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Abstract

This thesis primarily deals with the estimation of the slope parameter of the

simple linear regression model in the presence of measurement errors (ME)

or error-in-variables in both the explanatory and response variables. It is a

very old and difficult problem which has been considered by a host of authors

since the third quarter of the nineteenth century. The ME poses a serious

problem in fitting the regression line, as it directly impacts on estimators

and their standard error (see eg Fuller, 2006, p. 3). The standard linear

regression methods, including the least squares or maximum likelihood, work

when the explanatory variable is measured without error. But in practice,

there are many situations where the variables can only be measured with

ME. For example, data on the medical variables such as blood pressure and

blood chemistries, agricultural variables such as soil nitrogen and rainfall etc

can hardly be measured accurately. The apparent observed data represents

the manifest variable which measures the actual unobservable latent variable
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with ME.

The ME model is divided into two general classifications, (i) functional model

if the explanatory (ξ) is a unknown constant, and (ii) structural model if ξ is

independent and identically distributed random variable (cf Kendall, 1950,

1952). The most important characteristic of the normal structural model is

that the parameters are not identifiable without prior information about the

error variances as the ratio of error variances (λ) (see Cheng and Van Nees,

1999, p. 6). However, the non-normal structural model is identifiable with-

out any prior information. The normal and non-normal structural models

with ME in both response and explanatory variables are considered in this

research.

There are a number of commonly used methods to estimate the slope param-

eter of the ME model. None of these methods solves the estimation problem

in varying situations. A summary of the well known methods is provided in

Table 1.

The first two chapters of this thesis cover an introduction to the ME problem,

background, and motivation of the study. From Chapter 3 we provide a new

methodology to fit the regression line using the reflection of the explanatory

variable about the fitted regression line with the manifest variables. The

asymptotic consistency and the mean absolute error (MAE) criteria are used
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Table 1: A summary of commonly used methods to handle the ME model

problem

Methods Model Assumption Criticism

Instrumental Normal and High correlation with ξ. Difficult to fond valid IV

variable (IV) non normal No correlation with ME

Maximum likelihood Normal λ known Misspecification λ.

(Orthogonal regression) True points fall on a straight line Large sample required

Fourth moments Non normal Model not close to normal. Difficult to satisfy

Large sample size these assumptions

Three moments Non normal Model not close to normal. Difficult to satisfy

Large sample size these assumptions

Grouping Normal and Groups are independent of ME Less efficiency

non normal

Geometric Mean Normal and Unrealistic assumption,

non normal λ = β2
1 too restrictive sensitive

to error variances

to compare the new estimators and the relevant existing estimators under

different conditions.

One of the most commonly used methods to deal with the ME model is the

instrumental variable (IV) method. But it is difficult to find valid IV that

is highly correlated to the explanatory but uncorrelated with the error term.

Therefore, in Chapter 4 we propose a new method to find a good IV based on

the reflection of explanatory variable. The new method is easy to implement,

and performs much better than the existing methods. The superiority of
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this method is demonstrated both analytically and via numerical as well as

graphical illustrations under certain assumptions.

In Chapter 5, a commonly used method to deal with the normal structural

model, namely the orthogonal regression (OR) (which is the same the maxi-

mum likelihood solution when λ = 1) method under the assumption of known

λ is discussed. But the OR method does not work well (inconsistent) if λ

is misspecified and/or the sample size is small. We provide an alternative

method based on the reflection method (RM) of estimation for measure-

ment error model. The RM uses a new transformed explanatory variable

which is derived from the reflection formula. This method is equivalent or

asymptotically equivalent to the orthogonal regression method, and nearly

asymptotically unbiased and efficient under the assumption that λ is equal

to one and the sample size is large. If λ is misspecified the RM method is

better than the OR method under the MAE criterion even if the sample size

is small.

Chapter 6 considers the Wald method (two grouping method) which is still

widely used, in spite of increasing criticism on the efficiency of the estimator.

To address this problem, we introduce a new grouping method based on

the reflection grouping (RG) approach. The proposed method provides new

grouping process to modify Wald method in order to increase its efficiency.

The RG method introduces a new way of dividing the data using the rank of
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the reflection of the explanatory variable. The method recommends different

grouping criteria depending on the value of λ to be one or more/less than

one. The RG method significantly increases the efficiency of Wald method,

and it is more precise than the other competing methods and works well for

different sample sizes and for different values of λ. Moreover, the RG method

also removes the shortcomings of the maximum likelihood method when λ is

misspecified and sample size is small.

The geometric mean (GM) regression is covered in Chapter 7. The GM

method is widely used in many disciplines including medical, pharmacol-

ogy, astrometry, oceanography, and fisheries researches etc. This method

is known by many names such as reduced major axis, standardized major

axis, line of organic correlation etc. We introduce a new estimator of the

slope parameter when both variables are subject to ME. The weighted ge-

ometric mean (WGM) estimator is constructed based on the reflection and

the mathematical relationship between the vertical and orthogonal distances

of the observed points and the regression line of the manifest model. The

WGM estimator possesses better statistical properties than the geometric

mean estimator, and OLS-bisector estimator. The WGM estimator is stable

and work well for different values of λ and for different sample sizes.

The properties of the proposed reflection estimators are investigated in Chap-

ters 3-7. Also, these estimators are compared with the relevant existing es-
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timators by simulation studies. The computer package Matlab is used for

all computations and preparation of graphs. Based on the asymptotic con-

sistency and MAE criteria the proposed reflection estimators perform better

than the existing estimators, in some cases, even the standard assumption

on λ and sample size are violated.

Chapter 8 provides some concluding summaries remarks.
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Chapter 1

Introduction

1.1 Introduction

Regression analysis forms an important part of the statistical tools for inves-

tigating the relationships between variables. For example, regression analysis

may be used to investigate whether there is a relationship between the num-

ber of road accidents and the age of the driver. Linear regression is a com-

mon statistical data analysis technique in the fields of medical, agricultural,

chemical, physical and economic studies (Gillard and Iles, 2009; Warton et

al. 2006). The regression model may be used to predict body weight based

on body fat, or the yield of a crop based on soil moisture or rainfall levels.

However, measuring the explanatory variable, namely the body fat or soil
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moisture level, is likely to involve measurement error (Anderson 1984). The

ordinary least squares (OLS) estimator of the regression parameters is inap-

propriate in the presence of measurement error (cf Fuller, 2006, p. 3). As a

result, in real life, measurement error causes a serious problem as it directly

impacts on estimators and their standard error. It is well known that the

measurement error in the response variable is not as serious as it is in the

explanatory variable. The error in the response variable can be absorbed in

the error term of the model; however, the error in the explanatory variable

causes various problems, and needs to be handled appropriately (Madansky

1959).

The measurement error (ME) or error-in-variables is a real problem and it

has been considered by a host of authors since the late nineteenth century

(Gillard, 2010). Adcock (1877, 1878) discussed the problem in the context

of least squares method. Pearson (1901) suggested some estimators based on

Adcock’s work. The problem has been seriously considered by researchers

from the last century. Wald (1940), Bartlet (1949), Durbin (1954), and Riggs

et al. (1978), considered fitting the regression line when both variables are

subject to error. Berkson (1950) noted that the error in the explanatory

variable leads to bias in the estimated parameters of the regression line,

regardless of the data being a random sample or the population. Burr (1988)

considered error in the explanatory variable for the binary responses model.
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Freedman et al. (2004) suggested a moment method to deal with error in the

explanatory variable. The problem of error in both explanatory and response

variables was considered by Madansky (1959) and Halperin (1961).

Degracie and Fuller (1972) considered estimation of the slope and covariance

when the variable is measured with error. Grubbs (1973) discussed error of

measurement, precision and the statistical inference. Aigner (1973) consid-

ered regression with a binary variables subject to the error of observation.

Florens et al. (1974) considered Bayesian inference in error-in-variables mod-

els. Schneeweiss (1976) proposed consistent estimation of a regression with

error in the variables. Bhargava (1977) introduced maximum likelihood esti-

mation in a multivariate error-in-variables regression model with an unknown

error covariance matrix. Garber and Klepper (1980) extended the classical

normal error-in-variables model. Prentice (1982) dealt with covariant mea-

surement error and parameters estimation.

Amemiya et al. (1984) proposed estimation of the multivariate error-in-

variables model with estimated error covariance matrix. Klepper and Leamer

(1984) provided consistent sets of estimates for regression with error in all

variables. Stefanski and Carroll (1985) discussed covariant measurement er-

ror in logistic regression. Carroll et al. (1985) proposed comparison of least

squares and measurement error model with randomized analysis of covari-

ance. Armstrong (1985) dealt with the measurement error in the generalized
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linear model. Bekker (1986) provided comments on the identification issues

in the measurement error model. Schafer (1986) combined information on

the measurement error model. Carroll and Ruppert (1996) discussed the

use and misuse of orthogonal regression in the measurement error model.

Fuller (2006) covered various aspects of the measurement error model and

related inferences. Carroll et al. (2006) summarized much of what is known

about the consequences of measurement error for estimating the linear re-

gression parameters. Recently McCartin (2010) has introduced a new con-

cept of oblique linear least squares approximation. This thesis introduces

a new methodology of fitting a straight regression line when both response

and explanatory variables are subject to error. This has not been discussed

previously in the literature of measurement error.

It is well known that the fitting of a straight line to bivariate data (ξ, η)

is a common procedure and widely used in analysis of linear relationships.

This procedure works under the standard linear regression theory where the

explanatory variable is measured without error. The response variable η

depends on the explanatory variable ξ according to the usual additive model

ηj = β0 + β1ξj + ej, j = 1, 2, · · · , n, (1.1)

where ej is a random error representing the intrinsic scatter in η about the

regression line, and (β0, β1) are the regression parameters. It is often assumed

that the mean of the error term ej is zero with a non-zero variance.
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The main goal here is to estimate the parameters β0 and β1 of the model

(1.1). One of the common techniques to estimate these parameters involves

minimising the function of the random error term ej. This technique, called

the least squares theory, suggests minimising the sum of the squared error

components, and was introduced by Carl Freidrich Gauss (1777-1855) and

Adrien Marie Legendre (1752-1833). Here the regression line of η on ξ is

obtained by minimising the sum of squares of the vertical distances from the

points (ξj, ηj) to the regression line which is given by the estimated equation

model η̂j = β̂0 + β̂1ξj. This is given by

n∑
j=1

e2j =
n∑
j=1

(ηj − β0 − β1ξj)
2,

where the least squares estimators of the parameters β0 and β1 can be ob-

tained by differentiating
∑n

j=1 e
2
j with respect to each of the parameters, and

solving the equations which arise after setting the derivatives to zero to find

β̂1 =
Sηξ
S2
ξ

β̂0 = η̄ − β̂1ξ̄, where

Sηξ =
1

n− 1

n∑
j=1

(ξj − ξ̄)(ηj − η̄),

S2
ξ =

1

n− 1

n∑
j=1

(ξj − ξ̄)2,

S2
η =

1

n− 1

n∑
j=1

(ηj − η̄)2,

where η̄ and ξ̄ are the sample means of the variables η and ξ respectively.
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Note it is easy to show how to obtain of β̂0 and β̂1 by minimising the sum of

squares
∑n

j=1 e
2
j (see for example Johnston, 1971).

It is well known that the procedure of η on ξ regression requires some assump-

tions one of them being that the error is only present in the response variable

η, while the explanatory variable ξ is measured without error. However, in

some situations, it may be possible that there are errors in both variables.

Indeed, as real data is seldom observed directly, and the common problem

known as the errors in variables or measurement error model arises (Gillard,

2010). Casella and Berger (1990) pointed out that the measurement error

model

“ is so fundamentally different from the simple linear regression · · · that it

is probably best thought of as a different topic.”

This type of the measurement error model usually occurs when both the ex-

planatory variable ξ and the response variable η are experimentally measured

(Gillard and Iles, 2009). In fact, errors in variables causes the least squares

estimator of the slope in η on ξ regression to be biased (Fuller, 2006, p. 3).

The random measurement error artificially inflates the dispersion of obser-

vations of the independent variable ξ and biases least squares estimators.

This thesis describes circumstances where simple linear regression models

are significantly incorrect, when there are measurement errors in both the
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explanatory variable ξ and the response variables η.

1.2 The measurement error problem

This study deals with the commonly known problem of measurement error

(ME) or error-in-variables (see for example Warton et al. 2006; Carroll et al.

2006). This problem occurs when variables are measured or observed with

random error. The measurement error model could be linear or nonlinear,

where at least one of the variables explanatory ξj or response ηj is measured

with error. There are two different types of measurement error. The first

is called the classical additive error model, and occurs when the observed

variable is an unbiased measure of the true variable. The second is the the

error calibration model where the observed variable is a biased measure of

the unobserved variable (Carriquiry, 2001).

In general, measurement error potentially affects all statistical analysis, be-

cause it affects the probability distribution of the data (Chesher, 1991). To

deal with the measurement error problem we should first distinguish and

identify the variables of the model. Let ξj be the true explanatory vari-

able which is unobserved and is called the latent variable. This unobserved

variable does not include any measurement error. Let xj be the observed

explanatory variable which is called the manifest variable which is observed
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with measurement error. Similarly let ηj be the true response variable with-

out any measurement error, and yj be the observed response variable which

includes random measurement error. Let δj be the measurement error in the

observed explanatory variable, δj = xj− ξj, and ϵj be the measurement error

in the observed response variable, ϵj = yj − ηj. When there is no measure-

ment error in the variables then it is usually assumed that both response ηj

and explanatory ξj variables are related by

ηj = β0 + β1ξj, (1.2)

where β0 is the intercept, β1 is the slope parameter, and ξ′js are fixed in

repeated sampling j = 1, 2, ...., n. Note that the model above is called stan-

dard measurement error model if it is not included the equation error (error

term).

It is often assumed that the measurement error in the response variable ϵj

is normally distributed ϵj ∼N(0, σ2
ϵ ), and E(ξjϵj) = 0. When there is no

measurement error, the ordinary least squares (OLS) estimator of the slope

parameter β1 for the model (1.2) is

β̂1ξ =

∑n
j=1(ξj − ξ̄)(ηj − η̄)∑n

j=1(ξj − ξ̄)2
.

This estimator is unbiased for β1 and has the smallest variance among all

unbiased linear estimators. This estimator β̂1 is the maximum likelihood es-

timator of β1, if ξ ∼ N(µξ, σ
2
ξ ) and Cov(ξ, ϵ) = 0 (cf Fuller, 2006, p. 2). The
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theory of classical linear regression analysis assumes that the explanatory

variable, ξj, is measured without error. In practice this assumption is of-

ten violated, particularly in social science, biological assay, and in economic

data (Warton et al. 2006). Since the explanatory variable being measured

with error, the ordinary least squares method is unable to produce unbiased

estimators of parameters of the measurement error model.

However, when only the response variable includes measurement error, yj =

ηj + ϵj, then the estimator is unbiased. This can be seen by replacing ηj to

yj in the model (1.2) as follows

yj = β0 + β1ξj + ϵj. (1.3)

The only negative consequence of the measurement error in the response

variable is that it inflates the standard errors of the estimator of the regression

coefficient (cf Chen, et al. 2007).

On the other hand, when the explanatory variable has measurement error

the estimator becomes biased and inconsistent. This can be seen by rewriting

(1.3) by using xj instead of ξj, where ξj = xj − δj, as follows

yj = β0 + β1xj + (ϵj − β1δj) = β0 + β1xj + vj, (1.4)

where vj = (ϵj − β1uj) ∼ N(0, σ2
v) , and E(xjvj) ̸= 0. Here xj and δj are not

independent, since

Cov(xj, vj) = Cov(xj, ϵj)− β1Cov(xj, δj) = −β1σ2
δ ̸= 0.
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For the model (1.4), the least squares estimator of yj on xj is given by

β̂1x =

∑n
j=1(xj − x̄)(yj − ȳ)∑n

j=1(xj − x̄)2
.

The probability limit of β̂1x is given by

plimβ̂1x = β1 +
Cov(xj, vj)

V ar(xj)
= β1 −

β1σ
2
δ

σ2
ξ + σ2

δ

= β1
σ2
ξ

σ2
ξ + σ2

δ

.

Hence β̂1x is a biased and inconsistent estimator for β1. Obviously, when the

explanatory variable as well as the response variable are subject to measure-

ment error, the regression situation becomes considerably more complicated

(Draper and Smith, 1981, p. 124).

1.3 Outline of the Thesis

In this thesis, attention is concentrated on introducing a new methodology

for estimating the slope in a simple linear regression when both explanatory

variable, ξ, and response variable, η, are measured with error. It is well

known that the model fitting and parameter estimation of an measurement

error model is notably different to fitting a simple linear regression model

without measurement error.

Chapter 2 describes different methods that have been used to tackle the

problem of error in both variables. Some of these solutions work under

various assumptions about the underlying model and sampling plan to avoid
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the identifiability problem. One of these methods, known as the variance

ratio method, is based on the assumed knowledge of the relative magnitude

of measurement error in the response variable η and explanatory variable

ξ. In fact, these assumptions are suggested to make the parameters of the

normal structural model to be identifiable. In the literature, there are six

assumptions required as extra information about the variances of errors, to

make the normal structural model identifiable ( Cheng and Van Ness, 1999, p.

6). In measurement error models it turns out that the method of maximum

likelihood is only satisfactory when all random variables in the model ξ, ϵ

and δ are normally distributed.

Chapter 3 provides a new methodology constructed based on the reflection

technique and the regression line of the measurement error model, and intro-

duces the proof of the following propositions not previously discussed before:

Proposition 1 The squares of the unexplained variation of y by x can be

partitioned in to the vertical and horizontal components as follows:

(yj − ŷj)
2 = (y∗j − ŷj)

2 + (x∗j − xj)
2 , j = 1, 2, · · · , n.

Then it can be shown that the sum of squares error can be written as

SSEyx =
n∑
j=1

(yj − ŷj)
2 =

n∑
j=1

(y∗j − ŷj)
2 +

n∑
j=1

(x∗j − xj)
2 = SSEy + SSEx,

where x∗ and y∗ are transformed variables of the manifest variables x and y

respectively (see equations (3.1) and (3.2)), SSEy is the vertical unexplained
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variation in y, and SSEx is the horizontal unexplained variation as a function

of x.

Proposition 2 The average of the manifest explanatory variable x̄ equals

that of the latent variable ξ̄ and the reflection of manifest variable x̄∗, that is

x̄∗ = x̄ = ξ̄.

Proposition 3 The average of the manifest response variable ȳ equals that

of the latent variable η̄ and the reflection of manifest variable ȳ∗, that is

ȳ∗ = ȳ = η̄.

Proposition 4 The estimator of the regression parameters of y on x equals

the estimator of the regression parameters of y∗ on x.

β̂1yx = β̂1y∗x, and β̂0yx = β̂0y∗x,

where β̂1yx is the slope estimator of ordinary least squares of y on x, and

β̂1y∗x is that of y∗ on x. Also β̂0yx is the intercept of ordinary least squares

of y on x and β̂0y∗x is that of y∗ on x.

Proposition 5 The sample variance of the response variable y is greater

than that of its reflection y∗.

S2
y =

1

n− 1

n∑
j=1

(yj − ȳ)2 > S2
y∗ =

1

n− 1

n∑
j=1

(y∗j − ȳ∗)2

Proposition 6 The sample covariance of the manifest explanatory variable

x and its reflection x∗ is equal the sample variance of manifest explanatory
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variable x.

ˆcov(x, x∗) = S2
x,

where S2
x is the sample variance of x.

Proposition 7 The sample covariance of the response variable y and the

reflection variable x∗ is greater than that of the response variable y and the

manifest variable x.

Syx∗ > Syx,

Proposition 8 The sample variance of explanatory variable x is less than

that of its reflection variable x∗.

S2
x ≤ S2

x∗

Proposition 9 The difference between the sum of squares of the reflection

variable S2
x∗ and the sum of squares of the manifest explanatory variable S2

x

is given by

SSx∗ − SSx = SSTy − SSRyx − SSEy,

where SST is sum of squares total of y, SSRyx is the explained variation of

y by x.

Chapter 4 proposes a new instrumental variable to estimate the parameters of

a simple linear regression model where the explanatory variable is subject to

measurement error. The new instrumental variable is defined using reflection

of the observed values of the explanatory variable. Like other instrumental
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variable estimators, it is unbiased and consistent, but over performs estima-

tors proposed by Wald (1940), Bartlett (1949), and Durbin (1954) if the ratio

of the error variances is equal to or less than one. The method is straight-

forward, easy to implement, and performs much better than the existing

instrumental variable based estimators. The theoretical superiority of the

proposed estimator over the existing instrumental variable based estimators

is established by analytical results of simulation. Two illustrative examples

for numerical comparisons of the results are also included.

Chapter 5 proposes an estimation method based on the reflection of the ex-

planatory (manifest) variable to estimate the parameters of a simple linear

regression model when both the response and the explanatory variables are

subject to measurement error (ME). The reflection method (RM) uses all

observed data points, and does not exclude or ignore part of the data or

replace them by ranks. The RM is straightforward, and easy to implement.

We show that the RM is equivalent or asymptotically equivalent to the or-

thogonal regression method. Simulation studies show that the RM produces

estimators that are nearly asymptotically unbiased and efficient under the

assumption that the ratio of the error variances λ = σ2
ϵσ

−2
δ = 1. Moreover,

it allows us to define the sum of squares error uniquely, the same way as in

the case of no measurement error. The numerical comparisons of the results

are also included.
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Chapter 6 introduces a new slope estimator for regression model when both

variables are subject to measurement errors and the model includes equation

error. The main aim of the proposed method is to improve the efficiency of

Wald’s estimator under flexible assumption on the ratio of error variances (λ).

It is well known that in the presence of equation error in regression models

any estimator based on assumed knowledge of (λ) is biased. Although Wald’s

method could deal with models that include equation error, it lacks efficiency

and is subject to identifiability problem. To compare the relative efficiency

of the proposed estimator with the OLS, Wald’s and Geary’s estimators,

simulation studies under various assumptions are undertaken. Moreover, a

comparison of the new estimator with the method of moments estimator

when λ is biased due to the presence of the equation error is included.

Chapter 7 introduces a new estimator to fit the regression line when both

variables are subject to measurement errors and there is no prior information

known about the variances of error. The proposed weighted reduced major

axis (WG) is derived based on the mathematical relationship between the

vertical and orthogonal distances of the observed points and the regression

line. The geometric mean (GM) regression method is widely used in many

disciplines as a solution to errors in variables model, although it lacks effi-

ciency. To evaluate the geometric mean GM estimator method, this Chapter

provides an alternative view on GM estimator. The common belief, which is
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not quite true, is that this method minimizes the vertical and horizontal dis-

tances between observed points and the best-fit straight line. We compare the

performance of the proposed WG estimator with the GM and OLS-bisector

estimators, and the sensitivity to the variation of the ratio of error variances

(λ). The final chapter summarises the contents of this thesis, and indicate

some further work in this area.



Chapter 2

Historical background of

measurement error models

2.1 Introduction

Currently, there is a huge literature on measurement error (ME) models

(Fuller, 2006; Carroll et al. 2006; Cheng and Van Ness, 1999; Gillard, 2010).

The literature of ME has become widespread in diverse fields such as eco-

nomics, medical science, agriculture, chemistry, physics, astronomy and par-

ticularly in epidemiology. Measurement error can introduce serious bias into

the estimation of regression parameters and can strongly affect the statistical

power of studies (Freudenheim and Marshall, 1988). This Chapter provides
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some of the common estimation techniques to deal with measurement er-

ror models, and discusses some interconnections between these methods. In

fact, it is difficult to discuss the whole wealth of literature on measurement

error models in this thesis, but the focus has been placed upon a few key

developments and methods. Unfortunately the notation set of the measure-

ment error models has not been standardised in the literature, so it will be

carefully introduced at the beginning of the thesis. The measurement error

problem is also known as error-in-variables or model II regression (cf Sokal

and Rohlf, 1995, p. 541).

2.2 Major Axis Regression (Orthogonal)

The problem of fitting a simple linear regression model when both variables

are subject to error was first considered by Adcock (1877), where he intro-

duced the major axis regression (MAR) technique which is also known as

orthogonal regression (OR). However, this method is equivalent to the bi-

variate case of principal components analysis (PCA) (Mohler et al. 1978).

Geometrical exposition of this method is to minimise the squared perpendicu-

lar distances from the data points to the fitted regression line. The estimator

of the true slope of the simple linear regression model y = β0 + β1x, by this
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technique is given by

β̂1OR =
(S2

y − S2
x) +

√
(S2

y − S2
x)

2 + 4S2
yx

2Syx
,

where S2
y is the sample variance of the manifest response variable y, S2

x is the

sample variance of the manifest explanatory variable x and Syx is the sample

covariance of y and x.

An alternative form of this estimator is

β̂1MA = 0.5

[
(β̂2 − β̂−1

1 ) + sgn{Syx}
√

4 + (β̂2 − β̂−1
1 )2

]
,

where β̂1 =
Syx
S2
x

, and β̂2 =
S2
y

Syx
.

Adcock dealt with a special case of the problem of estimating β1 in the

standard simple linear regression model, where there is no equation error.

This case assumes that the variances of measurement error in both variables

are equal, that is, σ2
ϵ = σ2

δ , where ϵj is the measurement error in the manifest

response variable yj, (yj = ηj + ϵj), and δj is the measurement error in the

manifest explanatory variable xj, (xj = ξj + δj). Adcock defined the line of

the best fit through the data as the line which minimises the sum of squares of

the orthogonal distances from the observed points to the fitted line. Whereas

the least squares method defines the line of the best fit which minimises the

sum of squares vertical distances (residuals) as

n∑
j=1

(yj − β̂0 − β̂1ξj)
2.
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Adcock mentioned that the best regression line should pass through the mean

of the n points, where n is the sample size.

Kummell (1879) extended the work of Adcock, where he assumed that the

ratio of error variances λ =
σ2
ϵ

σ2
δ

was known instead of taking equal error

variances, σ2
ϵ = σ2

δ . He justified this assumption since it is realistic that most

experienced practitioners will have sufficient knowledge about the spread of

the measurement errors. Pearson (1901) suggested a very similar estimator

to that proposed by Adcock (cf Fuller, 2006, p. 30). He showed that the

fitted regression line of this method always lies between the regression line

of ξ on y and that of y on ξ. In addition, this technique does not depend

on which variable is treated as response variable and which is explanatory

variable (cf Amman and Van Ness, 1988). Isobe et al. (1990) pointed out

that the major axis regression is appropriate only for scale free variables,

such as ratios of observable variables or logarithmical transformed variables.

