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Abstract

Hendra Virus (HeV) is an emerging zoonotic disease that was first identified in 1994
and has only been found in Australia. It can be transmitted to other horses, humans
and dogs with a high fatality rate of >79 per cent in horses and 57 per cent in humans
giving it both veterinary and public health significance. Fruit bats (Pteropus spp.)
commonly known as flying-foxes have been identified as the natural host of the
virus. From 1994 to 2015 inclusive, there have been more than 70 sporadic
confirmed cases of HeV infection in horses. All cases have occurred in Queensland
and in north-east New South Wales. The research on the HeV has almost begun
immediately after the first outbreak. Government organisations as well as scientists
and academicians from a broad range of disciplines, including the animal health,
environmental and social sciences, are working together to develop a 'One Health'
approach that will help minimise the impact of HeV. This research uses a GIS-based
spatial approach to research and determine the potential factors that can explain the
dispersal of HeV outbreaks in the south east Queensland, Australia. The aim of this
research is to identify the equine population ‘at risk’ and thus identifying the human

population ‘at risk’ in the study area.

A preliminary spatial analysis examined the relationship between the Hendra disease
outbreaks and the roosting sites of flying foxes in the study area. There are four main
roosting site categories which are permanent (continuous or seasonal use), temporary
(occupied or unoccupied), abandoned and destroyed. This analysis showed a strong
relationship between the outbreak events and the existence of temporary and seasonal
flying fox roosting sites within a 10 kms range. But very few disease outbreak
incidents have a permanent roosting site in their range. This provided a strong case
for further study into the seasonal behaviour of flying foxes, particularly in breeding
season. This analysis revealed that variables such as species and their foraging range,
breeding time, equine data, and environment aspects such as types of vegetation and
seasonal changes could provide suitable factors for the determination of potential

factors that can explain the dispersal of HeV outbreaks in the study area.



Based on the preliminary results, a further analysis was done on the roosting sites by
considering factors such as the species of flying foxes, foraging range and pregnancy
period. Global Moran’s I method (inverse distance conceptualisation) was used to
identify the presence of significant spatial clustering of the three flying fox species at
various foraging ranges (10, 20, 30, 40 and 50 kms) in the study area. Global
Moran’s I revealed significant clustering of P. alecto and P.scapulatus species. The
analysis of P. alecto species showed significant clustering at all foraging range
intervals with high occurrence at 50 kms, which is their maximum foraging range.
The results of P.scapulatus species showed maximum significant clustering
occurring at 10 kms range. Kernel density estimation (KDE technique) analysis
helped in establishing a strong relationship between P. alecto and P.scapulatus
species density and the outbreak events in the study area and revealed the density
hotspots of these species. Buffer analysis established an initial relationship between

P. alecto and P. poliocephalus species birth periods and the outbreak incidents.

The ordinary least squares (OLS) regression analysis was carried out using the
‘incident rate’ as a dependent variable and black flying foxes, grey-headed flying
foxes and pregnancy period as independent variables. This model has a statistically
significant heteroscedasticity (p<0.05) which suggests the use of Robust P to
determine the coefficient significance for consideration. Goodness-of-fit measure
indicated a model performance of 0.7. Ordinary least squares (OLS) regression
identified P. poliocephalus species as statistically significant at a global context
across the study area. The variance inflation factor (VIF) values indicated no
redundancy among the variables. Moran’s I test (Index = -0.02, P = 0.8) indicated no
significant clustering among the residuals. An exploratory method approach was
exercised to calibrate the model for local regression (GWR), which used the most
significant exploratory variables that could explain the trends of dispersion of HeV in
the study area. Geographically weighted regression (GWR) analysis performed to
study the local spatial variations of the explanatory variables in the study area
identified P. alecto and P. poliocephalus species as having a significant positive
relationship in most of the regions. ‘Pregnancy/Birth period’ variable exhibited a
significant negative relationship to the HeV incidents in the study area. The
goodness-of-fit measure indicated an improvement from 0.7 (global model) to 0.8.

Moran’s I test (Index = -0.02, P = 0.9) indicated no significant clustering among the



residuals. The spatial variability of the local parameter estimates of each variable in
the GWR model has been tested and a significant spatial variability was present in

the variables.

An in-depth analysis was carried out to determine the correlation between food
source vegetation and the flying foxes roosting sites in the study area. Using spatial
analyst tools, the major vegetation subgroups (MVS) present within 20 kms range of
P. alecto and P. poliocephalus roosting sites were identified. The identification of
abundance of food sources for individual species within their minimum foraging
range indicated a strong correlation between their site locations and the vegetation
subgroups present. A 10 kms range vegetation study on the incident locations
identified the presence of ‘food sources’ of both species. The clustering of the food
resource vegetation present near the incidence was studied using Getis-Ord General
G Statistic method, which indicated statistically high clustering with 99% confidence
level at 3 kms distance threshold. A 10 kms range vegetation study on the equine
properties in the study area identified the food source vegetation of both significant
species. The clustering of the food source vegetation present near the equine
properties was studied using high/low clustering/Getis-Ord General G Statistic
method, which indicated statistically significant high clustering at 3, 5 and 10 kms
distance thresholds. The vegetation analysis revealed a strong correlation between

the roosting sites, food source vegetation and the equine properties.

Based on the above analysis, three prediction models were produced to identify the
equine population ‘at risk’ in the study area. These models were based on the
presence of the significant species identified in the GWR model and the clustering of
their food source vegetation in statistically significant high clusters within 20 kms
from the equine properties. Flowering season of the food source vegetation was
considered as an additional risk factor. These models have successfully identified the
equine population ‘at risk’. The risk percentage of a probable outbreak event varies
for each equine property depending on their exact location and their contributing
factors. The prediction model(s) is an effective tool to identify the potential
population (both equine and human) ‘at risk’, which can assist with Health Service
Planning, policy implications, decision making and ongoing disease surveillance.

This research successfully established the correlation between the HeV outbreak

v



events, flying fox species and their roosting sites, food source vegetation and seasons
spatially. The factors influencing the dispersal of HeV outbreak events in the study
area were understood. This study reveals the capability of GIS-based surveillance
system to issue early warnings and precautionary measures to the identified
population ‘at risk’. This research also makes evidence based practice of disease

mitigation, planning and prevention and control strategies for HeV achievable.
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1. Chapter One - Introduction

1.1 Overview

Spatial epidemiology involves the description and analysis of geographically indexed
health data with respect to demographic, environmental, behavioural, socio-
economic, genetic, and infectious risk factors (Elliot et al 2004). It is a part of
geographic analyses dating back to the 1800s when maps of disease rates in different
countries began to emerge to characterize the spread and possible causes of
outbreaks of infectious diseases such as yellow fever and cholera (Walter 2000). In
recent decades, it grew in complexity, sophistication, and utility. The practice of
ecologic studies is extended by spatial epidemiology that use explanations of the
distribution of diseases in different places to better understand the ecology of disease
(Doll 1980, Keys 1980). Haining (2003) described spatial epidemiology as the
analysis of spatial and a space-time distribution of disease data which enables the
identification of populations with high relative risks for particular diseases and may
help to isolate the possible casual factors for subsequent analysis by individual study

level designs.

Epidemiology can be defined as a scientific study of a disease, which includes
analysing the occurrence and distribution of the disease and its associated factors
(Medical Dictionary). The ability of GIS to integrate and manipulate complex data
has emerged it as a powerful tool in epidemiological studies. The traditional
epidemiological studies such as cohort or case control studies enable us to identify
excess disease rates or trends and perform further analysis for hypothesis testing
(Seng et al 2005). Use of GIS technology in spatial epidemiological and public
health studies gained momentum after researchers started using it for more than
visual representations i.e. maps. GIS in spatial epidemiology has been tremendous in
understanding diseases in a different dimension. With the assistance of this powerful
tool, the disease clusters could be identified and other influencing factors such as

environmental, socio-economic and climatic could be linked to diseases. While
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geographical visualization serves the need to reveal the spatial patterns, the statistical

awareness in GIS determines the significance of these patterns.

HeV (HeV) is a rare zoonotic disease and was first reported in a suburb of Hendra,
Brisbane, Australia in the year 1994. This outbreak of the disease resulted in the
death of 13 horses and the trainer. Fruit bats commonly known as flying foxes
(Pteropus spp.) were consequently identified as the natural reservoirs of HeV
(Halpin et al 2000). The virus was initially named as Equine Morbillivirus, after
further genetic analysis, it was placed in a new genus within the family of
Paramyxiviridae, which was found more appropriate; and hence renamed as ‘HeV’
where the first outbreak occurred (CSIRO 2011, Field et al 2007). In the year 2011,
Australia witnessed an unprecedented spike in the number of HeV cases in horses in
both Queensland and New South Wales (Hume et al. 2012). The cases included 18
outbreaks and 24 cases in horses reported; and also with a dog tested positive for the
first time (DAFF 2014). As of December 2012, there were 80 confirmed outbreak
events including equine and human cases (Smith et al 2014). Between 1994 and July
2013 there have been 48 clusters of the disease in Australia which have resulted
in four human deaths. The confirmed human cases stand at seven giving it a very
high Case Fatality Rate (CFR) of 57 per cent. It has also caused the deaths of 90
horses. Since 2011 two dogs have become infected; and both were subsequently

euthanized.

HeV outbreaks have only occurred in Australia so far, where the virus is endemic in
flying foxes. Flying foxes are found throughout tropical and sub-tropical Asia and
Australia and on islands of the Indian and western Pacific Oceans (DEPI VIC 2015).
Seropositive flying foxes have been found from Darwin in North Central Australia to
Melbourne in South Eastern Australia. Equine cases been reported from Eastern
Australia, in the States of Queensland and New South Wales. Antibodies detected in
flying foxes in Papua New Guinea might be caused by HeV or a related virus.
Currently there is no evidence that HeV exists in other areas. However,
henipaviruses or antibodies to these viruses have been detected in bats on several

continents. Most of these viruses are poorly characterized (CFSPH 2015).

2|Page



In horses, HeV is transmitted mainly by ingesting food or water contaminated with
infected flying fox body fluids and excretions. The virus is then being passed onto
humans who come into contact with infected horse’s nasal discharge, blood, saliva or
urine (AAW 2012). The studies show strong evidences that the disease is not bat-to-
human transmissible and horses act as medium for disease transmission to humans.
Horses to other species and bats to other species transmissions are however possible
(Australian Biosecurity 2009). The mode of transmission and incubation period of
HeV was documented by Communicable Diseases Network Australia (CDNA). The
typical incubation period in horses appears to be 5-16 days. The prevalence of the
HeV appears to be uncertain in flying fox populations but the reason behind this is

not known.

Clinical signs of the humans presented with the infection include self-limiting
influenza-like illness (two cases), influenza-like illness complicated by severe
pneumonic illness contributing to death (one case), aseptic meningitis with apparent
recovery, then death from encephalitis 13months later (one case), acute influenza-
like illness followed by encephalitis and seroconversion, followed by recovery (one
case) and death (two cases). In horses, the virus clearly targets the endothelial cells
of blood vessels, with clinical signs dependent on the sequence in which organs are
affected. Typical clinical signs include body temperature, increased heart rate,
respiratory or neurological signs or a mix, frothy nasal mucus, sweating, balance

difficulties and rapid deterioration (CDNA 2011 and BetterHealth Victoria 2014).

The powerful analytical modelling and mapping capabilities of GIS may serve as a
good decision-support and decision-making tool for disease investigations,
monitoring, modelling, predictions, preventions and resource allocations (Davenhall
2002). The availability of the data and the functionality of GIS will be a great
advantage for this research, which concentrates on studying the HeV outbreaks from

a spatial epidemiological prospective.
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1.2 Problem Statement and Research Gap

Some of the transmissible diseases such as HeV are challenging to monitor through
normal surveillance programs, as these diseases are affected by various external
factors and the impact of these factors on them are likely to be very high. The
biological and ecological researches for analysing these kinds of rare diseases might
not be sufficient for disease surveillance and risk predictions in certain
circumstances. Identification of a spill-over of any zoonotic virus involves one of the
human, livestock or wildlife deaths with a certain degree of medical, emotional and
economic misery. A research survey study conducted on the studies on HeV in the
south western United States revealed that exploring the virus spreads in an
epidemiological aspect with targeted study helped the public health officials in
reducing the risk of infections by forecasting the locations and their future outbreak
occurrence levels. These researches are categorised as cost-effective and long run

theories (Calisher et al 2006).

Differences in modelling approaches, disease transmission intensity and data
dimensions space-time would influence the analysis and could be a reason for a less
accurate model for the disease surveillance (Seng et al 2005 and Cressie 2000).
Using a precise set of spatial analysis and modelling techniques can make the
predictions more reliable. An accurate modelling technique demands detailed
understanding of the HeV such as its eco-biological factors, transmission and
environmental factors that may affect the disease distribution. Studying the various
factors and their relationship with the HeV outbreak events could assist in the
understanding the disease dynamics. This would provide necessary information in

developing a model that can explain the HeV dispersal in the study area.

In the case of rare disease outbreaks like HeV, GIS will be suitable as a tool to
identify the main factors (geographical, environmental and other factors) of disease
transmission, to use it as disease monitoring, to identify population at risk, prediction
models and generate warning systems according to spatial distributions. GIS in
public health research starts from epidemiologists using the traditional maps to

observe the relationships between location, environment and diseases outbreaks. GIS
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is well adopted by these types of researches varying from vector-borne diseases to
lead hazards in the public health field for its analysis and display capabilities (Clarke
et al 1996).

Many of the epidemiological and public health projects are GIS-based. GIS,
especially in the last decade emerged as an innovative, important and even essential
tool for some researches. As GIS involves a lot of interdisciplinary work, the
appropriate methods remain as the important part of the research. Statistical work
and models are crucial in a successful research involving GIS (Waller 1996). There
is always a major gap in the current GIS-based researches, when it comes to model
development and statistical analysis, which is yet to be, filled (Miranda et al 2013).
The capability and reliability of GIS in spatial data handling, manipulation and
analysis, and the accuracy and improvements in regression techniques makes GIS an
appropriate technology to employ for HeV research. This study will concentrate on
investigating, analysing, and visualizing HeV outbreaks in the study area using

appropriate GIS techniques.

This research provides a framework to fill the existing need for HeV research and
monitoring announced by the Queensland Government (Edmonston et al 2011). This
research studies the correlation between the HeV outbreaks and the factors such as
the flying fox species, roosting sites and their status, foraging range, pregnancy/birth
period, seasonal changes, and the food source vegetation of the flying fox species.
By considering the climatic, environmental, behavioural and other influential factors
of the hosts, this research may explain the dispersal of the HeV outbreak events in

the study area.

1.3 Research Aim and Questions

The overall aim of this research is to analyse the spatial patterns of the HeV cases,
study the factors that may explain the HeV dispersal in the study area and identify
the population ‘at risk’ using a prediction model by incorporating GIS techniques.
Using the spatial analytical tools in GIS, this research will establish a relationship

between the outbreak events and their influential factors such as species, foraging
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range, pregnancy period, birth and lactation period, seasons and food source
vegetation. A spatial epidemiological study of the HeV outbreaks will help answer

the following set of questions:

1) How the outbreak events are spatially distributed in the study area?

i1) What is the correlation between the roosting sites and the outbreak events?

1i1) What are the factors that are influencing the disease transmission?

iv) How can these factors explain the dispersal of the outbreak events in the
study area?

v) What is the correlation between the food source vegetation of flying foxes
and the outbreak events?

vi) How to identify population ‘at risk’?

This work attempts to fill in the requirement of a good GIS-based research to study
the HeV outbreaks in the study area spatially and temporally. This research can
provide the epidemiologist with an effective tool to identify the potential population
(both equine and human) ‘at risk’ and thus helps in the formation of evidence-based

disease mitigation strategies.

1.4 Research Objectives

In order to achieve the research aim, a list of objectives is stated below:

1) Detailed study on the HeV Outbreak events and the reservoir hosts.

1) Research the relevant spatial analyses, modelling and mapping techniques
that are best suited for spatial epidemiological study of the HeV outbreak
events and the influential factors.

i11) Develop a technique to integrate all the relevant data from various sources
and format according to the requirements of the GIS software.

iv) Calibrate a prediction model that could identify population ‘at risk’ in the

study area.

The hypotheses to be addressed and tested in this research are as follows:
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i) Hypothesis 1 - the HeV Outbreak events in the study area are correlated to
the flying fox roosting sites.

1) Hypothesis 2 — the crucial factors that could explain the HeV dispersal in the
study area can be identified using an appropriate spatial modelling technique.

iii) Hypothesis 3 — the food source vegetation play an important role in the
outbreak events.

iv) Hypothesis 4 — Based on the influential factors, it is possible to identify the

population ‘at risk’ by formulating a prediction model.

1.5 Scope of the Research

This research concentrates on the spatial analyses, modelling and mapping of the
HeV outbreak events in south east Queensland, Australia. The selection of the study
area is dependent of the data resource available for the detailed research of the
outbreak events. South East Queensland (SEQ) was classified as an interim
Australian bioregion, which consists of 11 cities and regional councils (Queensland
Government 2009). The Toowoomba city from the Toowoomba Regional Council,
which is located in the SEQ, was excluded from the study due the data availability
(Refer Section 3.2). HeV incident data was provided by the Queensland Department
of Agriculture, Fisheries and Forestry (DAFF) under a data sharing agreement. For
this study, a total of 11 equine related incidents that occurred from 1994 to 2011 in
the study area were examined. The incident data is disclosed by its location

(longitude and latitude coordinates) and date of occurrence.

The flying foxes spatial data set used in the study area is obtained from the
Department of Environment and Heritage Protection, Queensland (EHP). The
collection of the data is continuous and is updated every three months by EHP. The
data contained abundance of spatial information such as the roosting site locations,
total flying fox population at each site, type of occupancy and individual species
population at each site. The data reveal the presence of three types of species - P.

alecto, P. poliocephalus and P. scapulatus in the study region.
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The Queensland vegetation data containing the major vegetation groups (MVG) and
major vegetation subgroups (MVS) for the study were obtained from the Department
of the Environment and Energy, Australia database. The datasets are National
Vegetation Information System (NVIS) version 4.2. The major software’s used this
research are ESRI ArcGIS versions 10.2 and 10.5 and Geographically Weighted
Regression version 4.0 (GWR4).

1.6 Significance of the Research

This study attempts to study the HeV outbreaks events from spatial epidemiological
prospective. By studying the outbreak events spatially, this research can be a great
support for evidence-based health service planning, policy implications, decision
making and ongoing disease surveillance. GIS in epidemiology enables the
researchers to isolate the high disease prevalence areas, identify the population at-
risk, resource and budget allocations In the case of rare disease outbreaks like HeV,
GIS is a perfect as a tool to identify the main causes (geographical, environmental
and other factors) of outbreaks for disease monitoring. This study can help in
developing prediction models and generating warning systems in the study area and

furthermore, provide a good base for future research.

Some of the key points that indicate the significance of this research:

1) Identifies any underlying spatial patterns of the outbreak events.

1) Reveal the correlation(s) between HeV outbreak events and its influential
factors.

111) Helps in understanding the HeV dispersal in the study area.

1v) Creates a model to identify population (both equine and human) “at risk’.

v) Generate early warnings with precautionary measures to the identified
population ‘at risk’.

vi) Provides epidemiologists with an effective evidence-based planning system.

vii) Assists in developing disease mitigation strategies.
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HeV research was considered challenging and complicated and much remains to be
learnt (Australian Biosecurity 2009). There was a need for further research to
understand the spatial and temporal patterns of the virus for effective surveillance
and management of the disease. The Queensland government announced a pressing
need for current research on the spatial and temporal occurrences of the virus
outbreaks and further study into ecological and environmental factors as causes of
the disease (DAF 2015). This research used GIS as a crucial tool to determine the
main factors (geographical, environmental and other factors) of HeV disease

transmission.

1.7 Limitations of the Research

The main caveat of this study was the geographical location selected due to the
availability of resources. The findings might vary when the dynamics of the HeV
disease and the medium host were to be studied at a larger scale. The findings of this
research were highly dependent of the data as the study was based on empirical data-
driven analysis and hence limited by data accuracy. The flying fox species data was
recorded manually, which might have some degree of error. One of the important
factors of this research was; it was a spatial GIS-based approach to understand the
HeV disease outbreak events, its transmission and the factors influencing the disease
dispersal in the study area. This study was built on the research that have been
published so far on the HeV, its biology, transmission and their reservoir host —

flying foxes.

1.8 Thesis Organization

This thesis contains six chapters mainly addressing various spatial analyses, mapping
and modelling techniques employed to study the HeV outbreak events spatially and

temporally. These chapters are classified as follows:

i) Chapter One is an introduction to the study.
ii) Chapters Two consists of reviews of the published literature related to the

research.
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iii) Chapters Three discusses the research methodology.
iv) Chapter Four provides the analysis and results.

v) Chapter Five and Six present discussion, conclusions and recommendations.

A brief structure of what each chapter contains is given below:

Chapter One gives an overview of the research topic. The problem statement,
research aim, objectives, scope, significance and limitations of the research are
summarised in this chapter. A number of key points that represent the significance of

this study are listed in this chapter.

Chapter Two reviews the literature published in regards to the HeV biology,
distribution, transmission and other influential factors. The flying fox ecology,
foraging distances, food resources and behaviours were reviewed in this chapter.
Spatial epidemiology, spatial analysis, disease mapping and GIS in epidemiology

were also reviewed in this chapter.

Chapter Three presents the methodology of this research. The background of the
study area, data collection, data integration and pre-processing and site visits are
detailed in this chapter. The calibration of regression model for the study is discussed
in this chapter. This chapter presents the modelling, mapping and analyses

techniques employed for this research.

Chapter Four presents the analysis and results achieved from various spatial
analyses and modelling techniques. The results are visualized using various maps
where applicable in this chapter. The prediction model(s) are discussed in this

chapter.
Chapter Five documents a detailed discussion of the results, summaries the main
findings of the thesis, discusses the limitations of the research and suggests

recommendations for future work.

Chapter Six concludes the thesis.
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2. Chapter Two - Literature Review

2.1 HeV

2.1.1 Introduction

The section 2.1 in chapter 2 provides an outline of the HeV history and the academic
research on its occurrence in Australia. An overview is provided in section 2.1.2 and
section 2.1.3 provides a review of various aspects of HeV such as its biology,
distribution, transmission, impact and influential factors of the virus to better
understand the infection risk and disease dynamics. Section 2.1.4 covers the

academic research on the HeV so far and a summary is provided in section 2.1.5.

2.1.2 Overview

HeV is an emerging zoonotic disease that was first identified in 1994 and has only
been found in Australia. It can be transmitted to other horses, humans and dogs with
a high fatality rate of >79 per cent in horses and 57 per cent in humans giving it both
veterinary and public health significance. Fruit bats (Pteropus species), also known
as flying foxes, are the only known natural reservoir (CDNA 2010). Human
infections have occurred as a result of direct exposure to body substances from
infected or dead horses. To date there has been no known transfer of HeV from
person to person or from flying foxes to other animals apart from horses (AVA
2016). From 1994 to 2015 inclusive, there have been more than 70 sporadic
confirmed cases of HeV infection in horses. All cases have occurred in Queensland

and in north-east New South Wales (NPDO 2016).

An outbreak of acute respiratory disease occurred in a stable in September 1994 in
the Brisbane suburb of Hendra, Queensland, Australia. Twenty one horses were
infected with 14 fatalities (Hess et al 2011). The disease also spread to two people
and one of them, a well-known racehorse trainer Mr Vic Rail, died following a
severe influenza-like illness. The novel symptoms and rapid spread of the disease
and its appearance in both horses and man brought together teams of scientists and

veterinarians at the Commonwealth Scientific and Industrial Research Organisation’s
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(CSIRO) Australian Animal Health Laboratory (AAHL) and the Queensland
Department of Primary Industry. All known exotic infectious diseases, such as
African horse sickness, were excluded by tests at AAHL and within a month a new

virus was isolated and diagnostic procedures to identify it were established (CSIRO

2016).

A novel equine virus belonging to the family Paramyxoviridae was isolated (Hess et
al 2011). The virus was initially called equine morbillivirus, but later renamed
“HeV” after the suburb where the outbreak occurred. Since the first outbreak there
have been 12 clusters of HeV infection recorded in horses with seven people infected
four of whom have died. A subsequent lethal outbreak at Mackay, Queensland in
October 1995 claimed the life of a farmer. It was revealed that 13 months before his
terminal illness (and a month after the first outbreak at Hendra) the farmer had
assisted at the necropsy of two horses that had died on his property. Analysis of
tissue samples from the horses retrospectively confirmed that they had been infected
with HeV. This determined that the virus was able to cause both respiratory and
encephalitic disease. A similar pattern of transmission from horse to man was
responsible for the deaths of two Queensland veterinarians, in 2008 and 2009
(CSIRO 2016).

The occurrence of outbreaks at Hendra and Mackay occurred within a month of each
other and it was concluded that the source of the virus (the so-called reservoir host)
would either be capable of migrating the 600 miles between the two sites or be
present at both sites. A search for the animal reservoir host for this newly described
disease revealed that all four species of flying fox found in Australia could harbour
the virus without ill effect. HeV itself was isolated from two species of flying foxes
in the year 2000. Using experimentally infected flying foxes confirmed the absence
of any clinical symptoms following infection with doses of virus that would be lethal
for horses. Indeed some flying foxes shrugged off the infection without generating
any detectable antibody. This is consistent with flying foxes being the natural host or

reservoir of HeV (CSIRO 2016).
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Figure 2.1: HeV outbreak events as of July, 2013 (Source: Random Analytics 2013).

Since 1994 to July 2013 there have been 48 clusters of the disease in Australia which
have resulted in four human deaths. The confirmed human cases stand at seven
giving it a very high Case Fatality Rate of 57 per cent. It has also caused the deaths
of 90-horses. Since 2011 two dogshave become infected; and both were
subsequently euthanized. Figure 2.1 shows the HeV outbreak events as of July, 2013.
In 2011, the outbreaks spiked to record levels with 18 recorded clusters with deaths
of 23 horses in a calendar year (eight in NSW and 10 in Queensland) and also the
first euthanasia of an infected dog, which sparked a great deal of concern across the
horse industry, as well as veterinary and public health sectors and with the public at

large (AAW 2012, Random Analytics 2013, Thompson 2016 and CSIRO 2016).
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2.1.3 HeV Biology, Distribution, Transmission and Other Influential

Factors

2.1.3.1 Biology

HeV is a member of the family Paramyxoviridae and one of two virus species in the
genus Henipavirus (the other being Nipah virus). HeV was first isolated in 1994
from specimens obtained during an outbreak of respiratory and neurologic disease in
horses and humans in Hendra, a suburb of Brisbane, Australia. The tests that are used
to diagnose HeV and Nipah virus include detection of antibody by ELISA (IgG and
IgM), real time polymerase chain reaction (RT-PCR), and virus isolation attempts. In
most countries, handling HeV needs to be done in high containment laboratories.
Laboratory diagnosis of a patient with a clinical history of HeV or NV can be made
during the acute and convalescent phase of the disease by using a combination of
tests including detection of antibody in the serum or the cerebrospinal fluid (CSF),
viral RNA detection (RT-PCR) in the serum, CSF, or throat swabs, and virus
isolation from the CSF or throat swabs (CDC 2014).

Both viruses are predominant in overlapping populations from India to Australia.
The emergence of HeV virus in Australia has raised a number of questions relating to
their natural history (Field et al 2001). AAHL characterised the virus using a number
of laboratory procedures and visualised the virus in affected horse and human tissues
by electron microscope which confirmed that the virus was the causative agent of the

outbreak.
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Phota courtesy of CSIRO

Figure 2.2: Electron micrograph of HeV (Source: CSIRO 2016).

Figure 2.2 shows us the typical HeV Cell in a slide of a cross section of a blood
vessel taken from the lung of an infected horse. The multinucleated (giant) cells are
situated on the lining of the blood vessel. These giant cells are caused by the action
of the fusion protein of HeV. In the bottom panel a fluorescent stain has been used on

the slide to highlight the virus, in yellow/green (CSIRO 2016).

The virus infects wide range of cells but primarily the endothelial cells, which form
the thin, inside layer of blood vessels. Rapid molecular tests were developed to detect
the virus with genome sequencing data. The available laboratories and
epidemiological data were reviewed to obtain information of the animal(s) which
may harbour the virus in nature. Flying foxes were targeted for further investigation
as they fulfilled the criteria as a possible viral reservoir host. Flying foxes were
present in the outbreak regions and they have the capability to move between the
outbreaks locations. The hosts could have possibly had indirect contact with the
horses during the outbreaks. In 1996, sampling of sick/injured flying foxes in
temporary captivity showed that several species of Australian flying foxes had
antibodies to HeV. All mainland pteropoid species — the black, grey headed, little red
and spectacled flying foxes have antibodies to HeV. The flying foxes which were
infected experimentally develop a viraemia — the virus that enters into blood stream.

Flying foxes excreted the virus in their urine, faeces and saliva for about a week.
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However, the flying foxes did not indicate any signs of illness like horses (Australian

Biosecurity 2009).

2.1.3.2 Distribution

HeV infections have been seen only in Australia, where the virus is endemic in flying
foxes. Seropositive flying foxes have been found from Darwin in north central
Australia to Melbourne in south eastern Australia (CFSPH 2015). The HeV incidents
have been reported from Cairns in northern Queensland down to Kempsey on the
New South Wales Mid North Coast. East of the Great Dividing Range holds majority
of the cases with one outbreak recorded west of the range in chinchilla, Queensland
in 2011 (DPI NSW 2016). Figure 2.3 shows the overall distribution of the
Henipavirus and Pteropus including HeV distribution in Australia, which is within

the Pteropus home range.

HENIPAVIRUS OUTBREAKS AND PTEROPUS DISTRIBUTION MAP ¥
& Nuduincociur | 1m P BokRiogs __ 4# o %o txo 200

@  Hendra virus Qutbresk ] Countries with reported outbreak or at risk based on Miles

serological evidence or molecular detection in Pteropus bats

Figure 2.3: Henipavirus outbreaks and Pteropus distribution map (Source: CDC
2014).
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2.1.3.3 Transmission

HeV is transmitted mainly by ingesting food or water contaminated with infected
flying fox body fluids and excretions in horses. The virus can then be passed onto
humans who come into close contact with infected horse’s nasal discharge, blood,
saliva or urine (AAW 2012). The studies show strong evidences that the disease is
not bat-to-human transmissible and horses act as medium for disease transmission to
humans. Horses to other species and bats to other species transmissions are however

possible (Australian Biosecurity 2009).

The mode of transmission and incubation period of HeV is documented as below by

Communicable Diseases Network Australia (CDNA 2010):

Mode of transmission

Bat-to-horse

The Spill-over from flying foxes to horses is rare (32 documented events from 1994
to October 2011, 9 in NSW and 23 in Queensland); possibly occurring through
contamination of horse feed by infectious fluids from bats such as bat

urine/reproductive products.

Horse-to-person

Seven human cases have been documented as of September 2011 and all of them had
a high level of exposure to respiratory secretions and/or other body fluids of horses
subsequently diagnosed with HeV infection. With the evidence available, it is highly
likely that the mode of transmission is via substantial direct exposure of mucous
membranes to respiratory secretions or blood from an infected horse. Indirect
exposure to respiratory secretions or blood, and direct or indirect exposure to other
body fluids, may also contribute to overall transmission risk. Airborne exposure is

not supported by the current evidence as a significant mode of transmission.
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Horse-to-horse
Transmission between horses is possible and has been more efficient in stabled
situations, with spread between multiple horses occurring in all stabled situations to

date — Hendra (1994), Redlands (2008) and Cawarral (2009), all in Queensland.

Bat-to-person
Current evidence does not suggest that this occurs. A study of 128 bat carers who
have daily contact with bats and/or a history of bat bites, found no individuals with

antibodies to HeV.

Person-to-person

Current evidence does not suggest that this occurs. A Serological testing in 169
health care worker contacts and four household contacts of the first three human
cases found no individuals with antibodies to HeV. However it is suggested to avoid
close contact with respiratory secretions and other body fluids of symptomatic

human cases.

Person-to-horse
Current evidence does not suggest that this occurs. However it is desirable for
suspected human cases to avoid close contact with horses until the diagnosis has

been clarified.

Experimental

Other species like mice, rats, rabbits, chickens and dogs did not develop the disease
having immunisation to the virus. Unlike the above, cats and guinea pigs were highly
vulnerable but no cases have emerged so far. The cats that are experimentally
infected with HeV resembled the lethal respiratory disease in humans and horses.
This raised the possibility of cats transmitting the virus to horses but there has been
no evidence in reality. The attempts to recreate transmission in cats-to-cats, cats-to-
horses, horses-to-horses, horses-to-cats and bats-to-bats have been largely

unsuccessful (Field et al 2001).
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Other
A dog developed antibodies to HeV on a property with three infected horses in July
2011. There is no evidence that bat-to-dog or dog-to-person or dog-to-horse

transmission occurs.

Incubation period which is defined as the time from exposure to the appearance of
the first clinical signs of infection (Australian Biosecurity 2009) is as follows:
Humans

The incubation period in humans is between 5and 21 days, however the evidence is

limited.

Horses

The typical incubation period in horses appears to be 5-16 days.

Queensland department of health has stated that the people infected by HeV (both
deceased and infected) have become unwell with influenza-like symptoms and
encephalitis — an inflammation of the brain. The diagnosis can be made by blood and
urine tests. In some cases, testing of nasal swabs, tissues samples and cerebrospinal
fluid (CSF) is required. The infectious period - time during which an infected person
can infect others in humans should be considered until their recovery. There is no
specific treatment for HeV infection yet. Treatment is mainly supportive to help
relieve symptoms and to reduce complications from the illness. It is suggested that
people who are suspected to have the virus or have been in close contact with horses
that might have the infection should be reviewed by an infectious diseases specialist,

and may require hospital admission.

2.1.3.4 Other Influential Factors

The prevalence of the HeV appears to be uncertain in flying fox populations but the
reason behind this is not known. Pregnancies, birthing period and/or lactation were
associated with HeV infection in some studies, but not others. The influence of the
above factors remains uncertain. The nutritional stress could also be influencing the
infection fluctuations, while the environmental conditions such as temperature might

influence the virus survival and transmission to horses. HeV infections in equine
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population appear to be seasonal. Equine cases have mostly occurred in cooler
months from May to October in subtropical areas, with a peak in July. In the northern
tropics, the cases have been seen year around. The absence of any seropositive horses
in two surveys, which tested approximately 4000 horses, suggested that infections
were rare in horses. The infections appeared more regularly between 2006 and 2009,
with two incidents reported each year, and unexpectedly high numbers of cases were
reported in 2011 (18 incidents with 23 cases) and 2012-2013 (12 incidents between
January 2012 and July 2013). The reason for the recent increase in cases seems to be
unclear, although increased testing and recognition might play some role (CFSPH
2015). Figure 2.4 demonstrates the graph where the virus infections were higher

during cooler months.
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Figure 2.4: Temporal pattern of the HeV outbreaks (Source: Random Analytics
2013).

DPI NSW (2012) and QLD Horse Council (2012) made some recommendations for
the horse owners to exercise some precautions in areas with flying foxes to help
minimise the risk of their horses being infected. The recommendations are as

follows:

i) Do not place feed and water under trees.
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ii)y Cover feed and water containers with a shelter so they cannot be
contaminated from above.

iii) Do not leave food lying about that could attract flying foxes, such as apples,
carrots, or molasses.

iv) Inspect paddocks regularly and identify trees that are flowering or fruiting,

v) Remove horses from paddocks where fruiting or flowering trees have
temporarily attracted flying foxes.

vi) If the horse(s) cannot be removed from the paddock, erect temporary or
permanent fencing to keep horses from grazing under trees.

vii) If these measures are not practical, consider stabling horses, or removing
them from the paddock before dusk and overnight, when flying foxes are
most active.

viii) Clean up any fruit debris under the trees before horses are returned to the

paddock.

Apart from the above recommendations, the horse owners can watch for some signs
that the flying foxes are feeding/visiting, which include tooth marks on fruit on or
under the tree, large compressed pieces of fruit skin and flesh on the ground under
the tree (spats), broken twigs or shoots, debris under the tree including: leaves,
broken branches and partly eaten fruit or flowers and fruit distributed up to 100
metres from the tree. There are also specific trees that are safer and can help reduce
the risk of infection - casuarinas (she oaks), conifer or cypress, brachychitons e.g.
flame trees, bottle trees and kurrajongs, bamboo, bougainvilleas, jacarandas, olives,
fiddlewoods, tipuanas, and other deciduous or evergreen trees that don't flower or

produce soft fruits (NSW DPI 2012, QLD Horse Council 2012).
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QLD Horse Council (2010) suggested a safe property design to minimise the risk of
the HeV infection and to address other biosecurity issues. It recommends that the
property should have a quarantine/isolation/sick bay area where one can isolate the
new horse/horses that come on to your property. This reduces the risk of them
introducing a disease or parasite. The council recommends isolation for about 3
weeks. This area can be a simple paddock with double fencing set a little away from

the rest of the horse areas, to a separate stable block.

2.1.4 HeV Research

HeV has sparked a great deal of concern by being one of the rarest diseases with high
fatality rate for both equine and human population. This prompted the establishment
of the National HeV Research Program, to fund research leading to strategies to
minimise the impact of the virus. The Australian, Queensland and New South Wales
governments announced funding of $12 million in July 2011 to accelerate research
on HeV following the unprecedented number of outbreak incidents in Queensland
and New South Wales. The funds were allocated through a $9 million National HeV
Research Program consisting of commissioned projects and an open funding
program with an allocation of $3 million by the National Health and Medical
Research Council (DAF 2015). There were a total of 20 projects under the National
HeV Research Program out of which eight were managed by the Rural Industries
Research and Development, eight were managed by the NHMRC, and the remaining
four were by the Queensland and the New South Wales State Governments

(Thompson 2016).

The research highlights of the recent compendium of findings from the National HeV
Research Program (2016) are:

1) For the first time scientists have identified biomarkers that could indicate
periods of increased HeV risk, by analysing the urinary metabolic profiles for
flying foxes when they experience conditions, yet to be identified, that cause
an increase in the replication of HeV.

i1) A project revealed that the length of time the virus survived did not influence

the pattern of ‘spillover’ events from flying foxes to horses, but rather that
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transmission of HeV was likely to involve relatively direct contact of horses
with flying fox excreta shortly after excretion.

1i1) Research into the possibility that HeV could persist in animals that had
clinically recovered from the disease, posing a risk of re-infection or later
transmission to other humans and animals, ruled out the likelihood of
recurrence.

iv) A series of projects examined the way in which HeV and its family group of
henipaviruses replicate and interact with hosts; information with important
ramifications for finding antidotes to other global viruses such as Nipah and
the distantly related Ebola virus. One therapy was found to reduce HeV by up
to 98 per cent and may prove its potential in future studies.

v) There is the potential for transmission of HeV to people from acutely infected
dogs.

vi) The wide-ranging social, regulatory and policy impacts of HeV were revealed
in a longitudinal cohort study of 1149 horse owners. The study used surveys
and interviews to assess how horse owners perceived the risk of HeV, their
uptake of risk mitigation practices such as the vaccine and their engagement

with government and industry stakeholders such as veterinarians.

A study by Edson et al (2015) revealed that the flying fox urine is the most important
route of HeV excretion in naturally infected flying-foxes and it should be considered
a priority sample from a diagnostic or surveillance screening perspective. A total of
2840 individual flying foxes were captured and sampled across 10 roost sites over
the 28-month period for this study. HeV is less likely to be detected in blood and
faeces, and minimally in saliva and nasal discharge. Spleen and kidney were the
tissues most likely to yield virus. Numerous diverse and previously unknown
paramyxoviruses were detected, but no new henipaviruses (Field et al 2016).
Research findings by Field et al (2016) indicated that HeV could be maintained in
isolated flying fox populations via periodic recurrence of dormant infection, as well
as by the immigration of infected individuals. The survival of the virus in the
environment varied with latitude and season, and the effect of ambient temperature
on survival could explain both the winter cluster of equine cases and sporadic cases

at other times of year.

23 |Page



A serial cross-sectional serological study over a 25-month period with 521 individual
samples, investigated the pattern of infection in the population of flying-foxes. The
results of this study have shown that age, pregnancy and lactation plays as significant
risk factors. The pregnant animals have highest antibody titres. Females are
significantly higher than males in this. HeV infection in a population of Pteropus
conspicillatus is likely to be endemic rather than episodic, as previously proposed for
HeV in flying foxes. The evidence for seasonal viral activity suggested that the
immunity to the virus may wax and wane on a seasonal basis. The study advised that
life cycle of the reservoir species has to be considered when modelling a risk

management strategy of the disease (Breed et al 2011).

Another study by Field et al (2015) on the Spatiotemporal aspects of HeV Infection
in flying foxes in Eastern Australia has provided an advanced understanding of the
virus infection dynamics in flying foxes and thereby, understanding of the
fundamental drivers for virus spillover to horses, and indirectly humans. Largely, the
findings show how the virus excretion by flying foxes in eastern Australia varies
over space and time. They showed a non-linear relationship between mean HeV
excretion prevalence and latitude, with excretion prevalence highest in southern QLD
and northern NSW. They demonstrated a consistent, strong winter peaking of
excretion in southern QLD and central and northern NSW. The findings were
consistent with the observed spatiotemporal pattern of infection in horses, and
demonstrate that HeV infection prevalence in flying foxes is a fundamental

determinant of infection in horses

According to Plowright et al (2014), the emergence of bat viruses in recipient hosts
requires at least five hierarchical enabling conditions. The probability of occurrence
of each is conditional on the occurrence of the preceding condition; removal of any
condition should prevent spillover. The study found no evidence that the prevalence
of HeV in bat populations was associated with population density, and therefore that
decreases in host density would reduce virus prevalence. It was mentioned that
differentiating causal from correlational factors is a major challenge as the enabling
conditions for spillover have many conditions that occur simultaneously and have
common environmental drivers. For example, winter in subtropical Australia is the

peak of resource scarcity for both bats and horses. Flying foxes are likely to migrate
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to human-dominated landscapes in search of food, increasing their co-occurrence
with horses, their vulnerability to nutritional stress and possibly excretion of HeV.
Cooler temperatures may maximize virus survival, increasing the cumulative dose
available to horses. Low productivity of pastures leads to horse consumption of

contaminated fruit or grass, as well as poor horse condition and higher susceptibility.

