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Abstract 

 

Hendra Virus (HeV) is an emerging zoonotic disease that was first identified in 1994 

and has only been found in Australia. It can be transmitted to other horses, humans 

and dogs with a high fatality rate of >79 per cent in horses and 57 per cent in humans 

giving it both veterinary and public health significance. Fruit bats (Pteropus spp.) 

commonly known as flying-foxes have been identified as the natural host of the 

virus. From 1994 to 2015 inclusive, there have been more than 70 sporadic 

confirmed cases of HeV infection in horses. All cases have occurred in Queensland 

and in north-east New South Wales. The research on the HeV has almost begun 

immediately after the first outbreak. Government organisations as well as scientists 

and academicians from a broad range of disciplines, including the animal health, 

environmental and social sciences, are working together to develop a 'One Health' 

approach that will help minimise the impact of HeV. This research uses a GIS-based 

spatial approach to research and determine the potential factors that can explain the 

dispersal of HeV outbreaks in the south east Queensland, Australia. The aim of this 

research is to identify the equine population ‘at risk’ and thus identifying the human 

population ‘at risk’ in the study area.  

 

A preliminary spatial analysis examined the relationship between the Hendra disease 

outbreaks and the roosting sites of flying foxes in the study area. There are four main 

roosting site categories which are permanent (continuous or seasonal use), temporary 

(occupied or unoccupied), abandoned and destroyed. This analysis showed a strong 

relationship between the outbreak events and the existence of temporary and seasonal 

flying fox roosting sites within a 10 kms range. But very few disease outbreak 

incidents have a permanent roosting site in their range. This provided a strong case 

for further study into the seasonal behaviour of flying foxes, particularly in breeding 

season. This analysis revealed that variables such as species and their foraging range, 

breeding time, equine data, and environment aspects such as types of vegetation and 

seasonal changes could provide suitable factors for the determination of potential 

factors that can explain the dispersal of HeV outbreaks in the study area. 
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Based on the preliminary results, a further analysis was done on the roosting sites by 

considering factors such as the species of flying foxes, foraging range and pregnancy 

period. Global Moran’s I method (inverse distance conceptualisation) was used to 

identify the presence of significant spatial clustering of the three flying fox species at 

various foraging ranges (10, 20, 30, 40 and 50 kms) in the study area. Global 

Moran’s I revealed significant clustering of P. alecto and P.scapulatus species. The 

analysis of P. alecto species showed significant clustering at all foraging range 

intervals with high occurrence at 50 kms, which is their maximum foraging range. 

The results of P.scapulatus species showed maximum significant clustering 

occurring at 10 kms range. Kernel density estimation (KDE technique) analysis 

helped in establishing a strong relationship between P. alecto and P.scapulatus 

species density and the outbreak events in the study area and revealed the density 

hotspots of these species. Buffer analysis established an initial relationship between 

P. alecto and P. poliocephalus species birth periods and the outbreak incidents.  

 

The ordinary least squares (OLS) regression analysis was carried out using the 

‘incident rate’ as a dependent variable and black flying foxes, grey-headed flying 

foxes and pregnancy period as independent variables. This model has a statistically 

significant heteroscedasticity (p<0.05) which suggests the use of Robust P to 

determine the coefficient significance for consideration. Goodness-of-fit measure 

indicated a model performance of 0.7.  Ordinary least squares (OLS) regression 

identified P. poliocephalus species as statistically significant at a global context 

across the study area. The variance inflation factor (VIF) values indicated no 

redundancy among the variables. Moran’s I test (Index = -0.02, P = 0.8) indicated no 

significant clustering among the residuals. An exploratory method approach was 

exercised to calibrate the model for local regression (GWR), which used the most 

significant exploratory variables that could explain the trends of dispersion of HeV in 

the study area.  Geographically weighted regression (GWR) analysis performed to 

study the local spatial variations of the explanatory variables in the study area 

identified P. alecto and P. poliocephalus species as having a significant positive 

relationship in most of the regions. ‘Pregnancy/Birth period’ variable exhibited a 

significant negative relationship to the HeV incidents in the study area. The 

goodness-of-fit measure indicated an improvement from 0.7 (global model) to 0.8. 

Moran’s I test (Index = -0.02, P = 0.9) indicated no significant clustering among the 
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residuals. The spatial variability of the local parameter estimates of each variable in 

the GWR model has been tested and a significant spatial variability was present in 

the variables. 

 

An in-depth analysis was carried out to determine the correlation between food 

source vegetation and the flying foxes roosting sites in the study area. Using spatial 

analyst tools, the major vegetation subgroups (MVS) present within 20 kms range of 

P. alecto and P. poliocephalus roosting sites were identified. The identification of 

abundance of food sources for individual species within their minimum foraging 

range indicated a strong correlation between their site locations and the vegetation 

subgroups present. A 10 kms range vegetation study on the incident locations 

identified the presence of ‘food sources’ of both species. The clustering of the food 

resource vegetation present near the incidence was studied using Getis-Ord General 

G Statistic method, which indicated statistically high clustering with 99% confidence 

level at 3 kms distance threshold. A 10 kms range vegetation study on the equine 

properties in the study area identified the food source vegetation of both significant 

species. The clustering of the food source vegetation present near the equine 

properties was studied using high/low clustering/Getis-Ord General G Statistic 

method, which indicated statistically significant high clustering at 3, 5 and 10 kms 

distance thresholds. The vegetation analysis revealed a strong correlation between 

the roosting sites, food source vegetation and the equine properties.  

 

Based on the above analysis, three prediction models were produced to identify the 

equine population ‘at risk’ in the study area. These models were based on the 

presence of the significant species identified in the GWR model and the clustering of 

their food source vegetation in statistically significant high clusters within 20 kms 

from the equine properties. Flowering season of the food source vegetation was 

considered as an additional risk factor. These models have successfully identified the 

equine population ‘at risk’. The risk percentage of a probable outbreak event varies 

for each equine property depending on their exact location and their contributing 

factors. The prediction model(s) is an effective tool to identify the potential 

population (both equine and human) ‘at risk’, which can assist with Health Service 

Planning, policy implications, decision making and ongoing disease surveillance. 

This research successfully established the correlation between the HeV outbreak 
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events, flying fox species and their roosting sites, food source vegetation and seasons 

spatially. The factors influencing the dispersal of HeV outbreak events in the study 

area were understood. This study reveals the capability of GIS-based surveillance 

system to issue early warnings and precautionary measures to the identified 

population ‘at risk’. This research also makes evidence based practice of disease 

mitigation, planning and prevention and control strategies for HeV achievable. 
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1. Chapter One – Introduction 

1.1 Overview 

 

Spatial epidemiology involves the description and analysis of geographically indexed 

health data with respect to demographic, environmental, behavioural, socio-

economic, genetic, and infectious risk factors (Elliot et al 2004). It is a part of 

geographic analyses dating back to the 1800s when maps of disease rates in different 

countries began to emerge to characterize the spread and possible causes of 

outbreaks of infectious diseases such as yellow fever and cholera (Walter 2000). In 

recent decades, it grew in complexity, sophistication, and utility. The practice of 

ecologic studies is extended by spatial epidemiology that use explanations of the 

distribution of diseases in different places to better understand the ecology of disease 

(Doll 1980, Keys 1980). Haining (2003) described spatial epidemiology as the 

analysis of spatial and a space-time distribution of disease data which enables the 

identification of populations with high relative risks for particular diseases and may 

help to isolate the possible casual factors for subsequent analysis by individual study 

level designs.  

 

Epidemiology can be defined as a scientific study of a disease, which includes 

analysing the occurrence and distribution of the disease and its associated factors 

(Medical Dictionary). The ability of GIS to integrate and manipulate complex data 

has emerged it as a powerful tool in epidemiological studies. The traditional 

epidemiological studies such as cohort or case control studies enable us to identify 

excess disease rates or trends and perform further analysis for hypothesis testing 

(Seng et al 2005). Use of GIS technology in spatial epidemiological and public 

health studies gained momentum after researchers started using it for more than 

visual representations i.e. maps. GIS in spatial epidemiology has been tremendous in 

understanding diseases in a different dimension. With the assistance of this powerful 

tool, the disease clusters could be identified and other influencing factors such as 

environmental, socio-economic and climatic could be linked to diseases. While 
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geographical visualization serves the need to reveal the spatial patterns, the statistical 

awareness in GIS determines the significance of these patterns.  

 

HeV (HeV) is a rare zoonotic disease and was first reported in a suburb of Hendra, 

Brisbane, Australia in the year 1994. This outbreak of the disease resulted in the 

death of 13 horses and the trainer. Fruit bats commonly known as flying foxes 

(Pteropus spp.) were consequently identified as the natural reservoirs of HeV 

(Halpin et al 2000). The virus was initially named as Equine Morbillivirus, after 

further genetic analysis, it was placed in a new genus within the family of 

Paramyxiviridae, which was found more appropriate; and hence renamed as ‘HeV’ 

where the first outbreak occurred (CSIRO 2011, Field et al 2007). In the year 2011, 

Australia witnessed an unprecedented spike in the number of HeV cases in horses in 

both Queensland and New South Wales (Hume et al. 2012). The cases included 18 

outbreaks and 24 cases in horses reported; and also with a dog tested positive for the 

first time (DAFF 2014). As of December 2012, there were 80 confirmed outbreak 

events including equine and human cases (Smith et al 2014). Between 1994 and July 

2013 there have been 48 clusters of the disease in Australia which have resulted 

in four human deaths. The confirmed human cases stand at seven giving it a very 

high Case Fatality Rate (CFR) of 57 per cent. It has also caused the deaths of 90 

horses. Since 2011 two dogs have become infected; and both were subsequently 

euthanized.  

 

HeV outbreaks have only occurred in Australia so far, where the virus is endemic in 

flying foxes. Flying foxes are found throughout tropical and sub-tropical Asia and 

Australia and on islands of the Indian and western Pacific Oceans (DEPI VIC 2015). 

Seropositive flying foxes have been found from Darwin in North Central Australia to 

Melbourne in South Eastern Australia. Equine cases been reported from Eastern 

Australia, in the States of Queensland and New South Wales. Antibodies detected in 

flying foxes in Papua New Guinea might be caused by HeV or a related virus. 

Currently there is no evidence that HeV exists in other areas. However, 

henipaviruses or antibodies to these viruses have been detected in bats on several 

continents. Most of these viruses are poorly characterized (CFSPH 2015). 
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In horses, HeV is transmitted mainly by ingesting food or water contaminated with 

infected flying fox body fluids and excretions. The virus is then being passed onto 

humans who come into contact with infected horse’s nasal discharge, blood, saliva or 

urine (AAW 2012). The studies show strong evidences that the disease is not bat-to-

human transmissible and horses act as medium for disease transmission to humans. 

Horses to other species and bats to other species transmissions are however possible 

(Australian Biosecurity 2009). The mode of transmission and incubation period of 

HeV was documented by Communicable Diseases Network Australia (CDNA). The 

typical incubation period in horses appears to be 5-16 days. The prevalence of the 

HeV appears to be uncertain in flying fox populations but the reason behind this is 

not known. 

 

Clinical signs of the humans presented with the infection include self-limiting 

influenza-like illness (two cases), influenza-like illness complicated by severe 

pneumonic illness contributing to death (one case), aseptic meningitis with apparent 

recovery, then death from encephalitis 13months later (one case), acute influenza-

like illness followed by encephalitis and seroconversion, followed by recovery (one 

case) and death (two cases). In horses, the virus clearly targets the endothelial cells 

of blood vessels, with clinical signs dependent on the sequence in which organs are 

affected. Typical clinical signs include body temperature, increased heart rate, 

respiratory or neurological signs or a mix, frothy nasal mucus, sweating, balance 

difficulties and rapid deterioration (CDNA 2011 and BetterHealth Victoria 2014).  

 

The powerful analytical modelling and mapping capabilities of GIS may serve as a 

good decision-support and decision-making tool for disease investigations, 

monitoring, modelling, predictions, preventions and resource allocations (Davenhall 

2002). The availability of the data and the functionality of GIS will be a great 

advantage for this research, which concentrates on studying the HeV outbreaks from 

a spatial epidemiological prospective.  
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1.2 Problem Statement and Research Gap 

 

Some of the transmissible diseases such as HeV are challenging to monitor through 

normal surveillance programs, as these diseases are affected by various external 

factors and the impact of these factors on them are likely to be very high. The 

biological and ecological researches for analysing these kinds of rare diseases might 

not be sufficient for disease surveillance and risk predictions in certain 

circumstances. Identification of a spill-over of any zoonotic virus involves one of the 

human, livestock or wildlife deaths with a certain degree of medical, emotional and 

economic misery. A research survey study conducted on the studies on HeV in the 

south western United States revealed that exploring the virus spreads in an 

epidemiological aspect with targeted study helped the public health officials in 

reducing the risk of infections by forecasting the locations and their future outbreak 

occurrence levels. These researches are categorised as cost-effective and long run 

theories (Calisher et al 2006).   

 

Differences in modelling approaches, disease transmission intensity and data 

dimensions space-time would influence the analysis and could be a reason for a less 

accurate model for the disease surveillance (Seng et al 2005 and Cressie 2000). 

Using a precise set of spatial analysis and modelling techniques can make the 

predictions more reliable. An accurate modelling technique demands detailed 

understanding of the HeV such as its eco-biological factors, transmission and 

environmental factors that may affect the disease distribution. Studying the various 

factors and their relationship with the HeV outbreak events could assist in the 

understanding the disease dynamics. This would provide necessary information in 

developing a model that can explain the HeV dispersal in the study area.  

 

In the case of rare disease outbreaks like HeV, GIS will be suitable as a tool to 

identify the main factors (geographical, environmental and other factors) of disease 

transmission, to use it as disease monitoring, to identify population at risk, prediction 

models and generate warning systems according to spatial distributions. GIS in 

public health research starts from epidemiologists using the traditional maps to 

observe the relationships between location, environment and diseases outbreaks. GIS 
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is well adopted by these types of researches varying from vector-borne diseases to 

lead hazards in the public health field for its analysis and display capabilities (Clarke 

et al 1996).  

 

Many of the epidemiological and public health projects are GIS-based. GIS, 

especially in the last decade emerged as an innovative, important and even essential 

tool for some researches. As GIS involves a lot of interdisciplinary work, the 

appropriate methods remain as the important part of the research. Statistical work 

and models are crucial in a successful research involving GIS (Waller 1996). There 

is always a major gap in the current GIS-based researches, when it comes to model 

development and statistical analysis, which is yet to be, filled (Miranda et al 2013). 

The capability and reliability of GIS in spatial data handling, manipulation and 

analysis, and the accuracy and improvements in regression techniques makes GIS an 

appropriate technology to employ for HeV research. This study will concentrate on 

investigating, analysing, and visualizing HeV outbreaks in the study area using 

appropriate GIS techniques.  

 

This research provides a framework to fill the existing need for HeV research and 

monitoring announced by the Queensland Government (Edmonston et al 2011). This 

research studies the correlation between the HeV outbreaks and the factors such as 

the flying fox species, roosting sites and their status, foraging range, pregnancy/birth 

period, seasonal changes, and the food source vegetation of the flying fox species. 

By considering the climatic, environmental, behavioural and other influential factors 

of the hosts, this research may explain the dispersal of the HeV outbreak events in 

the study area.  

1.3 Research Aim and Questions 

 

The overall aim of this research is to analyse the spatial patterns of the HeV cases, 

study the factors that may explain the HeV dispersal in the study area and identify 

the population ‘at risk’ using a prediction model by incorporating GIS techniques. 

Using the spatial analytical tools in GIS, this research will establish a relationship 

between the outbreak events and their influential factors such as species, foraging 
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range, pregnancy period, birth and lactation period, seasons and food source 

vegetation. A spatial epidemiological study of the HeV outbreaks will help answer 

the following set of questions: 

 

i) How the outbreak events are spatially distributed in the study area? 

ii) What is the correlation between the roosting sites and the outbreak events? 

iii) What are the factors that are influencing the disease transmission? 

iv) How can these factors explain the dispersal of the outbreak events in the 

study area? 

v) What is the correlation between the food source vegetation of flying foxes 

and the outbreak events? 

vi) How to identify population ‘at risk’? 

 

This work attempts to fill in the requirement of a good GIS-based research to study 

the HeV outbreaks in the study area spatially and temporally. This research can 

provide the epidemiologist with an effective tool to identify the potential population 

(both equine and human) ‘at risk’ and thus helps in the formation of evidence-based 

disease mitigation strategies. 

1.4 Research Objectives 

 

In order to achieve the research aim, a list of objectives is stated below: 

 

i) Detailed study on the HeV Outbreak events and the reservoir hosts. 

ii) Research the relevant spatial analyses, modelling and mapping techniques 

that are best suited for spatial epidemiological study of the HeV outbreak 

events and the influential factors.  

iii) Develop a technique to integrate all the relevant data from various sources 

and format according to the requirements of the GIS software.  

iv) Calibrate a prediction model that could identify population ‘at risk’ in the 

study area. 

 

The hypotheses to be addressed and tested in this research are as follows: 
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i) Hypothesis 1 - the HeV Outbreak events in the study area are correlated to 

the flying fox roosting sites. 

ii) Hypothesis 2 – the crucial factors that could explain the HeV dispersal in the 

study area can be identified using an appropriate spatial modelling technique. 

iii) Hypothesis 3 – the food source vegetation play an important role in the 

outbreak events. 

iv) Hypothesis 4 – Based on the influential factors, it is possible to identify the 

population ‘at risk’ by formulating a prediction model.  

1.5 Scope of the Research  

 

This research concentrates on the spatial analyses, modelling and mapping of the 

HeV outbreak events in south east Queensland, Australia. The selection of the study 

area is dependent of the data resource available for the detailed research of the 

outbreak events. South East Queensland (SEQ) was classified as an interim 

Australian bioregion, which consists of 11 cities and regional councils (Queensland 

Government 2009). The Toowoomba city from the Toowoomba Regional Council, 

which is located in the SEQ, was excluded from the study due the data availability 

(Refer Section 3.2). HeV incident data was provided by the Queensland Department 

of Agriculture, Fisheries and Forestry (DAFF) under a data sharing agreement. For 

this study, a total of 11 equine related incidents that occurred from 1994 to 2011 in 

the study area were examined. The incident data is disclosed by its location 

(longitude and latitude coordinates) and date of occurrence. 

 

The flying foxes spatial data set used in the study area is obtained from the 

Department of Environment and Heritage Protection, Queensland (EHP). The 

collection of the data is continuous and is updated every three months by EHP. The 

data contained abundance of spatial information such as the roosting site locations, 

total flying fox population at each site, type of occupancy and individual species 

population at each site. The data reveal the presence of three types of species - P. 

alecto, P. poliocephalus and P. scapulatus in the study region. 
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The Queensland vegetation data containing the major vegetation groups (MVG) and 

major vegetation subgroups (MVS) for the study were obtained from the Department 

of the Environment and Energy, Australia database. The datasets are National 

Vegetation Information System (NVIS) version 4.2.  The major software’s used this 

research are ESRI ArcGIS versions 10.2 and 10.5 and Geographically Weighted 

Regression version 4.0 (GWR4).  

1.6 Significance of the Research 

 

This study attempts to study the HeV outbreaks events from spatial epidemiological 

prospective. By studying the outbreak events spatially, this research can be a great 

support for evidence-based health service planning, policy implications, decision 

making and ongoing disease surveillance. GIS in epidemiology enables the 

researchers to isolate the high disease prevalence areas, identify the population at-

risk, resource and budget allocations In the case of rare disease outbreaks like HeV, 

GIS is a perfect as a tool to identify the main causes (geographical, environmental 

and other factors) of outbreaks for disease monitoring. This study can help in 

developing prediction models and generating warning systems in the study area and 

furthermore, provide a good base for future research.  

 

Some of the key points that indicate the significance of this research:  

 

i) Identifies any underlying spatial patterns of the outbreak events. 

ii) Reveal the correlation(s) between HeV outbreak events and its influential 

factors. 

iii) Helps in understanding the HeV dispersal in the study area. 

iv) Creates a model to identify population (both equine and human) ‘at risk’. 

v) Generate early warnings with precautionary measures to the identified 

population ‘at risk’. 

vi) Provides epidemiologists with an effective evidence-based planning system. 

vii) Assists in developing disease mitigation strategies. 
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HeV research was considered challenging and complicated and much remains to be 

learnt (Australian Biosecurity 2009). There was a need for further research to 

understand the spatial and temporal patterns of the virus for effective surveillance 

and management of the disease. The Queensland government announced a pressing 

need for current research on the spatial and temporal occurrences of the virus 

outbreaks and further study into ecological and environmental factors as causes of 

the disease (DAF 2015). This research used GIS as a crucial tool to determine the 

main factors (geographical, environmental and other factors) of HeV disease 

transmission.  

1.7 Limitations of the Research 

 

The main caveat of this study was the geographical location selected due to the 

availability of resources. The findings might vary when the dynamics of the HeV 

disease and the medium host were to be studied at a larger scale. The findings of this 

research were highly dependent of the data as the study was based on empirical data-

driven analysis and hence limited by data accuracy. The flying fox species data was 

recorded manually, which might have some degree of error. One of the important 

factors of this research was; it was a spatial GIS-based approach to understand the 

HeV disease outbreak events, its transmission and the factors influencing the disease 

dispersal in the study area. This study was built on the research that have been 

published so far on the HeV, its biology, transmission and their reservoir host – 

flying foxes.  

1.8 Thesis Organization  

 

This thesis contains six chapters mainly addressing various spatial analyses, mapping 

and modelling techniques employed to study the HeV outbreak events spatially and 

temporally. These chapters are classified as follows:  

 

i) Chapter One is an introduction to the study. 

ii) Chapters Two consists of reviews of the published literature related to the 

research.  
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iii) Chapters Three discusses the research methodology. 

iv) Chapter Four provides the analysis and results. 

v) Chapter Five and Six present discussion, conclusions and recommendations.   

 

A brief structure of what each chapter contains is given below: 

 

Chapter One gives an overview of the research topic. The problem statement, 

research aim, objectives, scope, significance and limitations of the research are 

summarised in this chapter. A number of key points that represent the significance of 

this study are listed in this chapter. 

 

Chapter Two reviews the literature published in regards to the HeV biology, 

distribution, transmission and other influential factors. The flying fox ecology, 

foraging distances, food resources and behaviours were reviewed in this chapter. 

Spatial epidemiology, spatial analysis, disease mapping and GIS in epidemiology 

were also reviewed in this chapter.  

    

Chapter Three presents the methodology of this research. The background of the 

study area, data collection, data integration and pre-processing and site visits are 

detailed in this chapter. The calibration of regression model for the study is discussed 

in this chapter. This chapter presents the modelling, mapping and analyses 

techniques employed for this research. 

 

Chapter Four presents the analysis and results achieved from various spatial 

analyses and modelling techniques. The results are visualized using various maps 

where applicable in this chapter. The prediction model(s) are discussed in this 

chapter. 

 

Chapter Five documents a detailed discussion of the results, summaries the main 

findings of the thesis, discusses the limitations of the research and suggests 

recommendations for future work. 

 

Chapter Six concludes the thesis. 
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2. Chapter Two – Literature Review 

2.1 HeV 

2.1.1 Introduction 

 

The section 2.1 in chapter 2 provides an outline of the HeV history and the academic 

research on its occurrence in Australia. An overview is provided in section 2.1.2 and 

section 2.1.3 provides a review of various aspects of HeV such as its biology, 

distribution, transmission, impact and influential factors of the virus to better 

understand the infection risk and disease dynamics. Section 2.1.4 covers the 

academic research on the HeV so far and a summary is provided in section 2.1.5.  

2.1.2 Overview 

 

HeV is an emerging zoonotic disease that was first identified in 1994 and has only 

been found in Australia. It can be transmitted to other horses, humans and dogs with 

a high fatality rate of >79 per cent in horses and 57 per cent in humans giving it both 

veterinary and public health significance. Fruit bats (Pteropus species), also known 

as flying foxes, are the only known natural reservoir (CDNA 2010).  Human 

infections have occurred as a result of direct exposure to body substances from 

infected or dead horses. To date there has been no known transfer of HeV from 

person to person or from flying foxes to other animals apart from horses (AVA 

2016). From 1994 to 2015 inclusive, there have been more than 70 sporadic 

confirmed cases of HeV infection in horses. All cases have occurred in Queensland 

and in north-east New South Wales (NPDO 2016). 

 

An outbreak of acute respiratory disease occurred in a stable in September 1994 in 

the Brisbane suburb of Hendra, Queensland, Australia. Twenty one horses were 

infected with 14 fatalities (Hess et al 2011). The disease also spread to two people 

and one of them, a well-known racehorse trainer Mr Vic Rail, died following a 

severe influenza-like illness. The novel symptoms and rapid spread of the disease 

and its appearance in both horses and man brought together teams of scientists and 

veterinarians at the Commonwealth Scientific and Industrial Research Organisation’s 
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(CSIRO) Australian Animal Health Laboratory (AAHL) and the Queensland 

Department of Primary Industry. All known exotic infectious diseases, such as 

African horse sickness, were excluded by tests at AAHL and within a month a new 

virus was isolated and diagnostic procedures to identify it were established (CSIRO 

2016). 

 

A novel equine virus belonging to the family Paramyxoviridae was isolated (Hess et 

al 2011). The virus was initially called equine morbillivirus, but later renamed 

“HeV” after the suburb where the outbreak occurred. Since the first outbreak there 

have been 12 clusters of HeV infection recorded in horses with seven people infected 

four of whom have died. A subsequent lethal outbreak at Mackay, Queensland in 

October 1995 claimed the life of a farmer. It was revealed that 13 months before his 

terminal illness (and a month after the first outbreak at Hendra) the farmer had 

assisted at the necropsy of two horses that had died on his property. Analysis of 

tissue samples from the horses retrospectively confirmed that they had been infected 

with HeV. This determined that the virus was able to cause both respiratory and 

encephalitic disease. A similar pattern of transmission from horse to man was 

responsible for the deaths of two Queensland veterinarians, in 2008 and 2009 

(CSIRO 2016). 

 

The occurrence of outbreaks at Hendra and Mackay occurred within a month of each 

other and it was concluded that the source of the virus (the so-called reservoir host) 

would either be capable of migrating the 600 miles between the two sites or be 

present at both sites. A search for the animal reservoir host for this newly described 

disease revealed that all four species of flying fox found in Australia could harbour 

the virus without ill effect. HeV itself was isolated from two species of flying foxes 

in the year 2000. Using experimentally infected flying foxes confirmed the absence 

of any clinical symptoms following infection with doses of virus that would be lethal 

for horses. Indeed some flying foxes shrugged off the infection without generating 

any detectable antibody. This is consistent with flying foxes being the natural host or 

reservoir of HeV (CSIRO 2016). 
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Figure 2.1: HeV outbreak events as of July, 2013 (Source: Random Analytics 2013). 

  

Since 1994 to July 2013 there have been 48 clusters of the disease in Australia which 

have resulted in four human deaths. The confirmed human cases stand at seven 

giving it a very high Case Fatality Rate of 57 per cent. It has also caused the deaths 

of 90-horses. Since 2011 two dogs have become infected; and both were 

subsequently euthanized. Figure 2.1 shows the HeV outbreak events as of July, 2013. 

In 2011, the outbreaks spiked to record levels with 18 recorded clusters with deaths 

of 23 horses in a calendar year (eight in NSW and 10 in Queensland) and also the 

first euthanasia of an infected dog, which sparked a great deal of concern across the 

horse industry, as well as veterinary and public health sectors and with the public at 

large (AAW 2012, Random Analytics 2013, Thompson 2016 and CSIRO 2016).  
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2.1.3 HeV Biology, Distribution, Transmission and Other Influential 

Factors 

2.1.3.1 Biology 

 

HeV is a member of the family Paramyxoviridae and one of two virus species in the 

genus Henipavirus (the other being Nipah virus). HeV was first isolated in 1994 

from specimens obtained during an outbreak of respiratory and neurologic disease in 

horses and humans in Hendra, a suburb of Brisbane, Australia. The tests that are used 

to diagnose HeV and Nipah virus include detection of antibody by ELISA (IgG and 

IgM), real time polymerase chain reaction (RT-PCR), and virus isolation attempts. In 

most countries, handling HeV needs to be done in high containment laboratories. 

Laboratory diagnosis of a patient with a clinical history of HeV or NV can be made 

during the acute and convalescent phase of the disease by using a combination of 

tests including detection of antibody in the serum or the cerebrospinal fluid (CSF), 

viral RNA detection (RT-PCR) in the serum, CSF, or throat swabs, and virus 

isolation from the CSF or throat swabs (CDC 2014). 

 

Both viruses are predominant in overlapping populations from India to Australia. 

The emergence of HeV virus in Australia has raised a number of questions relating to 

their natural history (Field et al 2001).  AAHL characterised the virus using a number 

of laboratory procedures and visualised the virus in affected horse and human tissues 

by electron microscope which confirmed that the virus was the causative agent of the 

outbreak.  
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Figure 2.2: Electron micrograph of HeV (Source: CSIRO 2016). 

 

Figure 2.2 shows us the typical HeV Cell in a slide of a cross section of a blood 

vessel taken from the lung of an infected horse. The multinucleated (giant) cells are 

situated on the lining of the blood vessel. These giant cells are caused by the action 

of the fusion protein of HeV. In the bottom panel a fluorescent stain has been used on 

the slide to highlight the virus, in yellow/green (CSIRO 2016). 

 

The virus infects wide range of cells but primarily the endothelial cells, which form 

the thin, inside layer of blood vessels. Rapid molecular tests were developed to detect 

the virus with genome sequencing data. The available laboratories and 

epidemiological data were reviewed to obtain information of the animal(s) which 

may harbour the virus in nature. Flying foxes were targeted for further investigation 

as they fulfilled the criteria as a possible viral reservoir host. Flying foxes were 

present in the outbreak regions and they have the capability to move between the 

outbreaks locations. The hosts could have possibly had indirect contact with the 

horses during the outbreaks. In 1996, sampling of sick/injured flying foxes in 

temporary captivity showed that several species of Australian flying foxes had 

antibodies to HeV. All mainland pteropoid species – the black, grey headed, little red 

and spectacled flying foxes have antibodies to HeV. The flying foxes which were 

infected experimentally develop a viraemia – the virus that enters into blood stream. 

Flying foxes excreted the virus in their urine, faeces and saliva for about a week. 
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However, the flying foxes did not indicate any signs of illness like horses (Australian 

Biosecurity 2009).  

2.1.3.2 Distribution 

 

HeV infections have been seen only in Australia, where the virus is endemic in flying 

foxes. Seropositive flying foxes have been found from Darwin in north central 

Australia to Melbourne in south eastern Australia (CFSPH 2015). The HeV incidents 

have been reported from Cairns in northern Queensland down to Kempsey on the 

New South Wales Mid North Coast. East of the Great Dividing Range holds majority 

of the cases with one outbreak recorded west of the range in chinchilla, Queensland 

in 2011 (DPI NSW 2016). Figure 2.3 shows the overall distribution of the 

Henipavirus and Pteropus including HeV distribution in Australia, which is within 

the Pteropus home range.  

 

 

 

Figure 2.3: Henipavirus outbreaks and Pteropus distribution map (Source: CDC 

2014). 
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2.1.3.3 Transmission 

 

HeV is transmitted mainly by ingesting food or water contaminated with infected 

flying fox body fluids and excretions in horses. The virus can then be passed onto 

humans who come into close contact with infected horse’s nasal discharge, blood, 

saliva or urine (AAW 2012). The studies show strong evidences that the disease is 

not bat-to-human transmissible and horses act as medium for disease transmission to 

humans. Horses to other species and bats to other species transmissions are however 

possible (Australian Biosecurity 2009). 

 

The mode of transmission and incubation period of HeV is documented as below by 

Communicable Diseases Network Australia (CDNA 2010):  

 

Mode of transmission 

 

Bat-to-horse 

The Spill-over from flying foxes to horses is rare (32 documented events from 1994 

to October 2011, 9 in NSW and 23 in Queensland); possibly occurring through 

contamination of horse feed by infectious fluids from bats such as bat 

urine/reproductive products.  

 

Horse-to-person 

Seven human cases have been documented as of September 2011 and all of them had 

a high level of exposure to respiratory secretions and/or other body fluids of horses 

subsequently diagnosed with HeV infection. With the evidence available, it is highly 

likely that the mode of transmission is via substantial direct exposure of mucous 

membranes to respiratory secretions or blood from an infected horse. Indirect 

exposure to respiratory secretions or blood, and direct or indirect exposure to other 

body fluids, may also contribute to overall transmission risk. Airborne exposure is 

not supported by the current evidence as a significant mode of transmission. 
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Horse-to-horse 

Transmission between horses is possible and has been more efficient in stabled 

situations, with spread between multiple horses occurring in all stabled situations to 

date – Hendra (1994), Redlands (2008) and Cawarral (2009), all in Queensland.   

 

Bat-to-person 

Current evidence does not suggest that this occurs. A study of 128 bat carers who 

have daily contact with bats and/or a history of bat bites, found no individuals with 

antibodies to HeV. 

 

Person-to-person 

Current evidence does not suggest that this occurs. A Serological testing in 169 

health care worker contacts and four household contacts of the first three human 

cases found no individuals with antibodies to HeV. However it is suggested to avoid 

close contact with respiratory secretions and other body fluids of symptomatic 

human cases. 

 

Person-to-horse 

Current evidence does not suggest that this occurs. However it is desirable for 

suspected human cases to avoid close contact with horses until the diagnosis has 

been clarified. 

 

Experimental 

Other species like mice, rats, rabbits, chickens and dogs did not develop the disease 

having immunisation to the virus. Unlike the above, cats and guinea pigs were highly 

vulnerable but no cases have emerged so far. The cats that are experimentally 

infected with HeV resembled the lethal respiratory disease in humans and horses.  

This raised the possibility of cats transmitting the virus to horses but there has been 

no evidence in reality. The attempts to recreate transmission in cats-to-cats, cats-to-

horses, horses-to-horses, horses-to-cats and bats-to-bats have been largely 

unsuccessful (Field et al 2001).  