2.3 Deming Regression Technique

The Deming regression technique is one of the most widely known techniques

for fitting simple linear regression model when there are errors-in-variables

(EIV). It is also known as the functional maximum likelihood estimator under
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the assumption that the ratio of error variances λ =
σ2
ϵ

σ2
δ

is known (Gillard,

2010). It takes measurement errors for both variables into account, therefore

it is more generally applicable than major axis regression technique (Linnet,

1998). In his book, Deming (1943) suggested this technique to minimise the

common error simultaneously to obtain the best line that fits the data. The

slope estimator of this technique is given by

β̂1DEM =
(S2

y − λS2
x) +

√
(S2

y − λS2
x)

2 + 4λS2
yx

2Syx
.

Note that the slope estimator of Deming regression technique β̂1DEM becomes

the slope estimator of the orthogonal regression technique β̂1OR when σ2
ϵ =

σ2
δ , (λ = 1) (cf Gillard and Iles, 2009).

Fuller (2006, p. 30) stated the above estimator was first derived by Kummel

(1879) for a general λ, but he did not formulate the model in precisely the

same manner. In clinical chemistry literature this technique is attributed to

Deming (1943) (cf Linnet, 1998). It is also called orthogonal regression in

statistical literature. In his book, Fuller (2006, p. 30) called it a method

of moments estimator (MOM), although it differs from the commonly used

method of moments estimator (cf Carroll and Ruppert, 1996).

Linnet (1998) pointed out the value of λ describes the angle in which to

project points onto the line to minimise the sum of squares deviations. The

distance between the observed and predicted response values, with this angle,
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is aimed to minimise the error term. Deming regression solution is the major

axis regression solution when the ratio of error variances is equal to one, λ =

1. The major axis regression method is a special case of Deming regression

method when the variance of error terms are equal σ2
ϵ = σ2

δ .

The fundamental problem of using the Deming regression method arises when

the value of λ is not known with certainty (see Dunn, 2004). Carroll et al.

(1995) and Carroll and Ruppert (1996) question if the assumption of the

value of λ is at all correct, and they concluded that λ is frequently incorrect.

An inappropriate λ leads to biased estimates of parameter β1 and this is why

these critics claim that many if not all examples of Deming regression are

flawed. The inclusion of the equation error in linear regression is a common

practice but this technique does not take it into account (see Carroll and

Ruppert, 1996).

2.4 Grouping Method

Wald (1940) proposed an estimation method based on the grouping of the

data. It divides the observations on both response and explanatory variables

into two groups, G1 and G2, where G1 contains the first half of the ordered

observations and G2 contains the second half. The grouping is made based

on the explanatory manifest variable xj. Wald showed that the slope of
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the line joining the group means provided consistent estimator for the slope

parameter of the simple linear regression model. Properties of this estimator

can be found in Gupta and Amanullah (1970).

To explain the grouping method, suppose that the variables ξj and ηj are re-

lated by the equation ηj = β0+β1ξj with both variables are subject to random

measurement error. Let xj = ξj + δj and yj = ηj + ϵj, where xj and yj rep-

resent the manifest explanatory variable and the manifest response variable

respectively. The measurement error in the manifest explanatory variable

xj is δj and in the manifest response variable yj is ϵj (Gillard, 2010). It is

well known, for both large and small sample cases, that the presence of mea-

surement error in the explanatory variable makes the ordinary least squares

(OLS) estimator inconsistent and biased (see Barnett, 1969). Furthermore,

it makes the maximum likelihood estimator unacceptable (see Kendall and

Stuart, 1961, p. 383). In 1940 Wald pointed out that a consistent estimator

of β1 may be calculated if the following assumptions are met:

1. The random variables ϵ1, ϵ2, . . . , ϵn have the same distribution and they

are uncorrelated, that is, E(ϵiϵj) = 0 for i ̸= j, and the variance of ϵj,

σ2
ϵ = E(ϵiϵj), for i = j, is finite.

2. The random variables δ1, δ2, . . . , δn have the same distribution and they

are uncorrelated, that is, E(δiδj) = 0 for i ̸= j, and the variance of δj,
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σ2
δ = E(δiδj), for i = j, is finite.

3. The random variables ϵj and δj are uncorrelated, that is, E(ϵjδj) = 0,

for all j.

4.

∑n
j=k+1 xj −

∑k
j=1 xj

n
> 0 or x̄k+1 > x̄k, where x̄k+1 is the mean of the

group G2, x̄k is the mean of the group G1, n is even (n = 2, 4, 6, . . . ,∞),

and k = n
2
. In other words, we can be sure that as n→ ∞, b1 does not

approach zero (cf Madansky, 1959).

The observations are then divided into two groups based on the ranks of

the manifest explanatory variable xj, those above the median of xj into one

group, G1 and those below the median into another group, G2. Then Wald’s

estimator of β1 and β0 are given by

β̂1W =
a1
b1

=
(y1 + . . .+ yk)− (yk+1 + . . .+ yn)

(x1 + . . .+ xk)− (xk+1 + . . .+ xn)
=
ȳ2 − ȳ1
x̄2 − x̄1

,

where (x̄1, ȳ1) are the means of (xj, yj) into group G1, for j = 1, 2, · · · , k, and

(x̄2, ȳ2) are the means of (xj, yj) into group G2, for j = k + 1, k + 2, · · · , n.

Then β̂0W = ȳ − β̂1x̄,

where ȳ =

∑n
j=1 yj

n
, x̄ =

∑n
j=1 xj

n
, and

a1 =
(x1 + . . .+ xk)− (xk+1 + . . .+ xn)

n
, and

b1 =
(y1 + . . .+ yk)− (yk+1 + . . .+ yn)

n
.
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The Wald’s technique was further developed by Bartlett (1949). It has been

suggested as a simple method to handle the problem of measurement error

when both variables are subject to imprecision, and no knowledge of the error

of measurement is available. Instead of dividing the ordered observations into

two groups, he proposed that greater efficiency would be obtained by dividing

it into three groups, G1, G2 and G3. G1 and G3 are the outer groups, and

G2 is the middle group.

Lindley (1947) proposed another grouping technique based on four groups.

It requires the calculation of two slope estimates, where the first estimator

uses the first and third quarters as the two groups and the second estimator

makes use of the second and fourth groups. The proposed estimator of this

technique is given by the mean of these two slope estimates.

Generally these grouping methods are designed to counter the problem of

inconsistency. However, the groups are not independent of the error terms

if they are not based on the order of the true values. But Wald proved that

the grouping by the observed values is the same as grouping with respect

to the true values. There are some criticisms in the literature about Wald

estimator but these lack consensus. Neyman and Scott (1951) pointed out

that the Wald estimator is consistent for β1 in the structural relation situation
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if and only if

Pr[xp1 − ϵ < ξ ≤ xp1 − µ] = Pr[x1−p2 − ϵ < ξ < xp1 − µ] = 0,

where xp1 and x1−p2 are the p1 and (1−p2) percentile points of the distribution

function of x, and ϵ−µ is the range of δ. This condition means that we must

know the range of the error in x, and in order to satisfy the condition the

range should be finite, otherwise the condition becomes Pr[−∞ < ξ <∞] =

0 which is never satisfied. Madansky (1959) pointed out that this condition

relies on the central limit theorem and assumes that δ is normally distributed.

But this has an infinite range, and so the above condition remains unsatisfied

when the errors δj are normally distributed (cf Madansky, 1959).

Wald’s estimator is consistent under very general conditions except where

the errors are not normally distributed (cf Gupta and Amanullah, 1970).

Pakes (1982) claimed that the work of Gupta and Amanullah (1970) is need-

less given that Wald’s estimator is inconsistent. However, according to Theil

(1956), Wald’s method is valuable though there is a loss of efficiency. John-

ston (1972, p. 284) stated “Under fairly general conditions the Wald esti-

mator is consistent but likely to have a large sampling variance”. Moreover,

Fuller (2006, p. 74) mentioned that the Wald’s method was often interpreted

improperly.

In fact, there are many discussions on improving the efficiency of the group-
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ing method by dividing the observations to more than two groups and to

groups of unequal size (see Nair and Banerjee, 1942; Bartlett, 1949; Dorff

and Gurland, 1961; Ware, 1972). In practice, the grouping method is still

important and the grouping estimator is the maximum likelihood estimator

under the normality assumption (see Chang and Huang, 1997; Cheng and

Van Ness, 1999, p. 130).

2.5 Reduced Major Axis

One of the simplest approaches to handle the error in variables is the geomet-

ric mean (GM) functional relationship, initially proposed by Teissier (1948)

and later by Barker et al. (1988), and Draper and Yang (1997). This esti-

mator has frequently been mentioned in the literature for two cases. First

is when there is no basis for distinguishing between the response and ex-

planatory variables, and the second is to handle the errors-in-variables when

the additional information is not available. The geometric mean functional

relationship is widely used in fisheries studies. It has received much atten-

tion, and has been suggested that it is more useful than ordinary least squares

(OLS) estimator for comparing the lean body proportions (Sprent and Dolby,

1980).

This approach defines the estimator as the geometric mean of the slope of y
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on x regression line, and the reciprocal of the slope of x on y regression line

where x and y both are random (see Leng et al. 2007).

The GM estimator of the slope is given as

β̂1G = sgn(SPxy)

√
SSy
SSx

= sgn(Spxy)

(
Sy
Sx

)
,

where SSx =
∑n

j=1(xj − x̄)2, SSy =
∑n

j=1(yj − ȳ)2,

SPyx =
∑n

j=1(xj − x̄)(yj − ȳ), and Sy and Sx are the standard deviation of

y and x respectively.

In the literature of biology and allometry the geometric mean method is

known as the standardized major axis (MA) regression (Warton et al. 2006).

It is also known as reduced major axis (RMA), or the line of organic correla-

tion (see Tessier, 1948; Kermack and Haldane, 1950; Ricker, 1973). Moreover,

in physics it is known as a type of standard weighting model (see Machonald

and Thompson, 1992), while the astronomers call it as Strömberg’s Impartial

Line (Feigelson and Babu, 1992).

A host of recent publications indicate that using the GM or RMA is necessary

and sufficient to fit the straight line when the response and explanatory

variables are both subject to error (cf Levinton and Allen, 2005; Zimmerman

et al. 2005; Sladek et al. 2006; Vincent and Lailvaux, 2006). While Jolicoeur

(1975) and Sprent and Dolby (1980) pointed out that the GMFR estimator
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is unbiased if and only if

λ =
σ2
ϵ

σ2
δ

=
σ2
y

σ2
x

.

But several studies indicate that this assumption is unrealistic (cf Sprent and

Dolby, 1988).

There is a common recommendation to use GM estimator but is often em-

ployed without mentioning the reason of using it (cf Smith, 2009). Jolicoeur

(1975) stated that is difficult to interpret the meaning of the slope estimated

by the geometric mean method. However, the common perception is that the

geometric mean method seeks to minimise the vertical and horizontal dis-

tances between the observed points and the fitted line (Halfon, 1985; Draper

and Yang, 1997). But this is not quite true, given that the GM minimises

the orthogonal distance of the observed points (xj, yj) from the unfitted line

rather than the fitted line (η̂j = β̂0ξ + β̂1ξξj).
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2.6 Moments estimators

2.6.1 Estimators based on the first and second mo-

ments

The main problem in fitting the measurement error model using the method

of moments is that of identifiability. Therefore, this method is based on the

assumption that some prior knowledge about the error variances is avail-

able. Under this assumption the method of moments equations can easily

be solved. Otherwise, it can be seen from equations (2.1-2.6) below that

a unique solution cannot be found for the parameters since there are five

equations with six unknown parameters (Gillard, 2010). The expressions for

population moments are

E[x] = E[ξ] = µ, and

E[y] = E[η] = β0 + β1ξ.

The variances and covariance of the manifest variables are

var(x) = σ2
ξ + σ2

δ ,

var(y) = β2
1σ

2
ξ + σ2

ϵ , and

cov(y, x) = β1σ
2
ξ .
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The estimating equations of the method of moments are found by equating

the above population moments to their sample equivalents as follows

x̄ = µ̂x =
1

n

n∑
j=1

xj, (2.1)

ȳ = β̂0 + β̂1µ̂x, (2.2)

S2
x = σ̂2

ξ + σ̂2
δ , (2.3)

S2
y = β̂2

1 σ̂
2
ξ + σ̂2

ϵ , (2.4)

Syx = β̂1σ̂
2
ξ . (2.5)

Van Montfort (1989) introduced the hyperbolic relationship between the

method of moments estimator for σ2
ϵ and σ2

δ which is called the Frisch hy-

perbola, given as

(S2
x − σ̂2

δ )(S
2
y − σ̂2

ϵ ) = (Syx)
2. (2.6)

This equation relates pairs of estimates (σ̂2
δ , σ̂

2
ϵ ), and it is also a useful equa-

tion to derive another pairs of parameters such as

S2
y = β̂1Syx + σ̂2

ϵ .

However, to use the first and second moment estimating equations we should

specify which assumptions of the parameter space is likely to suit the purpose

in order to avoid the identifiability problem. Kendall and Stuart (1973),

Hood et al. (1999) and Dunn (2004) described these assumptions in the

context of the method of moments as follows.
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The first assumption is that the intercept β0 is known. An estimator for

the slope parameter β1 can be derived by using equations (2.1) and (2.2),

and the estimator of the slope β1 is

β̂1 =
ȳ − β0
x̄

.

Dunn (2004) considered this assumption when β0 = 0, and he noted that this

assumption is extremely unsafe. It is clear that the problem occurs with this

estimator when x̄ ≈ 0. Therefore there are specific admissibility conditions

for the estimator based on assumption that the intercept β0 is known which

are

x̄ ̸= 0,

S2
x > σ2

ξ ,

S2
y >

ȳ − β0
x̄

Syx.

In fact, the assumption that the intercept β0 is known does not make the

normal model of more than one explanatory variable identifiable (cf Cheng

and Van Ness, 1999, p. 6).

The second assumption is that the ratio of error variances λ = σ2
ϵσ

−2
δ

is known, and that σ2
ξ > 0. Then equations (2.3), (2.4) and (2.5) yield the

following quadratic equation in β̂1

β̂2
1Syx − β̂1(S

2
y − λS2

x)− λSyx = 0.
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The positive root of this equation is the maximum likelihood solution which

can be expressed as

β̂1 =
(S2

y − λS2
x) +

√
(S2

y − λS2
x)

2 + 4λS2
yx

2Syx
. (2.7)

There are some equivalent forms of (2.7) such as

β̂1 =
2λSyx

(S2
y − λS2

x) +
√
(S2

y − λS2
x)

2 + 4λS2
yx

,

and

β̂1 = φ(λ) + sgn{Syx}(φ2(λ) + λ)
1
2 ,

where φ(λ) =
S2
y−λS2

x

2Syx
.

Note all these forms are equivalent, and this solution is the same as that in

Deming regression (cf Cheng and Van Ness, 1999, p. 17).

Riggs et al. (1978) recommended the use of this solution based on their

results of simulation studies, but they emphasized the importance of having

a reliable prior knowledge of the ratio of error variances, λ. Edland (1996)

pointed out that slope estimator of linear measurement error models based

on assumed knowledge of the ratio of error variances is biased if the under-

lying linear relationship is anything other than a completely deterministic,

law-like relationship. Lakshminarayanan and Gunst (1984) discussed the

performance of estimator when the ratio of error variances (λ) is incorrectly

specified.



2.6 Moments estimators 34

The third assumption is the reliability ratio κ = σ2
ξσ

−2
x is known. Then it

is possible to obtain an unbiased estimator of the slope parameter β1. In fact,

for some specific disciplines information about reliability ratio κ is available,

particularly in psychology, and sociology literature. For example, studies of

community loyalty, social consciousness, willingness to adopt new practices,

managerial ability (cf Fuller, 2006, p. 5).

The slope estimator of y on x is biased when there is measurement error in

x, and the magnitude of this bias is the reliability ratio κ. The estimator

based on the assumption that the reliability ratio is known is considered as

a correction of the bias of the slope estimator for y on x regression. It is well

known that

plimβ̂1x = β1 +
Cov(xj, vj)

V ar(xj)

= β1 −
β1σ

2
δ

σ2
ξ + σ2

δ

= β1
σ2
ξ

σ2
ξ + σ2

δ

= β1
σ2
ξ

σ2
x

= β1κ.

Then if the reliability ratio κ is known, the unbiased estimator becomes

β̂1 = β̂1xκ
−1.

This estimator could be obtained from the first and second moment equa-

tions by dividing equation (2.5) by equation (2.3) (cf Gillard, 2010). A more

general reliability definition was introduced by Gleser (1992). The reliabil-

ity ratio κ is called attenuation factor and its inverse is called the linear
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correction for attenuation.

The fourth assumption is that the error variance σ2
ϵ is known. Equation

(2.4) and (2.5) immediately give

β̂1 =
(S2

y − σ2
ϵ )

Syx
.

The estimator based on the known error variance is a modification of the

reciprocal of the slope of the x on y regression. This modification is to sub-

tract the known error variance σ2
ϵ from S2

y in the numerator of the estimator

(cf Cheng and Van Ness, 1999, p. 18).

The fifth assumption is that the error variance σ2
δ is known. Equations

(2.3) and (2.5) are used to obtain an estimator for the slope parameter β1.

The equation (2.3) can be written in terms of σ2
ξ , if the error variance σ2

δ is

known, as follows

β̂1 =
Syx

S2
x − σ2

δ

.

In fact, there are five restrictions that should be satisfied to obtain the max-
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imum likelihood estimator. These five restrictions are

S2
x ≥ Syx

β̂1
, (2.8)

S2
y ≥ β̂1Syx, (2.9)

S2
x ≥ σ̂2

δ , (2.10)

S2
y ≥ σ̂2

ϵ , (2.11)

sgn(Syx) = sgn(β̂1). (2.12)

If any one or all these conditions are not satisfied then the maximum likeli-

hood solution is

β̂1 =
S2
y

Syx
.

This estimator is just the reciprocal of the slope estimator of the inverse

regression of y on x ( Cheng and Ness, 1999, p. 18).

The sixth assumption is that both variances σ2
δ and σ2

ϵ are known. In

this case, any four of the moment equations (2.1) to (2.5) can be used to

derive unique estimator. Based on this assumption the possible solutions of

estimating equations (2.1) to (2.5) are

1. If both error variances σ2
δ , and σ

2
ϵ are known, then the ratio of the error

variances is also known. This yields

β̂1 =
(S2

y − λS2
x) +

√
(S2

y − λS2
x)

2 + 4λS2
yx

2Syx
.
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2. Substituting (2.4) into equation (2.5) yields the same estimator as when

σ2
ϵ is known

β̂1 =
(S2

y − σ2
ϵ )

Syx
.

3. Another estimator for the slope parameter β1 is obtained by rearranging

equation (2.4) in terms of β2
1σ

2
ξ and dividing by equation (2.3) which

yields

β̂1 = sgn{Syx}

√
S2
y − σ2

ϵ

S2
x − σ2

x

.

4. Substituting (2.3) into equation (2.5) yields the same estimator as when

σ2
δ is known:

β̂1 =
Syx

S2
x − σ2

δ

.

All of the estimators outlined above are obtained by restricting the parameter

space. If a restriction is unsatisfied, then the method of moment equations

are not useful. This is a problem due to having six unknown parameters, but

only five moment estimating equations. However, the conditions basically

suggests that the fitted regression line lies between the OLS line of y on x

and OLS line of x on y. Otherwise, there may be negative estimates for some

or all of the variances in the model (Gillard, 2010).
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2.6.2 The method of higher-order moments

One of the most widely known techniques for slope estimator of the simple

linear regression model with measurement error is the method of higher-order

moments. Many statistical books have referred to this method and describe

that the method of higher-order moments corresponding sample moments

to parameter estimates such as Casella and Berger (1990). The method of

higher-order moments has a long history, yet it is still an effective tool, be-

cause it is easily implemented (see Bowman and Shenton, 1988). Commonly,

many statistical texts give greater attention to the method of higher-order

moments. The estimators of the method of higher-order moments are not

uniquely defined and it is necessary to choose amongst possible estimates to

find the best estimator to data. This may lead to the cases where the method

is used in measurement error models.

The first person to recognize the potential of population moments as a basis

of estimation is Karl Pearson (1890). He introduced the method of moments

(MM) estimation in a series of his papers published after 1890s. This method

has two fundamental features:

1. It is based upon the empirical distribution that approximates the true

distribution when the sample size is large enough. Thus the MM esti-

mator relies on asymptotic theory to justify its usefulness.
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2. It does not need to specify any sort of distribution and does not use any

information about the population distribution other than its moments.

Indeed, using the method of moments to handle the measurement error prob-

lem requires that some information regarding a parameter must be assumed

to be known, or more estimating equations have to be derived by the higher

moments (Cheng and Van Ness, 1999). Scott (1950) introduced an estimator

based on the third moments for the structural model, and showed that if the

third central moment of ξ exists and is non-zero, then the equation is given

by

fn,1(β̂1ξ) =

∑n
j=1[(yj − ȳ)− β̂1ξ(ξj − ξ̄)]3

n
= 0,

where, he mentioned that, β̂1ξ is a consistent estimator of β1. This is because

lim
n→∞

fn,1(β̂1ξ) = (β1 − β̂1ξ)
3µ3

ξ ,

where µ3
ξ denotes the third central moment of ξ. He showed that the esti-

mator of the slope is a function of the third order sample moments. Scott

(1950) mentioned that estimators based on the lower order moments may be

more accurate than those based on higher order moments. He introduced

the estimator without a method of extracting the root which would provide

the consistent estimator (Gillard, 2010).

Drion (1951), Pal (1980), Van Montfort et al. (1987), Van Montfort (1989)

and Cragg (1997) used the higher order moment estimating equations, and
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discussed some large sample properties. Drion (1951) mentioned that an es-

timator could be derived through the third-order non-central moment equa-

tions for a functional model. Moreover, he introduced the variances of all the

sample moments, and showed that his estimator of the slope is consistent,

and the sample moments are given by

Mrs(x, y) =

∑n
j=1(xj − x̄)r(yj − ȳ)s

n
, and

M ′
rs(x, y) =

∑n
j=1 x

r
jy
s
j

n
,

where r and s are order of moments, and x̄ = 1
n

∑n
j=1 xj, and ȳ = 1

n

∑n
j=1 yj.

Pal (1980) and Van Montfort et al. (1987) introduced a treatment for the

structural relationship model under the assumption that the latent variable

ξ is not normally distributed and the moments exist. It is also assumed that

the latent variable ξj, the measurement error in the response variable ϵj, and

the measurement error in the explanatory variable δj are independent of one

another. The equation error (q) is allowed in this approach by absorbing the

equation error term qj into the measurement error of the response variable

as ej = qj + ϵj. The non-normal structural model could be written as

yj = β0 + β1ξj + (qj + ϵj) = β0 + β1ξj + ej.

Drion (1950) considered the following five equations based upon the second-

order moments:

1. M ′
1(x) = µ′

1(ξ),
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2. M ′
1(y) = β0 + β1µ

′
1(ξ),

3. M ′
2(x) = µ′

2(ξ) + σ2
δ ,

4. M ′
2(y) = β2

0 + 2β0β1µ
′
1(ξ) + β2

1µ
′
2(ξ) + σ2

ϵ ,

5. M ′
11(x, y) = β0µ

′
1(ξ) + β1µ

′
2(ξ).

Similarly the equations which are based on the third-order moments are

1. M3(x) = µ3(ξ),

2. M3(y) = β3
1µ3(ξ),

3. M21(x, y) = β1µ3(ξ),

4. M12(x, y) = β2
1µ3(ξ).

Drion (1950) introduced an estimator of the slope β1 given by

β̂1 = ±
(
M3(y)

M3(x)

) 1
3

.

This estimator is consistent under the mild condition that

lim
n→∞

M3(x) ̸= 0.

There are estimators for each pair of the last four equations. There are other

five choices for estimating the slope parameter β1:

1. β̂2 =
M03

M12

,
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2. β̂3 =
M12

M21

,

3. β̂4 =
M21

M30

,

4. β̂5 = ±
√
M03

M21

,

5. β̂6 = ±
√
M12

M30

.

The signs of β̂5, and β̂6, are given by the sign of the sum of product of y and x

(SPyx) or the sign of the sample correlation coefficient (ρ̂). These estimators

need to assume that µ3(ξ) ̸= 0 and β1 ̸= 0. But there is no method to find

out the particular estimator which is the consistent estimator of the slope

parameter β1.

Pal (1980) noted many estimators can be found by using the weighted arith-

metic or geometric mean of the above estimators. Moreover, Scott (1950)

pointed out that the root of

M03 − 3bM12 + 3b2M21 − b3M30 = 0,

itself will be a consistent estimator of the slope parameter β1.

These estimators could be consistent for the slope β1, because the sample

moments are consistent estimators of the true moments. But if M12 and

M21 are close to zero, then these estimators will probably be very unstable

unless the sample size is very large. It seems that the lower-order moments
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generally have lower variations (cf Cheng and Van Ness, 1999, p. 121). Van

Montfort et al. (1987) noted that the estimator β̂3 =M12/M21 is optimal in

the sense of minimal asymptotic variance of all consistent estimators that are

based on the moments up to order three, when the errors are nonsymmetric.

The asymptotic efficiency of a suitable estimator is provided by Pal (1980)

with respect to the least squares estimator for different distributions of ξ. He

showed that three of the above estimators are functions of the other slope

estimators as follows:

(1) β̂1 = (β̂2.β̂3.β̂4)
1
3 , (2) β̂5 = ±(β̂2.β̂3)

1
2 , (3) β̂6 = ±(β̂3β̂4)

1
2 .

Moreover, Van Montfort et al. (1987) introduced an optimal estimator of

the slope which is a function of three slope estimators, and they discussed

the estimators based on third order moments. Furthermore, they pointed

out that if the variance covariance matrix Σ of the third-order moments is

not known, then they should be estimated in order to obtain the optimal

estimator of the slope parameter. The optimal estimator is based on mo-

ments up to order three since moments of order higher than three appear in

the estimation of the variance covariance matrix (Van Montfort et al. 1987).

Gillard (2010) mentioned that through a simulation study, Van Montfort et

al. (1987) demonstrated that the optimal estimator works well for a sam-

ple size about 50, and it is superior to any other estimator based on third
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moment, under the standard assumption that the errors δj and ϵj are inde-

pendent. The same study was replicated for a sample size of 25 but the third

moment estimators performed badly.

Van Montfort (1989) gave alternative approaches to errors-in-variables mod-

elling, including estimation based on third order moments, extensions to

polynomial regressions, and using characteristic functions with the factor

analysis model. Also he provided details on the asymptotic variances and

covariances of the third order moment slope estimators. The optimal esti-

mator is the weighted mean if both errors δj and ϵj are symmetric, and it is

given by

β̂1opt =
κ′Σ−1τ

κ′Σ−1κ
,

where τ ′ = (β̂2, β̂3, β̂4), κ
′ = (1, 1, 1), and Σ is the asymptotic covariance

matrix of τ .