A study estimated HeV survival with a Weibull distribution and calculated
parameters from data generated in laboratory experiments. The virus survival rates
are based on air temperatures 24 hours after excretion ranged from 2 to 10 % in
summer, where as it was 12 to 33 % in winter. Based on the analyses, the study
concluded that the most likely pathways of transmission did not require long periods
of virus survival and were likely to involve relatively direct contact with flying fox
excreta shortly after excretion (Martin et al 2015). Simulation modelling by Scanlan
et al (2015) showed that the virus survival varied with location and with season, that
factors such as the timing of virus excretion during the night and microclimate
account for less variation in virus survival than does temperature variation between
years. The model showed that the effect of ambient temperature on the virus survival
in the environment reflects both the annual clustering of HeV cases in the Australian
winter as well as occasional sporadic cases at other times of year. This study supports
previous study by Field et al (2011) to understand the HeV infection dynamic in
flying foxes and stated the need for further work to elaborate other contributing

causal components.

A study to model the risk prediction for HeV transmission from flying foxes to
horses (Skerratt et al 2016) concluded that the timing and geographical distribution
of HeV spillover events cannot be explained by virus survival in the environment, as
they occurred when the suitability of temperatures for survival was intermediate to
very low. The study believes that the winter-dominant seasonal pattern of HeV
transmission to horses in southern Queensland and northern New South Wales is

likely driven by an additional seasonal factor apart from virus survival.

CSIRO announced the development of a prototype vaccine for horses in May 2011.
After thorough testing, Equivac® HeV was launched in November 2012 by CSIRO

and its associated partners. By March 2013 it was confirmed that horses were
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immune to a lethal exposure of the HeV six months post vaccination by CSIRO
scientists. The Equivac® HeV is a world-first commercial vaccine for a Bio-Safety
Level-4 disease agent. This vaccine enables commercial and private equine activities
to continue with minimal negative impact by increasing personal safety for horse
owners, vets and others regularly interacting with horses. The Australian Veterinary
Association now recommends that all horses in Australia are vaccinated against the
HeV (CSIRO 2016). Immunising the horses is being viewed as a single approach to

protect equine, human and environmental health (Middleton et al 2014).

2.1.5 Summary

HeV is a rare zoonotic disease that spills from flying foxes to horses and was first
identified and described in 1994 following the outbreak of a new disease fatally
affecting horses and humans in south east Queensland. The virus was initially called
equine morbillivirus, but later renamed “Hel” after the suburb where the outbreak
occurred. There are strong evidences supporting the bat to-horse to-human
transmission of virus but there are no evidences supporting the bat-to-human,
human-to- human or human-to-horse transmissions (CDNA 2010). In the year 2011,
Australia witnessed an unprecedented spike in the number of HeV cases in horses in
both Queensland and New South Wales. There were 80 confirmed outbreak events in

Australia as of December, 2012 (Smith et al 2014).

The research on the HeV has almost begun immediately after the first outbreak.
Government organisations as well as scientists and academicians from a broad range
of disciplines, including the animal health, environmental and social sciences, are
working together to develop a 'One Health' approach that will help minimise the
impact of HeV. Currently, a vaccine is available for horses which have been
introduced after thorough testing. ‘Equivac®’ — the HeV vaccine was launched in
November 2012 by CSIRO and its associated partners. Apart from the vaccine, the
DPI NSW (2012) and QLD Horse Council (2012) made some recommendations for
the horse owners to exercise some precautions in areas with flying foxes to help
minimise the risk of their horses being infected and thus reducing the risk of being

infected themselves. QLD Horse Council (2010) also suggested a safe property
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design to minimise the risk of the HeV infection and to address other biosecurity

1ssues.

2.2 Flying Foxes

2.2.1 Introduction

The section 2.2 in chapter 2 provides a review of flying foxes in Australia
particularly in South East Queensland. An overview is provided in section 2.2.2 and
section 2.2.3 provides a detailed study of flying foxes - their roosting sites, diet,
vegetation, foraging distances and behaviour. Section 2.2.4 covers the academic
research of flying foxes in regards to the HeV and a summary is provided in section

2.25.

2.2.2 Overview

Species belonging to the Pteropus genus are part of the order Chiroptera (meaning
‘handwing’), generally known as bats. They were previously considered members of
the Megachiroptera sub-order, a classification still popular in literature. Pteropus
species are also known as flying foxes or fruit bats. This group comprises the largest
bats in the world with some species weighing over 1000 grams and having a
wingspan of 1.7 metres. They are generally characterised by large, well-developed
eyes, simple external ears and an inability to use true echolocation, relying rather on
their eyesight and strong sense of smell to find food. Bats are often considered
carriers of many infectious diseases, and Australian flying foxes are associated with

Lyssa, Hendra, Nipah and Menangle viruses (Australian Museum 2013).

The Pteropid bats commonly known as flying foxes were found to be the natural
reservoirs for HeV. The emergence of HeV in Australia has raised a number of
questions relating to their natural history (Halpin et al 2000, Field et al 2001). There
are five Australian Pteropus species of which four are found on the mainland in
primarily coastal regions, and one is found on Christmas Island. According to the
International Union for Conservation of Nature, the current conservation status for

most of these species is stable (Australian Museum 2013). All the four species of
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Pteropus flying foxes are found in Queensland. The species are commonly known as
black (Pteropus alecto), grey-headed (Pteropus poliocephalus), little red (Pteropus
scapulatus) and spectacled (Pteropus conspicillatus) flying foxes. Flying foxes are
nomadic animals and their movement patterns and local distribution are determined
by variations in climate and the flowering and fruiting patterns of their preferred food
plants (DEPI VIC 2011). They have an important ecological role because of their
feeding behaviour which helps pollinate and disperse the seeds of native trees. They
spread the pollen of valuable plants as they feed and thus playing an important role in
our environment. Some plants even rely on flying foxes to pollinate their species
(Wildlife QLD 2016). Figure 2.5 shows the four species of flying foxes that occur in
Australia.
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Figure 2.5: Types of flying foxes that occur in Australia (Source: BatReach 2016).

HeV outbreaks are only seen in Australia so far, where the virus is endemic in flying
foxes. Flying foxes are found throughout tropical and sub-tropical Asia and Australia
and on islands of the Indian and western Pacific Oceans (DEPI VIC 2011).
Seropositive flying foxes have been found from Darwin in north central Australia to
Melbourne in south eastern Australia. Equine cases been reported from eastern
Australia, in the states of Queensland and New South Wales. Antibodies detected in
flying foxes in Papua New Guinea might be caused by HeV or a related virus.
Currently there is no evidence that HeV exists in other areas. However,
henipaviruses or antibodies to these viruses have been detected in bats on several

continents. Most of these viruses are poorly characterized (CFSPH 2015). Figure 2.6

28 | Page



shows the distribution of all four species of flying foxes in Australia and the

approximate extent of the “HeV Belt”.
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Figure 2.6: Flying fox species distribution map of Australia (Source: Agriculture
Victoria 2016).

2.2.3 Flying Fox Ecology, Foraging Distances, Food Resources and

Behaviours

2.2.3.1 Black Flying Fox (BFF)

The black flying fox was first described by Temminck in 1837 from a specimen from
Menado, Indonesia. In 1867, Peters described a black flying fox from Rockhampton.
The south-eastern limit of black flying-foxes has been moving southwards for at least
60 years. In 1930, the southern limit was Rockhampton and in 1960 it was the Tweed
River, northern NSW. By 2002 they could be found further south than Port
Macquarie. The black flying fox is the largest of the four mainland species in terms

of body size in Australia (Wildlife QLD 2016).
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Description

The Black flying fox is covered in short black fur but can sometimes also have a
reddish-brown or yellow-brown colour. Its belly fur can have a frosted appearance if
the fur is flecked with grey tips. The lower legs of this bat are unfurred and faint red-
brown eye rings may be present. It is quite a large flying fox with weights ranging
from 500 — 1000 g and forearm lengths ranging from 153 — 191 mm in adults
(Australian Museum 2013). The wingspan of the black flying fox is about Im
(Wildlife QLD 2016).

Habitat

The black flying foxes are commonly found in tropical and subtropical forests, and in
woodlands. They form camps in mangrove islands in river estuaries, paperbark
forests, eucalypt forests and rainforests, and are mainly found along coastal and near

coastal northern Australia from Shark Bay in Western Australia to central New South

Wales (Wildlife QLD 2016, Australian Museum 2013).

Roosting sites
Large groups of black flying foxes can reach hundreds of thousands of individuals
and form permanent camps for daytime roosting. It is a high roosting species and

seeks fairly dense leaf cover (Australian Museum 2013).

Life History
The Black flying fox has a long life-span and can live for over 20 years in captivity
and can live closer to 15 years in the wild. Like all Pteropus species, this bat has a

slow lifecycle and low fecundity (ability of the female to produce numerous young)

(Wildlife QLD 2016, Australian Museum 2013).

Breeding

Mating occurs in March to April when large males establish a territory on a branch.
Females become pregnant before the bats disperse into generally smaller camps for
the winter, and re-congregate into large camps during spring and summer, when
birthing occurs. Females give birth to one offspring annually around late September
— December. The young are completely dependent up to 4 weeks, at which point they
will be left at the camp nightly while the mother forages. During this 4-week period,
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the young cannot fly and must grip its mother’s fur and nipple. At 2-3 months, the
young can fly and they will start to leave the camp nightly to feed. They are weaned
at about 5 months, and become sexually mature at about 2 years old, but most

females will not reproduce before 3 (Australian Museum 2013, Red List 2008).

Food Resources/Vegetation

Black flying foxes fly out at dusk to feed on blossoms and fruits. They prefer
blossom of eucalypts, paperbarks and turpentine’s, as well as a variety of other native
and introduced blossom and fruits. They have been seen to eat the leaves of trees by
chewing the leaves into a bolus, swallowing the liquid and then spitting out the fibre.
The Black flying fox uses its clawed thumbs to hold and manipulate food (Wildlife
QLD 2016, Australian Museum 2013).

Foraging Distance

The foraging range of black flying foxes is approximately 15 — 50 km and will travel
this distance from their camps at night. Like other flying foxes, these are a migratory
species, and individuals move large distances in search for food. In favourable
conditions, they can return to same camp locations over the years (Wildlife QLD

2016, Australian Museum 2013 and Red List 2008).

Distribution
Black flying foxes are found around the northern coast of Australia and inland

wherever permanent water is found in rivers (Wildlife QLD 2016).

Conservation Status
They are currently listed as Lower Risk Least Concern according to the IUCN Red
List of Threatened Species (Wildlife QLD 2016, Red List 2008).

2.2.3.2 Grey-Headed Flying Fox (GHFF)

The grey-headed flying fox was the first Australian flying fox species discovered by
Europeans. The first grey-headed flying fox specimen was reported as collected in

New Holland and described by Temminck in 1825. Their numbers have declined
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drastically since European colonisation from many millions to a few hundred
thousand. The known range for grey-headed flying foxes has contracted southwards
by about 750 km and their southern limit during winter has expanded into Victoria.
They are the largest Australian fruit bat and are endemic to Australia. Grey-headed
flying foxes have sophisticated vocal communication, making more than 30 specific

calls (Wildlife QLD 2016).

Description

The grey-headed flying fox is the only one to have a distinctly broad and complete
collar of brownish-orange fur. It is also the only flying-fox to have thick leg fur
which extends all the way to the ankles. Its body fur is long and dark brown to grey
while its head fur is somewhat paler. It can sometimes be mistaken for the Black
flying fox as they are quite similar in size. The average weights vary from 600 —
1000 g and the forearm lengths vary from 152 — 177 mm. The wingspan is about Im
(Wildlife QLD 2016, Australian Museum 2013 and Churchill 2008).

Habitat

The grey-headed flying foxes live in camps that can contain multiple Pteropus
species. In general, they maintain traditional camps and visit these with varying
frequencies in response to patchy food availability. They live in a large variety of
habitats including rainforests, mangroves, paperbark swamps, wet and dry
sclerophyll forests and cultivated areas. These bats commonly form their camps in

gullies that are not far from water and usually in dense canopy vegetation (Wildlife

QLD 2016, Australian Museum 2013).

Roosting Sites

The social organisation of grey-headed flying foxes revolves around traditional
camps. These roost sites are extremely important as they are the locations for mating,
birth and rearing of young, as well as refuges from predators. These camps can
contain up to several hundred thousand individuals during summer and migrations to
form smaller camps occur during winter. Changing camp sites usually depends on
food availability and the sizes of different camps vary (Wildlife QLD 2016,
Australian Museum 2013 and Churchill 2008).

Life History
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Grey-headed flying-foxes are capable of living over 20 years in captivity; however
they rarely live past 6 years in the wild. The majority of females reach sexual
maturity at 3 years of age and if conditions are favourable, they will continue

reproducing every year (Australian Museum 2013, DeHaven 2005).

Breeding

The mating of grey-headed flying foxes occurs throughout the year but most
conceptions happen in March or April. A single young is born after 6 months and is
carried by its mother for 4 to 5 weeks. At 5 weeks, it is left at the camp while the
mother forages and is dependent on the mother for 4 to 5 months. Mothers are able to
identify their young through unique calls and their sense of smell when returning

from foraging (Wildlife QLD 2016, Australian Museum 2013).

Food Resources/Vegetation

These flying foxes forage on fruits and blossoms of more than 80 species of plants
and mostly refer eucalypt blossom with native figs being the most popular fruit. They
chew leaves and appear to eat the salt glands from mangroves. They also forage in
gardens, parks and orchards and may fly many kms from roost site to feed. Some

round trips are about 30 km (Wildlife QLD 2016).

Foraging Distance
The nightly feeding range of grey-headed flying foxes is 20-50km from camp and in
winter, adults can migrate up to 750km from their summer camps (Wildlife QLD

2016).

Distribution

The grey-headed flying foxes occur along the east coast of Australia from
Rockhampton to western Victoria and inland to the western slopes (Wildlife QLD
2016).

Conservation Status
The Grey-headed Flying-fox is listed as a ‘vulnerable’ species by the IUCN due to
continuing declines in population of about 30% over the last 20 years. These bat

numbers are predicted to continue declining through threats such as habitat
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destruction, direct killing as a pest species of orchards and competition for resources
with black flying foxes. They are federally listed as ‘vulnerable’ under the
‘Environment Protection and Biodiversity Conservation Act 1999’ and also the
‘NSW Threatened Species Conservation Act 1995, schedule 2°. In Victoria they are
listed as ‘threatened’ under the ‘Flora and Fauna Guarantee Act 1988’. They are
ranked as a critical priority under the Department of Environment and Heritage
Protection ‘Back on Track species prioritisation framework’ and a Recovery Plan for
this species exists (Australian Museum 2013, EHP QLD 2013, Red List 2008 and
DeHaven 2005).

2.2.3.3 Little Red Flying Fox (LRFF)

Little red flying foxes are the most widespread species of mega bats in Australia and
the only species of Australian flying fox that regularly roosts in clusters as up to 30
have been seen hanging together in a tight bunch. The weight of their clusters can
cause severe damage to their roost trees. They are nomadic and their movements
depend on food resources. Peters first described the little red flying fox in 1862, from
a specimen collected on Cape York (Wildlife QLD 2016).

Description

The little red flying foxes vary in colour from reddish brown to light brown, and
there are patches of light, creamy, brown fur where the wing membrane and shoulder
meet. Their head is covered with greyish fur and, in some forms found in northern
Queensland, grey fur continues down the back. The wings are brown and semi-
transparent when seen flying during the day, which helps identify the species. The
average weight 300—-600g and the head-body length is 125-200mm (Wildlife QLD
2016).

Habitat

Little red flying foxes is a highly nomadic species and is tolerant of a number of
different environments, enduring different temperature and humidity ranges and
having the largest distribution of the Pteropus genus in Australia. As a result, this
species extends further inland than any other species of flying foxes (Wildlife QLD
2016, Australian Museum 2013 and Red List 2008).
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Roosting Sites

The roosting sites of little red flying foxes are usually fairly congested and can
become extremely noisy during the active periods, mainly early morning and late
afternoon. They are largely nomadic due to the unpredictability of food supplies

(Australian Museum 2013).

Life History
The little red flying foxes can have an average lifespan of over 15 years in captivity;
however there is currently no information on their lifespan in the wild (Australian

Museum 2013).

Breeding

Unlike other species, the little red flying foxes have a breeding cycle that begins in
November — January when mating occurs. Birthing occurs from March — May in
camps. Once the young are born, they suckle for one month and are then left at the
roost and suckle periodically until they are able to fly, which is around 2 months of
age. For several months thereafter, they are semi-independent until they can perform

necessary adult behaviours (Wildlife QLD 2016, Australian Museum 2013).

Food Resources/Vegetation

The little red flying foxes feed mostly on eucalypt or melaleuca nectar, as well as
native and cultivated fruits, leaves, growing shoots, bark, sap and insects. When food
is scarce, these bats will raid orchards and damage these crops. While they usually
feed at dusk and night, they have been known to feed during overcast days. The
groups congregate during the day at roosting sites that are near water (Wildlife QLD
2016, Australian Museum 2013).

Foraging Distance

The little red flying foxes only travel up to 20-30km from camp to feed (Wildlife
QLD 2016).

Distribution
They are distributed in coastal and subcoastal regions from Shark Bay in Western

Australia through to northern Victoria and, in certain circumstances, South Australia.
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As nomads they range a long distance inland, depending on the availability of

flowering trees (Wildlife QLD 2016).

Conservation Status

This species is listed as a species of ‘least concern’ by the [IUCN and is listed as
‘Least Concern’ under the ‘Nature Conservation Act 1992’ in Queensland and is
ranked as a low priority under the Department of Environment and Heritage
Protection ‘Back on Track species prioritisation framework’. It is, however, locally
threatened by clearing in parts of its range (EHP QLD 2016, Australian Museum
2013).

2.2.3.4 Spectacled Flying Fox (SFF)

Spectacled flying foxes were first described in 1850 by Gould. They are important
seed dispersers and pollinators of rainforest flora. These flying foxes have the
smallest known distribution and smallest population of the four Australian mainland

Pteropus flying foxes (Wildlife QLD 2016).

Description

The spectacled flying foxes are very similar in appearance to black flying foxes as
they are almost completely black. However, it is distinguishable by a patch of straw-
coloured fur on their collar and prominent straw-coloured to dirty brown fur
surrounding both eyes. This fur can sometimes extend towards the nose. In some
cases, the body fur is tipped with grey, giving it a grizzled appearance. The size of
adults can vary from 500 — 1000 g in weight and 150 — 183 mm in forearm length
(Wildlife QLD 2016, Australian Museum 2013).

Habitat
The spectacled flying fox is distinguished from other Australian flying foxes by
being the only rainforest specialist. They are integral to the rainforest regeneration

through seed dispersal and pollination (Australian Museum 2013).
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Roosting Sites

The spectacled flying foxes usually roost in camps that only include their own
species. They are frugivorous, meaning that fruit makes up a large portion of their
diet. The camps of spectacled flying foxes have well-defined territories of feeding
trees and they can become quite aggressive and territorial after dusk when feeding

occurs (Wildlife QLD 2016, Australian Museum 2013).

Life History
The life-span of spectacled flying foxes is at least 17 years in captivity, however little
is known about their lifespan in the wild. Like all Pteropus species, they have a slow

life cycle and low fecundity (Wildlife QLD 2016, Australian Museum 2013).

Breeding

Mating of the spectacled flying foxes occurs in March to May but sexual activity
occurs for the entire first half of the year. The females give birth to one offspring
annually around late September — December. The young are nursed for over 5
months and, once they are weaned, will continue living in the camp in ‘nursery trees’

(Australian Museum 2013).

Food Resources/Vegetation
The spectacled flying foxes are specialist fruit eaters that feed mostly on rainforest
fruits, some eucalyptus nectar and pollen. They disperse seeds of at least 26 species

of rainforest canopy trees (Wildlife QLD 2016).

Foraging Distance
The foraging range of spectacled flying foxes is 20-30 km and it is dictated by food
availability (Wildlife QLD 2016, Australian Museum 2013).

Distribution

Of all the mainland Australian Pteropus species, the spectacled flying fox has the
smallest distribution and population size. Their distribution is limited to within
rainforests or areas closer than 6 km to rainforest. As a result of this, they are

restricted to the coastal region of north-eastern Queensland and have a patchy range
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extending from Cape York to coastal central Queensland (Australian Museum 2013,

Red List 2008).

Conservation Status

The spectacled flying fox is listed as a species of ‘least concern’ by the TUCN.
However, it is considered vulnerable largely due to habitat destruction such as large-
scale clearing of coastal and upland habitats and persecution by fruit-growers
(electrocution and shooting). They have been federally listed as ‘Vulnerable’ under
the ‘Environment Protection and Biodiversity Conservation Act 1999 (Australian

Museum 2013, Red List 2008).

2.2.4 Flying Foxes Research and Virus Prevalence

On 31% May 2012, there were six new research projects totalling just over $2 million
announced, including $794,717 to CSIRO Ecosystem Sciences (Dr David Westcott)
for the project 'Implementing a National Flying Fox Monitoring programme'
(NFFMP). The Minister approved an additional $700,000 towards the NFFMP under
the 'Emerging Priorities' of the National Environment Research Programme (NERP).
Monitoring is described as the process of collecting data on the abundance of a
species and its distribution. It is a critical activity in biodiversity conservation
because it provides insight into the status of a species and over time provides an
indication into population trends and other ecological factors. This information is
necessary to assess the kind of management required and to measure the
effectiveness of management. Monitoring of flying foxes is considered even more
important because two species, the grey-headed flying fox and the spectacled flying
fox, which are listed as threatened under the Commonwealth Environmental
Protection and Biodiversity Conservation Act 1999 (EPBC Act) and relevant state
legislation. The results of the program will help inform responses to public concerns
about the impact of flying foxes on industry, agriculture and public health, including

any potential Hendra outbreaks (DoE 2013).

The recent findings of NFFMP revealed that the distribution of flying foxes is highly
variable, with the animals moving in and out of camps seasonally, apparently in

response to varying food resources. The grey headed and spectacled flying foxes -
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whose entire distributions were covered by the monitoring, have shown a dramatic
change in their distribution over the last decades with a shift to smaller camps
located in urban and peri urban areas. This is a similar distribution to that of horses.
The data showed a severe decline in the abundance of the spectacled flying fox,
sufficient to warrant a change in its status to endangered, while the number of grey
headed flying foxes was found to be stable to declining. HeV in horses mostly
correlated with incursions of the spectacled flying fox and black flying fox (Westcott
2016)

A study to investigate the HeV dynamics in flying foxes to determine the prevalence
of viral co-infections during the spillover events found that peak periods of HeV
spillover from flying foxes are associated with a peak in other viral infections. It was
revealed by the scientists that the flying fox colonies with a high HeV prevalence
contain a correspondingly high prevalence of other viruses, including
paramyxoviruses from the general Henipavirus and Rubulavirus. An analysis of
urine collected from flying foxes during the 2011 HeV spillover events has resulted
in the isolation of more than 40 viruses, including a large number of new viruses
which are yet to be classified. Seasonal trend in the presence of viruses was
identified, indicating that environmental triggers may be associated with spillover
events. A secondary objective of this study was to examine urinary metabolic
profiles for flying foxes when they experience conditions that increase the replication
of HeV, such as nutritional stress, movement stress, pregnancy, birth or lactation.
This is believed to be the first metabolomics analysis performed on flying fox
samples, with the aim of identifying biomarkers that could indicate periods of

increased HeV risk (Baker 2016, Barr et al 2015).

Field et al (2016) investigated the flying fox dispersal and HeV risk. The study
analysed whether the disturbance of flying fox roosts leads to an increase in stress
levels and HeV infection and excretion in dispersing animals, which might
potentially increase the risk of spillover of the virus to horses. The study found no
association between disturbance of the roosts and HeV excretion, indicating that
roost dispersal does not cause increased HeV infection and excretion in dispersing
flying foxes. No association was found between roost disturbance and concentration

of the stress hormone cortisol, but found an underlying association between cortisol
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concentration, season and region, suggesting that other factors, possibly biological or
environmental play a role in determining levels of cortisol in flying foxes. A need for
a ‘best practice’ approach was mentioned to study the dispersal of flying fox roosts,
as the nature or timing of the activity had a clear impact on the level of behavioural
distress exhibited by the animals. While flying foxes have some capacity to escape
roost disturbance, their increasing urban presence may make them the target of

ongoing harassment, with unknown consequences.

A cross-disciplinary study by McFarlane et al (2011) demonstrated a significant
occurrence of Hendra spillover events 1994-2010 within the dry season. In this
study, the climatic and vegetation primary productivity variables are compared for
the dispersed and heterogenic 1994-2010 outbreak sites. The significant occurrence
of spillover events within the dry season (p=0.013, 95% CI (0.57-0.98)) suggests
seasonal forcing of transmission across species, or seasonal forcing of virus excretion
by the reservoir host. The preliminary investigations of the spatial determinants of
Hendra disease locations are also presented in this study. The postal areas in the
Australian state of Queensland in which flying fox roosts occur are approximately
forty times more likely (OR=40.5, (95% CI (5.16, 317.52)) to be the location of
Hendra spillover events. The study found that the result appears to be independent of
density of horses at these locations. The limitations of the study include scale of host
resource use, land use change and limitations of existing data that challenge. This
study serves as a good base for further investigations of a broad range of potential

climatic and environmental influences on the spillover events.

A three year longitudinal study to detect virus in the urine of free-living flying foxes
(a putative route of excretion) to investigate HeV infection dynamics indicated that
the virus excretion occurs periodically rather than continuously, and in
geographically disparate flying fox populations in the state of Queensland. A total of
1672 pooled urine samples from 67 sampling events was collected and tested
between 1 July 2008 and 30 June 2011, with 25% of sampling events and 2.5% of
urine samples yielding detections. The proportion of positive samples was
statistically associated with year and location. The lack of any detection in the
Northern Territory suggests prevalence may vary across the range of flying foxes in

Australia. The findings suggested that the flying foxes can excrete virus at any time
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of year, and that the apparent seasonal clustering of HeV incidents in horses and
associated humans with 70% occurring between June to October. This reflects
factors other than the presence of virus and identification of these factors will
strengthen risk minimization strategies for horses and ultimately humans (Field et al

2011).

The study conducted by Field et al (2015) to identify key spatial and temporal factors
associated with excretion in flying-foxes over a 2300 km latitudinal gradient from
northern QLD to southern NSW aimed to strengthen the knowledge of HeV ecology
in flying foxes to improve spillover risk prediction. A generalised linear model was
employed in this study, to investigate the spatiotemporal associations with HeV
detection in 13,968 samples from 27 roosts. A non-linear relationship between mean
HeV excretion prevalence and five latitudinal regions was identified, with excretion
moderate in northern and central QLD, highest in southern QLD/northern NSW,
moderate in central NSW, and negligible in southern NSW. Highest HeV positivity
occurred where black or spectacled flying foxes were present; nil or very low
positivity rates occurred in exclusive grey-headed flying fox roosts. The little red
flying foxes are evidently not a significant source of virus, as their periodic extreme
increase in numbers at some roosts was not associated with any concurrent increase
in HeV detection. The study identified consistent, strong winter seasonality to

excretion in the southern QLD/northern NSW and central NSW regions.

Plowright et al (2008) initiated a longitudinal field study of HeV in little red flying
foxes and examined individual and population risk factors for infection in order to
determine probable modes of intraspecific transmission. The study investigated
whether seasonal changes in host behaviour, physiology and demography affect
host—pathogen dynamics. The results showed that pregnant and lactating females had
significantly higher risk of infection. This may explain previously observed temporal
associations between HeV outbreaks and flying fox birthing periods. The field data
implied that the HeV is transmitted horizontally via faeces, urine or saliva. The
highest seroprevalence was observed when animals showed evidence of nutritional
stress, suggesting that environmental processes that alter flying fox food sources,

such as habitat loss and climate change, may increase HeV infection and
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transmission. These results of HeV in flying fox populations suggest possible causal

links between environmental change and HeV emergence.

The latitudinal range shifts study of Australian flying foxes revealed that both black
and grey-headed flying foxes range is not shifting in a manner driven by climate
change as supposed to. The study obtained historical locality records from a wide
range of sources (including banding and museum records, government wildlife
databases and unpublished records), and filtered them for reliability and spatial
accuracy. The latitudinal distribution of each species was compared between eight
time-periods: 1843-1920, 1921-1950, five 10-year intervals between 1950 and 2000,
and 2001-2007. The findings suggest that neither the northern or southern range
limits of grey-headed flying foxes (Mackay, Queensland and Melbourne, Victoria
respectively) changed over time. Black flying foxes range limit extended southward
by 1168 km during the twentieth century (from approximately Rockhampton,
Queensland to Sydney, New South Wales). The percentage of total records that were
black flying foxes increased from 8% prior to 1950 to 49% in the early 2000s, and
local count data showed that its abundance increased from several hundred to more
than 10,000 individuals at specific roost sites, as range expansion progressed. The
study concluded that neither climate change nor habitat change could provide simple
explanations to explain black flying foxes observed rapid range shift (Roberts et al

2011).

A study on the urban habituation, ecological connectivity and epidemic dampening
of the flying foxes suggested that multiple factors in the changing landscape of
Australia and the demography of flying foxes contribute to HeV dynamics in bats
and spill-over hosts. The models in the study predicted urban habituation of flying
foxes increases the epidemiological linkage between flying foxes and horses,
providing plausible scenarios for the recent apparent increased frequency of HeV
outbreaks in Australia. The study described a counterintuitive ‘epidemic dampening’
effect, where decreasing reservoir host population connectivity can favour a
sporadic, high force of infection that may facilitate pathogen emergence into an
aberrant host. The results suggested that the anthropogenic driven changes to flying
fox ecology may result in more intense, sporadic, lethal outbreaks of HeV in

livestock and people (Plowright et al 2011).
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2.2.5 Summary

The Pteropid bats commonly known as flying foxes were found to be the natural
reservoirs for HeV. The emergence of HeV in Australia has raised a number of
questions relating to their natural history (Halpin et al 2000, Field et al 2001). There
are five Australian Pteropus species of which four are found on the mainland in
primarily coastal regions, and one is found on Christmas Island. Flying foxes are
nomadic animals and their movement patterns and local distribution are determined
by variations in climate and the flowering and fruiting patterns of their preferred food
plants. They have an important ecological role because of their feeding behaviour
which helps pollinate and disperse the seeds of native trees (DEPI VIC 2011).
Computer modelling of flying foxes revealed that the virus does not persist as a
constant endemic infection in discrete populations of bats but persists throughout the

range of flying foxes in a pulsing pattern (Australian Biosecurity 2009).

HeV research is considered challenging and complicated and much remains to be
learnt (Australian Biosecurity 2009). There is a need for further research to
understand the spatial and temporal patterns of the virus for effective surveillance
and management of the disease. The Queensland government announced a pressing
need for current research on the spatial and temporal occurrences of the virus
outbreaks and further study into ecological and environmental factors as causes of
the disease (DAF 2015). In the case of rare outbreaks like the HeV, GIS is a vital tool
to identify the main factors (geographical, environmental and other factors) of
disease transmission, for disease monitoring, identifying at-risk populations,
producing prediction models and generating warning systems according to spatial

distributions (See Section 2.3.9).

2.3 Spatial Epidemiology

2.3.1 Introduction

The section 2.3 in chapter 2 discusses spatial epidemiology, including spatial data
exploration, visualization, spatial autocorrelation, spatial clustering, data modelling
as well as disease mapping and GIS applications in epidemiology which are closely

related to disease monitoring and surveillance. Section 2.2.2 provides an overview of
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spatial epidemiology, and geographical representation and mapping of diseases is
covered in section 2.2.3. Spatial data exploration and visualization is discussed in
Section 2.2.4. The topics spatial autocorrelation, spatial clustering and spatial data
modelling are covered in sections 2.3.5, 2.3.6 and 2.3.7 respectively. Section 2.3.8
details regression model frameworks, and the literature referred to GIS applications
in epidemiology, specifically in HeV studies is covered in 2.3.9. Finally, a summary

of the section is provided in 2.3.10.

2.3.2 Overview

Spatial epidemiology provides researchers with a map-based description and analysis
of infectious and non-infectious diseases. This approach utilises epidemiological data
and other health-related data including but not limited to demographic data, genetic
and molecular data, environmental data and behavioural data. In modern research, it
has emerged as an innovative way in studying the spread and possible causes of
infectious disease outbreaks such as cholera, malaria, dengue and yellow fever. This
new field of study emerged in early 1800s (Walter 2000) and it has since advanced in
sophistication and complexity. The spatial approach in the epidemiological/health
studies can play a crucial part in measuring the variability in the risk factors
concerning the health status of the communities, environmental hazards and socio-
economic profiles. GIS plays a pivot role in the analysis of spatial distribution of
disease data across space and time, which is increasingly recognized in the spatial

epidemiological research.

A review of spatial methods in epidemiology from 2000 — 2010 to understand the
impact of place on health as a key element of epidemiologic investigation revealed
that the space and place have been key dimensions of epidemiology and public health
for decades, yet advanced spatial methods have been relatively slow to trickle into
epidemiology. The study notes that, there are many rich tools to employ in this day
for a more sophisticated treatment of space and to understand better the interacting
contributions to health of individual characteristics and spatially varying place-based
factors. The most common spatial methods were found to be distance calculations,
spatial aggregation, clustering, spatial smoothing and interpolation, and spatial

regression. It concluded that the increased use of spatial methods is likely to
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continue, in tandem with interest in the relationship between place and health, as
spatial software tools become more accessible and geographically referenced data
become more available (Auchincloss et al 2012). A study by Nuckols et al (2004)
discussed the three major scientific disciplines, namely geospatial science,
environmental science and epidemiology, in which GIS was used in exposure
assessment for epidemiology studies. The study emphasised how an epidemiological
study must be able to estimate the exposure and critical time windows with respect to

the disease latency period.

‘Disease ecology is inherently integrative and spatial, and GIS provides the
environment in which the biophysical, social, behavioural, and cultural worlds can
be combined for a systemic understanding of health and disease’ — (Queensland
Health 2005). Kulldroff (1999) and Elliot et al (2000) stated that applications of GIS
in epidemiological studies date from late 19th century. The studies attempted to
observe the spatio-temporal patterns of various communicable and non-
communicable diseases in different parts of the world. Most of the studies revealed
significant information about the diseases and that helped in further investigations.
Exploratory methods in GIS are valuable in searching for regions of high disease
prevalence. This helps to investigate and improve the understanding the disease
distribution from a spatio-temporal perspective (Nuckols et al 2004, Seng et al 2005).
Gatrell et al (1997) discussed three types of GIS methods in public and
environmental health application. They are visualization, exploratory and modelling.
He mentioned that exploratory and visualization is closely related and is often
recognised as ‘exploratory visualization’. Visualization involves displaying the
locations and influential variables on maps and showing variations in space and time
whereas exploratory analysis enables the analyst to explore and investigate the
spatial data trend which helps in identifying the disease pattern and generate
hypothesis. Cluster identification is one of the important exploratory methods in

epidemiology.

In epidemiology there have been considerable advances in the development of
methods for the detection of clustering and clusters of health events, together with
productive links between statisticians, epidemiologists, and geographers in

demonstrating the usefulness of GIS-based approaches. Langford et al (1996) stated
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that multilevel or hierarchical methods were being promoted actively in health
research, and given an explicitly spatial dimension; links are needed between these
tools and GIS environments. Significance should be given to the importance of
building closer research links between those using GIS for epidemiology and those
using it in health care planning. GIS should be used in the needs assessment process,
such ‘needs’ being represented, in part at least, by the areas of high mortality and
morbidity i.e. the ‘clusters’ to which the attention has been given — identified by
other GIS-based analyses. GIS, in the reshaped form of a spatial decision support
system, can play a valuable role in bringing the two health research backgrounds

together (Gatrell et al 2005).

The occurrence of disease is the primary interest of an epidemiologist in as
categorized by time, person and place where as spatial epidemiology emphasizes the
latter. Describing and understanding variations in disease from a distinctly analytical
spatial perspective and as an area of medical research it is one of growing
importance. In general, health, population and exposure data are available in either
point (exact location) or count data (aggregated level). Point data is considered more
accurate due to its geographical representation but it is rarely available in some
cases. Therefore, it is recommended only if there is sufficient evidence to warrant the
use of such data. On the other hand, using aggregated data for exploratory analysis is
easier than case control or cohort studies; however, they are prone to biases and

misclassifications (Elliot et al 2000).

Data of epidemiological or public health interest often occur as spatial information
during each of several time periods. Most of the analytical techniques require the
pooling of information in administrative areas with well-defined geographic
boundaries (e.g., counties, municipalities, and health districts), and the presentation
of the spatial process with maps constrained to them. Nobre et al (1995) has
introduced two temporal analytical techniques in their work — time series analysis
and temporal cluster analysis. The time series analysis has is quite useful in different
contexts for monitoring tasks. The implementation of this technique into an
integrated system for use in public health will lead to a better assessment of its
impact and utility (Nobre et al 1995). Spatio-temporal analytical technique was also

reviewed by Nobre et al (1995) in their work, which emphasizes on space-time
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interaction among health events, or health events and environmental variables which

are important in epidemiological studies and disease surveillance.

The ability of GIS to integrate and manipulate complex data has emerged it as a
powerful tool in epidemiological studies. The traditional epidemiological studies
such as cohort or case control studies enable us to identify excess disease rates or
trends and perform further analysis for hypothesis testing (Seng et al 2005). Use of
GIS technology in epidemiological and public health studies gained momentum after
researchers started using it for more than visual representations i.e. maps. GIS in
epidemiology has been tremendous in understanding the disease in a different
dimension. With the assistance of this powerful tool, the disease clusters could be
identified and other influencing factors such as environmental, socio economic and
climatic could be linked to the diseases. While geographical visualization serves the
need to reveal the spatial patterns, the statistical awareness in GIS determines the

significance of these patterns.

The introduction and implementation of GIS technology in public health and
epidemiology benefits in analysing the prevalence and geographic distribution of a
disease outbreak in a space-time sense (Lawson et al 2001). GIS technology is being
widely used for disease monitoring, research hypotheses generation and identifying
populations at risk for its high capability in data interpretation, manipulation and
modelling (Seng et al 2005, Gupta et al 2003). GIS serves as an effective tool for
spatial analysis, modelling and visualisation of epidemiological and environmental
data; and recent studies have shown significant and increasing use of GIS
applications in public health and epidemiology (Shittu et al 2010, Busgeeth et al
2004 and Gupta et al 2003). The powerful analytical modelling and mapping
capabilities of GIS can serve as a good decision-support and decision-making tool
for disease investigations, monitoring, simulation, predictions, preventions and

resource allocations (Davenhall 2002).
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2.3.3 Disease Mapping

Mapping is a visual representation of geographical distribution, and disease mapping
refers to the representation of disease or outbreak location, summary measures or
statistics for a specific group of individuals in their geographical association (Lawson
et al 2001). The mapping of disease incidence and prevalence has long been a part of
public health, epidemiology, and the study of disease in human populations (Koch
2005). The advantage of disease mapping is that they might any significant spatial
patterns that may not be recognized in tabular representation of the data (Elliot et al
2004). Disease mapping identifies possible disease clusters, to define and monitor
epidemics, to provide baseline data on health patterns, and to show changes in
disease patterns over time. It may also be useful for initial exploration of
relationships between exposure and disease, particularly; acute health effects. It may
at times involve small area maps of disease which are much more difficult to produce
and interpret in a meaningful way. Caution needs to be exercised in their
interpretation due to the factors of latency period and migration (Jarup 2004),

variable representation and spatial resolution (Elliot et al 2004).

In general, the disease distribution may occur within specific population groups with
a spatial distribution and may vary in various aspects. It is extremely important to be
aware of the spatial patterns of the underlying causes/factors to be able to detect the
true disease pattern (Seng et al 2005). The interpretation of the map should be
dependent on the type of the disease i.e. infectious or non-infectious as a map that
demonstrates the distribution of an infectious disease could be invaluable in
identifying the cause of the outbreak, mainly if it is represented as points. The
mapping of non-infectious diseases is useful in hypothesis generation (Lawson et al

2001).

Koch (2004) studied a series of maps of the 1854 cholera outbreak in Soho, London -
historical and contemporary which serve as an example of the manner and degree to
which a map-maker's intent defines the context that determines the content of the
resulting map. These maps include John Snow's original maps; E.W. Gilbert's 1958
version of Snow's map; Andrew D. Cliff and Peter Haggett's 1988 maps; Edward
Tufte's 1983 revision of Gilbert's 1958 map; Monmonier's 1990s revision of the
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Gilbert-Tufte map; and the US Centers for Disease Control's (CDC) 2001 map based
on Snow, Gilbert, and Tufte. The study concluded that the maps reflect specific
phenomena of interest to map-makers, who choose from the available data to fashion

idiosyncratic interpretations of those phenomena.

The cholera outbreak map by John Snow, a physician in London is still the best
acknowledged example of disease mapping. It demonstrated the correlation between
the cholera cases and the water supply contamination in the year 1854. The infected
well was identified from the concentration of cases around the Broad Street water
pump by incidence mapping (Snow et al 1994). Figure 2.7 shows the original map by

John Snow showing the clusters of cholera cases in the London epidemic of 1854.

P Pump @ Contomingted pump
‘ + Cholera death

Figure 2.7: Original map of Cholera cases by John Snow (Source: Epidemiology
Inside 2016).

Walter (1993) discussed the theories of graphical perception which suggested that the
interpretation of maps is complex relative to other types of graphical material. In his

study, it was found that the maps with various types of spatial pattern were visually
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distinguishable; comparisons between variants of the same map, however, using
different shading and plotting symbols indicated that the method of data
representation also had a strong effect on visual perception. The study showed
enough evidence for a learning effect in complex maps. The study concluded that the
relationship between the visual assessments and a statistical measure of spatial
autocorrelation was significant but imperfect. In their review of cognitive aspects of
designing statistical maps, Sirken et al (1993) have concluded that map reading
actually is best viewed as consisting of a series of reading stages which include Map
Orientation, Legend Comprehension, Map/legend Integration and Discerning and
Spatial Patterns and Relationships. They suggest that the sensory processes are
important in map orientation and the legend comprehension stages whereas the
integration of the map with the legend depends more on perception, and the

discernment of patterns makes use of comprehension, memory, and reasoning.

In the introductory guide to disease mapping, Lawson et al (2001) has discussed the

visual perception and construction of a disease map as below:

Construction of the Map

Construction of the map should consider the aspects such as the data, the area and the
choice of scale. The area should be chosen with great care and sometimes this may
be predefined. As study of the incidence or disease prevalence must have boundaries
such as town, city or a country. Maps are usually characterised by the scale chosen to

represent the geographical distribution of the disease of interest (Lawson et al 2001).