 

 

 



  

19 | P a g e  
 

Other 

A dog developed antibodies to HeV on a property with three infected horses in July 

2011. There is no evidence that bat-to-dog or dog-to-person or dog-to-horse 

transmission occurs. 

 

Incubation period which is defined as the time from exposure to the appearance of 

the first clinical signs of infection (Australian Biosecurity 2009) is as follows: 

Humans 

The incubation period in humans is between 5and 21 days, however the evidence is 

limited. 

 

Horses 

The typical incubation period in horses appears to be 5-16 days. 

 

Queensland department of health has stated that the people infected by HeV (both 

deceased and infected) have become unwell with influenza-like symptoms and 

encephalitis – an inflammation of the brain. The diagnosis can be made by blood and 

urine tests. In some cases, testing of nasal swabs, tissues samples and cerebrospinal 

fluid (CSF) is required. The infectious period - time during which an infected person 

can infect others in humans should be considered until their recovery. There is no 

specific treatment for HeV infection yet. Treatment is mainly supportive to help 

relieve symptoms and to reduce complications from the illness. It is suggested that 

people who are suspected to have the virus or have been in close contact with horses 

that might have the infection should be reviewed by an infectious diseases specialist, 

and may require hospital admission. 

2.1.3.4 Other Influential Factors 

 

The prevalence of the HeV appears to be uncertain in flying fox populations but the 

reason behind this is not known. Pregnancies, birthing period and/or lactation were 

associated with HeV infection in some studies, but not others. The influence of the 

above factors remains uncertain. The nutritional stress could also be influencing the 

infection fluctuations, while the environmental conditions such as temperature might 

influence the virus survival and transmission to horses. HeV infections in equine 
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population appear to be seasonal. Equine cases have mostly occurred in cooler 

months from May to October in subtropical areas, with a peak in July. In the northern 

tropics, the cases have been seen year around. The absence of any seropositive horses 

in two surveys, which tested approximately 4000 horses, suggested that infections 

were rare in horses. The infections appeared more regularly between 2006 and 2009, 

with two incidents reported each year, and unexpectedly high numbers of cases were 

reported in 2011 (18 incidents with 23 cases) and 2012-2013 (12 incidents between 

January 2012 and July 2013). The reason for the recent increase in cases seems to be 

unclear, although increased testing and recognition might play some role (CFSPH 

2015). Figure 2.4 demonstrates the graph where the virus infections were higher 

during cooler months. 

 

 

 

Figure 2.4: Temporal pattern of the HeV outbreaks (Source: Random Analytics 

2013). 

 

DPI NSW (2012) and QLD Horse Council (2012) made some recommendations for 

the horse owners to exercise some precautions in areas with flying foxes to help 

minimise the risk of their horses being infected. The recommendations are as 

follows: 

 

i) Do not place feed and water under trees. 
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ii) Cover feed and water containers with a shelter so they cannot be 

contaminated from above. 

iii) Do not leave food lying about that could attract flying foxes, such as apples, 

carrots, or molasses. 

iv) Inspect paddocks regularly and identify trees that are flowering or fruiting, 

v) Remove horses from paddocks where fruiting or flowering trees have 

temporarily attracted flying foxes. 

vi) If the horse(s) cannot be removed from the paddock, erect temporary or 

permanent fencing to keep horses from grazing under trees. 

vii) If these measures are not practical, consider stabling horses, or removing 

them from the paddock before dusk and overnight, when flying foxes are 

most active. 

viii) Clean up any fruit debris under the trees before horses are returned to the 

paddock. 

 

Apart from the above recommendations, the horse owners can watch for some signs 

that the flying foxes are feeding/visiting, which include tooth marks on fruit on or 

under the tree, large compressed pieces of fruit skin and flesh on the ground under 

the tree (spats), broken twigs or shoots, debris under the tree including: leaves, 

broken branches and partly eaten fruit or flowers and fruit distributed up to 100 

metres from the tree. There are also specific trees that are safer and can help reduce 

the risk of infection - casuarinas (she oaks), conifer or cypress, brachychitons e.g. 

flame trees, bottle trees and kurrajongs, bamboo, bougainvilleas, jacarandas, olives, 

fiddlewoods, tipuanas, and other deciduous or evergreen trees that don't flower or 

produce soft fruits (NSW DPI 2012, QLD Horse Council 2012). 
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QLD Horse Council (2010) suggested a safe property design to minimise the risk of 

the HeV infection and to address other biosecurity issues. It recommends that the 

property should have a quarantine/isolation/sick bay area where one can isolate the 

new horse/horses that come on to your property. This reduces the risk of them 

introducing a disease or parasite. The council recommends isolation for about 3 

weeks. This area can be a simple paddock with double fencing set a little away from 

the rest of the horse areas, to a separate stable block.  

2.1.4 HeV Research 

 

HeV has sparked a great deal of concern by being one of the rarest diseases with high 

fatality rate for both equine and human population. This prompted the establishment 

of the National HeV Research Program, to fund research leading to strategies to 

minimise the impact of the virus. The Australian, Queensland and New South Wales 

governments announced funding of $12 million in July 2011 to accelerate research 

on HeV following the unprecedented number of outbreak incidents in Queensland 

and New South Wales. The funds were allocated through a $9 million National HeV 

Research Program consisting of commissioned projects and an open funding 

program with an allocation of $3 million by the National Health and Medical 

Research Council (DAF 2015). There were a total of 20 projects under the National 

HeV Research Program out of which eight were managed by the Rural Industries 

Research and Development, eight were managed by the NHMRC, and the remaining 

four were by the Queensland and the New South Wales State Governments 

(Thompson 2016). 

 

The research highlights of the recent compendium of findings from the National HeV 

Research Program (2016) are: 

 

i) For the first time scientists have identified biomarkers that could indicate 

periods of increased HeV risk, by analysing the urinary metabolic profiles for 

flying foxes when they experience conditions, yet to be identified, that cause 

an increase in the replication of HeV. 

ii) A project revealed that the length of time the virus survived did not influence 

the pattern of ‘spillover’ events from flying foxes to horses, but rather that 
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transmission of HeV was likely to involve relatively direct contact of horses 

with flying fox excreta shortly after excretion. 

iii) Research into the possibility that HeV could persist in animals that had 

clinically recovered from the disease, posing a risk of re-infection or later 

transmission to other humans and animals, ruled out the likelihood of 

recurrence. 

iv) A series of projects examined the way in which HeV and its family group of 

henipaviruses replicate and interact with hosts; information with important 

ramifications for finding antidotes to other global viruses such as Nipah and 

the distantly related Ebola virus. One therapy was found to reduce HeV by up 

to 98 per cent and may prove its potential in future studies. 

v) There is the potential for transmission of HeV to people from acutely infected 

dogs. 

vi) The wide-ranging social, regulatory and policy impacts of HeV were revealed 

in a longitudinal cohort study of 1149 horse owners. The study used surveys 

and interviews to assess how horse owners perceived the risk of HeV, their 

uptake of risk mitigation practices such as the vaccine and their engagement 

with government and industry stakeholders such as veterinarians. 

 

A study by Edson et al (2015) revealed that the flying fox urine is the most important 

route of HeV excretion in naturally infected flying-foxes and it should be considered 

a priority sample from a diagnostic or surveillance screening perspective. A total of 

2840 individual flying foxes were captured and sampled across 10 roost sites over 

the 28-month period for this study. HeV is less likely to be detected in blood and 

faeces, and minimally in saliva and nasal discharge. Spleen and kidney were the 

tissues most likely to yield virus. Numerous diverse and previously unknown 

paramyxoviruses were detected, but no new henipaviruses (Field et al 2016). 

Research findings by Field et al (2016) indicated that HeV could be maintained in 

isolated flying fox populations via periodic recurrence of dormant infection, as well 

as by the immigration of infected individuals. The survival of the virus in the 

environment varied with latitude and season, and the effect of ambient temperature 

on survival could explain both the winter cluster of equine cases and sporadic cases 

at other times of year. 
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A serial cross-sectional serological study over a 25-month period with 521 individual 

samples, investigated the pattern of infection in the population of flying-foxes. The 

results of this study have shown that age, pregnancy and lactation plays as significant 

risk factors. The pregnant animals have highest antibody titres. Females are 

significantly higher than males in this. HeV infection in a population of Pteropus 

conspicillatus is likely to be endemic rather than episodic, as previously proposed for 

HeV in flying foxes. The evidence for seasonal viral activity suggested that the 

immunity to the virus may wax and wane on a seasonal basis. The study advised that 

life cycle of the reservoir species has to be considered when modelling a risk 

management strategy of the disease (Breed et al 2011). 

 

Another study by Field et al (2015) on the Spatiotemporal aspects of HeV Infection 

in flying foxes in Eastern Australia has provided an advanced understanding of  the 

virus infection dynamics in flying foxes and thereby, understanding of the 

fundamental drivers for virus spillover to horses, and indirectly humans. Largely, the 

findings show how the virus excretion by flying foxes in eastern Australia varies 

over space and time. They showed a non-linear relationship between mean HeV 

excretion prevalence and latitude, with excretion prevalence highest in southern QLD 

and northern NSW. They demonstrated a consistent, strong winter peaking of 

excretion in southern QLD and central and northern NSW. The findings were 

consistent with the observed spatiotemporal pattern of infection in horses, and 

demonstrate that HeV infection prevalence in flying foxes is a fundamental 

determinant of infection in horses 

 

According to Plowright et al (2014), the emergence of bat viruses in recipient hosts 

requires at least five hierarchical enabling conditions. The probability of occurrence 

of each is conditional on the occurrence of the preceding condition; removal of any 

condition should prevent spillover. The study found no evidence that the prevalence 

of HeV in bat populations was associated with population density, and therefore that 

decreases in host density would reduce virus prevalence. It was mentioned that 

differentiating causal from correlational factors is a major challenge as the enabling 

conditions for spillover have many conditions that occur simultaneously and have 

common environmental drivers. For example, winter in subtropical Australia is the 

peak of resource scarcity for both bats and horses. Flying foxes are likely to migrate 
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to human-dominated landscapes in search of food, increasing their co-occurrence 

with horses, their vulnerability to nutritional stress and possibly excretion of HeV. 

Cooler temperatures may maximize virus survival, increasing the cumulative dose 

available to horses. Low productivity of pastures leads to horse consumption of 

contaminated fruit or grass, as well as poor horse condition and higher susceptibility. 

 

A study estimated HeV survival with a Weibull distribution and calculated 

parameters from data generated in laboratory experiments. The virus survival rates 

are based on air temperatures 24 hours after excretion ranged from 2 to 10 % in 

summer, where as it was 12 to 33 % in winter. Based on the analyses, the study 

concluded that the most likely pathways of transmission did not require long periods 

of virus survival and were likely to involve relatively direct contact with flying fox 

excreta shortly after excretion (Martin et al 2015). Simulation modelling by Scanlan 

et al (2015) showed that the virus survival varied with location and with season, that 

factors such as the timing of virus excretion during the night and microclimate 

account for less variation in virus survival than does temperature variation between 

years. The model showed that the effect of ambient temperature on the virus survival 

in the environment reflects both the annual clustering of HeV cases in the Australian 

winter as well as occasional sporadic cases at other times of year. This study supports 

previous study by Field et al (2011) to understand the HeV infection dynamic in 

flying foxes and stated the need for further work to elaborate other contributing 

causal components. 

 

A study to model the risk prediction for HeV transmission from flying foxes to 

horses (Skerratt et al 2016) concluded that the timing and geographical distribution 

of HeV spillover events cannot be explained by virus survival in the environment, as 

they occurred when the suitability of temperatures for survival was intermediate to 

very low. The study believes that the winter-dominant seasonal pattern of HeV 

transmission to horses in southern Queensland and northern New South Wales is 

likely driven by an additional seasonal factor apart from virus survival.  

 

CSIRO announced the development of a prototype vaccine for horses in May 2011. 

After thorough testing, Equivac® HeV was launched in November 2012 by CSIRO 

and its associated partners. By March 2013 it was confirmed that horses were 
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immune to a lethal exposure of the HeV six months post vaccination by CSIRO 

scientists. The Equivac® HeV is a world-first commercial vaccine for a Bio-Safety 

Level-4 disease agent. This vaccine enables commercial and private equine activities 

to continue with minimal negative impact by increasing personal safety for horse 

owners, vets and others regularly interacting with horses. The Australian Veterinary 

Association now recommends that all horses in Australia are vaccinated against the 

HeV (CSIRO 2016). Immunising the horses is being viewed as a single approach to 

protect equine, human and environmental health (Middleton et al 2014).  

2.1.5 Summary 

 

HeV is a rare zoonotic disease that spills from flying foxes to horses and was first 

identified and described in 1994 following the outbreak of a new disease fatally 

affecting horses and humans in south east Queensland. The virus was initially called 

equine morbillivirus, but later renamed “HeV” after the suburb where the outbreak 

occurred. There are strong evidences supporting the bat to-horse to-human 

transmission of virus but there are no evidences supporting the bat-to-human, 

human-to- human or human-to-horse transmissions (CDNA 2010). In the year 2011, 

Australia witnessed an unprecedented spike in the number of HeV cases in horses in 

both Queensland and New South Wales. There were 80 confirmed outbreak events in 

Australia as of December, 2012 (Smith et al 2014). 

 

The research on the HeV has almost begun immediately after the first outbreak. 

Government organisations as well as scientists and academicians from a broad range 

of disciplines, including the animal health, environmental and social sciences, are 

working together to develop a 'One Health' approach that will help minimise the 

impact of HeV. Currently, a vaccine is available for horses which have been 

introduced after thorough testing. ‘Equivac®’ – the HeV vaccine was launched in 

November 2012 by CSIRO and its associated partners. Apart from the vaccine, the 

DPI NSW (2012) and QLD Horse Council (2012) made some recommendations for 

the horse owners to exercise some precautions in areas with flying foxes to help 

minimise the risk of their horses being infected and thus reducing the risk of being 

infected themselves. QLD Horse Council (2010) also suggested a safe property 
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design to minimise the risk of the HeV infection and to address other biosecurity 

issues. 

2.2 Flying Foxes 

2.2.1 Introduction 

 

The section 2.2 in chapter 2 provides a review of flying foxes in Australia 

particularly in South East Queensland. An overview is provided in section 2.2.2 and 

section 2.2.3 provides a detailed study of flying foxes - their roosting sites, diet, 

vegetation, foraging distances and behaviour. Section 2.2.4 covers the academic 

research of flying foxes in regards to the HeV and a summary is provided in section 

2.2.5. 

2.2.2 Overview 

 

Species belonging to the Pteropus genus are part of the order Chiroptera (meaning 

‘handwing’), generally known as bats. They were previously considered members of 

the Megachiroptera sub-order, a classification still popular in literature. Pteropus 

species are also known as flying foxes or fruit bats. This group comprises the largest 

bats in the world with some species weighing over 1000 grams and having a 

wingspan of 1.7 metres. They are generally characterised by large, well-developed 

eyes, simple external ears and an inability to use true echolocation, relying rather on 

their eyesight and strong sense of smell to find food.  Bats are often considered 

carriers of many infectious diseases, and Australian flying foxes are associated with 

Lyssa, Hendra, Nipah and Menangle viruses (Australian Museum 2013).  

 

The Pteropid bats commonly known as flying foxes were found to be the natural 

reservoirs for HeV. The emergence of HeV in Australia has raised a number of 

questions relating to their natural history (Halpin et al 2000, Field et al 2001). There 

are five Australian Pteropus species of which four are found on the mainland in 

primarily coastal regions, and one is found on Christmas Island. According to the 

International Union for Conservation of Nature, the current conservation status for 

most of these species is stable (Australian Museum 2013). All the four species of 
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Pteropus flying foxes are found in Queensland. The species are commonly known as 

black (Pteropus alecto), grey-headed (Pteropus poliocephalus), little red (Pteropus 

scapulatus) and spectacled (Pteropus conspicillatus) flying foxes. Flying foxes are 

nomadic animals and their movement patterns and local distribution are determined 

by variations in climate and the flowering and fruiting patterns of their preferred food 

plants (DEPI VIC 2011). They have an important ecological role because of their 

feeding behaviour which helps pollinate and disperse the seeds of native trees. They 

spread the pollen of valuable plants as they feed and thus playing an important role in 

our environment. Some plants even rely on flying foxes to pollinate their species 

(Wildlife QLD 2016). Figure 2.5 shows the four species of flying foxes that occur in 

Australia.  

 

 

  

Figure 2.5: Types of flying foxes that occur in Australia (Source: BatReach 2016). 

 

HeV outbreaks are only seen in Australia so far, where the virus is endemic in flying 

foxes. Flying foxes are found throughout tropical and sub-tropical Asia and Australia 

and on islands of the Indian and western Pacific Oceans (DEPI VIC 2011). 

Seropositive flying foxes have been found from Darwin in north central Australia to 

Melbourne in south eastern Australia. Equine cases been reported from eastern 

Australia, in the states of Queensland and New South Wales. Antibodies detected in 

flying foxes in Papua New Guinea might be caused by HeV or a related virus. 

Currently there is no evidence that HeV exists in other areas. However, 

henipaviruses or antibodies to these viruses have been detected in bats on several 

continents. Most of these viruses are poorly characterized (CFSPH 2015). Figure 2.6 



  

29 | P a g e  
 

shows the distribution of all four species of flying foxes in Australia and the 

approximate extent of the “HeV Belt”.  

 

 

 

Figure 2.6: Flying fox species distribution map of Australia (Source: Agriculture 

Victoria 2016).  

 

2.2.3 Flying Fox Ecology, Foraging Distances, Food Resources and 

Behaviours 

2.2.3.1 Black Flying Fox (BFF) 

 

The black flying fox was first described by Temminck in 1837 from a specimen from 

Menado, Indonesia. In 1867, Peters described a black flying fox from Rockhampton. 

The south-eastern limit of black flying-foxes has been moving southwards for at least 

60 years. In 1930, the southern limit was Rockhampton and in 1960 it was the Tweed 

River, northern NSW. By 2002 they could be found further south than Port 

Macquarie. The black flying fox is the largest of the four mainland species in terms 

of body size in Australia (Wildlife QLD 2016). 
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Description 

The Black flying fox is covered in short black fur but can sometimes also have a 

reddish-brown or yellow-brown colour. Its belly fur can have a frosted appearance if 

the fur is flecked with grey tips. The lower legs of this bat are unfurred and faint red-

brown eye rings may be present. It is quite a large flying fox with weights ranging 

from 500 – 1000 g and forearm lengths ranging from 153 – 191 mm in adults 

(Australian Museum 2013). The wingspan of the black flying fox is about 1m 

(Wildlife QLD 2016). 

 

Habitat 

The black flying foxes are commonly found in tropical and subtropical forests, and in 

woodlands. They form camps in mangrove islands in river estuaries, paperbark 

forests, eucalypt forests and rainforests, and are mainly found along coastal and near 

coastal northern Australia from Shark Bay in Western Australia to central New South 

Wales (Wildlife QLD 2016, Australian Museum 2013).  

 

Roosting sites 

Large groups of black flying foxes can reach hundreds of thousands of individuals 

and form permanent camps for daytime roosting. It is a high roosting species and 

seeks fairly dense leaf cover (Australian Museum 2013). 

 

Life History 

The Black flying fox has a long life-span and can live for over 20 years in captivity 

and can live closer to 15 years in the wild. Like all Pteropus species, this bat has a 

slow lifecycle and low fecundity (ability of the female to produce numerous young) 

(Wildlife QLD 2016, Australian Museum 2013). 

 

Breeding 

Mating occurs in March to April when large males establish a territory on a branch. 

Females become pregnant before the bats disperse into generally smaller camps for 

the winter, and re-congregate into large camps during spring and summer, when 

birthing occurs. Females give birth to one offspring annually around late September 

– December. The young are completely dependent up to 4 weeks, at which point they 

will be left at the camp nightly while the mother forages. During this 4-week period, 
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the young cannot fly and must grip its mother’s fur and nipple. At 2-3 months, the 

young can fly and they will start to leave the camp nightly to feed. They are weaned 

at about 5 months, and become sexually mature at about 2 years old, but most 

females will not reproduce before 3 (Australian Museum 2013, Red List 2008). 

 

Food Resources/Vegetation 

Black flying foxes fly out at dusk to feed on blossoms and fruits. They prefer 

blossom of eucalypts, paperbarks and turpentine’s, as well as a variety of other native 

and introduced blossom and fruits. They have been seen to eat the leaves of trees by 

chewing the leaves into a bolus, swallowing the liquid and then spitting out the fibre. 

The Black flying fox uses its clawed thumbs to hold and manipulate food (Wildlife 

QLD 2016, Australian Museum 2013).  

 

Foraging Distance 

The foraging range of black flying foxes is approximately 15 – 50 km and will travel 

this distance from their camps at night. Like other flying foxes, these are a migratory 

species, and individuals move large distances in search for food. In favourable 

conditions, they can return to same camp locations over the years (Wildlife QLD 

2016, Australian Museum 2013 and Red List 2008). 

 

Distribution 

Black flying foxes are found around the northern coast of Australia and inland 

wherever permanent water is found in rivers (Wildlife QLD 2016). 

 

Conservation Status 

They are currently listed as Lower Risk Least Concern according to the IUCN Red 

List of Threatened Species (Wildlife QLD 2016, Red List 2008).  

 

2.2.3.2 Grey-Headed Flying Fox (GHFF) 

 

The grey-headed flying fox was the first Australian flying fox species discovered by 

Europeans. The first grey-headed flying fox specimen was reported as collected in 

New Holland and described by Temminck in 1825. Their numbers have declined 
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drastically since European colonisation from many millions to a few hundred 

thousand. The known range for grey-headed flying foxes has contracted southwards 

by about 750 km and their southern limit during winter has expanded into Victoria. 

They are the largest Australian fruit bat and are endemic to Australia. Grey-headed 

flying foxes have sophisticated vocal communication, making more than 30 specific 

calls (Wildlife QLD 2016). 

 

Description 

The grey-headed flying fox is the only one to have a distinctly broad and complete 

collar of brownish-orange fur. It is also the only flying-fox to have thick leg fur 

which extends all the way to the ankles. Its body fur is long and dark brown to grey 

while its head fur is somewhat paler. It can sometimes be mistaken for the Black 

flying fox as they are quite similar in size. The average weights vary from 600 – 

1000 g and the forearm lengths vary from 152 – 177 mm. The wingspan is about 1m 

(Wildlife QLD 2016, Australian Museum 2013 and Churchill 2008).  

 

Habitat 

The grey-headed flying foxes live in camps that can contain multiple Pteropus 

species. In general, they maintain traditional camps and visit these with varying 

frequencies in response to patchy food availability. They live in a large variety of 

habitats including rainforests, mangroves, paperbark swamps, wet and dry 

sclerophyll forests and cultivated areas. These bats commonly form their camps in 

gullies that are not far from water and usually in dense canopy vegetation (Wildlife 

QLD 2016, Australian Museum 2013). 

 

Roosting Sites 

The social organisation of grey-headed flying foxes revolves around traditional 

camps. These roost sites are extremely important as they are the locations for mating, 

birth and rearing of young, as well as refuges from predators. These camps can 

contain up to several hundred thousand individuals during summer and migrations to 

form smaller camps occur during winter. Changing camp sites usually depends on 

food availability and the sizes of different camps vary (Wildlife QLD 2016, 

Australian Museum 2013 and Churchill 2008).  

Life History 
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Grey-headed flying-foxes are capable of living over 20 years in captivity; however 

they rarely live past 6 years in the wild. The majority of females reach sexual 

maturity at 3 years of age and if conditions are favourable, they will continue 

reproducing every year (Australian Museum 2013, DeHaven 2005).  

 

Breeding 

The mating of grey-headed flying foxes occurs throughout the year but most 

conceptions happen in March or April. A single young is born after 6 months and is 

carried by its mother for 4 to 5 weeks. At 5 weeks, it is left at the camp while the 

mother forages and is dependent on the mother for 4 to 5 months. Mothers are able to 

identify their young through unique calls and their sense of smell when returning 

from foraging (Wildlife QLD 2016, Australian Museum 2013). 

 

Food Resources/Vegetation 

These flying foxes forage on fruits and blossoms of more than 80 species of plants 

and mostly refer eucalypt blossom with native figs being the most popular fruit. They 

chew leaves and appear to eat the salt glands from mangroves. They also forage in 

gardens, parks and orchards and may fly many kms from roost site to feed. Some 

round trips are about 30 km (Wildlife QLD 2016). 

 

Foraging Distance 

The nightly feeding range of grey-headed flying foxes is 20-50km from camp and in 

winter, adults can migrate up to 750km from their summer camps (Wildlife QLD 

2016).  

 

Distribution 

The grey-headed flying foxes occur along the east coast of Australia from 

Rockhampton to western Victoria and inland to the western slopes (Wildlife QLD 

2016). 

 

Conservation Status 

The Grey-headed Flying-fox is listed as a ‘vulnerable’ species by the IUCN due to 

continuing declines in population of about 30% over the last 20 years. These bat 

numbers are predicted to continue declining through threats such as habitat 
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destruction, direct killing as a pest species of orchards and competition for resources 

with black flying foxes. They are federally listed as ‘vulnerable’ under the 

‘Environment Protection and Biodiversity Conservation Act 1999’ and also the 

‘NSW Threatened Species Conservation Act 1995, schedule 2’. In Victoria they are 

listed as ‘threatened’ under the ‘Flora and Fauna Guarantee Act 1988’. They are 

ranked as a critical priority under the Department of Environment and Heritage 

Protection ‘Back on Track species prioritisation framework’ and a Recovery Plan for 

this species exists (Australian Museum 2013, EHP QLD 2013, Red List 2008 and 

DeHaven 2005).  

2.2.3.3 Little Red Flying Fox (LRFF) 

 

Little red flying foxes are the most widespread species of mega bats in Australia and 

the only species of Australian flying fox that regularly roosts in clusters as up to 30 

have been seen hanging together in a tight bunch. The weight of their clusters can 

cause severe damage to their roost trees. They are nomadic and their movements 

depend on food resources. Peters first described the little red flying fox in 1862, from 

a specimen collected on Cape York (Wildlife QLD 2016). 

 

Description 

The little red flying foxes vary in colour from reddish brown to light brown, and 

there are patches of light, creamy, brown fur where the wing membrane and shoulder 

meet. Their head is covered with greyish fur and, in some forms found in northern 

Queensland, grey fur continues down the back. The wings are brown and semi-

transparent when seen flying during the day, which helps identify the species. The 

average weight 300–600g and the head-body length is 125–200mm (Wildlife QLD 

2016). 

 

Habitat 

Little red flying foxes is a highly nomadic species and is tolerant of a number of 

different environments, enduring different temperature and humidity ranges and 

having the largest distribution of the Pteropus genus in Australia. As a result, this 

species extends further inland than any other species of flying foxes (Wildlife QLD 

2016, Australian Museum 2013 and Red List 2008). 
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Roosting Sites 

The roosting sites of little red flying foxes are usually fairly congested and can 

become extremely noisy during the active periods, mainly early morning and late 

afternoon. They are largely nomadic due to the unpredictability of food supplies 

(Australian Museum 2013). 

 

Life History 

The little red flying foxes can have an average lifespan of over 15 years in captivity; 

however there is currently no information on their lifespan in the wild (Australian 

Museum 2013). 

 

Breeding 

Unlike other species, the little red flying foxes have a breeding cycle that begins in 

November – January when mating occurs. Birthing occurs from March – May in 

camps. Once the young are born, they suckle for one month and are then left at the 

roost and suckle periodically until they are able to fly, which is around 2 months of 

age. For several months thereafter, they are semi-independent until they can perform 

necessary adult behaviours (Wildlife QLD 2016, Australian Museum 2013). 

 

Food Resources/Vegetation 

The little red flying foxes feed mostly on eucalypt or melaleuca nectar, as well as 

native and cultivated fruits, leaves, growing shoots, bark, sap and insects. When food 

is scarce, these bats will raid orchards and damage these crops. While they usually 

feed at dusk and night, they have been known to feed during overcast days. The 

groups congregate during the day at roosting sites that are near water (Wildlife QLD 

2016, Australian Museum 2013). 

Foraging Distance 

The little red flying foxes only travel up to 20–30km from camp to feed (Wildlife 

QLD 2016). 

 

Distribution 

They are distributed in coastal and subcoastal regions from Shark Bay in Western 

Australia through to northern Victoria and, in certain circumstances, South Australia. 
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As nomads they range a long distance inland, depending on the availability of 

flowering trees (Wildlife QLD 2016). 

 

Conservation Status 

This species is listed as a species of ‘least concern’ by the IUCN and is listed as 

‘Least Concern’ under the ‘Nature Conservation Act 1992’ in Queensland and is 

ranked as a low priority under the Department of Environment and Heritage 

Protection ‘Back on Track species prioritisation framework’. It is, however, locally 

threatened by clearing in parts of its range (EHP QLD 2016, Australian Museum 

2013).  

2.2.3.4 Spectacled Flying Fox (SFF) 

 

Spectacled flying foxes were first described in 1850 by Gould. They are important 

seed dispersers and pollinators of rainforest flora. These flying foxes have the 

smallest known distribution and smallest population of the four Australian mainland 

Pteropus flying foxes (Wildlife QLD 2016). 

 

Description 

The spectacled flying foxes are very similar in appearance to black flying foxes as 

they are almost completely black. However, it is distinguishable by a patch of straw-

coloured fur on their collar and prominent straw-coloured to dirty brown fur 

surrounding both eyes. This fur can sometimes extend towards the nose. In some 

cases, the body fur is tipped with grey, giving it a grizzled appearance. The size of 

adults can vary from 500 – 1000 g in weight and 150 – 183 mm in forearm length 

(Wildlife QLD 2016, Australian Museum 2013). 

 

Habitat 

The spectacled flying fox is distinguished from other Australian flying foxes by 

being the only rainforest specialist. They are integral to the rainforest regeneration 

through seed dispersal and pollination (Australian Museum 2013). 
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Roosting Sites 

The spectacled flying foxes usually roost in camps that only include their own 

species. They are frugivorous, meaning that fruit makes up a large portion of their 

diet. The camps of spectacled flying foxes have well-defined territories of feeding 

trees and they can become quite aggressive and territorial after dusk when feeding 

occurs (Wildlife QLD 2016, Australian Museum 2013). 

 

Life History 

The life-span of spectacled flying foxes is at least 17 years in captivity, however little 

is known about their lifespan in the wild. Like all Pteropus species, they have a slow 

life cycle and low fecundity (Wildlife QLD 2016, Australian Museum 2013). 

 

Breeding 

Mating of the spectacled flying foxes occurs in March to May but sexual activity 

occurs for the entire first half of the year. The females give birth to one offspring 

annually around late September – December. The young are nursed for over 5 

months and, once they are weaned, will continue living in the camp in ‘nursery trees’ 

(Australian Museum 2013). 

 

Food Resources/Vegetation 

The spectacled flying foxes are specialist fruit eaters that feed mostly on rainforest 

fruits, some eucalyptus nectar and pollen. They disperse seeds of at least 26 species 

of rainforest canopy trees (Wildlife QLD 2016). 

 

Foraging Distance 

The foraging range of spectacled flying foxes is 20–30 km and it is dictated by food 

availability (Wildlife QLD 2016, Australian Museum 2013). 

 

Distribution 

Of all the mainland Australian Pteropus species, the spectacled flying fox has the 

smallest distribution and population size. Their distribution is limited to within 

rainforests or areas closer than 6 km to rainforest. As a result of this, they are 

restricted to the coastal region of north-eastern Queensland and have a patchy range 
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extending from Cape York to coastal central Queensland (Australian Museum 2013, 

Red List 2008). 

 

Conservation Status 

The spectacled flying fox is listed as a species of ‘least concern’ by the IUCN. 

However, it is considered vulnerable largely due to habitat destruction such as large-

scale clearing of coastal and upland habitats and persecution by fruit-growers 

(electrocution and shooting). They have been federally listed as ‘Vulnerable’ under 

the ‘Environment Protection and Biodiversity Conservation Act 1999’ (Australian 

Museum 2013, Red List 2008). 

2.2.4 Flying Foxes Research and Virus Prevalence 

 

On 31
st
 May 2012, there were six new research projects totalling just over $2 million 

announced, including $794,717 to CSIRO Ecosystem Sciences (Dr David Westcott) 

for the project 'Implementing a National Flying Fox Monitoring programme' 

(NFFMP). The Minister approved an additional $700,000 towards the NFFMP under 

the 'Emerging Priorities' of the National Environment Research Programme (NERP). 

Monitoring is described as the process of collecting data on the abundance of a 

species and its distribution. It is a critical activity in biodiversity conservation 

because it provides insight into the status of a species and over time provides an 

indication into population trends and other ecological factors. This information is 

necessary to assess the kind of management required and to measure the 

effectiveness of management. Monitoring of flying foxes is considered even more 

important because two species, the grey-headed flying fox and the spectacled flying 

fox, which are listed as threatened under the Commonwealth Environmental 

Protection and Biodiversity Conservation Act 1999 (EPBC Act) and relevant state 

legislation. The results of the program will help inform responses to public concerns 

about the impact of flying foxes on industry, agriculture and public health, including 

any potential Hendra outbreaks (DoE 2013). 

 

The recent findings of NFFMP revealed that the distribution of flying foxes is highly 

variable, with the animals moving in and out of camps seasonally, apparently in 

response to varying food resources. The grey headed and spectacled flying foxes - 
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whose entire distributions were covered by the monitoring, have shown a dramatic 

change in their distribution over the last decades with a shift to smaller camps 

located in urban and peri urban areas. This is a similar distribution to that of horses. 

The data showed a severe decline in the abundance of the spectacled flying fox, 

sufficient to warrant a change in its status to endangered, while the number of grey 

headed flying foxes was found to be stable to declining. HeV in horses mostly 

correlated with incursions of the spectacled flying fox and black flying fox (Westcott 

2016) 

 

A study to investigate the HeV dynamics in flying foxes to determine the prevalence 

of viral co-infections during the spillover events found that peak periods of HeV 

spillover from flying foxes are associated with a peak in other viral infections. It was 

revealed by the scientists that the flying fox colonies with a high HeV prevalence 

contain a correspondingly high prevalence of other viruses, including 

paramyxoviruses from the general Henipavirus and Rubulavirus. An analysis of 

urine collected from flying foxes during the 2011 HeV spillover events has resulted 

in the isolation of more than 40 viruses, including a large number of new viruses 

which are yet to be classified. Seasonal trend in the presence of viruses was 

identified, indicating that environmental triggers may be associated with spillover 

events. A secondary objective of this study was to examine urinary metabolic 

profiles for flying foxes when they experience conditions that increase the replication 

of HeV, such as nutritional stress, movement stress, pregnancy, birth or lactation. 