Note usually the asymptotic covariance matrix Σ is unknown and has a

complicated form, so one needs to replace the asymptotic covariance matrix

Σ by a consistent estimate of Σ. Thus the result is asymptotically equivalent

to the optimal estimator β̂1opt, and it is no longer a function of moments

up to the third order. However, Van Montfort et al. (1987) noted that the

asymptotic variance of the optimal estimator β̂1opt has the form (κ′Σ−1κ)−1.

Moreover, they gave the asymptotic covariance matrix Σ of τ and a consistent

estimator of Σ (cf Van Montfort, 1988, Ch. 1).
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The method of higher-order moments lacks the desirable optimality proper-

ties of the maximum likelihood and ordinary least squares estimators (Cramer,

1946). The method of higher-order moments can be criticized because it

is not uniquely defined. But when this method is applicable then it has

the advantage of simplicity, as it only needs the low order moments of the

distribution describing the observations to exist. Often, it assumes that

these distributions are mutually uncorrelated. Cramer (1946) gave theoreti-

cal asymptotic variances and covariances of the estimators of the method of

moments using the Delta Method. It can be used to fit the line and calculate

approximate confidence intervals for the associated parameters after making

particular distributional assumptions.

There are simpler ways of estimating the slope that are available if the error

terms δ and ϵ are from a symmetric distribution, where the additional as-

sumption µ3(u) = µ3(e) = 0 holds. For the third order sample moments of

y and x to be sufficiently different from zero, the distribution of the latent

variable ξ has to be sufficiently skewed. It is also necessary that the regres-

sion line of the third order estimator lie between the ordinary least squares

regression lines of y on x and x on y.

On the other hand, using the fourth order moment estimating equations does

not require the assumption that the distribution of the latent variable ξ has

to be sufficiently skewed. However, the sample size should be larger to ensure
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that the estimator of the slope parameter whether using the third or fourth

order moments is a stable estimator. But for the fourth order moments to

be significantly different from zero, we need the distributions of y and x to

have sufficiently large kurtosis. Then one can obtain the fourth order central

moments as follows:

M4(m) =
1

n

n∑
j=1

(xj − x̄)4, (2.13)

M31(m, y) =
1

n

n∑
j=1

(xj − x̄)3(yj − ȳ), (2.14)

M22(m, y) =
1

n

n∑
j=1

(xj − x̄)2(yj − ȳ)2, (2.15)

M13(m, y) =
1

n

n∑
j=1

(xj − x̄)(yj − ȳ)3, (2.16)

M4(y) =
1

n

n∑
j=1

(yj − ȳ)4. (2.17)

Note the fourth order moment equations can be derived in a similar way to

that used to derive the third order moment equations. As a result if there

does not exist a unique estimator for the slope parameter then some of these

equations are not needed. In this case, we use the equations which avoid the

higher order moments of the error terms.

2.6.3 Estimation with cumulants

Another method of estimation is a method based on product cumulants pro-

posed by Geary (1942). This method is closely related to the method of
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higher-order moments, and both methods lead to similar estimators. The se-

ries estimators of the method of cumulants are obtained by simple formula.

The cumulants can be defined as follows. Let the explanatory variable x

and the response variable y be jointly distributed random variables. Then

provided the expansions are valid in the given domain, the natural logarithm

of the joint characteristic function is

Ψ(t1, t2) = logeϕ(t1, t2) = loge[E(e
it1m+it2y)]

=
∞∑

r,s=0

k(r, s)
(it1)

r

r!

(it2)
s

s!
, (2.18)

where Ψ is called the joint cumulant generating function. If r ̸= 0 and s ̸= 0

then k(r, s) is called the r, s product cumulant of x and y. Using the method

of cumulants the slope of the classical structural model (without equation

error) can be estimated as follows. Let

ηj = β0 + β1ξj, yj = ηj + ϵj, xj = ξj + δj,

then the joint characteristic function of (ξj, ηj) is

ϕ(t1, t2) = E(eit1ξ+it2η). (2.19)

If the true values of η and ξ are centered with respect to their true mean, then

the intercept vanishes, and the structural relationship could be rewritten as

β1ξ − η = 0. (2.20)

According to Stuart and Ord (1994, Ch. 12) the important properties of

bivariate cumulants are:
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(1) The cumulant of a sum of independent random variables is the sum of

the cumulants.

(2) The bivariate cumulant of independent random variables is zero.

(3) Cumulants are invariant under the change of origin, except for the first

cumulant.

Based on the property (1) the joint cumulant generating function Ψ of the

observed points (xj, yj) is the sum of the joint cumulant generating function

of the unobserved points (ξj, ηj) and the measurement error in both response

and explanatory variables (ϵj, δj). Due to the property (2) the bivariate

cumulants of the measurement error in both variables (ϵj, δj) are zero at any

order s, r, where the order s, r is positive. Furthermore, by property (3)

the centering of the mean does not effect the estimation (see Cheng and Van

Ness, 1999, p. 125).

Letting k(x, y) denote the cumulants of (x, y), and k(ξ, η) denote the cumu-

lants of (ξ, η) then

k(m,y)(r, s) = k(ξ,η)(r, s).

From (2.19) and (2.20)

β1
∂ϕ

∂it1
− ∂ϕ

∂it2
= E[(β1ξ − η)eit1ξ+it2η] = 0,

for more details see for example Cheng and Van Ness, 1999, p. 125; and Pal

(1980).
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If we replace the joint characteristic function ϕ by the cumulant generating

function Ψ, which yields

β1
∂Ψ

∂it1
− ∂Ψ

∂it2
=

1

ϕ

(
β1

∂ϕ

∂it1
− ∂ϕ

∂it2

)
= 0. (2.21)

For all r, s > 0 and from (2.18) and (2.21) we then have

β1k(r + 1, s)− k(r, s+ 1) = 0.

So if k(r + 1, s) ̸= 0 an estimator of the slope parameter is

β̂1C =
k(r, s+ 1)

k(r + 1, s)
. (2.22)

For any r, s > 0 the consistent estimators of the slope parameter are obtained

by replacing the cumulants of the population k(r, s) by the corresponding

sample cumulants of order (r, s). That is, K(r, s), of the empirical distribu-

tion Pn of the observed points (xj, yj), where the probability function of this

distribution is

Pn(m, y) =
1

n

n∑
j=1

I(−∞,m](xj)I(−∞,y](yj),

where IΩ is the indicator function of the set Ω.

In fact, sample cumulants could be obtained by using moment estimates. For

example,

K(3, 1) =M31 − 3M20M11 =M31 − 3S2
xSyx,

where Mrs =
1
n

∑n
j=1(m− x̄)r(y − ȳ)s. For more details see Stuart and Ord

(1994, Section 3.29).
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However, the cumulant method for estimating the slope parameter β1 does

not work if the manifest variables (xj, yj) are jointly normally distributed.

Because all odd cumulants of order greater than or equal to three are zero

in normal system, thus the estimator (2.22) is useless in the case of normal

model. Moreover, the cumulant estimators become more and more unstable

if a non normal model gets closer and closer to a normal model (cf Cheng

and Van Ness, 1999, p. 127).

2.7 Instrumental Variables

One of the most popular methods in the econometrics literature of obtaining

consistent estimator of the slope parameter, β1, which has received exten-

sive consideration, is a method based on the use of instrumental variables.

The method of instrumental variables (IV) has become the most standard

approach to measurement error problems. It produces consistent estimates

of the slope parameter if a suitable instrumental variable exists. An instru-

mental variable is suitable if it is uncorrelated with the measurement error

and the equation error. However, if correlated with the correctly measured

variable, then it provides a consistent estimator only under the conditions

to make the model identifiable. The estimation via instrumental variable

was coined by Reiersol (1950), and for a historical review of this method see
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Goldberger (1972). In fact, use of the instrumental variable was considered

as a different type of auxiliary information to make the normal model iden-

tifiable (Fuller, 2006, p. 50). Assume that a structural measurement error

model is given by

yj = β0 + β1xj + εj, xj = ξj + δj,

for j = 1, 2, . . . , n where εj are independent random variables and εj ∼

N(0, σ2
ε). Suppose there is a third variable, denoted by zj, known to be

correlated with the latent explanatory variable ξj, and uncorrelated with the

measurement error δj. It is often assumed that both εj and δj are independent

of zj. The instrumental variable zj is valid to use if it satisfies the following

conditions

(a) E

[
1

n

n∑
j=1

(zj − z̄)(εj, δj)

]
= (0, 0) (2.23)

(b) E

[
1

n

n∑
j=1

(zj − z̄)ξj

]
̸= 0. (2.24)

Notice that

1

n

∑
(zj − z̄)yj =

1

n

∑
(zj − z̄)β0 +

1

n

∑
(zj − z̄)β1xj +

1

n

∑
(zj − z̄)εj

=
1

n

∑
(zj − z̄)β1xj +

1

n

∑
(zj − z̄)εj

=
1

n

∑
(zj − z̄)β1xj, as n→ ∞.

Then the instrumental variable estimator of β1 is

β̂1IV =

∑
(zj − z̄)yj∑
(zj − z̄)xj

. (2.25)
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The instrumental variable estimator of the intercept β0 is then

β̂0IV = ȳ − β̂1IV x̄. (2.26)

Johnston (1972, p. 284) showed how to use Wald’s grouping method and

the method based on ranks as an instrumental variable. The instrumental

variable estimator of the slope parameter is consistent and asymptotically

normal, if and only if the following conditions are met

(1) The instrumental variable must be correlated with the latent explanatory

variable ξj.

(2) The instrumental variable must be independent of the measurement er-

rors δ and ϵ, and also independent of the equation error e.

Indeed, there is practical difficulty in how to find a variable that is correlated

with the latent variable ξ and independent of the measurement error. Carroll

et al. (1995, p. 107) noted:

“ One possible source of an instrumental variable is a second measurement

on ξ obtained by an independent method. This second measurement need

not be unbiased for ξ. Thus the assumption that a variable is an instrument

is weaker than the assumption that it is a replicate measurement”.

The other difficulty that the instrumental variable may not be unique, then

how to use the instrumental variable based on the concept of consistency
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only. Since the consistency means that the estimator converges to the pa-

rameter with increase the sample size, whereas the unbiasedness means that

the estimator has a sampling distribution centered on the parameter for any

sample size. Angrist and Krueger (2001) stated “The instrumental variables

estimates are consistent, but not unbiased, researchers using instrumental

variables should aspire to work with large samples”.

2.8 Method based on ranks

The method of ranks is proposed by Theil (1950), it can be viewed as be-

ing related to the instrumental variable approach. This method is based on

ordering the data according to either the manifest explanatory variable xj

or the manifest response variable yj. He proposed a linear regression pro-

cedure with no special assumptions regarding the distribution of the data.

The parameters are estimated by a nonparametric principle, and there are no

assumptions of error distributions. Furthermore, this method does not pre-

sume Gaussian distributions of the true values, but only with regards to the

error distributions. Moreover, the jackknife principle, used for estimation

of standard errors in the Deming, Non-parametric, and Weighted Deming

procedures (cf Saracli et al. 2009). The method of ranks takes measurement

errors of both variables x, y into account, but the method presumes that the
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ratio between analytical standard deviations is related to the slope, otherwise

the estimator will be biased. If one assumes that the data is ordered based on

the explanatory variable x to obtain the order statistics x(1), . . . , x(n), then

the instrumental variable can be taken as zj = i, where i is the order of the

statistics of the manifest variable xj (cf Cheng and Van Ness, 1999, p. 119).

However, this method requires a strong assumption that the values of the

latent explanatory variable ξ are so spread out compared with the variance

of error σ2
δ that the series of observed xj is in the same order as the latent

variable ξj. This assumption is equivalent to

xi ≤ xj ⇔ ξi ≤ ξj. (2.27)

Moreover, the standard assumptions on the error structure are made as fol-

lows:

Assume that δ1, . . . , δn, ϵ1, . . . , ϵn all have finite variances and uncorrelated,

and have mean zero, that is,

E(δj) = E(ϵj) = 0 for all j, (2.28)

cov(δi, δj) = cov(ϵi, ϵj) = 0 for all j ̸= i, (2.29)

cov(δj, ϵj) = 0 for all j, (2.30)

and n is even such that, n = 2k, and that xi ̸= xj for all i ̸= j, then the
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lagged slopes are

bi =
y(k+i) − y(i)
x(k+i) − x(i)

, i = 1, . . . , k, (2.31)

and the paired slopes,

bi,j =
y(j) − y(i)
x(j) − x(i)

, i = 1, . . . , j − 1; j = 2, . . . , n. (2.32)

Then one can form estimators of the slope parameter β1 using the arithmetic

mean or median of either from the lagged slopes or the paired slopes.

By the lagged slopes we have

β̂1La =
1

k

k∑
i=1

bi, (2.33)

β̂1Lm = median(bi), (2.34)

or by the paired slopes we have

β̂1Pa =
2

n(n− 1)

n∑
j=2

k∑
i=1

bi,j, (2.35)

β̂1Pm = median(bi,j). (2.36)

Cheng and Van Ness (1999, p. 119) stated that the assumption of this

method is considered as a new identifiability side condition, and it might

hold for the structural model except for very small sample sizes and either

the latent variable ξj is not normal or σ2
δ is very small. They also mentioned

that if the sample size n is large and σ2
δ > 0 then the assumption above will

not be satisfied for the normal structural model.
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2.9 Maximum likelihood approach

The application of the maximum likelihood method to measurement error

models has been considered by many authors. The common approach to

finding the maximum likelihood estimator is by minimizing the likelihood

function by differentiating it with respect to the parameters, and setting the

resulting derivatives to zero. In fact, the likelihood equations can have one or

more solutions, which might be a saddle point, a local maximum, or a local

minimum of the likelihood function. Hood et al. (1999) pointed out that

it is unlikely that theoretical results concerning the asymptotic variances of

the estimators can be derived for anything other than the normal structural

model.

The first author to use maximum likelihood estimation for the errors-in-

variables model is Lindley (1947). He mentioned that the likelihood equations

are consistent if there is some prior information available on the parameters.

He pointed out that the most common assumption is to assume that the ratio

of error variances λ is known. Kendall and Stuart (1973) showed the estima-

tion in measurement error model using the maximum likelihood approach.

They pointed out that the sample means, variances and covariances form

sufficient statistics to derive the estimates from the familiar maximum likeli-

hood estimates for means, variances, and covariances for a bivariate normal
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distribution (see for example, Kendall and Stuart, 1979, ch. 18). Kendall

and Stuart (1973) introduced various cases based on a different assumption

regarding a subset of the parameters. For each of these cases they derived

estimators for the parameters. Moreover, they advise on how to construct

confidence intervals. Also they introduced a brief survey on cumulants, in-

strumental variables and grouping methods.

Barnett (1970) considered the fitting of a functional model with applications

on the importance of measurement error models in the medical and biological

areas. He used the maximum likelihood approach for estimating the slope

parameter. He commented that the maximum likelihood approach tended

to run into computational problems, because of the awkward nature of the

likelihood equations. Barnett showed the inherent difficulties in using the

maximum likelihood method, and he examined alternative error structures

which could be applicable to biological and medical data, but no closed form

solution could be found.

Wong (1989) focused on the likelihood equations when both error variances

were assumed to be known and equal. In fact, the situation of when both

error variances are known and equal has received much attention. Wong used

an orthogonal parametrisation in which the slope parameter is orthogonal

to the remaining parameters. Which also included approximate confidence

intervals for the parameters, information on testing hypotheses of the slope,
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and the density function for the slope estimator.

Solari (1969) considered the maximum likelihood method when the obser-

vations of the variables are normally distributed with unknown means and

unknown variances. She pointed out that the maximum likelihood solution

for the linear functional equations was a saddle point, and not a maximum.

Solari (1969) concluded that a maximum likelihood solution for the linear

functional model exists if only there is some prior distribution to place on

a parameter. The maximum likelihood estimator of the slope parameter

introduced by Solari is

β̂1 = sgn{Syx}

√
S2
y

S2
x

.

Sprent (1970) and Copas (1972) examined Solari’s work and the practical

implications of her findings. Copas pointed out that the likelihood surface

becomes bounded when the rounding-off errors are considered in the obser-

vation. This situation allows for a different consideration of the likelihood

surface. Copas mentioned that it is possible to find a solution which is

approximately the maximum likelihood in the sense that the value of the

likelihood at that solution is close to the global supremum. His solution for

the slope is equivalent to using the x on y estimate and the y on x estimate.
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The modified likelihood equation introduced by Copas is

L =
∏

Pj(xj)Qj(yj), where

Pj(xj) = P

(
x− 1

2
h ≤ ξj < x+

1

2
h

)
, and

Qj(yj) = P

(
y − 1

2
h ≤ ηj < y +

1

2
h

)
,

when σξ > 0, then

Pj(xj) = Φ

(
x− µj +

1
2
h

σξ

)
− Φ

(
x− µj − 1

2
h

σξ

)
,

where Φ is the standard normal distribution function, and it is approximately

given by

Φ =
h√
2πσ2

ξ

exp

{
−(x− µj)

2

2σ2
ξ

}
.

Note that Copas’s model did not include an intercept, and the value of h was

introduced to allow a discrepancy when (ξj; β1ξi) were recorded or measured.

The direct consequence of the saddle point of the modified likelihood equation

of Copas is

A = {β1, σδ, σϵ, ξ :
∑

(xj − ξj)
2 = 0, σδ = 0}, and

B = {β1, σδ, σϵ, ξ :
∑

(yj − β1ξj)
2 = 0, σϵ = 0}.

Within sets A and B the modified likelihood equation reduces to the likeli-

hood equation for OLS(y/x) regression and OLS(x/y) regression (cf Copas

1972). It is clear that Copas’s method is equivalent to using y on ξ regression

if σ2
δ is close to zero. But if β1ξj is close to the manifest response variable
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y then Copas’s method is equivalent to using x on y regression (cf Gillard,

2010).

However, if all the distributions describing variation in the data are assumed

to be normal then the maximum likelihood method handles the measurement

error problem only. Gillard (2010) stated, “a unique solution is available only

if additional information about certain parameters of the model are available,

which often includes information regarding the variances of error”.

2.10 Structural equation modelling

Structural equation modelling (SEM) is used to describe a large number of

statistical models used to evaluate the validity of substantive theories with

empirical data. Structural equation modelling is also known as covariance

structure analysis. It could be considered as an extension of general linear

modeling (GLM) procedures, such as the ANOVA and multiple regression

analysis. There are computer packages that fit the models through the struc-

tural equation modelling such as LISREL (Linear Structural Relationships)

(see for example Skrondal and Rabe-Hesketh, 2004). In fact, there is a com-

mon belief, which is not quite true, that the structural equation models have

been successfully applied to handle the measurement error problem, specially

in the behavioral and social sciences in modelling.
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But in order to estimate the parameters of normal structural models some-

thing further assumed to be known to avoid the problem of identifiability.

Madansky (1959) stated “To use standard statistical techniques of estima-

tion to estimate β1, one needs additional information about the variance of

the estimator”. Sanchez et al. (2005) stated “the structural equation models

are particularly susceptible to identifiability problems. The SEM estimate for

the exposure effect is the same as the estimate from an instrumental variables

approach to measurement error”. He also mentioned that many statisticians

and researchers in other areas of application are relatively unfamiliar with

SEM.

Grewal et al. (2004) stated “In the past, researchers have often assumed

that because SEM takes into account measurement error and corrects paths

for attenuation, measure unreliability is less of a problem. Our findings

clearly show that this assumption is not warranted”. However SEM, which

sometimes called covariance structure modeling, is a complicated model and

many researchers prefer to ignore the measurement error problem rather

than using SEM. Moreover, Brannick (1995) pointed out that the covariance

structure modeling is unlikely to produce scientific progress. Furthermore,

Barrett (2007) stated “ the structural equation model fit has recently become

a confusing and contentious area of evaluative methodology”.
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2.11 Other contributions

Degracie and Fuller (1972) considered estimation of the slope and covari-

ance when the concomitant variable is measured with error. Grubbs (1973)

discussed errors of measurement, precision, accuracy and the statistical in-

ference. Aigner (1973) considered regression with a binary variable subject

to errors of observation. Florens et al. (1974) considered Bayesian inference

in error-in-variables models.

Schneeweiss (1976) proposed consistent estimator of the regression model

with errors in the variables. Bhargava (1977) introduced maximum likeli-

hood estimation in a multivariate errors-in-variables regression model with

unknown error covariance matrix. Prentice (1982) dealt with covariant mea-

surement errors and parameter estimation in a failure time regression model.

Amemiya et al. (1984) proposed estimation of the multivariate errors-in-

variables model with estimated error covariance matrix.

Klepper and Leamer (1984) provided consistent sets of estimators for re-

gression with errors in all variables. Stefanski and Carroll (1985) discussed

covariant measurement error in logistic regression. Carroll et al (1985) pro-

posed comparison of least squares and errors-in-variables regression with spe-

cial reference to randomized analysis of covariance. Armstrong (1985) dealt

with the measurement error in the generalized linear model. Bekker (1986)
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commented on identification in the linear errors-in-variables model. Schafer

(1986) combined information on measurement error in errors-in-variables

model. Kim and Saleh (2002, 2003, 2005) concentrated on the test and

improve the estimation of the parameters of the simple linear models with

measurement error. Recently Fuller (2006) covered various aspects of the

measurement error models and related inferences.

The next chapter introduces a new methodology based on the mathematical

transformation of the manifest variables. This methodology relies on the

combination of the reflection and ordinary least squares techniques. More-

over, it includes some theorems to help interpret vertical, orthogonal, and

horizontal distances between the observed points and regression line. In or-

der to fit the regression line when both the explanatory and the response

variables are subject to error, we will be using the reflection of the explana-

tory variable about the regression line. The asymptotic consistency and the

mean absolute error (MAE) criteria are used to compare the new estimator

with the relevant existing estimators under different conditions.



Chapter 3

The reflection approach to

measurement error model

3.1 Introduction

This chapter introduces a mathematical transformation of the manifest vari-

ables. It is an algebraic transform of the manifest data of both response and

explanatory variables. The reflection technique has some useful geometrical

properties to interpret the problem of measurement error in the linear re-

gression model. It is well known that the reflection technique transforms the

points whilst preserving midpoint, collinearity, betweenness, distances, and

angles. For example, the distance of the observed point (x, y) from the line
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of reflection is the same as the distance of the reflection point (x∗, y∗) from

the line of reflection.

The reflection based regression line bisects the distance between the observed

point (x, y) and its reflection point (x∗, y∗). The line between the observed

point (x, y) and its reflection point (x∗, y∗) is perpendicular with the reflec-

tion line. Based on the reflection technique and ordinary least squares (OLS)

method, this chapter provides a set of theorems related to the linear regres-

sion models. These theorems are applied in the following chapters to define

proposed estimator and study its properties.

3.2 Methodology

The proposed methodology relies on the combination of the reflection and

ordinary least squares techniques. The incorporation of both ordinary least

squares and reflection techniques help interpret vertical, orthogonal, and

horizontal distances between the observed points and regression line. The

transformation formulas are resulted from overlap between the ordinary least

squares (OLS) and the reflection technique. These formulas produced trans-

formed variables (reflection variables), x∗ and y∗, for both the explanatory

and response variables, x and y respectively.
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The transformed variables are obtained by considering the OLS regression

line of y on x as a reflection line. All the observed points (x, y) are reflected

about the OLS regression line of y on x using the following reflection formulas

x∗j = xjcos2ψ + (yj − β̂0x)sin2ψ, (3.1)

y∗j = xisin2ψ − (yj − β̂0x)cos2ψ + β̂0x. (3.2)

Here x∗ and y∗ are transformed (reflection) variables of the manifest variables

x and y respectively, β̂0x and β̂1x are the least squares estimator of the in-

tercept and slope when both response and explanatory variables are subject

to measurement error, and ψ = tan−1β̂1x. For the definition of reflection of

points on the Cartesian plane readers may see Vaisman (1997, p. 164-169).

3.3 Residuals analysis by reflection technique

It is well known that the regression line does not pass through all the data

points on the scatter plot unless the correlation coefficient is ±1. Often the

data points are scattered around the regression line. Points not falling on the

regression line, have a vertical distance from the fitted line. This distance is

known as the residual representing unexplained variation in the regression.

The length of the vertical residual vary from point to point.

This section introduces a new method to analyse the vertical residuals of
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the measurement error model by Theorem 1 below. The reflection based

regression allows to partition the squared residuals (unexplained variation)

in to vertical and horizontal parts.

Theorem 1 The square of the unexplained variation of y by x can be parti-

tioned in to the vertical and horizontal components as follows:

(yj − ŷj)
2 = (y∗j − ŷj)

2 + (x∗j − xj)
2, j = 1, 2, ...., n.

Then it can be shown that the sum of squared residuals is

SSEyx =
n∑
j=1

(yj − ŷj)
2 =

n∑
j=1

(y∗j − ŷj)
2 +

n∑
j=1

(x∗j − xj)
2 = SSEy + SSEx

and total sum of squares is

TSS = SSRyx + SSEyx =
n∑
j=1

(yj − ȳ)2 =
n∑
j=1

(ŷj − ȳ)2 +
n∑
j=1

(yj − ŷ)2

=
n∑
j=1

(ŷj − ȳ)2 +
n∑
j=1

(y∗j − ŷj)
2 +

n∑
j=1

(x∗j − xj)
2.

Here SSRyx is the squared sum of explained variation of y by x, SSEyx is

the squared sum of unexplained variation of y by x, SSEy is the squared

sum of vertical unexplained variation in y, and SSEx is the squared sum of

horizontal unexplained variation as a function of x.

Proof From (3.1), (3.2) and for each j = 1, 2, 3, ....., n,
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(y∗j − ŷj)
2 + (x∗j − xj)

2 = (y∗2j − 2y∗j ŷj + ŷ2j ) + (x∗2j − 2x∗jxj + x2j)

= x2j sin
2 2ψ − 2yjxj sin 2ψ cos 2ψ + y2j cos

2 2ψ + 2β̂0xxj sin 2ψ cos2 ψ

−4β̂0xyj cos 2ψ cos2 ψ + 4β̂2
0x cos

4 ψ − 2β̂0xxj sin 2ψ + 2β̂0xyj cos 2ψ

−2β̂2
0x cos 2ψ − 2β̂1xx

2
j sin 2ψ + 2β̂1xyjxj cos 2ψ − 2β̂0xβ̂1xxj cos 2ψ

+β̂2
0x + 2β̂0xβ̂1xxj + β̂2

1xx
2
j + x2j cos

2 2ψ + 2yjxj cos 2ψ sin 2ψ

−2β̂0xxj cos 2ψ sin 2ψ + y2j sin
2 2ψ − 2β̂0xyj sin

2 2ψ + β̂2
0x sin

2 2ψ

−2x2j cos 2ψ − 2yjxj sin 2ψ + 2β̂0xxj sin 2ψ + x2j .