Map Transformation

The next step is chose the form of the symbolic representation. This is a well-known
practice. The map is usually constructed from the standard spatial coordinate systems
such as longitude-latitude, east-north etc. and in these cases there is no further need
to consider any changes. In some rare cases, there might be a need to consider other
representation systems, usually when mapping very large scale distributions (e.g.

Worldwide) (Lawson et al 2001).
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Symbolic Representation

Symbolization is considered as an important characteristic of cartography.
Misinterpretation of maps usually arises from inappropriate symbolization, which
affects the accuracy of the results and conclusions drawn from the map. The most
commonly used symbols in disease mapping are points, lines, colour and shading
symbols. Point symbols represent case events in disease mapping and the choice of
type and size should correspond with the underlying population. The size of the point
symbol is suggested to be inversely proportional to the population density at the
specific location (Bailey et al 1995, Seng et al 2005). Lawson et al (2001)
emphasized on using the appropriate symbols and monochrome colour schemes for

disease mapping, which was found to be most effective.

Processing of Data and Data Aggregation

This stage involves further processing that typically occurs when the information
from the spatial structure or its associated attributes is unavailable under the current
representation system. Data interpolation/smoothing and transformation are the two
steps that need to be considered to fulfil the requirement. Sometimes, specific
algorithms may be required to determine the best values from interpolation to use at
the locations other than the observed data (Lawson et al 2001). Data aggregation is
also an important aspect that needs to be taken into consideration in mapping and
misinterpretation might occur when areas are mapped according to the aggregated

data leading to the loss of data variation (Seng et al 2005).

Interpretation of Maps

Disease maps are derived from statistical data and it is recommended to include some
form of accompanying table of the data used in the map. It not possible, a secondary
map showing the variability or the reliability of the data estimates such as relative
risks can be displayed on the map. A full overview of recommendations for disease

mapping is available in a WHO workshop report (Lawson et al 2001).

2.3.4 Spatial Analysis

Spatial data analysis is considered as a branch of data analysis where the

geographical referencing of objects contains important information. In data
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collection, specifically in some areas of experimental science, the indexes that
distinguish different cases can be exchanged without any loss of information. The
information relevant to understanding the variation in the data is available within the
observations and indexing does not have any relevant information. But, in the case of
spatial data, the indexing may contain crucial information. The collection of
techniques and models that explicitly use the spatial referencing of each data case is
defined as spatial analysis. In spatial analysis, it is required to make assumptions on
the data describing spatial relationships or interactions between cases. The results of
spatial analysis highly depend on the re-arrangements of spatial distributions of
values and reconfiguration of the spatial structure (Goodchild et al 2004, Haining

1994).

Goodchild et al (2004) refers spatial data matrix as the point of contact for spatial
analysis and GIS. The spatial data matrix consists of rows and columns where rows
refer to cases and columns refer to the attributes measured at each of the cases, and
the last columns provide the spatial referencing. At the simplest level, there might be
two last columns containing a pair of coordinates: latitude and longitude, or x and y
in some projected coordinate system. GIS permits a vast array of operations based on
this approach to representation. There are many published methods of spatial
analysis that are available in the form of standard products of commercial GIS
vendors. A variety of GIS products and extensions are also available as open
software or freeware, through academic and other organizations and communities

(Ungerer et al 2002).

Bailey et al (1995) categorized the spatial data analysis into three main divisions -
visualizing the data, exploratory data analysis and methods for development of
statistical models. Pfeiffer (1996) mentioned that during most analyses, a
combination of techniques will be used with the data first being displayed visually,
followed by exploration of possible patterns and possibly modelling. Point patterns,
spatially continuous and area data are the methods used in spatial data analysis. The
spatial perspective in the spatial data analysis allows easy access to information on
the relative locations of objects and events, and also proximity (Goodchild et al

1992).
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Goodchild et al (2005) has mentioned that the below conditions that are mostly likely

the reason for someone to choose GIS-based spatial analysis rather than the statistical

spatial analysis, although the list is certainly not complete and the items are not

intended to be mutually exclusive.

Vi)

vii)

viii)

x1)

xii)

The data are geographically referenced;

Geographical references are essential to the analysis;

The data include a range of vector data types (support for vector analysis
among non GIS packages appears to be much less common than support for
raster analysis);

Topology — representation of the connections between objects — is important
to the analysis;

The curvature of the Earth’s surface is important to the analysis, requiring
support for projections and for methods of spatial analysis on curved
surfaces;

The volume of data is large, since alternatives like spreadsheets tend to work
only for small datasets;

Data must be integrated from a variety of sources, requiring extensive support
for reformatting, resampling, and other forms of format change;

Geographical objects under analysis have large numbers of attributes,
requiring support from integrated database management systems, since many
alternatives lack such integration;

The background of the investigator is in geography, or a discipline with
strong interest in geographical data;

The project involves several disciplines, and must therefore transcend the
software traditions and preferences of each;

Visual display is important, and when the results must be presented to varied
audiences;

The results of the analysis are likely to be used as input by other projects, or

when the data are being extensively shared.

There are some issues that affect the interpretation and results of the spatial analysis

such as selection bias, confounding factors, gross error, modifiable areal unit

problem (MAUP) and edge effects. Bias and confounding factors are closely related
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and remain as a major problem in data analysis. Bias happens when the variables are
deviated from ‘true’ vales and confounder factor refers to the secondary variables
which are associated with the outcome (Elliot et al 2000). Understanding of the
underlying demography, topography and disease epidemiology is essential in
parameter selections and thus a likelihood of producing more reliable results. Gross
error can be detected by identifying the extreme data values from the overall
distribution. It is considered important as it tends to affect the mean or standard

deviation especially in a small sample.

MAUP effects are divided into two major components — scale effects and zone
effects. Scale effects refers to the variation in numerical results that may be obtained
at different levels of spatial aggregation of data whereas zoning effects are the
variation in numerical results arising from the spatial portioning by a fixed level of
aggregation. Various specialized methods have been developed to address these
problems such as spatial interaction models, statistical reporting units, monte-carlo
simulation, simulated annealing and genetic algorithms (Seng et al 2005). Edge
effects play an important role in spatial statistical applications and mainly result in
spatial censoring (Lawson et al 2001). Lawson et al (2001) introduced several
methods for resolving edge effects including utilizing weight relating to the external
boundary proximity, guard area and simulating missing data. Rogerson (2001)
suggested using buffer zones to include the important features that affect analysis
according to the area of interest. Rogerson (2001) recognized the shape and size of
the study areas as one of the boundary problems, which can affect measurement and

interpretation.

2.3.5 Exploratory Data Analysis and Visualization

Good (1983) described exploratory data analysis (EDA) as a collection of techniques
to summarize data properties, identify data trends, detect data errors and unusual
features. Hypothesis generation, and may also be used to study the model results and
identify influential data effects. Exploratory spatial data analysis (ESDA) is
described as a set of techniques to explore spatial data, which involves summarizing

spatial data properties, detecting spatial patterns, hypothesis generations and
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identifying unusual trends on the map (Seng et al 2005). Exploratory data analysis is
aimed at developing hypotheses and makes extensive use of graphical views of the
data such as maps, histograms, graphs or scatter plots. It makes certain assumptions
about the data and must be robust to extreme data values (Pfeiffer 1996). ESDA
techniques are visually and numerically resistant, comprising of EDA techniques and

additional methods to analyse spatial relationships (Haining 1998).

Hypothesis testing is considered important in numerical ESDA as the clustering and
event concentrations would be studied to identify the significance from a statistical
aspect. This serves as an exploratory tool with a null model being proposed and the
test statistics are constructed to assist in decision making to either accept or reject the
null hypothesis (Haining 1998). The advances in GIS have made it easier to conduct
the spatial pattern analysis. Bailey et al (1995) has divided the spatial point patterns
tools into four methods — Kernel estimation, K-function, Nearest Neighbour Distance
and Quadrat Methods. The following sub-sections (2.3.5.1 and 2.3.5.2) discuss the
Kernel Estimation and the K function as they are most commonly used in studying

spatial clustering (Bailey et al 1995, Gatrell et al 1996).

2.3.5.1 Kernel Estimation

Kernel estimation is an exploratory tool for examining the first-order properties such
as global or larger scale trend of point processes (Gatrell et al 1996). It is employed
to obtain a smooth estimation of univariate or multivariate probability density from a
sample of observation. This method lacks the predictive ability.

If s represents a vector location anywhere in the region, R then the intensity A(s), is

an estimate of the intensity of the point pattern at s (Equation 2.1).

Equation 2.1

k( ) represents the kernel weighting function which is expressed in standardized form

1.e. centred at the origin and having a total volume of 1 under the curve. It is then

55| Page



centred on s and 'stretched' according to the parameter T > 0, which is referred to as

the bandwidth. The value of T provides the required degree of smoothing in the
estimate. Graphically, it can visualize a three-dimensional function that 'visits' each
point s on the fine grid (Figure 2.8). The distances to each observed event, s; that lies
within the region of influence are measured and contribute to the intensity estimate at
s according to how close they are to s. A suitable contouring algorithm or some form
of raster display may then be used to represent the resulting intensity estimates as a

continuous surface showing the R intensity variations (Gatrell et al 1996).

Choosing appropriate bandwidth is considered important as the kernel estimate At(s)
is intended to be sensitive to the choice of bandwidth, t. As this increase, there is
more smoothing of the spatial variation in intensity which can result in a flat
appearance and neglected local features and when it is reduced, it can yield a 'spiky'
estimate. However, it is possible to use a local bandwidth adjustment technique
known as adaptive kernel estimation to improve the kernel estimation (Gatrell et al
1996). The kernel estimation closer to the boundary of R may be subjected to the
edge effect due to the possibility of neighbours outside the boundary. Constructing a
guard area inside the perimeter of R is recommended to address this issue. The points
inside the guard area will not be computed but are allowed to contribute the
estimation. According to Gatrell et al (1996), kernel estimation is able to produce

valuable results in estimating the relative intensity of different types of events.
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Figure 2.8: Kernel estimation of a point pattern (Source: Gatrell et al 1996).

2.3.5.2 The K function

K function is a very useful technique to estimate the second-order properties i.e. local
or small scale effects of the process that gave rise to the data. It describes the spatial
dependencies over a wide range of scales. The assumption of stationary when
examining the spatial dependencies over a very small scale in region, R is
highlighted by Bailey et al (1995). When a point process is stationary and isotropic,
there 1s a close mathematical relationship between the second-order intensity and an
alternative characterization of second-order properties known as the K function

(Ripley 1981, Gatrell et al 1996).

Equation 2.2 defines the K function, where E( ) denotes expectation, # means ‘the

number of” and A is the intensity (or mean number of events per unit area).

AK(d) = E(#(events < distance d of an arbitrary event))
Equation 2.2

57| Page



An estimation of the K function is given by equation 2.3, where R is the area of
region and /,(d;) is an indicator function that has value of 1 when d; is less than d
(Boots et al 1988). When the edge effect is considered, w;j is included as the
conditional probability that an event is observed in R with distance d;; frim iy, event.
Therefore, the final estimation of K(d) is equation 2.4, which is obtained by replacing
the unknown density A with an estimate n/R, where n is the observed number of

events.
N 1
K(d) = R Zzld(dij)
i#j
Equation 2.3
N R 1;(d;;
R(d) = = ZZM
ne L Wij
i#j

Equation 2.4

® Seven events within
a distance, d, of five
. units from event i

Three events within
. « | adistance, d, of five
. units from event |

Figure 2.9: Estimation of A K function (Source: Gatrell et al 1996).
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Figure 2.9 refers to the visualization of the K function estimate without the edge
effect. An event is ‘visited’ and around this event is a set of concentric circles at a
fine spacing is constructed. The cumulative number of events within each of these
distance 'bands' is counted. Every other event is assumed to be similarly 'visited' and
the cumulative number of events within distance bands up to a radius d around all

events becomes the estimate of K(d) when scaled by R/n2 (Gatrell et al 1996).

2.3.5.3 Visualization as a Method of Exploring Spatial Data

The term visualization in the cartographic literature can be traced back at least four
decades (Philbrick 1953, MacEachren et al 1997) and it has an important role in
exploratory data analysis, which enables the data being analysed to be seen (Bailey et
al 1995). The graphical display of data and other statistics and summary information
are considered as the basic tools for seeking spatial trends, hypothesis generation and
for evaluation of data into the proposed models. Visualizing the spatial data refers to
the mapping in a spatial data analysis context (Bailey et al 1995, Seng et al 2005).
MacEachren et al (1990) developed a simple cognitive model to identify key parts of
the user display interaction that occurs during exploratory map-based visual analysis.
They emphasized on developing cartographic tools that prompt pattern identification
and on the potential for visualization errors — the errors that are similar in nature to
the Type I and Type Il errors associated with traditional statistically-based
hypothesis testing.

Visualization of data can be described as maintaining the data points with some
smoothing effect to detect the complex spatial patterns (Haining 1998). The
comprehensive tools serves as the data analyses supporting tools rather than just
producing graphics as the final report (Wise et al 1998). The data visualization
approaches has been classified into two areas — rendering and manipulation by Buja
et al (1996). Rendering is defined as the process of building the graphic plot which
involves the determination of type of information to display and the output plot type.
Manipulation involves the operation of individual plots and organization of multiple
plots to explore the data. Identification of data set properties (finding gestalt), posing
queries and making comparisons are the tasks in data exploration in visualization

(Buja et al 1999).
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Exploratory analysis of spatial data can be significantly enabled when visualization
in geographic space is dynamically linked to presentation of data in attribute space
(Andrienko et al 2001). Usage of the brushing technique for linking maps and
statistical graphics by simultaneous highlighting of corresponding objects was
suggested by Monmonier (1989). Most often linking between maps and dot plots or
scatter plots is considered (Buja et al 1986; Dykes 1997). Simultaneous
representation of more than two variables can be done using parallel coordinate plots.
This kind of graphic is very useful for visual data exploration and data mining

(Andrienko et al 2001).

Andrienko et al (2001) introduced a painting-based data visualisation method, which
is applicable to several (more than two) comparable attributes called dominant
attribute mapping method. This method consists of ascribing an object to a class
according to the value of the dominant attribute. The attribute with the largest value
is considered dominant and the other approaches involve prior normalisation of
attribute values. This method is intended to support the following exploratory

activities:

1) Overall view on spatial co-distribution of attribute values;

1) Finding spatial clusters of objects similar to each other in terms of the
considered attributes;

ii1) Detecting objects with anomalies or disproportion among the values of the

attributes.

In a nutshell, “visualization' is a comprehensive term that refers to an array of
methods that are used to provide insight into data through visual representations and
includes the areas of geographic, information, and scientific visualization, which
refer to the visual representation and exploration of geographic data, of nonnumeric
datasets, and of large, multivariate datasets that use high-end computing, respectively
(Knigge et al 2006). Knigge et al (2006) suggests that the data exploration,
exploratory spatial data analysis (ESDA), and visualization using GIS and other
visualization software, can be employed to facilitate an ‘iterative process' in the

analysis of data whereby researchers can recursively explore data in order to identify
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themes and processes, raise new questions, and begin to build theories. Grounded
visualization is suggested by the authors (Knigge et al 2006), which is a set of
analyses that could be broadly used in various disciplines. The method is sensitive to
scale issues (from local to global and back again) and can integrate mobility. It
greatly depends on qualitative and quantitative measures of context (historical and

geographical).

Pang (2001) discussed visualizing uncertainty in geo-spatial data in which the author
mentioned that there is more than one way to classify how uncertainty can be
visualized. First one is by how uncertainty itself is represented; another is by how
uncertainty is encoded into visualization. In the second one, there are two general
ways of combining uncertainty to a visualization which is either by mapping
uncertainty information as an additional piece of data or creating new visualization
primitives and abstractions that incorporate uncertainty information. MacEachren
(1992) has addressed the addresses the difference between data quality and
uncertainty. It is suggested that mapping in pairs (side-by-side with a map of
uncertainty), sequential presentation in which a user might be warned about
uncertainty with an initial map which is followed by a map of the data and bivariate
maps in which both the data of interest and the uncertainty estimate are incorporated
in the same map are the best practices. Bordoloi et al (2004) presented an interactive
visualization technique for spatial probability density function data and implemented
a hierarchical clustering and visualization scheme for spatial pdf data in their study

which allows for a multiple level of detail exploration of dataset.

2.3.6 Spatial Autocorrelation

“Everything is related to everything else, but near things are related than distant
things” —’s First Law of Geography (Tobler 1970). Tobler’s First Law is often
considered as the core of spatial autocorrelation statistics, which are quantitative
techniques for analysing correlations relative to distance (Rogerson 2001). The
concept of spatial autocorrelation may be viewed as a special case of correlation but
has a meaning of its own. The correlation statistics were designed to show
relationships between or among variables, spatial autocorrelation shows the

correlation within variables across georeferenced space. The statistics were initially
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designed to identify a theoretical condition in which no spatial autocorrelation is
present. (Getis 2008). Hubert et al (1981) defined spatial autocorrelation as - “Given
a set S containing n geographical units, spatial autocorrelation refers to the
relationship between some variable observed in each of the » localities and a measure
of geographical proximity defined for all n (n - 1) pairs chosen from n.”” Spatial
autocorrelation is often used to measure the spatial dependency and spatial

association.

Goodchild (1986) defines spatial autocorrelation as one of the relatively small set of
techniques that deals simultaneously with both locational and attributes information.
Spatial interaction modelling and location-allocation belong to the same set. A set of
spatial features may or may not be similar in attributes, and their proximity will
determine how similar they are in spatial location. Spatial autocorrelation often
compares the two sets of similarities. Positive similarity occurs when the similar
values (either high or low) are located in close proximity to each other whereas
negative similarity (or dissimilarity) occurs when features which are close together in
space tend to be more dissimilar in attributes that features which are further apart.
Zero similarity occurs when the attributes are independent of location. The degree of
spatial autocorrelation of a pattern is dependent on the scale. Goodchild (1986) notes
the practical importance of spatial autocorrelation is that it provides a type of
information about a spatially distributed phenomenon which is not available in any
other form of statistical analysis. This information is important for appropriate

interpretation of the data.

Fotheringham et al (2002) says that the spatial autocorrelation is measured by several
statistics with slightly different formulations; however, they are all incorporated
within geographical weighing, which indeed represents the localised versions of
general statistics. Global statistics attempt to characterize the stable pattern of spatial
dependence for the entire dataset (Unwin 1996) and local statistics are referred to as
spatial disaggregation’s of global statistics (Fotheringham et al 2002). A global
model is calibrated using the data which is equally weighted and assumed to be
constant over space (stationary), where the local variations in relations are
unobserved. Moran’s 7 is the most widely used global statistic to study the spatial

dependency of the data (Moran 1950, Getis et al 1992). The local statistics recognize
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the association between a single point and its neighbours within a specified distance
and are able to identify a localized pattern where no global pattern has been detected
using an autocorrelation statistic (Getis et al 1996). Fotheringham et al (2002)
suggests that the local models capture the non-stationary process (which varies

across space) and spatial dependence.

2.3.6.1 Moran’s I

Moran’s [ coefficient is a very well know global statistic which is used to measure
the degree of similarity between each areal unit and its contagious neighbours of
autocorrelation. For a spatial proximity matrix W, spatial correlation in attribute y;,

the Moran’s / is summarised in equation 2.5.

= n 2?:1 Z?:l Wi jZiZ;
So Z?=1Zi2

Equation 2.5

Where,

Z; 1s the deviation of an attribute for feature ‘1’

W;;is the spatial weight between the features ‘1’ and j’
n is equal to the total of features

Sois the aggregate of all the spatial weights

‘Moran’s I’ calculates the mean and deviation of any observation from the mean and
follows the comparison of the value at any location with the value at other locations.
The Wj; is a contiguity matrix, where if the zone 1 and j are adjacent, it will receive a
weight of 1 and vice versa. The weighted Moran’s [ is similar to the correlation
coefficient, which varies between -1.0 to +1.0 and the result is the sum of the cross-
product values at different locations. The higher / value indicates more spatial
autocorrelation compared to the lower / value. The negative value closer to 0
describes the lack of spatial dependencies. The / value above the theoretical mean

depicts a positive autocorrelation and value below the theoretical mean depicts a
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negative autocorrelation. This method does not pinpoint the local effects and the

results are highly dependent on the spatial unit (Getis et al 1996, Levine 2002).

2.3.6.2 Getis-Ord Local G

The G; statistic is known to be useful for identifying “hot and/or cold spots” and to
check for heterogeneity in the dataset. G; statistics are the ratio of the sum of values
in neighbouring locations, defined by a given distance, to the sum over all
observations (Getis et al 1992). The Gy(d) is defined by Getis et al (1992) as in the

equation 2.6.

Xjwij(d)x;

Gi(d) = 5%,

, j not equal to i

Equation 2.6

Where {w;jj(d)} is a symmetric one/zero spatial weight matrix with ones for all links
defined as being within distance d of a given i; all other links are zero including the
link of point 1 to itself. A slightly different form of G; was suggested by Ord et al
(1995), Gi(d) originally proposed for elements of a symmetric binary weights matrix,
was extended to variables that do not have a natural origin and to non-binary
standardised weight matrices (AURIN 2016). The statistic for each region i is

defined as equation 2.7.

Xjwij(d)xj— Wix(i)

Gi(d) = s{((n-1)$5,)- W21/ (n—1)}/?’

j#i

Equation 2.7

Where o;; is the spatial weight matrix element, .X; is the variable and d is the distance
threshold from 1. Similarly, if w;jis included and not equal to 0, the standardized G;

statistic is given in equation 2.8.

ijij(d)xj— wWix
s{[(ns1;)- wi?)/(n-1)31/2 7

Gi(d) =

all j

Equation 2.8
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The Getis-Ord G; is a statistic for local spatial association and their individual
components are not related to the global statistic of spatial association (G). The
results firstly produce the Gj; for each area i as a standardised z-value. Getis et al
(1992) argued that inference, as with global measures are based on calculating a
standardised value and comparing this against a null which is assumed to follow a
normal distribution. However a normally distributed null may not be an appropriate
assumption, as Local G; are not independent of each other by design (Ord et al, 1995)
(AURIN 2016).

2.3.7 Spatial Data Modelling

Spatial data modelling in epidemiology involves GIS integration with standard
statistical and epidemiological methods. GIS has the increased spatial statistical
capabilities to accommodate the epidemiological data, perform spatial statistical
analysis, display results — mapping and modelling the patterns that occur over time
and space. These capabilities enable researchers, scientists and academicians to
evaluate the statistical analysis and prediction models. Rogerson (2001) defined a
model as a tool to simplify the relationship between variables for further study. By
studying a model, critical information could be derived to either support or reject the

null hypothesis.

Spatial modelling is undergoing its own shifts of emphasis and bringing with it new
challenges for spatial data analysis as to how to assess correspondence between
model output and real data. Goodchild et al (2004) says that the spatial data analysis
have been developed for, and implemented in, many different contexts. Haining
(1987) used unilateral spatial auto regressions to estimate population and income
multipliers for towns organized in a central place system. Anselin (1988), treating the
field as a branch of econometrics (spatial econometrics), developed a statistical
modelling strategy, with software to implement the methodology that follows the
strategy used in certain forms of time-series econometric modelling. There are
numerous examples of the use of spatial regression modelling in a wide variety of

fields (Goodchild et al 2004).

Haining (1998) mentioned that the variation between observed quantities at different

locations must be taken into consideration in statistical models for spatial data
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through the mean or the correlation structure. Fitting a statistical model to data
enables the potential to further research the parameters. The modelling process starts
with determining a model consisting of signal and noise and probability distribution.
A likelihood function should be employed in the analysis and the joint probability of
data is assumed to have fixed unknown values. In general terms, data modelling can
be distinguished into two areas — descriptive and explanatory. Descriptive modelling
describes the spatial pattern and explanatory modelling is a mathematical expression
involving the predictions. The data in the descriptive modelling involves only one
variable with the locations and is described by a simple functional representation of
variation (it could be as few parameters as possible). Explanatory data modelling
consists of many variables and deals with the variation of covariance and predictors
(Haining 1998). Multi-agent modelling is another system-wide level which allows
the individuals to migrate around the space responding to global and local conditions

in different segments of the space (Goodchild et al 2004).

The aim of the descriptive modelling is to summarize the spatial variation of
response variable without the existence of covariance in the model. The models for
continuous valued variables include trend surface and covariance and semi-
variogram modelling. Auto-logistics, auto-binomial and auto-poisson models are
used to model discrete value area data. Explanatory models describe the interaction
between dependent and independent variables. Some descriptive models can be
extended to exploratory models by including the predictor variables or covariates. In
the modelling, spatial data incorporates the spatial dependence between the data
which improves the power of the model. Initially, an exploratory analysis is
conducted with the aim of identifying the structure of dependence in the data. There
are two basic types of exploratory modelling, which is spatial regression that allows
the incorporation of the spatial effect and those of Global form and those of Local

form (Lopes et al 2007, Fotheringham et al 2000).

2.3.8 Regression Analysis

Regression analysis is a statistical tool to investigate the relationships between
variables. The investigator seeks to ascertain the causal effect of one variable upon

another. The data is assembled to study the underlying variables of interest and
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employs regression to estimate the quantitative effect of the causal variables upon the
variable that they influence. It assesses the “statistical significance” of the estimated
relationships i.e. the degree of confidence that the true relationship is close to the

estimated relationship (Skyes 1992).

A simple linear regression examines the linear relationship between two continuous
variables - one response (y) and one predictor (x). A linear regression line is denoted
in equation 2.9 of the form, where X is the explanatory variable and Y is the

dependent variable.

Y =a+bX
Equation 2.9

The slope of the line is b, and a is the intercept (the value of y when x = 0).When the
two variables are related, it is possible to predict a response value from a predictor
value with better than chance accuracy. Regression provides the line that "best" fits
the data. This line can then be used to either examine how the response variable
changes as the predictor variable changes or predict the value of a response variable
(y) for any predictor variable (x). The multiple linear regression examines the linear
relationships between one continuous response and two or more predictors (Minitab
2016). The multiple linear regression model is given in the equation 2.10 where Y
denotes the “dependent” variable and X, ...,Xx denote the “independent” variables,
with the value of variable X in period t (or in row t of the data set) denoted by Xk.
The error in the model is assumed to be independent without the spatially correlated
measurement error. Other unobserved predictors are also considered to be spatially

uncorrelated.

Yt:bo +b1X1t + ... +kakt
Equation 2.10

The following assumptions must hold when building a linear regression model

(Christensen 1997).
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1) The dependent variable must be continuous. Linear regression is not the
correct method to predict a categorical variable.

1) The data modelling meets the "iid" criterion. That means the error terms
are independent from one another and identically distributed.

ii1) The error term is normally distributed with a mean of zero.

2.3.8.1 Ordinary Least Square (OLS) Regression

OLS is well known among all the regression techniques and it is a global regression
technique. This technique is often mentioned as a straight forward method and is the
proper starting point for all the spatial regression analyses. A global model of the
variables that are needed to be predicted will be provided and this creates a single
equation to represent this process. This is a method to estimate the parameters and is
based on set of assumptions (Bailey et al 1995). The mathematical equation of an

OLS regression model for multiple explanatory variables is given in equation 2.11.

Y= a+ Xy + [X; + B3X3

Equation 2.11

The OLS regression model can be extended to include multiple explanatory variables
by simply adding additional variables to the equation. The form of this model is the
same as with a single response variable (Y), but in the above equation 2.11, Y is
predicted by multiple explanatory variables (X1 to X3) and for n variables it is X1 to
Xn (Hutcheson 2011).

The following assumptions should be met for most precise OLS regression (Minitab

2016):

1) The regression model is linear in the coefficients. Least squares can model
curvature by transforming the variables (instead of the coefficients). You
must specify the correct functional form in order to model any curvature.

i1) Residuals have a mean of zero. Inclusion of a constant in the model will force

the mean to equal zero.
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ii1) All predictors are uncorrelated with the residuals.

iv) Residuals are not correlated with each other (serial correlation), have a
constant variance and are normally distributed.

v) No predictor variable is perfectly correlated (r=1) with a different predictor
variable. It is best to avoid imperfectly high correlations (multicollinearity) as

well.

The common approaches in making sure the above assumptions are met includes
examining residual plots, using lack of fit tests, and viewing the correlation between

predictors using the Variance Inflation Factor (VIF).

The simplicity of the model makes it appropriate as a starting method; however there
are certain limitations for this model. OLS results are only accurate if the data and
the regression model satisfies all the assumptions inherently required by this method.
This method cannot be efficient when variables have same values. The results of an
OLS regression depend on the spatial autocorrelation and statistically significant
spatial autocorrelation of regression residuals almost always indicates one or more
key explanatory variables are missing from the model. The main limitation of the
OLS analysis is that the results cannot be mapped. When misspecification is the
result of trying to model non-stationary variables using a global model (OLS is a
global model), then Geographically Weighted Regression may be used to improve
predictions and to better understand the non-stationarity (regional variation) inherent

in the explanatory variables (ESRI 2013).

2.3.8.2 Geographically Weighted Regression (GWR)

For any spatial analysis, knowledge regarding the extent of spatial association in the
data is very important (Getis et al 1996). There are tools being used such as Moran’s
I and Geary’s C to determine the spatial association of the variables, however it is
necessary to acquire a technique to measure the spatial dependency of local statistic.
Correlation and regression techniques are often used in investigating the
relationships between the events and their influencing factors (Haining 1998, Seng
2005). GWR measures the spatial dependency i.e. non-stationary in a dataset and

summarises relationship between the explanatory variables by local regression
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parameters (Fotheringham et al 2002). It is a multivariate approach to analysing

spatial data (Fotheringham et al 2002, Brunsdon et al 1996).

Mathematical and Statistical Algorithm

GWR technique is easily understood because of its traditional regression based
framework and it is an extension of global multiple regression - OLS. GWR analysis
is always an improvement (Malczewski 2004) over the global regression analysis
(OLS). The mathematical equation for this regression model is given in equation

2.12.

yi = ao(uyvy) + Z k aj (w, vi)xi + Zi
Equation 2.12

Where (u;,v;) represents the co-ordinates of the i-th point in space and ay(u;,vj) is a
realisation of the continuous function ay(u,v) at the point i (Fotheringham et al 1997,
Charlton et al 2006). The global model is considered as a special case of GWR
model, where the parameter surface is assumed to be constant over space. In GWR
model calibration, observed data near to point i have more influence than the data
located farther from i, in the estimation of the ax(u;,vi)’s. The weighted least squares
provide basics for understanding of GWR operation. Algebraically, the GWR

estimator is given in equation 2.13.

au;,v;) = (XW (u, vy) X)) XW (uy, v)y

Equation 2.13

Where W(u;,v;) is an n by n matrix for which the off-diagonal elements are zero and
the diagonal elements denote the geographically weighting if the observed data of i
(Charlton et al 2009). X' W(u;,v;) y is the geographically weighted variance-
covariance matrix and y is the vector of the values of the dependent variable. The
statistical interference of GWR model helps us to determine whether an observed

pattern is due to random variation or a true spatial trend in the local model.
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GWR technique is able to assess error residuals by comparing the measured and
predicted values. Residuals for location without the measured data and the associated
confidence information are provided through the goodness of fit statistics (R-Squared
value). In global regression models, such as OLS, results are unreliable when two or
more variables exhibit multicollinearity. GWR builds a local regression equation for
each feature in the dataset. If the values in the model for a particular explanatory
variable cluster spatially there will be problems with local multicollinearity. If
categories cluster spatially, there is strong risk of encountering local multicollinearity
issues and results in the presence of local multicollinearity are unstable. A regression
model is considered misspecified if it has a missing a key explanatory variable and it
is recommended to identify this variable (using OLS). A model is misspecified if
there is statistically significant spatial autocorrelation among the regression residuals
and/or unexpected spatial variation among the coefficients of one or more

explanatory variables (ESRI 2016).

Testing and Visualization

The results of GWR can be evaluated by monte-carlo simulation test. The tests will
determine the significance level of the GWR model. Visual Representation of
geographical distribution is referred as mapping and disease mapping is the
representation of disease locations and summary/statistics for a specific group of
individuals in their geographical distribution (Lawson et al 2001) and they may
reveal important patterns (Elliott et al 2004). The possibility of visual representation

of the results is an added advantage for GWR technique.

2.3.9 Geographical Information Systems (GIS) in Epidemiology

Use of GIS technology in epidemiological and public health studies gained
momentum after researchers started using it for more than visual representations i.e.
maps. Apart from the statistical analysis, epidemiologists have traditionally used
maps to analyse the relationship between location, environment and disease. GIS,
especially in the last decade emerged as an innovative, important and even essential
tool in epidemiology due to its capabilities in studying the above mentioned

relationships as well as spatial analysis and visualization capabilities. As GIS
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involves a lot of interdisciplinary work, the appropriate methods remain as the
important part of the research. There are a number of famous researches that
contributed in finding out the key issues in the cases of deadly diseases such as
cholera, malaria, rabies, dengue fever and other infectious and non-infectious

outbreaks around the world.

GIS applications in spatial epidemiology and disease surveillance range from, but not
limited to monitoring vector-borne diseases, chronic disease (Beck et al 1994,
Muttitanon et al 2002, Ali et al 2003, Seng et al 2005, CDC GIS 2012), identification
of high risk locations and populations (Bithell 2000, Baum et al 2010), addressing
community health problems such as cancers incidence (McCall et al 2003) and
studying healthcare services accessibilities and planning (Luo et al 2003). A research
survey conducted on the studies of HeVes in the south-western United States
revealed that exploring the virus spreads in an epidemiological aspect with targeted
study helped the public health officials in reducing the risk of infections by
forecasting the locations and their future outbreak occurrence levels. These
researches are categorised as cost effective long run theories (Calisher et al 2006).
Public health studies, disease mapping and monitoring programs started to employ
GIS technology to observe the spatio-temporal patterns and make policy implications

(Perry 1994, Han et al 2003, Wiafe et al 2007).

A research on malaria in Kenya led to an outcome that suggested that the climate
affects the transmission of the disease. This research incorporated climate-based
statistical model and provided a basis for an estimate of the annual morbidity and
mortality burden in children (Snow et al 1998). This was a great outcome for a
rational disease control. Another study used GIS to map three different diseases —
HIV, tuberculosis and malaria in Africa. The study observed the general trends of the
diseases and their impact on the public health services in Africa. The study was
carried out as part of health planning and management strategy and they employed

exploratory data analysis for their study (Tanser et al 2002).

GIS is used as a management and policy implication tool to make decisions on the
allocation of the resources, prioritization of control areas, planning and management

of field operations for African animal ¢trypanosomosis in sub-saharan Africa. Various
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aspects such as abundance, distribution and mapping were studied using GIS. The
research was conducted on local and national level to make sure the policies are
technically feasible (Hendrickx 2001). A Bayesian geo-statistical model has been
developed to predict the intensity of the infection with Schistosoma Mansoni in East
Africa, a parasite disease. To study the morbidity, the study combined the data of
school children and environmental data for the identification of risk factors. It
explained the geographical heterogeneity in infection intensity and developed a
predictive map (Clements et al 2006). Various studies were conducted on the
neglected tropical diseases such as Chagas in South America, human African
trypanosomiasis, leishmaniasis, lymphatic filariasis, onchocerciasis, schistosomiasis,
soil-transmitted helminthiasis and trachoma by Brooker et al (2007). The main aim
of their research was to study different parasite species in varying transmission
settings for an improved understanding of spatial risk factors, behavioural,
demographic and epidemiological risk factors. This research was planned to serve as
a guide for regional and national level integrated disease control. Authors stated that
the geo-spatial techniques needs attention to make them go hand-in-hand with public

health studies (Brooker et al 2007).

Descriptive epidemiological analysis study using GIS of the cholera outbreaks in
Abeokuta, Nigeria by Shittu et al (2010) revealed that the municipal water
consumption was found to be associated with illness. The epidemiological
surveillance data showed a total of one hundred and fifteen cases and 11 deaths with
case fatality rate of 9.6%. The age group of 15 years and above accounted for 68.3%
of the cases and 90.9% of the deaths. The post epidemic environmental investigation
showed progressive contamination along distribution points. The study states that
cholera is still a major cause of morbidity and mortality among youth and ageing

population in Nigeria.

Eisen et al (2010) discussed the advances in mapping and GIS technologies and their
progress in the fields of spatial and space-time modelling in preventing and
controlling emerging vector-borne diseases. The benefits of spatial and space-time
risk modelling mentioned in the study includes identification of risk patterns for
exposure to vectors and vector-borne pathogens, and an improved understanding of

how socioeconomic and environmental factors affect the vectors and influence
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transmission of their associated pathogens. The study has found that the GIS-based
spatial and space-time risk modelling have proven effective tools to develop risk
surfaces (maps) to inform policy makers, control programs, and the public. The study
emphasized on the moving of GIS technology and modelling approaches from the

research arena into operational vector and disease control programs.

A case study by Lessler et al (2016) revealed that the global clustering statistics are
an important tool for spatial analytics that can be used to better understand the
transmission of an infectious disease. The t-statistic presents one approach for
measuring the global clustering and has an easy interpretation. It overcomes
challenges encountered when analysing infectious disease data. The authors stated
that the rt-statistic provides a valuable tool to capture spatial dependence in
epidemiological terms but it should be used alongside existing measures of spatial
dependence, in particular as it provides a qualitatively different tool to other
approaches. Grabowski et al (2014) analysed the dynamics of HIV transmission in
Uganda using spatial clustering statistics technique. The results suggested that the
frequent HIV introductions into communities play a critical role in ongoing HIV
incidence and showed limited spatial clustering of HIV cases outside of households,
multiple circulating HIV viruses within communities, and a significant proportion of

incidence resulting from extra-community partnerships.

Field et al (2015) studied the spatio-temporal aspects of HeV infection in eastern
Australia. The study aimed to identify the key spatial and temporal factors associated
with excretion in flying foxes over a 2300 km gradient from northern QLD to
southern NSW which encompassed all known equine case locations to improve
spillover risk prediction and exposure risk mitigation strategies, and thus better
protect horses and humans. This study employed a generalised linear model to
investigate spatiotemporal associations with HeV detection in 13,968 samples from
27 roosts. A non-linear relationship was identified between the mean HeV excretion
prevalence and five latitudinal regions. The study successfully identified the highest
HeV positivity in the areas with black or spectacled flying foxes and nil to very low
positivity rates occurred in exclusive grey-headed flying fox roosts. Little red flying

foxes were significantly not related to the source of virus. The study also identified a
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consistent and strong relationship between winter seasonality and the virus excretion

in southern QLD, northern NSW and central NSW regions.

Smith et al (2014) investigated the flying fox species density as a possible spatial risk
factor for HeV infection in horses in eastern Australia. The study aimed to inform the
risk mitigation by identifying spatial and environmental risk factors for equine
infection using multiple analytical approaches to investigate the relationship between
plausible variables and reported HeV infection in horses. The study employed
techniques such as spatial autocorrelation, Getis-Ord Gi* and geographically
weighted regression. The study showed black and spectacled flying foxes are
strongly positively correlated to equine case locations, suggesting these species are
more likely a source of infection of HeV for horses. The horse density, climate and
vegetation variables were not found significant risk factors in the study. However,
the authors advised that their GWR model suggests additional unidentified risk

factors exist at the property level.

McCallum’s (2016) research concentrated on developing models that will enable
prediction of flying fox colony dynamics, patterns of high prevalence and intensity of
HeV infection in such colonies, and the subsequent risk of transmission of HeV to
horses. A spatial model of flying fox colony dynamics was developed and it detected
the evidence that ‘pulses’ of HeV activity in south east QLD are associated with
colony size, which in turn can be predicted using remotely sensed satellite data. The
research suggests that the models will be based on data analysis of flying fox colony
sizes through time and also with the information on dynamics of prevalence of

infection at a colony level.

A research on emerging infectious diseases is conducted to understand their effect on
socio-economic, environmental and ecological factors of 315 diseases emerged
during 1940 and 2004 found that there are significant correlations with the above
factors and based on those, it is estimated that the hotspot regions could be identified.
The research concluded with a message that global resources to counter disease
emergence are poorly allocated (Jones et al 2007). Another case study on the
infectious diseases across New Brunswick, Canada and Maine, USA, showed the

effectiveness of surveillance system and cross-border visualization, analysis and
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sharing of the disease information through interactive maps via distributed network.
This project developed service oriented architecture for online disease mapping that
is interoperable. The output of this research is a strong message that the development
of standard health services and spatial data infrastructure can enhance the efficiency
of the health surveillance (Gao et al 2008). A case study on forecasting disease for
increased preparedness talked about the modelling of the diseases based on the
statistical relationships established between past case numbers and environmental
predictors (Myers et al 2000). It mentioned that a wide possible range of
environmental and other factors should be considered as there are high chances that
these relationships would persist into the future. These models can be extremely

powerful and the reason why diseases like cancer adopted statistical route.

The large volume of literature relating to the use of GIS for medical geography
purposes includes but not limited to Albert et al (2000), Cromley et al (2002),
Bazemore et al (2003), Jerrett et al (2003), Kaushal et al (2003), and Busgeeth et al
(2004). The last aforementioned studied the epidemiological issues in conjunction
with GIS. Although there are several GIS applications for epidemiological
applications (Colak 2005, Ulugtekin et al 2007), there is always a need for proper
model which can investigate the significant factors of the disease. Disease mapping,
location analysis, spatial statistics and modelling are very well supported by GIS, but
there is pressing need to develop an analysis tool that can appropriately conducts

fore-epidemiological research and analysis (Ogbonna 2012).

2.3.10 Summary

The ability of GIS to integrate and manipulate complex data has emerged it as a
powerful tool in epidemiological studies. Use of GIS technology in epidemiological
and public health studies gained momentum after researchers started using it for
more than visual representations i.e. maps. GIS in epidemiology has been
tremendous in understanding the disease in a different dimension. With the
assistance of this powerful tool, the disease clusters could be identified and other
influencing factors such as environmental, socio economic and climatic could be
linked to the diseases. While geographical visualization serves the need to reveal the

spatial patterns, the statistical awareness in GIS determines the significance of these
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patterns. GIS technology is being widely used for disease monitoring, research
hypotheses generation and identifying populations at risk for its high capability in
data interpretation, manipulation and modelling (Seng et al 2005, Gupta et al 2003).
It serves as an effective tool for spatial analysis, modelling and visualisation of
epidemiological and environmental data; and recent studies have shown significant
and increasing use of GIS applications in public health and epidemiology (Shittu et al
2010, Busgeeth et al 2004 and Gupta et al 2003). The powerful analytical modelling
and mapping capabilities of GIS can serve as a good decision-support and decision-
making tool for disease investigations, monitoring, simulation, predictions,

preventions and resource allocations (Davenhall 2002).