This is believed to be the first metabolomics analysis performed on flying fox 

samples, with the aim of identifying biomarkers that could indicate periods of 

increased HeV risk (Baker 2016, Barr et al 2015). 

 

Field et al (2016) investigated the flying fox dispersal and HeV risk. The study 

analysed whether the disturbance of flying fox roosts leads to an increase in stress 

levels and HeV infection and excretion in dispersing animals, which might 

potentially increase the risk of spillover of the virus to horses. The study found no 

association between disturbance of the roosts and HeV excretion, indicating that 

roost dispersal does not cause increased HeV infection and excretion in dispersing 

flying foxes. No association was found between roost disturbance and concentration 

of the stress hormone cortisol, but found an underlying association between cortisol 
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concentration, season and region, suggesting that other factors, possibly biological or 

environmental play a role in determining levels of cortisol in flying foxes. A need for 

a ‘best practice’ approach was mentioned to study the dispersal of flying fox roosts, 

as the nature or timing of the activity had a clear impact on the level of behavioural 

distress exhibited by the animals. While flying foxes have some capacity to escape 

roost disturbance, their increasing urban presence may make them the target of 

ongoing harassment, with unknown consequences. 

 

A cross-disciplinary study by McFarlane et al (2011) demonstrated a significant 

occurrence of Hendra spillover events 1994–2010 within the dry season. In this 

study, the climatic and vegetation primary productivity variables are compared for 

the dispersed and heterogenic 1994–2010 outbreak sites. The significant occurrence 

of spillover events within the dry season (p = 0.013, 95% CI (0.57–0.98)) suggests 

seasonal forcing of transmission across species, or seasonal forcing of virus excretion 

by the reservoir host. The preliminary investigations of the spatial determinants of 

Hendra disease locations are also presented in this study. The postal areas in the 

Australian state of Queensland in which flying fox roosts occur are approximately 

forty times more likely (OR = 40.5, (95% CI (5.16, 317.52)) to be the location of 

Hendra spillover events. The study found that the result appears to be independent of 

density of horses at these locations. The limitations of the study include scale of host 

resource use, land use change and limitations of existing data that challenge. This 

study serves as a good base for further investigations of a broad range of potential 

climatic and environmental influences on the spillover events.  

 

A three year longitudinal study to detect virus in the urine of free-living flying foxes 

(a putative route of excretion) to investigate HeV infection dynamics indicated that 

the virus excretion occurs periodically rather than continuously, and in 

geographically disparate flying fox populations in the state of Queensland. A total of 

1672 pooled urine samples from 67 sampling events was collected and tested 

between 1 July 2008 and 30 June 2011, with 25% of sampling events and 2.5% of 

urine samples yielding detections. The proportion of positive samples was 

statistically associated with year and location. The lack of any detection in the 

Northern Territory suggests prevalence may vary across the range of flying foxes in 

Australia. The findings suggested that the flying foxes can excrete virus at any time 
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of year, and that the apparent seasonal clustering of HeV incidents in horses and 

associated humans with 70% occurring between June to October. This reflects 

factors other than the presence of virus and identification of these factors will 

strengthen risk minimization strategies for horses and ultimately humans (Field et al 

2011). 

 

The study conducted by Field et al (2015) to identify key spatial and temporal factors 

associated with excretion in flying-foxes over a 2300 km latitudinal gradient from 

northern QLD to southern NSW aimed to strengthen the knowledge of HeV ecology 

in flying foxes to improve spillover risk prediction. A generalised linear model was 

employed in this study, to investigate the spatiotemporal associations with HeV 

detection in 13,968 samples from 27 roosts. A non-linear relationship between mean 

HeV excretion prevalence and five latitudinal regions was identified, with excretion 

moderate in northern and central QLD, highest in southern QLD/northern NSW, 

moderate in central NSW, and negligible in southern NSW. Highest HeV positivity 

occurred where black or spectacled flying foxes were present; nil or very low 

positivity rates occurred in exclusive grey-headed flying fox roosts. The little red 

flying foxes are evidently not a significant source of virus, as their periodic extreme 

increase in numbers at some roosts was not associated with any concurrent increase 

in HeV detection. The study identified consistent, strong winter seasonality to 

excretion in the southern QLD/northern NSW and central NSW regions. 

 

Plowright et al (2008) initiated a longitudinal field study of HeV in little red flying 

foxes and examined individual and population risk factors for infection in order to 

determine probable modes of intraspecific transmission. The study investigated 

whether seasonal changes in host behaviour, physiology and demography affect 

host–pathogen dynamics. The results showed that pregnant and lactating females had 

significantly higher risk of infection. This may explain previously observed temporal 

associations between HeV outbreaks and flying fox birthing periods. The field data 

implied that the HeV is transmitted horizontally via faeces, urine or saliva. The 

highest seroprevalence was observed when animals showed evidence of nutritional 

stress, suggesting that environmental processes that alter flying fox food sources, 

such as habitat loss and climate change, may increase HeV infection and 
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transmission. These results of HeV in flying fox populations suggest possible causal 

links between environmental change and HeV emergence. 

 

The latitudinal range shifts study of Australian flying foxes revealed that both black 

and grey-headed flying foxes range is not shifting in a manner driven by climate 

change as supposed to.  The study obtained historical locality records from a wide 

range of sources (including banding and museum records, government wildlife 

databases and unpublished records), and filtered them for reliability and spatial 

accuracy. The latitudinal distribution of each species was compared between eight 

time-periods: 1843–1920, 1921–1950, five 10-year intervals between 1950 and 2000, 

and 2001–2007. The findings suggest that neither the northern or southern range 

limits of grey-headed flying foxes (Mackay, Queensland and Melbourne, Victoria 

respectively) changed over time. Black flying foxes range limit extended southward 

by 1168 km during the twentieth century (from approximately Rockhampton, 

Queensland to Sydney, New South Wales). The percentage of total records that were 

black flying foxes increased from 8% prior to 1950 to 49% in the early 2000s, and 

local count data showed that its abundance increased from several hundred to more 

than 10,000 individuals at specific roost sites, as range expansion progressed. The 

study concluded that neither climate change nor habitat change could provide simple 

explanations to explain black flying foxes observed rapid range shift (Roberts et al 

2011).  

 

A study on the urban habituation, ecological connectivity and epidemic dampening 

of the flying foxes suggested that multiple factors in the changing landscape of 

Australia and the demography of flying foxes contribute to HeV dynamics in bats 

and spill-over hosts. The models in the study predicted urban habituation of flying 

foxes increases the epidemiological linkage between flying foxes and horses, 

providing plausible scenarios for the recent apparent increased frequency of HeV 

outbreaks in Australia. The study described a counterintuitive ‘epidemic dampening’ 

effect, where decreasing reservoir host population connectivity can favour a 

sporadic, high force of infection that may facilitate pathogen emergence into an 

aberrant host. The results suggested that the anthropogenic driven changes to flying 

fox ecology may result in more intense, sporadic, lethal outbreaks of HeV in 

livestock and people (Plowright et al 2011). 
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2.2.5 Summary  

 

The Pteropid bats commonly known as flying foxes were found to be the natural 

reservoirs for HeV. The emergence of HeV in Australia has raised a number of 

questions relating to their natural history (Halpin et al 2000, Field et al 2001). There 

are five Australian Pteropus species of which four are found on the mainland in 

primarily coastal regions, and one is found on Christmas Island. Flying foxes are 

nomadic animals and their movement patterns and local distribution are determined 

by variations in climate and the flowering and fruiting patterns of their preferred food 

plants. They have an important ecological role because of their feeding behaviour 

which helps pollinate and disperse the seeds of native trees (DEPI VIC 2011). 

Computer modelling of flying foxes revealed that the virus does not persist as a 

constant endemic infection in discrete populations of bats but persists throughout the 

range of flying foxes in a pulsing pattern (Australian Biosecurity 2009).  

 

HeV research is considered challenging and complicated and much remains to be 

learnt (Australian Biosecurity 2009). There is a need for further research to 

understand the spatial and temporal patterns of the virus for effective surveillance 

and management of the disease. The Queensland government announced a pressing 

need for current research on the spatial and temporal occurrences of the virus 

outbreaks and further study into ecological and environmental factors as causes of 

the disease (DAF 2015). In the case of rare outbreaks like the HeV, GIS is a vital tool 

to identify the main factors (geographical, environmental and other factors) of 

disease transmission, for disease monitoring, identifying at-risk populations, 

producing prediction models and generating warning systems according to spatial 

distributions (See Section 2.3.9). 

 
2.3 Spatial Epidemiology 
 
2.3.1 Introduction 
 

The section 2.3 in chapter 2 discusses spatial epidemiology, including spatial data 

exploration, visualization, spatial autocorrelation, spatial clustering, data modelling 

as well as disease mapping and GIS applications in epidemiology which are closely 

related to disease monitoring and surveillance. Section 2.2.2 provides an overview of 
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spatial epidemiology, and geographical representation and mapping of diseases is 

covered in section 2.2.3. Spatial data exploration and visualization is discussed in 

Section 2.2.4. The topics spatial autocorrelation, spatial clustering and spatial data 

modelling are covered in sections 2.3.5, 2.3.6 and 2.3.7 respectively. Section 2.3.8 

details regression model frameworks, and the literature referred to GIS applications 

in epidemiology, specifically in HeV studies is covered in 2.3.9. Finally, a summary 

of the section is provided in 2.3.10.  

 

2.3.2 Overview 

 

Spatial epidemiology provides researchers with a map-based description and analysis 

of infectious and non-infectious diseases. This approach utilises epidemiological data 

and other health-related data including but not limited to demographic data, genetic 

and molecular data, environmental data and behavioural data. In modern research, it 

has emerged as an innovative way in studying the spread and possible causes of 

infectious disease outbreaks such as cholera, malaria, dengue and yellow fever. This 

new field of study emerged in early 1800s (Walter 2000) and it has since advanced in 

sophistication and complexity. The spatial approach in the epidemiological/health 

studies can play a crucial part in measuring the variability in the risk factors 

concerning the health status of the communities, environmental hazards and socio-

economic profiles. GIS plays a pivot role in the analysis of spatial distribution of 

disease data across space and time, which is increasingly recognized in the spatial 

epidemiological research. 

 

A review of spatial methods in epidemiology from 2000 – 2010 to understand the 

impact of place on health as a key element of epidemiologic investigation revealed 

that the space and place have been key dimensions of epidemiology and public health 

for decades, yet advanced spatial methods have been relatively slow to trickle into 

epidemiology. The study notes that, there are many rich tools to employ in this day 

for a more sophisticated treatment of space and to understand better the interacting 

contributions to health of individual characteristics and spatially varying place-based 

factors. The most common spatial methods were found to be distance calculations, 

spatial aggregation, clustering, spatial smoothing and interpolation, and spatial 

regression. It concluded that the increased use of spatial methods is likely to 



  

45 | P a g e  
 

continue, in tandem with interest in the relationship between place and health, as 

spatial software tools become more accessible and geographically referenced data 

become more available (Auchincloss et al 2012). A study by Nuckols et al (2004) 

discussed the three major scientific disciplines, namely geospatial science, 

environmental science and epidemiology, in which GIS was used in exposure 

assessment for epidemiology studies. The study emphasised how an epidemiological 

study must be able to estimate the exposure and critical time windows with respect to 

the disease latency period.  

 

‘Disease ecology is inherently integrative and spatial, and GIS provides the 

environment in which the biophysical, social, behavioural, and cultural worlds can 

be combined for a systemic understanding of health and disease’ – (Queensland 

Health 2005). Kulldroff (1999) and Elliot et al (2000) stated that applications of GIS 

in epidemiological studies date from late 19th century. The studies attempted to 

observe the spatio-temporal patterns of various communicable and non-

communicable diseases in different parts of the world. Most of the studies revealed 

significant information about the diseases and that helped in further investigations. 

Exploratory methods in GIS are valuable in searching for regions of high disease 

prevalence. This helps to investigate and improve the understanding the disease 

distribution from a spatio-temporal perspective (Nuckols et al 2004, Seng et al 2005). 

Gatrell et al (1997) discussed three types of GIS methods in public and 

environmental health application. They are visualization, exploratory and modelling. 

He mentioned that exploratory and visualization is closely related and is often 

recognised as ‘exploratory visualization’. Visualization involves displaying the 

locations and influential variables on maps and showing variations in space and time 

whereas exploratory analysis enables the analyst to explore and investigate the 

spatial data trend which helps in identifying the disease pattern and generate 

hypothesis. Cluster identification is one of the important exploratory methods in 

epidemiology.  

 

In epidemiology there have been considerable advances in the development of 

methods for the detection of clustering and clusters of health events, together with 

productive links between statisticians, epidemiologists, and geographers in 

demonstrating the usefulness of GIS-based approaches. Langford et al (1996) stated 
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that multilevel or hierarchical methods were being promoted actively in health 

research, and given an explicitly spatial dimension; links are needed between these 

tools and GIS environments. Significance should be given to the importance of 

building closer research links between those using GIS for epidemiology and those 

using it in health care planning. GIS should be used in the needs assessment process, 

such ‘needs’ being represented, in part at least, by the areas of high mortality and 

morbidity i.e. the ‘clusters’ to which the attention has been given – identified by 

other GIS-based analyses. GIS, in the reshaped form of a spatial decision support 

system, can play a valuable role in bringing the two health research backgrounds 

together (Gatrell et al 2005). 

 

The occurrence of disease is the primary interest of an epidemiologist in as 

categorized by time, person and place where as spatial epidemiology emphasizes the 

latter. Describing and understanding variations in disease from a distinctly analytical 

spatial perspective and as an area of medical research it is one of growing 

importance. In general, health, population and exposure data are available in either 

point (exact location) or count data (aggregated level). Point data is considered more 

accurate due to its geographical representation but it is rarely available in some 

cases. Therefore, it is recommended only if there is sufficient evidence to warrant the 

use of such data. On the other hand, using aggregated data for exploratory analysis is 

easier than case control or cohort studies; however, they are prone to biases and 

misclassifications (Elliot et al 2000).  

 

Data of epidemiological or public health interest often occur as spatial information 

during each of several time periods. Most of the analytical techniques require the 

pooling of information in administrative areas with well-defined geographic 

boundaries (e.g., counties, municipalities, and health districts), and the presentation 

of the spatial process with maps constrained to them. Nobre et al (1995) has 

introduced two temporal analytical techniques in their work – time series analysis 

and temporal cluster analysis. The time series analysis has is quite useful in different 

contexts for monitoring tasks. The implementation of this technique into an 

integrated system for use in public health will lead to a better assessment of its 

impact and utility (Nobre et al 1995). Spatio-temporal analytical technique was also 

reviewed by Nobre et al (1995) in their work, which emphasizes on space-time 
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interaction among health events, or health events and environmental variables which 

are important in epidemiological studies and disease surveillance.   

 

The ability of GIS to integrate and manipulate complex data has emerged it as a 

powerful tool in epidemiological studies. The traditional epidemiological studies 

such as cohort or case control studies enable us to identify excess disease rates or 

trends and perform further analysis for hypothesis testing (Seng et al 2005). Use of 

GIS technology in epidemiological and public health studies gained momentum after 

researchers started using it for more than visual representations i.e. maps. GIS in 

epidemiology has been tremendous in understanding the disease in a different 

dimension. With the assistance of this powerful tool, the disease clusters could be 

identified and other influencing factors such as environmental, socio economic and 

climatic could be linked to the diseases. While geographical visualization serves the 

need to reveal the spatial patterns, the statistical awareness in GIS determines the 

significance of these patterns.  

 

The introduction and implementation of GIS technology in public health and 

epidemiology benefits in analysing the prevalence and geographic distribution of a 

disease outbreak in a space-time sense (Lawson et al 2001). GIS technology is being 

widely used for disease monitoring, research hypotheses generation and identifying 

populations at risk for its high capability in data interpretation, manipulation and 

modelling (Seng et al 2005, Gupta et al 2003).  GIS serves as an effective tool for 

spatial analysis, modelling and visualisation of epidemiological and environmental 

data; and recent studies have shown significant and increasing use of GIS 

applications in public health and epidemiology (Shittu et al 2010, Busgeeth et al 

2004 and Gupta et al 2003). The powerful analytical modelling and mapping 

capabilities of GIS can serve as a good decision-support and decision-making tool 

for disease investigations, monitoring, simulation, predictions, preventions and 

resource allocations (Davenhall 2002). 
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2.3.3 Disease Mapping 

 

Mapping is a visual representation of geographical distribution, and disease mapping 

refers to the representation of disease or outbreak location, summary measures or 

statistics for a specific group of individuals in their geographical association (Lawson 

et al 2001). The mapping of disease incidence and prevalence has long been a part of 

public health, epidemiology, and the study of disease in human populations (Koch 

2005). The advantage of disease mapping is that they might any significant spatial 

patterns that may not be recognized in tabular representation of the data (Elliot et al 

2004). Disease mapping identifies possible disease clusters, to define and monitor 

epidemics, to provide baseline data on health patterns, and to show changes in 

disease patterns over time. It may also be useful for initial exploration of 

relationships between exposure and disease, particularly; acute health effects. It may 

at times involve small area maps of disease which are much more difficult to produce 

and interpret in a meaningful way. Caution needs to be exercised in their 

interpretation due to the factors of latency period and migration (Jarup 2004), 

variable representation and spatial resolution (Elliot et al 2004).  

 

In general, the disease distribution may occur within specific population groups with 

a spatial distribution and may vary in various aspects. It is extremely important to be 

aware of the spatial patterns of the underlying causes/factors to be able to detect the 

true disease pattern (Seng et al 2005). The interpretation of the map should be 

dependent on the type of the disease i.e. infectious or non-infectious as a map that 

demonstrates the distribution of an infectious disease could be invaluable in 

identifying the cause of the outbreak, mainly if it is represented as points. The 

mapping of non-infectious diseases is useful in hypothesis generation (Lawson et al 

2001).  

 

Koch (2004) studied a series of maps of the 1854 cholera outbreak in Soho, London - 

historical and contemporary which serve as an example of the manner and degree to 

which a map-maker's intent defines the context that determines the content of the 

resulting map. These maps include John Snow's original maps; E.W. Gilbert's 1958 

version of Snow's map; Andrew D. Cliff and Peter Haggett's 1988 maps; Edward 

Tufte's 1983 revision of Gilbert's 1958 map; Monmonier's 1990s revision of the 
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Gilbert-Tufte map; and the US Centers for Disease Control's (CDC) 2001 map based 

on Snow, Gilbert, and Tufte. The study concluded that the maps reflect specific 

phenomena of interest to map-makers, who choose from the available data to fashion 

idiosyncratic interpretations of those phenomena. 

 

The cholera outbreak map by John Snow, a physician in London is still the best 

acknowledged example of disease mapping. It demonstrated the correlation between 

the cholera cases and the water supply contamination in the year 1854. The infected 

well was identified from the concentration of cases around the Broad Street water 

pump by incidence mapping (Snow et al 1994). Figure 2.7 shows the original map by 

John Snow showing the clusters of cholera cases in the London epidemic of 1854. 

 

 

 

Figure 2.7: Original map of Cholera cases by John Snow (Source: Epidemiology 

Inside 2016). 

 

Walter (1993) discussed the theories of graphical perception which suggested that the 

interpretation of maps is complex relative to other types of graphical material. In his 

study, it was found that the maps with various types of spatial pattern were visually 
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distinguishable; comparisons between variants of the same map, however, using 

different shading and plotting symbols indicated that the method of data 

representation also had a strong effect on visual perception. The study showed 

enough evidence for a learning effect in complex maps. The study concluded that the 

relationship between the visual assessments and a statistical measure of spatial 

autocorrelation was significant but imperfect. In their review of cognitive aspects of 

designing statistical maps, Sirken et al (1993) have concluded that map reading 

actually is best viewed as consisting of a series of reading stages which include Map 

Orientation, Legend Comprehension, Map/legend Integration and Discerning and 

Spatial Patterns and Relationships. They suggest that the sensory processes are 

important in map orientation and the legend comprehension stages whereas the 

integration of the map with the legend depends more on perception, and the 

discernment of patterns makes use of comprehension, memory, and reasoning. 

 

In the introductory guide to disease mapping, Lawson et al (2001) has discussed the 

visual perception and construction of a disease map as below: 

 

Construction of the Map 

Construction of the map should consider the aspects such as the data, the area and the 

choice of scale. The area should be chosen with great care and sometimes this may 

be predefined. As study of the incidence or disease prevalence must have boundaries 

such as town, city or a country. Maps are usually characterised by the scale chosen to 

represent the geographical distribution of the disease of interest (Lawson et al 2001).  

 

Map Transformation 

The next step is chose the form of the symbolic representation. This is a well-known 

practice. The map is usually constructed from the standard spatial coordinate systems 

such as longitude-latitude, east-north etc. and in these cases there is no further need 

to consider any changes. In some rare cases, there might be a need to consider other 

representation systems, usually when mapping very large scale distributions (e.g. 

Worldwide) (Lawson et al 2001). 
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Symbolic Representation 

Symbolization is considered as an important characteristic of cartography. 

Misinterpretation of maps usually arises from inappropriate symbolization, which 

affects the accuracy of the results and conclusions drawn from the map. The most 

commonly used symbols in disease mapping are points, lines, colour and shading 

symbols. Point symbols represent case events in disease mapping and the choice of 

type and size should correspond with the underlying population. The size of the point 

symbol is suggested to be inversely proportional to the population density at the 

specific location (Bailey et al 1995, Seng et al 2005). Lawson et al (2001) 

emphasized on using the appropriate symbols and monochrome colour schemes for 

disease mapping, which was found to be most effective.   

 

Processing of Data and Data Aggregation 

This stage involves further processing that typically occurs when the information 

from the spatial structure or its associated attributes is unavailable under the current 

representation system. Data interpolation/smoothing and transformation are the two 

steps that need to be considered to fulfil the requirement. Sometimes, specific 

algorithms may be required to determine the best values from interpolation to use at 

the locations other than the observed data (Lawson et al 2001). Data aggregation is 

also an important aspect that needs to be taken into consideration in mapping and 

misinterpretation might occur when areas are mapped according to the aggregated 

data leading to the loss of data variation (Seng et al 2005). 

 

Interpretation of Maps 

Disease maps are derived from statistical data and it is recommended to include some 

form of accompanying table of the data used in the map. It not possible, a secondary 

map showing the variability or the reliability of the data estimates such as relative 

risks can be displayed on the map. A full overview of recommendations for disease 

mapping is available in a WHO workshop report (Lawson et al 2001).   

2.3.4 Spatial Analysis 

 

Spatial data analysis is considered as a branch of data analysis where the 

geographical referencing of objects contains important information. In data 
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collection, specifically in some areas of experimental science, the indexes that 

distinguish different cases can be exchanged without any loss of information. The 

information relevant to understanding the variation in the data is available within the 

observations and indexing does not have any relevant information. But, in the case of 

spatial data, the indexing may contain crucial information. The collection of 

techniques and models that explicitly use the spatial referencing of each data case is 

defined as spatial analysis. In spatial analysis, it is required to make assumptions on 

the data describing spatial relationships or interactions between cases. The results of 

spatial analysis highly depend on the re-arrangements of spatial distributions of 

values and reconfiguration of the spatial structure (Goodchild et al 2004, Haining 

1994). 

 

Goodchild et al (2004) refers spatial data matrix as the point of contact for spatial 

analysis and GIS. The spatial data matrix consists of rows and columns where rows 

refer to cases and columns refer to the attributes measured at each of the cases, and 

the last columns provide the spatial referencing. At the simplest level, there might be 

two last columns containing a pair of coordinates: latitude and longitude, or x and y 

in some projected coordinate system. GIS permits a vast array of operations based on 

this approach to representation. There are many published methods of spatial 

analysis that are available in the form of standard products of commercial GIS 

vendors. A variety of GIS products and extensions are also available as open 

software or freeware, through academic and other organizations and communities 

(Ungerer et al 2002). 

 

Bailey et al (1995) categorized the spatial data analysis into three main divisions - 

visualizing the data, exploratory data analysis and methods for development of 

statistical models. Pfeiffer (1996) mentioned that during most analyses, a 

combination of techniques will be used with the data first being displayed visually, 

followed by exploration of possible patterns and possibly modelling. Point patterns, 

spatially continuous and area data are the methods used in spatial data analysis. The 

spatial perspective in the spatial data analysis allows easy access to information on 

the relative locations of objects and events, and also proximity (Goodchild et al 

1992).  
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Goodchild et al (2005) has mentioned that the below conditions that are mostly likely 

the reason for someone to choose GIS-based spatial analysis rather than the statistical 

spatial analysis, although the list is certainly not complete and the items are not 

intended to be mutually exclusive. 

 

i) The data are geographically referenced; 

ii) Geographical references are essential to the analysis; 

iii) The data include a range of vector data types (support for vector analysis 

among non GIS packages appears to be much less common than support for 

raster analysis); 

iv) Topology – representation of the connections between objects – is important 

to the analysis; 

v) The curvature of the Earth’s surface is important to the analysis, requiring 

support for projections and for methods of spatial analysis on curved 

surfaces; 

vi) The volume of data is large, since alternatives like spreadsheets tend to work 

only for small datasets; 

vii) Data must be integrated from a variety of sources, requiring extensive support 

for reformatting, resampling, and other forms of format change; 

viii) Geographical objects under analysis have large numbers of attributes, 

requiring support from integrated database management systems, since many 

alternatives lack such integration; 

ix) The background of the investigator is in geography, or a discipline with 

strong interest in geographical data; 

x) The project involves several disciplines, and must therefore transcend the 

software traditions and preferences of each; 

xi) Visual display is important, and when the results must be presented to varied 

audiences; 

xii) The results of the analysis are likely to be used as input by other projects, or 

when the data are being extensively shared. 

 

There are some issues that affect the interpretation and results of the spatial analysis 

such as selection bias, confounding factors, gross error, modifiable areal unit 

problem (MAUP) and edge effects. Bias and confounding factors are closely related 
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and remain as a major problem in data analysis. Bias happens when the variables are 

deviated from ‘true’ vales and confounder factor refers to the secondary variables 

which are associated with the outcome (Elliot et al 2000). Understanding of the 

underlying demography, topography and disease epidemiology is essential in 

parameter selections and thus a likelihood of producing more reliable results. Gross 

error can be detected by identifying the extreme data values from the overall 

distribution. It is considered important as it tends to affect the mean or standard 

deviation especially in a small sample.  

 

MAUP effects are divided into two major components – scale effects and zone 

effects. Scale effects refers to the variation in numerical results that may be obtained 

at different levels of spatial aggregation of data whereas zoning effects are the 

variation in numerical results arising from the spatial portioning by a fixed level of 

aggregation. Various specialized methods have been developed to address these 

problems such as spatial interaction models, statistical reporting units, monte-carlo 

simulation, simulated annealing and genetic algorithms (Seng et al 2005). Edge 

effects play an important role in spatial statistical applications and mainly result in 

spatial censoring (Lawson et al 2001). Lawson et al (2001) introduced several 

methods for resolving edge effects including utilizing weight relating to the external 

boundary proximity, guard area and simulating missing data. Rogerson (2001) 

suggested using buffer zones to include the important features that affect analysis 

according to the area of interest. Rogerson (2001) recognized the shape and size of 

the study areas as one of the boundary problems, which can affect measurement and 

interpretation.  

 

2.3.5 Exploratory Data Analysis and Visualization 

 

Good (1983) described exploratory data analysis (EDA) as a collection of techniques 

to summarize data properties, identify data trends, detect data errors and unusual 

features. Hypothesis generation, and may also be used to study the model results and 

identify influential data effects. Exploratory spatial data analysis (ESDA) is 

described as a set of techniques to explore spatial data, which involves summarizing 

spatial data properties, detecting spatial patterns, hypothesis generations and 
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identifying unusual trends on the map (Seng et al 2005). Exploratory data analysis is 

aimed at developing hypotheses and makes extensive use of graphical views of the 

data such as maps, histograms, graphs or scatter plots. It makes certain assumptions 

about the data and must be robust to extreme data values (Pfeiffer 1996). ESDA 

techniques are visually and numerically resistant, comprising of EDA techniques and 

additional methods to analyse spatial relationships (Haining 1998).  

 

Hypothesis testing is considered important in numerical ESDA as the clustering and 

event concentrations would be studied to identify the significance from a statistical 

aspect. This serves as an exploratory tool with a null model being proposed and the 

test statistics are constructed to assist in decision making to either accept or reject the 

null hypothesis (Haining 1998). The advances in GIS have made it easier to conduct 

the spatial pattern analysis. Bailey et al (1995) has divided the spatial point patterns 

tools into four methods – Kernel estimation, K-function, Nearest Neighbour Distance 

and Quadrat Methods. The following sub-sections (2.3.5.1 and 2.3.5.2) discuss the 

Kernel Estimation and the K function as they are most commonly used in studying 

spatial clustering (Bailey et al 1995, Gatrell et al 1996).   

2.3.5.1 Kernel Estimation 

 

Kernel estimation is an exploratory tool for examining the first-order properties such 

as global or larger scale trend of point processes (Gatrell et al 1996). It is employed 

to obtain a smooth estimation of univariate or multivariate probability density from a 

sample of observation. This method lacks the predictive ability.  

If s represents a vector location anywhere in the region, R then the intensity λ(s), is 

an estimate of the intensity of the point pattern at s (Equation 2.1).  

 

�̀�𝜏(𝑠) =  ∑
1

𝜏2
𝑘 (

𝑠 − 𝑠𝑖

𝜏
)

𝑛

𝑖=1

 

 

Equation 2.1 

 

k( ) represents the kernel weighting function which is expressed in standardized form 

i.e. centred at the origin and having a total volume of 1 under the curve. It is then 
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centred on s and 'stretched' according to the parameter τ > 0, which is referred to as 

the bandwidth. The value of τ provides the required degree of smoothing in the 

estimate. Graphically, it can visualize a three-dimensional function that 'visits' each 

point s on the fine grid (Figure 2.8). The distances to each observed event, si that lies 

within the region of influence are measured and contribute to the intensity estimate at 

s according to how close they are to s. A suitable contouring algorithm or some form 

of raster display may then be used to represent the resulting intensity estimates as a 

continuous surface showing the R intensity variations (Gatrell et al 1996).  

 

Choosing appropriate bandwidth is considered important as the kernel estimate λτ(s) 

is intended to be sensitive to the choice of bandwidth, τ. As this increase, there is 

more smoothing of the spatial variation in intensity which can result in a flat 

appearance and neglected local features and when it is reduced, it can yield a 'spiky' 

estimate. However, it is possible to use a local bandwidth adjustment technique 

known as adaptive kernel estimation to improve the kernel estimation (Gatrell et al 

1996). The kernel estimation closer to the boundary of R may be subjected to the 

edge effect due to the possibility of neighbours outside the boundary. Constructing a 

guard area inside the perimeter of R is recommended to address this issue. The points 

inside the guard area will not be computed but are allowed to contribute the 

estimation. According to Gatrell et al (1996), kernel estimation is able to produce 

valuable results in estimating the relative intensity of different types of events. 
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Figure 2.8: Kernel estimation of a point pattern (Source: Gatrell et al 1996). 

 

2.3.5.2 The K function 

 

K function is a very useful technique to estimate the second-order properties i.e. local 

or small scale effects of the process that gave rise to the data. It describes the spatial 

dependencies over a wide range of scales. The assumption of stationary when 

examining the spatial dependencies over a very small scale in region, R is 

highlighted by Bailey et al (1995). When a point process is stationary and isotropic, 

there is a close mathematical relationship between the second-order intensity and an 

alternative characterization of second-order properties known as the K function 

(Ripley 1981, Gatrell et al 1996).  

 

Equation 2.2 defines the K function, where E( ) denotes expectation, # means ‘the 

number of’ and λ is the intensity (or mean number of events per unit area).  

 

λK(d) = E(#(events ≤ distance d of an arbitrary event)) 

Equation 2.2 
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An estimation of the K function is given by equation 2.3, where R is the area of 

region and Id(dij) is an indicator function that has value of 1 when dij is less than d 

(Boots et al 1988). When the edge effect is considered, ωij is included as the 

conditional probability that an event is observed in R with distance dij frim ith event. 

Therefore, the final estimation of K(d) is equation 2.4, which is obtained by replacing 

the unknown density λ with an estimate n/R, where n is the observed number of 

events. 

 

�̀�(𝑑) =  
1

𝜆2𝑅
 ∑ ∑ 𝐼𝑑(𝑑𝑖𝑗)

𝑖≠𝑗

 

 

Equation 2.3 

 

�̀�(𝑑) =  
𝑅

𝑛2
 ∑ ∑

𝐼𝑑(𝑑𝑖𝑗)

𝑤𝑖𝑗
𝑖≠𝑗

 

 

Equation 2.4 

 

 

 

Figure 2.9: Estimation of A K function (Source: Gatrell et al 1996). 
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Figure 2.9 refers to the visualization of the K function estimate without the edge 

effect. An event is ‘visited’ and around this event is a set of concentric circles at a 

fine spacing is constructed. The cumulative number of events within each of these 

distance 'bands' is counted. Every other event is assumed to be similarly 'visited' and 

the cumulative number of events within distance bands up to a radius d around all 

events becomes the estimate of K(d) when scaled by R/n2 (Gatrell et al 1996). 

2.3.5.3 Visualization as a Method of Exploring Spatial Data 

 

The term visualization in the cartographic literature can be traced back at least four 

decades (Philbrick 1953, MacEachren et al 1997) and it has an important role in 

exploratory data analysis, which enables the data being analysed to be seen (Bailey et 

al 1995). The graphical display of data and other statistics and summary information 

are considered as the basic tools for seeking spatial trends, hypothesis generation and 

for evaluation of data into the proposed models. Visualizing the spatial data refers to 

the mapping in a spatial data analysis context (Bailey et al 1995, Seng et al 2005). 