In order to simplify the algebraic expression above, we separate the terms to

three parts as follows:

Part(I) collect all terms involving β̂0x:

β̂0x[2xj(sin 2ψ cos2 ψ − sin 2ψ + β̂1x(1− cos 2ψ)− cos 2ψ sin 2ψ + sin 2ψ)

−2yj(2 cos
2 ψ cos 2ψ − cos 2ψ + sin2 2ψ)]

= β̂0x[2xj(sin 2ψ + 2β̂1x sin
2 ψ)− 2yj]

= 2β̂0xβ̂1xxj − 2β̂0xyj.

Note that (2 sin 2ψ cos2 ψ − cos 2ψ sin 2ψ) = sin 2ψ and

(2 cos2 ψ cos 2ψ − cos 2ψ + sin2 2ψ) = 1.

Part(II) collecting all terms multiplied by β̂2
0x:
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β̂2
0x(4 cos

4 ψ − 2 cos 2ψ + 1 + sin2 2ψ)

= β̂2
0x(4 cos

4 ψ − cos 2ψ + 3 sin2 ψ + 4 cos2 ψ sin2 ψ)

= β̂2
0x cos

2 ψ(4 cos2 ψ − 1 + 3β̂2
1x + 4 sin2 ψ)

= β̂2
0x cos

2 ψ(1 + β̂2
1x) = β̂2

0x cos
2 ψ

(
1 +

sin2 ψ

cos2 ψ

)
= β̂2

0x cos
2 ψ

(
cos2 ψ + sin2 ψ

cos2 ψ

)
= β̂2

0x.

Note that (4 cos4 ψ − 2 cos 2ψ + 1 + sin2 2ψ) = 3 for any value of ψ.

Part(III) collecting all terms multiplied by x2j :

x2j(sin
2 2ψ − 2β̂1x sin 2ψ + β̂2

1x + cos2 2ψ − 2 cos 2ψ + 1)

= x2j(sin
2 2ψ − 2β̂1x sin 2ψ + β̂2

1x + (cos 2ψ − 1)2)

= x2j(4 sin
2 ψ cos2 ψ − 4 sin2 ψ +

sin2 ψ

cos2 ψ
+ 4 sin4 ψ)

= x2j sin
2 ψ(4 cos2 ψ + 4 sin2 ψ +

1

cos2 ψ
− 4)

= x2j sin
2 ψ(

1

cos2 ψ
) = β̂2

1xx
2
j ,

where ψ = tan−1β̂1x, β̂0x = ȳ − β̂1xx̄, and

(sin2 2ψ − 2β̂1x sin 2ψ + β̂2
1x + cos2 2ψ + 2 cos 2ψ + 1) = β̂2

1x.
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After simplifying the expressions we get

(y∗2j − 2y∗j ŷj + ŷ2j ) + (x∗2j − 2x∗jxj + x2j)

= y2j − 2β̂0xyj − 2β̂1xxjyj + β̂2
0x + 2β̂0xβ̂1xxj + β̂2

1xx
2
j

= y2j − 2yj(β̂0x + β̂1xxj) + (β̂0x + β̂1xxj)
2

= y2j − 2yj ŷj + ŷ2j = (yj − ŷj)
2,

hence

(y∗j − ŷj)
2 + (x∗j − xj)

2 = (yj − ŷj)
2. (3.3)

Now by inserting sum to the both sides of (3.3) we get

n∑
j=1

(y∗j − ŷj)
2 +

n∑
j=1

(x∗j − xj)
2 =

n∑
j=1

(yj − ŷj)
2 = SSE. (3.4)

Since
∑n

j=1(y
∗
j − ŷj)

2 = SSEy and
∑n

j=1(x
∗
j − xj)

2 = SSEx, then

SSE = SSEy + SSEx, and (3.5)

TSS = SSR + SSE = SSR + SSEy + SSEx. (3.6)

3.3.1 An alternative proof

Note that we can alternatively prove this theorem geometrically based on

the properties of the reflection of point as follows: In Figure 3.1, let A be

the point (x, y), D be its reflection point (x∗, y∗), B = (x, ŷ), C = (x, y∗),

and consider that the regression line of OLS of y on x be the reflection line.



3.3 Residuals analysis by reflection technique 71
                         

         y                                                                                     

                                                                                                  �� � ���� � ��	�
                                                                            

          y                                                                      A      

 

                                                                                      E 

                                                                                                                                                                                                                                                                                    

      ��                                                    
B
   

     y*                                                                                  D 

                                                 C     
 

 

 

 

 
                                                                                                 

                                                                     x                           x*                                                                            x, x*                 

Figure 3.1: Graph of a reflection point about the OLS regression line of y on

x.

Then AE = ED, and BE is a common side between the triangles ∆ABE

and ∆DBE. Based on that, triangles ∆ABE and ∆DBE are identical,

hence AB = BD. From the triangle ∆BCD that BD
2
= BC

2
+CD

2
. Then

AB
2

= BC
2
+ CD

2
,

where AB = (yj − ŷj), BC = (y∗j − ŷj), and CD = (x∗j − xj). Hence

(yj − ŷj)
2 = (y∗j − ŷj)

2 + (x∗j − xj)
2.

By summing both sides over j from 1 to n, we get

n∑
j=1

(yj − ŷj)
2 =

n∑
j=1

(y∗j − ŷj)
2 +

n∑
j=1

(x∗j − xj)
2.

Then it follows:

SSE = SSEy + SSEx, and

TSS = SSR + SSE = SSR + SSEy + SSEx.
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3.4 Advantages of using reflection

Theorem 2 The mean of the reflection of manifest variable x̄∗ equals the

arithmetic mean of manifest explanatory variable x̄ and the mean of latent

variable ξ̄. That is, x̄∗ = x̄ = ξ̄.

Proof From (3.1)

n∑
j=1

x∗j =
n∑
j=1

(xj cos 2ψ + yj sin 2ψ − β̂0x sin 2ψ)

=
n∑
j=1

xj cos 2ψ +
n∑
j=1

yj sin 2ψ − nβ̂0x sin 2ψ,

since β̂0x = ȳ − β̂1xx̄, then

n∑
j=1

x∗j =
n∑
j=1

xj cos 2ψ +
n∑
j=1

yj sin 2ψ −
n∑
j=1

yj sin 2ψ + β̂1x

n∑
j=1

xj sin 2ψ

=
n∑
j=1

xj(cos 2ψ + β̂1x sin 2ψ)

=
n∑
j=1

xj(cos
2 ψ − sin2 ψ +

sinψ

cosψ
2 cosψ sinψ)

=
n∑
j=1

xj(cos
2 ψ − sin2 ψ + 2 sin2 ψ)

=
n∑
j=1

xj(cos
2 ψ + sin2 ψ) =

n∑
j=1

xj.

Thus

1

n

n∑
j=1

x∗j =
1

n

n∑
j=1

xj

It is well know that the mean of manifest explanatory variable x̄ equals the

mean of latent variable ξ̄, because there is a common assumption in the
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literature of the error in variables that the population mean of measurement

error equals zero, hence

x̄∗ = x̄ = ξ̄.

Theorem 3 The mean of the manifest response variable ȳ equals that of the

latent variable η̄ and the reflection of manifest variable ȳ∗.That is,

η̄ = ȳ = ȳ∗

. Proof From (3.2)

n∑
j=1

y∗j =
n∑
j=1

(xj sin 2ψ − yj cos 2ψ + β̂0x cos 2ψ + β̂0x)

=
n∑
j=1

(xj sin 2ψ − yj cos 2ψ + β̂0x(cos 2ψ + 1))

=
n∑
j=1

(xj sin 2ψ − yj cos 2ψ + β̂0x(cos
2 ψ − sin2 ψ + cos2 ψ + sin2 ψ))

=
n∑
j=1

(xj sin 2ψ − yj cos 2ψ + 2β̂0x cos
2 ψ)

=
n∑
j=1

(xj sin 2ψ − yj cos 2ψ + 2(ȳ − β̂1xx̄) cos
2 ψ)

=
n∑
j=1

xj sin 2ψ −
n∑
j=1

yj cos 2ψ + 2
n∑
j=1

yj cos
2 ψ − 2β̂1x

n∑
j=1

xj cos
2 ψ

=
n∑
j=1

xj sin 2ψ +
n∑
j=1

yj(2 cos
2 ψ − cos 2ψ)− 2

n∑
j=1

xj
sinψ

cosψ
cos2 ψ

=
n∑
j=1

xj sin 2ψ +
n∑
j=1

yj(2 cos
2 ψ − cos2 ψ + sin2 ψ)−

n∑
j=1

xj sin 2ψ

=
n∑
j=1

yj.

Then 1
n

∑n
j=1 y

∗
j =

1
n

∑n
j=1 yj.
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Based on the assumption that the population mean of measurement error

equals zero, the mean of the manifest response variable ȳ equals the mean of

the latent response variable η̄, hence

ȳ∗ = ȳ = η̄.

Theorem 4 The estimator of slope for the regression model of y on x equals

the estimator of slope for the regression model of y∗ on x, that is,

β̂1yx = β̂1y∗x, β̂0yx = β̂0y∗x,

where β̂1yx is the OLS estimator of slope of y on x, and β̂1y∗x is that of y∗

on x. Also β̂0yx is the estimator of intercept of OLS y on x and β̂0y∗x is that

of y∗ on x.

Proof

It is well known that β̂1yx = Syx

S2
x
, and β̂1y∗x =

Sy∗x
S2
x
, where S2

x is the sample

variance of the manifest explanatory variable x. Then in order to prove that

β̂1yx = β̂1y∗x we only need to prove that Syx = Sy∗x.

Sy∗x =
1

n− 1

n∑
j=1

(xj − x̄)(y∗j − ȳ∗)

=
1

n− 1

n∑
j=1

(xj(y
∗
j − ȳ∗)− x̄(y∗j − ȳ∗))

=
1

n− 1

n∑
j=1

(xjy
∗
j − xj ȳ

∗ − y∗j x̄+ ȳ∗x̄)
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Sy∗x =
1

n− 1

(
n∑
j=1

xjy
∗
j −

n∑
j=1

xj ȳ
∗ −

n∑
j=1

y∗j x̄+
n∑
j=1

ȳ∗x̄

)

=
1

n− 1

(
n∑
j=1

xjy
∗
j − nȳ∗x̄− nȳ∗x̄+ nȳ∗x̄

)

=
1

n− 1

(
n∑
j=1

xjy
∗
j − nȳ∗x̄

)
(3.7)

Note that ȳ∗ = ȳ from Theorem 3.

But we still need to prove that
∑n

j=1 xjy
∗
j =

∑n
j=1 xjyj as follows

n∑
j=1

xjy
∗
j =

n∑
j=1

xj(xj sin 2ψ − yj cos 2ψ + β̂0x cos 2ψ + β̂0x)

=
n∑
j=1

(x2j sin 2ψ − yjxj cos 2ψ + β̂0x cos 2ψxj + β̂0xxj)

=
n∑
j=1

x2j sin 2ψ −
n∑
j=1

yjxj cos 2ψ +
n∑
j=1

β̂0x cos 2ψxj +
n∑
j=1

β̂0xxj

=
n∑
j=1

x2j sin 2ψ −
n∑
j=1

yjxj cos 2ψ + nβ̂0x cos 2ψx̄+ nβ̂0xx̄

=
n∑
j=1

x2j sin 2ψ −
n∑
j=1

yjxj cos 2ψ + nȳ cos 2ψx̄− nβ̂1x cos 2ψx̄
2

+nȳx̄− nβ̂1xx̄
2

=
n∑
j=1

x2j sin 2ψ −
n∑
j=1

yjxj(2 cos
2 ψ − 1) + nȳx̄(cos 2ψ + 1)

−nβ̂1xx̄2(cos 2ψ + 1)

=
n∑
j=1

x2j sin 2ψ − 2
n∑
j=1

yjxj cos
2 ψ +

n∑
j=1

yjxj + 2nȳx̄ cos2 ψ

−2nβ̂1xx̄
2 cos2 ψ
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n∑
j=1

xjy
∗
j =

n∑
j=1

x2j sin 2ψ +
n∑
j=1

yjxj −

(
n∑
j=1

yjxj − nȳx̄

)
2 cos2 ψ

−2nβ̂1xx̄
2 cos2 ψ

=
n∑
j=1

yjxj −

(
n∑
j=1

yjxj − nȳx̄

)
2 cos2 ψ +

n∑
j=1

x2j sin 2ψ

−2nx̄2
sinψ

cosψ
cos2 ψ

=
n∑
j=1

yjxj − 2SPyx cos
2 ψ +

n∑
j=1

x2j sin 2ψ − nx̄2 sin 2ψ

=
n∑
j=1

yjxj − 2SPyx cos
2 ψ + SSx sin 2ψ.

Note that β̂1x =
sinψ

cosψ
=
SPyx
SSx

, then

n∑
j=1

xjy
∗
j =

n∑
j=1

yjxj − 2SSx
sinψ

cosψ
cos2 ψ + SSx sin 2ψ

=
n∑
j=1

yjxj − SSx sin 2ψ + SSx sin 2ψ

=
n∑
j=1

yjxj.

Hence

Sy∗x =
1

n− 1

n∑
j=1

(xj − x̄)(y∗j − ȳ∗) =
1

n− 1

n∑
j=1

(xj − x̄)(yj − ȳ) = Syx.

Thus

β̂1y∗x =
Sy∗x
S2
x

=
Sy∗x
S2
x

= β̂1y∗x.

Note that x̄ = x̄∗ and ȳ = ȳ∗, so

β̂0yx = ȳ − β̂1yxx̄ = ȳ∗ − β̂1y∗xx̄∗ = β̂0y∗x.

Then

β̂0yx = β̂0y∗x.
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Obviously, based on the theorems above, the ordinary least squares (OLS)

estimator of y∗ on x is better than OLS estimator of y on x, where the

estimators of slope and intercept are equal, but there is difference in the sum

squares errors as follow

n∑
j=1

(y∗j − ŷj)
2 ≤

n∑
j=1

(yj − ŷj)
2,

where y∗j is the reflection of yj.

Theorem 5 The sample variance of the response variable y is greater than

that of its reflection y∗:

S2
y =

1

n− 1

n∑
j=1

(yj − ȳ)2 > S2
y∗ =

1

n− 1

n∑
j=1

(y∗j − ȳ∗)2.

Proof

S2
y =

1

n− 1

n∑
j=1

(yj − ȳ)2

=
1

n− 1

n∑
j=1

(yj − y∗j + y∗j − ȳ)2

=
1

n− 1

n∑
j=1

((yj − y∗j ) + (y∗j − ȳ))2

=
1

n− 1

[
n∑
j=1

(yj − y∗j )
2 − 2

n∑
j=1

(yj − y∗j )(y
∗
j − ȳ∗) +

n∑
j=1

(y∗j − ȳ)2

]
.

Note that
∑n

j=1(yj − y∗j )(y
∗
j − ȳ∗) is given by

∑n
j=1(yj − y∗j )(y

∗
j − ȳ∗) =

∑n
j=1 yjy

∗
j −

∑n
j=1 y

∗2
j − nȳȳ∗ + nȳ∗2,
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where from Theorem 3 ȳ = ȳ∗, then

n∑
j=1

(yj − y∗j )(y
∗
j − ȳ∗) =

n∑
j=1

yjy
∗
j −

n∑
j=1

y∗2j .

Now from the equation (3.2)

n∑
j=1

yjy
∗
j −

n∑
j=1

y∗2j =
n∑
j=1

yj(xj sin 2ψ − yj cos 2ψ + 2β̂0x cos
2 ψ)−

n∑
j=1

y∗2j

=
n∑
j=1

yjxj sin 2ψ −
n∑
j=1

y2j cos 2ψ + 2nβ̂0xȳ cos
2 ψ −

n∑
j=1

y∗2j

=
n∑
j=1

yjxj sin 2ψ −
n∑
j=1

y2j cos 2ψ + 2nȳ2 cos2 ψ

−2nβ̂1xȳx̄ cos
2 ψ −

n∑
j=1

y∗2j

=
n∑
j=1

yjxj sin 2ψ − 2
n∑
j=1

y2j cos
2 ψ +

n∑
j=1

y2j

+2nȳ2 cos2 ψ − nȳx̄ sin 2ψ −
n∑
j=1

y∗2j

= SPxy sin 2ψ − 2SSy cos
2 ψ +

n∑
j=1

y2j −
n∑
j=1

y∗2j .

By adding and subtracting nȳ2 we have

n∑
j=1

(yj − y∗j )(y
∗
j − ȳ∗) = SPxy sin 2ψ − 2SSy cos

2 ψ

+
n∑
j=1

y2j − nȳ2 −
n∑
j=1

y∗2j + nȳ2

= SPxy sin 2ψ − 2SSy cos
2 ψ + SSy − SSy∗ .
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Here SPxy sin 2ψ = SPxy2 sinψ cosψ
cos2 ψ

cos2 ψ
= 2β̂1xSPxy cos

2 ψ then we have

n∑
j=1

(yj − y∗j )(y
∗
j − ȳ∗) = 2β̂1xSPxy cos

2 ψ − 2SSy cos
2 ψ + SSy − SSy∗

= 2(β̂1xSPxy − SSy) cos
2 ψ + SSy − SSy∗

= SSy − SSy∗ − 2SSv cos
2 ψ,

where SSv = SSE =
∑n

j=1(yj − ŷj)
2 is the sum of squares residuals of the

manifest model y on x.

Now and after analysing the terms above, the sample variance S2
y of response

variable is given by

S2
y =

1

n− 1

[
n∑
j=1

(yj − y∗j )
2 − 2

n∑
j=1

(yj − y∗j )(y
∗
j − ȳ∗) +

n∑
j=1

(y∗j − ȳ)2

]

=
1

n− 1

[
n∑
j=1

(yj − y∗j )
2 − SSy + SSy∗ + 2SSv cos

2 ψ +
n∑
j=1

(y∗j − ȳ)2

]

=

[
1

n− 1

n∑
j=1

(yj − y∗j )
2

]
− S2

y + S2
y∗ + 2S2

v cos
2 ψ + S2

y∗ .

Rearranging we find

2S2
y =

[
1

n− 1

n∑
j=1

(yj − y∗j )
2

]
+ 2S2

v cos
2 ψ + 2S2

y∗ ,

S2
y = S2

y∗ + S2
v cos

2 ψ +

[
1

2(n− 1)

n∑
j=1

(yj − y∗j )
2

]
.

Note that all terms on the right hand side of this equation are always positive,

so

S2
y ≥ S2

y∗ .
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Theorem 6 The sample covariance of the manifest explanatory variable x

and its reflection x∗ is equal to the sample variance of manifest explanatory

variable x.

ˆcov(x, x∗) = S2
x,

where S2
x is the sample variance of x.

Proof

ˆcov(x, x∗) =
1

n− 1

[
n∑
j=1

(xj − x̄)(x∗j − x̄∗)

]

=
1

n− 1

[
n∑
j=1

(xjx
∗
j − x̄x∗j − xjx̄

∗ + x̄x̄∗)

]
,

=
1

n− 1

[
n∑
j=1

xjx
∗
j − nx̄x̄∗ − nx̄x̄∗ + x̄x̄∗

]
.

From Theorem 2, x̄∗ = x̄, and so

ˆcov(x, x∗) =
1

n− 1

[
n∑
j=1

xjx
∗
j − nx̄2

]
.

From equation (3.1)

ˆcov(x, x∗) =
1

n− 1

[
n∑
j=1

xj(xj cos 2ψ + yj sin 2ψ − β̂0x sin 2ψ)− nx̄2

]

=
1

n− 1

[
n∑
j=1

xj(xj cos 2ψ + yj sin 2ψ − β̂0x sin 2ψ)− nx̄2

]

=
1

n− 1

[
n∑
j=1

(x2j cos 2ψ + yjxj sin 2ψ − β̂0xxj sin 2ψ)− nx̄2

]
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=
1

n− 1

[
n∑
j=1

x2j cos 2ψ +
n∑
j=1

yjxj sin 2ψ − nβ̂0mx̄ sin 2ψ − nx̄2

]

=
1

n− 1

[
n∑
j=1

x2j cos 2ψ +

(
n∑
j=1

yjxj − nȳx̄

)
sin 2ψ

]

+
1

n− 1

[
nβ̂1xx̄

2 sin 2ψ − nx̄2
]

=
1

n− 1

[
n∑
j=1

x2j cos 2ψ + SPxy sin 2ψ + 2nx̄2 sin2 ψ − nx̄2

]

=
1

n− 1

[
n∑
j=1

x2j cos 2ψ + SPxy sin 2ψ + nx̄2(2 sin2 ψ − 1)

]

=
1

n− 1

[
n∑
j=1

x2j cos 2ψ + SPxy sin 2ψ − nx̄2 cos 2ψ

]

=
1

n− 1
(SSx cos 2ψ + SPxy sin 2ψ)

= S2
x cos 2ψ + Sxy sin 2ψ,

where β̂1x =
Sxy
S2
x

=
sinψ

cosψ
, sin 2ψ = 2 cosψ sinψ and cos 2ψ = cos2 ψ− sin2 ψ

then

ˆcov(x, x∗) = S2
x cos 2ψ + 2S2

x sin
2 ψ

= S2
x(cos 2ψ + 2 sin2 ψ)

= S2
x(cos

2 ψ − sin2 ψ + 2 sin2 ψ) = S2
x(cos

2 ψ + sin2 ψ) = S2
x.

Based on the theorem above one could conclude that the sample coefficient

correlation between the manifest explanatory variable x and its reflection x∗

is given by

rxx∗ =
ˆcov(x, x∗)

SxSx∗
=

S2
x

SxSx∗
=

Sx
Sx∗

.

Moreover, the ordinary least squares estimator of slope parameter of x on its



3.4 Advantages of using reflection 82

reflection x∗ is given by

β̂1xx∗ =
Sxx∗
S2
x∗

=
S2
x

S2
x∗

= r2xx∗ .

Theorem 7 The sample covariance of the response variable y and the re-

flection variable x∗ is greater than that of the response variable y and the

manifest variable x.

| Sx∗y |≥| Sxy |

Proof From (3.1) and by subtracting xj we get

(x∗j − xj) = xj cos 2ψ + (yj − β̂0x) sin 2ψ − xj

= xj(cos 2ψ − 1) + yj sin 2ψ − β̂0x sin 2ψ

= −xj(2 sin2 ψ) + yj sin 2ψ − ȳ sin 2ψ + x̄2 sin2 ψ

= (yj − ȳ) sin 2ψ − (xj − x̄)2 sin2 ψ,

where x∗ is the reflection of x. Multiplying both sides of the above equation

by y and taking the sum over j, we obtain

n∑
j=1

(x∗j − xj)yj =
n∑
j=1

(yj − ȳ)yj sin 2ψ −
n∑
j=1

(xj − x̄)yj2 sin
2 ψ

n∑
j=1

yjx
∗
j −

n∑
j=1

yjxj =
n∑
j=1

(yj − ȳ)yj sin 2ψ −
n∑
j=1

(xj − x̄)yj2 sin
2 ψ,

by adding and subtracting nȳx̄ to the left hand side we then have

n∑
j=1

yjx
∗
j −

n∑
j=1

yjxj =

(
n∑
j=1

yjx
∗
j − nȳx̄

)
−

(
n∑
j=1

yjxj − nȳx̄

)
= SPx∗y − SPxy.
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Then

SPx∗y − SPxy =
n∑
j=1

(yj − ȳ)yj sin 2ψ −
n∑
j=1

(xj − x̄)yj2 sin
2 ψ

= SSy sin 2ψ − SPxy2 sin
2 ψ,

where
∑n

j=1(yj − ȳ)yj = SSy, and
∑n

j=1(xj − x̄)y = SPxy.

Hence

SPx∗y − SPxy = SSy sin 2ψ − SPxy2 sin
2 ψ.

Now dividing both sides by n− 1 yields

Sx∗y − Sxy = S2
y sin 2ψ − 2Sxy sin

2 ψ.

Note that

2 sin2 ψ

sin 2ψ
= tanψ = β̂1x,

and

2 sin2 ψ = β̂1x sin 2ψ.

Then we obtain

Sx∗y − Sxy = (S2
y − β̂1xSyx) sin 2ψ,

Sx∗y − Sxy = S2
v sin 2ψ

=
2S2

vSyx cos
2 ψ

S2
x

. (3.8)

Hence

Sx∗y = Sxy +
2S2

vSyx cos
2 ψ

S2
x

= Syx

(
1 +

2S2
v cos

2 ψ

S2
x

)
(3.9)
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where S2
v is the sum of squares residuals, β̂1x =

Syx
S2
x

=
sinψ

cosψ
and

sinψ =
Syx cosψ

S2
x

. Obviously, from (3.5) we see that | Sx∗y |≥| Sxy |.

Theorem 8 The sample variance S2
x of manifest explanatory variable x is

less than that of its reflection variable S2
x∗, and the difference between both of

them multiplied by
1

4 sin2 ψ
is equal the sum of squares orthogonal distances

S2
v

1 + β̂2
1x

.

S2
x ≤ S2

x∗ , and

S2
x∗ − S2

x

4 sin2 ψ
=

S2
v

1 + β̂2
1x

Proof By definition

S2
x∗ =

1

n− 1

n∑
j=1

(x∗j − x̄∗)2.

Now from equation (3.1)

x∗j = xj cos 2ψ + yj sin 2ψ − β̂0x sin 2ψ (3.10)

By multiplying both sides of (3.10) by x∗ and taking the summation over j

we then have

n∑
j=1

x∗2j =
n∑
j=1

xjx
∗
j cos 2ψ +

n∑
j=1

yjx
∗
j sin 2ψ − β̂0x sin 2ψ

n∑
j=1

x∗j

=
n∑
j=1

xjx
∗
j cos 2ψ +

n∑
j=1

yjx
∗
j sin 2ψ − nȳx̄ sin 2ψ + nβ̂1xx̄

2 sin 2ψ

=
n∑
j=1

xjx
∗
j cos 2ψ +

n∑
j=1

yjx
∗
j sin 2ψ − nȳx̄ sin 2ψ + 2nx̄2 sin2 ψ
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Note that 2 sin2 ψ = 1− cos 2ψ and from theorem 2 that x̄ = x̄∗ then

n∑
j=1

x∗2j =
n∑
j=1

xjx
∗
j cos 2ψ + (

n∑
j=1

yjx
∗
j − nȳx̄) sin 2ψ − nx̄2 cos 2ψ + nx̄2

= (
n∑
j=1

xjx
∗
j − nx̄2) cos 2ψ + (

n∑
j=1

yjx
∗
j − nȳx̄) sin 2ψ + nx̄2,

which gives

n∑
j=1

x∗2j − nx̄2 = (
n∑
j=1

xjx
∗
j − nx̄2) cos 2ψ + (

n∑
j=1

yjx
∗
j − nȳx̄) sin 2ψ,

where
∑n

j=1 xjx
∗
j − nx̄2 = SPxx∗ then

SSx∗ = SPxx∗ cos 2ψ + SPyx∗ sin 2ψ,

by dividing both sides by n− 1, then we get

S2
x∗ = Sxx∗ cos 2ψ + Syx∗ sin 2ψ.