In summary, spatial and ecological data together with epidemiological data can
enable a new potential to analyse the variables which play an important role in
disease transmission and discovering underlying spatial patterns. This is essential for
health service planning, policy implications, decision making and ongoing disease
surveillance. GIS in epidemiology enables the researchers to isolate the high disease
prevalence areas, identify the population at-risk, resource and budget allocations In
the case of rare disease outbreaks like HeV, GIS would be perfect as a tool to
identify the main causes (geographical, environmental and other factors) of outbreaks
for disease monitoring. This would help in developing prediction models and
generating warning systems in the study area. The next chapter discusses the
epidemiology data and study area for the research of HeV outbreaks investigation in
Australia. A detailed methodology from data preparation, integration and
management to spatial analysis, modelling, mapping and predictions is covered in

chapter three.
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3. Chapter Three - Methodology

3.1 Introduction

This chapter details the study area chosen and the data collected to study the HeV
outbreak events. Data plays a major role in any information systems related research.
This section provides all the necessary information in regards to the data collected
from various resources, how it was manipulated and managed to achieve the results.
The spatial analyses, modelling and visualization techniques employed in this study
are discussed in detail in this chapter. The methodology used to accomplish the
research aim, questions and objectives described in chapter 1 are discussed in the
following sections. In general, this chapter covers the spatial techniques and

regression analysis of HeV outbreaks and its influential factors in the study area.

3.2 Study Area

The study area for this research is limited to south east Queensland (SEQ), Australia.
The area is chosen based on the data resources available and the time frame for a
detailed study on the HeV outbreaks and its influential factors. SEQ is a
geographical, political and administrative region of the Queensland State, Australia
(Department of Environment and Energy 2013). The population of SEQ is estimated
at 3.4 million, which is majority of the Queensland state’s population (Queensland
Treasury 2011). SEQ extends 240 kms from Noosa in the north to the Gold Coast,
New South Wales border in the south, and 140 kms west to Toowoomba. The area
covers up to 22,420 sq. kms and consists of 11 local government areas. Figure 3.1

shows the Queensland Map with an inset map showing the SEQ region.

78 | Page



Queensland Map

Legend
ﬂ | Queansland

L] 125 250 S0 Milam eiers F
1 i i i 1 i 1 1 1 I SEI:I

Figure 3.1: Map of Queensland with an inset map showing SEQ region.

SEQ is considered as the economic, social and cultural hub of Queensland, which has
been a subject to sustained high levels of growth since the early 2000s (Department
of Infrastructure, Local Government and Planning (DILGP) 2017).

According to the DILGP (2017), the South East Queensland Regional Plan includes
the local government areas of’:
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1) Brisbane City Council

11) City of Gold Coast Council

1i1) Ipswich City Council

v) Lockyer Valley Regional Council
V) Logan City Council

Vi) Moreton Bay Regional Council
vil)  Noosa Shire Council

viii))  Redland City Council

iX) Scenic Rim Council
X) Somerset Regional Council
xi) Sunshine Coast Council

xii))  Toowoomba Regional Council (Part of)

The major cities in SEQ region include Brisbane, Gold Coast and Sunshine Coast.
The Toowoomba city is included in both SEQ region and within Western Downs
region due to its importance in both regions as a gateway city providing access to the
west of the state. The Toowoomba city was excluded from the study due to the
availability of limited data. Some government entities (State Library of Queensland,
Queensland Water Information etc.) does not include Toowoomba city as part of
SEQ region in their data sets regardless of its inclusion in the regional plan (2009),
which made it challenging to obtain the relevant data with Toowoomba city included
for the study. Figure 3.2 shows the map of the study area and the local councils in the

region.
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Study Area: South East Queensland
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Figure 3.2: Map of the study area and the local councils in the region.

3.3 Data Collection, Processing and Integration

3.3.1 Data Collection

The data required for this research was collected from various sources. Once the data
was collected, it was manipulated and integrated into the GIS system. Spatial data
usually consists of administrative boundaries, point/vector data (longitude and
latitudes), remote sensing imagery (raster data) and topographic maps. This research
used a combination of both vector and raster datasets. The data without any spatial
reference to it is known as aspatial data. Table 3.1 summarizes the major data sets

used in this research.
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Table 3.1: Summary of the major data sets obtained.

Data Format Source Year Obtained
HeV Outbreak Excel Queensland Centre 2014 — Data
Incidents for Emerging Sharing
Infectious Diseases Agreement
Registered Excel Queensland Centre 2014 — Data
Equine Properties for Emerging Sharing
Infectious Diseases Agreement
(DAFF)
Flying Foxes Data Excel Department of 2014 — Data
Environment and Sharing
Heritage Agreement
Protection,
Queensland
Queensland Shapefile Queensland 2014
Administrative (Vector) Government Data
Boundary
Queensland Local Shapefile Queensland 2014
Government (Vector) Government Data
Areas
Major Vegetation Raster Department of the 2015
Groups (Scale: 1:250k) Environment and
Energy
Major Vegetation Raster Department of the 2015
Subgroups (Scale: 1:250k) Environment and
Energy

The vegetation data obtained consists of the raster data for the whole of Australia.
The major vegetation groups (MVG) and major vegetation subgroups (MVS) data for
the SEQ has been extracted from the above datasets. Department of Environment and
Energy states that the information is based on the data in the National Vegetation
Information System, other mapped vegetation information, expert advice and key
references in regards the dataset’s accuracy. The grid size was calculated by default
in ArcGIS ‘Spatial Analyst’ during the analysis based on the original resolution.
ESRI highly recommends the usage of the in-built grid size calculator formula for the
third-party datasets. Apart from the major data sets defined above, the other data
(aspatial) such as foraging range, pregnancy/birth periods and other relevant
information has been obtained from Wildlife Queensland (2016) and has been
appropriately cited where relevant. Figure 3.3 shows the flowchart of the GIS

database creation for the research.
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Figure 3.3: GIS database creation workflow.
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3.3.2 Data Processing and Integration

This section details the data processing and integration steps undertaken for the
study. The HeV incident data, flying fox data and equine data used in this are

explained.

HeV Incidents Data

In total, 11 outbreak incidents occurred between the years 2006-2011 were
considered in this study. An additional 3 outbreak events that occurred in the year
2012 were included in the vegetation analysis. Table 3.2 shows the outbreak
incidents studied. The incident that occurred in the year 1994 in the suburb of
Brisbane was not included in the study considering the relevance of the current flying

fox data to it.
Figure 3.4 shows the HeV outbreak events in the study area considered for the

research. For a full list of outbreak events provided by Queensland Centre for

Emerging Infectious Diseases, see Appendix 1.

Table 3.2: HeV outbreak incidents considered in the study.

Year of Occurrence Month of Occurrence Place of Occurrence
2006 June Peachester
2008 June Redland Bay
2010 May Tewantin
2011 June Logan Reserve
2011 June park Ridge
2011 June Boonah-Mt. Alford
2011 June Beaudesert-Biddaddaba
2011 July Beaudesert-Kerry
2011 July Boondall
2011 August Gold Coast-Hinterland
2011 October Beachmere
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Figure 3.4: HeV outbreak events in the study area.

Flying Fox Data

The flying fox data contained detailed information about the size of each camp,
species information and the type of the roosting site. There are approximately, 5,200
roosting sites in Queensland. The flying fox camps were categorized into six types -
permanent continuous use, permanent seasonal use, temporary occupied, temporary
unoccupied, abandoned and destroyed. Abandoned and destroyed roosting sites were
excluded from the study with most of sites having no flying fox population. Based on

our three-year observation, local foxes remain in the same camp site all year round.
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Nevertheless, the data was carefully selected and edited for the analysis making sure
there is a presence of all three species in each site in significant numbers and

reflecting the occupancy at the time of the incidents.

Table 3.3 gives a detailed description of the above categories of the flying fox

roosting site status.

Table 3.3: Flying Fox roosting sites status description (Source: EHP 2014).

Permanent continuous use 90% of all records include the
presence of flying foxes
Roost has been known for 2
years or more

Seasonal 80% of all records include the
presence of flying foxes
Roost has been known for 2
years or more
Temporary Occupied Roost doesn’t satisfy
permanent classification. Most
recent record includes the
presence of flying foxes
Unoccupied Roost doesn’t meet
permanent/abandoned/
destroyed category. Most
recent record has absence of

flying foxes
Abandoned - Roost on database but no
record of use in the last 5
years
Destroyed - This would be manually

entered based on the
vegetation being destroyed
either legally or illegally

Figure 3.5 shows the flying fox roosting sites in the study area. Figure 3.6 shows the
statuses of the flying fox roosting sites present in the study area. For detailed

information on the flying fox roosting sites see Appendix 1.
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Figure 3.5: Flying fox roosting sites by species in the study area.
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Flying-fox Roosting Sites in the Study Area

Figure 3.6: Flying fox roosting site statuses in the study area.
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Equine Data

There are 16,986 registered equine properties in the study area. Figure 3.7 shows the

registered equine properties in the study area.

Registered Equine Properties

o 125 25

Figure 3.7: Registered equine properties in the study area.

As there were a total of 16,986 registered equine properties in the study area, a
sample was chosen for the study. Using the geoprocessing tools in ArcGIS - buffer
and clip, the data of the properties within 10 Km range from the outbreak events in
the study area was extracted. There were 4,082 registered properties in this range. A
further sample of 200 random properties (5% approximately; 1:13 outbreak event
and equine property ratio) were selected across the study area for a detailed study.

Figure 3.8 shows the registered equine properties sample chosen for a detailed study.
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Figure 3.8: Registered equine properties sample.

Vegetation Data

The raster data sets of major vegetation groups and major vegetation subgroups were
obtained for Australia. Using geoprocessing tool — extract by mask, the raster data
sets for SEQ were cropped according to the study area boundary. MVG data set has
been used for referencing purposes whereas MVS data set has been used for a
detailed vegetation study. Figure 3.9 (a) and (b) shows the major vegetation groups
and major vegetation subgroups in the study area. For full legend of both MVG and
MVS of the data sets, see Appendix 1. There are 20 major vegetation groups and 28
major vegetation subgroups in the study area. The full list of these groups and

subgroups is included in Appendix 1.
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Figure 3.9: MVG and MVS in the study area.

Data Processing of Aspatial Data

Each flying fox roosting site (spatial data) in the study area was assigned with
individual species density, average foraging range of the camp, approximate
pregnancy/birth period of the camp and an incident rate (aspatial data). In this way,
the aspatial data was linked to the spatial data for analysis. The flying fox species
density, average foraging range and the pregnancy/birth period statistics (average
pregnancy plus lactation period at individual roost) were calculated manually for
each roosting site using the flying-fox population and species attribute data. The
information used to calculate the average foraging range and pregnancy period for
the analysis are based on the flying-foxes fact sheet from wildlife preservation
society of Queensland (Wildlife Queensland 2016, see section 2.2.3). Each flying fox
roosting site in the study was assigned an ‘incident rate’ for the regression analysis.
This was calculated using the number of incidents present with in the 20 kms range

of each site. To view the calculated data see Appendix 1.
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Flying foxes species density was calculated using the equation 3.1.

Individual species population at each roost
Species Density = ( > * 100
Total number of flying foxes in the study area

Equation 3.1
The average foraging distance (in kms) of each site was calculated by equation 3.2.

Avg.Foraging Range
= ((Species 1 density * their avg. foraging range)
+ (Species 2 density * their avg. foraging range)
+ (Species 3 density * their avg. foraging range))/3

Equation 3.2

The average pregnancy period (in days) of each site was calculated using equation

3.3.

Avg.Pregnancy Period
= ((Species — 1 density
* their pregnancy and lactation period) + (Species
— 2 density * their pregnancy and lactation period)
+ (Species — 3 density
* their pregnancy and lactation period))/3

Equation 3.3
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The incident rate for each roosting site was calculated using equation 3.4.

Incident Rate

B ((no. of incidents in the 20 kms range) * (flying fox population density))
- 11

* 100

Equation 3.4

Data Verification

The quality of the data was validated through filtering the null values, duplicates and
any repeats. For spatial data, ArcGIS was used to verify the above and for aspatial
data, Microsoft Excel was used. Data aggregation was performed at various levels
depending on the application in the study. The spatial data was appropriately
projected using ArcGIS. The maps were projected using ‘The Geocentric Datum of
Australia (GDA)’. The raster data sets of the imagery were geo-referenced according

to the ground control points.

3.4 Flying Fox Roosting Site Visits

It is important to have knowledge on the flying foxes, their roosting sites and their
preferred living conditions to carry an in-depth analysis. To gain some additional
knowledge and do some fact checking, two roosting sites in the study area were
visited. The names of the sites are Loders Creek and Cascade Gardens. They are
located on the Gold Coast, Queensland. Site 1 — Loders Creek is a natural bat colony

and Site 2 — Cascades Gardens colony is a part of flying fox revegetation project.
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Site 1 — Loders Creek

Loders Creek is a suburban area of Southport. The flying fox colony at the Loders
Creek consists of all three species that occurs in the study area. Figure 3.10 shows a
view of the site 1 location and figure 3.11 shows the statistics of the Loders Creek
flying fox colony obtained from the Department of the Environment’s National

Flying Fox Monitoring Viewer (2017).

Figure 3.10: Flying fox colony location - site 1.
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Figure 3.11: Loders Creek flying fox colony statistics (Source: Department of the

Environment 2017).

Loders Creek flying fox colony is considered large with an estimated 30,000 flying
fox population. Recently, the residents of the Southport has complained to the Gold
Coast City Council as the colony being a nuisance to the area with constant noise and
bat dropping in the yards and driveways. However, the colony is yet to be relocated

due to its size (Gold Coast Bulletin 2016). Figure 3.12 shows the flying foxes in the
Loders Creek.
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Figure 3.13: Loders Creek flying fox colony view.

Figure 3.13 shows a distant view of the flying fox colony at Loders Creek. The flying
foxes in this colony are spread over a wide area on both tall and short vegetation. The
vegetation appeared to be rainforest type with a great access to water (alongside the

creek).
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Figure 3.14: A closer view of the flying foxes in the Loders Creek colony.

Figure 3.14 shows a closer view of the flying foxes in the Loders Creek colony
which was backed on to a residential property. There were a lot of droppings of these
flying foxes in the backyard of the property. There was an abundance of food sources

available in the vegetation, mainly the native fruiting trees. A sample count of these
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trees in an area of 200 square metres has revealed a total of 31 native fruiting trees in

this colony location.

Site 2 — Cascades Gardens

Cascades Gardens fluing fox colony is part of the award-winning Cascades Gardens
Flying Fox Revegetation Project 2004-2006. It is located on the southern end of the
Surfers Paradise in a popular park. The colony consists of two species that occurs in
the study area. In recent years the roosting site had deteriorated to such a degree that
many individuals were starting to relocate to the public recreation areas of the park.
This project was created and administered by the Bat Rescue team (Bat Rescue Inc.

2017).

A grant of $16,000 was obtained through Threatened Species Network for on ground
works. Additional support was received from Jupiters Ltd, Wildlife Preservation
Society QLD, Queensland Parks and Wildlife Service (Southern Region), Gold Coast
City Council and DDW Fauna. The total value of the project, including the
additional support was approximately $100,000 (Bat Rescue Inc. 2017).

A GOLD GECKO AWARD was received by Bat Rescue Gold Coast Branch for this

project from the Gold Coast and Hinterland Environment Council in December 2006.
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Figure 3.15: Cascades Gardens flying fox colony statistics (Source: Department of

the Environment 2017).

Figure 3.15 shows the Cascades Gardens flying fox colony statistics provided by the
Department of the Environment’s National Flying Fox Monitoring Viewer. The
colony had a resident population of approximately 5,000 flying foxes including
Black and Grey-headed flying fox species. But, in the recent years the roosting site
had deteriorated to such a degree that many of these individuals were starting to

relocate to the public recreation areas of the park (Bat Rescue Inc. 2017).
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Figure 3.16: A view of flying foxes in the Cascades Gardens colony.

Figure 3.16 shows a view of the flying foxes in the Cascades Gardens colony. The
flying foxes were widely spread in several areas of the park as mentioned by the Bat
Rescue Inc. (2017). Some flying foxes preferred tall vegetation and some were
spotted in the dense vegetation. A few flying foxes in this colony were also spotted
on very low/shorter type of vegetation. Figure 3.17 shows the flying foxes in dense

vegetation at the Cascades Gardens.
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Figure 3.17: Flying foxes spotted in the dense vegetation at the Cascades Gardens.
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Figure 3.18: Vegetation at the Cascades Gardens flying fox colony.
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Figure 3.18 shows the vegetation that is present at the Cascades Gardens flying fox

colony. It is mainly the rainforest vegetation; however there was some cleared

vegetation at other parts of the park.

Figure 3.20: Native Fruits at the Cascades Gardens colony.
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Figure 3.19 shows the water catchment adjacent with the Cascades Gardens colony.
Figure 3.20 shows the native fruits at the colony. There was an abundance of food
sources available for the flying foxes in this colony. A sample count of the native
fruiting trees in an area of 200 square metres has revealed a total of 44 trees in this

colony location.

3.5 Spatial Analyses Methods

This section discusses the spatial analyses methods used to test the hypothesis

mentioned in section 1.4.

3.5.1 Buffer Analysis

Buffer analysis is a simple yet important spatial technique used to determine the area
or features covered within a specified location of a geographic feature. It is available
in the ‘Analysis Toolbox’ under the ‘Proximity Tools’ in ArcGIS. It creates buffer
polygons around input features to a specified distance. The output buffer features are
created from the buffer offsets created by the buffer routine traverses of each input

feature's vertices (ESRI12016).

ESRI (2017) mentioned that the important feature of the buffer tool is the Method
parameter which determines how the buffers are constructed. Euclidean and geodesic
are the two basic methods available for constructing buffers. The Euclidean buffers
measure distance in a two-dimensional Cartesian plane. It calculates the Euclidean
distance between two points on a flat surface. This method is the most commonly
used and works well for analysing distances around features in a projected
coordinated system concentrated in a relatively small area. In a projected coordinate
system with areas where distances and the shape of features are distorted, the
features are more accurate near the origin of the projection (the centre of the
state/zone). For a dataset with both low and high distortion areas, the Euclidean
buffers will be more accurate in the low distortion areas and less accurate in the high

distortion areas.
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Geodesic buffers refer to the actual shape of the earth i.e. an ellipsoid or a geoid. In
this method, the distances are calculated between two points on a curved surface as
opposed to the Euclidean buffers. These are suitable when the region is fairly
large/even such as the ‘whole globe’ as the features will be more dispersed. It is also
more suitable method id the spatial reference of the input features distorts distances.
The geodesic buffers are best visualized when viewed on a three-dimensional globe.
The ‘method’ parameter determines the type of buffers created. Planar is the default
option in ArcGIS, which determines the method to use based on the coordinate
system of the input features. A gridded coordinate system creates Euclidean buffers
and a geographical coordinate system creates geodesic buffers if the linear units
(metres, feet etc.) are specified (ESRI 2017). The Syntax of the buffer analysis is
described in the Table 3.4.

Table 3.4: The syntax of the buffer analysis in ArcGIS (Source: ESRI 2017).

Parameter Explanation Datatype
Input Features The feature layer or feature class to be Feature Layer
(Required) buffered.

Output Feature Class  The feature class that will be created and ~ Feature Class
(Required) to which the resulting features will be

written.
Distance [value or The distance used to create buffer zones Linear unit
field] (Required) around Input Features. Either a value ora  Field

numeric field can be used to provide

buffer distances.

If a negative buffer distance is specified,

the buffer offsets will be generated inside,

instead of outside, of the input features.

This is only valid for polygon feature

classes.

If the distance units are not specified, or

entered as 'Unknown', the units of the

Input Features are used (or if the Output

Coordinate System environment has been

set, its units will be used).

Side Type (Optional)  Options to buffer to one side of a line or  String
outside polygons
e FULL - A buffer will be generated

on both sides of the line. If the
input is a polygon the result will
include the area inside the
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End Type (Optional)

Dissolve Type
(Optional)

Dissolve Field(s)
(Optional)

polygon. This is the default.
LEFT - the buffer will be
generated on the LEFT side of the
line.

RIGHT - the buffer will be
generated on the RIGHT side of
the line.

OUTSIDE _ONLY - the area
inside of the input polygon
features will excluded from the
resulting buffer.

For lines, the shape of the buffer at the
line end points.

ROUND—End will be in the
shape of a half circle. This is the
default.

FLAT—Creates rectangular line
endings with the middle of the
short side of the rectangle
coincident with the end point of
the line.

Specifies whether a dissolve will be
performed to remove buffer feature
overlap.

NONE—Individual buffer for
each feature is maintained,
regardless of overlap. This is the
default.

ALL—Dissolves all the buffers
together into a single feature and
removes any overlap.
LIST—Dissolves by a given list
of fields.

List of field(s) for the dissolve. Buffer

polygons that share the same set of values

in their Dissolve Field(s) will be

dissolved together.

String

String

Field

Buffer analysis was primarily employed in this study for testing Hypothesis 1 (see

Section 1.4), which is to understand the correlation between the roosting sites and the

HeV outbreak events in the study area (Burnham et al 2015). It was utilised to

examine and visualise the relationship between individual flying fox species

pregnancy/birth periods and the incidents. It was also employed secondarily in the

vegetation study to highlight the 10 and 20 kms area from the flying fox roosting

sites, equine properties and outbreak events for an in-depth analysis. The Euclidean
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buffer was used as the method parameter in this study. The data used has a gridded
coordinate system (GDA) and the size of the study area is relatively small, which are

both suitable for Euclidean buffer method.

3.5.2 Spatial Analyst Tools

The spatial Analyst extension in ArcGIS version 10.3 provides a set of spatial
analysis and modelling tools for raster (cell-based) and vector (feature) data. ESRI
(2016) has broken down the capabilities of Spatial Analyst into categories of related
functionality. Identifying the category based on the need will help in employing the
particular tool to use. There are a few ways to access the Spatial Analyst
functionality in ArcGIS. It can be accessed using the tool dialog box, Python or a
Model (ESRI 2016).

The list of categories available in ‘Spatial Analyst’ is:

1) Conditional

i1) Density

1i1) Distance

1v) Extraction

V) Generalization
Vi) Groundwater
vii))  Hydrology

viil)  Interpolation
1X) Local

X) Map Algebra
x1) Math (general)
xil) ~ Math Bitwise
xiil)  Math Logical
xiv)  Math Trigonometric
xv)  Multivariate
xvi)  Neighbourhood

xvii) Overlay
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xviii) Raster Creation

xix)  Reclass

xxX)  Solar Radiation

xxi)  Segmentation and Classification
xxii) Surface

xxiii) Zonal

‘Extraction’ category was utilised in this study for the food source vegetation
analysis of the flying foxes to test Hypothesis 3 (see Section 1.4). This toolset
allows extracting a subset of cells from a raster by either the cells’ attributes or their
spatial location. The cell values for specific locations can also be obtained as an
attribute in a point feature class or as a table. Table 3.5 provides summary of the

tools available in the ‘Extraction’ category of the Spatial Analyst Tools.

Table 3.5: Summary of the tools in the Extraction Toolset — Spatial Analyst (Source:

ESRI 2016).

Tool Description
Extract by Extracts the cells of a raster based on a logical query.
Attributes
Extract by Extracts the cells of a raster based on a circle.
Circle
Extract by Extracts the cells of a raster that correspond to the areas
Mask defined by a mask.
Extract by Extracts the cells of a raster based on a set of coordinate
Points points.
Extract by Extracts the cells of a raster based on a polygon.
Polygon
Extract by Extracts the cells of a raster based on a rectangle.
Rectangle
Extract Multi Extracts cell values at locations specified in a point feature

Values to Points

Extract Values

to Points

class from one or more rasters and records the values to the
attribute table of the point feature class.

Extracts the cell values of a raster based on a set of point
features and records the values in the attribute table of an
output feature class.
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Sample Creates a table that shows the values of cells from a raster,
or set of rasters, for defined locations. The locations are
defined by raster cells or by a set of points.

The input rasters can be two-dimensional or
multidimensional. The structure of the output table changes
when the input rasters are multi-dimensional.

‘Extract by Attributes’ and ‘Extract by Mask’ tools from the above toolset were used
in this study for the vegetation analysis as they are very useful in extracting
information from raster data sets. ‘Extract by Mask’ operation was employed to
extract the major vegetation groups and subgroups information for the study area
from the original dataset. ‘Extract by Attributes’ tool was used to identify the food
sources from the vegetation subgroups data of the flying fox species from the dataset
extracted earlier. Using the query builder, the food sources were isolated using their

‘ID’ and ‘IN’ clause was used for extracting multiple attributes at once.

3.5.3 Spatial Autocorrelation

Global Moran’s I for spatial autocorrelation tool in ArcGIS was used to measure the
spatial autocorrelation in this study. It is available in the ‘Analysing Patterns Toolset’
in ArcGIS. Spatial clustering serves as a reflection of risk condition of a disease,
however, it may be affected by common unobserved factors/variables (Lawson et al
2001) and 1s best for the initial analysis to detect and analyse the clusters (Waketfield
et al 2001) at the global level across the study area. The autocorrelation is measured
by the spatial autocorrelation tool based on both feature locations and feature values
simultaneously. For a given set of features and an associated attribute, the tool
evaluates whether the pattern is clustered, dispersed or random. The tool gives the
Moran’s I Index value and a z-score and p-value to evaluate the significance of the

Index (ESRI2017).

The syntax of the spatial autocorrelation tool in ArcGIS is described in table 3.6.
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Table 3.6: Syntax of the Spatial Autocorrelation tool in ArcGIS (Source: ESRI

2017).
Parameter Explanation
Input Feature Class The feature class for which spatial
autocorrelation will be calculated.
Input Field The numeric field used in assessing spatial
autocorrelation.

Conceptualization of Specifies how spatial relationships among
Spatial Relationships  features are defined.

e INVERSE DISTANCE - Nearby
neighbouring features have a larger
influence on the computations for a
target feature than features that are far
away.

e« INVERSE DISTANCE SQUARED -
Same as INVERSE DISTANCE except
that the slope is sharper, so influence
drops off more quickly, and only a
target feature's closest neighbours will
exert  substantial  influence  on
computations for that feature.

e FIXED DISTANCE BAND - Each
feature is analysed within the context of
neighbouring features.

e ZONE OF INDIFFERENCE - Features
within the specified critical distance
(Distance Band or Threshold) of a
target feature receives a weight of one
and influence computations for that
feature.

e« CONTIGUITY EDGES ONLY - Only
neighbouring polygon features that
share a boundary or overlap will
influence computations for the target
polygon feature.

e CONTIGUITY EDGES CORNERS -
Polygon features that share a boundary,
share a node, or overlap will influence
computations for the target polygon
feature.

GET SPATIAL WEIGHTS FROM FILE -
Spatial relationships are defined by a specified
spatial weights file. The path to the spatial
weights file is specified by the Weights Matrix
File parameter.
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Distance Method

Standardization

The spatial autocorrelation tool was primarily used in testing the Hypothesis 2 (see
Section 1.4). Inverse distance conceptualization of spatial relationships was
employed to study the clustering of the flying fox species in the study area. It was

secondarily employed to test the autocorrelation among the Ordinary Least Squares

Specifies how distances are calculated from
each feature to neighbouring features.

e EUCLIDEAN DISTANCE - The
straight-line  distance between two
points (as the crow flies)

e MANHATTAN DISTANCE - The
distance between two points measured
along axes at right angles; calculated by
summing the (absolute) difference
between the x- and y-coordinates

Row  standardization is recommended
whenever the distribution of your features is
potentially biased due to sampling design or an
imposed aggregation scheme.

e NONE - No standardization of spatial
weights is applied.

e ROW - Spatial weights are
standardized; each weight is divided by
its row sum (the sum of the weights of
all neighbouring features).

(OLS) and Geographically Weighted Regression (GWR) analysis residuals.

The results of the spatial autocorrelation tool are interpreted within the context of
null hypothesis. The null hypothesis states that the attribute being analysed is
randomly distributed among the features in the study area. When the p-value of the

analysis is statistically significant, the null hypothesis can be rejected.

The interpretations of the spatial autocorrelation results are:

e The p-value is not statistically significant — The null hypothesis may be
accepted and the spatial distribution of feature values is a result of random
spatial processes.

e The p-value is statistically significant and the z-score is positive — the null

hypothesis may be rejected and the spatial distribution of high/low values in
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the data set is more spatially clustered than expected if underlying spatial
processes were random.

e The p-value is statistically significant and the z-score is negative — the null
hypothesis may be rejected and the spatial distribution of high/low values in
the data set are more spatially dispersed than expected if underlying spatial

processes were random.

3.5.4 Kernel Density

The kernel density tool is available in the density tools category in the Spatial
Analyst Toolbox ArcGIS (see Section 3.5.2). It is referred as kernel density
estimation (KDE) technique. The KDE technique is well-suited for analysing data
visually (Chainey 2010) and serves as a good spatial technique to examine the
relationships. It calculates magnitude-per-unit area from point or polyline features
using a kernel function to fit a smoothly tapered surface to each point or polyline.
The default search radius or bandwidth is calculated based on the spatial

configuration and the number of input points.

The algorithm used by ArcGIS 10.2.1 or above versions to calculate the default
search radius or bandwidth for the analysis is as follows (ESRI 2017):

e (alculation of the mean centre of the input points.
e (alculation of the distance from the (weighted) mean centre for all points.
e (alculation of the (weighted) median of these distances, Dm.

e C(Calculate the (weighted) Standard Distance, SD.

e Application of the equation 3.5 to calculate the bandwidth.

SearchRadius = 0.9 * min (SD, fﬁ * Dm) * n~02

Equation 3.5
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Where:
e SD is the standard distance
e D, is the median distance
e n is the number of points if no population field is used, or if a

population field is supplied, n is the sum of the population field values

The KDE technique was employed in this study to establish the primary relation
between the flying fox species density and the incidents as part of testing the
Hypothesis 2 (see Section 1.4) of the study. Using this technique, density hot spot
maps were created for each species in the study area. The bandwidth for the KDE
analysis for each species was set at 0.4598 degrees, which was calculated by the
default search radius (bandwidth) algorithm of ArcGIS. Different bandwidth radii
were tested (0.22 and 0.68 degrees) in generating the density hot spots but the default
density calculated by ArcGIS yielded the best output with no errors such as missing

neighbours (ESRI 2017).

The syntax for the KDE technique in ArcGIS is described in table 3.7.

Table 3.7: Syntax of the Kernel Density tool in ArcGIS (Source: ESRI 2017).

Parameter Explanation Data

Type

In features The input features (point or line) for which to calculate Feature
the density. Layer

Population Field denoting population values for each feature. The Field
field population field is the count or quantity to be spread
across the landscape to create a continuous surface.

Values in the population field may be integer or floating

point.
Cell size The cell size for the output raster dataset. Analysis
(Optional) Cell Size

This is the value in the environment if specifically set. If
the environment is not set, then cell size is the shorter of
the width or height of the output extent in the output
spatial reference, divided by 250.

112 |Page



Search The search radius within which to calculate density. Double
radius Units are based on the linear unit of the projection of the
(Optional)  output spatial reference.
The default search radius (bandwidth) is computed
specifically to the input dataset using a spatial variant of
Silverman's Rule of Thumb that is robust to spatial
outliers (that is, points that are far away from the rest of
the points).

3.5.5 High/low clustering

The high/low clustering tool measures the degree of clustering of either high or low
using the Getis-Ord General G statistic. It is available in the ‘Analysing Patterns
Toolset’. This tool returns four values: Observed General G, Expected General G, z-
score, and p-value. Global statistic such as Getis-Ord General G assesses the overall
pattern and trend of the data. It is an appropriate method if the values are fairly
evenly distributed across the study area. As an inferential statistic tool, the results
produced are interpreted within the context of null hypothesis, which states that there
is no spatial clustering of feature values. When p value is statistically significant, the
null hypothesis can be rejected. In case of null hypothesis rejection, the sign of the Z
score becomes important. If the result is a positive Z score, it indicates that the high
values are clustered together. If the result is a negative Z score, it indicates that the

low values are clustered together.

This tool was employed for testing Hypothesis 3 (see Section 1.4), which studied the
food source vegetation of the flying foxes. It was used to study the clustering of the
food source vegetation in the study area. Inverse distance conceptualization of spatial
relationships was used in this analysis. Table 3.8 shows the syntax of the high/low

clustering tool in ArcGIS.
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Table 3.8: Syntax of the High/low Clustering tool in ArcGIS (Source

Parameter

Input Feature Class

Input Field

Generate Report
(Optional)

Conceptualization of
Spatial Relationships

Distance Method

Standardization

Distance Band or
Threshold Distance
(Optional)

Explanation

The feature class for which the General G
statistic will be calculated.

The numeric field to be evaluated.

NO REPORT - No graphical summary will
be created. This is the default.

GENERATE REPORT - A graphical
summary will be created as an HTML file.
Specifies how spatial relationships among
features are defined.

o INVERSE DISTANCE

o INVERSE DISTANCE SQUARED

o FIXED DISTANCE BAND

o ZONE OF INDIFFERENCE

e CONTIGUITY EDGES ONLY

o CONTIGUITY EDGES CORNERS

e GET SPATIAL WEIGHTS FROM
FILE

Specifies how distances are calculated from
each feature to neighbouring features.

o EUCLIDEAN DISTANCE
e MANHATTAN DISTANCE

Row standardization is recommended
whenever the distribution of your features is
potentially biased due to sampling design or
an imposed aggregation scheme.

e« NONE
¢« ROW

Specifies a cut-off distance for the inverse
distance and fixed distance options. Features
outside the specified cut-off for a target
feature are ignored in analyses for that
feature.

- ESRI 2016).

Data

Type

Feature

Layer

Field

Boolean

String

String

String

Double
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The null hypothesis for both the High/Low Clustering (Getis-Ord General G) and the
Spatial Autocorrelation (Global Moran's I) tool is complete spatial randomness
(CSR). The values are randomly distributed among the features in the dataset,
reflecting random spatial processes at work. However, the interpretation of z-scores
for the High/Low Clustering tool is very different from the interpretation of z-scores
for the Spatial Autocorrelation (Global Moran's I) tool (ESRI 2017). Table 3.9 shows

the difference in the interpretation of these results.

Table 3.9: The Difference in the interpretation of High/Low Clustering and Spatial
Autocorrelation tools (Source: ESRI 2017).

Result High/Low Spatial Autocorrelation

Clustering

The p-value The null hypothesis
is not statistically cannot be rejected.
significant. It is quite possible
that the spatial
distribution of
feature attribute
values is the result
of random spatial

processes.

The p- The null hypothesis The null hypothesis may be

value is statistically may be rejected. rejected. The spatial distribution of

significant, and the z- high values and/or low values in

score is positive. the dataset is more spatially
clustered than would be expected if
underlying spatial processes were
truly random.

The p- The null hypothesis The null hypothesis may be

value is statistically may be rejected. rejected. The spatial distribution of

significant, and the z- high values and low values in the

score is negative. dataset is more

spatially dispersed than would be
expected if underlying spatial
processes were truly random.
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3.6 Regression Analysis

The Spatial Statistics Toolbox in ArcGIS provides an effective set of tools for
quantifying spatial patterns such as hotspot analysis and regression analysis.
Regression analysis tools allows to model, examine, explore spatial relationships,
explain the factors behind observed spatial patterns in the study area and even predict
the future events. This study has utilised OLS and GWR regression techniques in
testing Hypothesis 2 (see Section 1.4). Linear relationships between two variables
can be either positive or negative but with regression analyses makes an attempt to
demonstrate the degree to which one or more variables (independent variables)
potentially promote positive or negative change in other variable (dependent
variable). The main terms in the regression analyses are described by ESRI (2016)

as below:

Dependent variable - this variable represents the process of the subject that is being

predicted or understood.

Independent/Explanatory variables - these are the variables used to model or to

predict the dependent variable values.

Regression coefficients — the Regression Coefficients are computed by the
regression tool. They are values, one for each explanatory variable, that represent the
strength and the type of relationship the explanatory variable has to the dependent

variable

P-values - most regression methods perform a statistical test to compute a
probability, called a p-value, for the coefficients associated with each independent
variable. The null hypothesis for this statistical test states that a coefficient is not
significantly different from zero. Small p-values reflect small probabilities and
suggest that the coefficient is, indeed, important to your model with a value that is

significantly different from zero.
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R2/R-squared - Multiple R-squared and adjusted R-squared are both statistics
derived from the regression equation to quantify model performance. The value of R-
squared ranges from 0 to 100 percent. The adjusted R-squared value is always lower
than the multiple R-squared values as it reflects model complexity (the number of
variables). Consequently, the adjusted R-squared value is a more accurate measure of

model performance.

Residuals - These are the unexplained portion of the dependent variable, represented
in the regression equation as the random error term €. The difference between the
observed y-values and the predicted y-values are called the residuals. The magnitude
of the residuals from a regression equation is one measure of model fit. Large

residuals indicate poor model fit.

The common issues that may arise during regression analyses and modelling and

how they may affect the analysis are described in table 3.10.

Table 3.10: Summary of the issues in the modelling of Regression Analyses (Source:

ESRI 2016).
Issues Reason Solution

Omitted When key explanatory Map and examine OLS
explanatory variables are missing residuals and GWR coefficients.
variables from a regression model,
(misspecification)  coefficients and their

associated p-values

cannot be trusted.
Non-linear OLS and GWR are both Create ascatter plot matrix
relationships linear methods. If the graphto elucidate the

Data outliers

relationship between any

of the  explanatory
variables and the
dependent variable is
nonlinear, the resultant
model  will  perform
poorly.

Influential outliers can
pull modelled regression
relationships away from
their true best fit, biasing

relationships among all variables
in the model. Alternatively, use a
nonlinear regression method.

Create a scatter plot matrix and
other graphs (histograms) to
examine extreme data
values. Correct or remove outliers
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Nonstationarity

Multicollinearity

Inconsistent
variance in
residuals

Spatially auto-
correlated

residuals

Normal
distribution bias

regression coefficients.

If relationships between
the  dependent  and
explanatory variables are
inconsistent across the
study area, computed
standard errors will be
artificially inflated.

Multicollinearity leads to
an over counting type of
bias and an
unstable/unreliable
model.

When the model predicts
poorly for some range of

values, results will be
biased.

When there is spatial
clustering of the under-
/over predictions coming
out of the model, it
introduces an  over
counting type of bias and

renders  the  model
unreliable.
When the regression

model residuals are not
normally distributed with

if they represent errors.

The OLS tool in ArcGIS
automatically tests for problems
associated with Nonstationarity
(regional variation) and computes
robust standard error
values. When the probability
associated with the Koenker test
is small (< 0.05, for example), the
statistically significant regional
variation is present and the robust
probabilities should be used to
determine if an explanatory
variable is statistically significant
or not.

The OLS tool in ArcGIS
automatically checks for
redundancy. Each explanatory

variable is given a computed VIF
value. When this value is large (>
7.5), redundancy is a problem and
the offending variables should be
removed from the model or
modified by creating an
interaction variable or increasing
the sample size.

The OLS tool in ArcGIS
automatically tests for
inconsistent residual variance

(called heteroscedasticity) and
computes standard errors that are
robust to this problem. When the
probability associated with the
Koenker test is small (< 0.05, for
example), the robust probabilities
must be used to determine if an
explanatory variable is
statistically significant or not.

Run the Spatial
Autocorrelation tool  on  the
residuals to ensure they do not
exhibit statistically significant
spatial clustering.  Statistically
significant spatial autocorrelation
is almost always a symptom of
misspecification (a key variable is
missing from the model).

The OLS tool in ArcGIS
automatically tests whether the
residuals are normally distributed.
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a mean of zero, the p- When the Jarque-Bera statistic is

values associated with significant (< 0.05, for example),

the  coefficients are the model is likely misspecified (a

unreliable. key variable is missing from the
model) or some of the
relationships you are modelling
are nonlinear.

The steps followed in this study in the modelling of regression analyses to

understand the dispersal of the HeV outbreak events in the study area are:

1) Model calibration using GWR (see Section 3.6.3).

i1) Using OLS method to select the significant independent variables.

iii) Spatial autocorrelation (Moran’s I) test on the residuals to ensure that there
are no significant variables missing that could possibly better explain the
dispersal of HeV outbreak events.

iv) GWR analysis on the independent variables from the OLS model.

v) Spatial autocorrelation (Moran’s I) test on the residuals of GWR.

3.6.1 Ordinary Least Squares (OLS) Regression

The OLS technique is a well-known regression technique and was employed in this
study to understand the HeV outbreak patterns globally across the study area. It is
also considered as a proper starting point for all spatial regression analyses (ArcGIS
2016). The OLS tool produces an output feature class and optional tables with
coefficient information and diagnostics. The results from OLS regression technique
can only be trusted if the data and the regression model satisfy all the assumptions
inherently required by this method (see Table 3.10). The output diagnostics of OLS
include corrected Akaike Information Criterion (AICc), Coefficient of
Determination, Joint F statistic, Wald statistic, Koenker's Breusch-Pagan statistic,

Jarque-Bera statistic, uncorrected AIC and Sigma-squared values (ESRI 2017).

Table 3.11 shows the syntax of the OLS technique in ArcGIS.
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Table 3.11 Summary of the syntax of the OLS regression technique (Source: ESRI
2017).

Parameter Explanation Data

Type

Input Feature Class  The feature class containing the dependent and Feature
independent variables for analysis.

Layer
Unique ID Field An integer field containing a different value for Field
every feature in the Input Feature Class.
Output Feature The output feature class to receive dependent Feature
Class variable estimates and residuals. Class

Dependent Variable  The numeric field containing values for what you Field
are trying to model.

Explanatory A list of fields representing explanatory variables Field

Variables in your regression model.

Coefficient Output The full path to an optional table that will receive Table

Table model coefficients, standardized coefficients,

(Optional) standard errors, and probabilities for each
explanatory variable.

Diagnostic = Output The full path to an optional table that will receive Table

Table model summary diagnostics.

(Optional)

Output Report File The path to the optional PDF file if chosen. This File
(Optional) report file includes model diagnostics, graphs,

and notes to help you interpret the OLS results.