MacEachren et al (1990) developed a simple cognitive model to identify key parts of 

the user display interaction that occurs during exploratory map-based visual analysis. 

They emphasized on developing cartographic tools that prompt pattern identification 

and on the potential for visualization errors – the errors that are similar in nature to 

the Type I and Type II errors associated with traditional statistically-based 

hypothesis testing. 

 

Visualization of data can be described as maintaining the data points with some 

smoothing effect to detect the complex spatial patterns (Haining 1998). The 

comprehensive tools serves as the data analyses supporting tools rather than just 

producing graphics as the final report (Wise et al 1998). The data visualization 

approaches has been classified into two areas – rendering and manipulation by Buja 

et al (1996). Rendering is defined as the process of building the graphic plot which 

involves the determination of type of information to display and the output plot type. 

Manipulation involves the operation of individual plots and organization of multiple 

plots to explore the data. Identification of data set properties (finding gestalt), posing 

queries and making comparisons are the tasks in data exploration in visualization 

(Buja et al 1999).  
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Exploratory analysis of spatial data can be significantly enabled when visualization 

in geographic space is dynamically linked to presentation of data in attribute space 

(Andrienko et al 2001). Usage of the brushing technique for linking maps and 

statistical graphics by simultaneous highlighting of corresponding objects was 

suggested by Monmonier (1989). Most often linking between maps and dot plots or 

scatter plots is considered (Buja et al 1986; Dykes 1997). Simultaneous 

representation of more than two variables can be done using parallel coordinate plots. 

This kind of graphic is very useful for visual data exploration and data mining 

(Andrienko et al 2001).  

 

Andrienko et al (2001) introduced a painting-based data visualisation method, which 

is applicable to several (more than two) comparable attributes called dominant 

attribute mapping method. This method consists of ascribing an object to a class 

according to the value of the dominant attribute. The attribute with the largest value 

is considered dominant and the other approaches involve prior normalisation of 

attribute values. This method is intended to support the following exploratory 

activities: 

 

i) Overall view on spatial co-distribution of attribute values; 

ii) Finding spatial clusters of objects similar to each other in terms of the 

considered attributes; 

iii) Detecting objects with anomalies or disproportion among the values of the 

attributes. 

 

In a nutshell, `visualization' is a comprehensive term that refers to an array of 

methods that are used to provide insight into data through visual representations and 

includes the areas of geographic, information, and scientific visualization, which 

refer to the visual representation and exploration of geographic data, of nonnumeric 

datasets, and of large, multivariate datasets that use high-end computing, respectively 

(Knigge et al 2006). Knigge et al (2006) suggests that the data exploration, 

exploratory spatial data analysis (ESDA), and visualization using GIS and other 

visualization software, can be employed to facilitate an `iterative process' in the 

analysis of data whereby researchers can recursively explore data in order to identify 
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themes and processes, raise new questions, and begin to build theories. Grounded 

visualization is suggested by the authors (Knigge et al 2006), which is a set of 

analyses that could be broadly used in various disciplines. The method is sensitive to 

scale issues (from local to global and back again) and can integrate mobility. It 

greatly depends on qualitative and quantitative measures of context (historical and 

geographical).  

 

Pang (2001) discussed visualizing uncertainty in geo-spatial data in which the author 

mentioned that there is more than one way to classify how uncertainty can be 

visualized. First one is by how uncertainty itself is represented; another is by how 

uncertainty is encoded into visualization. In the second one, there are two general 

ways of combining uncertainty to a visualization which is either by mapping 

uncertainty information as an additional piece of data or creating new visualization 

primitives and abstractions that incorporate uncertainty information. MacEachren 

(1992) has addressed the addresses the difference between data quality and 

uncertainty. It is suggested that mapping in pairs (side-by-side with a map of 

uncertainty), sequential presentation in which a user might be warned about 

uncertainty with an initial map which is followed by a map of the data and bivariate 

maps in which both the data of interest and the uncertainty estimate are incorporated 

in the same map are the best practices. Bordoloi et al (2004) presented an interactive 

visualization technique for spatial probability density function data and implemented 

a hierarchical clustering and visualization scheme for spatial pdf data in their study 

which allows for a multiple level of detail exploration of dataset.   

2.3.6 Spatial Autocorrelation 

 

“Everything is related to everything else, but near things are related than distant 

things” –’s First Law of Geography (Tobler 1970). Tobler’s First Law is often 

considered as the core of spatial autocorrelation statistics, which are quantitative 

techniques for analysing correlations relative to distance (Rogerson 2001). The 

concept of spatial autocorrelation may be viewed as a special case of correlation but 

has a meaning of its own. The correlation statistics were designed to show 

relationships between or among variables, spatial autocorrelation shows the 

correlation within variables across georeferenced space. The statistics were initially 
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designed to identify a theoretical condition in which no spatial autocorrelation is 

present. (Getis 2008). Hubert et al (1981) defined spatial autocorrelation as - “Given 

a set S containing n geographical units, spatial autocorrelation refers to the 

relationship between some variable observed in each of the n localities and a measure 

of geographical proximity defined for all n (n - 1) pairs chosen from n.’’ Spatial 

autocorrelation is often used to measure the spatial dependency and spatial 

association. 

 

Goodchild (1986) defines spatial autocorrelation as one of the relatively small set of 

techniques that deals simultaneously with both locational and attributes information. 

Spatial interaction modelling and location-allocation belong to the same set. A set of 

spatial features may or may not be similar in attributes, and their proximity will 

determine how similar they are in spatial location. Spatial autocorrelation often 

compares the two sets of similarities. Positive similarity occurs when the similar 

values (either high or low) are located in close proximity to each other whereas 

negative similarity (or dissimilarity) occurs when features which are close together in 

space tend to be more dissimilar in attributes that features which are further apart. 

Zero similarity occurs when the attributes are independent of location. The degree of 

spatial autocorrelation of a pattern is dependent on the scale.  Goodchild (1986) notes 

the practical importance of spatial autocorrelation is that it provides a type of 

information about a spatially distributed phenomenon which is not available in any 

other form of statistical analysis. This information is important for appropriate 

interpretation of the data. 

 

Fotheringham et al (2002) says that the spatial autocorrelation is measured by several 

statistics with slightly different formulations; however, they are all incorporated 

within geographical weighing, which indeed represents the localised versions of 

general statistics. Global statistics attempt to characterize the stable pattern of spatial 

dependence for the entire dataset (Unwin 1996) and local statistics are referred to as 

spatial disaggregation’s of global statistics (Fotheringham et al 2002). A global 

model is calibrated using the data which is equally weighted and assumed to be 

constant over space (stationary), where the local variations in relations are 

unobserved. Moran’s I is the most widely used global statistic to study the spatial 

dependency of the data (Moran 1950, Getis et al 1992). The local statistics recognize 
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the association between a single point and its neighbours within a specified distance 

and are able to identify a localized pattern where no global pattern has been detected 

using an autocorrelation statistic (Getis et al 1996). Fotheringham et al (2002) 

suggests that the local models capture the non-stationary process (which varies 

across space) and spatial dependence.  

2.3.6.1 Moran’s I  

 

Moran’s I coefficient is a very well know global statistic which is used to measure 

the degree of similarity between each areal unit and its contagious neighbours of 

autocorrelation. For a spatial proximity matrix W, spatial correlation in attribute yi, 

the Moran’s I is summarised in equation 2.5.  

 

𝐼 =  
𝑛

𝑆0

∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖=1

 

 

Equation 2.5 

 

 

Where, 

Zi is the deviation of an attribute for feature ‘i’ 

Wij is the spatial weight between the features ‘i’ and ‘j’ 

n is equal to the total of features 

S0 is the aggregate of all the spatial weights  

 

‘Moran’s I’ calculates the mean and deviation of any observation from the mean and 

follows the comparison of the value at any location with the value at other locations. 

The Wij is a contiguity matrix, where if the zone i and j are adjacent, it will receive a 

weight of 1 and vice versa. The weighted Moran’s I is similar to the correlation 

coefficient, which varies between -1.0 to +1.0 and the result is the sum of the cross-

product values at different locations. The higher I value indicates more spatial 

autocorrelation compared to the lower I value. The negative value closer to 0 

describes the lack of spatial dependencies. The I value above the theoretical mean 

depicts a positive autocorrelation and value below the theoretical mean depicts a 
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negative autocorrelation. This method does not pinpoint the local effects and the 

results are highly dependent on the spatial unit (Getis et al 1996, Levine 2002).  

2.3.6.2 Getis-Ord Local G 

 

The Gi statistic is known to be useful for identifying “hot and/or cold spots” and to 

check for heterogeneity in the dataset. Gi statistics are the ratio of the sum of values 

in neighbouring locations, defined by a given distance, to the sum over all 

observations (Getis et al 1992). The Gi(d) is defined by Getis et al (1992) as in the 

equation 2.6.  

 

𝐺𝑖(𝑑) =  
∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗𝑗

∑ 𝑥𝑗𝑗
  , j not equal to i 

 

Equation 2.6 

 

Where {ωij(d)} is a symmetric one/zero spatial weight matrix with ones for all links 

defined as being within distance d of a given i; all other links are zero including the 

link of point i to itself. A slightly different form of Gi was suggested by Ord et al 

(1995), Gi(d) originally proposed for elements of a symmetric binary weights matrix, 

was extended to variables that do not have a natural origin and to non-binary 

standardised weight matrices (AURIN 2016). The statistic for each region i is 

defined as equation 2.7.  

 

𝐺𝑖(𝑑) =  
∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗− 𝑊𝑖�̅�(𝑖)𝑗

𝑠(𝑖){[((𝑛−1)𝑆1𝑖
∗ )− 𝑊𝑖

∗2]/(𝑛−1)}1/2
, j ≠ i 

 

Equation 2.7 

 

Where ωij is the spatial weight matrix element, Xj is the variable and d is the distance 

threshold from i. Similarly, if ωij is included and not equal to 0, the standardized Gi 

statistic is given in equation 2.8. 

 

𝐺𝑖(𝑑) =  
∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗− 𝑊𝑖�̅�𝑗

𝑠{[(𝑛𝑆1𝑖
∗ )− 𝑊𝑖

∗2]/(𝑛−1)}1/2 , all j 

 

Equation 2.8 
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The Getis-Ord Gi is a statistic for local spatial association and their individual 

components are not related to the global statistic of spatial association (G). The 

results firstly produce the Gi; for each area i as a standardised z-value. Getis et al 

(1992) argued that inference, as with global measures are based on calculating a 

standardised value and comparing this against a null which is assumed to follow a 

normal distribution. However a normally distributed null may not be an appropriate 

assumption, as Local Gi are not independent of each other by design (Ord et al, 1995) 

(AURIN 2016).  

2.3.7 Spatial Data Modelling 

Spatial data modelling in epidemiology involves GIS integration with standard 

statistical and epidemiological methods. GIS has the increased spatial statistical 

capabilities to accommodate the epidemiological data, perform spatial statistical 

analysis, display results – mapping and modelling the patterns that occur over time 

and space. These capabilities enable researchers, scientists and academicians to 

evaluate the statistical analysis and prediction models. Rogerson (2001) defined a 

model as a tool to simplify the relationship between variables for further study. By 

studying a model, critical information could be derived to either support or reject the 

null hypothesis.  

 

Spatial modelling is undergoing its own shifts of emphasis and bringing with it new 

challenges for spatial data analysis as to how to assess correspondence between 

model output and real data. Goodchild et al (2004) says that the spatial data analysis 

have been developed for, and implemented in, many different contexts. Haining 

(1987) used unilateral spatial auto regressions to estimate population and income 

multipliers for towns organized in a central place system. Anselin (1988), treating the 

field as a branch of econometrics (spatial econometrics), developed a statistical 

modelling strategy, with software to implement the methodology that follows the 

strategy used in certain forms of time-series econometric modelling. There are 

numerous examples of the use of spatial regression modelling in a wide variety of 

fields (Goodchild et al 2004).  

 

Haining (1998) mentioned that the variation between observed quantities at different 

locations must be taken into consideration in statistical models for spatial data 
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through the mean or the correlation structure. Fitting a statistical model to data 

enables the potential to further research the parameters. The modelling process starts 

with determining a model consisting of signal and noise and probability distribution. 

A likelihood function should be employed in the analysis and the joint probability of 

data is assumed to have fixed unknown values. In general terms, data modelling can 

be distinguished into two areas – descriptive and explanatory. Descriptive modelling 

describes the spatial pattern and explanatory modelling is a mathematical expression 

involving the predictions. The data in the descriptive modelling involves only one 

variable with the locations and is described by a simple functional representation of 

variation (it could be as few parameters as possible). Explanatory data modelling 

consists of many variables and deals with the variation of covariance and predictors 

(Haining 1998). Multi-agent modelling is another system-wide level which allows 

the individuals to migrate around the space responding to global and local conditions 

in different segments of the space (Goodchild et al 2004).  

 

The aim of the descriptive modelling is to summarize the spatial variation of 

response variable without the existence of covariance in the model. The models for 

continuous valued variables include trend surface and covariance and semi-

variogram modelling. Auto-logistics, auto-binomial and auto-poisson models are 

used to model discrete value area data. Explanatory models describe the interaction 

between dependent and independent variables. Some descriptive models can be 

extended to exploratory models by including the predictor variables or covariates. In 

the modelling, spatial data incorporates the spatial dependence between the data 

which improves the power of the model. Initially, an exploratory analysis is 

conducted with the aim of identifying the structure of dependence in the data. There 

are two basic types of exploratory modelling, which is spatial regression that allows 

the incorporation of the spatial effect and those of Global form and those of Local 

form (Lopes et al 2007, Fotheringham et al 2000). 

2.3.8 Regression Analysis 

 

Regression analysis is a statistical tool to investigate the relationships between 

variables. The investigator seeks to ascertain the causal effect of one variable upon 

another. The data is assembled to study the underlying variables of interest and 
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employs regression to estimate the quantitative effect of the causal variables upon the 

variable that they influence. It assesses the “statistical significance” of the estimated 

relationships i.e. the degree of confidence that the true relationship is close to the 

estimated relationship (Skyes 1992). 

 

A simple linear regression examines the linear relationship between two continuous 

variables - one response (y) and one predictor (x). A linear regression line is denoted 

in equation 2.9 of the form, where X is the explanatory variable and Y is the 

dependent variable.  

 

Y = a + bX 

Equation 2.9 

 

The slope of the line is b, and a is the intercept (the value of y when x = 0).When the 

two variables are related, it is possible to predict a response value from a predictor 

value with better than chance accuracy. Regression provides the line that "best" fits 

the data. This line can then be used to either examine how the response variable 

changes as the predictor variable changes or predict the value of a response variable 

(y) for any predictor variable (x). The multiple linear regression examines the linear 

relationships between one continuous response and two or more predictors (Minitab 

2016). The multiple linear regression model is given in the equation 2.10 where Ŷt 

denotes the “dependent” variable and X1, …,Xk denote the “independent” variables, 

with the value of variable Xk in period t (or in row t of the data set) denoted by Xkt. 

The error in the model is assumed to be independent without the spatially correlated 

measurement error. Other unobserved predictors are also considered to be spatially 

uncorrelated. 

 

Yt = bo + b1X1t + … + bkXkt 

Equation 2.10 

 

The following assumptions must hold when building a linear regression model 

(Christensen 1997). 
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i) The dependent variable must be continuous. Linear regression is not the 

correct method to predict a categorical variable. 

ii) The data modelling meets the "iid" criterion. That means the error terms 

are independent from one another and identically distributed. 

iii) The error term is normally distributed with a mean of zero.  

 

2.3.8.1 Ordinary Least Square (OLS) Regression 

 

OLS is well known among all the regression techniques and it is a global regression 

technique. This technique is often mentioned as a straight forward method and is the 

proper starting point for all the spatial regression analyses. A global model of the 

variables that are needed to be predicted will be provided and this creates a single 

equation to represent this process. This is a method to estimate the parameters and is 

based on set of assumptions (Bailey et al 1995). The mathematical equation of an 

OLS regression model for multiple explanatory variables is given in equation 2.11. 

 

𝑌 =  𝛼 + 𝛽1 𝑋1 +  𝛽2𝑋2 +  𝛽3𝑋3 
 

Equation 2.11 

 

The OLS regression model can be extended to include multiple explanatory variables 

by simply adding additional variables to the equation. The form of this model is the 

same as with a single response variable (Y), but in the above equation 2.11, Y is 

predicted by multiple explanatory variables (X1 to X3) and for n variables it is X1 to 

Xn (Hutcheson 2011).  

 

The following assumptions should be met for most precise OLS regression (Minitab 

2016): 

 

i) The regression model is linear in the coefficients. Least squares can model 

curvature by transforming the variables (instead of the coefficients). You 

must specify the correct functional form in order to model any curvature. 

ii) Residuals have a mean of zero. Inclusion of a constant in the model will force 

the mean to equal zero. 
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iii) All predictors are uncorrelated with the residuals. 

iv) Residuals are not correlated with each other (serial correlation), have a 

constant variance and are normally distributed. 

v) No predictor variable is perfectly correlated (r=1) with a different predictor 

variable. It is best to avoid imperfectly high correlations (multicollinearity) as 

well. 

 

The common approaches in making sure the above assumptions are met includes 

examining residual plots, using lack of fit tests, and viewing the correlation between 

predictors using the Variance Inflation Factor (VIF).  

 

The simplicity of the model makes it appropriate as a starting method; however there 

are certain limitations for this model. OLS results are only accurate if the data and 

the regression model satisfies all the assumptions inherently required by this method. 

This method cannot be efficient when variables have same values.  The results of an 

OLS regression depend on the spatial autocorrelation and statistically significant 

spatial autocorrelation of regression residuals almost always indicates one or more 

key explanatory variables are missing from the model. The main limitation of the 

OLS analysis is that the results cannot be mapped. When misspecification is the 

result of trying to model non-stationary variables using a global model (OLS is a 

global model), then Geographically Weighted Regression may be used to improve 

predictions and to better understand the non-stationarity (regional variation) inherent 

in the explanatory variables (ESRI 2013). 

2.3.8.2 Geographically Weighted Regression (GWR) 

 

For any spatial analysis, knowledge regarding the extent of spatial association in the 

data is very important (Getis et al 1996). There are tools being used such as Moran’s 

I and Geary’s C to determine the spatial association of the variables, however it is 

necessary to acquire a technique to measure the spatial dependency of local statistic. 

Correlation and regression techniques are often used in investigating the 

relationships between the events and their influencing factors (Haining 1998, Seng 

2005). GWR measures the spatial dependency i.e. non-stationary in a dataset and 

summarises relationship between the explanatory variables by local regression 
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parameters (Fotheringham et al 2002).  It is a multivariate approach to analysing 

spatial data (Fotheringham et al 2002, Brunsdon et al 1996). 

 

Mathematical and Statistical Algorithm 

GWR technique is easily understood because of its traditional regression based 

framework and it is an extension of global multiple regression - OLS. GWR analysis 

is always an improvement (Malczewski 2004) over the global regression analysis 

(OLS). The mathematical equation for this regression model is given in equation 

2.12. 

 

𝑦𝑖 =  𝑎0(𝑢𝑖, 𝑣𝑖) +  ∑ 𝑘 𝑎𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 +  ∑ 𝑖 

Equation 2.12 

 

 Where (ui,vi) represents the co-ordinates of the i-th point in space and ak(ui,vi) is a 

realisation of the continuous function ak(u,v) at the point i (Fotheringham et al 1997, 

Charlton et al 2006). The global model is considered as a special case of GWR 

model, where the parameter surface is assumed to be constant over space. In GWR 

model calibration, observed data near to point i have more influence than the data 

located farther from i, in the estimation of the ak(ui,vi)’s. The weighted least squares 

provide basics for understanding of GWR operation. Algebraically, the GWR 

estimator is given in equation 2.13.  

 

𝑎(𝑢𝑖, 𝑣𝑖) = (𝑋𝑡𝑊(𝑢𝑖, 𝑣𝑖) 𝑋)−1𝑋𝑡𝑊(𝑢𝑖, 𝑣𝑖)𝑦 
 

Equation 2.13 

 

 Where W(ui,vi) is an n by n matrix for which the off-diagonal elements are zero and 

the diagonal elements denote the geographically weighting if the observed data of i 

(Charlton et al 2009). X
t 

W(ui,vi) y is the geographically weighted variance-

covariance matrix and y is the vector of the values of the dependent variable. The 

statistical interference of GWR model helps us to determine whether an observed 

pattern is due to random variation or a true spatial trend in the local model.  
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GWR technique is able to assess error residuals by comparing the measured and 

predicted values. Residuals for location without the measured data and the associated 

confidence information are provided through the goodness of fit statistics (R-Squared 

value). In global regression models, such as OLS, results are unreliable when two or 

more variables exhibit multicollinearity. GWR builds a local regression equation for 

each feature in the dataset. If the values in the model for a particular explanatory 

variable cluster spatially there will be problems with local multicollinearity. If 

categories cluster spatially, there is strong risk of encountering local multicollinearity 

issues and results in the presence of local multicollinearity are unstable. A regression 

model is considered misspecified if it has a missing a key explanatory variable and it 

is recommended to identify this variable (using OLS). A model is misspecified if 

there is statistically significant spatial autocorrelation among the regression residuals 

and/or unexpected spatial variation among the coefficients of one or more 

explanatory variables (ESRI 2016).  

 

Testing and Visualization 

The results of GWR can be evaluated by monte-carlo simulation test. The tests will 

determine the significance level of the GWR model. Visual Representation of 

geographical distribution is referred as mapping and disease mapping is the 

representation of disease locations and summary/statistics for a specific group of 

individuals in their geographical distribution (Lawson et al 2001) and they may 

reveal important patterns (Elliott et al 2004). The possibility of visual representation 

of the results is an added advantage for GWR technique.  

 

2.3.9 Geographical Information Systems (GIS) in Epidemiology 

 

Use of GIS technology in epidemiological and public health studies gained 

momentum after researchers started using it for more than visual representations i.e. 

maps. Apart from the statistical analysis, epidemiologists have traditionally used 

maps to analyse the relationship between location, environment and disease. GIS, 

especially in the last decade emerged as an innovative, important and even essential 

tool in epidemiology due to its capabilities in studying the above mentioned 

relationships as well as spatial analysis and visualization capabilities. As GIS 
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involves a lot of interdisciplinary work, the appropriate methods remain as the 

important part of the research. There are a number of famous researches that 

contributed in finding out the key issues in the cases of deadly diseases such as 

cholera, malaria, rabies, dengue fever and other infectious and non-infectious 

outbreaks around the world.  

 

GIS applications in spatial epidemiology and disease surveillance range from, but not 

limited to monitoring vector-borne diseases, chronic disease (Beck et al 1994, 

Muttitanon et al 2002, Ali et al 2003, Seng et al 2005, CDC GIS 2012), identification 

of high risk locations and populations (Bithell 2000, Baum et al 2010), addressing 

community health problems such as cancers incidence (McCall et al 2003) and 

studying healthcare services accessibilities and planning (Luo et al 2003). A research 

survey conducted on the studies of HeVes in the south-western United States 

revealed that exploring the virus spreads in an epidemiological aspect with targeted 

study helped the public health officials in reducing the risk of infections by 

forecasting the locations and their future outbreak occurrence levels. These 

researches are categorised as cost effective long run theories (Calisher et al 2006).  

Public health studies, disease mapping and monitoring programs started to employ 

GIS technology to observe the spatio-temporal patterns and make policy implications 

(Perry 1994, Han et al 2003, Wiafe et al 2007). 

 

A research on malaria in Kenya led to an outcome that suggested that the climate 

affects the transmission of the disease. This research incorporated climate-based 

statistical model and provided a basis for an estimate of the annual morbidity and 

mortality burden in children (Snow et al 1998). This was a great outcome for a 

rational disease control. Another study used GIS to map three different diseases – 

HIV, tuberculosis and malaria in Africa. The study observed the general trends of the 

diseases and their impact on the public health services in Africa. The study was 

carried out as part of health planning and management strategy and they employed 

exploratory data analysis for their study (Tanser et al 2002). 

 

GIS is used as a management and policy implication tool to make decisions on the 

allocation of the resources, prioritization of control areas, planning and management 

of field operations for African animal trypanosomosis in sub-saharan Africa. Various 
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aspects such as abundance, distribution and mapping were studied using GIS. The 

research was conducted on local and national level to make sure the policies are 

technically feasible (Hendrickx 2001). A Bayesian geo-statistical model has been 

developed to predict the intensity of the infection with Schistosoma Mansoni in East 

Africa, a parasite disease. To study the morbidity, the study combined the data of 

school children and environmental data for the identification of risk factors. It 

explained the geographical heterogeneity in infection intensity and developed a 

predictive map (Clements et al 2006). Various studies were conducted on the 

neglected tropical diseases such as Chagas in South America, human African 

trypanosomiasis, leishmaniasis, lymphatic filariasis, onchocerciasis, schistosomiasis, 

soil-transmitted helminthiasis and trachoma by Brooker et al (2007). The main aim 

of their research was to study different parasite species in varying transmission 

settings for an improved understanding of spatial risk factors, behavioural, 

demographic and epidemiological risk factors. This research was planned to serve as 

a guide for regional and national level integrated disease control. Authors stated that 

the geo-spatial techniques needs attention to make them go hand-in-hand with public 

health studies (Brooker et al 2007). 

 

Descriptive epidemiological analysis study using GIS of the cholera outbreaks in 

Abeokuta, Nigeria by Shittu et al (2010) revealed that the municipal water 

consumption was found to be associated with illness. The epidemiological 

surveillance data showed a total of one hundred and fifteen cases and 11 deaths with 

case fatality rate of 9.6%. The age group of 15 years and above accounted for 68.3% 

of the cases and 90.9% of the deaths. The post epidemic environmental investigation 

showed progressive contamination along distribution points. The study states that 

cholera is still a major cause of morbidity and mortality among youth and ageing 

population in Nigeria.  

 

Eisen et al (2010) discussed the advances in mapping and GIS technologies and their 

progress in the fields of spatial and space-time modelling in preventing and 

controlling emerging vector-borne diseases. The benefits of spatial and space-time 

risk modelling mentioned in the study includes identification of risk patterns for 

exposure to vectors and vector-borne pathogens, and an improved understanding of 

how socioeconomic and environmental factors affect the vectors and influence 
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transmission of their associated pathogens. The study has found that the GIS-based 

spatial and space-time risk modelling have proven effective tools to develop risk 

surfaces (maps) to inform policy makers, control programs, and the public. The study 

emphasized on the moving of GIS technology and modelling approaches from the 

research arena into operational vector and disease control programs. 

 

A case study by Lessler et al (2016) revealed that the global clustering statistics are 

an important tool for spatial analytics that can be used to better understand the 

transmission of an infectious disease. The τ-statistic presents one approach for 

measuring the global clustering and has an easy interpretation. It overcomes 

challenges encountered when analysing infectious disease data. The authors stated 

that the τ-statistic provides a valuable tool to capture spatial dependence in 

epidemiological terms but it should be used alongside existing measures of spatial 

dependence, in particular as it provides a qualitatively different tool to other 

approaches. Grabowski et al (2014) analysed the dynamics of HIV transmission in 

Uganda using spatial clustering statistics technique. The results suggested that the 

frequent HIV introductions into communities play a critical role in ongoing HIV 

incidence and showed limited spatial clustering of HIV cases outside of households, 

multiple circulating HIV viruses within communities, and a significant proportion of 

incidence resulting from extra-community partnerships. 

 

Field et al (2015) studied the spatio-temporal aspects of HeV infection in eastern 

Australia. The study aimed to identify the key spatial and temporal factors associated 

with excretion in flying foxes over a 2300 km gradient from northern QLD to 

southern NSW which encompassed all known equine case locations to improve 

spillover risk prediction and exposure risk mitigation strategies, and thus better 

protect horses and humans. This study employed a generalised linear model to 

investigate spatiotemporal associations with HeV detection in 13,968 samples from 

27 roosts. A non-linear relationship was identified between the mean HeV excretion 

prevalence and five latitudinal regions. The study successfully identified the highest 

HeV positivity in the areas with black or spectacled flying foxes and nil to very low 

positivity rates occurred in exclusive grey-headed flying fox roosts. Little red flying 

foxes were significantly not related to the source of virus. The study also identified a 
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consistent and strong relationship between winter seasonality and the virus excretion 

in southern QLD, northern NSW and central NSW regions.  

 

Smith et al (2014) investigated the flying fox species density as a possible spatial risk 

factor for HeV infection in horses in eastern Australia. The study aimed to inform the 

risk mitigation by identifying spatial and environmental risk factors for equine 

infection using multiple analytical approaches to investigate the relationship between 

plausible variables and reported HeV infection in horses. The study employed 

techniques such as spatial autocorrelation, Getis-Ord Gi* and geographically 

weighted regression. The study showed black and spectacled flying foxes are 

strongly positively correlated to equine case locations, suggesting these species are 

more likely a source of infection of HeV for horses. The horse density, climate and 

vegetation variables were not found significant risk factors in the study. However, 

the authors advised that their GWR model suggests additional unidentified risk 

factors exist at the property level.  

 

McCallum’s (2016) research concentrated on developing models that will enable 

prediction of flying fox colony dynamics, patterns of high prevalence and intensity of 

HeV infection in such colonies, and the subsequent risk of transmission of HeV to 

horses. A spatial model of flying fox colony dynamics was developed and it detected 

the evidence that ‘pulses’ of HeV activity in south east QLD are associated with 

colony size, which in turn can be predicted using remotely sensed satellite data. The 

research suggests that the models will be based on data analysis of flying fox colony 

sizes through time and also with the information on dynamics of prevalence of 

infection at a colony level.  

 

A research on emerging infectious diseases is conducted to understand their effect on 

socio-economic, environmental and ecological factors of 315 diseases emerged 

during 1940 and 2004 found that there are significant correlations with the above 

factors and based on those, it is estimated that the hotspot regions could be identified. 

The research concluded with a message that global resources to counter disease 

emergence are poorly allocated (Jones et al 2007). Another case study on the 

infectious diseases across New Brunswick, Canada and Maine, USA, showed the 

effectiveness of surveillance system and cross-border visualization, analysis and 
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sharing of the disease information through interactive maps via distributed network.  

This project developed service oriented architecture for online disease mapping that 

is interoperable. The output of this research is a strong message that the development 

of standard health services and spatial data infrastructure can enhance the efficiency 

of the health surveillance (Gao et al 2008). A case study on forecasting disease for 

increased preparedness talked about the modelling of the diseases based on the 

statistical relationships established between past case numbers and environmental 

predictors (Myers et al 2000). It mentioned that a wide possible range of 

environmental and other factors should be considered as there are high chances that 

these relationships would persist into the future.  These models can be extremely 

powerful and the reason why diseases like cancer adopted statistical route.  

 

The large volume of literature relating to the use of GIS for medical geography 

purposes includes but not limited to Albert et al (2000), Cromley et al (2002), 

Bazemore et al (2003), Jerrett et al (2003), Kaushal et al (2003), and Busgeeth et al 

(2004). The last aforementioned studied the epidemiological issues in conjunction 

with GIS. Although there are several GIS applications for epidemiological 

applications (Colak 2005, Ulugtekin et al 2007), there is always a need for proper 

model which can investigate the significant factors of the disease. Disease mapping, 

location analysis, spatial statistics and modelling are very well supported by GIS, but 

there is pressing need to develop an analysis tool that can appropriately conducts 

fore-epidemiological research and analysis (Ogbonna 2012).  

2.3.10 Summary  

 

The ability of GIS to integrate and manipulate complex data has emerged it as a 

powerful tool in epidemiological studies. Use of GIS technology in epidemiological 

and public health studies gained momentum after researchers started using it for 

more than visual representations i.e. maps. GIS in epidemiology has been 

tremendous in understanding the disease in a different dimension. With the 

assistance of this powerful tool, the disease clusters could be identified and other 

influencing factors such as environmental, socio economic and climatic could be 

linked to the diseases. While geographical visualization serves the need to reveal the 

spatial patterns, the statistical awareness in GIS determines the significance of these 
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patterns. GIS technology is being widely used for disease monitoring, research 

hypotheses generation and identifying populations at risk for its high capability in 

data interpretation, manipulation and modelling (Seng et al 2005, Gupta et al 2003).  

It serves as an effective tool for spatial analysis, modelling and visualisation of 

epidemiological and environmental data; and recent studies have shown significant 

and increasing use of GIS applications in public health and epidemiology (Shittu et al 

2010, Busgeeth et al 2004 and Gupta et al 2003). The powerful analytical modelling 

and mapping capabilities of GIS can serve as a good decision-support and decision-

making tool for disease investigations, monitoring, simulation, predictions, 

preventions and resource allocations (Davenhall 2002). 

 

In summary, spatial and ecological data together with epidemiological data can 

enable a new potential to analyse the variables which play an important role in 

disease transmission and discovering underlying spatial patterns. This is essential for 

health service planning, policy implications, decision making and ongoing disease 

surveillance. GIS in epidemiology enables the researchers to isolate the high disease 

prevalence areas, identify the population at-risk, resource and budget allocations In 

the case of rare disease outbreaks like HeV, GIS would be perfect as a tool to 

identify the main causes (geographical, environmental and other factors) of outbreaks 

for disease monitoring. This would help in developing prediction models and 

generating warning systems in the study area. The next chapter discusses the 

epidemiology data and study area for the research of HeV outbreaks investigation in 

Australia. A detailed methodology from data preparation, integration and 

management to spatial analysis, modelling, mapping and predictions is covered in 

chapter three.  
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3. Chapter Three – Methodology 

3.1 Introduction 

 

This chapter details the study area chosen and the data collected to study the HeV 

outbreak events. Data plays a major role in any information systems related research. 

This section provides all the necessary information in regards to the data collected 

from various resources, how it was manipulated and managed to achieve the results. 

The spatial analyses, modelling and visualization techniques employed in this study 

are discussed in detail in this chapter. The methodology used to accomplish the 

research aim, questions and objectives described in chapter 1 are discussed in the 

following sections. In general, this chapter covers the spatial techniques and 

regression analysis of HeV outbreaks and its influential factors in the study area.   

3.2 Study Area 

 

The study area for this research is limited to south east Queensland (SEQ), Australia. 