From Theorem 7, Sxx∗ = S2
x then

S2
x∗ = S2

x cos 2ψ + Syx∗ sin 2ψ.

From the equation (3.4) that

S2
x∗ = S2

x cos 2ψ + Syx sin 2ψ + S2
v sin

2 2ψ.

Note that Syx sin 2ψ = 2Syx sinψ cosψ = 2β̂1xS
2
x sinψ cosψ = 2S2

x sin
2 ψ.

Then

S2
x∗ = S2

x cos 2ψ + 2S2
x sin

2 ψ + S2
v sin

2 2ψ

= S2
x(cos 2ψ + 2 sin2 ψ) + S2

v sin
2 2ψ

= S2
x(cos

2 ψ − sin2 ψ + 2 sin2 ψ) + S2
v sin

2 2ψ

= S2
x + S2

v sin
2 2ψ. (3.11)
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It is then clear that S2
x ≤ S2

x∗ .

Note that the sample variance of explanatory variable x equals the sample

variance of its reflection variable x∗ if and only if the sum squares residuals

S2
v equals zero. In fact, that means all the data points must be on the straight

line.

From (3.11) we then have

S2
x∗ − S2

x = S2
v sin

2 2ψ

= 4S2
v sin

2 ψ cos2 ψ.

Then

S2
x∗ − S2

x

4 sin2 ψ
= S2

v cos
2 ψ

=
S2
v

1 + β̂2
1x

,

where sin2 2ψ = 4 sin2 ψ cos2 ψ and cos2 ψ =
1

1 + β̂2
1x

.

Theorem 9 The difference between the sum of squares of the reflection vari-

able SS2
x∗ and the sum of squares of the manifest explanatory variable SS2

x

is given by

SSx∗ − SSx = TSS − SSR− SSEy.

Proof From Theorem 1 we have

SSE =
n∑
j=1

(yj − ŷj)
2 =

n∑
j=1

(y∗j − ŷj)
2 +

n∑
j=1

(x∗j − xj)
2,
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this means

n∑
j=1

(x∗j − xj)
2 = SSE −

n∑
j=1

(y∗j − ŷj)
2,

by adding and subtracting x̄ to the left hand side of the equation, we have

n∑
j=1

(x∗j − xj)
2 =

n∑
j=1

(
(x∗j − x̄)− (xj − x̄)

)2
=

n∑
j=1

(x∗j − x̄)2 − 2
n∑
j=1

(x∗j − x̄)(xj − x̄) +
n∑
j=1

(xj − x̄)2.

Note from Theorem 7,
∑n

j=1(x
∗
j − x̄)(xj − x̄) = SPxx∗ = SSx then

n∑
j=1

(x∗j − xj)
2 =

n∑
j=1

(x∗j − x̄)2 − 2SPxx∗ +
n∑
j=1

(xj − x̄)2

= SSx∗ − 2SSx + SSx

= SSx∗ − SSx.

Hence from (3.4) and (3.6) we have the final result

SSx∗ − SSx = SSE − SSEy = TSS − SSR− SSEy.

The above theorems are not only valid to apply on sample data but also to

population data. The reflection of all points (xj, yj) about the OLS regression

line of y on x produces reflection points (x∗j , y
∗
j ). In this chapter, we obtained

the transformed reflection variables x∗ and y∗ for both x and y respectively.

It allows us to define the sum of squares error uniquely, in the same way as

in the case of no measurement error.
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3.5 Concluding remarks

This chapter explains that the proposed methodology relies on the combi-

nation of the reflection and ordinary least squares techniques. We defined

the reflection variables for both the explanatory and the response variables.

The proposed methodology has useful properties which allows the analysis

of the mathematical relationships between the manifest variables and the

transformed variables. The proposed methodology will be used to develop

some statistical methods to deal with the estimation of regression parameters

when both response and explanatory variables are subject to measurement

error. The theorems of this chapter help interpret vertical, orthogonal, and

horizontal distances between the observed points and regression line. The

applications of the theorems will be included in the next chapters to define

proposed estimator and study its properties.



Chapter 4

Instrumental variable estimator

for measurement error model

4.1 Introduction

This chapter proposes an instrumental variable (IV) estimator for the pa-

rameters of a simple linear regression model which includes an equation er-

ror and the explanatory variable is subject to measurement error. Based

on the previous chapter, the instrumental variable is defined using reflection

of the observed values of the explanatory variable. Like other instrumental

variable estimators, it is unbiased and consistent but under one assumption

mentioned in Section 4.4 about the ratio of the vertical and horizontal error.
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The proposed modified method uses the reflection of the manifest values of

the explanatory variable to define IV estimator. The use of the reflections

of the observed values of the explanatory variable in defining the IV method

provides a much better estimator of the slope and intercept parameters. It

also reduces the mean sum of squares error. The analysis of variance and

regression inferences based on the reflections have much better statistical

properties than any other form of the IV estimator.

In the next section the measurement error regression model is introduced.

Section 4.3 covers the existing estimation methods for the measurement error

model. The proposed modified estimator based on the reflections of the

observed values of the explanatory variable is provided in Section 4.4. The

superior properties of the modified estimator are discussed in Section 4.5.

Two numerical illustrations are provided in Section 4.6, and some concluding

remarks are given in Section 4.7.

4.2 Measurement error models

In the conventional notation, let ξj denote the true measurement on the

explanatory variable. This is also called the latent explanatory variable. In

the presence of measurement error the actual observations are different from

ξj. Let x be the observable, or manifest variable of the explanatory variable.
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When the true value of the latent variable ξj is observed, the commonly used

classical simple linear regression model is represented by

ηj = β0ξ + β1ξξj + ej, j = 1, 2, . . . , n, (4.1)

where ηj is the jth realisation of the latent response variable, ξj is the

fixed jth value of the explanatory variable, and ej is the equation error

for j = 1, 2, . . . , n. It is assumed that the equation error ej is independently

distributed with constant but unknown variance, that is, ej ∼ N(0, σ2
e).

If there is error in the explanatory variable, the actual observed value, xj, is

not the ‘true’ value of the explanatory variable. The observed value of the

explanatory variable contains measurement error given as

xj = ξj + δj, j = 1, 2, . . . , n, (4.2)

where δj is the measurement error, and is assumed to be distributed as

N(0, σ2
δ ). Note that, unlike ξj, xj is a random variable which is assumed

to be distributed as N(µx, σ
2
x). The model with the fixed ξj is called the

functional model, and the model with the random or stochastic x is called

the structural model.

The simple regression model with measurement error in the explanatory vari-

able can be expressed as

ηj = β0ξ + β1ξxj + vj, j = 1, 2, . . . , n, (4.3)
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where vj = ej − β1ξδj. Note in equation (4.1) ξj and ej are independent, but

in equation (4.3), xj and vj are not independent. So the application of least

squares method is not valid for the models with measurement error. Thus,

unlike for the model in (4.1), the validity of the estimator of the slope and

intercept of the model in (4.3) is not obvious. However, Fuller (2006, p. 3)

assumes that δj, ξj and ej are mutually independent for the estimation of the

parameters. It also assumes that the reliability ratio, kxξ = σ−2
x σ2

ξ is known,

where σ2
x is the variance of the manifest variable xj, and σ

2
ξ is the variance

of the latent variable ξj.

4.3 Existing Estimators of parameters

The ordinary least squares (OLS) estimator of the regression parameters for

the functional model are

β̂1ξ =
Sξη
S2
ξ

, and β̂0ξ = η̄ − β̂1ξ ξ̄, (4.4)

where

Sξη =
1

n− 1

n∑
j=1

(ξj − ξ̄)(ηj − η̄), S2
ξ =

1

n− 1

n∑
j=1

(ξj − ξ̄)2, (4.5)

in which η̄ = 1
n

∑n
j=1 ηj and ξ̄ = 1

n

∑n
j=1 ξj. The estimators of slope and

intercept parameters are linear functions of the responses, and they are well

known to be the best linear unbiased estimators if there is no measurement
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error in the variables.

The sampling distribution of the estimator of the regression parameters is

given by

 β̂0ξ

β̂1ξ

 ∼ N2


 β0ξ

β1ξ

 , σ2
e


1
n
+ ξ̄2

S2
ξ

−ξ̄
S2
ξ

−ξ̄
S2
ξ

1
S2
ξ



 . (4.6)

The unbiased estimator of the error variance σ2
e is given by

σ̂e = (n− 2)−1SSEe = S2
e ,

where

SSEe =
n∑
j=1

(ηj − η̂j)
2,

in which η̂j = β̂0ξ+ β̂1ξξj is the estimated value of ηj. Also, σ
−2
e SSEe follows

a χ2 distribution with (n− 2) degrees of freedom.

In the presence of measurement error, the x values are observed instead of

ξj, then the least squares method yields the estimator of the slope as

β̂1x =
Sxη
S2
x

, and β̂0x = η̄ − β̂1xx̄. (4.7)

It can be easily shown that β̂1x is a biased estimator of β1ξ. Also, the above

estimator is not a consistent estimator of β1ξ.

Note that the regression parameters are different for the model with the

manifest variable than the model with the latent variable. Even though
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the aim is to estimate and test β0ξ and β1ξ, but in reality one may end up

estimating and testing β0x and β1x if one fully relies upon x, and over looks

the presence of the measurement error.

4.3.1 Instrumental variable (IV) estimator

In the presence of measurement error in the explanatory variable the IV

estimator for the regression parameters is defined as

β̂ = (z′x)−1z′η, (4.8)

where β̂ = (β̂0, β̂1)
′ is the vector of estimator of the intercept and slope

parameters of the model where

x =

 1 1 · · · 1

x1 x2 · · · xn

 and z =

 1 1 · · · 1

z1 z2 · · · zn

 ,

in which zj’s are the values of the second row of the instrumental variable

z. The selection of the values of zj’s require that it is highly correlated

with the explanatory variable but uncorrelated with the model errors. The

variance-covariance of the above estimator vector is given by

var(β̂) = σ2
δ (z

′x)−1(z′z)(z′x)−1. (4.9)

Obviously the value of the estimator and the variance depend on the choice

of z (see Johnson, 1972). For instance, the Wald method, as suggested by
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Maddala (1988), defines z by assigning zj to be -1 or +1 depending upon if

xj is smaller or larger than the median value of the manifest variable. The

estimator of slope under this choice of IV is

β̂1W =
η̄2 − η̄1
x̄2 − x̄1

,

where η̄1 is the mean of η-values associated with the values of x less than

its median, and η̄2 is for the mean values larger than the median value of η.

Bartlett (1949) followed the same selection criterion of zj’s but suggested the

exclusion of the middle 1/3 of the values, and his estimator is based on the

lower and upper 1/3 of the values of x and the associated η′s. The estimator

is expressed as

β̂1B =
η̄3 − η̄1
x̄3 − x̄1

,

where η̄1 is the mean of η-values associated with the smallest 1/3 of the

values of x, and η̄3 is that for the largest 1/3. Durbin (1954) proposed to use

the rank of x as zj’s. His method yields the following estimator of the slope

parameter

β̂1D =

[
n∑
j=1

jηj

]
/

[
n∑
j=1

jxj

]
,

but does not define the estimator of the intercept.

The IV method of estimation of the regression parameters does not require

any strict assumptions like the ratio of error variances is known. But the

actual estimator depends on how the IV is defined, as the definition of z
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affects both the estimator and its variance. In general, the available methods

of defining IV causes a significant loss of sample information (data) either

by replacing the observed values of the explanatory variable by -1 or +1,

or exclusion of some data, or due to ranking of data. But the proposed

definition of the IV does not lose any information. Furthermore, the method

produces a more precise IV estimator than those proposed by Wald, Bartlett,

and Durbin.

4.4 Proposed new IV estimator

To avoid the unwanted and troublesome influence of the measurement error

in the explanatory variable, the idea of reflection of the manifest variable is

used for all values of the explanatory variable. The reflection of the points is

taken about the fitted regression line. This is essentially done by a transfor-

mation of the observed values of the explanatory variable to their reflection

on the Euclidean plane. In the conventional notation, the reflection of the ex-

planatory variable xj = ξj+δj (with measurement error δj) for j = 1, 2, . . . , n,

can be defined as

x∗ = x cos 2ψ + (η − β̂0x) sin 2ψ, (4.10)

where β̂0x is the least squares estimate of the intercept parameter, ψ is the

angle measure defined as ψ = arctan β̂1x in which β̂1x is the least squares
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estimate of the slope parameter in the manifest model, and cos and sin

are the usual trigonometric cosine and sine functions respectively. For the

definition of reflection points on the Cartesian plane readers may see Vaisman

(1997, p. 164-169).

The proposed reflection method requires to compute the reflection of all data

points, and the use of the transformed values of x, i.e. x∗, in defining the IV

to fit the regression line of η. The IV estimator of the slope parameter under

the proposed modified method is

β̂ = (z′rx)
−1z′rη, and β̂1R =

Sx∗η
S2
x

,

where

Zr =

 1 1 · · · 1

x∗1 x∗2 · · · x∗n

 and Sx∗x = S2
x,

in which Sx∗x =
∑n

j=1(x
∗
j − x̄∗)(xj − x̄).

The proposed estimator of the slope parameter of the simple regression model

using IV based on the reflection of x is

β̂1R =
Sx∗η
S2
x

,

β̂1ξ =
Sξη
S2
ξ

=
Sxη
S2
ξ

and β̂1R =
Sx∗η
S2
x

. (4.11)

From (4.11), it is easy to show that Sxy = Sξy and S2
x = S2

ξ + S2
δ . It can be



4.4 Proposed new IV estimator 98

found that

Sx∗y − Sxy = SSEx sin 2ψ, (4.12)

where ψ is as defined in equation (4.10), and SSEx is the sum of squares

error for the manifest model. The above result follows from the fact that

x∗j − xj = xj cos 2ψ + (ηj − β̂0x) sin 2ψ − xj

= xj(cos 2ψ − 1) + ηj sin 2ψ − β̂0x sin 2ψ

= −xj(2 sin2 ψ) + ηj sin 2ψ − η̄ sin 2ψ + x̄2 sin2 ψ

= (ηj − η̄) sin 2ψ − (xj − x̄)2 sin2 ψ, (4.13)

where x∗j is the reflection of xj. Multiplying both sides of the above equation

by ηj and taking sum over j, yields

∑
(x∗j − xj)ηj =

∑
(ηj − η̄)ηj sin 2ψ −

∑
(xj − x̄)ηj2 sin

2 ψ

Sx∗η − Sxη = S2
η sin 2ψ − Sxη2 sin

2 ψ

Sx∗η − Sxη
sin 2ψ

= SST − SSRx = SSEx, (4.14)

where S2
η = SST is the sum of squares total, SSRx is the sum of squares

regression, and SSEx is the sum of squares error for the regression of η on

x. Note that 2 sin2 ψ
sin 2ψ

= tanψ = β̂1x.

Then using equation (4.11), it can be written as

β̂1ξ =
Sξη
S2
ξ

=
Sxη
S2
ξ

=
Sx∗η − SSEx sin 2ψ

S2
x − S2

δ

β̂1R =
Sx∗η
S2
x

=
Sxη + SSEx sin 2ψ

S2
ξ + S2

δ

=
Sξη + SSEx sin 2ψ

S2
ξ + S2

δ

.
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Let λ∗ be the ratio of the vertical vj and horizontal δj error variances, where

λ∗ = σ2
v

σ2
δ
.

Based on the assumption λ∗ =
Sx∗η

Sx sin 2ψ
, then

β̂1R =
Sx∗η
S2
x

=
Sx∗η − Sξη
S2
x − S2

ξ

(4.15)

Sx∗η(Sx − Sξ) = S2
x(Sx∗η − Sξη)

which leads to

Sx∗ηS
2
ξ = SξηSx, (4.16)

and finally simplification yields

Sx∗η
S2
x

=
Sξη
S2
ξ

, hence β̂1R = β̂1ξ. (4.17)

4.4.1 Geometric Explanation

The presence of measurement error in the explanatory variable and its impact

on the estimator of the slope as well as how the proposed method ‘treats’ the

measurement error can be explained by graphs. The graphical representation

also explains how the actual estimator of the slope is recovered by the new

method.

Figure 4.1 represents the sum of squares and sum of products associated

with the definition of the estimators of slope both for the latent and manifest
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variables. This graph represents the presence of measurement error in the

explanatory variable as well as the two estimators of the slope parameter. On

the other hand Figure 4.2 displays the same along with that of the reflection

of the manifest variable and three estimators of the slope parameter.

From Figure 4.1, the true estimator of the slope when the latent variable is

available, that is, β̂1ξ is represented by the tan of ∠BAC of △ABC. In the

absence of the values of the latent variable this is unavailable. But for the

manifest variable one can find the estimator of the slope to be β̂1x which

is represented by the tan of ∠DAE of △ADE. Note that here DC (or

equivalently BE) represents the sum of squares of measurement error (S2
δ ).

Furthermore, under the assumptions of E[ηδ] = 0 and E[ξδ] = 0, we have

BC = DE or Sξη = Sxη. Finally, β̂1ξ =
Sξη

S2
ξ
= BC

AC
, and β̂1x =

Sxy

S2
x
= ED

AD
.

The introduction of the reflection of the manifest variable changes △ADE

of Figure 4.1 to △ADF in Figure 4.2. In fact the main difference between

the two Figures is that Figure 4.2 has the small △BEF added to Figure 4.1.

This triangle represents the effect of the reflection of the manifest variable.

From Figure 4.2 the estimates of the slope are

β̂1x =
Sxη
S2
x

(
=
DE

DA

)
(4.18)

β̂1ξ =
Sξη
S2
ξ

(
=
BC

AC

)
(4.19)

β̂1R =
Sx∗η
S2
x

(
=
FD

AD

)
. (4.20)
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Figure 4.1: Graph representing the sum of squares and products in the pres-

ence of measurement error in the explanatory variable.

Since the tan of ∠BAC represents the estimator β̂1ξ and tan of ∠DAF

represents β̂1R, then β̂1ξ = β̂1R because ∠BAC = ∠DAF .

4.5 Some properties and relationships

The estimated regression lines based on the OLS, and three IV methods are

summarised in the following way:

η̂ξ = β̂0ξ + β̂1ξξ, (4.21)

η̂R = β̂0R + β̂1Rx, (4.22)

η̂W = β̂0W + β̂1Wx, (4.23)

η̂B = β̂0B + β̂1Bx. (4.24)

Obviously, in the absence of ξj, the fitted model in (4.21) is unavailable.

The other fitted lines are obtainable since the manifest variable x is always
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Figure 4.2: Graph representing the sum of squares and products when the

measurement error in the explanatory variable is ’treated’ by reflection.

observed along with the response η. Furthermore, even though the regres-

sion parameters are the same, the estimated models are different since the

observed x is different from the true value of the explanatory variable ξj.

Thus

β̂0ξ + β̂1ξξ ̸= β̂0ξ + β̂1ξx.

Another useful fact is that the sum of squares total is the same for regression

of ηj on ξj and that on xj. That is,

SSη = SSRξ + SSEξ = SSRx + SSEx.

Similarly, the following relationship of the regression sum of squares for mod-

els using ξj, xj, and x
∗ under the above assumption are observed:

SSRξ = β̂1ξSSηξ = β̂1RSSxη

= β̂2
1RSSxx = β̂1RSSx∗y = SSRR.
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Finally, the coefficient of determination is noted to be

R2
ξ =

SSRξ

SST
= SSRR

SST
.

4.6 Illustration

In this section, two illustrative examples based on two real life datasets are

provided. The first dataset has measurement error in the explanatory vari-

able only, but the second dataset has measurement error in both the response

and explanatory variables. For the second example it is assumed that the

ratio of error variances, λ = σ2
ϵ

σ2
δ
< 1 is known, where σ2

ϵ is the error vari-

ance of the response variable and σ2
δ is the error variance of the explanatory

variable.

4.6.1 Yield of Corn Data

The dataset of the first example deals with the yield of corn (η) for different

levels of soil nitrogen (x), and is taken from Fuller (2006, p. 18). Here the

explanatory variable x, soil nitrogen level, has been found with measurement

error. Fuller has analysed the data under assumption that the reliability

ratio, (kξx), is known. We provide the regression analyses of the data for
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Table 4.1: Fitted regression models for the corn yield data

Method Fitted regression equation MS Error R2

OLS Ŷx = 73.153 + 0.344x 57.321 0.412

Wald ŶW = 75.91 + 0.305x 60.98 0.364

Bartlett ŶB = 72.38 + 0.355x 56.05 0.425

Reflection ŶR = 65.8164 + 0.4479x 45.224 0.536

σ2
δ Known ŶV = 67.561 + 0.423x 48.125 0.506

both with (a) the measurement error in the explanatory variable x, and

(b) the instrumental variables including one defined by x∗, the reflection

of the observed explanatory variable x. Comparison of estimators of the

regression parameters and related results from different methods are provided

below. Table 4.1 below shows the fitted regression lines, mean sum of squares

error, and the coefficient of determination based on the OLS and various IV

methods including the reflection method.

The OLS regression of η on x produces the estimated regression line, Ŷx =

73.153 + 0.344x with mean sum of squares error, MSEx = 57.321 (see the

first regression line in Table 4.1) and R2
x = 0.421. This analysis does not take

into account the presence, and hence the effect, of the measurement errors in

the explanatory variable. As such these results are not based on any sound

statistical method and hence unacceptable.
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Fuller (2006, p. 18-19) assumes that σ2
δ = 57, and that the reliability ratio,

kξx, is known. Under the assumption the estimated regression line is reported

to be η̂V = 67.561+0.423x with modified MSE, MSEV = σ̂2
ϵ = 48.125, and

R2
V = 0.506. Clearly, there has been an improvement in the proportion of

variability in η that is explained by x under the method used by Fuller (2006).

The MSE has also decreased (from MSEx = 57.321 to MSEV = 48.125)

under the Fuller method. Thus the Fuller method is not only a better method

than the OLS, but also provides a much better fit.

The use of the reflection of x in the specification of the instrumental variable

leads to the fitted regression line, ŶR = 65.8164+0.4479x with a mean sum of

squares error, MSER = 45.224 (see second last row of Table 4.1) and R2
R =

0.536. Unlike Fuller’s method, these results are obtained without additional

assumptions on any of the parameters of the model or the reliability ratio.

However, the modified IV estimator obtained by the reflection of x are fairly

close to those obtained by Fuller under the previously stated assumption.

The regression line produced by the modified IV method provides a much

better fit than that obtained by Fuller. Obviously, the MSER under the

modified IV is much smaller than σ̂2
ϵ obtained by Fuller’s method. Moreover,

under the proposed method the value of the coefficient of determination is

53.6%, compared to only 50.60% given by the Fuller’s method.

The estimates of the regression parameters of the manifest model are β̂1x =
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0.344 and β̂0x = 73.153, and that of the proposed instrumental variablemodel

are β̂1R = 0.4479 and β̂0R = 65.8164, then β̂1R = 0.4479 > β̂1x = 0.344, and

β̂0R = 65.8164 < β̂0x = 73.153.

It is important to compare the results of the new IV estimator with other

IV estimators such as the Wald’s and Bartlett’s methods specified earlier.

The Wald method yields, ŶW = 75.91 + 0.305x with MSEW = 60.98 and

R2
W = 0.364. Moreover, using Bartlett’s definition of the IV, we get

η̂B = 72.38 + 0.355x, with MSEB = 56.05 and R2
B = 0.425.

Practically both methods are inefficient, although Bartlett’s method pro-

duces a better fit (larger R2
B) than that of Wald R2

W . The reliability ratio

method provides a much better fit than the OLS, Wald’s and Bartlett’s meth-

ods. However, the reflection based IV fitted model has the largest R2. At the

same time the regression estimates of the slope and intercept for the Fuller

method is much close to that of the reflection based estimator. Thus the IV

estimator based on the reflection of x provides the best model.

4.6.2 Hen Pheasants Data

The dataset for the second example is also taken from Fuller (2006, p. 34).

The data deal with the number of hen pheasants in Iowa at two different

seasons/times of the year, and were collected by the Iowa Conservation Com-
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Table 4.2: Fitted regression models for the Hen peasants data

Method Fitted regression equation MS Error R2

OLS η̂x = 2.142 + 0.649m 0.347 0.826

Wald η̂W = 2.498 + 0.614m 0.44 0.78

Bartlett η̂B = 2.036 + 0.66m 0.32 0.84

Reflection η̂R = 1.323 + 0.731m 0.14 0.93

Moments η̂MO = 1.116 + 0.751m 0.09 0.95

mission. This data is based on the average number of birds sighted by trained

observers traveling a number of specific routes in late April and early May,

and again in August. Both variables are subject to error for two reasons.

First, the routes are a sample of all possible routes in Iowa. Second, observers

cannot be expected to sight all pheasants along the route. The response vari-

able η is the average number of hens in August, and the explanatory variable

x is the average number of hens in Spring, where the ratio of error variances

λ < 1. On the basis of previous analyses, it has been estimated that the

error variance for the Spring count is about six times larger than that in

August. The fitted regression models and associated statistics are provided

in the Table 4.2.

The first regression equation and the associated statistics in Table 4.2, η̂x =

2.142 + 0.649x, MSEx = 0.347, and R2
x = 0.826, are obtained by the OLS
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method using x which is subject to the measurement error. The method of

moments (MOM) estimator, under the assumption that the ratio δ = σ−2
δ σ2

ϵ

is known. Following Fuller (2006, p. 35), for δ = 1
6
, the fitted regression

equation becomes η̂MO = 1.1158+0.7516x withMSEMO = 0.09 and R2
MO =

0.95. This is a much better fitted model, with an increased value of R2, than

that obtained by the OLS method.

The second last row of Table 4.2 represents the regression line and other

statistics produced by the proposed modified method based on the reflection

of x: η̂R = 1.323 + 0.731x, MSER = 0.139 and R2
R = 0.93.