To assess the model performance of OLS technique both Multiple R-Squared and
Adjusted R-Squared values should be interpreted whose values range from 0.0 to 1.0.
The Coefficient, Probability or Robust Probability, and Variance Inflation Factor
(VIF) should be considered to asses each explanatory variable in the model. The
coefficient for each explanatory variable reflects both the strength and type of
relationship the explanatory variable has to the dependent variable. When the sign
associated with the coefficient is negative, the relationship is negative. The
statistically significant probabilities have an asterisk (*) next to them. These
variables that are significant are is important to the regression model if

theory/common sense supports a valid relationship with the dependent variable. The
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VIF measures redundancy among the explanatory variables. The VIF values larger

than about 7.5 should be removed (one by one) from the regression model.

The Joint F-Statistic and Joint Wald Statistic are measures of overall model statistical
significance of the OLS technique. The Joint F-Statistic is trustworthy only when the
Koenker (BP) statistic is not statistically significant and if the Koenker (BP) statistic
is significant, the Joint Wald Statistic should be used to determine overall model
significance. The Koenker (BP) Statistic assesses model stationarity. It is a test to
determine whether the explanatory variables in the model have a consistent
relationship to the dependent variable both in geographic space and in data space.
The Jarque-Bera statistic measures the model bias by indicating whether or not the

residuals are normally distributed (ESRI 2016).

3.6.2 Geographically Weighted Regression (GWR)

The GWR technique is a local model of the variable or process for understanding the
spatial patterns by fitting a regression equation to every feature in the data set. It
constructs the equations by incorporating the dependent and independent/exploratory
variables of features falling within the bandwidth of each target feature. The shape
and size of the bandwidth is dependent on user input for the Kernel type, Bandwidth
method, Distance, and Number of neighbour’s parameters. Model design errors often
indicate a problem with global or local multicollinearity and using OLS technique
can determine the problem of multicollinearity. Problems with local multicollinearity
may prevent the AIC and CV Bandwidth method from resolving an optimal
distance/number of neighbours (ESRI 2016).

Usage of gridded data is always recommended as it is important whenever distance is
a component of the analysis, as it is for GWR to select Fixed for Kernel type. For
linear regression analysis similar to GWR, it is important for dependent and
explanatory variables to have numeric fields containing a variety of values and is not
appropriate for predicting binary outcomes. Nominal or categorical data in a GWR
model should be used with caution as the categories cluster spatially; there is strong

risk of encountering local multicollinearity issues. “Dummy" explanatory variables
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cannot be used to represent different spatial regimes in a GWR model (ESRI 2016).
GWR is a linear model subject to the same requirements as OLS and the severe

model errors are same for both (see Table 3.10).

Table 3.12 summarises the syntax of the GWR technique in ArcGIS.

Table 3.12: Summary of the syntax of the GWR regression technique (Source: ESRI
2016).

Parameter Explanation Data Type

In features The feature class containing the dependent Feature Layer
and independent variables.

Dependent field The numeric field containing values for Field
what you are trying to model.

Explanatory A list of fields representing independent Field
field explanatory variables in your regression
model.
Out feature The output feature class to receive Feature Class
class dependent variable estimates and residuals.
Kernel type Specifies if the kernel is constructed as a String

fixed distance, or if it is allowed to vary in
extent as a function of feature density.

FIXED - The spatial context (the Gaussian
kernel) used to solve each local regression
analysis is a fixed distance.

ADAPTIVE - The spatial context (the
Gaussian kernel) is a function of a specified
number of neighbours. Where feature
distribution is dense, the spatial context is
smaller; where feature distribution is sparse,
the spatial context is larger.
Bandwidth Specifies how the extent of the kernel String
method should be determined. When AICc or CV is
selected, the tool will find the optimal
distance or number of neighbours for you.

AICc - The extent of the kernel is

determined using the Akaike Information
Criterion (AICc).
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distance
(Optional)

Number of
neighbours
(Optional)

Weight field
(Optional)
Coefficient
raster
workspace
(Optional)
Cell size
(Optional)

Prediction
explanatory
field
(Optional)

Out prediction
feature class
(Optional)

CV - The extent of the kernel is determined
using Cross Validation.

BANDWIDTH PARAMETER - The extent
of the kernel is determined by a fixed
distance or a fixed number of neighbours.
The  distance = whenever  the kernel
type is FIXED and bandwidth

method is BANDWIDTH PARAMETER.
The exact number of neighbours to include
in the local bandwidth of the Gaussian
kernel when kernel type is ADAPTIVE and
the bandwidth ~ method is BANDWIDTH
PARAMETER.

The numeric field containing a spatial
weighting for individual features.

A full pathname to the workspace where all
of the coefficient rasters will be created.

The cell size (a number) or reference to the
cell size (a pathname to a raster dataset) to
use when creating the coefficient rasters.
The default cell size is the shortest of the
width or height of the extent specified in the
geoprocessing environment output
coordinate system, divided by 250.

A list of fields representing explanatory
variables in the Prediction locations feature
class. These field names should be provided
in the same order (a one-to-one
correspondence) as those listed for the input
feature class  Explanatory  variables
parameter. If no prediction explanatory
variables are given, the output prediction
feature class will only contain computed
coefficient values for each prediction
location.

The output feature class to receive
dependent variable estimates for each
feature in the Prediction locations feature
class.

Double

Long

Field

Folder

Analysis Cell
Size

Field

Feature Class
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Fixed kernel type and AICc bandwidth method were used in this study. The
bandwidth method is the most important parameter for GWR technique. It controls
the degree of smoothing in the model. The program chooses a bandwidth or
neighbour value by selecting the corrected Akaike Information Criterion (AICc) or
Cross Validation (CV) for the Bandwidth method parameter. They both identify an
optimal fixed distance or optimal adaptive number of neighbours. The Residual
Squares is the sum of the squared residuals in the model. The smaller the measure,
the closer the fit of the GWR model to the observed data. This value is used in a
number of other diagnostic measures. R-Squared is a measure of goodness of fit. Its
value varies from 0.0 to 1.0, with higher values being preferable. The adjusted R-
squared value normalizes the numerator and denominator by their degrees of
freedom. This has the effect of compensating for the number of variables in a model,
and consequently, the Adjusted R2 value is almost always smaller than the R2 value
(ESRI 2016). The spatial variability of the local parameter estimates of each variable
has been tested using GWR4 software. The results achieved using the GWR
technique was used test the Hypothesis 4 in generating model(s) to identify

population ‘at risk’.
3.6.3 Model Calibration for Regression Analysis

The model for the regression analyses was calibrated using the GWR technique in an
exploratory method (Fotheringham et al 2012). Based on the literature review, 4
potential explanatory factors were chosen that could potentially explain the HeV
outbreak events dispersal in the study area. This model calibration technique by
Fotheringham et al (2012) uses a statistical model-building procedure in order to
establish if any further reduction in the set were possible. By doing this, a reduced set

of highly significant explanatory variables of HeV outbreak events were achieved.

The following steps are followed to achieve the most significant model for the

analyses:
i) Iteration 1 — the 4 explanatory variables were individually included in a

simple model with incident rate as the dependent variable by GWR. Using the
Akaike Information Criterion (AIC) and R-Squared value (as R-Squared
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value improves, the AICc value decreases), a goodness-of-fit statistic was

computed. The best model using the goodness-of-fit measure was retained.

ii) Iteration 2 — using the model established in iteration 1, each of the remaining
3 variables not selected for the model was entered into the model in turn, so
that 3 new models, each containing two independent variables, were obtained.
These models were then calibrated by GWR. The best model based on the

goodness-of-fit was retained.

iii) Iteration 3 - using the model established in iteration 2, each of the remaining
2 variables not selected for the model was entered into the model in turn, so
that 2 new models, each containing three independent variables, were
obtained. These models were then calibrated by GWR. The best model based

on the goodness-of-fit was retained.

iv) Iteration 4 — using the model in iteration 3, a final model adding the
remaining 1 variable was calibrated using GWR. The goodness-of-fit of this

model is less than the model retained in the iteration 3.

The final model is selected from the iteration 3, which produced the best goodness-
of-fit measure out of all. This model was used for the regression analyses. Table 3.13
shows the model calibrated using the GWR technique for the study. Further details of
the model calibration were documented in Section 4.3.3. The additional
documentation of the significant model(s) calibrated in the four iterations was

documented in Appendix 2.
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Table 3.13 Model calibrated using the GWR technique.

Black flying

foxes (Bff)
Grey headed 1189 0.82* Significant
flying foxes model 1
(Ghff)
Foraging Range = 1442 0.36
(FR)
Pregnancy 1439 0.56
Period (PP)
Ghff, Bff 1165 0.86%* Significant
model 2
Ghft, FR 1178 0.82
Ghft, PP 1182 0.85
Ghfft, Bff, FR 1195 0.80
Ghff, Bff, PP 1143 0.88%*** Final model
Ghff, Bff, FR, 1222 0.76
PP

Notes:

*  Indicates significant model 1 obtained from iteration 1
** Indicates significant model 2 obtained from iteration 2

*#* Indicates significant model 3, which is the final model obtained from iteration 3

126 |Page



3.7 Methodology Flowchart

A summary of the methodology used in this study is detailed in flowchart presented

in the figure 3.21.

Data
Processing/Analysis
Hypothesis 1 Hypothesis 2 Hypothesis 3
Buffer analysis to Moran’s I, KDE and Spatial Analyst

establish a Regression Tools to study the

correlation between Analyses to food source
the HeV incidents understand the HeV vegetation of the

and hosts dispersal flying foxes

l

l

A preliminary
analysis to
include/exclude the
flying fox camps
based on their status
(see Section 4.2)

An in-depth analysis
to isolate the factors
influencing the HeV
outbreak dispersal
(see Section 4.3)

l

An analysis to
identify the role of
food source
vegetation in HeV
dispersal
(see Section 4.4)

l

l

l

Hypothesis 4

Generating model(s) to identify population ‘at risk’ based on the above results

(see Section 4.5)

Figure 3.21: Flow chart of the methodology.

Fig 3.21 visualises the hypotheses tested in this study and their relationship to one
another. Hypothesis 4 is to generate final model(s) based on the results from previous
hypotheses. The flowchart can be described as process/methods used in the research.
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3.8 Summary

In general, section 3.2 declared the study area considered for the research. The data
collection, processing and integration steps involved in this were documented in
section 3.3. Section 3.4 detailed the flying fox roosting site visits in the study area.
The site visits provided an insight into the roosting site vegetation and in general

their preference of a location.

Hypothesis 1

Buffer analysis was employed primarily to understand the correlation between the
HeV outbreak events and flying fox roosting sites. Section 3.5 documented the

spatial analyses methods in ArcGIS that were used to test Hypothesis 1.

Hypothesis 2

The Spatial Autocorrelation technique was used to study the autocorrelation among
the variables and KDE were used to establish a primary relationship between the
HeV outbreaks and the density of the flying foxes. The regression analyses and the
model building using GWR technique were detailed in Section 3.6. The regression
analyses were used in the study to test Hypothesis 2. It was employed to understand

the factors influencing the virus dispersal in the study area.

Hypothesis 3

The spatial analyst toolset was used to examine the correlation between the food
source vegetation, flying fox species and the HeV incidents. Section 3.5 outlined the

detailed information in regards to the spatial analyst toolset that was used in testing

Hypothesis 3.

Hypothesis 4

The results from Hypothesis 1, 2 and 3 were used in producing the model(s) to
identify the population ‘at risk’ (Hypothesis 4). The models were documented in
Chapter 4, section 4.5.

128 |Page



4. Chapter Four - Analysis and Results

4.1 Introduction

This chapter documents the analyses and results of the HeV outbreak incidents study.
The analyses carried out to test the hypotheses mentioned in Section 1.4 is detailed
here and the results were presented. This section outlines the methodologies
discussed in chapter 3. Section 4.2 details the preliminary spatial analyses of the HeV
outbreaks. Section 4.3 provides the analyses and results of the factors explaining the
dispersal of the HeV disease in the study area. Section 4.4 discusses the food source
vegetation analysis of the flying foxes. Identification of population ‘at risk’ has been
detailed in section 4.5. The results were visualized throughout the chapter where

appropriate. Section 4.6 shows the flowchart of the summary of the results.

4.2 Preliminary Spatial Analysis of HeV Outbreaks and the
Roosting Sites (Hypothesis 1)

A buffer analysis was carried out on the HeV outbreak locations with a 20 kms range
to determine the presence of the roosting sites within the outbreak region. This
analysis examines the status of the flying fox roosting sites that were spatially
correlated with the outbreak events in the study area. This establishes the preliminary

correlation between the outbreak events and the flying fox roosting sites.

The specific 20 kms range has been used based on the study of the flying fox
characteristics (Wildlife QLD 2016, see Section 2.2) and their travel distances -
‘foraging range’. The forage range for the four types of flying-foxes — black, grey-
headed, little red and spectacled flying foxes vary. Black flying fox groups travel up
to 50 kms from their camps to foraging areas and use the same camp for many years,
whereas little red flying foxes and spectacled flying foxes only travel 20 — 30 kms
from camp to feed. Grey-headed flying foxes nightly feeding range is 20 - 50 kms
from their camps. The minimum home range distance is used for initial buffer

analysis i.e. 20 kms.
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The flying fox roosting sites were divided into six categories by Department of
Environment and Heritage Protection (EHP), Queensland (see Section 3.3). Table 4.1

shows the percentage of flying fox roosting sites in each category.

Table 4.1: The Percentage of Flying Fox roosting sites in each category.

Permanent Seasonal Use 30.98%
Temporary Unoccupied 23%
Temporary Occupied 22.53%
Permanent Continuous Use 15.95%
Abandoned 7.04%
Destroyed 0.5%
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Figure 4.1: A 20 kms radius buffer of the outbreak incidents.
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Figure 4.1 shows a 20 kms buffer of the outbreak incidents in the study area. There is
a significance presence of the roosting sites in this buffer range and the presence of
permanent seasonal sites in almost every incident’s buffer range can be seen in the
map. A further 10 kms radius buffer analysis is conducted on the temporary and
permanent seasonal sites. Figure 4.2 shows a 10 kms buffer with respect to the

temporary and seasonal roosting sites.
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Figure 4.2: A 10 kms buffer of the incidents with respect to the temporary and

permanent seasonal roosting sites.
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From figure 4.2, it is evident that permanent seasonal and temporary occupied
roosting sites displays stronger spatial relationship to outbreak incidents as
approximately 91% (10 out of 11 incidents) of the incidents have either one or both
of these sites in the outbreak incidents buffer range. It is also evident that the
permanent seasonal roosting sites displays stronger relationship than the temporary

occupied sites with the presence of multiple roosting sites at each incident range.
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Figure 4.3: A 10 kms buffer of the incidents with respect to the permanent

continuous roosting sites.

133 | Page



Figure 4.3 shows a 10 kms buffer of the outbreak incidents with respect to the
permanent continuous roosting sites in the study area. The analysis shows a lower
probability for a significant spatial relationship with permanent continuous roosting
sites in the study area. Only 19% (2 out 11 incidents) of the incidents have the
permanent roosting site in their range and another couple of incidents have the

permanent roosting on the border of the range.

The preliminary analysis of the HeV outbreak incidents and the roosting sites has
identified a strong spatial relationship between the outbreak events and the

permanent seasonal and temporary occupied roosting sites in the study area.

4.3 Factors Explaining the Dispersal of the HeV Disease
(Hypothesis 2)

4.3.1 Measuring Spatial Autocorrelation (Global Moran’s I) of the
Flying Fox Species

Spatial clustering is best for the initial analysis to detect and analyse the clusters
(Wakefield et al 2000) at the global level across the study area. Global Moran’s I
method (inverse distance conceptualisation) was used to identify the presence of
significant spatial clustering of the three flying foxes species at various foraging
ranges (10, 20, 30, 40 and 50 kms) in the study area, namely: black flying foxes,
grey-headed flying foxes and little red flying foxes. The flying fox species data by
EHP (2014) was used to measure the spatial autocorrelation. The autocorrelation of
each species has been studied from 10 kms to 50 kms, which is the maximum
foraging range (Wildlife QLD 2016, see Section 2.2). The 10 km range was selected
for an in depth study of the flying fox clustering. The purpose of performing this
analysis is to examine at what foraging range each species maintains high correlation
(or no correlation). The results of this analysis would be significant in further study
of the overall trend of the incidents with respect to the distribution of the flying fox

species across the study area.
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Table 4.2 shows the summary of the results of the spatial autocorrelation reports of

the three flying fox species in the study area at various foraging ranges. For detailed

reports of the autocorrelation at their minimum foraging range, see Appendix 3. The

minimum foraging range was taken into consideration for most of the study.

Table 4.2: The results of the Spatial Autocorrelation of the Flying Fox species at

Species

Black
Index
Z-score
P value

Confidence
Level
Inference

Grey-
Headed
Index

Z-score
P value

Confidence
Level
Inference

Little Red
Index
Z-score

P value

Confidence
Level
Inference

10

kms

0.064
1.73
0.083
90%

Clustered

0.025
0.94
0.3472

Random

0.154
3.88
0.0001
99%

Clustered

various foraging ranges.

20 kms

0.035
2.03
0.041
95%

Clustered

0.009
0.96
0.3314

Random

0.15
7.45
0.0000
99%

Clustered

30 kms

0.04
3.37
0.0007
99%

Clustered

0.004
0.97
0.3308

Random

0.12
9.03
0.0000
99%

Clustered

40 kms

0.05
5.14
0.0000
99%

Clustered

0.002
3.38
0.0007
99%

Clustered

N/A

50 kms

0.065
7.81
0.0000
99%

Clustered

0.023
3.63
0.0002
99%

Clustered

N/A
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The analysis of the black flying foxes showed significant clustering at all the
foraging range intervals with high occurrence at 50 kms at a confidence level of
99%, which is their maximum foraging range. Grey-headed flying foxes showed
random clustering at 10, 20 and 30 kms range. The maximum clustering for grey
headed flying foxes occurred at 40 kms foraging range at a confidence level of 99%.
The results of the little red flying foxes showed maximum significant clustering

occurring at 10 kms range at a confidence level of 99%.

4.3.2 Examining and Establishing the Primary Relationship(s)
between the Individual species Distribution, Incidents and Birth

Period(s)

4.3.2.1 Kernel Density Analysis

Kernel density estimation technique was employed for observing the spread of the
individual flying fox species population density across the study area and to generate
hotspot maps for each species. Using the flying-fox species density data, the maps
were created to visualise the species density hot spots. This method was used to
establish the primary relation between the flying-fox species density and the
incidents. The bandwidth for the KDE analysis for each species was set at 0.4598
degrees, which was calculated by the default search radius (bandwidth) algorithm of
ArcGIS. Different bandwidth radii were tested (0.22 and 0.68 degrees) in generating
the density hot spots but the default density calculated by ArcGIS yielded the best
output with no errors such as missing neighbours. A density hot spot map was
created for each species and the incidents were overlayed on the map to visualise the

relationship between the two variables in the study area.

Figure 4.4 — a, b and ¢ shows the KDE analysis of the black, grey-headed and little

red flying foxes in the study area.

136 |Page



A rs
¢4
Y
F N
i
i
A
A FN
"y &
A A
A
\ A
[ ]
b
4 A

(a) Black Flying-foxes

Legend
A BFF
@ HeVlincidents
KDE A
Value -
High Density @

- Low Density A 0 510

Figure 4.4(a): KDE analysis of black flying foxes in the study area.
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Figure 4.4(b): KDE analysis of grey-headed flying foxes in the study area.
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Figure 4.4(c): KDE analysis of little red flying foxes in the study area.

Through the KDE technique, it is evident that the black and grey-headed flying foxes
are highly correlated to the HeV outbreak incidents in the study area. The little red

flying foxes show little to no correlation to the outbreak incidents in the study area.

4.3.2.2 Birth Period Study of the Flying Foxes

Buffer analysis was employed to examine and visualise the relationship between
individual flying fox species birth periods and the incidents in the study area. Each
species of flying foxes have different breeding and birthing seasons (Wildlife QLD
2016, see Section 2.2), which usually last for 3 - 4 months. Incident data from DAFF
and birth period data collected from Wildlife Queensland (2016) has been used in
this method. The roosting data was edited to best reflect the status of the roosting
sites at the time of the incident. Vegetation analysis (see Section 4.4) identified an
abundance of food resources near these camp sites in the study area and hence it was
assumed that the flying foxes in these camps do not migrate or at least to an extent

that a roosting site is empty.
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A 10 kms buffer was created for each incident and they were labelled using the
month of the incident occurrence. The roosting sites of individual species were then
projected on the buffer map to examine if the incident occurrence month falls within
the birth periods of each species roosting site in the buffer range. Buffer analysis was
useful in visualising the data and in studying the presence of number of individual
species rooting sites that matched the month of occurrence of the disease within the
buffer range to establish a base for further detailed study. Spatial clustering of the
three species at 10 - 50 kms (See Table 4.2) indicated significant clustering of black
and little red flying foxes at 10 and 20 kms range.

A radius of 10 and 20 kms were initially chosen to study the relationship between
individual species birth periods and the month of occurrence of Hendra disease. As
the 20 km range has overlapping incidents, the 10 km buffer was used for the better
understanding of correlation. Figure 4.5 shows the 20 km range study of the incidents

with majorly overlapping incident ranges.
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Figure 4.5: A 20 Kms range study of the incidents.

The birth/pregnancy period of black flying foxes lasts from June to February and the
birth/pregnancy period of grey-headed flying foxes lasts from April to October
(Wildlife QLD 2016). Figure 4.6 (a) shows the birth period study of the black flying

foxes.
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Figure 4.6 (a): Birth period study of the black flying foxes.
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(b) Grey Headed Flying-foxes
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Figure 4.6 (b): Birth period study of the grey-headed flying foxes.
Figure 4.6 (b) shows the birth period study of the grey-headed flying foxes. Ten

incidents have fallen within the birth/pregnancy period of the black flying foxes and

grey-headed flying foxes with more than one roosting site in the buffer range.
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The birth period of little red flying foxes lasts from January to May (Wildlife QLD
2016). Figure 4.6 (c¢) shows that none of the incidents have fallen within the
birth/pregnancy period of the little red flying foxes. The buffer analysis established a
primary relationship between the HeV outbreak incidents and the birth/pregnancy

periods of black and grey-headed flying foxes in the study area.

(c) Little Red Flying-foxes
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Figure 4.6 (c): Birth period study of the little red flying foxes.

4.3.3 Regression Modelling

By creating a scatterplot matrix for the model variables, it is possible to address the

model bias issues. A nonlinear relationship between the dependent variable and one
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of the explanatory variables is a common cause of model bias. If the dependent
variable exhibits a nonlinear relationship with the explanatory variables, it may not
be included in the model. OLS and GWR are linear regression models that assume
the relationships between the models are linear. When the relationships are not
linear, transforming the variables (log and exponential) can create relationships that
are more linear (ESRI 2016). Based on the analysis in section 4.3.2, the independent
variables chosen for the regression analysis are black flying fox species, grey-headed

flying fox species, average foraging range and average pregnancy/birth period.
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Figure 4.7: Scatter plot matrix of the model variables.

Figure 4.7 shows the scatter plot matrix of the regression model variables in the
study. The independent variables black flying foxes, grey-headed flying foxes,
average foraging range and average pregnancy/birth period exhibited a fairly linear

relationship to the dependent variable — incident rate.

The method used in the modelling of the regression model is documented in section

3.6.3. Figure 4.8 shows the graph of the AIC values of all models used in the
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regression modelling. The model with low AIC value and high R-squared value was

selected as the significant model in all iterations (represented in colour ‘Red’).
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Figure 4.8: Graph of the AIC values of all models in the Regression Modelling.

Iteration 1 (significant model 1): Iteration 1 includes models 1, 2, 3 and 4.

Independent variable — Grey-headed flying foxes (AIC — 1189, R-Squared — 0.82).

Iteration 2 (significant model 2): Iteration 2 includes models 5, 6 and 7.
Independent variables — Grey-headed flying foxes and Black flying foxes (AIC —
1165, R-Squared — 0.82).

Iteration 3 (significant model 3): Iteration 3 incudes models 8 and 9. Independent
variables — Grey-headed flying foxes, Black flying foxes and average pregnancy
period (AIC — 1143, R-Squared — 0.88). This is the final regression model used in the
study to understand the HeV dispersal in the study area.

Iteration 4 (no significant model): Iteration 4 includes model 10 and it returned no

significant model(s).
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The spatial variability of the local parameter estimates of each variable has been
tested using GWR4 software for each significant model from iteration 1, 2 and 3 and
significant spatial variability was present in the variables of the final model. Figures

4.9 and 4.10 shows the results of the spatial variability test using GWR4.0 software.

hc'ﬂ we value of diff-Criverion Cc, ATC, BIC/MDL or CV) swggests mo spatiz] variability in terss of model selection criteria.
F test: in case of no spatial variabiliny, the F statistics folloes the F distribution of DOF For F test.

e R D e RS

Figure 4.9: Spatial variability test for significant model 1 using GWR4.0.

T

'hl:,r T-&ts [:‘

EREREER SR

Note: ve val diff-Criverion {ATCC, ATC, BIC/MDL or CV) slgg=5*s no spatizl variability in terss of model selection criteria
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Figure 4.10: Spatial variability test for significant model 2 using GWR4.0.

Spatial variability was not present among the variables in significant model 1 and 2.
A Positive “DIFF of Criterion” value that is greater than or equal to two suggests that
the local term is better to be assumed as global. Significant model 1 and 2 has a
positive value which is lesser than 1. Figure 4.11 shows the spatial variability test
results of the final regression model. There was significant spatial variability present
among the variables in the final model, which means these variables are better suited
for a local model compared to a global model. For full test results of the three

significant models in all iterations, see Appendix 2.
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Figure 4.11: Spatial variability test for significant model 2 using GWR4.0.
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Moran’s | test was performed on the residuals of the three significant models to
check whether there is a key variable missing from each model. Table 4.3 shows the

Moran’s I test results of the three significant models.

Table 4.3: Moran’s I results of the significant models.

Significant . Random
Model 1

Significant -0.13 -1.04 0.2 Random
Model 2
-0.02 -0.12 0.9 Random

Final Model

Final model indicated no significant clustering among the residuals. This indicates
that the model is not misspecified. The test reports of the Moran’s I was included in

Appendix

4.3.4 Ordinary Least Squares (OLS) Analysis

OLS regression technique was employed to study the spatial trends of the HeV
dispersion globally across the study area. The data sets used to perform this analysis
were the same ones used for model calibration, which includes the incident data
(DAFF 2014), flying fox species density data (EHP 2014), and the average foraging
range and pregnancy/birth period of each camp. The model calibrated using the
statistical model building procedure by Fotheringham, Kelly and Charlton (2012)
(see section 3.6.3); with black flying fox density, grey-headed flying fox density and
pregnancy period as explanatory variables. The OLS method calculated the
probability and robust probability for each explanatory variable which may be
required in cases of nonstationary relationships (nonstationary is determined using
Koenker p-value in OLS output summary). The globally significant explanatory

variable was identified using the OLS analysis. Koenker (BP) statistic measures the
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relationship between the predicted values and changes in magnitudes

(heteroscedasticity).

Table 4.4: Summary of OLS results.

Global Regression Model: Results

Variable t- Probability Robust VIF Significance
statistic probability

Black flying foxes 1.26 0.2 0.53 3.58

Grey-headed flying 8.9 0.00* 0.00%* 3.8  Significant

foxes

Pregnancy Period -0.86 0.39 0.56 1.14

Table 4.4 indicates that the independent variable ‘grey headed flying-foxes’ was
globally significant at 99% confidence level across the study area. The variance
inflation factor (VIF) values indicated no redundancy among the variables. Figure

4.12 shows the OLS regression residuals map.

149 |Page



OLS Regression Residuals Map
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Figure 4.12: OLS regression residuals map.

This model has a statistically significant heteroscedasticity (p<0.05) which suggests
the use of Robust P to determine the coefficient significance for consideration.
Goodness-of-fit measure indicated a model performance of 0.7. Moran’s | test
(Index = -0.02, P = 0.8) indicated no significant clustering among the residuals (see
Appendix 3). Figure 4.13 shows the diagnostics of the OLS regression model. Figure
4.14 shows the graph of the OLS regression residuals. Full report of the OLS

regression analysis is documented in Appendix 3.
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OLS Diagnostics
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Figure 4.13: OLS regression diagnostics.
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Figure 4.14: The graph of the OLS regression residuals.

The graph of the OLS residuals (model over and under predictions) in relation to the

predicted dependent variable values should have little structure and look random.
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This is an indicator for a properly specified model. For a misspecified model, the

graph provides clues for better understanding of the dependent variable.

4.3.5 Geographically Weighted Regression (GWR) Analysis

The model building was carried out utilizing methods recommended in
Fotheringham, Kelly and Charlton (2012) who built a set of most significant
explanatory variables (see Section 3.6.3) among all the variables considered — species
density, average foraging range and pregnancy/birth period; that could possibly
explain the HeV dispersion in the study area. GWR technique assists in
understanding and exploring of the spatial relationships at local level across the study
area by fitting a regression equation to individual feature in the dataset. The shape
and size of the bandwidth is dependent on user input for the kernel type, bandwidth
method, distance, and number of neighbours’ parameters (Fotheringham et al 2002).
The model produced (explanatory variables - black flying fox density, grey-headed
flying fox density and pregnancy period) using the data mentioned above in the
model building procedure was used to study the locally varying spatial trends of the
HeV incidents across the study area. The spatial variability among the local
parameter estimates produced by GWR analysis of each variable has been tested
using GWR4 software (see Section 4.3.3). The t values of each parameter estimate of
each independent variable were mapped for a detailed study of the local
relationships. The local R-squared values of the GWR regression model were

mapped to visualise the overall performance of the model in the study area.

Table 4.5 shows the results of the GWR regression model. The goodness-of-fit
measure indicated an improvement from 0.7 (global model, see table 3) to 0.88.
Moran’s I test (Index = -0.02, P = (.9) indicated no significant clustering among the
residuals (see Appendix 2).
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Table 4.5: Summary of GWR regression model results.

VARNAME Variable Definition

0.322621
8523.058328
28.821755
8.06059
1143.849672
0.889239
0.865747

0 Incident Rate

1 Black Flying Foxes

Density

2 Grey-headed Flying

Foxes Density

3 Pregnancy Period

GWR Residuals Map

Legend

GWR Model
StdResid

B <=255d Dew
@ 25.-155d Dev
B -15--05%d Dev
0 H5-055d Doy
@ 05.155d Dew
@ 15.7255d Dow
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Figure 4.15: GWR model residuals map.

153 | Page



Figure 4.15 shows the regression residuals map of the GWR model in the study area.
The t values of each parameter estimate of the independent variables were mapped
for a detailed study of the local relationships. Figure 4.16 (a), (b) and (c) shows the
significant local estimates of the GWR model variables — black flying foxes, grey-

headed flying foxes and pregnancy period respectively.

(a) Black Flying-foxes
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Figure 4.16 (a): Local estimates of the back flying foxes in the study area.
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The black flying foxes showed positive significance in the regions of Logan,
Redland, Scenic Rim and parts of Brisbane, Moreton Bay, and Sunshine Coast
Regions. The grey headed flying-foxes showed positive significance in the regions of
Brisbane, Ipswich, Gold Coast, Scenic Rim, Logan and Redland regions in the study

arca.

(b) Grey Headed Flying-foxes
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Figure 4.16 (b): Local estimates of the grey-headed flying foxes in the study area.
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The black flying foxes showed a positive correlation where the grey-headed flying
foxes displayed a negative correlation in the region of Sunshine Coast. The grey-
headed flying foxes showed no significance in the region of Moreton Bay where

black flying foxes showed a strong positive correlation in the study area.

(c) Pregnancy/Birth Period

e®
SCENIC RIMZEGIONAL

]

Legend
@® Negatively Significant Estimates N
0 10 20 40 Kilometers
@  Non Significant Estimates Lo v o Loy A

Figure 4.16 (c): Local estimates of the pregnancy period variable in the study area.
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The pregnancy period variable showed negative significance in most of the regions
except Gold Coast, Sunshine Coast and part of Brisbane where the variable showed
no statistical significance in the study area. The results of the GWR model indicate
that the virus dispersion is positively related to the density and distribution of the

black and grey headed flying foxes in the study area.
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Figure 4.17: Local R-Squared values of the GWR model across the study area.
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Figure 4.17 shows the model performance (local R-squared) across the study area.
The GWR model performed well in the southern part of the study area where the
incident rate is comparatively high and poorly in the northern region of the study
area where the incident rate is low. Additional documentation of the local estimates

of each variable is provided in Appendix 3.

4.4 Food Source Vegetation Analysis (Hypothesis 3)

4.4.1 An Investigation of the Food Sources and Roosting Sites as

Potential Factors of HeV Dispersion

4.4.1.1 Black Flying Foxes

Using the Spatial Analyst toolset (see Section 3.5.2), the vegetation groups and
subgroups on the black flying fox roosting sites were identified. Figure 4.18 shows

the black flying fox roosting sites in the study area. For full legend of the MVS and
MVG, see Appendix 1.
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Black Flying fox Roosting Sites
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Figure 4.18: Black flying fox roosting sites in the study area.

Table 4.6: Major vegetation groups on the black flying fox roosting sites in the study

area.
Value MVG Name MVG Common Description
1 Rainforests and Vine Thickets Rainforests
3 Eucalyptus Open Forests Eucalyptus Trees (10 to 30 m
tall)
5 Eucalyptus Woodlands Eucalyptus Woodlands (tree

crowns not touching)
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23
24

25

28

Casuarina Forests and
Woodlands

Melaleuca Forests and
Woodlands

Mangroves

Inland Aquatic — Freshwater,
Salt Lakes, Lagoons

Cleared, Non-native
Vegetation, Buildings

Sea and Estuaries

She-oak Forests and Woodlands

Paperbark Forests and
Woodlands

Mangroves

Water

Cleared Vegetation

Sea

Table 4.6 shows the major vegetation groups and their common description on the

black flying fox roosting sites in the study area. Table 4.7 shows the major

vegetation subgroups identified on the black flying fox roosting sites in the study

area. The field ‘value’ represents the unique ID of the vegetation type. From the list

of major vegetation groups and subgroups, it is evident that the black flying fox

roosting sites were located near the eucalyptus and rainforests type of vegetation.
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Table 4.7: Major vegetation groups on the black Flying fox roosting sites in the study

Value

15

26

40
44

46

98

arca.

MVS Name

Tropical or Sub-tropical Rainforest
Eucalyptus Open Forests with a Grassy
Understorey

Eucalyptus Woodlands with a Tussock
Grassy Understorey

Melaleuca Forests and Woodlands
Casuarina and Allocasuarina Forests and

Woodlands

Mangroves

Freshwater, Dams, Lakes, Lagoons or
aquatic Plants

Sea and Estuaries (includes seagrass)

Cleared, Non-native Vegetation,
Buildings

Using the buffer analysis and extract by mask tool, the vegetation subgroups near the

black roosting sites was identified. Area covering 20 kms from the roosting sites has

been chosen for the study as it the minimum foraging range of both the species.

Figure 4.19 shows the identification of the major vegetation subgroups within 20

kms buffer range of the black flying fox roosting sites in the study area. For a full list

of vegetation subgroups identified, see Appendix 4.
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Identification of MV S within 20 kms Buffer Range of the Black Flying fox Roosting Sites

Legend

® BFF Roosting Sites

] sEawp

0 10 20

List of Notable Vegetation Subgroups Identified

MVS_NAME

l:l Casuarina and Allocasuarina forests and woodlands

l:l Cleared, non-native vegetation. buildings

l:l Dy rainforest or vine thickets

- Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll)
- Eucalyptus open forests with a grassy understorey

- Eucalyptus open forests with a shrubby understorey

D Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes or wet tussock grasses
Eucalyptus woodlands with a shrubby understorey

- Eucalyptus woodlands with a tussock grass understorey
- Freshwater, dams, lakes, lagoons or aguatic plants
- Low closed forest or tall closed shrublands (including Acacia, Melaleuca and Banksia)

- Mangroves

- Melaleuca open forests and woodlands

Figure 4.19: Major vegetation subgroups within 20 kms range of the black flying fox

roosting sites.
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Identification of Black FlyingFox Food Resources within 20 kms Buffer Range

Legend
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Black FlyingFox Food Resources

MVS_NAME

I:l Brigalow (Acacia harpophylla) forests and woodlands

|:| Eucalyptus (+/- tall} open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll)
|:| Eucalyptus open forests with a grassy understorey

I:l Eucalyptus open forests with a shrubby understorey

[:] Eucalyptus open woodlands with a grassy understorey

_ Eucalyptus tall open forest with a fine-leaved shrubby understorey

- Eucalyptus tall open forests and open forests with ferns. herbs, sedges, rushes or wet tussock grasses
|:| Eucalyptus woodlands with a shrubby understorey

I:l Eucalyptus woodlands with a tussock grass understorey

D Low closed forest or tall closed shrublands (including Acacia. Melaleuca and Banksia)

[ Tropical or sub-tropical rainforest

Figure 4.20: Identification of food resources within 20 kms range of the black flying

fox roosting sites.
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Using extract by attributes tool, the possible food resources for black flying fox
species near the roosting sites were identified. Figure 4.20 shows the food resources
identified within the minimum foraging range of the black flying foxes in the study
area. Table 4.7 shows the food source vegetation of the black flying foxes in a

descending order to study the most occurring food source vegetation.

Table 4.8: List of black flying fox food source vegetation and its count in the study

arca.

Value Count MVS Name

5 190355 Eucalyptus open forests
with a grassy understorey

4 123885 Eucalyptus open forests
with a shrubby
understorey

9 77878 Eucalyptus woodlands
with a tussock grass
understorey

2 68127 Tropical or Sub-tropical
Rainforest

60 46374 Eucalyptus tall open
forests and open forests
with ferns, herbs, sedges,
rushes or wet tussock
grass s

3 15429 Eucalyptus (-/+) open
forests with a dense
broad-leaved and/or tree-
fern understorey

8 8633 Eucalyptus woodlands
with a shrubby
understorey

28 6809 Low closed forest or tall
closed shrub lands
(including Acacia,
Melaleuca and Banksia)

13 829 Brigalow forests and
woodlands

54 66 Eucalyptus tall open
forest with a fine-leaved
shrubby understorey

48 48 Eucalyptus open
woodlands with a grassy
understorey
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Table 4.9: Summary of the cluster analysis results of black flying foxes food source

vegetation.

Distance Threshold Getis-Ord General G Statistic High/low

Report Clustering

3 kms Observed General G — 0.000002  High Clustering
z-Score —20.21
p-value — 0.00000

5 kms Observed General G — 0.000003  High Clustering
z-Score — 14.48
p-value — 0.00000

10 kms Observed General G —0.000005 High Clustering
z-Score — 6.97
p-value — 0.00000

High/low Clustering (Getis-Ord General G) analysis was performed on the food
source vegetation of the black flying foxes at various thresholds (3, 5, and 10 kms) to
examine the clustering. Table 4.8 shows the summary of the results of High/low
clustering analysis of the black flying fox food source vegetation. The analysis
returned high clustering at a confidence level of 99% at all the thresholds tested. For

the full report of the analyses, see Appendix 4.

4.4.1.2 Grey-headed Flying Foxes

Using the Spatial Analyst toolset (see Section 3.5.2), the vegetation groups and
subgroups on the grey-headed flying fox roosting sites were identified. Figure 4.21
shows the grey-headed flying fox roosting sites in the study area. For full legend of
the MVS and MVG, see Appendix 1.
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Grey Headed Flying-fox Roosting Sites
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Figure 4.21: Grey-headed flying fox roosting sites in the study area.

Table 4.10 shows the major vegetation groups and their common description on the
grey-headed flying fox roosting sites in the study area. Table 4.11 shows the major
vegetation subgroups identified on the grey-headed flying fox roosting sites in the
study area. From the list of major vegetation groups and subgroups, it is evident that
the grey-headed flying foxes prefer eucalyptus and rainforests type of vegetation as
their roosting sites. The grey-headed flying foxes roosting site vegetation is almost

same as the black flying fox species.
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Table 4.10: List of major vegetation groups on the grey-headed flying fox roosting

sites in the study area.

Value MVG Name MVG Common
Description
1 Rainforests and Vine Rainforests
Thickets
3 Eucalyptus Open Forests Eucalyptus Trees (10 to 30
m tall)
5 Eucalyptus Woodlands Eucalyptus Woodlands

(tree crowns not touching)

8 Casuarina Forests and She-oak Forests and
Woodlands Woodlands

9 Melaleuca Forests and Paperbark Forests and
Woodlands Woodlands

23 Mangroves Mangroves

24 Inland Aquatic — Water
Freshwater, Salt Lakes,
Lagoons

25 Cleared, Non-native Cleared Vegetation

Vegetation, Buildings

28 Sea and Estuaries Sea
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Table 4.11: List of major vegetation subgroups on the grey-headed flying fox

roosting sites in the study area.

Value MVS Name

2 Tropical or Sub-tropical Rainforest

5 Eucalyptus Open Forests with a Grassy
Understorey

9 Eucalyptus Woodlands with a Tussock
Grassy Understorey

15 Melaleuca Forests and Woodlands

26 Casuarina and Allocasuarina Forests and
Woodlands

40 Mangroves

44 Freshwater, Dams, Lakes, Lagoons or

aquatic Plants

46 Sea and Estuaries (includes seagrass)
98 Cleared, Non-native Vegetation,
Buildings

Using the buffer analysis and extract by mask tool, the vegetation subgroups near the
grey-headed flying fox roosting sites was identified. Figure 4.22 shows the
identification of the major vegetation subgroups within 20 kms buffer range of the
grey-headed flying fox roosting sites in the study area. For a full list of vegetation

subgroups identified, see Appendix 4.
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Identification of MV S within 20 km s Buffer Range of the Grey Headed Flying-fox Roosting Sites

Legend
@ GHFF Roosting Sites

0 10 20

List of Notable VVegetation Subgroups Identified

MV S_NAME

|:| Cleared, non-native vegetation. buildings

- Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll)
- Eucalyptus open forests with a grassy understorey

- Eucalyptus open forests with a shrubby understorey

:ﬂ Eucalyptus tall open forests and open forests with femns, herbs, sedges. rushes or wet tussock grasses
Eucalyptus woodlands with a shrubby understorey

- Eucalyptus woodlands with a tussock grass understorey

- Freshwater, dams, lakes, lagoons or aquatic plants

- Mangroves

- Melaleuca open forests and woodlands
|:| Tropical or sub-tropical rainforest

Figure 4.22: Major vegetation subgroups within 20 kms range of the grey-headed

flying fox roosting sites.
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Identification of Grey Headed Flying-fox's Food Resources within 20 kms Buffer Range
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Grey Headed Flying-fox's Food Resources

MVS_MAME

[l Oy rainforest or vine thickets

[ ] Ewcalyptus (+/- tall] open forest with a denss broad-keaved andior tree-farn understoray (wet solerogyll)
_| Eucalyptus open forests with a grassy undarslorey

[] Escalyptus open forests with a shrubby understaray

[ Ealyptus open woodlands with & grazsy understorey

m F.w;:-ly::tus tall apan forest with a fingdeaved shrubby understorey

[ Evcalyptustall cpen forests and open foresis with fams. herbs, sadges, mishes or wet lussack grasses
-] Euvcalyplus waodlands with & shrublyy undetstiorey
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Figure 4.23: Identification of food resources within 20 kms range of the grey-headed

flying fox roosting sites.
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Using extract by attributes tool, the possible food resources for grey-headed flying
fox species near the roosting sites were identified. Figure 4.23 shows the food
resources identified within the minimum foraging range of the grey-headed flying
foxes in the study area. Table 4.12 shows the food source vegetation of the grey-
headed flying foxes in a descending order to study the most occurring food source

vegetation.