The area is chosen based on the data resources available and the time frame for a 

detailed study on the HeV outbreaks and its influential factors. SEQ is a 

geographical, political and administrative region of the Queensland State, Australia 

(Department of Environment and Energy 2013). The population of SEQ is estimated 

at 3.4 million, which is majority of the Queensland state’s population (Queensland 

Treasury 2011). SEQ extends 240 kms from Noosa in the north to the Gold Coast, 

New South Wales border in the south, and 140 kms west to Toowoomba. The area 

covers up to 22,420 sq. kms and consists of 11 local government areas. Figure 3.1 

shows the Queensland Map with an inset map showing the SEQ region.   
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SEQ is considered as the economic, social and cultural hub of Queensland, which has 

been a subject to sustained high levels of growth since the early 2000s (Department 

of Infrastructure, Local Government and Planning (DILGP) 2017). 

 

According to the DILGP (2017), the South East Queensland Regional Plan includes 

the local government areas of: 

Figure 3.1: Map of Queensland with an inset map showing SEQ region. 
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i) Brisbane City Council 

ii) City of Gold Coast Council 

iii) Ipswich City Council 

iv) Lockyer Valley Regional Council 

v) Logan City Council 

vi) Moreton Bay Regional Council 

vii) Noosa Shire Council 

viii) Redland City Council 

ix) Scenic Rim Council 

x) Somerset Regional Council 

xi) Sunshine Coast Council 

xii) Toowoomba Regional Council (Part of) 

 

The major cities in SEQ region include Brisbane, Gold Coast and Sunshine Coast. 

The Toowoomba city is included in both SEQ region and within Western Downs 

region due to its importance in both regions as a gateway city providing access to the 

west of the state. The Toowoomba city was excluded from the study due to the 

availability of limited data. Some government entities (State Library of Queensland, 

Queensland Water Information etc.) does not include Toowoomba city as part of 

SEQ region in their data sets regardless of its inclusion in the regional plan (2009), 

which made it challenging to obtain the relevant data with Toowoomba city included 

for the study. Figure 3.2 shows the map of the study area and the local councils in the 

region. 
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Figure 3.2: Map of the study area and the local councils in the region. 

3.3 Data Collection, Processing and Integration  

 

3.3.1 Data Collection 

 

The data required for this research was collected from various sources. Once the data 

was collected, it was manipulated and integrated into the GIS system. Spatial data 

usually consists of administrative boundaries, point/vector data (longitude and 

latitudes), remote sensing imagery (raster data) and topographic maps. This research 

used a combination of both vector and raster datasets. The data without any spatial 

reference to it is known as aspatial data. Table 3.1 summarizes the major data sets 

used in this research.  
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Table 3.1: Summary of the major data sets obtained. 

 

Data Format Source Year Obtained 

HeV Outbreak 

Incidents 

Excel Queensland Centre 

for Emerging 

Infectious Diseases 

2014 – Data 

Sharing 

Agreement 

Registered 

Equine Properties 

Excel Queensland Centre 

for Emerging 

Infectious Diseases 

(DAFF) 

2014 – Data 

Sharing 

Agreement 

Flying Foxes Data Excel Department of 

Environment and 

Heritage 

Protection, 

Queensland 

2014 – Data 

Sharing 

Agreement 

Queensland 

Administrative 

Boundary 

Shapefile 

(Vector) 

Queensland 

Government Data 

2014 

Queensland Local 

Government 

Areas 

Shapefile 

(Vector) 

Queensland 

Government Data 

2014 

Major Vegetation 

Groups 

Raster 

(Scale: 1:250k) 

Department of the 

Environment and 

Energy 

2015 

Major Vegetation 

Subgroups 

Raster 

(Scale: 1:250k) 

Department of the 

Environment and 

Energy 

2015 

 

The vegetation data obtained consists of the raster data for the whole of Australia. 

The major vegetation groups (MVG) and major vegetation subgroups (MVS) data for 

the SEQ has been extracted from the above datasets. Department of Environment and 

Energy states that the information is based on the data in the National Vegetation 

Information System, other mapped vegetation information, expert advice and key 

references in regards the dataset’s accuracy. The grid size was calculated by default 

in ArcGIS ‘Spatial Analyst’ during the analysis based on the original resolution. 

ESRI highly recommends the usage of the in-built grid size calculator formula for the 

third-party datasets. Apart from the major data sets defined above, the other data 

(aspatial) such as foraging range, pregnancy/birth periods and other relevant 

information has been obtained from Wildlife Queensland (2016) and has been 

appropriately cited where relevant. Figure 3.3 shows the flowchart of the GIS 

database creation for the research.  
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Data Collection 

Spatial Data (see Table 

3.1) 

Aspatial Data 

(Foraging Range, 

Pregnancy Period of 

flying foxes etc.) 

Linked 

Data Processing – data extraction, 

verification, geo-referencing and 

importation 

GIS Database 

Figure 3.3: GIS database creation workflow. 
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3.3.2 Data Processing and Integration 

 

This section details the data processing and integration steps undertaken for the 

study. The HeV incident data, flying fox data and equine data used in this are 

explained.  

 

HeV Incidents Data 

 

In total, 11 outbreak incidents occurred between the years 2006-2011 were 

considered in this study. An additional 3 outbreak events that occurred in the year 

2012 were included in the vegetation analysis. Table 3.2 shows the outbreak 

incidents studied. The incident that occurred in the year 1994 in the suburb of 

Brisbane was not included in the study considering the relevance of the current flying 

fox data to it.  

 

Figure 3.4 shows the HeV outbreak events in the study area considered for the 

research. For a full list of outbreak events provided by Queensland Centre for 

Emerging Infectious Diseases, see Appendix 1. 

 

Table 3.2: HeV outbreak incidents considered in the study. 

 

Year of Occurrence Month of Occurrence Place of Occurrence 

2006 June Peachester 

2008 June Redland Bay 

2010 May Tewantin 

2011 June Logan Reserve 

2011 June park Ridge 

2011 June Boonah-Mt. Alford 

2011 June Beaudesert-Biddaddaba 

2011 July Beaudesert-Kerry 

2011 July Boondall 

2011 August Gold Coast-Hinterland 

2011 October Beachmere 
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Figure 3.4: HeV outbreak events in the study area. 

 

 

Flying Fox Data 

 

The flying fox data contained detailed information about the size of each camp, 

species information and the type of the roosting site. There are approximately, 5,200 

roosting sites in Queensland. The flying fox camps were categorized into six types - 

permanent continuous use, permanent seasonal use, temporary occupied, temporary 

unoccupied, abandoned and destroyed. Abandoned and destroyed roosting sites were 

excluded from the study with most of sites having no flying fox population. Based on 

our three-year observation, local foxes remain in the same camp site all year round. 
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Nevertheless, the data was carefully selected and edited for the analysis making sure 

there is a presence of all three species in each site in significant numbers and 

reflecting the occupancy at the time of the incidents.   

 

 Table 3.3 gives a detailed description of the above categories of the flying fox 

roosting site status. 

Table 3.3: Flying Fox roosting sites status description (Source: EHP 2014). 

 

Camp type Status Description 

Permanent continuous use 

 
90% of all records include the 

presence of flying foxes 

Roost has been known for 2 

years or more 

Seasonal 80% of all records include the 

presence of flying foxes 

Roost has been known for 2 

years or more 

Temporary 

 

Occupied 

 
Roost doesn’t satisfy 

permanent classification. Most 

recent record includes the 

presence of flying foxes 

Unoccupied 

 
Roost doesn’t meet 

permanent/abandoned/ 

destroyed category. Most 

recent record has absence of 

flying foxes 

Abandoned - Roost on database but no 

record of use in the last 5 

years 

Destroyed - This would be manually 

entered based on the 

vegetation being destroyed 

either legally or illegally 

 

Figure 3.5 shows the flying fox roosting sites in the study area. Figure 3.6 shows the 

statuses of the flying fox roosting sites present in the study area. For detailed 

information on the flying fox roosting sites see Appendix 1.  
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Figure 3.5: Flying fox roosting sites by species in the study area. 

 

Figure 3.6: Flying fox roosting site statuses in the study area. 
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Equine Data 

 

There are 16,986 registered equine properties in the study area. Figure 3.7 shows the 

registered equine properties in the study area.  

 

 

 

Figure 3.7: Registered equine properties in the study area. 

 

As there were a total of 16,986 registered equine properties in the study area, a 

sample was chosen for the study. Using the geoprocessing tools in ArcGIS - buffer 

and clip, the data of the properties within 10 Km range from the outbreak events in 

the study area was extracted. There were 4,082 registered properties in this range. A 

further sample of 200 random properties (5% approximately; 1:13 outbreak event 

and equine property ratio) were selected across the study area for a detailed study. 

Figure 3.8 shows the registered equine properties sample chosen for a detailed study.  
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Figure 3.8: Registered equine properties sample. 

 

 

Vegetation Data 

 

The raster data sets of major vegetation groups and major vegetation subgroups were 

obtained for Australia. Using geoprocessing tool – extract by mask, the raster data 

sets for SEQ were cropped according to the study area boundary. MVG data set has 

been used for referencing purposes whereas MVS data set has been used for a 

detailed vegetation study. Figure 3.9 (a) and (b) shows the major vegetation groups 

and major vegetation subgroups in the study area. For full legend of both MVG and 

MVS of the data sets, see Appendix 1. There are 20 major vegetation groups and 28 

major vegetation subgroups in the study area.  The full list of these groups and 

subgroups is included in Appendix 1. 
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Figure 3.9: MVG and MVS in the study area. 

 

Data Processing of Aspatial Data 

 

Each flying fox roosting site (spatial data) in the study area was assigned with 

individual species density, average foraging range of the camp, approximate 

pregnancy/birth period of the camp and an incident rate (aspatial data). In this way, 

the aspatial data was linked to the spatial data for analysis. The flying fox species 

density, average foraging range and the pregnancy/birth period statistics (average 

pregnancy plus lactation period at individual roost) were calculated manually for 

each roosting site using the flying-fox population and species attribute data. The 

information used to calculate the average foraging range and pregnancy period for 

the analysis are based on the flying-foxes fact sheet from wildlife preservation 

society of Queensland (Wildlife Queensland 2016, see section 2.2.3). Each flying fox 

roosting site in the study was assigned an ‘incident rate’ for the regression analysis. 

This was calculated using the number of incidents present with in the 20 kms range 

of each site. To view the calculated data see Appendix 1. 
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Flying foxes species density was calculated using the equation 3.1.  

 

 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = (

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑟𝑜𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑦𝑖𝑛𝑔 𝑓𝑜𝑥𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎
) ∗ 100 

 

 Equation 3.1 

.  

 

The average foraging distance (in kms) of each site was calculated by equation 3.2.  

  

 

𝐴𝑣𝑔. 𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒

= ((𝑆𝑝𝑒𝑐𝑖𝑒𝑠 1 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑡ℎ𝑒𝑖𝑟 𝑎𝑣𝑔. 𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒)

+  (𝑆𝑝𝑒𝑐𝑖𝑒𝑠 2 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑡ℎ𝑒𝑖𝑟 𝑎𝑣𝑔. 𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒)

+ (𝑆𝑝𝑒𝑐𝑖𝑒𝑠 3 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑡ℎ𝑒𝑖𝑟 𝑎𝑣𝑔. 𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒))/3 

 

Equation 3.2 

 

The average pregnancy period (in days) of each site was calculated using equation 

3.3. 

 

 

 𝐴𝑣𝑔. 𝑃𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 𝑃𝑒𝑟𝑖𝑜𝑑 

=  ((𝑆𝑝𝑒𝑐𝑖𝑒𝑠 − 1 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

∗  𝑡ℎ𝑒𝑖𝑟 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 𝑎𝑛𝑑 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑)  +  (𝑆𝑝𝑒𝑐𝑖𝑒𝑠

− 2 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗  𝑡ℎ𝑒𝑖𝑟 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 𝑎𝑛𝑑 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑)  

+  (𝑆𝑝𝑒𝑐𝑖𝑒𝑠 − 3 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

∗  𝑡ℎ𝑒𝑖𝑟 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 𝑎𝑛𝑑 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑))/3 

 

Equation 3.3 
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The incident rate for each roosting site was calculated using equation 3.4. 

 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 

=  (
(𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 20 𝑘𝑚𝑠 𝑟𝑎𝑛𝑔𝑒) ∗ (𝑓𝑙𝑦𝑖𝑛𝑔 𝑓𝑜𝑥 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

11
)

∗ 100 

 

Equation 3.4 

 

 

Data Verification 

 

The quality of the data was validated through filtering the null values, duplicates and 

any repeats. For spatial data, ArcGIS was used to verify the above and for aspatial 

data, Microsoft Excel was used. Data aggregation was performed at various levels 

depending on the application in the study. The spatial data was appropriately 

projected using ArcGIS. The maps were projected using ‘The Geocentric Datum of 

Australia (GDA)’. The raster data sets of the imagery were geo-referenced according 

to the ground control points. 

3.4 Flying Fox Roosting Site Visits 

 

It is important to have knowledge on the flying foxes, their roosting sites and their 

preferred living conditions to carry an in-depth analysis. To gain some additional 

knowledge and do some fact checking, two roosting sites in the study area were 

visited. The names of the sites are Loders Creek and Cascade Gardens. They are 

located on the Gold Coast, Queensland. Site 1 – Loders Creek is a natural bat colony 

and Site 2 – Cascades Gardens colony is a part of flying fox revegetation project.  
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Site 1 – Loders Creek 

 

Loders Creek is a suburban area of Southport. The flying fox colony at the Loders 

Creek consists of all three species that occurs in the study area. Figure 3.10 shows a 

view of the site 1 location and figure 3.11 shows the statistics of the Loders Creek 

flying fox colony obtained from the Department of the Environment’s National 

Flying Fox Monitoring Viewer (2017). 

 

 

 

 

Figure 3.10: Flying fox colony location - site 1. 
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Figure 3.11: Loders Creek flying fox colony statistics (Source: Department of the 

Environment 2017). 

Loders Creek flying fox colony is considered large with an estimated 30,000 flying 

fox population. Recently, the residents of the Southport has complained to the Gold 

Coast City Council as the colony being a nuisance to the area with constant noise and 

bat dropping in the yards and driveways. However, the colony is yet to be relocated 

due to its size (Gold Coast Bulletin 2016). Figure 3.12 shows the flying foxes in the 

Loders Creek. 
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Figure 3.12: Flying foxes in Loders Creek (Source: Gold Coast Bulletin 2016).  

 

 

 

Figure 3.13: Loders Creek flying fox colony view. 

Figure 3.13 shows a distant view of the flying fox colony at Loders Creek. The flying 

foxes in this colony are spread over a wide area on both tall and short vegetation. The 

vegetation appeared to be rainforest type with a great access to water (alongside the 

creek). 
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Figure 3.14: A closer view of the flying foxes in the Loders Creek colony. 

 

Figure 3.14 shows a closer view of the flying foxes in the Loders Creek colony 

which was backed on to a residential property. There were a lot of droppings of these 

flying foxes in the backyard of the property. There was an abundance of food sources 

available in the vegetation, mainly the native fruiting trees. A sample count of these 
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trees in an area of 200 square metres has revealed a total of 31 native fruiting trees in 

this colony location.  

 

Site 2 – Cascades Gardens 

 

Cascades Gardens fluing fox colony is part of the award-winning Cascades Gardens 

Flying Fox Revegetation Project 2004-2006. It is located on the southern end of the 

Surfers Paradise in a popular park. The colony consists of two species that occurs in 

the study area. In recent years the roosting site had deteriorated to such a degree that 

many individuals were starting to relocate to the public recreation areas of the park. 

This project was created and administered by the Bat Rescue team (Bat Rescue Inc. 

2017).  

 

A grant of $16,000 was obtained through Threatened Species Network for on ground 

works. Additional support was received from Jupiters Ltd, Wildlife Preservation 

Society QLD, Queensland Parks and Wildlife Service (Southern Region), Gold Coast 

City Council and DDW Fauna.  The total value of the project, including the 

additional support was approximately $100,000 (Bat Rescue Inc. 2017). 

 

A GOLD GECKO AWARD was received by Bat Rescue Gold Coast Branch for this 

project from the Gold Coast and Hinterland Environment Council in December 2006. 
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Figure 3.15: Cascades Gardens flying fox colony statistics (Source: Department of 

the Environment 2017). 

 

Figure 3.15 shows the Cascades Gardens flying fox colony statistics provided by the 

Department of the Environment’s National Flying Fox Monitoring Viewer. The 

colony had a resident population of approximately 5,000 flying foxes including 

Black and Grey-headed flying fox species. But, in the recent years the roosting site 

had deteriorated to such a degree that many of these individuals were starting to 

relocate to the public recreation areas of the park (Bat Rescue Inc. 2017). 

 

 



  

99 | P a g e  
 

 

 

Figure 3.16: A view of flying foxes in the Cascades Gardens colony. 

 

Figure 3.16 shows a view of the flying foxes in the Cascades Gardens colony. The 

flying foxes were widely spread in several areas of the park as mentioned by the Bat 

Rescue Inc. (2017). Some flying foxes preferred tall vegetation and some were 

spotted in the dense vegetation. A few flying foxes in this colony were also spotted 

on very low/shorter type of vegetation. Figure 3.17 shows the flying foxes in dense 

vegetation at the Cascades Gardens.  
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Figure 3.17: Flying foxes spotted in the dense vegetation at the Cascades Gardens. 
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Figure 3.18: Vegetation at the Cascades Gardens flying fox colony. 
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Figure 3.18 shows the vegetation that is present at the Cascades Gardens flying fox 

colony. It is mainly the rainforest vegetation; however there was some cleared 

vegetation at other parts of the park.  

 

 

Figure 3.19: Water catchment near the Cascades Gardens colony. 

 

 

 

Figure 3.20: Native Fruits at the Cascades Gardens colony. 
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Figure 3.19 shows the water catchment adjacent with the Cascades Gardens colony. 

Figure 3.20 shows the native fruits at the colony. There was an abundance of food 

sources available for the flying foxes in this colony. A sample count of the native 

fruiting trees in an area of 200 square metres has revealed a total of 44 trees in this 

colony location.  

3.5 Spatial Analyses Methods 

 

This section discusses the spatial analyses methods used to test the hypothesis 

mentioned in section 1.4.  

3.5.1 Buffer Analysis 

 

Buffer analysis is a simple yet important spatial technique used to determine the area 

or features covered within a specified location of a geographic feature. It is available 

in the ‘Analysis Toolbox’ under the ‘Proximity Tools’ in ArcGIS. It creates buffer 

polygons around input features to a specified distance. The output buffer features are 

created from the buffer offsets created by the buffer routine traverses of each input 

feature's vertices (ESRI 2016).  

 

ESRI (2017) mentioned that the important feature of the buffer tool is the Method 

parameter which determines how the buffers are constructed. Euclidean and geodesic 

are the two basic methods available for constructing buffers. The Euclidean buffers 

measure distance in a two-dimensional Cartesian plane. It calculates the Euclidean 

distance between two points on a flat surface. This method is the most commonly 

used and works well for analysing distances around features in a projected 

coordinated system concentrated in a relatively small area. In a projected coordinate 

system with areas where distances and the shape of features are distorted, the 

features are more accurate near the origin of the projection (the centre of the 

state/zone). For a dataset with both low and high distortion areas, the Euclidean 

buffers will be more accurate in the low distortion areas and less accurate in the high 

distortion areas.  
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Geodesic buffers refer to the actual shape of the earth i.e. an ellipsoid or a geoid. In 

this method, the distances are calculated between two points on a curved surface as 

opposed to the Euclidean buffers. These are suitable when the region is fairly 

large/even such as the ‘whole globe’ as the features will be more dispersed. It is also 

more suitable method id the spatial reference of the input features distorts distances. 

The geodesic buffers are best visualized when viewed on a three-dimensional globe. 

The ‘method’ parameter determines the type of buffers created. Planar is the default 

option in ArcGIS, which determines the method to use based on the coordinate 

system of the input features. A gridded coordinate system creates Euclidean buffers 

and a geographical coordinate system creates geodesic buffers if the linear units 

(metres, feet etc.) are specified (ESRI 2017). The Syntax of the buffer analysis is 

described in the Table 3.4. 

 

Table 3.4: The syntax of the buffer analysis in ArcGIS (Source: ESRI 2017). 

 

 

Parameter Explanation Datatype 

Input Features 

(Required) 

The feature layer or feature class to be 

buffered. 

Feature Layer 

Output Feature Class 

(Required) 

The feature class that will be created and 

to which the resulting features will be 

written. 

Feature Class 

Distance [value or 

field] (Required) 

The distance used to create buffer zones 

around Input Features. Either a value or a 

numeric field can be used to provide 

buffer distances. 

If a negative buffer distance is specified, 

the buffer offsets will be generated inside, 

instead of outside, of the input features. 

This is only valid for polygon feature 

classes. 

If the distance units are not specified, or 

entered as 'Unknown', the units of the 

Input Features are used (or if the Output 

Coordinate System environment has been 

set, its units will be used). 

Linear unit  

Field 

Side Type (Optional) Options to buffer to one side of a line or 

outside polygons 

 FULL - A buffer will be generated 

on both sides of the line. If the 

input is a polygon the result will 

include the area inside the 

String 
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polygon. This is the default. 

 LEFT - the buffer will be 

generated on the LEFT side of the 

line. 

 RIGHT - the buffer will be 

generated on the RIGHT side of 

the line. 

 OUTSIDE_ONLY - the area 

inside of the input polygon 

features will excluded from the 

resulting buffer. 

End Type (Optional) For lines, the shape of the buffer at the 

line end points. 

 ROUND—End will be in the 

shape of a half circle. This is the 

default. 

 FLAT—Creates rectangular line 

endings with the middle of the 

short side of the rectangle 

coincident with the end point of 

the line. 

String 

Dissolve Type 

(Optional) 

Specifies whether a dissolve will be 

performed to remove buffer feature 

overlap. 

 NONE—Individual buffer for 

each feature is maintained, 

regardless of overlap. This is the 

default. 

 ALL—Dissolves all the buffers 

together into a single feature and 

removes any overlap. 

 LIST—Dissolves by a given list 

of fields. 

String 

Dissolve Field(s) 

(Optional) 

List of field(s) for the dissolve. Buffer 

polygons that share the same set of values 

in their Dissolve Field(s) will be 

dissolved together. 

Field 

 

Buffer analysis was primarily employed in this study for testing Hypothesis 1 (see 

Section 1.4), which is to understand the correlation between the roosting sites and the 

HeV outbreak events in the study area (Burnham et al 2015). It was utilised to 

examine and visualise the relationship between individual flying fox species 

pregnancy/birth periods and the incidents. It was also employed secondarily in the 

vegetation study to highlight the 10 and 20 kms area from the flying fox roosting 

sites, equine properties and outbreak events for an in-depth analysis. The Euclidean 
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buffer was used as the method parameter in this study. The data used has a gridded 

coordinate system (GDA) and the size of the study area is relatively small, which are 

both suitable for Euclidean buffer method.  

  

3.5.2 Spatial Analyst Tools 

 

The spatial Analyst extension in ArcGIS version 10.3 provides a set of spatial 

analysis and modelling tools for raster (cell-based) and vector (feature) data. ESRI 

(2016) has broken down the capabilities of Spatial Analyst into categories of related 

functionality. Identifying the category based on the need will help in employing the 

particular tool to use. There are a few ways to access the Spatial Analyst 

functionality in ArcGIS. It can be accessed using the tool dialog box, Python or a 

Model (ESRI 2016).  

 

The list of categories available in ‘Spatial Analyst’ is: 

 

i) Conditional 

ii) Density 

iii) Distance 

iv) Extraction 

v) Generalization 

vi) Groundwater 

vii) Hydrology 

viii) Interpolation 

ix) Local 

x) Map Algebra 

xi) Math (general) 

xii) Math Bitwise 

xiii) Math Logical 

xiv) Math Trigonometric 

xv) Multivariate 

xvi) Neighbourhood 

xvii) Overlay 
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xviii) Raster Creation 

xix) Reclass 

xx) Solar Radiation 

xxi) Segmentation and Classification 

xxii) Surface 

xxiii) Zonal 

 

‘Extraction’ category was utilised in this study for the food source vegetation 

analysis of the flying foxes to test Hypothesis 3 (see Section 1.4).  This toolset 

allows extracting a subset of cells from a raster by either the cells’ attributes or their 

spatial location. The cell values for specific locations can also be obtained as an 

attribute in a point feature class or as a table.  Table 3.5 provides summary of the 

tools available in the ‘Extraction’ category of the Spatial Analyst Tools.  

 

Table 3.5: Summary of the tools in the Extraction Toolset – Spatial Analyst (Source: 

ESRI 2016). 

 

Tool Description 

Extract by 

Attributes  

Extracts the cells of a raster based on a logical query. 

Extract by 

Circle  

Extracts the cells of a raster based on a circle. 

Extract by 

Mask  

Extracts the cells of a raster that correspond to the areas 

defined by a mask. 

Extract by 

Points  

Extracts the cells of a raster based on a set of coordinate 

points. 

Extract by 

Polygon  

Extracts the cells of a raster based on a polygon. 

Extract by 

Rectangle  

Extracts the cells of a raster based on a rectangle. 

Extract Multi 

Values to Points  

Extracts cell values at locations specified in a point feature 

class from one or more rasters and records the values to the 

attribute table of the point feature class. 

Extract Values 

to Points  

Extracts the cell values of a raster based on a set of point 

features and records the values in the attribute table of an 

output feature class. 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-attributes.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-attributes.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-circle.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-circle.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-mask.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-mask.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-points.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-points.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-polygon.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-polygon.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-rectangle.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-by-rectangle.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-multi-values-to-points.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-multi-values-to-points.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-values-to-points.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-values-to-points.htm
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Sample  
Creates a table that shows the values of cells from a raster, 

or set of rasters, for defined locations. The locations are 

defined by raster cells or by a set of points. 

The input rasters can be two-dimensional or 

multidimensional. The structure of the output table changes 

when the input rasters are multi-dimensional. 

 

‘Extract by Attributes’ and ‘Extract by Mask’ tools from the above toolset were used 

in this study for the vegetation analysis as they are very useful in extracting 

information from raster data sets. ‘Extract by Mask’ operation was employed to 

extract the major vegetation groups and subgroups information for the study area 

from the original dataset. ‘Extract by Attributes’ tool was used to identify the food 

sources from the vegetation subgroups data of the flying fox species from the dataset 

extracted earlier. Using the query builder, the food sources were isolated using their 

‘ID’ and ‘IN’ clause was used for extracting multiple attributes at once.  

 

3.5.3 Spatial Autocorrelation  

 

Global Moran’s I for spatial autocorrelation tool in ArcGIS was used to measure the 

spatial autocorrelation in this study. It is available in the ‘Analysing Patterns Toolset’ 

in ArcGIS. Spatial clustering serves as a reflection of risk condition of a disease, 

however, it may be affected by common unobserved factors/variables (Lawson et al 

2001) and is best for the initial analysis to detect and analyse the clusters (Wakefield 

et al 2001) at the global level across the study area. The autocorrelation is measured 

by the spatial autocorrelation tool based on both feature locations and feature values 

simultaneously. For a given set of features and an associated attribute, the tool 

evaluates whether the pattern is clustered, dispersed or random. The tool gives the 

Moran’s I Index value and a z-score and p-value to evaluate the significance of the 

Index (ESRI 2017).  

 

The syntax of the spatial autocorrelation tool in ArcGIS is described in table 3.6.  

 

 

 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/sample.htm
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Table 3.6: Syntax of the Spatial Autocorrelation tool in ArcGIS (Source: ESRI 

2017). 

 

Parameter Explanation  

Input Feature Class The feature class for which spatial 

autocorrelation will be calculated. 

Input Field The numeric field used in assessing spatial 

autocorrelation. 

Conceptualization of 

Spatial Relationships 

Specifies how spatial relationships among 

features are defined. 

 INVERSE DISTANCE - Nearby 

neighbouring features have a larger 

influence on the computations for a 

target feature than features that are far 

away. 

 INVERSE DISTANCE SQUARED - 

Same as INVERSE DISTANCE except 

that the slope is sharper, so influence 

drops off more quickly, and only a 

target feature's closest neighbours will 

exert substantial influence on 

computations for that feature. 

 FIXED DISTANCE BAND - Each 

feature is analysed within the context of 

neighbouring features.  

 ZONE OF INDIFFERENCE - Features 

within the specified critical distance 

(Distance Band or Threshold) of a 

target feature receives a weight of one 

and influence computations for that 

feature.  

 CONTIGUITY EDGES ONLY - Only 

neighbouring polygon features that 

share a boundary or overlap will 

influence computations for the target 

polygon feature. 

 CONTIGUITY EDGES CORNERS - 

Polygon features that share a boundary, 

share a node, or overlap will influence 

computations for the target polygon 

feature. 

GET SPATIAL WEIGHTS FROM FILE - 

Spatial relationships are defined by a specified 

spatial weights file. The path to the spatial 

weights file is specified by the Weights Matrix 

File parameter. 
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Distance Method Specifies how distances are calculated from 

each feature to neighbouring features. 

 EUCLIDEAN DISTANCE - The 

straight-line distance between two 

points (as the crow flies) 

 MANHATTAN DISTANCE - The 

distance between two points measured 

along axes at right angles; calculated by 

summing the (absolute) difference 

between the x- and y-coordinates 

Standardization Row standardization is recommended 

whenever the distribution of your features is 

potentially biased due to sampling design or an 

imposed aggregation scheme. 

 NONE - No standardization of spatial 

weights is applied. 

 ROW - Spatial weights are 

standardized; each weight is divided by 

its row sum (the sum of the weights of 

all neighbouring features). 

   

 

The spatial autocorrelation tool was primarily used in testing the Hypothesis 2 (see 

Section 1.4). Inverse distance conceptualization of spatial relationships was 

employed to study the clustering of the flying fox species in the study area. It was 

secondarily employed to test the autocorrelation among the Ordinary Least Squares 

(OLS) and Geographically Weighted Regression (GWR) analysis residuals.  

 

The results of the spatial autocorrelation tool are interpreted within the context of 

null hypothesis. The null hypothesis states that the attribute being analysed is 

randomly distributed among the features in the study area. When the p-value of the 

analysis is statistically significant, the null hypothesis can be rejected.  

 

The interpretations of the spatial autocorrelation results are:  

 

 The p-value is not statistically significant – The null hypothesis may be 

accepted and the spatial distribution of feature values is a result of random 

spatial processes.  

 The p-value is statistically significant and the z-score is positive – the null 

hypothesis may be rejected and the spatial distribution of high/low values in 
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the data set is more spatially clustered than expected if underlying spatial 

processes were random.  

 The p-value is statistically significant and the z-score is negative – the null 

hypothesis may be rejected and the spatial distribution of high/low values in 

the data set are more spatially dispersed than expected if underlying spatial 

processes were random.  

 

3.5.4 Kernel Density  

 

The kernel density tool is available in the density tools category in the Spatial 

Analyst Toolbox ArcGIS (see Section 3.5.2). It is referred as kernel density 

estimation (KDE) technique. The KDE technique is well-suited for analysing data 

visually (Chainey 2010) and serves as a good spatial technique to examine the 

relationships. It calculates magnitude-per-unit area from point or polyline features 

using a kernel function to fit a smoothly tapered surface to each point or polyline. 

The default search radius or bandwidth is calculated based on the spatial 

configuration and the number of input points.  

 

The algorithm used by ArcGIS 10.2.1 or above versions to calculate the default 

search radius or bandwidth for the analysis is as follows (ESRI 2017): 

 

 Calculation of the mean centre of the input points. 

 Calculation of the distance from the (weighted) mean centre for all points. 

 Calculation of the (weighted) median of these distances, Dm. 

 Calculate the (weighted) Standard Distance, SD. 

 Application of the equation 3.5 to calculate the bandwidth.  

 

 

SearchRadius = 0.9 * min (𝑆𝐷, √
1

ln (2)
∗ 𝐷𝑚) ∗ 𝑛−0.2 

 

 

Equation 3.5 
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Where: 

 SD is the standard distance 

 Dm is the median distance 

 n is the number of points if no population field is used, or if a 

population field is supplied, n is the sum of the population field values 

 

The KDE technique was employed in this study to establish the primary relation 

between the flying fox species density and the incidents as part of testing the 

Hypothesis 2 (see Section 1.4) of the study. Using this technique, density hot spot 

maps were created for each species in the study area. The bandwidth for the KDE 

analysis for each species was set at 0.4598 degrees, which was calculated by the 

default search radius (bandwidth) algorithm of ArcGIS. Different bandwidth radii 

were tested (0.22 and 0.68 degrees) in generating the density hot spots but the default 

density calculated by ArcGIS yielded the best output with no errors such as missing 

neighbours (ESRI 2017). 

 

The syntax for the KDE technique in ArcGIS is described in table 3.7.  

 

Table 3.7: Syntax of the Kernel Density tool in ArcGIS (Source: ESRI 2017). 

 

Parameter Explanation Data 

Type 

In features The input features (point or line) for which to calculate 

the density. 

Feature 

Layer 

Population 

field 

Field denoting population values for each feature. The 

population field is the count or quantity to be spread 

across the landscape to create a continuous surface. 

Values in the population field may be integer or floating 

point. 

Field 

Cell size 

(Optional) 

The cell size for the output raster dataset. 

This is the value in the environment if specifically set. If 

the environment is not set, then cell size is the shorter of 

the width or height of the output extent in the output 

spatial reference, divided by 250. 

Analysis 

Cell Size 
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Search 

radius 

(Optional) 

The search radius within which to calculate density. 

Units are based on the linear unit of the projection of the 

output spatial reference. 

The default search radius (bandwidth) is computed 

specifically to the input dataset using a spatial variant of 

Silverman's Rule of Thumb that is robust to spatial 

outliers (that is, points that are far away from the rest of 

the points). 