The IV estimator based on Wald’s method yields η̂W = 2.498 + 0.614x with

MSEw = 0.44 and R2
w = 0.78. Similarly, Bartlett’s IV method gives η̂B =

2.036 + 0.66x, MSEB = 0.32 and R2
B = 0.84.

In terms of the R2 value, the Wald’s method is the worst, followed by the

OLS method. Thus Wald’s IV method may produce a worse fit than the

OLS method. The Bartlett’s method gives a similar R2 as the OLS method.

However, the MOM estimation produces the largest R2, although it is not

too far from that produced by the proposed reflection based method. It is

important to note that the MOM is based on the assumption that the value of

σ2
δ is known. Furthermore, due to the nature of the definition of the IV, it is

only ‘treated’ the measurement error in the explanatory variable. We should
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mention that the preference between the estimators can not be generalised

but it is only valid for the dataset of this example.

Among the IV estimators the proposed reflection based IV estimator per-

forms much better than the others in terms of providing the best fitted model

with largest R2. This is not surprising due to the fact that IVs proposed by

Wald and Bartlett fails to use part of the information of the sample data

to define the IV. Although the MOM estimator provides slightly better fit

than the proposed reflection based IV method, the former is dependent on

the assumption that σ2
δ is know, which is not always available.

4.7 Concluding Remarks

This chapter considers the simple regression model with measurement error in

the explanatory variable. It also proposes a new estimation procedure based

on the idea of a new instrumental variable which is defined from reflection

of the manifest variable. It compares the existing methods with proposed

modified method. Unlike, some of the existing methods it does not lose

information.

The illustrative examples demonstrate the fact that the proposed method

significantly reduces the mean sum of squares error than the currently used
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IV methods. As such, the coefficient of determination of the proposed method

is higher than that of the existing IV methods.

Surprisingly, the proposed IV method recovers the true estimator of the slope,

β̂1ξ, from the manifest variable and stochastic model even if the true values

of the latent explanatory variable is unobservable. The same comment would

apply for the estimator of the intercept.



Chapter 5

Reflection method of

estimation for measurement

error models

5.1 Introduction

In this chapter we provide an alternative method to the orthogonal regression

approach. Moreover, we conduct a comparison using simulation to examine

and demonstrate the superior performance of the proposed method.

This chapter introduces the reflection method (RM) of estimation to estimate
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the parameters of the simple regression model with measurement error (ME)

in both variables. Furthermore, theoretical analysis and simulation studies

are used to demonstrate the performance of the proposed estimator of the

slope parameter for both normal and non-normal structural models. Also we

illustrate that the RM estimator has a smaller mean absolute error (MAE)

than the orthogonal regression (OR) estimator even if the sample size is small

and/or the ratio of error variances (λ) is far from one.

In fact, there is a technical criticism of the assumption that the ratio of error

variances (λ) is known. According to Carroll and Ruppert (1996) often we

do not have an accurate value of λ. One of the main reasons for that is the

presence of the equation error. The maximum likelihood estimator or the

orthogonal regression (OR) estimator under the constraint of known λ may

over or underestimate the parameter. Weisberg (1985, p. 6) stated, “Real

data almost never fall exactly on a straight line”. Lakshminarayanan and

Gunst (1984) stated,“Incorrect selection of λ, especially the selection of too

small a value when λ is large, compromises the effectiveness of the structural

model estimator relative to least squares estimator”.

Geary (1943) introduced the slope estimators for the non-normal structural

model which are given by

β̂1Ga =
k(1, 3)

k(2, 2)
, and β̂1Gb

=
k(2, 2)

k(3, 1)
,
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where k(·, ·) represents an appropriate cumulants (see Fuller 2006, p. 72, for

details). The cumulants based estimators become unstable if the non-normal

model is too close to the normal model (see Cheng and Ness, 1999, p. 127).

Wald (1940) proposed an estimation method based on the grouping of the

data. He divides the observations on both the response and explanatory

variables into two groups, G1 and G2, where G1 contains the first half of the

ordered observations and G2 contains the second half. Wald’s estimator of

β1 is given by

β̂1W =
a1
b1

=
(y1 + . . .+ yk)− (yk+1 + . . .+ yn)

(x1 + . . .+ xk)− (xk+1 + . . .+ xn)
=
ȳ2 − ȳ1
x̄2 − x̄1

,

where x̄1 and ȳ1 are the means of xj and yj in group G1, for j = 1, 2, · · · , k,

and x̄2 and ȳ2 are the means of xj and yj in group G2, for j = k + 1, k +

2, · · · , n. Then

β̂0W = ȳ − β̂1x̄,

where ȳ =

∑n
j=1 yj

n
, x̄ =

∑n
j=1 xj

n
, and

a1 =
(x1 + . . .+ xk)− (xk+1 + . . .+ xn)

n
, and

b1 =
(y1 + . . .+ yk)− (yk+1 + . . .+ yn)

n
.

In the literature of ME there are some criticisms of the Wald’s estimator but

these lack consensus (Gillard, 2010).

In the next section the orthogonal regression method, which is a special case

of the maximum likelihood method, or Deming regression approach when
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the ratio of error variance equals one, is included. The proposed estimator is

based on the reflection of the observed values of the explanatory variable as

discussed in Section 5.3. Two numerical illustrations are provided in Section

5.4. These examples compare the proposed RM estimator with orthogonal

regression method estimator under correct and incorrect specification of λ,

two grouping method, method of moments using third-order moments, and

Geary’s methods. Some concluding remarks are included in Section 5.5.

5.2 Orthogonal regression method

One of the techniques suggested to overcome the problem of measurement

error is the orthogonal regression. This technique is also known as the major

axis, principal component regression or the perpendicular distance method.

The reason that the orthogonal regression (OR) approach was adopted, in-

stead of the ordinary least squares regression, is that both variables are sub-

ject to error. This method considers a bivariate case of principal components

analysis. The basic idea of this method is to minimise the squared per-

pendicular distances of the data points from the fitted regression line. The

orthogonal regression estimator of the true slope is given by

β̂OR =
(S2

y − S2
x) +

√
(S2

y − S2
x)

2 + 4S2
yx

2Syx
.
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An alternative form of this estimator is given by

β̂OR = 0.5

[
(β̂2 − β̂−1

1 ) + sgn{Syx}
√
4 + (β̂2 − β̂−1

1 )2
]
,

where β̂1 =
Syx
S2
x

, β̂2 =
S2
y

Syx
, S2

y is the sample variance of the manifest response

variable y, S2
x is the sample variance of the manifest explanatory variable x

and Syx is the sample covariance of y and x.

The orthogonal regression method is an appropriate solution to the measure-

ment error problem if the following assumptions are met:

1. There is no equation error in the model which means that all the points

(ξj, ηj) fall exactly on a straight line.

2. The ratio of error variances (λ) equals one, this means that the variance

of the measurement error in the response variable equals the variance

of the measurement error in the explanatory variable, that is, σ2
ϵ = σ2

δ .

Indeed, the first assumption is unlikely to be satisfied because most of the

variables are not related by mathematical or physical laws. For instance,

Warton, et al. (2006) stated “In allometry, equation error is often large

compared to measurement error, in which case it would be more reasonable

to assume there is no measurement error than to assume no equation error”.

Moreover, the second assumption is also viewed as a strict assumption and

is rarely met. Despite the above criticisms the orthogonal regression method
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is still used in many disciplines. In fact, these criticisms were behind the

motivation to provide an alternative method with flexible assumptions and

better performance than orthogonal regression method.

5.3 Proposed reflection method of estimation

To avoid the unwanted and troublesome influence of the measurement error

in both the explanatory and the response variables, the idea of reflection of

the manifest variable is used for all the values of the manifest explanatory

variable xj. The reflection of the points is taken about the fitted regression

line of the manifest variables. This is essentially done by a transformation

of the observed values of the explanatory variable to their reflection on the

Euclidean plane. In the conventional notation, the reflection of the explana-

tory variable xj = ξj + δj (with measurement error δj) for j = 1, 2, · · · , n,

can be defined as

x∗j = xj cos 2ψ + (yj − β̂0x) sin 2ψ, (5.1)

where β̂0x is the least squares estimate of the intercept parameter, ψ is the

angle measure defined as ψ = arctan β̂1x in which β̂1x is the least squares

estimate of the slope parameter in the manifest model, and cos and sin are the

usual trigonometric cosine and sine functions respectively. For the definition

of the reflection of points on the Euclidean plane see Vaisman (1997, p. 164).
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It is well known, that the least squares criterion for estimating β0 and β1 is

to choose estimators β̂0 and β̂1 that minimises the sum of squared distances

of the observed points from the estimated line (see Fuller, 2006, p. 37).

The maximum likelihood approach for the normal ME regression model is

an orthogonal regression method when the ratio of the error variances is one,

λ =
σ2
ϵ

σ2
δ

= 1 (see Cheng and Van Ness, 1999, p. 9). The orthogonal regression

estimators of β0 and β1 are obtained by minimising the following weighted

sum of squares:

minσ2
ϵ = min

(
σ2
v

1 + β2
1

)
. (5.2)

Note that the equation (5.2) is correct only when λ =
σ2
ϵ

σ2
δ

= 1 and σϵδ =

0. Because from the equation (1.4) in Chapter 1, the error term vj of the

measurement error model is vj = ϵj − β1δj, then the variance of vj is given

by

σ2
v = σ2

ϵ + β2
1σ

2
δ = σ2

ϵ (1 + β2
1), then

σ2
ϵ =

σ2
v

(1 + β2
1)
.

In this case when both the response and explanatory variables are subject to

measurement error and the ratio of error variances equal one (λ = 1), then

the distance between the true point (ξ, η) and the observed point (x, y) is the

perpendicular distance, instead of vertical distance, of the fitted regression

line. That is why this case requires methods for minimising the orthogonal

distance. But the orthogonal regression method works well only when (λ =
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Figure 5.1: Graph of the sum of squares and products of the latent and man-

ifest variables in the presence of ME in the variables.

1), and there is no equation error in the model. About the equation error

Warton et al. (2006) pointed out that in practice it is rare to find a good

regression model without including an equation error. This chapter provides

a new estimator based on minimising the perpendicular distance for linear

regression model with or without equation error.

5.3.1 Geometric explanation

It can be easily explained geometrically that the presence of measurement

error in both response and explanatory variables impacts on the estimator

of the slope parameter. The graphical representation also explains how the

actual estimator of the slope is recovered by the new method.
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Figure 5.1 represents the sum of squares and sum of products associated with

the definition of the estimators of slope for the latent, manifest and reflection

variables. This graph represents the measurement error in the variables as

well as the three estimators of the slope parameter. These estimators are the

OLS of y on ξ, the proposed method, and the OLS of y on x estimators of

the slope.

From Figure 5.1, the true estimator of the slope β̂1ξ when the latent ex-

planatory variable is available, is represented by tan θ̂, where θ̂ = ∠FEG of

△FEG. In the absence of the values of the latent variable this is unavail-

able. But for the manifest variable one can find the estimator of the slope

to be β̂1x which is represented by tanψ, where ψ = ∠AEB of △AEB. The

latter | β̂1x | is an underestimate of the former | β̂1ξ |. Note that here AF

(or equivalently BG) represents the sum of squares of measurement error

in the explanatory variable (SSδ). Furthermore, under the assumptions of

E[yδ] = 0 and E[ξδ] = 0, we have AB = FG or SPξy = SPxy.

Finally, β̂1ξ =
SPξy
SSξ

=
FG

FE
, and β̂1x =

SPxy
SSx

=
AB

AE
.

The introduction of the reflection of the manifest explanatory variable changes

△AEB of Figure 5.1 to △AEC. This triangle represents the effect of the

reflection of the manifest variable. From Figure 5.1 the estimates of the slope
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are

β̂1x =
SPxy
SSx

(
=
AB

AE

)
, (5.3)

β̂1ξ =
SPξy
SSξ

(
=
FG

FE

)
, (5.4)

β̂1RM =
SPd1y
SSx

(
=
AC

AE

)
(5.5)

Note d1 in equation (5.5) is the mean value of x and x∗, that is d1j =
x∗j + xj

2
,

in which x∗j is the reflection of the explanatory variable xj.

Based on the foregoing explanations we can rewrite the formula of the true

estimator β̂1ξ in order to find a formula for the true slope estimator based on

the manifest explanatory variable x. This can be done by finding the value

of AC in Figure 5.1, since the solution relies on finding the value of AC or

BC, where AC = β̂1ξSSx and BC = β̂1ξSSδ. In order to find the true slope

estimator β̂1ξ =
AC

SSx
we need to know the distance AC as shown in Figure

5.1. Therefore, we suggest to use the variable d1j =
x∗j + xj

2
to provide an

estimator for the slope which minimises the orthogonal distance as follows:

From (5.1) x∗j = xj cos 2ψ + (yj − β̂0x) sin 2ψ, where

tanψ =
SPyx
SSx

,

cos 2ψ = cos2 ψ − sin2 ψ =
SS2

x − SP 2
yx

SS2
x + SP 2

yx

,

sin 2ψ = 2 cosψ sinψ =
2SSxSPyx
SS2

x + SP 2
yx

.
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Then

x∗j = xj

(
SS2

x − SP 2
yx

SS2
x + SP 2

yx

)
+ (yj − β̂0x)

(
2SSxSPyx
SS2

x + SP 2
yx

)
x∗jSS

2
x + x∗jSP

2
yx = xjSS

2
x − xjSP

2
yx + 2yjSSxSPyx − 2β̂0xSSxSPyx

2yjSSxSPyx = x∗jSS
2
x + x∗jSP

2
yx − xjSS

2
x + xjSP

2
yx + 2β̂0xSSxSPyx

2yjSSxSPyx = (x∗j − xj)SS
2
x + (x∗j + xj)SP

2
yx + 2β̂0xSSxSPyx

yj = β̂0x + (x∗j + xj)
SP 2

yx

2SSxSPyx
+ (x∗j − xj)

SS2
x

2SSxSPyx

yj = β̂0x + β̂1x
(x∗j + xj)

2
+

(x∗j − xj)

2β̂1x
.

Then let d1j =
(x∗j + xj)

2
and tj =

(x∗j − xj)

2
so

yj = ȳ − β̂1xx̄+ β̂1xd1j +
tj

β̂1x
.

Based on Theorem 2 in Chapter 3 we get d̄1 = x̄ and t̄ = 0, then

(yj − ȳ) = β̂1x(d1j − d̄1) +
tj

β̂1x
.

Multiplying both sides by yj and taking sum over j, we get

n∑
j=1

(yj − ȳ)yj = β̂1x

n∑
j=1

(d1j − d̄1)yj +

∑n
j=1 tjyj

β̂1x

SSy = β̂1xSPyd1 +
SPyt

β̂1x
.
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Note from Theorem 7 in Chapter 3

SPyt =
SSEv sin 2ψ

2
, because

SPyt =
SPyx∗ − SPyx

2
then

SSy = β̂1xSPyd1 +
SSEv sin 2ψ

2β̂1x
,

where
sin 2ψ

2β̂1x
= cos2 ψ, and hence

SSy = β̂1xSPyd1 + SSEv cos
2 ψ

=
SPyd1SPyx

SSx
+ SSEv cos

2 ψ.

So the new proposed estimator for the slope parameter β1 is
SPyd1
SSx

= β̂1RM ,

and so

SSy = β̂1RMSPyx + SSEv cos
2 ψ, (5.6)

where SSy is the sum of squares of y, SPyx is the sum of products of y and

x, β̂1x is the OLS estimator of the slope, SSEv is the sum of squares of error

of the OLS estimator for the measurement error model.

Note when SSEd1 = SSEv cos
2 ψ, then (5.7)

SSy = β̂1RMSPyx + SSEd1 , (5.8)

where SSEd1 is the sum of squares of error of the RM estimator for the

measurement error model.

Obviously, the proposed estimator β̂1RM has minimised the sum of squared

residuals SSEv, because SSEv cos
2 ψ ≤ SSEv, where 0 ≤ cos2 ψ ≤ +1. That
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means, the sum of squared residuals SSEv reduced by SSEv sin
2 ψ, where

SSEv − SSEd1 = SSEv − SSEv cos
2 ψ = SSEv sin

2 ψ. Here we show what

we have stated previously that the proposed estimator β̂1RM minimises the

orthogonal distances. Therefore, we seek to prove that the proposed estima-

tor β̂1RM works as the orthogonal regression and the maximum likelihood

solution to minimise the sum of squared perpendicular distances from the

data points to the regression line even when λ is misspecified. We can show

that the sum of squared residuals SSEd1 is the sum of squared perpendicular

distances as follows:

SSEd1 = SSEv cos
2 ψ =

SSEv

1 + β̂2
1x

, then

cos2 ψ =
1
1

cos2 ψ

=
1

cos2 ψ+sin2 ψ
cos2 ψ

=
1

cos2 ψ
cos2 ψ

+ sin2 ψ
cos2 ψ

=
1

1 + sin2 ψ
cos2 ψ

=
1

1 + β̂2
1x

,

where
sin2 ψ

cos2 ψ
= β̂2

1x, and SSEv =
∑n

j=1(yj − β̂0x − β̂1xxj)
2, then

SSEd1 =

∑n
j=1(yj − β̂0x − β̂1xxj)

2

1 + β̂2
1x

.

Consequently, the sum of squared residuals SSEd1 is the sum of squared

perpendicular distances of the data points from the regression line.

It can be proved from (5.6) that the proposed estimator β̂1RM is greater than

the OLS estimator β̂1x, as follows:
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It is well known that

SSy = β̂1xSPyx + SSEv. (5.9)

From (5.6) and (5.9) we get

SSy = β̂1RMSPyx + SSEv cos
2 ψ = β̂1xSPyx + SSEv. (5.10)

Hence

(β̂1RM − β̂1x)SPyx = (SSEv − SSEv cos
2 ψ)

= SSEv(1− cos2 ψ)

= SSEv sin
2 ψ. (5.11)

From (5.10) and (5.11),

| β̂1x |≤| β̂1RM |≤
S2
y

| Syx |
, (5.12)

where the right hand side of (5.11) SSEv sin
2 ψ is always positive.

5.4 Relationship between β̂1RM and β̂1RMA

This section introduces the relationship between the reflection estimator

β̂1RM and the reduced major axis estimator β̂1RMA as follows

d1j =
(x∗j + xj)

2

2d1j = x∗j + xj = xj cos 2ψ + yj sin 2ψ − β̂0x sin 2ψ + xj

= xj(cos 2ψ + 1) + yj sin 2ψ − β̂0x sin 2ψ
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where β̂0x = ȳ − β̂1xx̄. Now

2d1j = 2xj cos
2 ψ + yj sin 2ψ − (ȳ − β̂1xx̄) sin 2ψ

= 2xj cos
2 ψ + (yj − ȳ) sin 2ψ + 2x̄ sin2 ψ

= 2xj cos
2 ψ + (yj − ȳ) sin 2ψ + 2x̄− 2x̄ cos2 ψ

= 2(xj − x̄) cos2 ψ + (yj − ȳ) sin 2ψ + 2x̄, (5.13)

where (cos 2ψ + 1) = 2 cos2 ψ, β̂1x =
sinψ

cosψ
, β̂1x sin 2ψ = 2 sin2 ψ.

Multiplying both sides of the equation (5.13) by yj, and taking the sum over

j, we obtain

2
n∑
j=1

yjd1j = 2
n∑
j=1

(xj − x̄)yj cos
2 ψ +

n∑
j=1

(yj − ȳ)yj sin 2ψ + 2x̄
n∑
j=1

yj

2
n∑
j=1

yjd1j − 2nx̄ȳ = 2
n∑
j=1

(xj − x̄)yj cos
2 ψ +

n∑
j=1

(yj − ȳ)yj sin 2ψ.

(5.14)

Note based on Theorem 2 in Chapter 3 we have d̄1j = x̄ = x̄∗ = ξ̄, and by

dividing both sides of the equation (5.14) by 2(n− 1), we find∑n
j=1 yjd1j − nx̄ȳ

n− 1
=

∑n
j=1(xj − x̄)yj

n− 1
cos2 ψ +

∑n
j=1(yj − ȳ)yj

2(n− 1)
sin 2ψ,

(5.15)

which gives

Syd1 = Syx cos
2 ψ + S2

y sinψ cosψ. (5.16)
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Now by dividing both sides of the equation (5.16) over S2
x, then

Syd1
S2
x

=
Syx
S2
x

cos2 ψ +
S2
y

S2
x

sinψ cosψ

β̂1RM = β̂1x cos
2 ψ + β̂2

1RMA cosψ sinψ

= cosψ sinψ + β̂2
1RMA cosψ sinψ

= (1 + β̂2
1RMA) cosψ sinψ

= (1 + β̂2
1RMA)

S2
xSyx

S4
x + S2

yx

, (5.17)

where β̂1RMA is the reduced major axis estimator of the slope parameter β1,

and cosψ =
S2
x√

S4
x + S2

yx

and sinψ =
Syx√
S4
x + S2

yx

.

Note that the equation (5.17) refers to the relationship between the reflection

estimator β̂1RM and the reduced major axis estimator β̂1RMA.

5.5 Simulation studies

In this section, two illustrative examples using simulated data are provided,

where both the response and explanatory variables are subject to error.

These examples reveal that the proposed new estimator works well under

the assumption λ = 1.

Example 1 The dataset is taken from the example 4.14 of Cheng and Van

Ness (1999, p. 127). The purpose of this example is to compare the sample
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mean absolute errors of the proposed estimator with other methods namely:

the method of moments using third-order moments, Geary’s methods (a,b)

using fourth-order cumulates, and the grouping method with two groups (for

more details see Chapter 2). The dataset is based on 500 replications of

non-normal data of the latent explanatory variable ξ, and normal data of the

measurement error ϵ and δ as follows:

1. Generate 100 independent values ξ1, . . . , ξ100 of ξ ∼ uniform on [−5, 5].

2. Generate 100 independent values δ1, . . . , δ100 of δ ∼ N(0, 1).

3. Generate 100 independent values ϵ1, . . . , ϵ100 of e ∼ N(0, 1).

We calculated the generated values of the response and explanatory variables

for preselected values of β0, β1, and n. Then compute values of the estimators

from the simulated data and find their means and mean absolute errors

(MAE) for each of the five estimators. The simulated mean of the estimators

and the MAE when β1 = 1, β0 = 0, n = 100 are recorded in Table 5.1. Table

5.2 shows the simulated mean of the estimators and the MAE for β1 = 2,

β0 = 0, and n = 100.
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Table 5.1: The simulated mean of five different estimators and the MAE when

β1 = 1, β0 = 0, n = 100.

Method Mean β̂0 MAE β̂0 Mean β̂1 MAE β̂1

Two groups −0.010 0.114 0.919 0.084

Method of moments −0.440 0.747 −2.796 4.860

Geary method(a) −0.010 0.117 0.997 0.055

Geary method(b) −0.010 0.118 1.001 0.056

Reflection method −0.0007 0.009 0.998 0.039

Table 5.2: The simulated mean of five different estimators with the MAE when

β1 = 2, β0 = 0, n = 100.

Method Mean β̂0 MAE β̂0 Mean β̂1 MAE β̂1

Two groups −0.002 0.165 1.845 0.157

Method of moments −0.211 0.541 2.053 2.200

Geary method(a) −0.002 0.172 2.002 0.082

Geary method(b) −0.002 0.173 2.003 0.090

Reflection method −0.001 0.014 1.996 0.063
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Both Tables 5.1 and 5.2 show that the RM works well, and it is better than

other estimators. It is clear that the MAE of the RM estimator is the smallest

compared to the others. In general, the proposed RM estimator is superior

to the other estimators for non-normal model. The next example shows

the comparison between the RM estimator, orthogonal regression (maximum

likelihood) estimator, and the slope estimator of the OLS of y on x for the

normal structural model.

Example 2 The purpose of this example is to compare the mean absolute

error of the reflection estimator with the orthogonal regression estimator

for normal structural model, when both variables are subject to error with

correct and incorrect selection of λ. Based on 100, 000 replications of sym-

metric normal data for β1 = 1, β0 = 0, we calculated the OR, OLS, and RM

estimators.

The estimates of the slope and their mean absolute errors are shown in Figure

5.2 when the sample size is small 10 < n < 30 and correct selection of λ = 1.

Figure 5.3 shows the slope estimates and their mean absolute errors when

the sample size is large 10 < n < 120 and incorrect selection of λ = 1.44.
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Figure 5.2: (a) Graph of the slope estimated and (b) Graph of MAE of the

RM, OR, and OLS estimators of β1, when λ = 1 is correct and small sample

sizes 10 < n < 30.

Figure 5.2a shows that the RM estimator is closer to the true slope β1 than

other estimators under correct value of λ = 1 and small sample sizes for the

normal structural model. The results of the mean absolute error in Figure

5.2b demonstrate the superiority of the RM estimator compared to the other

estimators.

Under the misspecification of the value of λ (= 1.44) and increased sample

sizes, Figure 5.3a reveals that the RM estimator remains closer to the true

slope β1 than the other estimators. Note all these estimators are biased when

λ is incorrect or misspecified. It is noteworthy that the results of the mean
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Figure 5.3: (a) Graph of the slope estimated and (b) Graph of MAE of the

RM, OR, and OLS estimators for β1, when λ (= 1.44) is incorrect and larger

sample sizes 10 < n < 120.

absolute error in Figure 5.3b indicate that the RM estimator is less sensitive

to the misspecification of λ.

5.6 Concluding remarks

This chapter considers the simple regression model with measurement error

in both response and explanatory variables. It proposes a new estimation

procedure based on the reflection of the explanatory variable. We have shown

that the RM estimator is equivalent or asymptotically equivalent to the or-
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thogonal regression estimator, and nearly asymptotically unbiased under the

assumption of λ =
σ2
ϵ

σ2
δ

= 1. Moreover, even if the ratio of error variances

λ ̸= 1 and the sample size is not large, the mean absolute error of the RM

estimator is lower than that of the orthogonal regression and OLS estimators.

The simulated results in Tables 5.1-5.2 and Figures 5.2-5.3 clearly demon-

strate that the RM estimator performs better than its competitors in both

normal and non-normal models and under correct and incorrect specification

of λ regardless of the sample size.



Chapter 6

Reflection in grouping method

estimation

6.1 Introduction

The main aim of this chapter is to propose a new grouping method for Wald’s

IV approach based on the reflection of the explanatory variable. The new

reflection grouping (RG) method is a modification of the Wald’s estimator.