Table 4.12: List of grey-headed flying fox food source vegetation and its count in the

study area.

Value Count MYVS Name

5 190355 Eucalyptus open forests
with a grassy understorey

4 123885 Eucalyptus open forests
with a shrubby
understorey

9 77878 Eucalyptus woodlands
with a tussock grass
understorey

2 68127 Tropical or Sub-tropical
Rainforest

60 46374 Eucalyptus tall open
forests and open forests
with ferns, herbs, sedges,
rushes or wet tussock
grass s

15 26736 Melaleuca open forests
and woodlands

3 15429 Eucalyptus (-/+) open
forest with a dense broad-
leaved and/or tree-fern
understorey (wet
sclerophyll)

40 15232 Mangroves

8 8633 Eucalyptus woodlands
with a shrubby
understorey

62 4454 Dry rainforest or vine
thickets
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High/low Clustering (Getis-Ord General G) analysis was performed on the food
source vegetation of the grey-headed flying foxes at various thresholds (3, 5, and 10
kms) to examine the clustering. Table 4.13 shows the summary of the results of
High/low clustering analysis of the grey-headed flying fox food source vegetation.
The analysis gave high clustering at a confidence level of 99% at all the thresholds
tested. For the full report of the analyses, see Appendix 4.

Table 4.13: Summary of the cluster analysis results of grey-headed flying foxes food

source vegetation.

Distance Threshold Getis-Ord General G Statistic High/low Clustering

Report

3 kms Observed General G —0.000002  High Clustering
z-Score — 17.72
p-value — 0.00000

5 kms Observed General G —0.000003  High Clustering
z-Score — 11.89
p-value — 0.00000

10 kms Observed General G — 0.000004  High Clustering
z-Score — 115.12
p-value — 0.00000

4.4.1.3 HeV Outbreak Incidents

Using the Spatial Analyst toolset (see Section 3.5.2), the vegetation groups and
subgroups on the grey-headed flying fox roosting sites were identified. Figure 4.24
shows the HeV outbreak events in the study area. For full legend of the MVS and
MVG, see Appendix 1.
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Figure 4.24: HeV outbreak events with MVS in the study area.

Table 4.14 shows the list of the major vegetation groups on the HeV outbreak sites in
the study area. Table 4.15 shows the list of the major vegetation subgroups identified
on the outbreak sites. The major vegetation subgroups identified on the incident
location indicated 10 out of 14 incidents occurred on a ‘cleared, non-native

vegetation, buildings’.
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Table 4.14: List of major vegetation groups on the HeV outbreak sites in the study

area.
Value MVG Name MVG Common
Description
3 Eucalyptus Open Forests  Eucalyptus Trees (10 to
30 m tall)
25 Cleared, Non-native Cleared Vegetation

Vegetation, Buildings

Table 4.15: List of major vegetation subgroups on the HeV outbreak sites in the

study area.
Value MYVS Name
5 Eucalyptus Open Forests with a Grassy
Understorey
98 Cleared, Non-native Vegetation,
Buildings

Using the buffer analysis and extract by mask tool, the vegetation subgroups near the
incidence sites was identified. For the vegetation study near the incidence, a 10 kms
range has been chosen for a detailed study. Figure 4.25 shows the identification of
the major vegetation subgroups within 10 kms buffer range of the incidence sites in

the study area. For a full list of vegetation subgroups identified, see Appendix 4.
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Identification of MVS within 10 kms Buffer Range of the HeV Incident Locations

Legend
® HeVlincidents

0 10 20

List of Notable Vegetation Subgroups Identified

MV S_NAME

I:I Cleared, non-native vegetation, buildings

:] Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll)
l: Eucalyptus open forests with a grassy understorey

|. Eucalyptus open forests with a shrubby understorey

- Eucalyptus tall open forests and open forests with ferns, herbs, sedges. rushes or wet tussock grasses
- Eucalyptus woodlands with a shrubby understorey

- Eucalyptus woodlands with a tussock grass understorey

- Freshwater, dams, lakes, lagoons or aguatic plants

- Heathlands
- Mangroves

- Melaleuca open forests and woodlands
- Tropical or sub-tropical rainforest

Figure 4.25: Major vegetation subgroups within 10 kms range of the HeV outbreak

sites.
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Flying-fox's Food Resources within 10 kms Buffer Range of tha Incidents
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- Mangroves

- Tropical or sub-tropecal rainfarest

Figure 4.26: Identification of flying fox food resources within 10 kms range of the
HeV outbreak sites.
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Using “extract by attributes” tool, the possible food resources for both black and
grey-headed flying fox species within 10 kms range of the outbreak incidents were
identified. Figure 4.26 shows the food resources of flying foxes identified within 10
kms range of the outbreak events in the study area. Table 4.16 shows the food source
vegetation of the flying foxes in a descending order to study the most occurring food

source vegetation near the incident sites.

Table 4.16: List of flying fox food source vegetation and its count near the outbreak

events in the study area.

Value Count MVS Name

5 26833 Eucalyptus open forests
with a grassy understorey

4 16936 Eucalyptus open forests
with a shrubby
understorey

9 11658 Eucalyptus woodlands
with a tussock grass
understorey

2 8676 Tropical or Sub-tropical
Rainforest

60 7921 Eucalyptus tall open

forests and open forests
with ferns, herbs, sedges,
rushes or wet tussock

grass s

40 3680 Mangroves

8 2486 Eucalyptus woodlands
with a shrubby
understorey

3 1855 Eucalyptus (-/+) open

forest with a dense broad-
leaved and/or tree-fern
understorey (wet

sclerophyll)

13 271 Brigalow (Acacia
harpophylla) forests and
woodlands

50 209 Banksia Woodlands

28 190 Low closed forest or tall

closed shrub lands
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(including Acacia,
Melaleuca and Banksia)
48 47 Eucalyptus open
woodlands with a grassy
understorey
62 45 Dry rainforest or vine
thickets

High/low Clustering (Getis-Ord General G) analysis was performed on the food
source vegetation of the flying foxes at various thresholds (3, 5, and 10 kms) to
examine the clustering. Table 4.17 shows the summary of the results of High/low
clustering analysis of the fox food source vegetation within 10 kms range of the
outbreak events. The analysis gave high clustering at a confidence level of 90% at 3
and 4 kms thresholds. At 5 kms, the clustering was random and at 10 kms range; the
analysis gave a low clustering. For the full report of the analyses, see Appendix 4. It
is evident that the HeV outbreak events had high clustered food source vegetation of

both species within 4 kms range, which could be a probable cause for the outbreak.

Table 4.17: Summary of the cluster analysis results of food source vegetation near

the outbreak events.

Distance Threshold Getis-Ord General G Statistic High/low

Report Clustering

3 kms Observed General G — High Clustering
0.000006
z-Score — 2.99
p-value — 0.002

4 kms Observed General G — High clustering
0.000007
z-Score — 1.87
p-value — 0.006

5 kms Observed General G — Random Clustering
0.000008
z-Score — 0.64
p-value — 0.51

10 kms Observed General G — Low Clustering
0.000013
z-Score — -3.65
p-value — 0.00026
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4.4.2 Examining the Spatial Relationship between the Equine

Population and Food Source Vegetation of the Flying Foxes

A 10 Km range from the equine properties was chosen to examine the spatial
relationship between the equine properties and the food source vegetation of the
flying foxes in the study area. Using buffer analysis and extract by mask, the major
vegetation subgroups present near the equine population was identified. Figure 4.27
shows the identification of major vegetation subgroups within 10 Km buffer range of
the equine population in the study area. A full list of vegetation subgroups in the map

is provided in Appendix 4.
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Identification of MVS within 10 kilometers of the Equine Properties

Legend

®  Equine Properties

] SEQLD

N
0 10 20 40 Kilometers
T N I |

List of Notable Vegetation Subgroups ldentified

MV S_NAME

I:I Casuarina and Allocasuarina forests and woodlands

I:I Cleared, non-native vegetation, buildings

- Eucalyptus (+/- tall) open forest with a dense broad-leaved andfor tree-fern understorey (wet sclerophyll)
- Eucalyptus open forests with a grassy understorey

- Eucalyptus open forests with a shrubby understorey

I:I Eucalyptustall open forests and open forests with ferns, herbs, sedges, rushes or wet tussock grasses
- Eucalyptus woodlands with a shrubby understorey

- Eucalyptus woodlands with a tussock grass understorey

- Melaleuca open forests and woodlands

Figure 4.27: Major vegetation subgroups within 10 kms range of the equine

properties.
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Food Source Vegetation Identified within 10 kilometers of the Equine Properties
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- Eucalyptus tall open fore st with & fina-lesv ed shrubby understomy

- Eucalyptus tall open forests and open forests with fams, herbs_ sedges. rushes or wet tussock grasses
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- Eucalyplus woodlands with 3 lussock grass undarstaray

- Low closad forest or tafl closed shrublands {mcluding Acacia. Melalauca and Bankséa)

- Tropical ar subdrapical ranforest

Figure 4.28: Identification of flying fox food resources within 10 kms range of the

equine properties.
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Using “extract by attributes” tool, the possible food sources for black and grey
headed flying foxes near the equine population were identified. Figure 4.28 shows
the food source vegetation of the flying foxes identified within 10 Km range of the
equine population. Table 4.18 shows the food source vegetation of the flying foxes in
a descending order to study the most occurring food source vegetation near the

equine population in the study area.

Table 4.18: List of flying fox food source vegetation and its count near the outbreak

events in the study area.

Value Count MYVS Name

5 67865 Eucalyptus open forests
with a grassy understorey

4 41845 Eucalyptus open forests
with a shrubby
understorey

9 26659 Eucalyptus woodlands
with a tussock grass
understorey

2 21435 Tropical or Sub-tropical
Rainforest

60 21346 Eucalyptus tall open
forests and open forests
with ferns, herbs, sedges,
rushes or wet tussock
grass s

3 5784 Eucalyptus (-/+) open
forest with a dense broad-
leaved and/or tree-fern
understorey (wet
sclerophyll)

8 5510 Eucalyptus woodlands
with a shrubby
understorey

13 476 Brigalow (Acacia
harpophylla) forests and
woodlands

28 449 Low closed forest or tall
closed shrub lands
(including Acacia,
Melaleuca and Banksia)

50 413 Banksia Woodlands
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The food source vegetation near the equine properties was examined using high/low
clustering (Getis-Ord General G Statistic) method. The clustering of the vegetation
was studied at 3, 5 and 10 Km from the equine population. The analysis showed a
significant high clustering of the food source vegetation at all the distance thresholds.
Table 4.19 shows the high/low clustering report of the food source vegetation of
flying-foxes at different distance thresholds. For the full report of the analyses, see
Appendix 4. This study revealed that the equine properties in the study area have high
clustered food source vegetation of both species in the range with Eucalyptus

varieties being the most occurring vegetation group.

Table 4.17: Summary of the cluster analysis results of food source vegetation near

the equine properties.

Distance Threshold Getis-Ord General G Statistic High/low
Report Clustering

3 kms Observed General G — High Clustering
0.000007
z-Score — 69.1
p-value — 0.00000

5 kms Observed General G — High Clustering
0.000011

z-Score — 65.15
p-value — 0.00000

10 kms Observed General G — High Clustering
0.000016
z-Score — 54.83
p-value — 0.00000

4.5 Models to Identify Population ‘at risk’ (Hypothesis 4)

4.5.1 Model 1

This model identifies the ’at risk’ equine properties based on the presence of
positively significant black flying foxes roosting sites from the GWR model (see

Section 4.3.5) and their food source vegetation (see Section 4.4.1) in significantly
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high clusters within 20 kms from the properties. These two factors are extremely
significant in this model based on the GWR model results and food source vegetation
study. Flowering season of the food source vegetation adds an additional risk factor
due its importance in attracting the flying foxes and previous outbreaks in these
seasons. However, even without flowering season as a risk factor, the properties
remain ‘at risk’ with the presence of black flying fox species and their food source

vegetation in range.

An equine property located within 20 kms range from a positively significant black
flying fox roosting site with significantly high clusters of their food source
vegetation in the study area were considered as ‘at risk’ population in model 1.

Figure 4.29 shows the equine population ‘at risk’ based on model 1.

Model 1 - Equine Population 'at risk’

Legend

# Al riok population
@ Fosinely Sgnificant BFF

Figure 4.29: Equine population ‘at risk’ in the study area based on model 1.
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Table 4.18: Cluster analysis results of black flying foxes food source vegetation near

the equine population ‘at risk’.

Distance Threshold Getis-Ord General G High/low
Statistic Report Clustering

3 kms Observed General G — High clustering
0.000001

z-score — 21.67
p-value — 0.00000

5 kms Observed General G — High clustering
0.000002
z-score — 16.38
p-value — 0.00000

10 kms Observed General G — High Clustering
0.000004
z-score — 8.85
p-value — 0.00000

15 kms Observed General G — High Clustering
0.000005
z-score — 4.68
p-value — 0.000003

20 kms Observed General G — High Clustering
0.000006
z-score — 1.83
p-value — 0.0667

Table 4.18 shows the summary of the high/low clustering results at various distance
thresholds of the black flying fox food source vegetation near the equine population
‘at risk’ based on model 1. The vegetation clusters were significantly high at all 3, 5,
10, 15 and 20 kms tested. For full reports of the cluster analysis, see Appendix 4. The
flowering and fruiting season of the food source vegetation that attracts the black
flying foxes is mostly around the winter months (various sources as references and
these eucalyptus varieties often depend on birds andmammals to spread the pollen in
winter months) which adds an additional risk factor for a possible outbreak in
flowering season (Catchpole 2005). The flowering season of the food source
vegetation of the black flying foxes overlaps with their pregnancy period. Pregnancy
period/birth period showed a significant negative relationship in the GWR model
with the outbreak events in the study area. Regardless of the pregnancy/birth factor,

flowering season remains as an important element.
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Assumption:

Based on an assumption that the distance to the significantly positive black flying fox
roosting site contributes to 40% of the risk, clustering of the food source vegetation
(significantly high, random or low) to 40% of the risk and flowering season (yes or
no) to another 20% of the risk; based on these factors the relative risk of a probable

outbreak on a selected equine property ‘at risk’ can be calculated.

Risk factor of Farm based on model 1 (%)
= Distance to the significant roosting site (BFF)in kms(%)
+ food source vegetation clustering (%)

+ flowering season (%)

Equation 4.1

For example, a farm ‘A’ is located 5 kms (5kms of total 20 kms range i.e. 10%) from
a black flying fox roosting site with significant high cluster of food source vegetation
(40%), it has a 50% chance of a probable outbreak in non-flowering season (0%) and
85% chance of a probable outbreak in flowering season (20%) based on model 1.
This chance of probable outbreak can be calculated for any equine property based on

the exact distance, food source vegetation cluster type and season.

4.5.2 Model 2

This model identifies the ’at risk’ equine properties based on the presence of
positively significant grey-headed flying foxes roosting sites from the GWR model
(see Section 4.3.5) and their food source vegetation (see Section 4.4.1) in
significantly high clusters within 20 kms from the properties. Flowering season of
the food source vegetation adds an additional risk factor due its importance in
attracting the flying foxes and previous outbreaks in these seasons. However, even
without flowering season as a risk factor, the properties remain ‘at risk’ with the

presence of grey-headed flying fox species and their food source vegetation in range.
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An equine property located within 20 kms range from a positively significant grey-
headed flying fox roosting site with significantly high clusters of their food source
vegetation in the study area were considered as ‘at risk’ population in model 2.

Figure 4.30 shows the equine population ‘at risk’ based on model 2.

Model 2 - Equine Population 'at risk'
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Figure 4.30: Equine population ‘at risk’ in the study area based on model 2.
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Table 4.19: Cluster analysis results of grey-headed flying Foxes food source

vegetation near the equine population ‘at risk’.

Distance Threshold Getis-Ord General G Statistic High/low
Report Clustering

3 kms “Observed General G — ' High clustering
0.000001

z-score — 19.26
p-value — 0.00000

5 kms Observed General G — High clustering
0.000002
z-score — 13.79
p-value — 0.00000

10 kms Observed General G — High Clustering
0.000003
z-score — 5.99
p-value — 0.00000

15 kms Observed General G — Random Clustering
0.000004
z-score — 1.44
p-value — 0.14

20 kms Observed General G — Random Clustering
0.000006
z-score — -1.42
p-value — 0.15

Table 4.19 shows the summary of the high/low clustering results at various distance
thresholds of the grey-headed flying fox food source vegetation near the equine
population ‘at risk’ based on model 2. The vegetation clusters were significantly high
at all 3, 5 and 10 kms tested. For full reports of the cluster analysis, see Appendix 4.
The flowering and fruiting season of the food source vegetation that attracts the grey-
headed flying foxes is mostly around the winter months, which is the same as the

black flying foxes.

Assumption:

Based on an assumption that the distance to the significantly positive grey-headed

flying fox roosting site contributes to 40% of the risk, clustering of the food source
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vegetation (significantly high, random or low) to 40% of the risk and flowering
season (yes or no) to another 20% of the risk; based on these factors the relative risk

of a probable outbreak on a selected equine property ‘at risk’ can be calculated.

Risk factor of Farm based on model 2 (%)
= Distance to the significant roosting site (GHFF) in kms(%)

+ food source vegetation clustering (%) + flowering season (%)

Equation 4.2

For example, a farm ‘B’ is located 15 kms (15 kms out of total 20 kms range 1i.e.
18.75%) from grey-headed flying fox roosting site with low cluster of food source
vegetation (0%), it has an 18.75% chance of a probable outbreak in non-flowering
season and 38.75% chance of a probable outbreak in flowering season (20%) based
on model 2. This chance of probable outbreak can be calculated for any equine

property based on the exact distance, food source vegetation cluster type and season.

4.5.3 Model 3

This model identifies the ’at risk’ equine properties based on the presence of either
black or grey-headed or both species roosting sites and their food source vegetation
in significantly high clusters within 20 kms from the properties. Flowering season of
the food source vegetation adds an additional risk factor due its importance in

attracting both flying fox species and previous outbreaks in these seasons.

An equine property located within 20 kms range from a positively significant
roosting site of either species with significantly high clusters of their food source
vegetation in the study area were considered as ‘at risk’ population in model 3.

Figure 4.31 shows the equine population ‘at risk’ based on model 3.
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Model 3 - Equine Population 'at risk’
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Figure 4.31: Equine population ‘at risk’ in the study area based on model 3.

The clustering of the food source vegetation for this model needs to be calculated

depending on the equine property ‘at risk’ and the species identification at the

roosting site in their range. The assumptions remain the same as models 1 and 2.
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4.6 Flowchart of the Results

Hypothesis 1 - the Hendra
Virus Outbreak events in
the study area are
correlated to the flying fox
roosting sites.

Hypothesis 2 — the significant
factors that could explain the HeV
dispersal in the study area can be
identified using an appropriate
spatial modelling technique.

Hypothesis 3 — the food
source vegetation plays an
important role in the
outbreak events.

y

The results showed a
strong correlation
between the outbreak
events and the existence
of  temporary and
seasonal  flying  fox
roosting sites within a 10
km range.

v
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l

Hypothesis 1 - Accepted

Hypothesis 2 -
Accepted

The results revealed significant
clustering of P. alecto and P.
scapulatus using Spatial
Autocorrelation technique.

P. alecto and P. poliocephalus
species density showed a primary
relationship to the incidents in
the study area.

Buffer analysis visualised a
correlation between P. alecto and
P. poliocephalus species birth
periods and the incidents in the
study area.

OLS regression identified P.
poliocephalus species to be

e The food source
vegetation of from
black and grey-
headed flying
foxes was
identified.

e The food sources
for each species
indicated a positive
relationship
between the
roosting site
location and MVS.

e The food source
vegetation within

Hypothesis 4 — Based on
the influential factors, it is
possible to identify the

population ‘at risk’ by
generating a  prediction
model.

globally significant (99% 10kms range from
confidence level),model equine properties
performance — 0.7. indicated
In GWR analysis independent statistically
variables P. alecto and P. significant high
poliocephalus species exhibited a clustering at 3, 5
significant positive relationship and 10 kms
in most of the regions, model thresholds.
performance -0.88. \1,
Hypothesis 3 -
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properties.
The models were based on —> gccented
the results of the GWR
model and the food source
vegetation analysis.

Figure 4.32: Summary of the results.
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4.7 Summary

A summary of the conclusion of each hypothesis tested was presented in Figure 4.32
(see Section 4.6). The preliminary spatial analysis of the flying fox roosting sites
results showed a strong correlation between the outbreak events and the existence of
temporary and seasonal flying fox roosting sites within a 10kms range. A very few
disease outbreak incidents have a permanent roosting site in their buffer range. The
results provided a strong case for investigation into the seasonal behaviour of flying

foxes, particularly in breeding season.

4.7.1 Spatial Autocorrelation

The spatial autocorrelation of the black flying foxes showed significant clustering at
all the foraging range intervals (20 to 50 kms range) with high occurrence at 50 kms,
which is their maximum foraging range. Grey-headed flying foxes showed random
clustering at 10, 20 and 30 kms range. The maximum clustering for grey headed
flying foxes occurred at 40 kms foraging range. The results of the little red flying

foxes showed maximum significant clustering occurring at 10 kms range.

4.7.2 Kernel Density Estimation

The Kernel density estimation (KDE) identified a primary relationship between black
flying foxes and grey-headed flying foxes density and the HeV outbreak incidents in
the study area. Buffer analysis indicated a correlation between the black flying fox
and grey-headed flying fox birth periods and the incidents in the study area.
Pregnancy period of the flying foxes is considered to exhibit high correlation with
Hendra disease outbreaks in other study areas (Field et al. 2007). A total of ten
incidents have fallen within the birth period of the black flying foxes and grey-
headed flying foxes with one or more roosting sites in the buffer range of 10 kms.
Buffer analysis was able to establish the initial correlation between the birth periods

of individual species and incidents in the study area.
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4.7.3 Regression Analysis

Ordinary least squares (OLS) regression identified P. poliocephalus species to be
significant among the other explanatory variables in the model. The OLS model has
a statistically significant heteroscedasticity (p<0.05) which suggests the use of
Robust P to determine the coefficient significance for consideration. Goodness-of-fit
measure indicated a model performance of 0.7. The variance inflation factor (VIF)
values indicated no redundancy among the variables. Moran’s I test (/ndex = -0.02, P
= (.8) indicated no significant clustering among the residuals. The results indicate
that the presence of the camps with high density grey headed flying-fox species have
high incident rate across the study area globally. Geographically weighted regression
(GWR) analysis was performed to identify the local relationships between the
dependent and independent variables. P. alecto and P. poliocephalus species
exhibited a significant positive relationship in most of the regions where as
pregnancy period variable exhibited a significant negative relationship to the HeV
incidents in the study area. The goodness-of-fit measure indicated an improvement
from 0.7 (global model) to 0.8. Moran’s I test (Index = -0.02, P = 0.9) indicated no
significant clustering among the residuals. The spatial variability of the local
parameter estimates of each variable has been tested using GWR4 software and
significant spatial variability was present in the variables. The t value of each
parameter estimate of the independent variables was mapped for a detailed study of

the local relationships.

4.7.4 Vegetation Analysis

The food source vegetation analysis identified the major vegetation subgroups
present within the minimum foraging range (20 kilometers) from the black and grey-
headed flying foxes temporary and seasonal roosting sites. From the identified
subgroups, the potential food sources for each species were identified. The
abundance of food sources for each species within their minimum foraging range
indicates a positive relationship between the roosting site locations and the
vegetation subgroups present near them. The vegetation subgroup identification on

the incident site location indicated that 10 out 11 incidents are rather located on
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'Cleared, non-native vegetation, buildings' subgroup and the other one incident is

located vegetation subgroup ‘'Eucalyptus open forests with a grassy understorey’.

Further study on the vegetation subgroups within 10 kilometers range from the
incident sites identified a range of vegetation including a good amount of possible
food sources for both black and grey-headed flying foxes. High/low clustering
method was employed to study the clustering of the food sources near the incident
sites. The results indicated a significant high clustering at 3 kilometers distance
threshold. The p-value of 0.002 indicates 99% significance and the positive z-score
indicated clustering among the high values. However, the clustering started
dispersing as the distance threshold increased. At 4 kilometer distance threshold, the
clustering was still statistically significant but at 90% confidence level. At 5
kilometer distance threshold, the clustering is random and at 8 kilometer distance

threshold, the result is dispersed.

The food source vegetation within 10 kilometers range from equine properties was
examined using high/low clustering method. Unlike the food source vegetation study
near the outbreak events in the study area which was clustered at 3 kilometer
threshold and then started dispersing, the results indicated statistically significant
high clustering at all 3, 5 and 10 kilometers distance thresholds. The study of the
most occurring food source vegetation types near the equine population indicated
that it mainly consists of ‘Eucalyptus’ related subgroups. This established a strong
spatial relationship between the registered equine properties and the food source

vegetation of the flying foxes.

4.7.5 Prediction Models

Based on the results achieved thus far, 3 models were generated to identify the
equine population ‘at risk’ in the study area. These models concentrate on the
presence of positively significant roosting sites of both species from the GWR model
and their food source vegetation clustering within 20 kms range from the equine
properties. Flowering season was also considered as an additional risk factor in these
models due its importance in attracting the flying foxes and previous outbreaks in

these seasons. The flowering and fruiting season of the food source vegetation that
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attracts these species is mostly around the winter months (various sources as
references and these eucalyptus varieties often depend on birds andmammals to
spread the pollen in winter months) which adds an additional risk factor for a

possible outbreak in flowering season (Catchpole 2005).

A detailed discussion on the methods used, hypothesis tested, results achieved and

the limitations of the work has been presented in the following Chapter 5.
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5. Chapter Five - Discussion

HeV is responsible for the cause of a zoonotic disease with very high mortality rate.
The disease is transmitted to humans from bats of the genus Pteropus, commonly
known as fruit bats via an intermediate equine host. HeV infections have been seen
only in Australia, where the virus is endemic in flying foxes. The research on HeV
has been given a high public health significance due to the high mortality rate of >79
per cent. HeV is transmitted mainly by ingesting food or water contaminated with
infected flying fox body fluids and excretions in horses. The virus can then be passed
onto humans who come into close contact with infected horse’s nasal discharge,
blood, saliva or urine (AAW 2012). The studies show strong evidences that the
disease is not bat-to-human transmissible and horses act as medium for disease
transmission to humans. Horses to other species and bats to other species

transmissions are however possible (Australian Biosecurity 2009).

HeV is considered as a serious public health concern, particularly in Queensland and
New South Wales. Its effective prevention and control are being considered by the
government as a matter of priority. While there is a new development in the HeV
control strategy by mean of, vaccination to the horses against the disease is the only
solution so far. As a Zooneses category disease, there is always a possibility to
determine the causes that promote the virus transmission. It is important to explore
the possible environmental, ecological and other related factors that may influence
the prevention and control measures in terms of the public and environmental health

safety.

Hypothesis-1

To study the relationship between the flying fox roosting sites and the outbreak events, a
preliminary study incorporating buffer analysis was conducted. The results showed a
strong relationship between the outbreak events in the study area and the existence of
temporary and seasonal flying fox roosting sites within a 10km range. Very few disease
outbreak incidents have a permanent roosting site in their buffer range. The results of the
preliminary analysis are consistent with the NFFMP’s findings. The recent findings of

NFFMP revealed that the distribution of flying foxes is highly variable, with the animals
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moving in and out of camps seasonally, apparently in response to varying food resources
available. The grey headed and spectacled flying foxes - whose entire distributions were
covered by the monitoring, have shown a dramatic change in their distribution over the
last decades with a shift to smaller camps located in urban and peri urban areas. This is a
similar distribution pattern to that of horses (DoE 2013). The results provided a strong
case for research into the seasonal behaviour of flying foxes, particular in breeding

s€ason.

Hypothesis-2

Global statistics such as Spatial Autocorrelation tool assess the overall pattern and
trend of the data. It is a useful technique to identify the trend of the data over space-
time (Getis et al 1992). Spatial Autocorrelation tests results of the flying fox species
at various distance thresholds indicated that the species - black flying foxes and little
red flying foxes are significantly clustered at threshold distance of 10 kms. The
spatial autocorrelation of the black flying foxes showed significant clustering at all
the foraging range intervals (20 to 50 kms range) with high occurrence at 50 kms,
which is their maximum foraging range. Grey-headed flying foxes showed random
clustering at 10, 20 and 30 kms range. The maximum clustering for grey headed
flying foxes occurred at 40 kms foraging range, which is the nocturnal foraging
range of the flying foxes (Markus et al 2004). The results of the little red flying foxes

showed maximum significant clustering occurring at 10 kms range.

Similar to a recent study on the HeV patterns (Smith et al. 2014); the kernel density
estimation (KDE) technique showed that the black flying foxes density is particularly
higher near the incident locations in the study area; however the density of grey
headed flying foxes is also high near the incidents in the study area unlike the study.
KDE identified a primary relationship between black headed flying foxes and grey-
headed flying foxes density and the incidents in the study area. It is an ideal
technique to examine large scale trends in point pattern analysis (So et al. 2008). The
bandwidth for the KDE analysis for each species was 0.4598 degrees, which was
calculated by the default search radius (bandwidth) algorithm of ArcGIS 10.2.1
(ESRI 2016). The study (Smith et al 2014) suggested that there are unidentified risk
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factors that exist at the property level apart from the density of horses, climatic and

vegetation variables.

Buffer analysis indicated a correlation between the black flying foxes and grey-
headed flying fox birth periods and the incidents in the study area. Pregnancy period
of the flying foxes is considered to exhibit high correlation with Hendra disease
outbreaks in other study areas (Field et al. 2007). A total of ten incidents have fallen
within the birth period of the black flying-foxes and grey-headed flying foxes with
one or more roosting sites in the buffer range of 10 kms. Buffer analysis was able to
establish the initial correlation between the birth periods of individual species and
incidents in the study area. The black and grey-headed flying foxes were considered
as significant species for the regression model as explanatory variables based on the

results of KDE analysis and the birth period correlation study.

The model for the regression analyses was calibrated using the GWR technique in an
exploratory method (Fotheringham et al 2012). The explanatory variables for this
study were selected considering the previous studies (Breed et al. 2011, Smith et al.
2014, Plowright et al. 2008 and Field et al. 2007) as well as the preliminary analysis
conducted in this study to establish the initial correlations to identify the unspecified
risk factors and patterns of the disease dispersal using spatial analysis techniques.
The model calibration technique introduced by Fotheringham et al (2012) uses a
statistical model-building procedure in order to establish if any further reduction in
the set were possible. By doing this, a reduced set of highly significant explanatory
variables (black flying foxes, grey-headed flying foxes and the average

pregnancy/birth period) of HeV outbreak events were achieved.

The implementation of the OLS technique has provided a global understanding of the
HeV disease across the study area. The analysis was carried out using the ‘incident
rate’ as a dependent variable and black flying foxes, grey-headed flying foxes and
pregnancy period as independent variables. The OLS regression technique identified
grey-headed flying foxes as significant explanatory variable in the global context
across the study area. The independent variable ‘grey-headed flying foxes’ was
globally significant at 99% confidence level across the study area. The variance

inflation factor (VIF) values indicated no redundancy among the variables in the
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model. This model has a statistically significant heteroscedasticity (p<0.05) which
suggests the use of Robust P to determine the coefficient significance for
consideration. Goodness-of-fit measure indicated a model performance of 0.7 (70%).
Moran’s I test (Index = -0.02, P = (.8) indicated no significant clustering among the
residuals. Field et al (2011) suggested that some flying fox species may play a
greater role on the HeV transmission of infection to horse, which indicates that the
virus dispersal highly depends on the presence of particular flying fox species based
on the geographic location. In the current study, it can be interpreted that the grey-
headed flying fox species play primary role in the HeV dispersal across the study
area globally.

The GWR technique is a local model of the variable or process for understanding the
spatial patterns by fitting a regression equation to every feature in the data set. The
model produced (explanatory variables - black flying fox density, grey-headed flying
fox density and pregnancy period) using statistical model-building procedure was
used to study the locally varying spatial trends of the HeV incidents across the study
area. The spatial variability among the local parameter estimates produced by GWR
analysis of each variable has been tested using GWR4.0 software. The significant
spatial variability test indicated that it was present among the variables. The
goodness-of-fit measure indicated an improvement from 0.7 (global model) to 0.88
(88%). The good-of-fit measure value indicates that the chosen explanatory variables
explain 88% of the virus dispersal locally in the study area. Moran’s I test (Index = -

0.02, P =0.9) indicated no significant clustering among the residuals.

The GWR results revealed a significant positive relationship between black and grey
headed flying foxes density and the incidents in the study area. The result supports
the statement of Westcott (2016), who argued that the HeV in horses mostly
correlated with the incursions of the spectacled flying foxes and black flying foxes.
A study by Smith et al (2014) identified the density of black and spectacled flying
foxes as a significant risk factor in eastern Australia. The local trends of these two
species observed across the study region would be highly beneficial in further
disease modelling. Even though the pregnancy factor (Plowright et al. 2008) was
considered as a potential risk for the Hendra outbreak and showed an initial possible

correlation to the incidents in the study area, it exhibited a negative relationship at
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local level. This indicates that there are other unidentified risk factors such as
vegetation, migration strategies and seasonal change that need to be assessed

together with the birth and lactating periods for more detailed local analysis.

The black flying foxes showed positive significance in the regions of Logan,
Redland, Scenic Rim and parts of Brisbane, Moreton Bay, and Sunshine Coast
Regions. The grey-headed flying foxes showed positive significance in the regions of
Brisbane, Ipswich, Gold Coast, Scenic Rim, Logan and Redland regions in the study
area. The black flying foxes showed a positive correlation where the grey-headed
flying foxes displayed a negative correlation in the region of Sunshine Coast. The
grey-headed flying foxes showed no significance in the region of Moreton Bay
where black flying foxes showed a strong positive correlation in the study area. The
pregnancy period variable showed negative significance in most of the regions
except Gold Coast, Sunshine Coast and part of Brisbane where the variable showed
no statistical significance in the study area. The results of the GWR model reveal that
the virus dispersion is positively related to the density and distribution of the black
and grey headed flying foxes in the study area. The GWR model performed well
(local R-squared value > 0.8) in the southern part of the study area where the incident
rate is comparatively high and poorly in the northern region of the study area where

the incident rate is low.

Hypothesis-3

An in-depth investigation of the food source vegetation of the flying foxes and their
roosting sites as potential factors of HeV dispersal has identified the major
vegetation subgroups present within the minimum foraging range (20 kilometers)
from the black and grey-headed flying foxes temporary and seasonal roosting sites in
the study area. Flying foxes largely depend on nectar and pollen from eucalypts,
melaleucas and banksias; however they are attracted to a broad range of flowering
and fruiting trees, and vegetation, as food sources (Wildlife QLD 2016). Department
of primary industries, NSW investigated the type of vegetation present on some of
the virus infected properties which included a range of fig trees, bottlebrushes,

cocoas palm, stone fruits such as mangoes and papaws, palms, lilly-pillies and

200 | Page



grevilleas (DPI 2012). Black flying foxes prefer blossom of eucalypts, paperbarks
and turpentine’s, as well as a variety of other native and introduced blossom and
fruits. They have been seen to eat the leaves of trees by chewing the leaves into a
bolus, swallowing the liquid and then spitting out the fibre (Wildlife QLD 2016,
Australian Museum 2013). Grey-headed flying foxes forage on fruits and blossoms
of more than 80 species of plants and mostly refer eucalypt blossom with native figs
being the most popular fruit. They chew leaves and appear to eat the salt glands from
mangroves. They also forage in gardens, parks and orchards and may fly many kms

from roost site to feed (Wildlife QLD 2016).

Based on the above information, the potential food sources for each species were
identified. The black flying fox food resources included major Eucalyptus open
forests varieties, Eucalyptus woodlands varieties, Tropical or Sub-tropical
Rainforest, Low closed forest or tall closed shrub lands (including Acacia, Melaleuca
and Banksia) and Brigalow forests and woodlands. The grey-headed flying fox
resources included Eucalyptus open forests varieties, Eucalyptus woodlands
varieties, Tropical or Sub-tropical Rainforest, Melaleuca open forests and
woodlands, Mangroves and Dry rainforest or vine thickets. The abundance of food
sources for each species within their minimum foraging range indicates a positive
relationship between the roosting site locations and the vegetation subgroups present

near them.

High/low Clustering (Getis-Ord General G) analysis was performed on the food
source vegetation of the black flying foxes and grey-headed flying foxes at various
thresholds (3,5, and 10 kms) to examine the clustering. The results of High/low
clustering analysis of the black flying fox food source vegetation returned high
clustering at a confidence level of 99% at all the thresholds tested. The results of
High/low clustering analysis of the grey-headed flying fox food source vegetation
returned high clustering at a confidence level of 99% at all the thresholds tested. The
results indicate that the roosting site locations are majorly dependent on the
availability of the food source vegetation especially in high clusters.

Further study on the vegetation subgroups within 10 kilometers range from the
incident sites identified a range of vegetation including a good amount of possible

food sources for both black and grey-headed flying foxes. High/low clustering
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method was employed to study the clustering of the food sources near the incident
sites. The results indicated a significant high clustering at 3 kilometers distance
threshold. The p value of 0.002 indicates 99% significance and the positive Z score
indicated clustering among the high values. However, the clustering started
dispersing as the distance threshold increased. At 4 kilometers distance threshold,
the clustering was still statistically significant but at 90% confidence level. At 5
kilometers distance threshold, the clustering is random and at 8 kilometers distance

threshold, the result is dispersed.

The major vegetation subgroups present within 10 Km range of the equine
population in the study area were examined. From the major vegetation subgroups,
the food source vegetation of black and grey-headed flying foxes were identified.
The food source vegetation within 10 Km range from equine properties was
examined using high/low clustering method. Unlike the food source vegetation study
near the outbreak events in the study area which was clustered at 3 Km threshold and
then started to disperse widely, the results indicated statistically significant high
clustering at all 3, 5 and 10 Km distance thresholds. The study of the most occurring
food source vegetation types near the equine population indicated that it mainly
consists of ‘Eucalyptus’ related subgroups. It can be interpreted that these food
resources present near the equine properties attract the flying foxes and thus the
chances of an outbreak is more likely at a property with highly clustered food source

vegetation.

Hypothesis-4

Based on the results from the GWR model and the food resource vegetation analysis
of the flying foxes, three models that could identify the equine population ‘at risk’
(thus identifying the human population ‘at risk’ of a potential outbreak) were
generated. Model 1 identified the ’at risk’ equine properties based on the presence of
positively significant black flying foxes roosting sites from the GWR model and their
food source vegetation in significantly high clusters within 20 kms from the
properties. Model 2 identified the ’at risk’ equine properties based on the presence of
positively significant grey-headed flying foxes roosting sites from the GWR model

and their food source vegetation in significantly high clusters within 20 kms from the
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properties. Model 3 identified the ’at risk’ equine properties based on the presence of
either black or grey-headed or both species roosting sites and their food source
vegetation in significantly high clusters within 20 kms from the properties.
Flowering season of the food source vegetation was considered as an additional risk
factor in all three models due its importance in attracting the flying foxes and
previous outbreaks in these seasons. Each factor was given a ‘weighted percentage’
in assumptions to calculate the ‘relative risk of a probable outbreak event’ involved
for individual equine property in the study area. The risk percentage of a probable
outbreak event varies for each equine property depending on their exact location and
their contributing factors. By incorporating the prediction models generated, the
early warning messages can be issued to the equine properties ‘at risk’ in the study

area, thus by identifying the human population ‘at risk’.

Research Limitations

The findings of this research were based on the empirical data driven analysis and
are highly dependent on the data accuracy. The data was validated and any duplicates
were removed to reduce the degree of possible error. The results of the study are only
applicable to the study area. The results may vary when the dynamics of the HeV
dispersal and its influential factors are to be studied at a larger scale or geographical

arca.

The flying fox species data is recorded manually, which may be prone to some
degree of error. The species data is continuous by the EHP and is updated every 3
months. The data used in this research has been manipulated to best reflect the

occupancy of the roosting sites at the time of the events.

It is important to note that this research is a spatial GIS-based approach to understand
the HeV disease outbreak events, its transmission and the factors influencing the
disease dispersal in the study area. This study is built on the research that have been
published so far on the HeV, its biology, transmission and their reservoir host —
flying foxes. The future biological researches may find contrary to results achieved

in this research.
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Future Research

Hypothesis 2 indicated a significant negative relationship with the average
pregnancy/birth period variable of the flying fox species in the study area. A further
examination into the flying fox pregnancy, birth and lactation periods of the flying
foxes may reveal any underlying spatial patterns of this correlation to the HeV
incidents in the study area. This may be effective in improvising the prediction

models generated and thus helps in generating accurate warning signals.

It will be advantageous to study further into the most re-occurring food sources (at
least 3 vegetation subgroups) near the flying fox roosting sites, equine properties and
the incidents to identify the individual correlations. This may help identify if the
virus dispersion could be linked to a particular major vegetation subgroup(s) in the
study area. Studying the HeV dispersal and its influential factors at a larger or
smaller scale (geographical context) would be useful in understating the changes in
the pattern(s) and how the influential factors affect the study area(s) at various
scales/geographical contexts. This will be beneficial for state and local governments
to plan mitigation policies appropriately and achieve the best outcome for human,

equine and flying fox populations.