Double 

 

3.5.5 High/low clustering 

 

The high/low clustering tool measures the degree of clustering of either high or low 

using the Getis-Ord General G statistic. It is available in the ‘Analysing Patterns 

Toolset’. This tool returns four values: Observed General G, Expected General G, z-

score, and p-value. Global statistic such as Getis-Ord General G assesses the overall 

pattern and trend of the data. It is an appropriate method if the values are fairly 

evenly distributed across the study area. As an inferential statistic tool, the results 

produced are interpreted within the context of null hypothesis, which states that there 

is no spatial clustering of feature values. When p value is statistically significant, the 

null hypothesis can be rejected. In case of null hypothesis rejection, the sign of the Z 

score becomes important. If the result is a positive Z score, it indicates that the high 

values are clustered together. If the result is a negative Z score, it indicates that the 

low values are clustered together. 

 

This tool was employed for testing Hypothesis 3 (see Section 1.4), which studied the 

food source vegetation of the flying foxes. It was used to study the clustering of the 

food source vegetation in the study area. Inverse distance conceptualization of spatial 

relationships was used in this analysis. Table 3.8 shows the syntax of the high/low 

clustering tool in ArcGIS. 
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Table 3.8: Syntax of the High/low Clustering tool in ArcGIS (Source: ESRI 2016). 

 

Parameter Explanation Data 

Type 

Input Feature Class The feature class for which the General G 

statistic will be calculated. 

Feature 

Layer 

Input Field The numeric field to be evaluated. Field 

Generate Report 

(Optional) 

NO REPORT - No graphical summary will 

be created. This is the default. 

GENERATE REPORT - A graphical 

summary will be created as an HTML file. 

Boolean 

Conceptualization of 

Spatial Relationships 

Specifies how spatial relationships among 

features are defined. 

 INVERSE DISTANCE  

 INVERSE DISTANCE SQUARED 

 FIXED DISTANCE BAND 

 ZONE OF INDIFFERENCE 

 CONTIGUITY EDGES ONLY 

 CONTIGUITY EDGES CORNERS 

 GET SPATIAL WEIGHTS FROM 

FILE 

String 

Distance Method Specifies how distances are calculated from 

each feature to neighbouring features. 

 EUCLIDEAN DISTANCE  

 MANHATTAN DISTANCE  

String 

Standardization Row standardization is recommended 

whenever the distribution of your features is 

potentially biased due to sampling design or 

an imposed aggregation scheme. 

 NONE  

 ROW  

String 

Distance Band or 

Threshold Distance 

(Optional) 

Specifies a cut-off distance for the inverse 

distance and fixed distance options. Features 

outside the specified cut-off for a target 

feature are ignored in analyses for that 

feature.  

Double 
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The null hypothesis for both the High/Low Clustering (Getis-Ord General G) and the 

Spatial Autocorrelation (Global Moran's I) tool is complete spatial randomness 

(CSR). The values are randomly distributed among the features in the dataset, 

reflecting random spatial processes at work. However, the interpretation of z-scores 

for the High/Low Clustering tool is very different from the interpretation of z-scores 

for the Spatial Autocorrelation (Global Moran's I) tool (ESRI 2017). Table 3.9 shows 

the difference in the interpretation of these results.  

 

Table 3.9: The Difference in the interpretation of High/Low Clustering and Spatial 

Autocorrelation tools (Source: ESRI 2017). 

 

Result High/Low 

Clustering 

Spatial Autocorrelation 

The p-value 

is not statistically 

significant. 

The null hypothesis 

cannot be rejected. 

It is quite possible 

that the spatial 

distribution of 

feature attribute 

values is the result 

of random spatial 

processes.  

 

The p-

value is statistically 

significant, and the z-

score is positive. 

The null hypothesis 

may be rejected.  

The null hypothesis may be 

rejected. The spatial distribution of 

high values and/or low values in 

the dataset is more spatially 

clustered than would be expected if 

underlying spatial processes were 

truly random. 

The p-

value is statistically 

significant, and the z-

score is negative. 

The null hypothesis 

may be rejected.  

The null hypothesis may be 

rejected. The spatial distribution of 

high values and low values in the 

dataset is more 

spatially dispersed than would be 

expected if underlying spatial 

processes were truly random.  
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3.6 Regression Analysis  

 

The Spatial Statistics Toolbox in ArcGIS provides an effective set of tools for 

quantifying spatial patterns such as hotspot analysis and regression analysis. 

Regression analysis tools allows to model, examine, explore spatial relationships, 

explain the factors behind observed spatial patterns in the study area and even predict 

the future events. This study has utilised OLS and GWR regression techniques in 

testing Hypothesis 2 (see Section 1.4). Linear relationships between two variables 

can be either positive or negative but with regression analyses makes an attempt to 

demonstrate the degree to which one or more variables (independent variables) 

potentially promote positive or negative change in other variable (dependent 

variable).  The main terms in the regression analyses are described by ESRI (2016) 

as below: 

 

Dependent variable - this variable represents the process of the subject that is being 

predicted or understood.  

 

Independent/Explanatory variables - these are the variables used to model or to 

predict the dependent variable values.  

 

Regression coefficients – the Regression Coefficients are computed by the 

regression tool. They are values, one for each explanatory variable, that represent the 

strength and the type of relationship the explanatory variable has to the dependent 

variable 

 

P-values - most regression methods perform a statistical test to compute a 

probability, called a p-value, for the coefficients associated with each independent 

variable. The null hypothesis for this statistical test states that a coefficient is not 

significantly different from zero. Small p-values reflect small probabilities and 

suggest that the coefficient is, indeed, important to your model with a value that is 

significantly different from zero.  
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R2/R-squared - Multiple R-squared and adjusted R-squared are both statistics 

derived from the regression equation to quantify model performance. The value of R-

squared ranges from 0 to 100 percent. The adjusted R-squared value is always lower 

than the multiple R-squared values as it reflects model complexity (the number of 

variables). Consequently, the adjusted R-squared value is a more accurate measure of 

model performance. 

 

Residuals - These are the unexplained portion of the dependent variable, represented 

in the regression equation as the random error term ε. The difference between the 

observed y-values and the predicted y-values are called the residuals. The magnitude 

of the residuals from a regression equation is one measure of model fit. Large 

residuals indicate poor model fit. 

 

The common issues that may arise during regression analyses and modelling and 

how they may affect the analysis are described in table 3.10.  

 

 

Table 3.10: Summary of the issues in the modelling of Regression Analyses (Source: 

ESRI 2016). 

 

Issues Reason Solution 

Omitted 

explanatory 

variables 

(misspecification) 

When key explanatory 

variables are missing 

from a regression model, 

coefficients and their 

associated p-values 

cannot be trusted. 

Map and examine OLS 

residuals and GWR coefficients. 

Non-linear 

relationships 

OLS and GWR are both 

linear methods. If the 

relationship between any 

of the explanatory 

variables and the 

dependent variable is 

nonlinear, the resultant 

model will perform 

poorly. 

Create a scatter plot matrix 

graph to elucidate the 

relationships among all variables 

in the model.  Alternatively, use a 

nonlinear regression method. 

Data outliers Influential outliers can 

pull modelled regression 

relationships away from 

their true best fit, biasing 

Create a scatter plot matrix and 

other graphs (histograms) to 

examine extreme data 

values. Correct or remove outliers 

http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-residual-map.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-residual-map.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-gwr-coef-maps.htm
http://desktop.arcgis.com/en/arcmap/latest/map/graphs/scatter-plot-matrix-graphs.htm
http://desktop.arcgis.com/en/arcmap/latest/map/graphs/scatter-plot-matrix-graphs.htm
http://desktop.arcgis.com/en/arcmap/latest/map/graphs/scatter-plot-matrix-graphs.htm
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regression coefficients. if they represent errors.  

Nonstationarity If relationships between 

the dependent and 

explanatory variables are 

inconsistent across the 

study area, computed 

standard errors will be 

artificially inflated. 

The OLS tool in ArcGIS 

automatically tests for problems 

associated with Nonstationarity 

(regional variation) and computes 

robust standard error 

values.  When the probability 

associated with the Koenker test 

is small (< 0.05, for example), the 

statistically significant regional 

variation is present and the robust 

probabilities should be used to 

determine if an explanatory 

variable is statistically significant 

or not.  

Multicollinearity Multicollinearity leads to 

an over counting type of 

bias and an 

unstable/unreliable 

model. 

The OLS tool in ArcGIS 

automatically checks for 

redundancy. Each explanatory 

variable is given a computed VIF 

value. When this value is large (> 

7.5), redundancy is a problem and 

the offending variables should be 

removed from the model or 

modified by creating an 

interaction variable or increasing 

the sample size.  

Inconsistent 

variance in 

residuals 

When the model predicts 

poorly for some range of 

values, results will be 

biased. 

The OLS tool in ArcGIS 

automatically tests for 

inconsistent residual variance 

(called heteroscedasticity) and 

computes standard errors that are 

robust to this problem. When the 

probability associated with the 

Koenker test is small (< 0.05, for 

example), the robust probabilities 

must be used to determine if an 

explanatory variable is 

statistically significant or not. 

Spatially auto-

correlated 

residuals 

When there is spatial 

clustering of the under-

/over predictions coming 

out of the model, it 

introduces an over 

counting type of bias and 

renders the model 

unreliable. 

Run the Spatial 

Autocorrelation tool on the 

residuals to ensure they do not 

exhibit statistically significant 

spatial clustering. Statistically 

significant spatial autocorrelation 

is almost always a symptom of 

misspecification (a key variable is 

missing from the model). 

Normal 

distribution bias 

When the regression 

model residuals are not 

normally distributed with 

The OLS tool in ArcGIS 

automatically tests whether the 

residuals are normally distributed. 

http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/ordinary-least-squares.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/ordinary-least-squares.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/ordinary-least-squares.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/spatial-autocorrelation.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/spatial-autocorrelation.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/ordinary-least-squares.htm
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a mean of zero, the p-

values associated with 

the coefficients are 

unreliable. 

When the Jarque-Bera statistic is 

significant (< 0.05, for example), 

the model is likely misspecified (a 

key variable is missing from the 

model) or some of the 

relationships you are modelling 

are nonlinear.  

 

The steps followed in this study in the modelling of regression analyses to 

understand the dispersal of the HeV outbreak events in the study area are: 

 

i) Model calibration using GWR (see Section 3.6.3). 

ii) Using OLS method to select the significant independent variables. 

iii) Spatial autocorrelation (Moran’s I) test on the residuals to ensure that there 

are no significant variables missing that could possibly better explain the 

dispersal of HeV outbreak events. 

iv) GWR analysis on the independent variables from the OLS model. 

v) Spatial autocorrelation (Moran’s I) test on the residuals of GWR. 

 

3.6.1 Ordinary Least Squares (OLS) Regression 

 

The OLS technique is a well-known regression technique and was employed in this 

study to understand the HeV outbreak patterns globally across the study area. It is 

also considered as a proper starting point for all spatial regression analyses (ArcGIS 

2016). The OLS tool produces an output feature class and optional tables with 

coefficient information and diagnostics. The results from OLS regression technique 

can only be trusted if the data and the regression model satisfy all the assumptions 

inherently required by this method (see Table 3.10). The output diagnostics of OLS 

include corrected Akaike Information Criterion (AICc), Coefficient of 

Determination, Joint F statistic, Wald statistic, Koenker's Breusch-Pagan statistic, 

Jarque-Bera statistic, uncorrected AIC and Sigma-squared values (ESRI 2017). 

 

Table 3.11 shows the syntax of the OLS technique in ArcGIS.  
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Table 3.11 Summary of the syntax of the OLS regression technique (Source: ESRI 

2017). 

 

Parameter Explanation Data 

Type 

Input Feature Class The feature class containing the dependent and 

independent variables for analysis. 

Feature 

Layer 

Unique ID Field An integer field containing a different value for 

every feature in the Input Feature Class. 

Field 

Output Feature 

Class 

The output feature class to receive dependent 

variable estimates and residuals. 

Feature 

Class 

Dependent Variable The numeric field containing values for what you 

are trying to model. 

Field 

Explanatory 

Variables 

 

A list of fields representing explanatory variables 

in your regression model. 

Field 

Coefficient Output 

Table 

(Optional) 

The full path to an optional table that will receive 

model coefficients, standardized coefficients, 

standard errors, and probabilities for each 

explanatory variable. 

Table 

Diagnostic Output 

Table 

(Optional) 

The full path to an optional table that will receive 

model summary diagnostics. 

Table 

Output Report File 

(Optional) 

The path to the optional PDF file if chosen. This 

report file includes model diagnostics, graphs, 

and notes to help you interpret the OLS results. 

File 

 

To assess the model performance of OLS technique both Multiple R-Squared and 

Adjusted R-Squared values should be interpreted whose values range from 0.0 to 1.0.  

The Coefficient, Probability or Robust Probability, and Variance Inflation Factor 

(VIF) should be considered to asses each explanatory variable in the model. The 

coefficient for each explanatory variable reflects both the strength and type of 

relationship the explanatory variable has to the dependent variable. When the sign 

associated with the coefficient is negative, the relationship is negative. The 

statistically significant probabilities have an asterisk (*) next to them. These 

variables that are significant are is important to the regression model if 

theory/common sense supports a valid relationship with the dependent variable. The 
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VIF measures redundancy among the explanatory variables. The VIF values larger 

than about 7.5 should be removed (one by one) from the regression model.  

 

The Joint F-Statistic and Joint Wald Statistic are measures of overall model statistical 

significance of the OLS technique. The Joint F-Statistic is trustworthy only when the 

Koenker (BP) statistic is not statistically significant and if the Koenker (BP) statistic 

is significant, the Joint Wald Statistic should be used to determine overall model 

significance. The Koenker (BP) Statistic assesses model stationarity. It is a test to 

determine whether the explanatory variables in the model have a consistent 

relationship to the dependent variable both in geographic space and in data space. 

The Jarque-Bera statistic measures the model bias by indicating whether or not the 

residuals are normally distributed (ESRI 2016).  

 

3.6.2 Geographically Weighted Regression (GWR) 

 

The GWR technique is a local model of the variable or process for understanding the 

spatial patterns by fitting a regression equation to every feature in the data set. It 

constructs the equations by incorporating the dependent and independent/exploratory 

variables of features falling within the bandwidth of each target feature. The shape 

and size of the bandwidth is dependent on user input for the Kernel type, Bandwidth 

method, Distance, and Number of neighbour’s parameters. Model design errors often 

indicate a problem with global or local multicollinearity and using OLS technique 

can determine the problem of multicollinearity. Problems with local multicollinearity 

may prevent the AIC and CV Bandwidth method from resolving an optimal 

distance/number of neighbours (ESRI 2016). 

 

Usage of gridded data is always recommended as it is important whenever distance is 

a component of the analysis, as it is for GWR to select Fixed for Kernel type. For 

linear regression analysis similar to GWR, it is important for dependent and 

explanatory variables to have numeric fields containing a variety of values and is not 

appropriate for predicting binary outcomes. Nominal or categorical data in a GWR 

model should be used with caution as the categories cluster spatially; there is strong 

risk of encountering local multicollinearity issues. “Dummy" explanatory variables 
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cannot be used to represent different spatial regimes in a GWR model (ESRI 2016). 

GWR is a linear model subject to the same requirements as OLS and the severe 

model errors are same for both (see Table 3.10).  

 

Table 3.12 summarises the syntax of the GWR technique in ArcGIS.  

 

Table 3.12: Summary of the syntax of the GWR regression technique (Source: ESRI 

2016). 

 

Parameter Explanation Data Type 

In features The feature class containing the dependent 

and independent variables. 

Feature Layer 

Dependent field The numeric field containing values for 

what you are trying to model. 

Field 

Explanatory 

field 

 

A list of fields representing independent 

explanatory variables in your regression 

model. 

Field 

Out feature 

class 

The output feature class to receive 

dependent variable estimates and residuals. 

Feature Class 

Kernel type Specifies if the kernel is constructed as a 

fixed distance, or if it is allowed to vary in 

extent as a function of feature density. 

FIXED - The spatial context (the Gaussian 

kernel) used to solve each local regression 

analysis is a fixed distance. 

ADAPTIVE - The spatial context (the 

Gaussian kernel) is a function of a specified 

number of neighbours. Where feature 

distribution is dense, the spatial context is 

smaller; where feature distribution is sparse, 

the spatial context is larger. 

String 

Bandwidth 

method 

Specifies how the extent of the kernel 

should be determined. When AICc or CV is 

selected, the tool will find the optimal 

distance or number of neighbours for you.  

 

AICc - The extent of the kernel is 

determined using the Akaike Information 

Criterion (AICc). 

String 
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CV - The extent of the kernel is determined 

using Cross Validation. 

BANDWIDTH PARAMETER - The extent 

of the kernel is determined by a fixed 

distance or a fixed number of neighbours.  

distance 

(Optional) 

The distance whenever the kernel 

type is FIXED and bandwidth 

method is BANDWIDTH PARAMETER. 

Double 

Number of 

neighbours 

(Optional) 

The exact number of neighbours to include 

in the local bandwidth of the Gaussian 

kernel when kernel type is ADAPTIVE and 

the bandwidth method is BANDWIDTH 

PARAMETER. 

Long 

Weight field 

(Optional) 

The numeric field containing a spatial 

weighting for individual features.  

Field 

Coefficient 

raster 

workspace 

(Optional) 

A full pathname to the workspace where all 

of the coefficient rasters will be created.  

Folder 

Cell size 

(Optional) 

The cell size (a number) or reference to the 

cell size (a pathname to a raster dataset) to 

use when creating the coefficient rasters. 

The default cell size is the shortest of the 

width or height of the extent specified in the 

geoprocessing environment output 

coordinate system, divided by 250. 

Analysis Cell 

Size 

Prediction 

explanatory 

field 

(Optional) 

A list of fields representing explanatory 

variables in the Prediction locations feature 

class. These field names should be provided 

in the same order (a one-to-one 

correspondence) as those listed for the input 

feature class Explanatory variables 

parameter. If no prediction explanatory 

variables are given, the output prediction 

feature class will only contain computed 

coefficient values for each prediction 

location. 

Field 

Out prediction 

feature class 

(Optional) 

The output feature class to receive 

dependent variable estimates for each 

feature in the Prediction locations feature 

class. 

Feature Class 
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Fixed kernel type and AICc bandwidth method were used in this study. The 

bandwidth method is the most important parameter for GWR technique. It controls 

the degree of smoothing in the model. The program chooses a bandwidth or 

neighbour value by selecting the corrected Akaike Information Criterion (AICc) or 

Cross Validation (CV) for the Bandwidth method parameter. They both identify an 

optimal fixed distance or optimal adaptive number of neighbours. The Residual 

Squares is the sum of the squared residuals in the model. The smaller the measure, 

the closer the fit of the GWR model to the observed data. This value is used in a 

number of other diagnostic measures. R-Squared is a measure of goodness of fit. Its 

value varies from 0.0 to 1.0, with higher values being preferable. The adjusted R-

squared value normalizes the numerator and denominator by their degrees of 

freedom. This has the effect of compensating for the number of variables in a model, 

and consequently, the Adjusted R2 value is almost always smaller than the R2 value 

(ESRI 2016). The spatial variability of the local parameter estimates of each variable 

has been tested using GWR4 software. The results achieved using the GWR 

technique was used test the Hypothesis 4 in generating model(s) to identify 

population ‘at risk’.  

3.6.3 Model Calibration for Regression Analysis 

The model for the regression analyses was calibrated using the GWR technique in an 

exploratory method (Fotheringham et al 2012).  Based on the literature review, 4 

potential explanatory factors were chosen that could potentially explain the HeV 

outbreak events dispersal in the study area. This model calibration technique by 

Fotheringham et al (2012) uses a statistical model-building procedure in order to 

establish if any further reduction in the set were possible. By doing this, a reduced set 

of highly significant explanatory variables of HeV outbreak events were achieved.  

 

The following steps are followed to achieve the most significant model for the 

analyses: 

 

i) Iteration 1 – the 4 explanatory variables were individually included in a 

simple model with incident rate as the dependent variable by GWR. Using the 

Akaike Information Criterion (AIC) and R-Squared value (as R-Squared 



  

125 | P a g e  
 

value improves, the AICc value decreases), a goodness-of-fit statistic was 

computed. The best model using the goodness-of-fit measure was retained.   

 

ii) Iteration 2 – using the model established in iteration 1, each of the remaining 

3 variables not selected for the model was entered into the model in turn, so 

that 3 new models, each containing two independent variables, were obtained. 

These models were then calibrated by GWR. The best model based on the 

goodness-of-fit was retained.  

 

iii) Iteration 3 - using the model established in iteration 2, each of the remaining 

2 variables not selected for the model was entered into the model in turn, so 

that 2 new models, each containing three independent variables, were 

obtained. These models were then calibrated by GWR. The best model based 

on the goodness-of-fit was retained.  

 

iv) Iteration 4 – using the model in iteration 3, a final model adding the 

remaining 1 variable was calibrated using GWR. The goodness-of-fit of this 

model is less than the model retained in the iteration 3.  

 

The final model is selected from the iteration 3, which produced the best goodness-

of-fit measure out of all. This model was used for the regression analyses. Table 3.13 

shows the model calibrated using the GWR technique for the study. Further details of 

the model calibration were documented in Section 4.3.3. The additional 

documentation of the significant model(s) calibrated in the four iterations was 

documented in Appendix 2.  
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Table 3.13 Model calibrated using the GWR technique. 

 

 Model 

variables 

AIC R-Squared Significance 

Iteration 1 Black flying 

foxes (Bff) 

1239 0.68  

 Grey headed 

flying foxes 

(Ghff) 

1189 0.82* Significant 

model 1 

 Foraging Range 

(FR) 

1442 0.36  

 Pregnancy 

Period (PP) 

1439 0.56  

Iteration 2 Ghff, Bff 1165 0.86** Significant 

model 2 

 Ghff, FR 1178 0.82  

 Ghff, PP 1182 0.85  

Iteration 3 Ghff, Bff, FR 1195 0.80  

 Ghff, Bff, PP 1143 0.88*** Final model 

Iteration 4 Ghff, Bff, FR, 

PP 

1222 0.76  

 

Notes: 

*     Indicates significant model 1 obtained from iteration 1 

**   Indicates significant model 2 obtained from iteration 2 

*** Indicates significant model 3, which is the final model obtained from iteration 3 
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3.7 Methodology Flowchart  

A summary of the methodology used in this study is detailed in flowchart presented 

in the figure 3.21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Flow chart of the methodology. 

Fig 3.21 visualises the hypotheses tested in this study and their relationship to one 

another. Hypothesis 4 is to generate final model(s) based on the results from previous 

hypotheses. The flowchart can be described as process/methods used in the research. 

Data 

Processing/Analysis 

Hypothesis 1 Hypothesis 2 
 

Hypothesis 3 
 

Buffer analysis to 

establish a 

correlation between 

the HeV incidents 

and hosts 

Moran’s I, KDE and 

Regression 

Analyses to 

understand the HeV 

dispersal  

Spatial Analyst 

Tools to study the 

food source 

vegetation of the 

flying foxes 

An in-depth analysis 

to isolate the factors 

influencing the HeV 

outbreak dispersal 

(see Section 4.3) 

A preliminary 

analysis to 

include/exclude the 

flying fox camps 

based on their status 

(see Section 4.2) 

 

An analysis to 

identify the role of 

food source 

vegetation in HeV 

dispersal 

(see Section 4.4) 

Hypothesis 4 

Generating model(s) to identify population ‘at risk’ based on the above results 

(see Section 4.5) 
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3.8 Summary 

 

In general, section 3.2 declared the study area considered for the research. The data 

collection, processing and integration steps involved in this were documented in 

section 3.3. Section 3.4 detailed the flying fox roosting site visits in the study area. 

The site visits provided an insight into the roosting site vegetation and in general 

their preference of a location.  

Hypothesis 1 

 

Buffer analysis was employed primarily to understand the correlation between the 

HeV outbreak events and flying fox roosting sites. Section 3.5 documented the 

spatial analyses methods in ArcGIS that were used to test Hypothesis 1. 

Hypothesis 2 

 

The Spatial Autocorrelation technique was used to study the autocorrelation among 

the variables and KDE were used to establish a primary relationship between the 

HeV outbreaks and the density of the flying foxes. The regression analyses and the 

model building using GWR technique were detailed in Section 3.6. The regression 

analyses were used in the study to test Hypothesis 2. It was employed to understand 

the factors influencing the virus dispersal in the study area.  

Hypothesis 3 

 

The spatial analyst toolset was used to examine the correlation between the food 

source vegetation, flying fox species and the HeV incidents.  Section 3.5 outlined the 

detailed information in regards to the spatial analyst toolset that was used in testing 

Hypothesis 3.  

Hypothesis 4 

 

The results from Hypothesis 1, 2 and 3 were used in producing the model(s) to 

identify the population ‘at risk’ (Hypothesis 4). The models were documented in 

Chapter 4, section 4.5.   
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4. Chapter Four – Analysis and Results 

4.1 Introduction 

 

This chapter documents the analyses and results of the HeV outbreak incidents study. 

The analyses carried out to test the hypotheses mentioned in Section 1.4 is detailed 

here and the results were presented. This section outlines the methodologies 

discussed in chapter 3. Section 4.2 details the preliminary spatial analyses of the HeV 

outbreaks. Section 4.3 provides the analyses and results of the factors explaining the 

dispersal of the HeV disease in the study area. Section 4.4 discusses the food source 

vegetation analysis of the flying foxes. Identification of population ‘at risk’ has been 

detailed in section 4.5. The results were visualized throughout the chapter where 

appropriate. Section 4.6 shows the flowchart of the summary of the results.  

4.2 Preliminary Spatial Analysis of HeV Outbreaks and the 

Roosting Sites (Hypothesis 1) 

 

A buffer analysis was carried out on the HeV outbreak locations with a 20 kms range 

to determine the presence of the roosting sites within the outbreak region. This 

analysis examines the status of the flying fox roosting sites that were spatially 

correlated with the outbreak events in the study area. This establishes the preliminary 

correlation between the outbreak events and the flying fox roosting sites. 

 

The specific 20 kms range has been used based on the study of the flying fox 

characteristics (Wildlife QLD 2016, see Section 2.2) and their travel distances - 

‘foraging range’. The forage range for the four types of flying-foxes – black, grey-

headed, little red and spectacled flying foxes vary. Black flying fox groups travel up 

to 50 kms from their camps to foraging areas and use the same camp for many years, 

whereas little red flying foxes and spectacled flying foxes only travel 20 – 30 kms 

from camp to feed. Grey-headed flying foxes nightly feeding range is 20 - 50 kms 

from their camps. The minimum home range distance is used for initial buffer 

analysis i.e. 20 kms.  
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The flying fox roosting sites were divided into six categories by Department of 

Environment and Heritage Protection (EHP), Queensland (see Section 3.3). Table 4.1 

shows the percentage of flying fox roosting sites in each category.  

 

Table 4.1: The Percentage of Flying Fox roosting sites in each category. 

 

Status Percentage of roosting sites 

Permanent Seasonal Use 30.98% 

Temporary Unoccupied 23% 

Temporary Occupied 22.53% 

Permanent Continuous Use 15.95% 

Abandoned 7.04% 

Destroyed 0.5% 
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Figure 4.1: A 20 kms radius buffer of the outbreak incidents. 
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Figure 4.1 shows a 20 kms buffer of the outbreak incidents in the study area. There is 

a significance presence of the roosting sites in this buffer range and the presence of 

permanent seasonal sites in almost every incident’s buffer range can be seen in the 

map. A further 10 kms radius buffer analysis is conducted on the temporary and 

permanent seasonal sites. Figure 4.2 shows a 10 kms buffer with respect to the 

temporary and seasonal roosting sites. 

 

 

 

Figure 4.2: A 10 kms buffer of the incidents with respect to the temporary and 

permanent seasonal roosting sites. 
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From figure 4.2, it is evident that permanent seasonal and temporary occupied 

roosting sites displays stronger spatial relationship to outbreak incidents as 

approximately 91% (10 out of 11 incidents) of the incidents have either one or both 

of these sites in the outbreak incidents buffer range. It is also evident that the 

permanent seasonal roosting sites displays stronger relationship than the temporary 

occupied sites with the presence of multiple roosting sites at each incident range.  

 

 

 

Figure 4.3: A 10 kms buffer of the incidents with respect to the permanent 

continuous roosting sites. 
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Figure 4.3 shows a 10 kms buffer of the outbreak incidents with respect to the 

permanent continuous roosting sites in the study area. The analysis shows a lower 

probability for a significant spatial relationship with permanent continuous roosting 

sites in the study area. Only 19% (2 out 11 incidents) of the incidents have the 

permanent roosting site in their range and another couple of incidents have the 

permanent roosting on the border of the range.  

 

The preliminary analysis of the HeV outbreak incidents and the roosting sites has 

identified a strong spatial relationship between the outbreak events and the 

permanent seasonal and temporary occupied roosting sites in the study area. 

4.3 Factors Explaining the Dispersal of the HeV Disease 

(Hypothesis 2) 

 

4.3.1 Measuring Spatial Autocorrelation (Global Moran’s I) of the 

Flying Fox Species 

 

Spatial clustering is best for the initial analysis to detect and analyse the clusters 

(Wakefield et al 2000) at the global level across the study area. Global Moran’s I 

method (inverse distance conceptualisation) was used to identify the presence of 

significant spatial clustering of the three flying foxes species at various foraging 

ranges (10, 20, 30, 40 and 50 kms) in the study area, namely: black flying foxes, 

grey-headed flying foxes and little red flying foxes. The flying fox species data by 

EHP (2014) was used to measure the spatial autocorrelation. The autocorrelation of 

each species has been studied from 10 kms to 50 kms, which is the maximum 

foraging range (Wildlife QLD 2016, see Section 2.2). The 10 km range was selected 

for an in depth study of the flying fox clustering. The purpose of performing this 

analysis is to examine at what foraging range each species maintains high correlation 

(or no correlation). The results of this analysis would be significant in further study 

of the overall trend of the incidents with respect to the distribution of the flying fox 

species across the study area. 

 



  

135 | P a g e  
 

Table 4.2 shows the summary of the results of the spatial autocorrelation reports of 

the three flying fox species in the study area at various foraging ranges. For detailed 

reports of the autocorrelation at their minimum foraging range, see Appendix 3. The 

minimum foraging range was taken into consideration for most of the study. 

 

Table 4.2: The results of the Spatial Autocorrelation of the Flying Fox species at 

various foraging ranges.  

 

Species 10 

kms 

20 kms 30 kms 40 kms 50 kms 

      

Black      

Index 0.064 0.035 0.04 0.05 0.065 

Z-score 1.73 2.03 3.37 5.14 7.81 

P value 0.083 0.041 0.0007 0.0000 0.0000 

Confidence 

Level 

90% 95% 99% 99% 99% 

Inference Clustered Clustered Clustered Clustered Clustered 

      

Grey-

Headed 

     

Index 0.025 0.009 0.004 0.002 0.023 

Z-score 0.94 0.96 0.97 3.38 3.63 

P value 0.3472 0.3314 0.3308 0.0007 0.0002 

Confidence 

Level 

- - - 99% 99% 

Inference Random Random Random Clustered Clustered 

      

Little Red      

Index 0.154 0.15 0.12 N/A N/A 

Z-score 3.88 7.45 9.03   

P value 0.0001 0.0000 0.0000   

Confidence 

Level 

99% 99% 99%   

Inference Clustered Clustered Clustered   
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The analysis of the black flying foxes showed significant clustering at all the 

foraging range intervals with high occurrence at 50 kms at a confidence level of 

99%, which is their maximum foraging range. Grey-headed flying foxes showed 

random clustering at 10, 20 and 30 kms range. The maximum clustering for grey 

headed flying foxes occurred at 40 kms foraging range at a confidence level of 99%. 

The results of the little red flying foxes showed maximum significant clustering 

occurring at 10 kms range at a confidence level of 99%. 

4.3.2 Examining and Establishing the Primary Relationship(s) 

between the Individual species Distribution, Incidents and Birth 

Period(s) 

4.3.2.1 Kernel Density Analysis 

 

Kernel density estimation technique was employed for observing the spread of the 

individual flying fox species population density across the study area and to generate 

hotspot maps for each species. Using the flying-fox species density data, the maps 

were created to visualise the species density hot spots. This method was used to 

establish the primary relation between the flying-fox species density and the 

incidents. The bandwidth for the KDE analysis for each species was set at 0.4598 

degrees, which was calculated by the default search radius (bandwidth) algorithm of 

ArcGIS. Different bandwidth radii were tested (0.22 and 0.68 degrees) in generating 

the density hot spots but the default density calculated by ArcGIS yielded the best 

output with no errors such as missing neighbours. A density hot spot map was 

created for each species and the incidents were overlayed on the map to visualise the 

relationship between the two variables in the study area. 

 

Figure 4.4 – a, b and c shows the KDE analysis of the black, grey-headed and little 

red flying foxes in the study area.  
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Figure 4.4(a): KDE analysis of black flying foxes in the study area. 
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Figure 4.4(b): KDE analysis of grey-headed flying foxes in the study area. 
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Figure 4.4(c): KDE analysis of little red flying foxes in the study area. 

 

Through the KDE technique, it is evident that the black and grey-headed flying foxes 

are highly correlated to the HeV outbreak incidents in the study area. The little red 

flying foxes show little to no correlation to the outbreak incidents in the study area.  

 

4.3.2.2 Birth Period Study of the Flying Foxes 

 

Buffer analysis was employed to examine and visualise the relationship between 

individual flying fox species birth periods and the incidents in the study area. Each 

species of flying foxes have different breeding and birthing seasons (Wildlife QLD 

2016, see Section 2.2), which usually last for 3 - 4 months. Incident data from DAFF 

and birth period data collected from Wildlife Queensland (2016) has been used in 

this method. The roosting data was edited to best reflect the status of the roosting 

sites at the time of the incident. Vegetation analysis (see Section 4.4) identified an 

abundance of food resources near these camp sites in the study area and hence it was 

assumed that the flying foxes in these camps do not migrate or at least to an extent 

that a roosting site is empty.  
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A 10 kms buffer was created for each incident and they were labelled using the 

month of the incident occurrence. The roosting sites of individual species were then 

projected on the buffer map to examine if the incident occurrence month falls within 

the birth periods of each species roosting site in the buffer range. Buffer analysis was 

useful in visualising the data and in studying the presence of number of individual 

species rooting sites that matched the month of occurrence of the disease within the 

buffer range to establish a base for further detailed study. Spatial clustering of the 

three species at 10 - 50 kms (See Table 4.2) indicated significant clustering of black 

and little red flying foxes at 10 and 20 kms range.  