The second aim of the chapter is to deal with the situation when the assump-

tion of known λ is violated. The proposed method assumes a very flexible

range of values of λ, namely (1) λ = 1, (2) λ > 1, or (3) λ < 1. This is a

much weaker and a more realistic assumption than knowing the value of λ.
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In addition, we provide a performance comparison between the RG method

estimator and several existing estimators such as the OLS, Geary (a and b),

Wald’s, and ML estimators using the dataset of the Example 4.12 of Cheng

and Van Ness (1999, p. 123). Moreover, we perform large scale simulation

studies to illustrate that the proposed estimator is asymptotically unbiased

and consistent under both non-normal and normal distributions of ξ and the

flexible assumption on the value of λ.

Section 6.2 provides the summary of Wald’s grouping method. The proposed

reflection grouping method is introduced in Section 6.3. Simulation study

and comparison of estimators are provided in Section 6.4. The final section

contains the concluding remarks.

6.2 Wald’s grouping method

The Wald’s grouping method is also known as two grouping method or av-

erage grouping method (see Gillard, 2010). In 1940 Wald pointed out that

a consistent estimator of β1 may be calculated if the following assumptions

are met:

1. The random variables ϵ1, · · · , ϵn have the same distribution and they

are uncorrelated, that is, E(ϵiϵj) = 0 for i ̸= j. The variance of ϵj is



6.2 Wald’s grouping method 135

finite.

2. The random variables δ1, · · · , δn have the same distribution and they

are uncorrelated, that is, E(δiδj) = 0 for i ̸= j. The variance of δj is

finite.

3. The random variables ϵj and δj are uncorrelated, that is, E(ϵjδj) = 0

for all j = 1, 2, · · · , n.

4.

∑n
j=k+1 xj −

∑k
j=1 xj

n
> 0 or x̄k+1 > x̄k, where x̄k+1 is the mean of the

group G2, x̄k is the mean of the group G1, n is even (n = 2, 4, 6, . . . ,∞),

and k = n
2
. In other words, we can be sure that as n→ ∞, b1 does not

approach zero (cf Madansky, 1959).

The method divides the observations into two groups based on the ranks

of the manifest explanatory variable xj, those above the median of xj into

one group, G1, and those below the median into another group, G2. Wald’s

estimator of β1 is given by

β̂1W =
a1
b1

=
(y1 + · · ·+ yk)− (yk+1 + · · ·+ yn)

(x1 + · · ·+ xk)− (xk+1 + · · ·+ xn)
=
ȳ2 − ȳ1
x̄2 − x̄1

,

where x̄1 and ȳ1 are the means of xj and yj in group G1, for j = 1, 2, · · · , k,

and x̄2 and ȳ2 are the means of xj and yj in group G2, for j = k + 1, k +

2, · · · , n. Then

β̂0W = ȳ − β̂1W x̄,
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where ȳ =

∑n
j=1 yj

n
, x̄ =

∑n
j=1 xj

n
, and

a1 =
(x1 + · · ·+ xk)− (xk+1 + · · ·+ xn)

n
,

b1 =
(y1 + · · ·+ yk)− (yk+1 + · · ·+ yn)

n
.

This method can also be put into the context of instrumental variables.

Johnston (1972, p. 284) showed how to express Wald’s grouping method as

an instrumental variable method. If the number of sample observations is

even then define a z matrix as

z′ =

 1 1 1 · · · 1

−1 −1 −1 · · · −1

 ,
where the second row included minus or plus one according to the value of

the manifest explanatory variable xj is below or above the median of x.

If we rewrite the estimated model ŷ = β̂0 + β̂1x in matrix form as y = x′β,

where

x′ =

 1 1 1 · · · 1

x1 x2 x3 · · · xn

 ,
and β = (β0W , β1W )′, then the instrumental variable estimator of β is defined

by

β̂ = (z′x)−1z′y =

 n 0

0 n
2
(x̄2 − x̄1)


−1  nȳ

n
2
(ȳ2 − ȳ1)

 =

 ȳ

ȳ2−ȳ1
x̄2−x̄1

 .
Then the Wald’s estimator of the slope is

β̂1W =
ȳ2 − ȳ1
x̄2 − x̄1

.
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According to Johnston (1972, p. 284) ȳ =

∑n
j=1 yj

n
is the estimator of

β0 + β1E(x), and hence

β̂0W = ȳ − β̂1W x̄.

It is suggested that one should omit the central observation of the ordered

array before computations if n is odd.

Wald’s estimator has seen some criticisms in the literature of measurement

error model, but these criticisms lack consensus. For instance Gupta and

Amanullah (1970) pointed out that the Wald’s estimator is consistent under

very specific conditions except that the errors are not normally distributed.

Pakes (1982) claimed that the work of Gupta and Amanullah (1970) is need-

less, when the Wald’s estimator is inconsistent. Under the normality assump-

tion the grouping estimator is the maximum likelihood estimator (see Chang

and Huang, 1997). In practice, the grouping method is still important, and

the grouping estimator is the maximum likelihood estimator under the nor-

mality assumption (see Chang and Huang, 1997; Cheng and Van Ness, 1999,

p. 130). Neyman and Scott (1951) pointed out that the Wald’s estimator is

consistent for β1 in the structural relationship if and only if

Pr[xp1 − e < ξ ≤ xp1 − µ] = Pr[x1−p2 − e < ξ < xp1 − µ] = 0,

where xp1 and x1−p2 are the p1 and (1 − p2) percentile points of F (x), the

distribution function of x (see Madansky, 1959).
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This condition means that we must know the range of the error in x, and

in order to satisfy the condition the range should be finite, otherwise the

condition becomes Pr[−∞ < ξ <∞] = 0 which is never satisfied.

Theil and Yzeren (1956) mentioned that the Wald’s method is valuable,

though there is a loss of efficiency. Johnston (1972, p. 284) stated “Under

fairly general conditions the Wald’s estimator is consistent but likely to have

a large sampling variance”. Moreover, Fuller (2006, p. 74) mentioned that

the Wald’s method was often interpreted improperly. In fact, there are many

discussions on improving the efficiency of the grouping method by dividing

the observations into more than two groups and groups of unequal size (see

Nair and Banerjee, 1942; Bartlett, 1949; Dorff and Gurland 1961; and Ware,

1972).

6.3 Proposed reflection grouping method

Based on the idea of the proposed estimator into the previous chapter, we

can extend the role of the transformed variable d1j to derive two other trans-

formed variables d2j and d3j. The proposed (RG) method suggest grouping

based on the ranks of the transformed variables d1j, d2j and d3j which are cal-

culated as the mean of the manifest explanatory variable xj and its reflection

x∗j . To avoid the unwanted and troublesome influence of the measurement er-
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ror in the explanatory variable, the idea of reflection of the manifest variable

is used here for all the values of the explanatory variable. In the conven-

tional notation, the reflection formula of the manifest explanatory variable

xj = ξj + δj (with measurement error δj) for j = 1, 2, · · · , n, can be defined

as

x∗j = xj cos 2ψ + (yj − β̂0x) sin 2ψ, (6.1)

where β̂0x is the least square estimate of the intercept parameter, ψ is the

angle measure defined as ψ = arctan β̂1x in which β̂1x is the least square

estimate of the slope parameter in the manifest model, and cos and sin

are the usual trigonometric cosine and sine functions respectively. For the

definition of reflection of points on the Euclidean plane see Vaisman (1997,

p. 164-169).

The main difference between the RG method and Wald’s original method is

the use of the ranks of the transformed variable d1j to divide the observa-

tions into two groups instead of using the ranks of the manifest explanatory

variable.

The general motivation for using the reflection of x is that the true value of

the latent explanatory variable is located at the middle of the observed value

of the manifest variable x and its reflection x∗, if the ratio of error variances

is λ = 1. We use Theorems 1 and 6 given in Chapter 3 to introduce the basic

of the proposed (RG) method in this chapter.



6.3 Proposed reflection grouping method 140

The reflection group estimator takes a different form depending on the value

of λ. There are three cases (1) λ = 1, (2) λ > 1, and (3) λ < 1. Therefore

we suggest the grouping critera as follows.

The grouping critera =


Case I d1j =

xj+x
∗
j

2
if λ = 1

Case II d2j =
d1j+xj

2
if λ > 1

Case III d3j =
d1j+x

∗
j

2
if λ < 1.

(6.2)

The main reason of using the transformed variables d1j, d2j and d3j is that

the latent explanatory variable ξ is located somewhere between the manifest

explanatory variable x and its reflection variable x∗. Therefore, we suggest

these variables in order to be close to the true variable ξ, where they are

located between the manifest explanatory variable x and its reflection vari-

able x∗. Moreover, it can be shown that the transformed variables d1j, d2j

and d3j produce estimators closer to the true slope parameter β1 than the

OLS estimator β̂1x. If we used the transformed variables d1j, d2j and d3j as

instrumental variables, then we get:

(1) The transformed variable d1j

Let d1j be an instrumental variable, then the slope estimator is given

by

β̂1d1 =

∑n
j=1(yj − ȳ)d1j∑n
j=1(xj − x̄)d1j

=
Syd1
Sxd1

.

Note from Theorem 6 in Chapter 3 the sample covariance (Sxx∗) of x

and x∗ equals the sample variance (S2
x) of x, then the sample covariance
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(Sxd1) of x and d1 equals the sample variance (S2
x) of x. That is,

ˆcov(x, d1) = ˆcov(x,
(x+ x∗)

2
)

=
1

2
ˆcov(x, (x+ x∗))

=
1

2
( ˆcov(x, x) + ˆcov(x, x∗)).

From Theorem 6 in Chapter 3 ˆcov(x, x∗) = ˆcov(x, x) = S2
x, then

Sxd1 = ˆcov(x, d1) =
1

2
( ˆcov(x, x) + ˆcov(x, x))

=
1

2
(2 ˆcov(x, x))

= ˆcov(x, x) = S2
x. (6.3)

Then the slope estimator is given by

β̂1d1 =

∑n
j=1(yj − ȳ)d1j∑n
j=1(xj − x̄)d1j

=
Syd1
Sxd1

=
Syd1
S2
x

.

Note that this estimator has been introduced and examined in the

previous chapter and was denoted as β̂1RM (See Chapter 5, p. 124-

131). From equation (5.12) of the previous chapter

| β̂1x |≤| β̂1RM |=| β̂1d1 |≤
S2
y

| Syx |
. (6.4)

(2) The transformed variable d2j

Similar to the transformed variable d1j, it can be shown that the other

estimator of slope β̂1d2 using the transformed variable d2j, is as follows

β̂1d2 =

∑n
j=1(yj − ȳ)d2j∑n
j=1(xj − x̄)d2j

=
Syd2
Sxd2

.
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Note from Theorem 6 in Chapter 3 and equation (6.3) that the sample

covariance (Sxd2) of x and d2 equals the sample variance (S2
x) of x.

It can be shown that the slope estimator β̂1d2 is a greater than the OLS

estimator β̂1x as follows

d2j =
d1j + xj

2

2d2j = d1j + xj =
x∗j + xj

2
+ xj =

1

2
(x∗j + 3xj)

4d2j = x∗j + 3xj = xj cos 2ψ + yj sin 2ψ − β̂0x sin 2ψ + 3xj

= xj(1− 2 sin2 ψ) + yj sin 2ψ − β̂0x sin 2ψ + 3xj

4d2j − 4xj = yj sin 2ψ − β̂0x sin 2ψ − 2xj sin
2 ψ

= (yj − ȳ) sin 2ψ + 2x̄ sin2 ψ − 2xj sin
2 ψ

= (yj − ȳ) sin 2ψ − 2(xj − x̄) sin2 ψ. (6.5)

Multiplying both sides of equation (6.5) by yj, and taking the sum over

j, we obtain

4
n∑
j=1

yjd2j − 4
n∑
j=1

yjxj =
n∑
j=1

(yj − ȳ)yj sin 2ψ

−2
n∑
j=1

(xj − x̄)y sin2 ψ. (6.6)

Based on Theorem 2 in Chapter 3 we have d̄2j = d̄1j = x̄ = x̄∗ = ξ̄,

and then by dividing both sides of the equation (6.6) by (n − 1), and

adding (4nx̄ȳ), (−4nx̄ȳ) to the left side, we then have

(4
∑n

j=1 yjd2j − 4nx̄ȳ)

(n− 1)
−

(4
∑n

j=1 yjxj − 4nx̄ȳ)

(n− 1)
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=

∑n
j=1(yj − ȳ)yj sin 2ψ

(n− 1)
−

2
∑n

j=1(xj − x̄)y sin2 ψ

(n− 1)
.

Then

4Syd2 − 4Syx = S2
y sin 2ψ − 2Syx sin

2 ψ

S2
y sin 2ψ = 2Syx sin

2 ψ + 4(Syd2 − Syx)

S2
y =

2Syx sin
2 ψ

sin 2ψ
+

4

sin 2ψ
(Syd2 − Syx)

S2
y = β̂1xSyx +

4S2
x

sin 2ψ
(
Syd2
S2
x

− Syx
S2
x

),

where β̂1d2 =
Syd2
S2
x

, β̂1x =
2 sin2 ψ

sin 2ψ
, and S2

x =
Syx cosψ

sinψ
, and

S2
y = β̂1xSyx +

4S2
x

sin 2ψ
(
Syd2
S2
x

− Syx
S2
x

)

= β̂1xSyx +
2Syx
sin2 ψ

(β̂1d2 − β̂1x). (6.7)

From (6.7) and when Syx > 0, we then have

| β̂1x |≤| β̂1d2 |≤
S2
y

| Syx |
. (6.8)

(3) The transformed variable d3j

Similar to the transformed variables d1j and d2j, we can introduce an-

other estimator of slope, β̂1d3 using the transformed variable d3j as

β̂1d3 =

∑n
j=1(yj − ȳ)d3j∑n
j=1(xj − x̄)d3j

=
Syd3
Sxd3

.
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Note from Theorem 6 in Chapter 3 and equation (6.3) the sample

covariance (Sxd2) of x and d2 is equal to the sample variance (S2
x) of x,

and

β̂1d3 =
Syd3
S2
x

.

Similarly, it can show that the slope estimator β̂1d3 is greater than the

OLS estimator β̂1x as shown below

d3j =
d1j + x∗j

2

2d3j = d1j + x∗j =
x∗j + xj

2
+ x∗j =

1

2
(3x∗j + xj)

4d3j = 3x∗j + xj = 3xj cos 2ψ + 3yj sin 2ψ − 3β̂0x sin 2ψ + xj

= 3xj(1− 2 sin2 ψ) + 3yj sin 2ψ − 3β̂0x sin 2ψ + xj

4d3j − 4xj = 3yj sin 2ψ − 3β̂0x sin 2ψ − 6xj sin
2 ψ

= 3(yj − ȳ) sin 2ψ + 6x̄ sin2 ψ − 6xj sin
2 ψ

= 3(yj − ȳ) sin 2ψ − 6(xj − x̄) sin2 ψ. (6.9)

Multiplying both sides of the equation (6.9) by yj, and taking the sum

over j, we obtain

4
n∑
j=1

yjd3j − 4
n∑
j=1

yjxj = 3
n∑
j=1

(yj − ȳ)yj sin 2ψ

−6
n∑
j=1

(xj − x̄)y sin2 ψ. (6.10)

Note from Theorem 2 in Chapter 3 we have

d̄3j = d̄2j = d̄1j = x̄ = x̄∗ = ξ̄,
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then by dividing both sides of equation (6.10) by (n − 1), and adding

(4nx̄ȳ), (−4nx̄ȳ) to the left side, we have

(4
∑n

j=1 yjd3j − 4nx̄ȳ)

(n− 1)
−

(4
∑n

j=1 yjxj − 4nx̄ȳ)

(n− 1)

=
3
∑n

j=1(yj − ȳ)yj sin 2ψ

(n− 1)
−

6
∑n

j=1(xj − x̄)y sin2 ψ

(n− 1)
.

Then

4Syd3 − 4Syx = 3S2
y sin 2ψ − 6Syx sin

2 ψ

3S2
y sin 2ψ = 6Syx sin

2 ψ + 4(Syd3 − Syx)

S2
y =

6Syx sin
2 ψ

3 sin 2ψ
+

4

3 sin 2ψ
(Syd3 − Syx)

= β̂1xSyx +
4S2

x

3 sin 2ψ
(
Syd3
S2
x

− Syx
S2
x

)

= β̂1xSyx +
4S2

x

3 sin 2ψ
(β̂1d3 − β̂1x). (6.11)

From (6.11) and when Syx > 0, then

| β̂1x |≤| β̂1d3 |≤
S2
y

| Syx |
. (6.12)

In order to examine the performance of the estimators β̂1d, β̂2d, and β̂3d we

should refer to the general property of the measurement error model that the

true regression line always lies between the OLS line of y on x and the OLS

line of x on y. That means the maximum likelihood (ML) estimator of β̂1 is

often located in the following range (see for example Cheng and Van Ness,

1999, p. 11)

| β̂1x |≤| β̂1 |≤
S2
y

| Syx |
. (6.13)
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Then from equations (6.4), (6.8), and (6.12) the estimators β̂1d, β̂2d, and β̂3d

of the true slope all lie in the same range (6.13) as the ML estimator β̂1.

Obviously, these estimators are greater than the OLS estimator | β̂1x | of

the slope. Note that we obtained these estimators ignoring the independent

condition between the instrumental variable and measurement error as men-

tioned above. But in order to satisfy this condition we use the ranks of the

transformed variables (d′s) above instead the rank of the manifest explana-

tory variable x in the Wald’s method. As shown above that the estimators

of the slope based on the transformed variables are closer to the true slope

than the OLS estimator of the slope via x. The ranks of these variables could

be very close to the rank of the true variable ξ when the values of the ratio

of error variances (λ) are (1) λ = 1, (2) λ > 1, or (3) λ < 1, as shown in the

next sections.

6.3.1 Propose modifications to Wald’s method

(1) Case I when λ = 1

Let the second row of the instrumental variable matrix T ′
1 be based on the

ranks of the transformed variable d1j =
xj + x∗j

2
. The entries in the second

row of T ′
1 is −1 if the value of d1j is less then the median of d1j, and +1
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otherwise. A typical representation of T ′
1 is

T ′
1 =

 1 1 1 · · · 1

−1 −1 −1 · · · −1

 .
Then the first RG estimator (RG1) of β1 and β0 is given by

β̂RG1 = (T ′
1x)

−1T ′
1y =

 n 0

0 n
2 (x̄12 − x̄11)


−1  nȳ

n
2 (ȳ12 − ȳ11)

 =

 ȳ

ȳ12−ȳ11
x̄12−x̄11


Then

β̂1RG1 =
ȳ12 − ȳ11
x̄12 − x̄11

and β̂0RG1 = ȳ − β̂1RG1x̄,

where ȳ11 is the mean of the first group of y, ȳ12 is the mean of the second

group of y, x̄11 is the mean of the first group of x, and x̄12 is the mean of the

second group of x.

(2) Case II when λ > 1

Similarly, let the second row of the instrumental variable matrix T ′
2 be based

on the ranks of the transformed variable d2j =
d1j + xj

2
. The entries in the

second row of T ′
2 is −1 if the value of d2j is less than the median of d2j, and

+1 otherwise. The second RG estimator (RG2) of β1 and β0 is obtained as

β̂1RG2 =
ȳ22 − ȳ21
x̄22 − x̄21

and β̂0RG2 = ȳ − β̂1RG2x̄.

where ȳ21 is the mean of the first group of y, ȳ22 is the mean of the second

group of y, x̄21 is the mean of the first group of x, and x̄22 is the mean of the
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second group of x, these means are constructed based on the ranks of the

transformed variable d2j.

(3) Case III when λ < 1

Finally, let the second row of the instrumental variable matrix T ′
3 be defined

based on the ranks of the transformed variable d3j =
d1j + x∗j

2
. The entries

in the second row of T ′
3 is −1 if the value of d3j is less than the median of

d3j, and +1 otherwise. Then the third RG estimator (RG3) of β0 and β1 is

defined as

β̂1RG3 =
ȳ32 − ȳ31
x̄32 − x̄31

and β̂0RG3 = ȳ − β̂1RG3x̄.

where ȳ31 is the mean of the first group of y, ȳ32 is the mean of the second

group of y, x̄31 is the mean of the first group of x, and x̄32 is the mean of the

second group of x, these means are constructed based on the ranks of the

transformed variable d3j.

To implement the method, we omit the central ordered observation before

computing d′s if n is odd. Although the second row of T ′
1, T

′
2, T

′
3 (that is, the

sequence of −1 and +1) may appear similar, they will be different when the

method is applied to any real dataset.
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6.3.2 Example

To check the performance of the RG method estimator it would be useful to

compare its performance with those of the Wald’s, Geary’s (a, b), OLS(y/x),

and ML methods when the ratio of the error variances λ is known. This is

done using the data set of Example 4.12 of Cheng and Van Ness (1999, p.

123). Here we set β1 = 1 and β0 = 0, and assume that the latent explanatory

variable is distributed as ξj ∼ χ2
(4), λ = 1, and sample size n = 36. The

results of the estimators are recorded in Table 6.1 below.

Table 6.1: Estimated β1 and β0 for different estimators when both variables

are subject to measurement error, and λ = 1.

Methods Slope estimate, β̂1 Intercept estimate, β̂0

RG1 1.0123 0.2186

Wald 0.8048 1.0630

Geary (a) 0.589 1.943

Geary (b) 0.721 1.406

OLS yx 0.8534 0.8653

ML 0.9277 0.5628

It is clear from Table 6.1 that the proposed RG1 estimator works well and its
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performance is much better than the other five estimators. Clearly Wald’s

estimator is biased and underestimates the slope parameter. But the RG1

method has improved the Wald’s method significantly for the dataset of this

example and also for another dataset as shown in the next section. Although

the ML estimator is biased and underestimates the slope parameter, it is

closer to the RG1 estimator, and slightly better than the others. It is not

surprising, that both estimators of Geary (a) and (b) are strongly biased and

underestimate the slope since it is well known that the estimators of fourth-

order cumulants are unstable when the latent explanatory variable ξ is close

to being symmetric (see Cheng and Van Ness, 1999, p. 127).

6.4 Simulation studies

We performed large scale simulations to illustrate that the proposed RG

estimator is asymptotically unbiased and consistent whether the latent ex-

planatory variable ξ has non-normal or normal distribution with flexible as-

sumption about the knowledge of λ. Moreover, we demonstrate that the

proposed RG method increases the efficiency of the Wald’s method. The

simulations are conducted for both study for non-normal distributions of the

latent variable ξ, and a second study for normal distributions of the latent

variable ξ.
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6.4.1 First study: Non-normal distributions of ξ

Here we consider the case when the latent variable ξ has non-normal dis-

tribution. For this study we select ξ assuming uniform distribution within

a specified interval. The parameters settings for the simulation studies are

β1 = 1 and β0 = 0. We compare the estimated values and the mean absolute

error of the proposed RG, Wald’s, Geary’s (a, b), and OLS of y on x estima-

tors for selected arbitrary sample sizes n = 20, 30, · · · , 110. The simulation

is based on 10, 000 replications, where ξ is assumed to follow an uniform

distribution in the interval [−5, 5]:

(1) Case I when λ = 1 (d1j is used for RG1 ), δ ∼ N(0, 1), and ϵ ∼ N(0, 1).
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Figure 6.1: Graph of the estimated slope (a) and the mean absolute error (b)

for five different estimators when λ = 1, and β1 = 1.
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(2) Case II when λ > 1 (d2j is used for RG2 ), δ ∼ N(0, 1), and ϵ ∼

N(0, 2.25).
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Figure 6.2: Graph of the estimated slope (a) and the mean absolute error (b)

for five different estimators when λ > 1, and β1 = 1.

From Figures 6.1(a), 6.2(a), and 6.3(a) the values of the OLS estimator for

the slope are the lowest and far below the true value of β1 = 1. The values

of Wald’s estimator are also away from the true value of β1, but they appear

to be slightly closer to the true value of β1 than those predicted by the OLS

estimator. The values of the two estimators of Geary are both close to the

true value of the slope if the sample size is large (n = 40 or more), but they

fluctuate significantly if n is small. Clearly the RG estimator is much closer

to the true value of β1 than the Geary estimators. In fact, the proposed RG
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(3) Case III when λ < 1 (d3j is used for RG3 ), δ ∼ N(0, 2.25), and

ϵ ∼ N(0, 1).
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Figure 6.3: Graph of the estimated slope and the mean absolute error for five

different estimators when λ < 1, and β1 = 1.

method estimator is consistently closest to the true value of β1 for all sample

sizes.

It is clear from Figures 6.1(b), 6.2(b), and 6.3(b) that the presence of the

measurement error makes the mean absolute error of the OLS estimator the

largest. While the mean absolute error of the Wald’s estimator appears to

be smaller than that of the OLS estimator, but it is not the smallest. The

mean absolute error for the Geary’s estimators (or cumulant method estima-

tors) are smaller than that of Wald’s and OLS estimators. But if the sample
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size is small, then the mean absolute error of the Geary estimators become

unstable. Obviously, the mean absolute error of the RG method estimator is

the smallest compared to the other estimators, and is stable over the range

of selected sample sizes. Thus the RG method estimator performs better

than the other estimators in terms of having smallest MAE when ξ follows

a non-normal distribution.

6.4.2 Second study: Normal distributions of ξ

Here we now assume that the latent variable ξ follows a normal distribu-

tion.This simulation study compares the RG method estimator with the ML,

Wald’s, and OLS estimators of y on x when λ is misspecified. The simulation

is based on 10, 000 replications using MATLAB software. We use different

sample sizes to show the behavior of the above estimators for selected sample

sizes 50, 100, 150, 200, · · · , 450. In the simulation study we consider misspec-

ification of λ as (1) using the incorrect value of λ = 0.5, instead of the correct

value of 1, (2) using the incorrect value of λ = 2, instead of the correct value

of 2.89, and (3) using the incorrect value of λ = 1.5, instead of the correct

value of 0.5.
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(1) Case I uses the incorrect value of λ = 0.5, for ξ ∼ N(0, 49), β0 = 0,

and β1 = −0.8, if the correct value of λ = 1 =
9

9
is unavailable. The

graph of the estimated slopes is given in Figure 6.4.
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Figure 6.4: Graphs of the estimated slope (a) and the mean absolute error (b)

for four different estimators RG1, ML, W , and OLS for case I.
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(2) Case II uses the incorrect value of λ = 2, for ξ ∼ N(0, 49), β0 = 0, and

β1 = 0.6, if the correct value of λ = 2.89 =
72.25

25
is unavailable. The

graph of the estimated slopes is given in Figure 6.5.
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Figure 6.5: Graphs of the estimated slope (a) and the mean absolute error (b)

for four different estimators RG2, ML, W , and OLS for case II.
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(3) Case III uses the incorrect value of λ = 1.5, for ξ ∼ N(0, 36), β0 = 0,

and β1 = 1.4, if the correct value of λ = 0.5 =
8

16
is unavailable. The

graph of the estimated slopes is given in Figure 6.6.
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Figure 6.6: Graphs of the estimated slope and the mean absolute error for

four different estimators RG3, ML, W , and OLS for case III.
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Figures 6.4-6.6 show the estimated slope and the mean absolute error for four

different estimators. From each of the above graphs it is evident that the RG

method estimator (RG1, RG2, RG3) is consistently better than the other

three estimators. This superior performance of the RG method estimator

does not depend on the accuracy of selecting the value of λ beyond the

knowledge of less than or greater than or equal to 1.

