebrow    |                |          |          | 2             | 0.2                       |                |
|             |                  |                        |                |          |          |               |                           |                |
| 30          | $cn_3 / cx_{20}$ | inner eye socket       | 11             |          |          | 14            | 0.55                      |                |
| 10          | cn12 /cx18       | outer eyesocket        |                | 50       | 02       | 39            | 1.48                      |                |
| 11          | cn12 / cx24      | lower eye socket       |                | 52       | 83       | 14            | 1.48                      |                |
| 39          | cn12 / cx26      | below eye socket       |                |          |          | 29            | 1.48                      |                |
| 20          | on 8 / ox 20     | 01/0                   |                | 16       |          | 16            |                           |                |
| 2)          | CH 67 CX20       | cyc                    |                | 10       |          | 40            |                           |                |
| 17          | cn10 / cx24      | outer infraperiorbital | 40             | 58       |          | 34            | 0.62                      |                |
| 26          | cn5 /cx23        | inner infraorbital     |                |          |          | 19            | 1.48                      |                |
| 27          | cn8/cx23         | infraorbital           | 35             | 37       |          | 8             | 8.14                      | 10             |
| 40          | cn7/cx25         | cheek                  |                |          | 79       | 48            | 1.48                      | 175            |
| 14          | cn6 / cx26       | inner cheek            |                |          |          | 50            | 1.48                      |                |
| 13          | cn11 / cx26      | outer cheek            |                |          |          | 38            | 1.48                      |                |
| 9           | cn11/ cx 29      | lower cheek            | 17             |          |          | 49            | 0.96                      |                |
|             |                  |                        |                |          |          |               |                           |                |
| 41          | cn14 / cx33      | upper mandibular       | 6              | 6        | 8        | 23            | 0.59                      | 9              |
| 3           | cn 13 / cx33     | mid mandibular         | 13             |          | 24       | 27            | 0.59                      |                |
| 4           | cn11 / cx40      | submandibular          | 7              |          | 18       | 9             | 0.03                      | 2              |
| 5           | cn 9 / cx 37     | inner mandibular       | 16             |          |          | 19            | 0.59                      |                |
|             |                  |                        |                |          |          |               |                           |                |
|             | cn18 / cx25      | ear                    |                |          | 47       |               |                           | 67             |
| 3           | cn15/cx25        | preauricular           |                | 17       | 20       | 27            | 0.59                      | -              |
| 2           | cn13/cx 31       | face side              |                | 20       | 28       | 33            | 2.79                      | /              |

Appendix R. Comparison of mannequin to human facial site measurements of ER

Mannequin facial site data was compared to student facial site data of ER collected in the HBSHS student population. Table R.1 summarises the mean ER of human and mannequin facial site data collected and presented by Downs & Parisi (2008). The mean variation between mannequin and human facial site ER is 6% and is greatest at the nose and cheek sites. The vertical upright position of the mannequin headform compared to the tilted position of the human face measured while playing sport is a likely explanation for the greater difference between nose and cheek site ER.

Table R.1. A comparison of mannequin and human ER (%) measured in the HBSHS population (Downs & Parisi 2008).

|              | Human ER | Mannequin ER |
|--------------|----------|--------------|
|              | (%)      | (%)          |
| Vertex       | 88       | 91           |
| Forehead     | 45       | 47           |
| Nose         | 47       | 61           |
| Cheek        | 37       | 51           |
| Chin         | 35       | 34           |
| Side of face | 23       | 27           |

Appendix S. Publications resulting from this research

**Refereed Journal Papers** 

- **Downs, N.** & Parisi, A. 2009, "Measurements of the anatomical distribution of erythemal ultraviolet: a study comparing exposure distribution to the site incidence of solar keratoses, basal cell carcinoma and squamous cell carcinoma", *Photochemical and Photobiological Sciences*, DOI:10.1039/b901741k.
- **Downs, N.J.** & Parisi, A.V. 2009, "Ultraviolet exposures in different playground settings: a cohort study of measurements made in a school population", *Photodermatology, Photoimmunology and Photomedicine*, vol. 25, pp. 196-201.
- **Downs, N.**, Parisi, A., Turner, J. & Turnbull, D. 2008, "Modelling ultraviolet exposures in a school environment", *Photochemical and Photobiological Sciences*, vol. 7, no. 6, pp. 700-710.
- **Downs, N.** & Parisi, A. 2008, "Patterns in the received facial ultraviolet exposure of school children measured at a sub-tropical latitude", *Photochemistry and Photobiology*, vol. 84, no. 1, pp. 90-100.
- **Downs, N.** & Parisi, A. 2007, "Three dimensional visualisation of human facial exposure to solar ultraviolet", *Photochemical and Photobiological Sciences*, vol.6, pp. 90-98.
- Conference Presentations / Proceedings
- **Downs, N.J.** & Parisi, A.V. 2008, "Modelling the erythemally effective UV to students in a school environment", Proceedings of the Australian Institute of Physics 18<sup>th</sup> National Congress, 30 November 5 December, 2008, Adelaide.
- **Downs, N.J.** & Parisi, A.V. 2008, "Modelling personal UV exposure in a school playground", The Australian Health and Medical Research Congress, 16-21 November, 2008, Brisbane.
- **Downs, N.J.** & Parisi, A.V. 2007, "Contoured exposure assessment of biologically effective solar ultraviolet radiation", 32nd annual Australasian Radiation Protection Society conference, 21-24 October, 2007, Brisbane.
- **Downs, N.J.** & Parisi, A.V. 2007, "Patterns in surface distribution of human exposure to solar ultraviolet", Physikalisch-Meteorologisches Observatorium Davos World Radiation Center: A conference celebrating one century of UV radiation research, 18-20 September 2007, Davos, Switzerland, pp.155-156.
- **Downs, N.J.** & Parisi, A.V. 2006, "Comparing variations in the UV facial exposure received by school children in south-east Queensland", 17th National Congress of the Australian Institute of Physics, 3-8 December 2006, Brisbane.
- **Downs, N.J.** & Parisi, A.V. 2006, "Mapping of the solar ultraviolet exposures to the human face", 31<sup>st</sup> annual Australasian Radiation Protection Society conference, 26-29 November, 2006, Sydney.