 

A radius of 10 and 20 kms were initially chosen to study the relationship between 

individual species birth periods and the month of occurrence of Hendra disease. As 

the 20 km range has overlapping incidents, the 10 km buffer was used for the better 

understanding of correlation. Figure 4.5 shows the 20 km range study of the incidents 

with majorly overlapping incident ranges.   
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Figure 4.5: A 20 Kms range study of the incidents. 

 

The birth/pregnancy period of black flying foxes lasts from June to February and the 

birth/pregnancy period of grey-headed flying foxes lasts from April to October 

(Wildlife QLD 2016). Figure 4.6 (a) shows the birth period study of the black flying 

foxes.  
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Figure 4.6 (a): Birth period study of the black flying foxes. 

 



  

143 | P a g e  
 

 

 

Figure 4.6 (b): Birth period study of the grey-headed flying foxes. 

 

Figure 4.6 (b) shows the birth period study of the grey-headed flying foxes. Ten 

incidents have fallen within the birth/pregnancy period of the black flying foxes and 

grey-headed flying foxes with more than one roosting site in the buffer range.  
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The birth period of little red flying foxes lasts from January to May (Wildlife QLD 

2016). Figure 4.6 (c) shows that none of the incidents have fallen within the 

birth/pregnancy period of the little red flying foxes. The buffer analysis established a 

primary relationship between the HeV outbreak incidents and the birth/pregnancy 

periods of black and grey-headed flying foxes in the study area. 

 

 

 

Figure 4.6 (c): Birth period study of the little red flying foxes. 

4.3.3 Regression Modelling  

 

By creating a scatterplot matrix for the model variables, it is possible to address the 

model bias issues. A nonlinear relationship between the dependent variable and one 



  

145 | P a g e  
 

of the explanatory variables is a common cause of model bias. If the dependent 

variable exhibits a nonlinear relationship with the explanatory variables, it may not 

be included in the model. OLS and GWR are linear regression models that assume 

the relationships between the models are linear. When the relationships are not 

linear, transforming the variables (log and exponential) can create relationships that 

are more linear (ESRI 2016). Based on the analysis in section 4.3.2, the independent 

variables chosen for the regression analysis are black flying fox species, grey-headed 

flying fox species, average foraging range and average pregnancy/birth period.  

 

 

 

Figure 4.7: Scatter plot matrix of the model variables. 

 

Figure 4.7 shows the scatter plot matrix of the regression model variables in the 

study. The independent variables black flying foxes, grey-headed flying foxes, 

average foraging range and average pregnancy/birth period exhibited a fairly linear 

relationship to the dependent variable – incident rate.  

 

The method used in the modelling of the regression model is documented in section 

3.6.3. Figure 4.8 shows the graph of the AIC values of all models used in the 
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regression modelling. The model with low AIC value and high R-squared value was 

selected as the significant model in all iterations (represented in colour ‘Red’). 

 

 

Figure 4.8: Graph of the AIC values of all models in the Regression Modelling. 

 

Iteration 1 (significant model 1):  Iteration 1 includes models 1, 2, 3 and 4. 

Independent variable – Grey-headed flying foxes (AIC – 1189, R-Squared – 0.82). 

 

Iteration 2 (significant model 2): Iteration 2 includes models 5, 6 and 7. 

Independent variables – Grey-headed flying foxes and Black flying foxes (AIC – 

1165, R-Squared – 0.82).  

 

Iteration 3 (significant model 3): Iteration 3 incudes models 8 and 9. Independent 

variables – Grey-headed flying foxes, Black flying foxes and average pregnancy 

period (AIC – 1143, R-Squared – 0.88). This is the final regression model used in the 

study to understand the HeV dispersal in the study area.  

 

Iteration 4 (no significant model): Iteration 4 includes model 10 and it returned no 

significant model(s).  
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The spatial variability of the local parameter estimates of each variable has been 

tested using GWR4 software for each significant model from iteration 1, 2 and 3 and 

significant spatial variability was present in the variables of the final model. Figures 

4.9 and 4.10 shows the results of the spatial variability test using GWR4.0 software.  

 

 

 

Figure 4.9: Spatial variability test for significant model 1 using GWR4.0. 

 

 

 

Figure 4.10: Spatial variability test for significant model 2 using GWR4.0. 

 

Spatial variability was not present among the variables in significant model 1 and 2. 

A Positive “DIFF of Criterion” value that is greater than or equal to two suggests that 

the local term is better to be assumed as global. Significant model 1 and 2 has a 

positive value which is lesser than 1. Figure 4.11 shows the spatial variability test 

results of the final regression model. There was significant spatial variability present 

among the variables in the final model, which means these variables are better suited 

for a local model compared to a global model. For full test results of the three 

significant models in all iterations, see Appendix 2.  

 

 

 

Figure 4.11: Spatial variability test for significant model 2 using GWR4.0. 
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Moran’s I test was performed on the residuals of the three significant models to 

check whether there is a key variable missing from each model. Table 4.3 shows the 

Moran’s I test results of the three significant models.  

 

Table 4.3: Moran’s I results of the significant models. 

 

 Moran’s I Z-score P-value Clustering 

Significant 

Model 1 

-0.12 -0.87 0.3 Random 

Significant 

Model 2 

-0.13 -1.04 0.2 Random 

 

Final Model 

-0.02 -0.12 0.9  Random 

 

 

Final model indicated no significant clustering among the residuals. This indicates 

that the model is not misspecified. The test reports of the Moran’s I was included in 

Appendix  

4.3.4 Ordinary Least Squares (OLS) Analysis 

 

OLS regression technique was employed to study the spatial trends of the HeV 

dispersion globally across the study area. The data sets used to perform this analysis 

were the same ones used for model calibration, which includes the incident data 

(DAFF 2014), flying fox species density data (EHP 2014), and the average foraging 

range and pregnancy/birth period of each camp. The model calibrated using the 

statistical model building procedure by Fotheringham, Kelly and Charlton (2012) 

(see section 3.6.3); with black flying fox density, grey-headed flying fox density and 

pregnancy period as explanatory variables. The OLS method calculated the 

probability and robust probability for each explanatory variable which may be 

required in cases of nonstationary relationships (nonstationary is determined using 

Koenker p-value in OLS output summary). The globally significant explanatory 

variable was identified using the OLS analysis. Koenker (BP) statistic measures the 
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relationship between the predicted values and changes in magnitudes 

(heteroscedasticity).  

 

Table 4.4: Summary of OLS results. 

 

Global Regression Model: Results 

Variable  t-

statistic 

Probability Robust 

probability 

VIF Significance 

Black flying foxes 1.26 0.2 0.53 3.58  

Grey-headed flying 

foxes 

8.9 0.00* 0.00* 3.8 Significant 

Pregnancy Period -0.86 0.39 0.56 1.14  

 

Table 4.4 indicates that the independent variable ‘grey headed flying-foxes’ was 

globally significant at 99% confidence level across the study area. The variance 

inflation factor (VIF) values indicated no redundancy among the variables. Figure 

4.12 shows the OLS regression residuals map.  
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Figure 4.12: OLS regression residuals map. 

 

 

This model has a statistically significant heteroscedasticity (p<0.05) which suggests 

the use of Robust P to determine the coefficient significance for consideration. 

Goodness-of-fit measure indicated a model performance of 0.7.  Moran’s I test 

(Index = -0.02, P = 0.8) indicated no significant clustering among the residuals (see 

Appendix 3). Figure 4.13 shows the diagnostics of the OLS regression model. Figure 

4.14 shows the graph of the OLS regression residuals. Full report of the OLS 

regression analysis is documented in Appendix 3.  
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Figure 4.13: OLS regression diagnostics. 

 

 

 

 

Figure 4.14: The graph of the OLS regression residuals. 

 

The graph of the OLS residuals (model over and under predictions) in relation to the 

predicted dependent variable values should have little structure and look random. 
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This is an indicator for a properly specified model. For a misspecified model, the 

graph provides clues for better understanding of the dependent variable.  

 

4.3.5 Geographically Weighted Regression (GWR) Analysis 

 

The model building was carried out utilizing methods recommended in 

Fotheringham, Kelly and Charlton (2012) who built a set of most significant 

explanatory variables (see Section 3.6.3) among all the variables considered – species 

density, average foraging range and pregnancy/birth period; that could possibly 

explain the HeV dispersion in the study area. GWR technique assists in 

understanding and exploring of the spatial relationships at local level across the study 

area by fitting a regression equation to individual feature in the dataset. The shape 

and size of the bandwidth is dependent on user input for the kernel type, bandwidth 

method, distance, and number of neighbours’ parameters (Fotheringham et al 2002). 

The model produced (explanatory variables - black flying fox density, grey-headed 

flying fox density and pregnancy period) using the data mentioned above in the 

model building procedure was used to study the locally varying spatial trends of the 

HeV incidents across the study area. The spatial variability among the local 

parameter estimates produced by GWR analysis of each variable has been tested 

using GWR4 software (see Section 4.3.3). The t values of each parameter estimate of 

each independent variable were mapped for a detailed study of the local 

relationships. The local R-squared values of the GWR regression model were 

mapped to visualise the overall performance of the model in the study area. 

 

Table 4.5 shows the results of the GWR regression model. The goodness-of-fit 

measure indicated an improvement from 0.7 (global model, see table 3) to 0.88. 

Moran’s I test (Index = -0.02, P = 0.9) indicated no significant clustering among the 

residuals (see Appendix 2).  
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Table 4.5: Summary of GWR regression model results. 

 

VARNAME Variable Definition 

Bandwidth 0.322621  

ResidualSquares 8523.058328  

EffectiveNumber 28.821755  

Sigma 8.06059  

AICc 1143.849672  

R2 0.889239  

R2Adjusted 0.865747  

Dependent Variable 0 Incident Rate 

Explanatory Variable 1 Black Flying Foxes 

Density 

Explanatory Variable 2 Grey-headed Flying 

Foxes Density 

Explanatory Variable 3 Pregnancy Period 

  

 

 

Figure 4.15: GWR model residuals map. 
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Figure 4.15 shows the regression residuals map of the GWR model in the study area. 

The t values of each parameter estimate of the independent variables were mapped 

for a detailed study of the local relationships. Figure 4.16 (a), (b) and (c) shows the 

significant local estimates of the GWR model variables – black flying foxes, grey-

headed flying foxes and pregnancy period respectively.  

 

 

 

Figure 4.16 (a): Local estimates of the back flying foxes in the study area.  
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The black flying foxes showed positive significance in the regions of Logan, 

Redland, Scenic Rim and parts of Brisbane, Moreton Bay, and Sunshine Coast 

Regions. The grey headed flying-foxes showed positive significance in the regions of 

Brisbane, Ipswich, Gold Coast, Scenic Rim, Logan and Redland regions in the study 

area. 

 

 

Figure 4.16 (b): Local estimates of the grey-headed flying foxes in the study area. 
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The black flying foxes showed a positive correlation where the grey-headed flying 

foxes displayed a negative correlation in the region of Sunshine Coast. The grey-

headed flying foxes showed no significance in the region of Moreton Bay where 

black flying foxes showed a strong positive correlation in the study area.   

 

 

 

Figure 4.16 (c): Local estimates of the pregnancy period variable in the study area. 
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The pregnancy period variable showed negative significance in most of the regions 

except Gold Coast, Sunshine Coast and part of Brisbane where the variable showed 

no statistical significance in the study area. The results of the GWR model indicate 

that the virus dispersion is positively related to the density and distribution of the 

black and grey headed flying foxes in the study area. 

 

 

 

Figure 4.17: Local R-Squared values of the GWR model across the study area.  
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Figure 4.17 shows the model performance (local R-squared) across the study area. 

The GWR model performed well in the southern part of the study area where the 

incident rate is comparatively high and poorly in the northern region of the study 

area where the incident rate is low. Additional documentation of the local estimates 

of each variable is provided in Appendix 3. 

4.4 Food Source Vegetation Analysis (Hypothesis 3) 

4.4.1 An Investigation of the Food Sources and Roosting Sites as 

Potential Factors of HeV Dispersion 

4.4.1.1 Black Flying Foxes 

 

Using the Spatial Analyst toolset (see Section 3.5.2), the vegetation groups and 

subgroups on the black flying fox roosting sites were identified. Figure 4.18 shows 

the black flying fox roosting sites in the study area. For full legend of the MVS and 

MVG, see Appendix 1.  
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Figure 4.18: Black flying fox roosting sites in the study area.  

 

Table 4.6: Major vegetation groups on the black flying fox roosting sites in the study 

area. 

  

Value MVG Name MVG Common Description 

1 Rainforests and Vine Thickets Rainforests 

3 Eucalyptus Open Forests Eucalyptus Trees (10 to 30 m 

tall) 

5 Eucalyptus Woodlands Eucalyptus Woodlands (tree 

crowns not touching) 
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8 Casuarina Forests and 

Woodlands 

She-oak Forests and Woodlands 

9 Melaleuca Forests and 

Woodlands 

Paperbark Forests and 

Woodlands 

23 Mangroves Mangroves 

24 Inland Aquatic – Freshwater, 

Salt Lakes, Lagoons 

Water 

25 Cleared, Non-native 

Vegetation, Buildings 

Cleared Vegetation 

28 Sea and Estuaries Sea 

 

Table 4.6 shows the major vegetation groups and their common description on the 

black flying fox roosting sites in the study area. Table 4.7 shows the major 

vegetation subgroups identified on the black flying fox roosting sites in the study 

area. The field ‘value’ represents the unique ID of the vegetation type. From the list 

of major vegetation groups and subgroups, it is evident that the black flying fox 

roosting sites were located near the eucalyptus and rainforests type of vegetation.  
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Table 4.7: Major vegetation groups on the black Flying fox roosting sites in the study 

area. 

 

Value MVS Name 

2 Tropical or Sub-tropical Rainforest 

5 Eucalyptus Open Forests with a Grassy 

Understorey 

9 Eucalyptus Woodlands with a Tussock 

Grassy Understorey 

15 Melaleuca Forests and Woodlands  

26 Casuarina and Allocasuarina Forests and 

Woodlands 

40 Mangroves 

44 Freshwater, Dams, Lakes, Lagoons or 

aquatic Plants 

46 Sea and Estuaries (includes seagrass) 

98 Cleared, Non-native Vegetation, 

Buildings 

 

 

Using the buffer analysis and extract by mask tool, the vegetation subgroups near the 

black roosting sites was identified. Area covering 20 kms from the roosting sites has 

been chosen for the study as it the minimum foraging range of both the species. 

Figure 4.19 shows the identification of the major vegetation subgroups within 20 

kms buffer range of the black flying fox roosting sites in the study area. For a full list 

of vegetation subgroups identified, see Appendix 4.  
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Figure 4.19: Major vegetation subgroups within 20 kms range of the black flying fox 

roosting sites. 
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Figure 4.20: Identification of food resources within 20 kms range of the black flying 

fox roosting sites. 



  

164 | P a g e  
 

Using extract by attributes tool, the possible food resources for black flying fox 

species near the roosting sites were identified. Figure 4.20 shows the food resources 

identified within the minimum foraging range of the black flying foxes in the study 

area. Table 4.7 shows the food source vegetation of the black flying foxes in a 

descending order to study the most occurring food source vegetation.  

 

Table 4.8: List of black flying fox food source vegetation and its count in the study 

area. 

 

Value Count MVS Name 

5 190355 Eucalyptus open forests 

with a grassy understorey 

4 123885 Eucalyptus open forests 

with a shrubby 

understorey 

9 77878 Eucalyptus woodlands 

with a tussock grass 

understorey 

2 68127 Tropical or Sub-tropical 

Rainforest 

60 46374 Eucalyptus tall open 

forests and open forests 

with ferns, herbs, sedges, 

rushes or wet tussock 

grass s 

3 15429 Eucalyptus (-/+) open 

forests with a dense 

broad-leaved and/or tree-

fern understorey 

8 8633 Eucalyptus woodlands 

with a shrubby 

understorey 

28 6809 Low closed forest or tall 

closed shrub lands 

(including Acacia, 

Melaleuca and Banksia) 

13 829 Brigalow forests and 

woodlands 

54 66 Eucalyptus tall open 

forest with a fine-leaved 

shrubby understorey 

48 48 Eucalyptus open 

woodlands with a grassy 

understorey 
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Table 4.9: Summary of the cluster analysis results of black flying foxes food source 

vegetation. 

 

Distance Threshold Getis-Ord General G Statistic 

Report 

High/low 

Clustering 

3 kms Observed General G – 0.000002 

z-Score – 20.21 

p-value – 0.00000 

High Clustering 

5 kms Observed General G – 0.000003 

z-Score – 14.48 

p-value – 0.00000 

High Clustering 

10 kms Observed General G – 0.000005 

z-Score – 6.97 

p-value – 0.00000 

High Clustering 

 

 

High/low Clustering (Getis-Ord General G) analysis was performed on the food 

source vegetation of the black flying foxes at various thresholds (3, 5, and 10 kms) to 

examine the clustering.  Table 4.8 shows the summary of the results of High/low 

clustering analysis of the black flying fox food source vegetation. The analysis 

returned high clustering at a confidence level of 99% at all the thresholds tested. For 

the full report of the analyses, see Appendix 4. 

 

4.4.1.2 Grey-headed Flying Foxes 

 

Using the Spatial Analyst toolset (see Section 3.5.2), the vegetation groups and 

subgroups on the grey-headed flying fox roosting sites were identified. Figure 4.21 

shows the grey-headed flying fox roosting sites in the study area. For full legend of 

the MVS and MVG, see Appendix 1.  
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Figure 4.21: Grey-headed flying fox roosting sites in the study area. 

 

Table 4.10 shows the major vegetation groups and their common description on the 

grey-headed flying fox roosting sites in the study area. Table 4.11 shows the major 

vegetation subgroups identified on the grey-headed flying fox roosting sites in the 

study area. From the list of major vegetation groups and subgroups, it is evident that 

the grey-headed flying foxes prefer eucalyptus and rainforests type of vegetation as 

their roosting sites.  The grey-headed flying foxes roosting site vegetation is almost 

same as the black flying fox species.  
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Table 4.10: List of major vegetation groups on the grey-headed flying fox roosting 

sites in the study area. 

 

 

Value MVG Name MVG Common 

Description 

1 Rainforests and Vine 

Thickets 

Rainforests 

3 Eucalyptus Open Forests Eucalyptus Trees (10 to 30 

m tall) 

5 Eucalyptus Woodlands Eucalyptus Woodlands 

(tree crowns not touching) 

8 Casuarina Forests and 

Woodlands 

She-oak Forests and 

Woodlands 

9 Melaleuca Forests and 

Woodlands 

Paperbark Forests and 

Woodlands 

23 Mangroves Mangroves 

24 Inland Aquatic – 

Freshwater, Salt Lakes, 

Lagoons 

Water 

25 Cleared, Non-native 

Vegetation, Buildings 

Cleared Vegetation 

28 Sea and Estuaries Sea 
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Table 4.11: List of major vegetation subgroups on the grey-headed flying fox 

roosting sites in the study area. 

 

 

Value MVS Name 

2 Tropical or Sub-tropical Rainforest 

5 Eucalyptus Open Forests with a Grassy 

Understorey 

9 Eucalyptus Woodlands with a Tussock 

Grassy Understorey 

15 Melaleuca Forests and Woodlands  

26 Casuarina and Allocasuarina Forests and 

Woodlands 

40 Mangroves 

44 Freshwater, Dams, Lakes, Lagoons or 

aquatic Plants 

46 Sea and Estuaries (includes seagrass) 

98 Cleared, Non-native Vegetation, 

Buildings 

 

Using the buffer analysis and extract by mask tool, the vegetation subgroups near the 

grey-headed flying fox roosting sites was identified. Figure 4.22 shows the 

identification of the major vegetation subgroups within 20 kms buffer range of the 

grey-headed flying fox roosting sites in the study area. For a full list of vegetation 

subgroups identified, see Appendix 4. 
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Figure 4.22: Major vegetation subgroups within 20 kms range of the grey-headed 

flying fox roosting sites. 
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Figure 4.23: Identification of food resources within 20 kms range of the grey-headed 

flying fox roosting sites. 
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Using extract by attributes tool, the possible food resources for grey-headed flying 

fox species near the roosting sites were identified. Figure 4.23 shows the food 

resources identified within the minimum foraging range of the grey-headed flying 

foxes in the study area. Table 4.12 shows the food source vegetation of the grey-

headed flying foxes in a descending order to study the most occurring food source 

vegetation. 

 

Table 4.12: List of grey-headed flying fox food source vegetation and its count in the 

study area. 

 

Value Count MVS Name 

5 190355 Eucalyptus open forests 

with a grassy understorey 

4 123885 Eucalyptus open forests 

with a shrubby 

understorey 

9 77878 Eucalyptus woodlands 

with a tussock grass 

understorey 

2 68127 Tropical or Sub-tropical 

Rainforest 

60 46374 Eucalyptus tall open 

forests and open forests 

with ferns, herbs, sedges, 

rushes or wet tussock 

grass s 

15 26736 Melaleuca open forests 

and woodlands 

3 15429 Eucalyptus (-/+) open 

forest with a dense broad-

leaved and/or tree-fern 

understorey (wet 

sclerophyll) 

40 15232 Mangroves 

8 8633 Eucalyptus woodlands 

with a shrubby 

understorey 

62 4454 Dry rainforest or vine 

thickets 
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High/low Clustering (Getis-Ord General G) analysis was performed on the food 

source vegetation of the grey-headed flying foxes at various thresholds (3, 5, and 10 

kms) to examine the clustering.  Table 4.13 shows the summary of the results of 

High/low clustering analysis of the grey-headed flying fox food source vegetation. 

The analysis gave high clustering at a confidence level of 99% at all the thresholds 

tested. For the full report of the analyses, see Appendix 4. 

 

Table 4.13: Summary of the cluster analysis results of grey-headed flying foxes food 

source vegetation. 

 

Distance Threshold Getis-Ord General G Statistic 

Report 

High/low Clustering 

3 kms Observed General G – 0.000002 

z-Score – 17.72 

p-value – 0.00000 

High Clustering 

5 kms Observed General G – 0.000003 

z-Score – 11.89 

p-value – 0.00000 

High Clustering 

10 kms Observed General G – 0.000004 

z-Score – 115.12 

p-value – 0.00000 

High Clustering 

 

4.4.1.3 HeV Outbreak Incidents 

 

Using the Spatial Analyst toolset (see Section 3.5.2), the vegetation groups and 

subgroups on the grey-headed flying fox roosting sites were identified. Figure 4.24 

shows the HeV outbreak events in the study area. For full legend of the MVS and 

MVG, see Appendix 1.  
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Figure 4.24: HeV outbreak events with MVS in the study area. 

 

 

Table 4.14 shows the list of the major vegetation groups on the HeV outbreak sites in 

the study area. Table 4.15 shows the list of the major vegetation subgroups identified 

on the outbreak sites. The major vegetation subgroups identified on the incident 

location indicated 10 out of 14 incidents occurred on a ‘cleared, non-native 

vegetation, buildings’. 
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Table 4.14: List of major vegetation groups on the HeV outbreak sites in the study 

area. 

 

Value MVG Name MVG Common 

Description 

3 Eucalyptus Open Forests Eucalyptus Trees (10 to 

30 m tall) 

25 Cleared, Non-native 

Vegetation, Buildings 

Cleared Vegetation 

 

 

Table 4.15: List of major vegetation subgroups on the HeV outbreak sites in the 

study area. 

 

Value MVS Name 

5 Eucalyptus Open Forests with a Grassy 

Understorey 

98 Cleared, Non-native Vegetation, 

Buildings 

 

 

Using the buffer analysis and extract by mask tool, the vegetation subgroups near the 

incidence sites was identified. For the vegetation study near the incidence, a 10 kms 

range has been chosen for a detailed study. Figure 4.25 shows the identification of 

the major vegetation subgroups within 10 kms buffer range of the incidence sites in 

the study area. For a full list of vegetation subgroups identified, see Appendix 4. 
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Figure 4.25: Major vegetation subgroups within 10 kms range of the HeV outbreak 

sites. 
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Figure 4.26: Identification of flying fox food resources within 10 kms range of the 

HeV outbreak sites. 
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Using “extract by attributes” tool, the possible food resources for both black and 

grey-headed flying fox species within 10 kms range of the outbreak incidents were 

identified. Figure 4.26 shows the food resources of flying foxes identified within 10 

kms range of the outbreak events in the study area. Table 4.16 shows the food source 

vegetation of the flying foxes in a descending order to study the most occurring food 

source vegetation near the incident sites. 

 

Table 4.16: List of flying fox food source vegetation and its count near the outbreak 

events in the study area. 

 

Value Count MVS Name 

5 26833 Eucalyptus open forests 

with a grassy understorey 

4 16936 Eucalyptus open forests 

with a shrubby 

understorey 

9 11658 Eucalyptus woodlands 

with a tussock grass 

understorey 

2 8676 Tropical or Sub-tropical 

Rainforest 

60 7921 Eucalyptus tall open 

forests and open forests 

with ferns, herbs, sedges, 

rushes or wet tussock 

grass s 

40 3680 Mangroves 

8 2486 Eucalyptus woodlands 

with a shrubby 

understorey 

3 1855 Eucalyptus (-/+) open 

forest with a dense broad-

leaved and/or tree-fern 

understorey (wet 

sclerophyll) 

13 271 Brigalow (Acacia 

harpophylla) forests and 

woodlands 

50 209 Banksia Woodlands 

28 190 Low closed forest or tall 

closed shrub lands 
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(including Acacia, 

Melaleuca and Banksia) 

48 47 Eucalyptus open 

woodlands with a  grassy 

understorey 

62 45 Dry rainforest or vine 

thickets 

 

High/low Clustering (Getis-Ord General G) analysis was performed on the food 

source vegetation of the flying foxes at various thresholds (3, 5, and 10 kms) to 

examine the clustering.  Table 4.17 shows the summary of the results of High/low 

clustering analysis of the fox food source vegetation within 10 kms range of the 

outbreak events. The analysis gave high clustering at a confidence level of 90% at 3 

and 4 kms thresholds. At 5 kms, the clustering was random and at 10 kms range; the 

analysis gave a low clustering. For the full report of the analyses, see Appendix 4. It 

is evident that the HeV outbreak events had high clustered food source vegetation of 

both species within 4 kms range, which could be a probable cause for the outbreak.  

 

Table 4.17: Summary of the cluster analysis results of food source vegetation near 

the outbreak events. 

 

Distance Threshold Getis-Ord General G Statistic 

Report 

High/low 

Clustering 

3 kms Observed General G – 

0.000006 

z-Score – 2.99 

p-value – 0.002 

High Clustering 

4 kms Observed General G – 

0.000007 

z-Score – 1.87 

p-value – 0.006 

High clustering 

5 kms Observed General G – 

0.000008 

z-Score – 0.64 

p-value – 0.51 

Random Clustering 

10 kms Observed General G – 

0.000013 

z-Score – -3.65 

p-value – 0.00026 

Low Clustering 
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4.4.2 Examining the Spatial Relationship between the Equine 

Population and Food Source Vegetation of the Flying Foxes 

 

A 10 Km range from the equine properties was chosen to examine the spatial 

relationship between the equine properties and the food source vegetation of the 

flying foxes in the study area. Using buffer analysis and extract by mask, the major 

vegetation subgroups present near the equine population was identified. Figure 4.27 

shows the identification of major vegetation subgroups within 10 Km buffer range of 

the equine population in the study area. A full list of vegetation subgroups in the map 

is provided in Appendix 4. 
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Figure 4.27: Major vegetation subgroups within 10 kms range of the equine 

properties. 
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Figure 4.28: Identification of flying fox food resources within 10 kms range of the 

equine properties. 
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Using “extract by attributes” tool, the possible food sources for black and grey 

headed flying foxes near the equine population were identified. Figure 4.28 shows 

the food source vegetation of the flying foxes identified within 10 Km range of the 

equine population. Table 4.18 shows the food source vegetation of the flying foxes in 

a descending order to study the most occurring food source vegetation near the 

equine population in the study area. 

 

Table 4.18: List of flying fox food source vegetation and its count near the outbreak 

events in the study area. 

 

Value Count MVS Name 

5 67865 Eucalyptus open forests 

with a grassy understorey 

4 41845 Eucalyptus open forests 

with a shrubby 

understorey 

9 26659 Eucalyptus woodlands 

with a tussock grass 

understorey 

2 21435 Tropical or Sub-tropical 

Rainforest 

60 21346 Eucalyptus tall open 

forests and open forests 

with ferns, herbs, sedges, 

rushes or wet tussock 

grass s 

3 5784 Eucalyptus (-/+) open 

forest with a dense broad-

leaved and/or tree-fern 

understorey (wet 

sclerophyll) 

8 5510 Eucalyptus woodlands 

with a shrubby 

understorey 

13 476 Brigalow (Acacia 

harpophylla) forests and 

woodlands 

28 449 Low closed forest or tall 

closed shrub lands 

(including Acacia, 

Melaleuca and Banksia) 

50 413 Banksia Woodlands 
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The food source vegetation near the equine properties was examined using high/low 

clustering (Getis-Ord General G Statistic) method. The clustering of the vegetation 

was studied at 3, 5 and 10 Km from the equine population. The analysis showed a 

significant high clustering of the food source vegetation at all the distance thresholds. 

Table 4.19 shows the high/low clustering report of the food source vegetation of 

flying-foxes at different distance thresholds. For the full report of the analyses, see 

Appendix 4. This study revealed that the equine properties in the study area have high 

clustered food source vegetation of both species in the range with Eucalyptus 

varieties being the most occurring vegetation group.  

 

Table 4.17: Summary of the cluster analysis results of food source vegetation near 

the equine properties. 

 

Distance Threshold Getis-Ord General G Statistic 

Report 

High/low 

Clustering 

3 kms Observed General G – 

0.000007 

z-Score – 69.1 

p-value – 0.00000 

High Clustering 

5 kms Observed General G – 

0.000011 

z-Score – 65.15 

p-value – 0.00000 

High Clustering 

10 kms Observed General G – 

0.000016 

z-Score – 54.83 

p-value – 0.00000 

High Clustering 

4.5 Models to Identify Population ‘at risk’ (Hypothesis 4) 

 

4.5.1 Model 1 

 

This model identifies the ’at risk’ equine properties based on the presence of 

positively significant black flying foxes roosting sites from the GWR model (see 

Section 4.3.5) and their food source vegetation (see Section 4.4.1) in significantly 
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high clusters within 20 kms from the properties. These two factors are extremely 

significant in this model based on the GWR model results and food source vegetation 

study. Flowering season of the food source vegetation adds an additional risk factor 

due its importance in attracting the flying foxes and previous outbreaks in these 

seasons. However, even without flowering season as a risk factor, the properties 

remain ‘at risk’ with the presence of black flying fox species and their food source 

vegetation in range.  

 

An equine property located within 20 kms range from a positively significant black 

flying fox roosting site with significantly high clusters of their food source 

vegetation in the study area were considered as ‘at risk’ population in model 1. 

Figure 4.29 shows the equine population ‘at risk’ based on model 1. 

 

 

 

Figure 4.29: Equine population ‘at risk’ in the study area based on model 1. 
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Table 4.18: Cluster analysis results of black flying foxes food source vegetation near 

the equine population ‘at risk’. 

 

Distance Threshold Getis-Ord General G 

Statistic Report 

High/low 

Clustering 

3 kms Observed General G – 

0.000001  

z-score – 21.67 

p-value – 0.00000 

High clustering 

5 kms Observed General G – 

0.000002  

z-score – 16.38 

p-value – 0.00000 

High clustering 

10 kms Observed General G – 

0.000004  

z-score – 8.85 

p-value – 0.00000 

High Clustering 

15 kms Observed General G – 

0.000005  

z-score – 4.68 

p-value – 0.000003 

High Clustering 

20 kms Observed General G – 

0.000006 

 z-score – 1.83 

 p-value – 0.0667 

High Clustering 

 

Table 4.18 shows the summary of the high/low clustering results at various distance 

thresholds of the black flying fox food source vegetation near the equine population 

‘at risk’ based on model 1. The vegetation clusters were significantly high at all 3, 5, 

10, 15 and 20 kms tested. For full reports of the cluster analysis, see Appendix 4. The 

flowering and fruiting season of the food source vegetation that attracts the black 

flying foxes is mostly around the winter months (various sources as references and 

these eucalyptus varieties often depend on birds andmammals to spread the pollen in 

winter months) which adds an additional risk factor for a possible outbreak in 

flowering season (Catchpole 2005). The flowering season of the food source 

vegetation of the black flying foxes overlaps with their pregnancy period. Pregnancy 

period/birth period showed a significant negative relationship in the GWR model 

with the outbreak events in the study area. Regardless of the pregnancy/birth factor, 

flowering season remains as an important element.  
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Assumption:  

 

Based on an assumption that the distance to the significantly positive black flying fox 

roosting site contributes to 40% of the risk, clustering of the food source vegetation 

(significantly high, random or low) to 40% of the risk and flowering season (yes or 

no) to another 20% of the risk; based on these factors the relative risk of a probable 

outbreak on a selected equine property ‘at risk’ can be calculated.  

 

𝑅𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐹𝑎𝑟𝑚 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 1 (%)

=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑟𝑜𝑜𝑠𝑡𝑖𝑛𝑔 𝑠𝑖𝑡𝑒 (𝐵𝐹𝐹)𝑖𝑛 𝑘𝑚𝑠(%) 

+  𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 (%)  

+  𝑓𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛 (%) 

 

Equation 4.1 

 

For example, a farm ‘A’ is located 5 kms (5kms of total 20 kms range i.e. 10%) from 

a black flying fox roosting site with significant high cluster of food source vegetation 

(40%), it has a 50% chance of a probable outbreak in non-flowering season (0%) and 

85% chance of a probable outbreak in flowering season (20%) based on model 1.  

This chance of probable outbreak can be calculated for any equine property based on 

the exact distance, food source vegetation cluster type and season.  