6.5 Concluding remarks

This chapter proposes a new grouping method based on the rank of the

reflection of the manifest explanatory variable as an improvement to Wald’s

estimator. It proposes specific modifications to Wald’s grouping method of

fitting a straight line when both variables are subject to measurement errors.

The RG estimator works under the same assumptions as Wald’s method,

but without requiring the restriction that the error terms to be too small or

large. The main difference of the RG method from Wald’s original method is

the use of ranks of a new transformed variable d1j to divide the observations

of the manifest explanatory variable x into two groups instead of using the

ranks of x itself.

Extensive simulation studies were conducted to compare the RG estimator

with existing alternative estimators when the latent variable ξ follows both
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non-normal and normal distributions. The comparison was done in terms

of the estimated values of the slope parameter as well as the mean abso-

lute error of the estimators. The graphical and numerical analyses provide

clear evidence that the RG method estimator is more precise than the other

competing estimators. Therefore, the proposed RG estimator possesses bet-

ter statistical proprieties than the OLS estimator, as well as the grouping

method proposed by Wald’s, and cumulant based estimators introduced by

Geary. The new method is stable and works well for different sample sizes

and for different values of λ. It is clear, from the forgoing discussion that

the reflection grouping method significantly increases the efficiency of Wald’s

method. The simulation study also confirms that the RG method estimator

performs much better than the maximum likelihood estimator when ξ follows

a normal distribution. This superior performance occurs even when the exact

value of the ratio of error variances λ is unavailable. Simulations with other

choices of the parameters (slope and intercept), sample sizes and number

of replications produced similar results demonstrating the consistency and

superior performance of the proposed RG estimator.



Chapter 7

Weighted geometric mean

estimator

7.1 Introduction

This chapter introduces a new estimator to fit regression line when both

variables are subject to measurement error. It provides an alternative view

on the geometric mean estimator. The proposed estimator is based on the

mathematical relationship between the vertical and orthogonal distances of

the observed points and the fitted regression line. It minimises the orthog-

onal distance and is less sensitive to the ratio of error variances (λ). The

simulation results show that the proposed estimator is more consistent and

efficient than the geometric mean and OLS-bisector estimators.
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Dent (1935) suggested the geometric mean functional relationship estimator

to be as a solution of the likelihood equations when there is no additional

information in the case of the normal functional model (cf Cheng and Ness,

1999, p. 43). This estimator is called geometric mean (GM) estimator,

because it is the geometric mean of the least squares estimators of the slope

for the regression of y on x and the reciprocal of that of x on y. This technique

has been introduced many times under different names such as the reduced

major axis, or the least products regression (cf Ludbrook, 2010).

Halfon (1985) and Draper and Yang (1997) pointed out that the geometric

mean estimator minimises the vertical and horizontal distances between the

observed points and the regression line. Richard (2009) criticised that the

geometric mean (GM) estimator is widely used in the literature without

explaining why it was selected. Jolicoeur (1975) stated that it is difficult to

interpret the meaning of the slope of the geometric mean regression. Isobe

et al. (1990) examined five linear methods, and pointed out that the OLS

bisector (OLS-b) estimator is the best method to use, when there is no basis

to distinguish between the explanatory and response variables.

The next section presents the mathematical relationship between the vertical

and orthogonal distances of the observed points from both the fitted and

unfitted regression lines. The geometric mean estimator, and an alternative

way to derive this estimator, are provided in Sections 7.3 and 7.4. The

proposed weighted geometric mean estimator is introduced in Section 7.5.

The simulation studies, and the concluding remarks are included in Sections

7.6 and 7.7.
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7.2 Relationship between the vertical and or-

thogonal distances

It is well known that there are different approaches to minimise the verti-

cal, horizontal, orthogonal, or both orthogonal and horizontal, distances in

regression analysis. The ordinary least squares method works on the basis

of minimising the vertical distance when there are no measurement errors.

Inverse least squares method minimises the horizontal distance when there

is measurement error only in the explanatory variable (cf Leng et al. 2007).

The orthogonal regression approach minimises the orthogonal distance un-

der the assumption that the ratio of error variances is equal to one, that

is, λ = σ2
ϵσ

−2
δ = 1. The maximum likelihood estimator minimises both the

horizontal and orthogonal distances when λ is known (cf Leng et al. 2007).

It is crucial to note the difference between the distance from the observed

point and the fitted line, the unfitted line, and the unobserved point. Al-

though, many authors use distance between the observed point and regression

line without being specific. This issue is crucial when there are measurement

errors in both variables. This section introduces the mathematical relation-

ship between the vertical and orthogonal distances of the observed points

and the fitted regression line.

Let (xj, yj) be the observed point and (ξj, ηj) be the associated unobserved

point. Then the fitted line is given by

ηj = β0 + β1ξj, j = 1, 2, · · · , n. (7.1)

Note that all the true points (ξj, ηj) are on the fitted line (7.1), because there
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is no equation error in the model.

Now we will have two different reflection points for the observed point (xj, yj)

one about the fitted line and other about the unfitted line. Therefore, we

define the reflection point (Aj, Bj) of the observed point (xj, yj) about the

fitted line (7.1) as follows:

Aj = xj cos 2θ + (yj − β0) sin 2θ, (7.2)

Bj = xj sin 2θ − (yj − β0) cos 2θ + β0, (7.3)

where θ = tan−1 β1, and β0, and β1 are the regression parameters. For details

on reflection of points please see Vaisman (1997, p. 164-169). For simplicity,

       η, y 

                                                               Fitted line 

                                                                                                                                                                                                                 

                         A                                                                Unfitted line                                                                        

                                          B                                            

                                                           C                         

                                             D                          

 

                                                        F                                                           

                                                                                                                               

                                                                                                   ξ, x 

Figure 7.1: Graph of two orthogonal distances (AB = Od, and AD = Ox)

between the observed point and the fitted and unfitted lines.

we consider the relationships between the orthogonal and vertical distance of

the observed point (xj, yj) and the fitted line (ηj = β0 + β1ξj) as a first case.

While the second case is related to the relationship between the observed

point (xj, yj) and the unfitted line (yj = β0 + β1xj).
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There are potentially two orthogonal distances of any observed point, one

from the fitted line (here represented by Od) and the other from the unfitted

line (Ox). In principle, the GM method should minimise Od, but in prac-

tice it minimises Ox. Figure 7.1 shows the reflection of A = (xj, yj) about

the fitted line C = (Aj, Bj) with the orthogonal distance Od = AB, and

the reflection of A = (xj, yj) about the unfitted line F = (x∗j , y
∗
j ) with the

orthogonal distance Ox = AD.

7.2.1 Fitted line case

From the properties of the reflection the fitted line (the reflection line) is a

bisector and perpendicular on the distance between the observed point A,

(xj, yj), and its reflection point C, (Aj, Bj). Then the half of the square

distance between the observed point (xj, yj) and its reflection point (Aj, Bj)

will equal the orthogonal square distance (Od2j) between the observed point

(xj, yj) and the fitted line. The orthogonal distance is given by

Odj =
1

2

(√
(Aj − xj)2 + (Bj − yj)2

)
. (7.4)

Then from (7.2) and (7.3) the square orthogonal distance (Od2j) is given by

Od2j =
1

4
((2xj sin

2 θ + yj sin 2θ − β0 sin 2θ)
2

+(xj sin 2θ − 2yj cos
2 θ + 2β0 cos

2 θ)2).
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Since xj = ξj + δj, yj = ηj + ϵj and β1 =
sin θ

cos θ
so

Od2j =
1

4

(
(−2xj sin

2 θ + β1ξj sin 2θ + ϵj sin 2θ)
2

+(xj sin 2θ − 2β1ξj cos
2 θ − 2ϵj cos

2 θ)2

)

=
1

4

(
(2δj sin

2 θ − ϵj sin 2θ)
2 + (δj sin 2θ − 2ϵj cos

2 θ)2

)

=
1

4

(
δ2j (4 sin

4 θ + sin2 2θ)− 4δjϵj(sin 2θ sin
2 θ + sin 2θ cos2 θ)

+e2j(4 cos
4 θ + sin2 2θ)

)
= u2j sin

2 θ − δjϵj sin 2θ + e2j cos
2 θ.

From (7.3) E(δj) = E(ϵj) = 0 and E(δjϵj) = 0, then

E(Od2j) = E(δ2j ) sin
2 θ + E(ϵ2j) cos

2 θ.

From Theorems 2 and 3 in Chapter 3, E(Aj − xj) = E(Bj − yj) = 0, then

the variance of Od is

σ2
Od = σ2

δ sin
2 θ + σ2

ϵ cos
2 θ.

From (7.5), and noting β2
1 = sin2 θ cos−2 θ, the above variance becomes

σ2
Od = (σ2

ϵ + σ2
δ sin

2 θ cos−2 θ) cos2 θ = (σ2
ϵ + β2

1σ
2
δ ) cos

2 θ.

Then the relationship between the variance of the orthogonal distance and

the variance of vertical distance is given by

σ2
Od = σ2

v cos
2 θ =

σ2
v

1 + β2
1

, (7.5)
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where β2
1 = sin2 θ/ cos2 θ then

1

1 + β2
1

=
1

1 + sin2 θ
cos2 θ

=
1

cos2 θ+sin2 θ
cos2 θ

=
1
1

cos2 θ

= cos2θ.

Note that both vertical and orthogonal distances measure the distance be-

tween the observed point (xj, yj) and the fitted line, but it does not measure

the distance between the observed point (xj, yj) and the unobserved point

(ξj, ηj). Under certain assumptions such as λ = 1 or β1 = 1 the distance

between the observed point and the unobserved point is equal to twice that

of the orthogonal distance, where the distance between the observed point

and the unobserved point (Pd) is given by

Pd =
√

(xj − ξj)2 + (yj − ηj)2 =
√
δ2j + e2j ,

where δj, ϵj are the measurement error in the explanatory and response

variables respectively. From (7.3) the variance of the (Pd) distances is

σ2
Pd = σ2

ϵ + σ2
δ .

From (7.5) and when λ = 1,

σ2
Pd = 2σ2

ϵ .

7.2.2 Unfitted line case

In order to find the relationship between the observed point (xj, yj) and the

unfitted line we follow the similar steps of the first case except replacing the



7.2 Relationship between the vertical and orthogonal distances167

parameters of the fitted line, θ = tan−1 β1, β0, and β1 with the coefficients of

the unfitted line ψ = tan−1 β̂1x, β̂0x, and β̂1x respectively. Then we get

x∗j = xj cos 2ψ − (yj − β̂0x) sin 2ψ

y∗j = xj sin 2ψ − (yj − β̂0x) cos 2ψ + β̂0x,

where (x∗j , y
∗
j ) is the reflection point of the observed point (xj, yj) about the

unfitted line.

The relationship between the sample variance of the orthogonal distance

(Ox) and vertical distance (v) of the model (1.4) in Chapter 1, is given by

S2
Ox = S2

v cos
2 ψ =

S2
v

1 + β̂2
1x

. (7.6)

Also the relationship between observed point and unfitted line of the popu-

lation becomes

σ2
Ox = σ2

v cos
2 ψ =

σ2
v

1 + β2
1x

. (7.7)

From (7.5) and (7.7) the relationship between the orthogonal distance of the

two cases is

σ2
Od = σ2

Ox

cos2 θ

cos2 ψ
= σ2

Ox

(
1 + β2

1x

1 + β2
1

)
. (7.8)

Note that in general, σ2
Od < σ2

Ox, because of β2
1x < β2

1 , and σ
2
Od = σ2

Ox if and

only if there is no measurement error, in which case β2
1x = β2

1 . Therefore,

there is a difference between the method which aims to minimise σ2
Ox and

that minimises σ2
Od. The next section will show that the GM method is

minimising σ2
Ox, rather than σ

2
Od.



7.3 Geometric mean estimator 168

7.3 Geometric mean estimator

One of the simple approaches to handle the measurement error in the regres-

sion analysis is the geometric mean (GM) functional relationship, initially

proposed by Teissier (1948) and later by Barker et al. (1988) (cf Draper and

Yang, 1997). This estimator has frequently been mentioned in the literature

for two reasons. First, when there is no basis for distinguishing between the

response and explanatory variables. Second, to handle the measurement er-

ror when no prior information is available. The geometric mean regression

method is widely used in fisheries studies (cf Richard, 2009). It has received

much attention from the experts, and some have suggested that it is more

useful than the ordinary least squares method (see Sprent and Dolby, 1980).

The geometric mean estimator of the slope is the geometric mean of the slope

of y on x regression line, and the reciprocal of the slope of x on y regression

line, where x and y both are random (see Leng et al. 2007). It is given by

β̂1G = sgn(SPxy)

√
SSy
SSx

= sgn(Spxy)

(
Sy
Sx

)
,

where SSx =
∑n

j=1(xj − x̄)2, SSy =
∑n

j=1(yj − ȳ)2,

SPxy =
∑n

j=1(xj − x̄)(yj − ȳ), and Sy and Sx are the sample standard devi-

ations of y and x respectively.

In the literature, the geometric mean regression is known as the standardised

major axis (MA) estimator (cf Warton et al. 2006). It is also known as the

reduced major axis (RMA), or the line of organic correlation (cf Tessier, 1948;

Kermack and Haldane, 1950; Ricker, 1973). In physics it is known as a type
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of standard weighting model (see Machonald and Thompson, 1992), while

astronomers call it as Strömberg’s impartial line (see Feigelson and Babu,

1992).

A host of recent publications indicate that using the GM or RMA method is

necessary and sufficient to fit the straight line when both the response and

explanatory variables are subject to errors (see Levinton and Allen, 2005,

Zimmerman et al. 2005, Sladek et al. 2006, and Vincent and Lailvaux,

2006). While Jolicoeur (1975), and Spernt and Dolby (1980) pointed out

that the GM estimator is unbiased if and only if

λ =
σ2
y

σ2
x

or λ = β2
1 .

But several other studies indicate that this assumption is unrealistic (cf

Sprent and Dolby, 1980).

It is commonly recommended to use the geometric mean estimator without

mentioning the justifications (Smith, 2009). Jolicoeur (1975) stated that it

is difficult to interpret the meaning of the slope of the geometric mean re-

gression. However, the common belief is that the geometric mean regression

minimises the vertical and horizontal distances between the observed points

and the fitted line (Halfon, 1985; and Draper and Yang, 1997). But it is not

quite true, because it could be interpreted that the GM or RMA estimator

minimises the orthogonal error of the observed points with the unfitted re-

gression line instead of the fitted regression line as shown in the next section.
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7.4 Alternative view on the geometric mean

estimator

From (7.7) the variance of the orthogonal distance between the observed

point (xj, yj) and the unfitted line (ŷj = β̂0x + β̂1xxj) can be derived for the

geometric mean estimator as follows:

SSOx = SSv cos
2 ψ =

1

n− 1

n∑
j=1

(yj − β̂0x − β̂1xxj)
2 cos2 ψ

=
n∑
j=1

((yj − ȳ)− β̂1x(xj − x̄))2 cos2 ψ

=
n∑
j=1

((yj − ȳ) cosψ − (xj − x̄) sinψ)2. (7.9)

Let L1 = sinψ, and L2 = cosψ. Then

SSOx =
n∑
j=1

((yj − ȳ)L2 − (xj − x̄)L1)
2.

Differentiating of SSOx w.r.t. L1, and L2 and setting them equal to zero, we

get

∂SSOx
∂L1

= 2
n∑
j=1

((yj − ȳ)L2 − (xj − x̄)L1)(−(xj − x̄)) = 0,

which gives L1S
2
x = L2Syx, and (7.10)

∂SSOx
∂L2

= 2
n∑
j=1

((yj − ȳ)L2 − (xj − x̄)L1)(yj − ȳ) = 0,

to give L2S
2
y = L1Syx. (7.11)

From (7.10), (7.11), and β̂1x =
L1

L2

we get two estimators of the slope

β̂1 =
Syx
S2
x

and β̂2 =
S2
y

Syx
. (7.12)
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Then the geometric mean of the estimators in (7.12) is the GM estimator,

that is,

β̂1G = sgn{Syx}

√
S2
y

S2
x

.

Obviously, the above GM estimator is derived by minimising the orthogonal

distance between the observed point (xj, yj) and unfitted line. Therefore, it

does not minimise the distance between the observed point (xj, yj) and the

fitted regression line.

7.5 Proposed estimator

The proposed estimator minimises the orthogonal distance between the ob-

served point (xj, yj) and the unfitted regression line. This estimator is based

on the relationship (7.7) between the vertical and orthogonal distances of the

observed points and the unfitted regression line, then derives the proposed

estimator from both equations (7.10) and (7.11) as follows:

Multiply equation (7.10) by S2
y , and equation (7.11) by Syx, then we get

L1S
2
xS

2
y = L2SyxS

2
y , (7.13)

L1S
2
yx = L2SyxS

2
y . (7.14)

From equation (7.13) and adding equation (7.14) we get

L1(S
2
xS

2
y + S2

yx) = L22SyxS
2
y ,

(S2
xS

2
y + S2

yx)sinψ = 2SyxS
2
ycosψ.
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Hence the proposed weighted geometric (WG) mean estimator is given by

β̂1WG =
sinψ

cosψ
=

2SyxS
2
y

S2
yS

2
x + S2yx

. (7.15)

This estimator could be simplified as follows

β̂1WG =
2S2

yS
−2
x

S2
yS

−1
yx + SyxS−2

x

=
2β̂2

1G

(β̂1 + β̂2)

= W β̂1G, (7.16)

where W =
β̂1G

β̂OLS−mean
, in which β̂OLS−mean is obtained by taking the arith-

metic mean of the slopes of the two ordinary least squares regression lines of

OLS(yx) and OLS(xy). Note if the geometric mean (GM) estimator is equal

to the OLS-mean estimator, then the proposed (WG) estimator is equal to

both the geometric mean and the OLS-mean estimators, where W is equal

to one.

The reasons for suggesting the weighted geometric mean estimator instead

of the geometric mean estimator, or the OLS-bisector estimator will become

apparent from the results of the next section.

7.6 Simulation studies

In this section we compare the proposed (WG) estimator with the geometric

mean estimator and the OLS-bisector estimator for a wide range of values of

λ (0.08 ≤ λ ≤ 100).

We perform large scale simulations to illustrate that the proposed estimator
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Figure 7.2: Graph of three estimators of the slope, and the mean absolute

error when β0 = 20, β1 = 0.55 and 0.08 ≤ λ ≤ 100.

is asymptotically unbiased and consistent compared to the geometric mean

estimator and the OLS-bisector estimator. The latter estimator is given by

β̂1OLS−b = (β̂1 + β̂2)
−1

[
β̂1β̂2 − 1 +

√
(1 + β̂2

1)(1 + β̂2
2)

]
,

where β̂1 =
Syx
S2
x

, and β̂2 =
S2
y

Sxy
(see Isobe et al. 1990).

This study demonstrates that the WG estimator is not sensitive to the ratio

of error variances λ, whereas the geometric mean estimator grows larger as

the value of λ increases.

The dataset is based on 1000 replications of samples size 100 of normal

structural model simulated as follows:

1. Generate 100 independent values ξ1, · · · , ξ100 of ξ ∼ N(0, 8).

2. Generate 100 independent values δ1, · · · , δ100 of δ ∼ N(0, 7).
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Figure 7.3: Graph of three estimators of the slope, and the mean absolute

error when β0 = 27, β1 = −0.75 and 0.08 ≤ λ ≤ 100.

3. Generate 100 independent values ϵ1, · · · , ϵ100 of ϵ ∼ N(0, σϵ), where

2 ≤ σϵ ≤ 71, for each 1000 replications it is increased by 1.

4. The estimators of the slope and the mean absolute error are calculated

using the MATLAB software.

From Figures 7.2(a)-7.4(a), the values of the OLS-bisector estimator are not

the same as the true values of β1, but are much better than those of the

geometric mean estimator. The values of the GM estimator are far above

the true values of β1. The GM estimator appears to be an overestimate

of the slope and so far away from the true value β1. Clearly the proposed

WG estimator is much closer to the true values of β1 than the other two

estimators. It is clear, from Figures 7.2(b)-7.4(b) that the measurement

error makes the mean absolute error of the GM estimator the highest. While

the mean absolute error of the OLS-bisector estimator appears to be better
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Figure 7.4: Graph of three estimators of the slope, and the mean absolute

error when β0 = −15, β1 = 1.2 and 0.08 ≤ λ ≤ 100.

than those of the GM estimator, though they are not small. Obviously, the

mean absolute error of the WG estimator is the smallest compared to the

other two estimators, and it seems to be stable over the range of selected ratio

of error variances 0.08 ≤ λ ≤ 100. Table 7.1 summarises the results of the

simulation studies which indicate that the proposed estimator is more precise

than the other competing estimators. Sarach and Celik (2011) discussed

eight different regression techniques, and pointed out that the OLS-bisector

estimator is near to the real value than all other estimators, and the mean

squares error of the OLS-bisector is smaller than all other estimators. The

current study reveals that the proposed WG estimator is consistently better

than the OLS-bisector estimator in term of the closeness of β̂1WG to β1, and

the size of the mean absolute error.
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Table 7.1: Simulated mean values of the estimated slope and the mean ab-

solute error for various selected values of the true intercept and slope when

0.08 ≤ λ ≤ 100.

True slope GM OLS-B WG True model

0.55 3.4981 0.9340 0.5904 ηj = 20 + 0.55ξj

(MAE) (2.9527) (0.9989) (0.5341)

−0.75 −3.5299 −1.1455 −0.7857 ηj = 27− 0.75ξj

(MAE) (2.7910) (0.8780) (0.5328)

1.2 3.6321 1.5622 1.2213 ηj = −15 + 1.2ξj

(MAE) (2.4676) (0.6548) (0.5302)

7.7 Concluding remarks

This chapter proposes a new estimator based on the mathematical relation-

ship between the vertical and orthogonal distances of the observed points

and the regression line. This estimator is appropriate to fitting a straight

line when both variables are subject to measurement errors, especially when

there is no basis for distinguishing between response and explanatory vari-

ables. In addition, this chapter presents an alternative view on the geometric

mean estimator.

Extensive simulation studies are conducted to compare the three alternative

estimators. The comparison is done in terms of the estimated value of the
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slope parameter under a wide range of values of the ratio of error variances

λ. All the graphs in Figures 7.2-7.4 provide clear evidence that the WG

estimator is more precise than the other competing estimators. The values of

the proposed slope estimator are nearer to real value than the OLS-bisector,

and the mean absolute error of the WG estimator is smaller than that of

the OLS-bisector and GM estimators. Therefore, the proposed estimator

possesses better statistical proprieties than the GM estimator, and the OLS-

bisector estimator. The new method is stable and works well for different

sample sizes and for different values of λ.



Chapter 8

Conclusions

In this study, we considered estimating the slope of a simple linear regression

model when both the explanatory and the response variables are measured

with error. The ordinary least squares estimator of the regression param-

eters is inappropriate when the variables are subject to error. In general,

there remains the impression that the measurement error problem is rather

intractable because no generally consistent estimator exists.

We aimed to introduce a new methodology based on a mathematical transfor-

mation called reflection technique as covered in Chapter 3. It is an algebraic

transform of the manifest data of both response and explanatory variables.

The proposed methodology relies on the combination of the reflection and

ordinary least squares techniques. We provide some theorems to help in-

terpret vertical, orthogonal, and horizontal distances between the observed

points and regression line.
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8.1 Conclusions and Summary

Here we provide a brief summary of the main results of the previous chap-

ters of this thesis. The introductory chapter sets the scene for the remainder

of the thesis, including an introduction of the measurement error, identifia-

bility problems, and the outline of the thesis. Chapter 2 provides some of

the common estimation techniques to deal with the simple linear regression

model when both the response and the explanatory variables are subject to

measurement error. It also discusses some interconnections amongst these

methods.

The proposed methodology was used in various places throughout this thesis.

Chapter 3 introduces the reflection method and applies to define the OLS

estimator. It also derives a set of results related to regression analysis within

the OLS framework.

Chapter 4 proposes a new estimation procedure based on the idea of a mod-

ified instrumental variable (IV) which is defined from reflection of the man-

ifest variable. It also compares the related existing methods with the pro-

posed modified method. The analytical results and the illustrative examples

demonstrate the fact that the proposed method significantly reduces the

mean sum of squares error compared with currently used methods.

Chapter 5 provides a new slope estimator based on the idea of reflection

of the manifest explanatory variable. It compares the orthogonal regression

estimator with the proposed RM estimator, and those of Geary’s and third-

order moments methods. The analytical results and the simulation studies
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demonstrate that the RM estimator significantly reduces the mean absolute

error. Also if the ratio of error variances λ ̸= 1 and the sample size is not

large, the mean absolute error of the RM estimator is lower than that of the

orthogonal regression and OLS estimators.

Chapter 6 considers a new grouping method based on the rank of the re-

flection of the explanatory variable. It proposes specific modifications to

Wald’s method for fitting a straight line when both variables are subject to

measurement errors. The RG method is using the ranks of a transformed

variable dj to divide the observations of the manifest explanatory variable

into two groups. Extensive simulation studies were conducted to compare

the five alternative estimators. The comparison is done in terms of the es-

timated values of the slope parameter as well as the mean absolute error of

the estimators.

Chapter 7 proposes a new estimator based on the mathematical relationship

between the vertical and orthogonal distances of the observed points and the

regression line. This estimator is appropriate to fitting a straight line when

both variables are subject to measurement errors, especially when there is

no basis for distinguishing between response and explanatory variables. In

addition, this chapter presents an alternative view on the geometric mean

estimator. Extensive simulation studies are conducted to compare the two

alternative estimators. The comparison is done in terms of the estimated

value of the slope parameter under a wide range of values of the ratio of error

variances. The new method is stable and works well for different sample sizes

and for different values of the ratio of error variances.
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There is no universally agreed method to solve the ME problem. Any method

to diagnose or detect ME in the data will be an welcome addition to statistics

literature. This will help researchers to avoid making misleading inferences

without knowing that the data actually is contaminated by ME. Next step

will be to develop a new statistical method that would allow valid regression

analysis for the data with measurement errors.
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