By using the current study as a base, this research provides a platform for potential
automated disease forecasting and surveillance system for HeV disease. As HeV is a
highly fatal disease, the automated system could have significant impact on both
public health and equine industries. The automated surveillance systems require
sophisticated data acquisition and analysis; there is still a gap in current research due
to limitations in lack of infrastructure for such data acquisition, lack of awareness
and also shortage of trained personnel. However, in the near future the automated
disease surveillance system would be a cost and time effective approach in

monitoring public health.
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6. Chapter Six — Conclusion

The overall aim of this research was to analyse the spatial patterns of the HeV cases,
study the factors that may explain the HeV dispersal in the study area and identify
the population ‘at risk’ using a prediction model by incorporating GIS techniques.
Using the spatial analytical tools, this research established a relationship between the
outbreak events and their influential factors such as species, foraging range,
pregnancy period, birth and lactation period, seasons and food source vegetation.
This study successfully filled in the requirement of a good GIS-based
epidemiological research to study the HeV outbreaks in the study area spatially and
temporally, which addresses the pressing need announced by Queensland
Government (DAF 2015). The results of Hypothesis 1 showed strong correlations
between the outbreak events and the existence of temporary and seasonal flying fox
roosting sites within a 10kms range of the incidents in the study area. A very few
outbreak incidents (18%) have a permanent roosting site in their buffer range. The
findings provided a strong case for investigation into the seasonal behaviour of flying

foxes, particularly in breeding season.

The findings of Hypothesis 2 have provided excellent understanding the factors
influencing the dispersal of HeV outbreak events in the study area. Global Moran’s I
method (inverse distance conceptualisation) was used to identify the presence of
significant spatial clustering of the three flying fox species at various foraging ranges
(10, 20, 30, 40 and 50 kms) in the study area. Global Moran’s I revealed significant
clustering of P. alecto and P.scapulatus species. The analysis of P. alecto species
showed significant clustering at all foraging range intervals with high occurrence at
50 kms, which is their maximum foraging range. The findings of P.scapulatus
species showed maximum significant clustering occurring at 10 kms range. Kernel
density estimation (KDE technique) analysis helped in establishing a strong
relationship between P. alecto and P.scapulatus species density and the outbreak
events in the study area and revealed the density hotspots of these species. Buffer
analysis established an initial relationship between P. alecto and P. poliocephalus

species birth periods and the outbreak incidents.
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Ordinary least squares (OLS) regression identified P. poliocephalus species to be
significant among the other explanatory variables in the model. Goodness-of-fit
measure indicated a model performance of 0.7. The results indicated that the
presence of the camps with high density grey headed flying-fox species have high
incident rate across the study area globally. Geographically weighted regression
(GWR) analysis was performed to identify the local relationships between the
dependent and independent variables. P. alecto and P. poliocephalus species
exhibited a significant positive relationship in most of the regions where as
pregnancy period variable exhibited a significant negative relationship to the HeV
incidents in the study area. The goodness-of-fit measure indicated an improvement
from 0.7 (global model) to 0.8. The t values of each parameter estimate of the
independent variables were mapped for a detailed study of the local relationships,
which facilitated in identifying and understanding the local relationships of the HeV

incidents with the explanatory variables.

In Hypothesis 3, the findings identified the major vegetation subgroups present
within the minimum foraging range (20 kilometers) from the black and grey-headed
flying foxes temporary and seasonal roosting sites. Subsequently, the food source
vegetation of each species was identified. The abundance of food sources for each
species within their minimum foraging range indicates a positive relationship
between the roosting site locations and the vegetation subgroups present near them.
Further study on the vegetation subgroups within 10 kilometers range from the
incident sites identified a range of vegetation including a good amount of possible
food sources for both black and grey-headed flying foxes. The clustering of the food
resource vegetation present near the incidence was studied using Getis-Ord General
G Statistic method, which indicated statistically high clustering with 99% confidence
level at 3 kms distance threshold. A 10 kms range vegetation study on the equine
properties in the study area identified the food source vegetation of both significant
species. The clustering of the food source vegetation present near the equine
properties was studied using high/low clustering/Getis-Ord General G Statistic
method, which indicated statistically significant high clustering at 3, 5 and 10 kms
distance thresholds. The vegetation analysis revealed strong correlations between the

roosting sites, food source vegetation and the equine properties.
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Hypothesis 4 resulted in identifying the equine population ‘at risk’ based on the three
prediction models generated. The risk percentage of a probable outbreak event varied
for each equine property depending on their exact location and their contributing
factors. The prediction model(s) was an effective tool to identify the potential
population (both equine and human) ‘at risk’, which could help in health service
planning, policy implications, decision making and ongoing disease surveillance in
the study area. This study revealed the capability of GIS-based surveillance system to
issue early warnings and precautionary measures to the identified population ‘at
risk’. This research also made evidence based practice of disease mitigation,

planning and prevention and control strategies for HeV achievable.
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Appendix - 1

Data and Statistics

A1l.1 List of HeV Incidents

Table Al.1: List of HeV incidents (Source: Queensland Centre for Emerging

Incident

o 0 N9 S U A W -

NN N N N N e e e e e e e e e
N S W N = © O 00 39 & N A W DN = O

Infectious Diseases 2014).

Date
1/08/1994
9/09/1994

18/01/1999
25/10/2004
1/12/2004
14/06/2006
31/10/2006
6/06/2007
18/07/2007
26/06/2008
11/07/2008
28/07/2009
3/08/2009
17/05/2010
21/06/2011
26/06/2011
28/06/2011
30/06/2011
3/07/2011
4/07/2011
11/07/2011
13/07/2011
14/07/2011
15/07/2011
22/07/2011

Latitude
-21.12
-27.42
-16.79
-17.09
-19.38
-26.82
-28.33
-26.82
-16.78
-27.58
-20.57
-23.27
-19.99
-26.38
-28.04
-28.13
-27.69
-28.79
-30.73
-27.73
-16.89
-25.33
-28.72
-27.36
-26.75

Longitude
149.03
153.08
145.69
145.79
146.91
152.89
153.39
152.88
145.67
153.28
148.61
150.67
148.19
153.03
152.59
153.08
153.12
153.37
152.83
153.01
145.57
152.82
153.35
153.06
150.62
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26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

24/07/2011
8/08/2011
12/08/2011
15/08/2011
23/08/2011
27/08/2011
9/10/2011
3/01/2012
26/05/2012
28/05/2012
26/06/2012
15/07/2012

27/07/2012
3/09/2012
1/11/2012

21/01/2013

19/02/2013
5/06/2013

25/06/2013
1/07/2013
5/07/2013
8/07/2013

10/07/2013

17/03/2014
2/06/2014

21/06/2014

16/07/2014

-28.54
-28.88
-28.54
-28.71
-28.18
-28.79
-27.11
-19.59
-23.39
-18.63
-20.99
-23.39

-16.93
-16.53
-18.66
-21.82
-16.88
-30.69
-27.51
-30.71
-28.06
-30.85
-31.09
-24.93
-27.78
-28.33
-23.98

153.5

153.49
153.43
153.54
153.43
153.51
153.01
146.91
150.59
146.12
148.98
150.61

145.69
145.45
146.27
149.37
145.57
152.72
152.55
152.64
153.35
152.65
152.84
152.24
153.19
153.39
151.19
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A1.2 List of Permanent continuous Use Roosting Sites in the Study Area

Table A1.2: List of permanent continuous use roosting sites in the study area

Longitude
151.9837
152.6799
153.4277
152.3387
153.4292
146.2764

153.258
153.3812
153.4672
153.0519
152.4233
153.1136
152.8128
152.7044
153.1437
153.1837
152.9255
152.7222
153.0988
148.8029
153.0687
153.1279
153.1373
153.4134
153.4136
152.9992
153.2767
153.1363
151.8786
151.6566

152.926
152.7485
152.7556
152.2726

Latitude
-28.028
-27.9919
-28.0222
-24.8615
-28.0946
-26.3598
-27.5275
-27.8883
-28.1453
-27.4841
-27.2349
-27.444
-25.2456
-26.4048
-27.445
-27.4641
-27.5444
-27.4939
-27.2315
-26.5602
-27.3231
-27.0804
-27.6402
-27.9951
-27.9797
-27.412
-28.2174
-27.61
-26.9345
-24.0818
-27.0809
-27.6031
-27.6514
-27.5648

(Source: EHP 2014).

Name
Allora (Dalrymple Creek)
Boonah, Bicentenial Park
Broadbeach, Cascade Gardens
Bundaberg, Harriet Island/Don Tallon Bridge
Burleigh, Marymount College
Charleville (Warrego)
Cleveland, Black Swamp
Coombabah, Coombabah Creek
Currumbin Creek
East Brisbane, Norman Creek (Heath Park/Giffin Par
Esk
Hemmant, Lytton Road
Hervey Bay, Gatakers bay
Kandanga, Hyne Estate Rd
Lindum, Kianawah Rd.
Lota, Wynnum Hospital
Mount Ommaney - Westlake Drive
Pine Mountain (Camerons Scrub/Sapling Pocket)
Redcliffe Botanic Gardens
Roma, Bungil Creek
Sandgate, Curlew Park
Sandstone Point, Bestman Rd
Slacks Creek, Meakin Park
Southport Golf Club
Southport, Akes Avenue,
Stafford, Sparkes Hill, Clover Street
Springbrook N.P, Natural Bridge
Springwood, Parfrey Road
The Palms NP, Cooyar
Turkey Beach (now Central Region)
Wararba Creek, Caboolture
Woodend
Yamanto
Gatton, Amaroo Retirement Village, Tenthill Creek
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A1.3 List of Permanent Seasonal Use Roosting Sites in the Study Area

Table A1.3: List of permanent seasonal use roosting sites in the study area (Source:

EHP 2014).

Longitude Latitude Name
153.2263 -27.5026  Birkdale, Tarradarrapin
152.6085 -28.0009  Boonah - Mount French
152.9714  -27.1527 Burpengary
152.5274 -25.2095 Burrum River (upper), Junction Cherwell River
152.9206  -27.6315 Camira, Pilney Reserve (Barbara Street)
153.1824 -28.0398  Canungra, Beachmont Rd

152.98 -27.8558  Cedar Grove -Brushwood Cres.

151.8965 -25.6147  Coalstoun Lakes Recreation Reserve
153.3312 -27.5724  Coochiemudlo Island
152.0166 -27.45  Crows Nest
151.2601 -27.1897 Dalby, Myall Creek
152.8254  -27.1971 Dayboro, Railway Street
152.8316  -27.2069 Dayboro, Strong Road
152.7272  -25.2682 Dundowran, O'Reagans Creek CP
152.9479 -27.6142  Ellen Grove, Waterford Rd
153.0226  -27.4424 Enoggera Creek Herston
152.785 -27.7928  Flinders Peak, Peak Crossing
153.0471 -25.4019 Fraser Island, Cornwell's Break
151.6109  -25.6239 Gayndah Township
152.6384  -26.1822 Gympie Township, Widgee Crossing
152.0558  -27.3467 Hampton, Wockner Rd
153.3343 -27.9012 Helensvale, Mildura Drive
152.8929 -25.2888 Hervey Bay, Botanic Gardens
152.8472 -25.2818 Hervey Bay, Tooan Tooan
153.0115  -28.2192 Hillview
152.3208 -25.2258 Horton, 59 Station Road
152.9886  -27.5157 Indooroopilly Island
151.8125 -26.5275 Kingaroy, Mt. Wooloorin Reserve
152.1724 -24.7218 Kolan River, Avondale
153.3753  -27.6274 Lamb Island
152.9654  -26.7997 Landsborough, Vidler Crt
152.5903 -27.4657 Lowood (Camp 2) Water Tower
152.5886  -27.4688 Lowood Bend (Camp 1) Brisbane River
153.085 -27.5707 MacGregor, Freesia Street
153.3535 -27.6114 Macleay Island

236 |Page



152.7137 -25.556  Maryborough, Little Tinana Ck

153.107 -26.6824 Mooloolaba, Goonawarra Drive

153.1983 -27.737  Mount Warren Park - Yvonne Cr.
153.3459  -28.0856 Mudgeeraba, Burke Crescent

153.363 -28.1048 Mudgeeraba, Hardys Road/Appaloosa Crt
153.402 -27.499  North Stradbroke Island, Dunwich (Mitchell Cres.)
153.5276 -27.427  North Stradbroke Island, Point Lookout
153.4789 -28.126  Palm Beach, M1

153.0337 -27.6303 Parkinson, Avondale Crescent

151.813 -28.554  Passchendaele SF

152.8873  -26.8232 Peachester

151.6388  -27.7085 Pittsworth, Int. Campbell St and Perham St
152.8802 -27.5996  Redbank (Pan Pacific Peace Garden)
153.3085  -27.6421 Redland Bay, Junee Street Wetlands
153.3068  -27.6209 Redland Bay, Weinam Creek Wetlands (Moores Rd)
152.9759  -26.3279 Ringtail Creek, Tronson Road

152.8405  -27.3761 Samford, Days Road

153.1028  -27.2029 Scarborough, Sunnyside Rd

153.4033 -27.9581  Southport, Loders Creek

153.0524  -27.5826 Sunnybank (Les Atkinson Park)

152.9753 -26.6109  Parklands, Tallangatta Street

153.1935  -27.9237 Tamborine NP (Joalah Sec)

152.9926 -25.9175 Tin Can Bay, Snapper Point

152.9276  -27.0823 Wararba Creek - Colburn way

151.9949  -24.6942 Watalgan SF, Arthur's Ck Rd

153.2355  -27.4952 Wellington Point, Crossley Drive
153.0745 -26.4081 Weyba Creek

152.6895  -27.6572 Willowbank

152.0461 -25.5115 Woocoo NP, Aramara

152.7763 -26.9503  Woodford

153.1725 -27.4378  Wynnum Creek
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Al.4 List of Temporary Occupied Roosting Sites in the Study Area

Table A1l.4: List of temporary occupied roosting sites in the study area (Source: EHP

2014).
Longitude Latitude Name
153.2097 -27.5165  Alexandra Hills, Lawn Terrace
152.616 -26.3607  Amamoor State Forest
152.4689 -24.8316  Bargara, Larder Street
152.5734 -25.1733  Burrum River (lower), Big Shaggy Island
152.3737 -25.2258  Childers (Mango Hill)
152.8264 -26.3375  Cooran - Yellow Belly Reserve
151.2595 -27.1899  Dalby, Wood Street
152.6259 -25.9274  Glenwood Varley Road
150.2869 -28.5383  Goondiwindi (Macintyre River) Sandlewood St.
151.0736 -28.416 Inglewood, Frey Street
152.9275 -26.2886  Kinmond Creek, Cootharaba Road
152.834 -28.0834  Kooralbyn (Routley Drive)
152.3948 -27.6206  Laidley, Laidley Plainlands Road
153.0712 -26.6508  Maroochydore, Stella Maris CS
152.7224 -25.4734  Maryborough, Saltwater Creek
151.0231 -24.7532  Monto
153.3242 -28.003 Nerang, Gilston Road
153.0699 -26.392 Noosaville, Goat Island CP
153.037 -27.68 Regents Park, Emerald Drive
153.412 -28.0629  Robina, Kiralee Dr
152.9419 -27.4443  The Gap, Riaweena St
153.1367 -26.7881  Tooway Creek
151.943 -27.601 Toowoomba, Spring Street
153.3044 -27.5801  Victoria Point, Marianne St/Egret Drive.
153.1592 -27.079 Bongaree, Shirley Creek
153.1773 -27.667 Loganholme, Timor Avenue
153.3624 -28.0179  Carrara, Edelsten Court
152.9631 -27.8147  Undulluh, Homestead Drive (Flagstone)
153.4272 -27.9842  Surfers Paradise, Macintosh Island
153.073 -27.3987  Northgate reserve
152.9553 -27.1605  Burpengary Equestrian
153.3916 -28.0332  Carrara, Gooding Drive
151.7204 -27.4356  Oakey - Campbell St
151.857 -28.2677  Warwick, Rockland Rd
152.7199 -26.7276  Conondale, Herron Rd
153.3973 -27.9481  Labrador, Government Rd
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152.8127
152.9456
153.0855
153.0376
152.5687
153.0125
153.4238
153.1963
152.2784
152.9929
151.6349
152.1227
153.1424

-27.6124
-27.4055
-26.5328
-27.4376
-26.9415
-27.8746
-28.0681
-27.709
-26.8413
-27.491
-27.7125
-27.5483
-27.0578

Bundamba, Paice St

Ferny Hills, Kylie Ave

Coolum, Cassia Wildlife Corridor
Windsor, Enoggera Creek

Kilcoy, Kilcoy Creek (Anzac Park)
Cedar Vale, Banksia Court
Miami, Pizzey Drive

Beenleigh, Lincoln St

Linville, John Street

Toowong Perrin Park, Josling St
Pittsworth, 1 Thomas Street
Helidon, Gunn Street

Bellara, Warrigal Street
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A1.5 List of Temporary Unoccupied Roosting Sites in the Study Area

Table A1.5: List of temporary unoccupied roosting sites in the study area (Source:

Longitude
151.9847
153.3809
152.0364
153.0365
153.3596
152.0978
150.5813
153.4223
153.0866
153.2167
152.9145
151.6622
152.9028

152.778
150.2876
152.4102
153.1876
152.7185
152.7131
152.8185
152.9737
153.3226
153.3157
153.3138
153.2429
152.9726
153.0687
153.3038
153.0481
153.3888
151.9311
152.7692
153.4448
152.6789
151.9315
151.9972
152.0296

Latitude
-28.0314
-27.9479
-24.5105
-27.6212
-28.0066
-28.3992
-26.8012
-28.1865
-26.5485
-27.7
-26.4721
-25.5859
-27.6049
-26.0485
-28.5373
-27.6381
-27.7015
-25.5097
-25.5436
-27.827
-26.6113
-27.9885
-28.0039
-28.0025
-27.7758
-26.6073
-25.9763
-27.6166
-27.67
-27.7037
-28.6519
-25.3749
-28.1144
-25.5404
-27.6009
-27.5633
-28.2081

EHP 2014).

Name

Allora (Dalrymple Park Reserve)

Arundal, Biggera Creek

Baffle Estuary, Baffle Creek

Calamvale, Earnshaw St.

Carrara, Nerang Broadbeach Road

Cherry Gully, Warwick

Chinchilla

Coolamon, Currumbin Valley (Nicolls Scrub)
Coolum, Hyatt

Eagleby, Dreyer Road (Carbrook Golf Course)
Eerwah Vale

Gayndah, Brambah Ck

Goodna, Woogaroo Creek

Goomboorian, Anderleigh Rd Ginger Creek
Goondiwindi (Macintyre River) Cairns St.
Laidley (Whites Road)

Loganholme, Alexander Clark Park
Maryborough, Albion Rd Wetlands (Island Plantation
Maryborough, Kent Street

Mount Elliot

Nambour, Tallangatta St.

Nerang, Bushmead Street

Nerang, Riverpark Dr.

Nerang, Winchester Dr.

Ormeau, Carob Court

Parklands, Nambour Bypass (SC)

Rainbow Beach, Seary's Creek

Redland Bay, Pitt St

Regents Park - Bennets Drive

Russell Island

Stanthorpe (Gleason Park - Quart Pot Ck)
Sunshine Acres, Black Swamp Creek
Tallebudgera Creek

Tinana, Franklins Close

Toowoomba (Japanese Gardens/University)
Toowoomba (Redwood Park)

Warwick - Dragon Street
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151.9714
153.3432
153.157
150.6229
152.87
153.4193
152.954
152.7912
152.8742
152.7501
152.7122

-27.5257
-28.0619
-27.4338
-26.7506
-25.61
-28.0093
-26.691
-27.568
-25.6133
-25.2749
-25.5609

Withcott

Worongary, Worongary Road
Wynnum North, Meilandt Street
Chinchilla, Dorney Street
Boonaroo Point, Maroom
Surfers Paradise, Girung Island
Palmwoods, Dunning Street
Chuwar, Brodzig Road
maaroom, Esplanade
Dundowran, Jimilee Street
Maryborough, Tinana Island,
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A1.6 List of Abandoned Roosting Sites in the Study Area

Table A1.6: List of abandoned roosting sites in the study area (Source: EHP 2014).

Longitude
153.2253
151.889
150.3058
152.3753
151.3011
152.7566
153.07
152.8665
153.3101
152.325
152.9802
152.0593
153.0475
151.3085
152.3857

Latitude
-27.5112
-28.7226
-28.5431
-27.7209
-25.5845
-25.9983
-25.8172
-28.2149
-27.6247
-27.7192
-25.768
-27.4616
-26.6492
-27.6951
-27.6402

Name

Birkdale, Birkdale Tip

Glen Aplin Caravan Park
Goondiwindi, Herbert Street
Mulgowie

Mundubbera Township, Jones' Weir
Neerdie, Power St.

Rainbow Beach, Inskip Peninsula
Rathdowney, John Street

Redland Bay, Orchard Beach Wetlands (The Boulevard

Mount Berryman, Scanlans Scrub

Tin Can Bay, Dinnies Ck

Upper Rocky Creek, Murphys Creek
Maroochydore, Eudlo Creek CP
Brookstead, 1589 Pampas Horrane Rd
Laidley (Deborah Rd)
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A1.7 List of Destroyed Roosting Sites in the Study Area

Table A1.7: List of destroyed roosting sites in the study area (Source: EHP 2014).

Longitude Latitude Name

153.402 -28 Bundall, Gold Coast Turf Club
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A1.8 Full Legend of Major Vegetation Groups (MVG)

Legend

- Rainforest and vine thickets
- Eucalyptus tall open forest
- Eucalyptus open forest
|:| Eucalyptus low open forest

\:' Eucalyptus woodlands
- Acacia forests and woodlands

|:| Callitris forests and woodlands

- Casuarina forests and woodlands

|:| Melaleuca forests and woodlands

|:| Other forests and woodlands

\:l Eucalyptus open woodlands

\:l Tropical Eucalyptus woodlands/grasslands
|:| Acacia open woodlands

|:| Mallee woodlands and shrublands

- Low closed forest and tall closed shrubland

|:| Acacia shrublands
- Other shrublands
|:| Heath

|:| Tussock grasslands

|:| Hummock grasslands
|:| Other grasslands, herblands, sedgelands and rushlands

\:' Chenopod shrublands, samphire shrubs and forblands
- Mangroves

- Inland aquatic - fresh water, salt lakes, lagoons
\:l Cleared, non-native vegetation, buildings

- Unclassified native vegetation

|:| Naturally bare -sand, rocks, claypan, mudflat

\:' Sea and estuaries

|:I Regrowth, modified native vegetation

|:| Unclassified Forests

\:l Other Open Woodlands
|:| Mallee Open Woodlands and Sparse Shrublands

| Unknown/no data

Figure Al.1: Full legend of MVG (Source: Department of the Environment and

Energy 2015).
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A1.9 Full Legend of Major Vegetation Subgroups (MVS)

Figure A1.2: Full legend of MVS (Source: Department of the Environment and

Legend
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A1.10 List of MVG in the Study Area

VALUE COUNT

1

2

3

10

11
15

17
18

21

23
24

25
27
28

31
99

105669

39389

419230

153680

928

3802

26880

443

48
12148

39
9349

12066

14503
25727

1395168
1152
10564

35
77

MVG NAME

Rainforests and Vine
Thickets

Eucalypt Tall Open Forests

Eucalypt Open Forests
Eucalypt Woodlands

Acacia Forests and
Woodlands

Casuarina Forests and
Woodlands

Melaleuca Forests and
Woodlands

Other Forests and
Woodlands

Eucalypt Open Woodlands
Low Closed Forests and Tall
Closed Shrublands

Other Shrublands
Heathlands

Other Grasslands, Herblands,
Sedgelands and Rushlands
Mangroves

Inland aquatic - freshwater,
salt lakes, lagoons

Cleared, non-native
vegetation, buildings
Naturally bare - sand, rock,
claypan, mudflat

Sea and estuaries

Other Open Woodlands
Unknown/no data

Table A1.8: List of MVG in the study area.

MVG COMMON
rainforests

tall eucalypt forests (trees
taller than 30 m)

eucalypt forests (trees 10 to
30 m tall)

eucalypt woodlands (tree
crowns not touching)

acacia forests and woodlands

she-oak forests and
woodlands

paperbark forests and
woodlands

other forests and woodlands

sparse eucalypt woodlands
tall dense thickets

other shrublands

heathlands (low, dense, fine-
leaved shrublands)

swampy grasses, sedges, etc.

mangroves
water

cleared vegetation
naturally bare
sea

other sparse woodlands
unknown
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A1.11 List of MVS in the Study Area

Table A1.9: List of MVS in the study area.

VALUE COUNT MVS NAME

1 739 Cool temperate rainforest
2 91553  Tropical or sub-tropical rainforest
3 15836  Eucalyptus (+/- tall) open forest with a dense broad-leaved

and/or tree-fern understorey (wet sclerophyll)

4 157648 Eucalyptus open forests with a shrubby understorey

5 227628 Eucalyptus open forests with a grassy understorey

6 7452 Warm Temperate Rainforest

8 11450  Eucalyptus woodlands with a shrubby understorey

9 142246  Eucalyptus woodlands with a tussock grass understorey

13 928 Brigalow (Acacia harpophylla) forests and woodlands

15 26903  Melaleuca open forests and woodlands

26 3911 Casuarina and Allocasuarina forests and woodlands

28 12149  Low closed forest or tall closed shrublands (including
Acacia, Melaleuca and Banksia)

30 9350  Heathlands

32 45 Other shrublands

40 15232  Mangroves

41 4892  Saline or brackish sedgelands or grasslands

42 1272 Naturally bare, sand, rock, claypan, mudflat

44 25775  Freshwater, dams, lakes, lagoons or aquatic plants

46 61360  Sea, estuaries (includes seagrass)

48 48 Eucalyptus open woodlands with a grassy understorey

50 443 Banksia woodlands

54 346 Eucalyptus tall open forest with a fine-leaved shrubby
understorey

60 57246  Eucalyptus tall open forests and open forests with ferns,
herbs, sedges, rushes or wet tussock grasses

62 6135 Dry rainforest or vine thickets

63 7321 Sedgelands, rushs or reeds

79 35 Other open woodlands

98 1395023 Cleared, non-native vegetation, buildings

99 90 Unknown/No data
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A1.12 Data statistics calculated in the Study

Table A1.10: Statistics calculated in the study of HeV dispersal (Main Source:

Queensland Centre for Emerging Infectious Diseases 2014).

Longitude Latitude HeV ff_per b_per g_per 1_per Inci_rate Avg_dist Avg_preg
Events
153.0115 -282192 1 0.00149 0.000403  0.00329 0 0.013549 50 2.1
153.363 -28.1048 1 0.005589  0.006804  0.00754 0 0.05081 50 2.45
153.3459 -28.0856 1 0.046576  0.100796  0.022849 0 0.423417 50 2.8
152.834 -28.0834 1 1.024669 0 0 4.601967 9315173 30 2
153.4238 -28.0681 1 0.000466  0.00126 0 0 0.004234 50 3
153.412 -28.0629 1 0.013041  0.030239 0 0.008367 0.118557  47.14286  2.857143
153.1824 -28.0398 3 8212219 7.624751 13.22101 0.016734 223.9696  49.99093  2.343221
153.3916 -28.0332 1 0.382295  0.792255 0.219355 0 3.475406 50 2.766082
153.3624 -28.0179 1 0.557979  0.851221 0.596827 0 5.072535 50 2.5639%4
153.3242 -28.003 1 0.115322  0.249974  0.052782  0.006275  1.04838 49.75767  2.801292
152.6085 -28.0009 1 1.191504  1.244073 1.794595 0 10.83185 50 2.385975
153.4272 -27.9842 1 0.005869  0.015069  0.000731 0 0.053351 50 2.949206
153.4033 -27.9581 1 0.324373  0.853237 0.021981 0 2948845 50 2.972374
153.3973 -27.9481 1 0.004024  0.005241 0.005118 0 0.036583 50 2.481481
153.1935 -27.9237 1 0.235767  0.081897  0.499489 0.008367 2.143337  49.84196  2.128408
153.3343 -27.9012 1 7.010972  9.888575 7.882601 0.637582 63.73611  49.59503  2.521391
153.0125 -27.8746 3 0.517924  0.600743  0.716559 0.016734 14.12519  49.85612  2.428777
152.98 -27.8558 3 1.667416  2.06319 1.624001  1.08983 45.47498  47.08939  2.457408
152.9631 -27.8147 2 0.050116  0.012096  0.111962 0 0911193 50 2.089219
153.1983 -27.737 3 1.610221  3.075029 1.159152 0.004184 43.91511 49.98843  2.705947
153.1963 -27.709 3 0.291938  0.760253  0.026734 0 7961932 50 2.962668
153.037 -27.68 2 2.822497  2.133596 0921518  7.44682 51.31813  38.25083  2.279439
153.1773 -27.667 3 0.302743  0.447534 0.180054 0.286995 8.25663 45.77846  2.546462
152.6895 -27.6572 1 0.002608  0.007056 0 0 0.023711 50 3
153.3085 -27.6421 1 1.331511  1.12085 0367876  3.445619 12.10464  38.47628 2.31118
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152.9206 -27.6315 2 3.459841 3.311748 4.642916 1.539567 62.90621  48.01842  2.353842

153.0337 -27.6303 2 3.739203 1.946116  7.09658 0.568971  67.98552  49.32239  2.192397
153.3753 -27.6274 1 0.27014 0.636022  0.085914 0 2455818 50 2.870345
153.3068 -27.6209 1 0.752387  1.28807 0.677577 0O 6.839877 50 2.632859
152.3948 -27.6206 1 0.415457  0.74095 0.250521  0.17705 3.776879  48.10224  2.659283
152.9479 -27.6142 2 0.415457  0.74095 0.250521  0.17705 7.553758  48.10224  2.659283
152.8127 -27.6124 1 0.049762  0.115109 0.017685 0 0.452379 50 2.85511
153.3535 -27.6114 1 0.000373  0.001008 0 0 0.003387 50 3
152.8802 -27.5996 1 0.123352  0.287268 0.037519 0.008367  1.121377  49.69793  2.860897
153.0524 -27.5826 2 0.087246  0.151496 0.076637 0 1.586289 50 2.641896
153.3044 -27.5801 1 0.884662  1.625938 0.67511 0.037652  8.042381  49.81047 2.679415
153.3312 -27.5724 1 0.14582 0.110019  0.257925 0O 1.325634 50 2.278906
153.085 -27.5707 1 1.019266  2.125784  0.572607 0 9.266056 50 2.770974
152.1227 -27.5483 1 2.808692 0.013053 0 12.59266  25.53357  30.03436 2.001718
153.2097 -27.5165 1 0.804831 1.422229 0.684569 0 7316645 50 2.653241
152.9886 -27.5157 1 2.817001 4.955526 2.260313  0.285824  25.6091 49.54816  2.650296
153.2263 -27.5026 1 0.879539  2.358119 0.019194 0 7.995806 50 2.991104
153.402 -27.499 1 0.717082  1.069645 0.688225 0.184581 6.518927  48.85373  2.551416
153.2355 -27.4952 1 0.149266  0.39774 0.005484 0 1.356967 50 2.985022
152.9929 -27.491 1 0.090543 0.160769 0.076317 0 0.823123 50 2.656379
152.5886 -27.4688 1 3.541815 4.5786 3.892906 1.177685 32.19832  48.51928 2.477876
152.5903 -27.4657 1 0.558445 0.698969 0.371121 0.668122 5.076769  44.67223  2.462686
152.9419 -27.4443 1 0.253634 0.117074 0.515986 0 2305759 50 2.170633
153.0226 -27.4424 1 0.116999  0.262876  0.048624 0 1.063623 50 2.830573
153.1725 -274378 1 0.011961  0.032355 0 0 0.108733 50 3
153.0376 -27.4376 1 0.4652 1.258436 0 0 4.229088 50 3
152.9456 -27.4055 1 0.869106  0.587136  1.599461 0 7.90096 50 2.249732
153.073 -27.3987 1 0267811  0.699271 0.022849 0 2434647 50 2.965217
152.8405 -27.3761 1 2.687781  2.045349 4.738289 0 2443438 50 2.281308
152.8316 -27.2069 1 1.660895  0.950505 3.139057 0.133875 15.09905  49.64105 2.211554

249 |Page



153.1028 -27.2029 2 0.082327  0.222708 0 0 1.496864 50 3

152.8254 -27.1971 1 2.522549  2.190041 4201784 O 22.93226 50 2.320938
152.9553 -27.1605 1 0.286013  0.482056 0.173062 0.167344 2.600119  47.39448  2.623046
152.9714 -27.1527 1 0.11303 0.209504  0.087285 0 1.027548 50 2.685182
152.9276 -27.0823 1 3.175859 2378126 3.417363  4.058099 28.87145 4430975 2.27681
153.1592 -27.079 1 0.167673  0.050398 0 0.669377 1.524301  32.22222  2.111111
153.1424 -27.0578 1 0.011625 0.029886 0.001417 0 0.105685 50 2.950321
152.7763 -26.9503 1 5.083811 3.074878 6.761105 5348072 46.21647 45.31534  2.223587
152.5687 -26.9415 1 0.139728  0.307427 0.063978 0 1.270251 50 2.813333
152.2784 -26.8413 1 0.027387  0.05443 0.017823 0 0.248969 50 2.734694
152.8873 -26.8232 1 0.612938  0.34321 1.192284 0 5.572167 50 2.206991
152.9654 -26.7997 1 0.964847 0.551756  1.86456 0.003347 8.771336  49.98455 2.211396
153.1367 -26.7881 1 0.537672  0.802234 0.362941 0.418361 4.887925  46.535 2.551559
152.7199 -26.7276 1 0.279455  0.665253  0.082258 0 2.540502 50 2.88
153.107 -26.6824 1 0.101591  0.113043  0.032629 0.208846  0.923557  40.84541 2.411333
153.0712 -26.6508 1 4.551393  5.315468 6.337522  0.012551 41.3763 49.98772  2.431723
152.9753 -26.6109 1 1.656424  2.179962 2.086383 0 15.0584 50 2.486503
153.0855 -26.5328 1 0.255236  0.514059 0.159946 0 2.320325 50 2.744526
153.0745 -26.4081 1 1.05839 0.445014  0.243118  3.569453  9.621727 3498152  2.15543
153.0699 -26.392 1 0.037261  0.080637 0.01828 0 0.338734 50 2.8
152.8264 -26.3375 1 0.290577  0.380958 0.367328 0 2.641614 50 2.484644
152.9759 -26.3279 1 0.037261  0.06718 0.030481 O 0.338734 50 2.6665
152.9275 -26.2886 1 0.566735 0.161173  1.244015 0 5.152137 50 2.105128
153.0491 -26.4007 1 8.708047 0.11783 0 3891373  79.16406  30.10004  2.005002
153.1373 -27.6402 1 0931517 1.511938 0.913978 0 8.468339 50 2.6
152.9268 -27.0816 3 0.931517 0.100796 0.091398 3.848918 25.40502 31.6 2.04
152.7763 -26.9503 1 0931517 0.403183 0.091398 3.346885 8.468339 34 2.16
152.4233 -27.2349 1 0.931517 0.503979  1.028225 1.464262 8.468339 43 22
153.4277 -28.0222 1 0.001118 0O 0.002742 0 0.010162 50 2
153.4448 -28.1144 1 0.100604 0.201592  0.063978 0 0914581 50 2.740741
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153.4136

152.6799

152.3753

152.8185

152.8405

153.1279

152.9943

152.6799

153.4277

153.4292

153.258

153.3812

153.4672

153.0519

152.4233

153.1136

153.1437

153.1837

152.9255

152.7222

153.0988

153.0687

153.1279

153.1373

153.4134

153.4136

152.9992

153.2767

153.1363

152.926

-27.9797

-27.9919

-27.7209

-27.827

-27.3761

-27.0804

-27.3111

-27.9919

-28.0222

-28.0946

-27.5275

-27.8883

-28.1453

-27.4841

-27.2349

27.444

-27.445

-27.4641

-27.5444

-27.4939

-27.2315

-27.3231

-27.0804

-27.6402

-27.9951

-27.9797

-27.412

-28.2174

-27.61

-27.0809

0.01863

0.027946

0.149043

0.083837

0.010098

0.419183

0.074521

0.149043

0.232879

0.279455

0.014904

0.046576

0.009315

0.02761

0.065206

0.093152

0.027014

0.026138

0.093152

0.01863

0.279455

0.013041

0.093152

0.139728

0.139728

0.015929

0.037261

0.048159

0.020493

0.037261

0

0.030239

0.019101

0.340186

0.075597

0.302388

0.566977

0.680372

0.040318

0.100796

0.015119

0.053775

0.123475

0.125995

0.054833

0.069297

0.125995

0.050398

0.100796

0.020159

0.125995

0.226791

0.226791

0.085676

0.097722

0.055438

0.100796

0.045699

0.041129

0.365591

0.205645

0.007449

0.719758

0.114247

0.091398

0.057124

0.068548

0.022849

0.00914

0.018965

0.047984

0.114247

0.016543

0.00128

0.114247

0.594086

0.114247

0.034274

0.034274

0.039073

0.01371

0.029521

0.025102

0.188262

0.188262

0.169367

0.25405

1.354934

0.76215

0.091797

3.810752

0.677467

1.354934

2.117085

2.540502

0.135493

0.423417

0.084683

0.251002

0.592784

0.846834

0.491164

0.237622

0.846834

0.169367

5.081003

0.118557

0.846834

3.810752

1.270251

0.144809

0.338734

0.437813

0.372607

0.338734

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

2.4

2.699262

2.3

2375

2.75

29

2.9

2.8

2.6

2.719973

2.7

2.5

2.750345

2.980043

2.5

2.133333

41.42857  2.571429

50

44

44

50

50

50

50

50

2.5
2.6

2.6

2.85

2.750097
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152.7485

152.7556

152.2726

152.9206

152.7485

152.9028

152.8802

152.9028

152.3948

152.2726

152.1227

153.1876

153.0481

153.1983

153.0988

153.046

153.0491

153.3535

153.258

153.3044

153.1824

152.6799

152.5903
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Appendix - 2

Regression Model Calibration Results

A2.1 GWR Result of Significant Model 1 (ArcGIS)

GWR2_supp
oD VARNAME VARIABLE DEFINITION

3 0} Bandwidth 0307125

1 [ResidualSguares 13152724805

2 |EffectiveNumber 17.060652

3 | Sigma 5552504

4|AlICc 1185252804

5|R2 0.825074

& |R2Adjusted 0.809369

T |Dependent Field 0 {Inci_rate

& |Explanatory Field 1(g_per

Figure A2.1: GWR result of the significant model 1 using ArcGIS.
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A2.2 GWR Result of Significant Model 1 (GWR4.0 for Spatial Variability)
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Figure A2.2: GWR result of the significant model 1 using GWR4.0 (Spatial
Variability Test).
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A2.3 Spatial Autocorrelation Report of the Significant Model 1 Residuals

Spatial Autocorrelation Report

Moran's Index: -0.120107 Significance Level Critical Value
z-score: 0.875061 3 {p-vmlae) (z-scare)
0.01 mm <-2.58
p-value: 0.381541 0.05 =5 -2.58--1.96
010 [ -1.96--1.65
-~ [ -1.65-1.65
0,10 [ 1.65-1.96
0.05 @@ 1.96-258
001 EE >258
- p—
Significant Significant

Given the z-score of -0.875060806832, the pattern does not appear to be significantly
different than random.

Global Moran's I Summary

Moran's Index: -0.120107
Expected Index: -0.006289
Variance:  0.016918
z-score: -0.875061
p-value: 0.381541

Figure A2.3: Spatial Autocorrelation test of significant model 1 residuals.
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A2.4 GWR Result of Significant Model 2 (ArcGIS)

GWRSE_supp
oD VARNAME VARIABLE DEFINITION
¥ (1} Bandwidth 0.307125
1|ResidualSguares 10645168545
2 |EffectiveNumber 22024348
3| Sigma 8.784083
4|AlCe 1165.557703
5|R2 0 2516848
5 |R2Adjusted 0.840555
T |Dependent Field 0 |Inci_rate
& |Explanatory Field 1|b_per
5 |Explanatery Field 2 |g_per

Figure A2.4: GWR result of the significant model 2 using ArcGIS.
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A2.5 GWR Result of Significant Model 2 (GWR4.0 for Spatial Variability)
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Figure A2.5: GWR result of the significant model 2 using GWR4.0 (Spatial
Variability Test).
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A2.6 Spatial Autocorrelation Report of the Significant Model 2 Residuals

Spatial Autocorrelation Report

Moran's Index: -0.137828 Significance Level Critical Value
z-score: -1.049950 £ Ve Yelne) (z-scare)
0.01 pmm <-2.58
p-value: 0.293741 0.05 B3 -2.58--1.96
010 [1 -1.96--1.65
— (@3 -1.65-1.65
010 [ 1.65-1.96
005 BEE 1.96-2.53
o061 EE 2538
-—— |
Significant Significant

Dispersed

Given the z-score of -1.04995036847, the pattern deoes not appear to be significantly different
than random.

Global Moran's I Summary

Moran's Index: -0.137828
Expected Index: -0.006289
Variance: 0.015695
Z-score: -1.049950

p-value: 0.293741

Figure A2.6: Spatial Autocorrelation test of significant model 2 residuals.
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A2.7 GWR Result of Significant Model 3 (ArcGIS)

GWR9_supp
Q1D VARNAME VARIABLE DEFINITION

k 0 | Bandwidth 0322821

1 |Re=sidualzguares 85023.058328

2 |EffectiveMumber 28821755

3| Sigma 8.06055

4|AICc 1143 845572

5|R2 0.385235

G | RZAdjusted 0.855747

T |Dependent Field 0 |Inci_rate

& |Explanatory Field 1|b_per

S [Explanatory Field 2 |g_per

10 |Explanatory Field 3| Avg_preg

Figure A2.7: GWR result of the final model using ArcGIS.
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A2.8 GWR Result of Significant Model 3 (GWR4.0 for Spatial Variability)
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Figure A2.8: GWR result of the final model using GWR4.0 (Spatial Variability
Test).
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A2.9 Spatial Autocorrelation Report of the Significant Model 3 Residuals

Spatial Autocorrelation Report

Moran's Index: -0.022614 Significance Lewvel Critical Value
z-score: -0,120953 3 - vabee) {z-soarey
0.01 mgmm <-2.58
p-value: 0.903728 0.05 = -2.58--1.96
0.10 [ -1.96--1.65
— (3 -165-1.65
010 [ 1.65-1.96
0.05 3  1.96-2.58
0.01 W >258
i [ —
Significant Significant

Clustered

Given the z-score of -0.120952730739, the pattern does not appear to be significantly
different than random.

Global Moran's I Summary

Moran's Index: -0.022614
Expected Index: -0.006289
Variance: 0.018217
Z-score: -0.120953

p-value: 0.903728

Figure A2.9: Spatial Autocorrelation test of the final model residuals.
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Appendix - 3

Spatial Autocorrelation and Regression Analysis

A3.1 Spatial Autocorrelation Report of the Black Flying Foxes at 20 kms

Significance Level
(p-value)

0.01

0.05

0.10

0.10
0.05
0.01

Moran's Index: 0.035075
z-score: 2.036879 21
p-value: 0.041662

gaooonn

|

—

Significant Significant

Clustered

Critical Value
(z-score)
< -2.58
-2.58 - -1.96
-1.96 --1.65
-1.65 - 1.65
1.65 - 1.96
1,96 - 2.58
>2.58

Given the z-score of 2.04, there is a less than 5% likelihood that this clustered pattern could be

the result of random chance.

Figure A3.1: Spatial Autocorrelation report of the black flying foxes at their

minimum foraging range.
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A3.2 Spatial Autocorrelation Report of the Grey-headed Flying Foxes at 20 kms

Moran's Index: 0.009782 Significance Level Critical Value
z-score: 0.968094 T (pvalue) (z-score)
0.01 mm <-2.58
p-value: 0.332997 0.05 B -2.58--1.96
0,10 3 -1.96--1.65
-~ [ -1.65-1.65
010 [ 1.65-1.96
0.05 = 1.96 - 2.58
0.01 W >258
*—' M
Significant Significant

Clustered

Given the z-score of 0.97, the pattern does not appear to be significantly different than
random.

Figure A3.2: Spatial Autocorrelation report of the grey-headed flying foxes at their

minimum foraging range.
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A3.3 Spatial Autocorrelation Report of the Little Red Flying Foxes at 20 kms

Moran's Index: 0.151682 Significance Level Critical Value
z-score: 7.456329 prisia) - omrn)
001 mm <-2.58
p-value: 0.000000 005 @@ -258--1.96
010 (=& -196--1.65
= ] -1.65-1.65
0.10 = 1.65-1.96
0.05 = 1.96 - 2.58
001 EHE >258
*—i %
Significant Significant

Given the z-score of 7.46, there is a less than 1% likelihood that this clustered pattern could be
the result of random chance.

Figure A3.3: Spatial Autocorrelation report of the little red flying foxes at their

minimum foraging range.

265 |Page



A3.4 Summary of the OLS Results

Varable

Intercept

B FER

G_PER

ANG PREG

Cosfficient [a]
TaT9160
L739899
e.807887

2705768

Summary of OLS Results - Model Variables

StdErrar

8.203830

1378375

1101032

3143102

t-Statistic

0936026

L261733

B.807900

0860670

Figure A3.4: Summary of the OLS results.

A3.5 Variable Distributions and Relationships of the OLS Model

B_PER

G_PER

Probahbllity [b] Raobust SE Robust t  Robust Pr[b] VIF [£]
0350687 12 966101 0.591137 0.555153
T.20E931 2,823398 DLELE243 0538634 3.584622
0000000 1657128 2 BSIE42 0.008803 3 B0 TTEO
0390731 4683835 0577682 0564315 1141511
AVG_PREG INCI_RATE

INCI_RATE

Figure A3.5: The variable distributions and relationships of the OLS model.
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A3.6 Histogram of the OLS Model’s Standard Residuals

1.2

1.0

o
o

o
@

Probability

o
P

0.21

0.0 > 4 6 8
Std. Residuals

Figure A3.6: The histogram of the OLS model’s standard residuals.
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A3.7 Spatial Autocorrelation Report of the OLS Standard Residuals

Spatial Autocorrelation Report

Moran's Index: -0.023641
Z-score: -0.130622 [
p-value: 0.898075

Significance Lewel
[p-value)

.01

0,05

010

0.10
0.03
0.01

gEoooen

|

«—

Significant Significant

Critical Value
[z-scare)
=-2.58
-2,.538 --1.96
-1.96 - -1.65
-1.65 - 1.65
1.65 - 1.96
1.96 - 2,58
= 2,58

Given the z-score of -0.130621618187, the pattern does not appear to be significantly

different than random.

Global Moran's I Summary
Moran's Index: -0.023641
Expected Index: | -0.006289
Variance: | 0.017647
Z-score: -0.130622

p-value: 0.896075

Figure A3.7: Spatial Autocorrelation report of the OLS standard residuals.
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A3.8 GWR - Significantly Positive Estimates of Black Flying Foxes

Table A3.1: Significantly positive estimates of black flying foxes in the study.

Longitude
153.2355
153.1424

153.107
153.107
153.0712
153.1592
152.9943
152.9886
152.9753
152.9753
152.9726
153.1279
153.1279
152.926
152.9276
152.9268
152.8254
153.2263
152.8405
152.8405
152.8316
153.402
152.9553
152.9145
152.9714
152.9255
153.0855
153.0855
153.2097
153.0988
153.0988
152.8264
152.8264
153.1028
152.7556
153.0491
153.0491
153.046
153.0745
153.0699
152.9759
152.9275
153.258
153.258
152.8127
153.3312
152.9479
152.8802
152.8802
152.6085
152.9028
152.9028
152.9028
153.3535
153.3535
153.0524
153.085
153.3753
153.3044
153.3044

Latitude
-27.4952
-27.0578
-26.6824
-26.6824
-26.6508
-27.079
-27.3111
-27.5157
-26.6109
-26.6109
-26.6073
-27.0804
-27.0804
-27.0809
-27.0823
-27.0816
-27.1971
-27.5026
-27.3761
-27.3761
-27.2069
-27.499
-27.1605
-26.4721
-27.1527
-27.5444
-26.5328
-26.5328
-27.5165
-27.2315
-27.2315
-26.3375
-26.3375
-27.2029
-27.6514
-26.4007
-26.4007
-26.3944
-26.4081
-26.392
-26.3279
-26.2886
-27.5275
-27.5275
-27.6124
-27.5724
-27.6142
-27.5996
-27.5996
-28.0009
-27.6049
-27.6049
-27.6049
-27.6114
-27.6114
-27.5826
-27.5707
-27.6274
-27.5801
-27.5801

t perB
1.977073
1.991723
1.992049
1.992049
2.058989
2.068613
2.075467
2.081071
2.08645
2.08645
2.091106
2.092699
2.092699
2.110843
2.114754
2.115554
2.14875
2.204321
2.205218
2.205218
2.222608
2.228568
2.296992
2.307189
2.316948
2.33432
2.335555
2.335555
2.354085
2.359386
2.359386
2.422655
2.422655
2.42798
2.472741
2.488751
2.488751
2.495121
2.498721
2.512301
2.515952
2.521906
2.723098
2.723098
2.765369
2.777747
2.783501
2.795979
2.795979
2.799839
2.82481
2.82481
2.82481
2.847462
2.847462
2.891925
2.913427
2.950768
2.975222
2.975222
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153.3068
153.3085
153.3085
152.9206
152.9206
153.0337
153.363
152.834
153.1983
153.1983
152.6799
152.6799
152.6799
153.1363
153.1963
153.1963
153.1876
153.1373
153.1373
153.1373
153.1773
153.0481
153.0481
153.037
153.0125
152.8185
152.98
152.9631

-27.6209
-27.6421
-27.6421
-27.6315
-27.6315
-27.6303
-28.1048
-28.0834
-27.737
-27.737
-27.9919
-27.9919
-27.9919
-27.61
-27.709
-27.709
-27.7015
-27.6402
-27.6402
-27.6402
-27.667
-27.67
-27.67
-27.68
-27.8746
-27.827
-27.8558
-27.8147

3.036823
3.111871
3.111871
3.153736
3.153736
3.691208
3.74396
3.74396
3.862661
3.862661
3.910496
3.910496
3.910496
4.010195
4.078136
4.078136
4.452935
4.648864
4.648864
4.648864
4.801027
4.81446
4.81446
4.95088
5.114505
5.408792
6.782161
6.832482
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A3.9 GWR - Significantly Positive Estimates of Grey-headed Flying Foxes

Table A3.2: Significantly positive estimates of grey-headed flying foxes in the study.

Longitude Latitude t_perG
152.2784 -26.8413 1.988214
152.3753 -27.7209 2.023214
152.9943 -27.3111 2.22698
153.3535 -27.6114 2.247036
153.3535 -27.6114 2.247036
152.5903 -27.4657 2.499218
152.5903 -27.4657 2.499218
152.5886 -27.4688 2.507069
152.5886 -27.4688 2.507069
152.8405 -27.3761 2.507216
152.8405 -27.3761 2.507216
153.0687 -27.3231 2.647021

153.402 -27.499 3.145594
153.3085 -27.6421 3.274762
153.3085 -27.6421 3.274762
153.1983 -27.737 3.664597
153.1983 -27.737 3.664597
153.3068 -27.6209 3.940209
152.9456 -27.4055 4.006327
152.7222 -27.4939 4.044717
153.3312 -27.5724 4.125248
153.1963 -27.709 4.424874
153.1963 -27.709 4.424874
152.8185 -27.827 4.431801
152.6799 -27.9919 4.620385
152.6799 -27.9919 4.620385
152.6799 -27.9919 4.620385
153.1876 -27.7015 4.641239
153.3044 -27.5801 4.693948
153.3044 -27.5801 4.693948
152.9419 -27.4443 5.054344
153.0481 -27.67 5.086084
153.0481 -27.67 5.086084

153.037 -27.68 5.103839
153.1773 -27.667 5.219118
152.9992 -27.412 5.341215
153.1373 -27.6402 5.365255
153.1373 -27.6402 5.365255
153.1373 -27.6402 5.365255
153.2355 -27.4952 5.403071
153.0337 -27.6303 5.536634
153.1363 -27.61 5.575357
153.258 -27.5275 5.593176

153.258 -27.5275 5.593176
153.2263 -27.5026 5.664311
153.1725 -27.4378 5.675319
153.1437 -27.445 5.692899

153.073 -27.3987 5.703284
153.2097 -27.5165 5.812297
152.7485 -27.6031 5.813112
152.7485 -27.6031 5.813112
152.7485 -27.6031 5.813112
153.1837 -27.4641 5.818728
152.6895 -27.6572 5.823178
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153.1136
153.1136
152.9479
152.6085
153.0524
153.085
152.9206
152.9206
152.9255
152.7556
152.8127
152.9028
152.9028
152.9028
152.8802
152.8802
152.9886
153.0226
152.9929
153.0376
153.0519
153.0519
152.9631
152.834
152.98
153.2429
153.0125
153.0115
153.3812
153.1935
153.1935
153.3343
153.3343
153.1824
153.1824
153.3973
153.4033
153.4272
153.4136
153.4136
153.2767
153.4134
153.4672
153.4277
153.4277
153.4448
153.4292
153.4238
153.412
153.3242
153.3916
153.3624
153.363
153.3459

-27.444
-27.444
-27.6142
-28.0009
-27.5826
-27.5707
-27.6315
-27.6315
-27.5444
-27.6514
-27.6124
-27.6049
-27.6049
-27.6049
-27.5996
-27.5996
-27.5157
-27.4424
-27.491
-27.4376
-27.4841
-27.4841
-27.8147
-28.0834
-27.8558
-27.7758
-27.8746
-28.2192
-27.8883
-27.9237
-27.9237
-27.9012
-27.9012
-28.0398
-28.0398
-27.9481
-27.9581
-27.9842
-27.9797
-27.9797
-28.2174
-27.9951
-28.1453
-28.0222
-28.0222
-28.1144
-28.0946
-28.0681
-28.0629
-28.003
-28.0332
-28.0179
-28.1048
-28.0856

5.842799
5.842799
5.856523
5.884588
5.900043
5.997791
6.025978
6.025978
6.087288
6.116684
6.13014
6.134064
6.134064
6.134064
6.154785
6.154785
6.297904
6.303629
6.33866
6.353046
6.545723
6.545723
6.583615
6.698205
7.717512
8.02133
10.20315
16.80109
17.15241
17.19
17.19
17.36283
17.36283
17.4745
17.4745
17.50434
17.52036
17.53264
17.54608
17.54608
17.5636
17.56649
17.56983
17.57322
17.57322
17.58548
17.59191
17.59318
17.59866
17.59982
17.60324
17.6041
17.64172
17.65492

272 |Page



A3.10 GWR - Significantly Negative Estimates of Grey-headed Flying Foxes

Table A3.3: Significantly negative estimates of grey-headed flying foxes in the

Longitude
153.0699
152.9759
152.9275
153.0745

153.046
153.0491
153.0491
152.8264
152.8264
153.0855
153.0855

152.9145

study.
Latitude
-26.392
-26.3279
-26.2886
-26.4081
-26.3944
-26.4007
-26.4007
-26.3375
-26.3375
-26.5328
-26.5328

-26.4721

t_perG
-0.47518
-0.46257
-0.45976
-0.45455
-0.44445
-0.43021
-0.43021
-0.26563
-0.26563
-0.19587
-0.19587

-0.08518
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A3.11 GWR - Significantly Negative Estimates of Pregnancy/Birth Period

Table A3.4: Significantly negative estimates of pregnancy/birth period in the study.

Longitude
152.1227
152.1227
152.9553
153.037
153.0481
153.0481
152.926
152.9276
152.9268
152.9714
152.2726
152.2726
152.9479
152.7763
152.7763
152.4233
152.4233
152.4233
153.0524
152.9206
152.9206
152.5687
152.5687
153.1279
153.1279
152.3948
152.3948
152.3753
152.2784
153.1424
153.1592
153.1028
153.085
152.9028
152.9028
152.9028
153.0988
153.0988
152.8185
152.8802
152.8802
153.1373
153.1373
153.1373
153.1363
152.9631
153.1963
153.1963
152.9943
153.1876
152.8127
152.98
153.1983
153.1983

Latitude
-27.5483
-27.5483
-27.1605
-27.68
-27.67
-27.67
-27.0809
-27.0823
-27.0816
-27.1527
-27.5648
-27.5648
-27.6142
-26.9503
-26.9503
-27.2349
-27.2349
-27.2349
-27.5826
-27.6315
-27.6315
-26.9415
-26.9415
-27.0804
-27.0804
-27.6206
-27.6206
-27.7209
-26.8413
-27.0578
-27.079
-27.2029
-27.5707
-27.6049
-27.6049
-27.6049
-27.2315
-27.2315
-27.827
-27.5996
-27.5996
-27.6402
-27.6402
-27.6402
-27.61
-27.8147
-27.709
-27.709
-27.3111
-27.7015
-27.6124
-27.8558
-27.737
-27.737

t pregR
-1.90201
-1.90201
-1.86312
-1.85979
-1.8447
-1.8447
-1.83001
-1.82963
-1.82923
-1.8109
-1.73539
-1.73539
-1.72758
-1.64797
-1.64797
-1.59545
-1.59545
-1.59545
-1.56208
-1.53991
-1.53991
-1.46177
-1.46177
-1.387
-1.387
-1.35478
-1.35478
-1.34618
-1.34402
-1.33949
-1.30087
-1.27243
-1.26456
-1.2023
-1.2023
-1.2023
-1.13981
-1.13981
-1.00232
-0.99716
-0.99716
-0.96871
-0.96871
-0.96871
-0.96758
-0.9505
-0.81794
-0.81794
-0.79495
-0.79306
-0.77176
-0.7572
-0.7357
-0.7357
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152.9255
152.834

153.1773
152.7556
152.6799
152.6799
152.6799
152.9886
153.3085
153.3085
153.3068
153.3753
153.3535
153.3535
152.6085
153.3044
153.3044
153.3312
152.7485
152.7485
152.7485
153.0687
152.6895
153.0125
153.258

153.258

153.2097
153.402

152.9929
153.2263
153.0519
153.0519
152.8405
152.8405
152.5886
152.5886
152.5903
152.5903
153.2355

-27.5444
-28.0834
-27.667

-27.6514
-27.9919
-27.9919
-27.9919
-27.5157
-27.6421
-27.6421
-27.6209
-27.6274
-27.6114
-27.6114
-28.0009
-27.5801
-27.5801
-27.5724
-27.6031
-27.6031
-27.6031
-27.3231
-27.6572
-27.8746
-27.5275
-27.5275
-27.5165
-27.499

-27.491

-27.5026
-27.4841
-27.4841
-27.3761
-27.3761
-27.4688
-27.4688
-27.4657
-27.4657
-27.4952

-0.67276
-0.6562

-0.64613
-0.62096
-0.56116
-0.56116
-0.56116
-0.51943
-0.5096

-0.5096

-0.50359
-0.46767
-0.41753
-0.41753
-0.40495
-0.38729
-0.38729
-0.34841
-0.34279
-0.34279
-0.34279
-0.32994
-0.28692
-0.24696
-0.22125
-0.22125
-0.2212

-0.18917
-0.18831
-0.14257
-0.12116
-0.12116
-0.10901
-0.10901
-0.09805
-0.09805
-0.09365
-0.09365
-0.06739
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Appendix - 4
Food Source Vegetation Analysis

A4.1 List of MVS Identified within 20 Kms Range of Black Flying Foxes

Legend

MV S within 20 Kms Buffer Range of the Black Flying-fox Roosting Sites

MVS MNAME

|:| Banksia woodlands

|:| Brigalow (Acacia harpophylla) forests and woodands

|:| Casuarina and Allocasuarina forests and woodlands

|:| Cleared, non-native vegetation, buildings

|:| Cool temperate rainforest

|:| Diry rainforest arvine thickets

- Eucalyptus (+- tall) open forest with a dense broad-leaved and/or tree-fern understarey (wet sclerophyll)
- Eucalyptus open forests with a grassy understorey

- Eucalyptus open forests with a shrubby understorey

- Eucalyptus open woodlands with a grassy understorey

- Eucalyptus tall open forest with a fine-leaved shrubby understarey

|:| Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes or wettussock grasses
|:| Eucalyptus woodlands with a shrubby understorey

- Eucalyptus woodlands with a tussock grass understorey
- Freshwater, dams, lakes, lagoons or aquatic plants

- Heathlands

- Low closed forest or tall closed shrublands (including Acacia, Melaleuca and Banksia)
- Mangroves

- Melaleuca open forests and woodlands
- Maturally bare, sand, rock, claypan, mudflat
- Other open woodlands

- Other shrublands

- Saline or brackish sedgelands or grasslands
|:| Sea, estuaries (includes seagrass)

|:| Sedgelands, rushs or reeds

|:| Tropical aor sub-tropical rainforest

|:| Unknowni/Mo data

|:| Warm Temperate Rainforest

Figure A4.1: Legend of the MVS identified within 20 kms range of the black flying
fox roosting sites in the study area.
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A4.2 High/Low Clustering Reports of the Black flying Foxes Food Source
Vegetation at 3, 5 and 10 Kms

Ohsarved Gemaral G: 0.000007 Sigailicarioe Lo Crital Valus
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— = -i6%- 163
®id 3 1m3- L8
W B R

ooy EEE =238
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Significant

| vt Tl i+

Hagh-Cha ey

Given the 7-soore of 20, F15EI4T008, there s 3 kgs than 1% lkelihood that his baghe clustered
patiesm ooukd be the result of random chance,

Figure A4.2 (a): High/Low Clustering report of the food source vegetation of black
flying foxes at 3 kms.

Observed General G: 0.000003 Significance Lavel Critical Value
z-score: 14,480721 B (prualue) (z-score)
0.01 mm <-2.58
p-value: 0.000000 0.05 0= -2.58--1.96
0,10 [ -1.96--1.65
— [(3 -1.85-1.65
0.10 [J 1.65-1.96
0.05 [Em 1.96-258
001 EE >258
Significant Significant

Low-Clusters

High-Clusters

Given the z-score of 14.480721324, there is a less than 1% likelihood that this high-clustered
pattern could be the result of random chance.

Figure A4.2 (b): High/Low Clustering report of the food source vegetation of black
flying foxes at 5 kms.
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Observed General G: 0.000005
Z-score: 0.973742
p-value: 0.000000

——

Significant

Low-Clusters

Significance Lewel
{p-walue)}

0.01
0.035
0.10

0.10
0.03
0.01

Significant

High-Clusters

ganoomn

|

Critical Value
(z-score)

= -2.58

-2,58 - -1.96

-1.96 - -1.65

-1.65 - 1.65
1.65-1.96
1.96 - 2.58
=258

Given the z-score of 65.97374231917, there is a less than 1% likelihood that this high-clustered

pattern could be the result of random chance.

Figure A4.2 (c): High/Low Clustering report of the food source vegetation of black

flying foxes at 10 kms.
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A4.3 List of MVS Identified within 20 Kms Range of Grey-headed Flying Foxes

Legend

MV S within 20 Km s Buffer Range of the Grey Headed Flying-fox Roosting Sites
MVSE NAME

|:| Banksia woodlands

|:| Brigalow (Acacia harpophylla) forests and woodlands

|:| Casuarina and Allocasuarina forests and woodlands

|:| Cleared, non-native vegetation, buildings

|:| Cool temperate rainforest

|:| Dry rainforest or vine thickets

- Eucalyptus {(+/~tall) open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll)
- Eucalyptus open forests with a grassy understorey

- Eucalyptus open forests with a shrubby understorey

- Eucalyptus open woodlands with a grassy understorey

- Eucalyptus tall open forest with a fine-leaved shrubby understorey

|:| Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes or wet tussock grasses

Eucalyptus woodlands with a shrubby understorey
- Eucalyptus woodlands with a tussock grass understorey

- Freshwater, dams, lakes, lagoons or aquatic plants

I H=athiands

- Low closed forest or tall closed shrublands (including Acacia, Melaleuca and Banksia)

- Mangroves

- Melaleuca open forests and woodlands
- Maturally bare, sand, rock, claypan, mudflat

- Dther open woodlands

- Other shrublands

I saline or brackish sedgelands or grasslands
|:| Sea, estuaries (includes seagrass)

|:| Sedgelands, rushs or reeds

|:| Tropical or sub-tropical rainforest

[ | unknownma data

|:| Warm Temperate Rainforest

Figure A4.3: Legend of the MVS identified within 20 kms range of the grey-headed

flying fox roosting sites in the study area.
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A4.4 High/Low Clustering Reports of the Grey-headed flying Foxes Food
Source Vegetation at 3, 5 and 10 Kms

Dhsarved General &) 0, 10001017 Sagnificsscy Luval Crites| Vi
r-seore: 17714105 lprvalue] (R
- r 0ol g <-75R
p-valus: 0000001 005 EE -L58--1.95
040 O 086 --165
— 3 -1E3- 163
il B 1&5-19%
ooy EE 196 - 238
o = > 2.58
- [—

significaar

Glven the z-soone of 17, 7243052376, there is a less than 1% likefhood that this high-clustered
pattsin could be the result of random charde

Figure A4.4 (a): High/Low Clustering report of the food source vegetation of grey-
headed flying foxes at 3 kms.

Observed General G: 0.000003 significance Level Critical Value

z-score: 11.897752 = (prualue) {z-=care)
0.01 mm <-2.58
p-value: 0.000000 0.05 0= -2.58--1.96
0.10 [ -1.96--1.65
— [ -1.65-1.65
0.10 [ 1.65-1.96
0.05 [EE 1.96-258
001 EE >258
e ' I a
-~ L Ll
Significant Significant

Low-Clusters High-Clusters

Given the z-score of 11.8977819762, there is a less than 1% likelihood that this high-clustered
pattern could be the result of random chance.

Figure A4.4 (b): High/Low Clustering report of the food source vegetation of grey-
headed flying foxes at 5 kms.
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Observed General G: 0.000004
Z-score: 115.121865
p-value: 0.000000

—

Significant

Significance Level
(pvalue)

0.01
0.05
0.10

0.10
0.3
001

Significant

High-Clusters

BE00CDN

|

Critical Value
{z-score)

< -2.38
-2.38 --1.96

-1.96 - -1.65

-1.65 - 1.65
1.65-1.96
1.6 - 2,38
> 2.58

Given the z-score of 115.1218644934, there is a less than 1% likelihood that this high-clustered

pattern could be the result of random chance.

Figure A4.4 (c): High/Low Clustering report of the food source vegetation of grey-

headed flying foxes at 10 kms.
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A4.5 List of MVS Identified within 10 Kms Range of HeV Incidents

Legend

MV S within 10 Kmes Buffer Range of the Incidents
MV5_NAME

|:| Banksia woodlands

|:| Brigalow (Acacia harpophyila) forests and woodlands

|:| Casuarina and Allocasuarina forests and woodlands

|:| Cleared, non-native vegetation, buildings

|:| Dryrainforest or vine thickets

|:| Eucalyptus (+/- tall} open forest with a dense broaddeaved and/or tree-fern understorey (wet sclerophwl)
|:| Eucalyptus open forests with a grassy understorey

|:| Eucalyptus open forests with a shrubby understorey

- Eucalyptus open woodlands with a grassy understorey

- Eucalyptus tall open forestz and open forestz with ferns, herbs, sedges, rushes or wet tussock grasses
- Eucalyptus woodlands with a shrubby understoney

- Eucalyptus woodlands with a tussock grass understorey

- Freshwater, damsg, lakes, lagoons or aguatic plants

- Heathlands

- Low dosed forest or tall dosed shrublands (induding Acacia, M elaleuca and Banksia)

- Mangroves

- Melaleuca open forestz and woodlands

- Other open woodlands
- Other shrublands

- Saline or brackish sedgelands or grasslands
- Sea, estuaries (includes seagrass)

- Sedgelands, rushs or reeds

- Tropical or sub4ropical rain forest

- Unknown/N o data

- Warm Temperate Rainforest

Figure A4.5: Legend of the MVS identified within 10 kms range of the HeV

incidents in the study area.
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A4.6 High/Low Clustering Reports of the Food Source Vegetation of Flying
Foxes within 10 kms Range of the Incidents at 3, 4, 5 and 10 Kms

Ohserved Gemeral Gz 0000006
E-somres 2P -
pr-waliies 0,007 708

Signihimsca | eval Crtmal Valia
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¥ LES
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» 158

feoooom

|
|

-

| - Cluasio s

Glven the 7-score of 3.00, there is a less than 1% likeliood that this high-duskered pattem
could be the resalt of randorn chance.

Figure A4.6 (a): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms incident range at 3 kms.

Observed General G 4000007
racorer 1 BTOFIE 20
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— e

SigniliLant
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trigh- Clustmrs

Given the z-score of 1.88, there is a less than 10% likelhood thak this high-dustered pattern
oould be the result of random chance.

Figure A4.6 (b): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms incident range at 4 kms.
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Ghven the z-score of 0,64, the pattern does nol appear to be significantly dfferent than
random

Figure A4.6 (c): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms incident range at 5 kms.
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prwalues 0000260 ; B -258--1.98
= 1.96--1.65
= -1.65- 1465
= 1.65-1.96
EE  1.56-258
El 3158

|
|

L e -Cluiares

High-Clustsrs

Given the z-score of -3.65, there is a less than 1% likelihood thal this low-dustered pattern
coaild b the result of random chance,

Figure A4.6 (d): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms incident range at 10 kms.
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A4.7 List of MVS Identified within 10 Kms Range of Registered Equine
Properties

Legend

List of MV S Identified within 10 Kilometers of the Equine Properties

MV5_NAME

I:l Banksia woodlands

|:| Brigalow (Acacia hampophylla) forests and woodlands

|:| Casuarina and Allocasuaring forests and woodlands

|:| Cleared, non-native vegetation, buildings

|:| Cooltemperate rainforest

I:I Dry rainforest or vine thickets

- Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern understorey (wet sclerophyll)
- Eucalyptus open forests with a grassy understorey

- Eucalyptus open forests with a shrubby understorey

- Eucalyptus open woodlands with a grassy understorey

- Eucalyptus tall cpen forest with a fine-leaved shrubby understorey

|:| Eucalyptus tall open forests and open forests with fems, herbs, sedges, rushes or wet tussock grasses

- Eucalyptus woodlands with a shrubby understorey
- Eucalyptus woodlands with a tussock grass understorey

- Freshwater, dams, lakes, lagoons or aquatic plants

- Heathlands

- Low closed forest or tall closed shrublands {including Acacia, M elaleuca and Banksia)

- Mangroves

- Melaleuca open forests and woodlands

- Other open woodlands
- Other shrublands

- Saline or brackish sedgelands or gragslands
I:l Sea, estuaries (includes seagrass)

|:| Sedgelands, rushs orreeds

|:| Tropical or sub-tropical rainforest

|:| Unknown/No data

I:l Warm Temperate Rainforest

Figure A4.7: Legend of the MVS identified within 10 kms range of the registered

equine properties in the study area.
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A4.8 High/Low Clustering Reports of the Food Source Vegetation of Flying
Foxes within 10 kms Range of the Equine Properties at 3, 5 and 10 Kms

Dibserved Gemveral Gz 0 HEOT Signilicancs Lunval Eritical Vkis
F-sonines £49,106131 Cp-valua} {z-score}
¥ ol g =158
p-valuses (000000 003 EE -2%E--1.96
010 £ -1.96 - -L63
- X -1.63-1.85
aip [ 1.65-1.9%
05 B 1% -2sE
ki >3
¥ >

Sagniificant

Geven the 7-score of 69, 1061312082, there & a less than 1% lkelihood that this high-chestered
patherts could be the redult of rindam chance.

Figure A4.8 (a): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms range of equine properties at 3 kms.

Dhserved General G; 0000011 Sigrifacanca Level Crnical Vakin
sy
2-senee: 65, L4B660 i) frina]
ool gm =258
prvalue: 0000000 0.0% 198 -9
o R 1]
3 -LA% - 188
B 1.65-1.96
154 -3%
=288

|
|

Egndem Fligh Clustary

Given the Z-soore of 55, 1286686806, There &5 3 less than 1% lkelhood that this Mgh-clistered
patiern could be the resdt of random chance.

Figure A4.8 (b): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms range of equine properties at 5 kms.
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Observed General G: 0.000016 Significance Level Critical Value

z-score; 54.831316 M (p-value) {z-score)
0.01 g <-2.58

p-value: 0.000000 i — S
010 [ -1.96--1.65

— [(@ -1.85-1.565

010 [0 1.65-1.96
0.05 [Em 1.96-2.58
0.01 EE 258

|

—

Significant Significant

Low-Clusters

High-Clusters

Given the z-score of 54.831316114, there is a less than 1% likelihood that this high-clustered
pattern could be the result of random chance.

Figure A4.8 (c): High/Low Clustering report of the flying foxes food source

vegetation within 10 kms range of equine properties at 10 kms.
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A4.9 High/Low Clustering Reports of the Food Source Vegetation of the Black
Flying Foxes near the Equine Properties ‘at risk’ at 3, 5, 10, 15 and 20 Kms

observed General G; 0,001
F-soore; 11675635
p-walie: O.000000

Sigielicatcs Lewal Ot alus
[prumles] [r-soored

.01 <-2.58

185 ] -3 - -1.96
“1L.96 - -1.63
~165 - 1,65
LES - 1.96
1.0 = 230
3.

Ranoooe

Leowr Clustars High Clurimrs

Given the z-srore of 71675538968, there is a es than 1% Mkelihood that this hegh-clustered
patiwrn could be the result of random dhance,

Figure A4.9 (a): High/Low Clustering report of the black flying foxes food source

vegetation near the equine Properties ‘at risk’ at 3 kms.

Observed Genaral G2 0002
F-srorec LH, A1 30

Sagnifecancs Lanml Craical Vales
{pusium) fe-soore)

p-value: (1000000 = -‘j_;:f-:_iﬁ
B 196--1.65
2 -1E8=-1048
B 16%=1%
B 1.96-158
I =158

|

Liws-Clustars Hmgh-Clssters.

Gahvan the T-score of 1A 35268241, there s a less than 1% Moskhood that thes high-chustered
patterm could be the result of random chanoe.

Figure A4.9 (b): High/Low Clustering report of the black flying foxes food source

vegetation near the equine properties ‘at risk’ at 5 kms.
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Observed General G: 0.000004 Significance Level Critical Value

z-score: 8.859421 mm (p-value) {z-score)
0.01 mmg <-258
p-value: 0.000000 D05 mm Sen. e
0.10 [ -1.96--1.65
- [ -1.65-1.65
010 I 1.65-1.96
0,05 EE 1.96-258
001 EE >2538
< I —

Significant

Significant

Low-Clusters

High-Clusters

Given the z-score of 8.85942051884, there is a less than 1% likelihood that this high-clustered
pattern could be the result of randem chance.

Figure A4.9 (c): High/Low Clustering report of the black flying foxes food source

Vegetation near the equine properties ‘at risk’ at 10 kms.

Observed General G: 0.000005 Significance Level Critical Value
Zz-score: 4.687285 mm (prvalue) (z-=core)
0.01 @ <-2.58
p-value: 0.000003 0.05 B2 -2.58--1.96
0.10 [ -1.96--1.65
— [ -1.65-1.65
010 [ 1.65-1.96
0.05 @@ 1.96-258
0.01 @ 258
«— f—
Significant Significant

Low-Clusters

High-Clusters

Given the z-score of 4.68728450336, there is a less than 1% likelihood that this high-clustered
pattern could be the result of random chance.

Figure A4.9 (d): High/Low Clustering report of the black flying foxes food source

Vegetation near the equine properties ‘at risk’ at 15 kms.
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Significance Lewvel
[p-value)
0.01
0.05
0.10

0,10
0.05
0.01

Observed General G: 0.000006
Z-score; 1,.833133 3
p-value: 0.066783

TE000EN

Significant

—

Significant

High-Clusters

Lowr-Clusters

Critical Value
[z-score)

= -2,.58
-2.538--1.96
-1.96 - -1.65
-1.65 - 1.65
1.65 - 1.96
1.96 - 2,58
= 2.58

Given the z-score of 1.83313336949, there is a less than 10% likelihood that this high-

clustered pattern could be the result of random chance.

Figure A4.9 (e): High/Low Clustering report of the black flying foxes food source

Vegetation near the equine properties ‘at risk’ at 20 kms.
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A4.10 High/Low Clustering Reports of the Food Source Vegetation of the Grey-
headed Flying Foxes near the Equine Properties ‘at risk’ at 3, 5, 10, 15 and 20

Kms
Dhserved General G; 0000001 Significancs Leval Critical Valus
2-score; 18,263020 M (r-imioc) (-scora)
PR 0o mm <-238
prvalue: 0. 0000600 Lo B 2uE - 106
ki = -1.96--1.83
— (3 -i45%- 1565
nil 3 185- 198
ooy BN 1.96-258
001 Bl =158

togh Clusters

Given the r-scome of 1926301993772, there 15 & lews than 1% oebbood that this high-clistered
pattein could be the resut of random chande.

Figure A4.10 (a): High/Low Clustering report of the grey-headed flying foxes food

source vegetation near the equine properties ‘at risk’ at 3 kms.
Dirserved General G O.000D02

T-momne! 13, 79] 075 N
pevakie: 00000

Significance Leval Critical Valus
[pwalus] ]

= -2.58

10 L
L% = «1La3
185~ L&S

155 - 1.9&

1.9 - 350

= .58

ool
oo

pnoooen

Lowr-Clusters

hagh-Cluwiers

Ghven the 3-soore of 13, 701875662, there & a less than 1% lkelihood that this igh-clustered
paltern coadd be the result of random chamne.

Figure A4.10 (b): High/Low Clustering report of the grey-headed flying foxes food

source vegetation near the equine properties ‘at risk’ at 5 kms.
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Significance Level Critical Value

Observed General G: 0.000003

z-score: 5.991327 = (pvalue) (z-score)
0.01 mm <-258

p-value: 0.000000 0.05 B3 -2.58--1.96
010 [ -1.96--1.65

— (=3 -165-1.65
010 [ 1.65-1.96
0.05 W 1.96-258
001 HE »>258
- >
Significant Significant

Low-Clusters

High-Clusters

Given the z-score of 5.99132656821, there is a less than 1% likelihood that this high-clustered
pattern could be the result of random chance.

Figure A4.10 (c): High/Low Clustering report of the grey-headed flying foxes food

source vegetation near the equine properties ‘at risk” at 10 kms.

Observed General G: 0.000004 Significance Level Critical Value
z-score: 1.449780 £ (prvalue) {z=care)
0.01 pmm <-258
p-value: 0.147117 0.05 358 - -1.96
0,10 [ -1.96--1.65
— [ -1.65-1.65
010 [ 1.65-1.96
0.05 [EE 1.96-258
001 BEE >258
-« (Random) e
Significant Significant

T
Q
o
o
o

1

Low-Clusters High-Clusters

Given the z-score of 1.44978044457, the pattern does not appear to be significantly different
than random.

Figure A4.10 (d): High/Low Clustering report of the grey-headed flying foxes food

source vegetation near the equine properties ‘at risk” at 15 kms.
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Significance Level Critical Value

Observed General G: 0.000006

z7-score: -1,425134 [ swbie) (z-score)
0.01 mpmm <-2.58

p-value: 0.154118 0.05 B3 -2.58--1.96
0.10 [ -1.96--1.65

— (3 -1.65-1.65
010 [ 1.65-1.96
005 @@ 1.96-2.53
001 Bl »2.58
‘— |
Significant Significant

High-Clusters

Low-Clusters

Given the z-score of -1.425134209067, the pattern does not appear to be significantly different
than random.

Figure A4.10 (e): High/Low Clustering report of the grey-headed flying foxes food

source vegetation near the equine properties ‘at risk” at 20 kms.
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Appendix - 5

Abstracts of the Associated Publications

AS.1 Preliminary Spatial Analysis of Hendra Disease Outbreaks in South East

Queensland

Abstract: HeV was first reported in the suburb of Hendra, Brisbane in 1994. It has
proven to be fatal to both humans and horses, with the first outbreak resulting in the
death of 13 horses and a trainer. Since then, there have been several other outbreaks
reported across Queensland, from Cairns to the New South Wales border at
Murwillumbah. Due to the frequent incidents of the virus outbreak, the Queensland
Government’s Department of Agriculture, Fisheries and Forestry (DAFF) stated that
there is a pressing need for current research on the spatial and temporal occurrences
of the virus infections (DAFF 2012). This paper presents an overview of the
research, and the preliminary results of the relationship between the Hendra disease
outbreaks and the roosting sites of flying-foxes in the south-east Queensland. The
results show a strong relationship (92% of the incidents) between temporary and
seasonal roosting sites (rather than the permanent continuous roosting sites) and the
outbreak locations. This finding suggests the need for detailed cluster analysis and

regression models to identify the risk factors for the spread of the disease.

Keywords: Hendra disease, Horses, Flying-foxes, Outbreaks, Spatial analysis
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AS.2 Factors Explaining the Dispersal of HeV Disease in South East Queensland

Abstract: HeV (HeV) was first described in 1994 following the outbreak of a new
disease fatally affecting horses and humans in south-east Queensland. The disease
kills 70% of the infected horses and under some circumstances the virus is spread to
humans who have had close contact with the infected horses. Fruit bats (Pteropus
spp.) commonly known as flying-foxes have been identified as the natural host of the
virus. A preliminary analysis of the incidents and the flying-fox roosting sites
revealed a strong relationship between the temporary and seasonal roosting sites in
the south-east Queensland (Burnham et al. 2014). The aim of this paper is to
determine the potential factors that can explain the dispersal of HeV incidents in the
study area. Based on the preliminary results, a further analysis was done on the
roosting sites by considering factors such as the species of flying-foxes, foraging
range and pregnancy period. Spatial autocorrelation (Global Moran’s I) revealed
significant clustering of P.alecto and P.scapulatus species. Kernel density estimation
analysis helped in identifying a strong relationship between P. alecto and
P.scapulatus species density and the outbreak events in the study area. Buffer
analysis established an initial relationship between P. alecto and P.poliocephalus
species birth periods and the incidents. Ordinary least squares (OLS) regression
identified P. poliocephalus species as statistically significant at a global context
across the study area. Geographically weighted regression (GWR) analysis was
performed to study the local spatial variations of the explanatory variables. P. alecto
and P. poliocephalus species exhibited a significant positive relationship in most of
the regions where as pregnancy period variable exhibited a significant negative

relationship to the HeV incidents in the study area.

Keywords: Hendra disease, Incidents, Dispersal, Flying-foxes, Spatial Analysis
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AS5.3 An Investigation of the Food Sources and Roosting Sites as Potential

Factors of HeV Dispersion in South East Queensland, Australia

Abstract: HeV (HeV) was first identified in 1994 following the outbreak of a new
disease which is fatally affecting horses and humans in south-east Queensland. Since
this outbreak, there have been subsequent incidents reported in south-east
Queensland. Fruits Bats (Pteropus spp.) commonly known as flying-foxes have been
identified as the natural host of the virus. In this paper, an in-depth analysis is carried
out to determine the correlation between food source vegetation and the flying-foxes
roosting sites. This investigation may determine whether clustered or dispersed
vegetation has more impact on the incidence. Using spatial analyst tools, the major
vegetation subgroups (MVS) present within 20 kilometers buffer range of grey
headed flying-foxes and black flying-foxes roosting sites are identified. The
identification of abundance of food sources for individual species within their
minimum foraging range indicated a strong correlation between their site locations
and vegetation subgroups present. A 10 kms range vegetation study on the incident
locations identified the presence of ‘food sources’ of both species. The clustering of
the food resource vegetation present near the incidence was studied using Getis-Ord
General G Statistic method, which indicated statistically high clustering with 99%
confidence level at 3 kms distance threshold. The findings suggest that the presence
of potential ‘food resource’ of the flying-foxes within certain proximity increases the

risk of HeV disease transmission to horses.

Keywords: Flying-foxes, Vegetation, Clustering
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AS5.4 Examining the Spatial Relationship between Equine Population and Food

Source Vegetation of Flying-foxes in South East Queensland, Australia

Abstract: HeV (HeV) was first identified and described in 1994 following the
outbreak of a new disease fatally affecting horses and humans in south-east
Queensland. Since the outbreak, there are subsequent incidents reported in eastern
Australia mainly in south-east Queensland. Fruits Bats (Pteropus spp.) commonly
known as flying-foxes have been identified as the natural host of the virus. This
paper examines the spatial relationship(s) between the equine population and food
source vegetation of flying-foxes in the study area. A 10 Km range vegetation study
on the equine properties in the study area identified the food source vegetation of
both black and grey headed flying-foxes. The clustering of the food source
vegetation present near the equine properties was studied using Getis-Ord General G
Statistic method, which indicated statistically significant high clustering at 3, 5 and
10 Km distance thresholds.

Keywords: HeV, Flying-foxes, Food source vegetation, Equine population
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