 

4.5.2 Model 2 

 

This model identifies the ’at risk’ equine properties based on the presence of 

positively significant grey-headed flying foxes roosting sites from the GWR model 

(see Section 4.3.5) and their food source vegetation (see Section 4.4.1) in 

significantly high clusters within 20 kms from the properties. Flowering season of 

the food source vegetation adds an additional risk factor due its importance in 

attracting the flying foxes and previous outbreaks in these seasons. However, even 

without flowering season as a risk factor, the properties remain ‘at risk’ with the 

presence of grey-headed flying fox species and their food source vegetation in range.  
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An equine property located within 20 kms range from a positively significant grey-

headed flying fox roosting site with significantly high clusters of their food source 

vegetation in the study area were considered as ‘at risk’ population in model 2. 

Figure 4.30 shows the equine population ‘at risk’ based on model 2. 

 

 

 

Figure 4.30: Equine population ‘at risk’ in the study area based on model 2. 
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Table 4.19: Cluster analysis results of grey-headed flying Foxes food source 

vegetation near the equine population ‘at risk’. 

 

Distance Threshold Getis-Ord General G Statistic 

Report 

High/low 

Clustering 

3 kms Observed General G – 

0.000001  

z-score – 19.26 

p-value – 0.00000 

High clustering 

5 kms Observed General G – 

0.000002  

z-score – 13.79 

p-value – 0.00000 

High clustering 

10 kms Observed General G – 

0.000003  

z-score – 5.99 

p-value – 0.00000 

High Clustering 

15 kms Observed General G – 

0.000004  

z-score – 1.44 

p-value – 0.14 

Random Clustering 

20 kms Observed General G – 

0.000006 

 z-score – -1.42 

 p-value – 0.15 

Random Clustering 

 

Table 4.19 shows the summary of the high/low clustering results at various distance 

thresholds of the grey-headed flying fox food source vegetation near the equine 

population ‘at risk’ based on model 2. The vegetation clusters were significantly high 

at all 3, 5 and 10 kms tested. For full reports of the cluster analysis, see Appendix 4. 

The flowering and fruiting season of the food source vegetation that attracts the grey-

headed flying foxes is mostly around the winter months, which is the same as the 

black flying foxes.  

 

Assumption:  

 

Based on an assumption that the distance to the significantly positive grey-headed 

flying fox roosting site contributes to 40% of the risk, clustering of the food source 



  

189 | P a g e  
 

vegetation (significantly high, random or low) to 40% of the risk and flowering 

season (yes or no) to another 20% of the risk; based on these factors the relative risk 

of a probable outbreak on a selected equine property ‘at risk’ can be calculated.  

 

𝑅𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐹𝑎𝑟𝑚 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 2 (%)

=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑟𝑜𝑜𝑠𝑡𝑖𝑛𝑔 𝑠𝑖𝑡𝑒 (𝐺𝐻𝐹𝐹) 𝑖𝑛 𝑘𝑚𝑠(%) 

+  𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 (%) +  𝑓𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛 (%) 

 

Equation 4.2 

 

For example, a farm ‘B’ is located 15 kms (15 kms out of total 20 kms range i.e. 

18.75%) from grey-headed flying fox roosting site with low cluster of food source 

vegetation (0%), it has an 18.75% chance of a probable outbreak in non-flowering 

season and 38.75% chance of a probable outbreak in flowering season (20%) based 

on  model 2.  This chance of probable outbreak can be calculated for any equine 

property based on the exact distance, food source vegetation cluster type and season. 

 

4.5.3 Model 3 

 

This model identifies the ’at risk’ equine properties based on the presence of either 

black or grey-headed or both species roosting sites and their food source vegetation 

in significantly high clusters within 20 kms from the properties. Flowering season of 

the food source vegetation adds an additional risk factor due its importance in 

attracting both flying fox species and previous outbreaks in these seasons.  

 

An equine property located within 20 kms range from a positively significant 

roosting site of either species with significantly high clusters of their food source 

vegetation in the study area were considered as ‘at risk’ population in model 3. 

Figure 4.31 shows the equine population ‘at risk’ based on model 3. 
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Figure 4.31: Equine population ‘at risk’ in the study area based on model 3. 

 

The clustering of the food source vegetation for this model needs to be calculated 

depending on the equine property ‘at risk’ and the species identification at the 

roosting site in their range. The assumptions remain the same as models 1 and 2.  

 



  

191 | P a g e  
 

4.6 Flowchart of the Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.32: Summary of the results. 

Hypothesis 4 – Based on 

the influential factors, it is 

possible to identify the 

population ‘at risk’ by 

generating a prediction 

model.  
 

The results showed a 

strong correlation 

between the outbreak 

events and the existence 

of temporary and 

seasonal flying fox 

roosting sites within a 10 

km range. 

Hypothesis 1 - the Hendra 

Virus Outbreak events in 

the study area are 

correlated to the flying fox 

roosting sites. 
 

 The food source 

vegetation of from 

black and grey-

headed flying 

foxes was 

identified. 

 The food sources 

for each species 

indicated a positive 

relationship 

between the 

roosting site 

location and MVS. 

 The food source 

vegetation within 

10kms range from 

equine properties 

indicated 

statistically 

significant high 

clustering at 3, 5 

and 10 kms 

thresholds. 

 3 models were generated to 

identify the ’at risk’ equine 

properties. 
 The models were based on 

the results of the GWR 

model and the food source 

vegetation analysis. 

Hypothesis 2 – the significant 

factors that could explain the HeV 

dispersal in the study area can be 

identified using an appropriate 

spatial modelling technique. 
 

 The results revealed significant 

clustering of P. alecto and P. 

scapulatus using Spatial 

Autocorrelation technique. 
  P. alecto and P. poliocephalus 

species density showed a primary 

relationship to the incidents in 

the study area.  
 Buffer analysis visualised a 

correlation between P. alecto and 

P. poliocephalus species birth 

periods and the incidents in the 

study area.  
 OLS regression identified P. 

poliocephalus species to be  

globally significant (99% 

confidence level),model 

performance – 0.7. 

  In GWR analysis independent 

variables P. alecto and P. 

poliocephalus species exhibited a 

significant positive relationship 

in most of the regions, model 

performance -0.88.  

Hypothesis 3 – the food 

source vegetation plays an 

important role in the 

outbreak events. 
 

Hypothesis 1 - Accepted 

Hypothesis 2 - 

Accepted 
 Hypothesis 3 - 

Accepted 
 

Hypothesis 4 - 

Accepted 
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4.7 Summary 

 

A summary of the conclusion of each hypothesis tested was presented in Figure 4.32 

(see Section 4.6). The preliminary spatial analysis of the flying fox roosting sites 

results showed a strong correlation between the outbreak events and the existence of 

temporary and seasonal flying fox roosting sites within a 10kms range. A very few 

disease outbreak incidents have a permanent roosting site in their buffer range. The 

results provided a strong case for investigation into the seasonal behaviour of flying 

foxes, particularly in breeding season.  

4.7.1 Spatial Autocorrelation 

 

The spatial autocorrelation of the black flying foxes showed significant clustering at 

all the foraging range intervals (20 to 50 kms range) with high occurrence at 50 kms, 

which is their maximum foraging range. Grey-headed flying foxes showed random 

clustering at 10, 20 and 30 kms range. The maximum clustering for grey headed 

flying foxes occurred at 40 kms foraging range. The results of the little red flying 

foxes showed maximum significant clustering occurring at 10 kms range. 

4.7.2 Kernel Density Estimation 

 

The Kernel density estimation (KDE) identified a primary relationship between black 

flying foxes and grey-headed flying foxes density and the HeV outbreak incidents in 

the study area.  Buffer analysis indicated a correlation between the black flying fox 

and grey-headed flying fox birth periods and the incidents in the study area. 

Pregnancy period of the flying foxes is considered to exhibit high correlation with 

Hendra disease outbreaks in other study areas (Field et al. 2007). A total of ten 

incidents have fallen within the birth period of the black flying foxes and grey-

headed flying foxes with one or more roosting sites in the buffer range of 10 kms. 

Buffer analysis was able to establish the initial correlation between the birth periods 

of individual species and incidents in the study area.  
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4.7.3 Regression Analysis 

 

Ordinary least squares (OLS) regression identified P. poliocephalus species to be 

significant among the other explanatory variables in the model. The OLS model has 

a statistically significant heteroscedasticity (p<0.05) which suggests the use of 

Robust P to determine the coefficient significance for consideration. Goodness-of-fit 

measure indicated a model performance of 0.7.  The variance inflation factor (VIF) 

values indicated no redundancy among the variables. Moran’s I test (Index = -0.02, P 

= 0.8) indicated no significant clustering among the residuals. The results indicate 

that the presence of the camps with high density grey headed flying-fox species have 

high incident rate across the study area globally. Geographically weighted regression 

(GWR) analysis was performed to identify the local relationships between the 

dependent and independent variables. P. alecto and P. poliocephalus species 

exhibited a significant positive relationship in most of the regions where as 

pregnancy period variable exhibited a significant negative relationship to the HeV 

incidents in the study area. The goodness-of-fit measure indicated an improvement 

from 0.7 (global model) to 0.8. Moran’s I test (Index = -0.02, P = 0.9) indicated no 

significant clustering among the residuals. The spatial variability of the local 

parameter estimates of each variable has been tested using GWR4 software and 

significant spatial variability was present in the variables. The t value of each 

parameter estimate of the independent variables was mapped for a detailed study of 

the local relationships. 

4.7.4 Vegetation Analysis 

 

The food source vegetation analysis identified the major vegetation subgroups 

present within the minimum foraging range (20 kilometers) from the black and grey-

headed flying foxes temporary and seasonal roosting sites. From the identified 

subgroups, the potential food sources for each species were identified. The 

abundance of food sources for each species within their minimum foraging range 

indicates a positive relationship between the roosting site locations and the 

vegetation subgroups present near them.  The vegetation subgroup identification on 

the incident site location indicated that 10 out 11 incidents are rather located on 
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'Cleared, non-native vegetation, buildings' subgroup and the other one incident is 

located vegetation subgroup ‘'Eucalyptus open forests with a grassy understorey’.  

 

Further study on the vegetation subgroups within 10 kilometers range from the 

incident sites identified a range of vegetation including a good amount of possible 

food sources for both black and grey-headed flying foxes. High/low clustering 

method was employed to study the clustering of the food sources near the incident 

sites. The results indicated a significant high clustering at 3 kilometers distance 

threshold. The p-value of 0.002 indicates 99% significance and the positive z-score 

indicated clustering among the high values. However, the clustering started 

dispersing as the distance threshold increased.  At 4 kilometer distance threshold, the 

clustering was still statistically significant but at 90% confidence level. At 5 

kilometer distance threshold, the clustering is random and at 8 kilometer distance 

threshold, the result is dispersed. 

 

The food source vegetation within 10 kilometers range from equine properties was 

examined using high/low clustering method. Unlike the food source vegetation study 

near the outbreak events in the study area which was clustered at 3 kilometer 

threshold and then started dispersing, the results indicated statistically significant 

high clustering at all 3, 5 and 10 kilometers distance thresholds. The study of the 

most occurring food source vegetation types near the equine population indicated 

that it mainly consists of ‘Eucalyptus’ related subgroups. This established a strong 

spatial relationship between the registered equine properties and the food source 

vegetation of the flying foxes. 

4.7.5 Prediction Models 

 

Based on the results achieved thus far, 3 models were generated to identify the 

equine population ‘at risk’ in the study area. These models concentrate on the 

presence of positively significant roosting sites of both species from the GWR model 

and their food source vegetation clustering within 20 kms range from the equine 

properties. Flowering season was also considered as an additional risk factor in these 

models due its importance in attracting the flying foxes and previous outbreaks in 

these seasons. The flowering and fruiting season of the food source vegetation that 
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attracts these species is mostly around the winter months (various sources as 

references and these eucalyptus varieties often depend on birds andmammals to 

spread the pollen in winter months) which adds an additional risk factor for a 

possible outbreak in flowering season (Catchpole 2005). 

 

A detailed discussion on the methods used, hypothesis tested, results achieved and 

the limitations of the work has been presented in the following Chapter 5. 
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5. Chapter Five - Discussion 

 

HeV is responsible for the cause of a zoonotic disease with very high mortality rate. 

The disease is transmitted to humans from bats of the genus Pteropus, commonly 

known as fruit bats via an intermediate equine host.  HeV infections have been seen 

only in Australia, where the virus is endemic in flying foxes. The research on HeV 

has been given a high public health significance due to the high mortality rate of >79 

per cent. HeV is transmitted mainly by ingesting food or water contaminated with 

infected flying fox body fluids and excretions in horses. The virus can then be passed 

onto humans who come into close contact with infected horse’s nasal discharge, 

blood, saliva or urine (AAW 2012). The studies show strong evidences that the 

disease is not bat-to-human transmissible and horses act as medium for disease 

transmission to humans. Horses to other species and bats to other species 

transmissions are however possible (Australian Biosecurity 2009). 

 

HeV is considered as a serious public health concern, particularly in Queensland and 

New South Wales. Its effective prevention and control are being considered by the 

government as a matter of priority. While there is a new development in the HeV 

control strategy by mean of, vaccination to the horses against the disease is the only 

solution so far. As a Zooneses category disease, there is always a possibility to 

determine the causes that promote the virus transmission. It is important to explore 

the possible environmental, ecological and other related factors that may influence 

the prevention and control measures in terms of the public and environmental health 

safety.  

Hypothesis-1 

 

To study the relationship between the flying fox roosting sites and the outbreak events, a 

preliminary study incorporating buffer analysis was conducted. The results showed a 

strong relationship between the outbreak events in the study area and the existence of 

temporary and seasonal flying fox roosting sites within a 10km range. Very few disease 

outbreak incidents have a permanent roosting site in their buffer range. The results of the 

preliminary analysis are consistent with the NFFMP’s findings. The recent findings of 

NFFMP revealed that the distribution of flying foxes is highly variable, with the animals 
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moving in and out of camps seasonally, apparently in response to varying food resources 

available. The grey headed and spectacled flying foxes - whose entire distributions were 

covered by the monitoring, have shown a dramatic change in their distribution over the 

last decades with a shift to smaller camps located in urban and peri urban areas. This is a 

similar distribution pattern to that of horses (DoE 2013). The results provided a strong 

case for research into the seasonal behaviour of flying foxes, particular in breeding 

season. 

Hypothesis-2 

 

Global statistics such as Spatial Autocorrelation tool assess the overall pattern and 

trend of the data. It is a useful technique to identify the trend of the data over space-

time (Getis et al 1992). Spatial Autocorrelation tests results of the flying fox species 

at various distance thresholds indicated that the species - black flying foxes and little 

red flying foxes are significantly clustered at threshold distance of 10 kms. The 

spatial autocorrelation of the black flying foxes showed significant clustering at all 

the foraging range intervals (20 to 50 kms range) with high occurrence at 50 kms, 

which is their maximum foraging range. Grey-headed flying foxes showed random 

clustering at 10, 20 and 30 kms range. The maximum clustering for grey headed 

flying foxes occurred at 40 kms foraging range, which is the nocturnal foraging 

range of the flying foxes (Markus et al 2004). The results of the little red flying foxes 

showed maximum significant clustering occurring at 10 kms range. 

 

Similar to a recent study on the HeV patterns (Smith et al. 2014); the kernel density 

estimation (KDE) technique showed that the black flying foxes density is particularly 

higher near the incident locations in the study area; however the density of grey 

headed flying foxes is also high near the incidents in the study area unlike the study. 

KDE identified a primary relationship between black headed flying foxes and grey-

headed flying foxes density and the incidents in the study area. It is an ideal 

technique to examine large scale trends in point pattern analysis (So et al. 2008). The 

bandwidth for the KDE analysis for each species was 0.4598 degrees, which was 

calculated by the default search radius (bandwidth) algorithm of ArcGIS 10.2.1 

(ESRI 2016).  The study (Smith et al 2014) suggested that there are unidentified risk 



  

198 | P a g e  
 

factors that exist at the property level apart from the density of horses, climatic and 

vegetation variables. 

 

Buffer analysis indicated a correlation between the black flying foxes and grey-

headed flying fox birth periods and the incidents in the study area. Pregnancy period 

of the flying foxes is considered to exhibit high correlation with Hendra disease 

outbreaks in other study areas (Field et al. 2007). A total of ten incidents have fallen 

within the birth period of the black flying-foxes and grey-headed flying foxes with 

one or more roosting sites in the buffer range of 10 kms. Buffer analysis was able to 

establish the initial correlation between the birth periods of individual species and 

incidents in the study area. The black and grey-headed flying foxes were considered 

as significant species for the regression model as explanatory variables based on the 

results of KDE analysis and the birth period correlation study.  

 

The model for the regression analyses was calibrated using the GWR technique in an 

exploratory method (Fotheringham et al 2012). The explanatory variables for this 

study were selected considering the previous studies (Breed et al. 2011, Smith et al. 

2014, Plowright et al. 2008 and Field et al. 2007) as well as the preliminary analysis 

conducted in this study to establish the initial correlations to identify the unspecified 

risk factors and patterns of the disease dispersal using spatial analysis techniques. 

The model calibration technique introduced by Fotheringham et al (2012) uses a 

statistical model-building procedure in order to establish if any further reduction in 

the set were possible. By doing this, a reduced set of highly significant explanatory 

variables (black flying foxes, grey-headed flying foxes and the average 

pregnancy/birth period) of HeV outbreak events were achieved.  

 

The implementation of the OLS technique has provided a global understanding of the 

HeV disease across the study area. The analysis was carried out using the ‘incident 

rate’ as a dependent variable and black flying foxes, grey-headed flying foxes and 

pregnancy period as independent variables. The OLS regression technique identified 

grey-headed flying foxes as significant explanatory variable in the global context 

across the study area. The independent variable ‘grey-headed flying foxes’ was 

globally significant at 99% confidence level across the study area. The variance 

inflation factor (VIF) values indicated no redundancy among the variables in the 
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model. This model has a statistically significant heteroscedasticity (p<0.05) which 

suggests the use of Robust P to determine the coefficient significance for 

consideration. Goodness-of-fit measure indicated a model performance of 0.7 (70%).  

Moran’s I test (Index = -0.02, P = 0.8) indicated no significant clustering among the 

residuals. Field et al (2011) suggested that some flying fox species may play a 

greater role on the HeV transmission of infection to horse, which indicates that the 

virus dispersal highly depends on the presence of particular flying fox species based 

on the geographic location. In the current study, it can be interpreted that the grey-

headed flying fox species play primary role in the HeV dispersal across the study 

area globally.  

 

The GWR technique is a local model of the variable or process for understanding the 

spatial patterns by fitting a regression equation to every feature in the data set. The 

model produced (explanatory variables - black flying fox density, grey-headed flying 

fox density and pregnancy period) using statistical model-building procedure was 

used to study the locally varying spatial trends of the HeV incidents across the study 

area. The spatial variability among the local parameter estimates produced by GWR 

analysis of each variable has been tested using GWR4.0 software. The significant 

spatial variability test indicated that it was present among the variables. The 

goodness-of-fit measure indicated an improvement from 0.7 (global model) to 0.88 

(88%). The good-of-fit measure value indicates that the chosen explanatory variables 

explain 88% of the virus dispersal locally in the study area. Moran’s I test (Index = -

0.02, P = 0.9) indicated no significant clustering among the residuals. 

 

The GWR results revealed a significant positive relationship between black and grey 

headed flying foxes density and the incidents in the study area. The result supports 

the statement of Westcott (2016), who argued that the HeV in horses mostly 

correlated with the incursions of the spectacled flying foxes and black flying foxes. 

A study by Smith et al (2014) identified the density of black and spectacled flying 

foxes as a significant risk factor in eastern Australia. The local trends of these two 

species observed across the study region would be highly beneficial in further 

disease modelling. Even though the pregnancy factor (Plowright et al. 2008) was 

considered as a potential risk for the Hendra outbreak and showed an initial possible 

correlation to the incidents in the study area, it exhibited a negative relationship at 
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local level. This indicates that there are other unidentified risk factors such as 

vegetation, migration strategies and seasonal change that need to be assessed 

together with the birth and lactating periods for more detailed local analysis.  

 

The black flying foxes showed positive significance in the regions of Logan, 

Redland, Scenic Rim and parts of Brisbane, Moreton Bay, and Sunshine Coast 

Regions. The grey-headed flying foxes showed positive significance in the regions of 

Brisbane, Ipswich, Gold Coast, Scenic Rim, Logan and Redland regions in the study 

area. The black flying foxes showed a positive correlation where the grey-headed 

flying foxes displayed a negative correlation in the region of Sunshine Coast. The 

grey-headed flying foxes showed no significance in the region of Moreton Bay 

where black flying foxes showed a strong positive correlation in the study area. The 

pregnancy period variable showed negative significance in most of the regions 

except Gold Coast, Sunshine Coast and part of Brisbane where the variable showed 

no statistical significance in the study area. The results of the GWR model reveal that 

the virus dispersion is positively related to the density and distribution of the black 

and grey headed flying foxes in the study area. The GWR model performed well 

(local R-squared value > 0.8) in the southern part of the study area where the incident 

rate is comparatively high and poorly in the northern region of the study area where 

the incident rate is low. 

 

Hypothesis-3 

 

An in-depth investigation of the food source vegetation of the flying foxes and their 

roosting sites as potential factors of HeV dispersal has identified the major 

vegetation subgroups present within the minimum foraging range (20 kilometers) 

from the black and grey-headed flying foxes temporary and seasonal roosting sites in 

the study area. Flying foxes largely depend on nectar and pollen from eucalypts, 

melaleucas and banksias; however they are attracted to a broad range of flowering 

and fruiting trees, and vegetation, as food sources (Wildlife QLD 2016). Department 

of primary industries, NSW investigated the type of vegetation present on some of 

the virus infected properties which included a range of fig trees, bottlebrushes, 

cocoas palm, stone fruits such as mangoes and papaws, palms, lilly-pillies and 
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grevilleas (DPI 2012). Black flying foxes prefer blossom of eucalypts, paperbarks 

and turpentine’s, as well as a variety of other native and introduced blossom and 

fruits. They have been seen to eat the leaves of trees by chewing the leaves into a 

bolus, swallowing the liquid and then spitting out the fibre (Wildlife QLD 2016, 

Australian Museum 2013). Grey-headed flying foxes forage on fruits and blossoms 

of more than 80 species of plants and mostly refer eucalypt blossom with native figs 

being the most popular fruit. They chew leaves and appear to eat the salt glands from 

mangroves. They also forage in gardens, parks and orchards and may fly many kms 

from roost site to feed (Wildlife QLD 2016). 

 

Based on the above information, the potential food sources for each species were 

identified. The black flying fox food resources included major Eucalyptus open 

forests varieties, Eucalyptus woodlands varieties, Tropical or Sub-tropical 

Rainforest, Low closed forest or tall closed shrub lands (including Acacia, Melaleuca 

and Banksia) and Brigalow forests and woodlands. The grey-headed flying fox 

resources included Eucalyptus open forests varieties, Eucalyptus woodlands 

varieties, Tropical or Sub-tropical Rainforest, Melaleuca open forests and 

woodlands, Mangroves and Dry rainforest or vine thickets. The abundance of food 

sources for each species within their minimum foraging range indicates a positive 

relationship between the roosting site locations and the vegetation subgroups present 

near them.   

 

High/low Clustering (Getis-Ord General G) analysis was performed on the food 

source vegetation of the black flying foxes and grey-headed flying foxes at various 

thresholds (3,5, and 10 kms) to examine the clustering. The results of High/low 

clustering analysis of the black flying fox food source vegetation returned high 

clustering at a confidence level of 99% at all the thresholds tested. The results of 

High/low clustering analysis of the grey-headed flying fox food source vegetation 

returned high clustering at a confidence level of 99% at all the thresholds tested. The 

results indicate that the roosting site locations are majorly dependent on the 

availability of the food source vegetation especially in high clusters.  

Further study on the vegetation subgroups within 10 kilometers range from the 

incident sites identified a range of vegetation including a good amount of possible 

food sources for both black and grey-headed flying foxes. High/low clustering 
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method was employed to study the clustering of the food sources near the incident 

sites. The results indicated a significant high clustering at 3 kilometers distance 

threshold. The p value of 0.002 indicates 99% significance and the positive Z score 

indicated clustering among the high values. However, the clustering started 

dispersing as the distance threshold increased.  At 4 kilometers distance threshold, 

the clustering was still statistically significant but at 90% confidence level. At 5 

kilometers distance threshold, the clustering is random and at 8 kilometers distance 

threshold, the result is dispersed. 

 

The major vegetation subgroups present within 10 Km range of the equine 

population in the study area were examined. From the major vegetation subgroups, 

the food source vegetation of black and grey-headed flying foxes were identified.  

The food source vegetation within 10 Km range from equine properties was 

examined using high/low clustering method. Unlike the food source vegetation study 

near the outbreak events in the study area which was clustered at 3 Km threshold and 

then started to disperse widely, the results indicated statistically significant high 

clustering at all 3, 5 and 10 Km distance thresholds. The study of the most occurring 

food source vegetation types near the equine population indicated that it mainly 

consists of ‘Eucalyptus’ related subgroups. It can be interpreted that these food 

resources present near the equine properties attract the flying foxes and thus the 

chances of an outbreak is more likely at a property with highly clustered food source 

vegetation.  

Hypothesis-4 

 

Based on the results from the GWR model and the food resource vegetation analysis 

of the flying foxes, three models that could identify the equine population ‘at risk’ 

(thus identifying the human population ‘at risk’ of a potential outbreak) were 

generated. Model 1 identified the ’at risk’ equine properties based on the presence of 

positively significant black flying foxes roosting sites from the GWR model and their 

food source vegetation in significantly high clusters within 20 kms from the 

properties. Model 2 identified the ’at risk’ equine properties based on the presence of 

positively significant grey-headed flying foxes roosting sites from the GWR model 

and their food source vegetation in significantly high clusters within 20 kms from the 
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properties. Model 3 identified the ’at risk’ equine properties based on the presence of 

either black or grey-headed or both species roosting sites and their food source 

vegetation in significantly high clusters within 20 kms from the properties. 

Flowering season of the food source vegetation was considered as an additional risk 

factor in all three models due its importance in attracting the flying foxes and 

previous outbreaks in these seasons. Each factor was given a ‘weighted percentage’ 

in assumptions to calculate the ‘relative risk of a probable outbreak event’ involved 

for individual equine property in the study area. The risk percentage of a probable 

outbreak event varies for each equine property depending on their exact location and 

their contributing factors. By incorporating the prediction models generated, the 

early warning messages can be issued to the equine properties ‘at risk’ in the study 

area, thus by identifying the human population ‘at risk’.  

 

Research Limitations 

 

The findings of this research were based on the empirical data driven analysis and 

are highly dependent on the data accuracy. The data was validated and any duplicates 

were removed to reduce the degree of possible error. The results of the study are only 

applicable to the study area. The results may vary when the dynamics of the HeV 

dispersal and its influential factors are to be studied at a larger scale or geographical 

area.  

 

The flying fox species data is recorded manually, which may be prone to some 

degree of error. The species data is continuous by the EHP and is updated every 3 

months. The data used in this research has been manipulated to best reflect the 

occupancy of the roosting sites at the time of the events.  

 

It is important to note that this research is a spatial GIS-based approach to understand 

the HeV disease outbreak events, its transmission and the factors influencing the 

disease dispersal in the study area. This study is built on the research that have been 

published so far on the HeV, its biology, transmission and their reservoir host – 

flying foxes. The future biological researches may find contrary to results achieved 

in this research.  
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Future Research 

 

Hypothesis 2 indicated a significant negative relationship with the average 

pregnancy/birth period variable of the flying fox species in the study area. A further 

examination into the flying fox pregnancy, birth and lactation periods of the flying 

foxes may reveal any underlying spatial patterns of this correlation to the HeV 

incidents in the study area. This may be effective in improvising the prediction 

models generated and thus helps in generating accurate warning signals.  

 

It will be advantageous to study further into the most re-occurring food sources (at 

least 3 vegetation subgroups) near the flying fox roosting sites, equine properties and 

the incidents to identify the individual correlations. This may help identify if the 

virus dispersion could be linked to a particular major vegetation subgroup(s) in the 

study area. Studying the HeV dispersal and its influential factors at a larger or 

smaller scale (geographical context) would be useful in understating the changes in 

the pattern(s) and how the influential factors affect the study area(s) at various 

scales/geographical contexts. This will be beneficial for state and local governments 

to plan mitigation policies appropriately and achieve the best outcome for human, 

equine and flying fox populations.  

 

By using the current study as a base, this research provides a platform for potential 

automated disease forecasting and surveillance system for HeV disease. As HeV is a 

highly fatal disease, the automated system could have significant impact on both 

public health and equine industries. The automated surveillance systems require 

sophisticated data acquisition and analysis; there is still a gap in current research due 

to limitations in lack of infrastructure for such data acquisition, lack of awareness 

and also shortage of trained personnel. However, in the near future the automated 

disease surveillance system would be a cost and time effective approach in 

monitoring public health. 
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6. Chapter Six – Conclusion 

 

The overall aim of this research was to analyse the spatial patterns of the HeV cases, 

study the factors that may explain the HeV dispersal in the study area and identify 

the population ‘at risk’ using a prediction model by incorporating GIS techniques. 

Using the spatial analytical tools, this research established a relationship between the 

outbreak events and their influential factors such as species, foraging range, 

pregnancy period, birth and lactation period, seasons and food source vegetation. 

This study successfully filled in the requirement of a good GIS-based 

epidemiological research to study the HeV outbreaks in the study area spatially and 

temporally, which addresses the pressing need announced by Queensland 

Government (DAF 2015). The results of Hypothesis 1 showed strong correlations 

between the outbreak events and the existence of temporary and seasonal flying fox 

roosting sites within a 10kms range of the incidents in the study area. A very few 

outbreak incidents (18%) have a permanent roosting site in their buffer range. The 

findings provided a strong case for investigation into the seasonal behaviour of flying 

foxes, particularly in breeding season. 

 

The findings of Hypothesis 2 have provided excellent understanding the factors 

influencing the dispersal of HeV outbreak events in the study area. Global Moran’s I 

method (inverse distance conceptualisation) was used to identify the presence of 

significant spatial clustering of the three flying fox species at various foraging ranges 

(10, 20, 30, 40 and 50 kms) in the study area. Global Moran’s I revealed significant 

clustering of P. alecto and P.scapulatus species. The analysis of P. alecto species 

showed significant clustering at all foraging range intervals with high occurrence at 

50 kms, which is their maximum foraging range. The findings of P.scapulatus 

species showed maximum significant clustering occurring at 10 kms range. Kernel 

density estimation (KDE technique) analysis helped in establishing a strong 

relationship between P. alecto and P.scapulatus species density and the outbreak 

events in the study area and revealed the density hotspots of these species. Buffer 

analysis established an initial relationship between P. alecto and P. poliocephalus 

species birth periods and the outbreak incidents. 
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Ordinary least squares (OLS) regression identified P. poliocephalus species to be 

significant among the other explanatory variables in the model. Goodness-of-fit 

measure indicated a model performance of 0.7. The results indicated that the 

presence of the camps with high density grey headed flying-fox species have high 

incident rate across the study area globally. Geographically weighted regression 

(GWR) analysis was performed to identify the local relationships between the 

dependent and independent variables. P. alecto and P. poliocephalus species 

exhibited a significant positive relationship in most of the regions where as 

pregnancy period variable exhibited a significant negative relationship to the HeV 

incidents in the study area. The goodness-of-fit measure indicated an improvement 

from 0.7 (global model) to 0.8. The t values of each parameter estimate of the 

independent variables were mapped for a detailed study of the local relationships, 

which facilitated in identifying and understanding the local relationships of the HeV 

incidents with the explanatory variables. 

 

In Hypothesis 3, the findings identified the major vegetation subgroups present 

within the minimum foraging range (20 kilometers) from the black and grey-headed 

flying foxes temporary and seasonal roosting sites. Subsequently, the food source 

vegetation of each species was identified. The abundance of food sources for each 

species within their minimum foraging range indicates a positive relationship 

between the roosting site locations and the vegetation subgroups present near them. 

Further study on the vegetation subgroups within 10 kilometers range from the 

incident sites identified a range of vegetation including a good amount of possible 

food sources for both black and grey-headed flying foxes. The clustering of the food 

resource vegetation present near the incidence was studied using Getis-Ord General 

G Statistic method, which indicated statistically high clustering with 99% confidence 

level at 3 kms distance threshold. A 10 kms range vegetation study on the equine 

properties in the study area identified the food source vegetation of both significant 

species. The clustering of the food source vegetation present near the equine 

properties was studied using high/low clustering/Getis-Ord General G Statistic 

method, which indicated statistically significant high clustering at 3, 5 and 10 kms 

distance thresholds. The vegetation analysis revealed strong correlations between the 

roosting sites, food source vegetation and the equine properties. 
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Hypothesis 4 resulted in identifying the equine population ‘at risk’ based on the three 

prediction models generated. The risk percentage of a probable outbreak event varied 

for each equine property depending on their exact location and their contributing 

factors. The prediction model(s) was an effective tool to identify the potential 

population (both equine and human) ‘at risk’, which could help in health service 

planning, policy implications, decision making and ongoing disease surveillance in 

the study area. This study revealed the capability of GIS-based surveillance system to 

issue early warnings and precautionary measures to the identified population ‘at 

risk’. This research also made evidence based practice of disease mitigation, 

planning and prevention and control strategies for HeV achievable. 
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Appendix – 1 

Data and Statistics 

 

A1.1 List of HeV Incidents  

 

Table A1.1: List of HeV incidents (Source: Queensland Centre for Emerging 

Infectious Diseases 2014). 

 

Incident Date Latitude Longitude 

1 1/08/1994 -21.12 149.03 

2 9/09/1994 -27.42 153.08 

3 18/01/1999 -16.79 145.69 

4 25/10/2004 -17.09 145.79 

5 1/12/2004 -19.38 146.91 

6 14/06/2006 -26.82 152.89 

7 31/10/2006 -28.33 153.39 

8 6/06/2007 -26.82 152.88 

9 18/07/2007 -16.78 145.67 

10 26/06/2008 -27.58 153.28 

11 11/07/2008 -20.57 148.61 

12 28/07/2009 -23.27 150.67 

13 3/08/2009 -19.99 148.19 

14 17/05/2010 -26.38 153.03 

15 21/06/2011 -28.04 152.59 

16 26/06/2011 -28.13 153.08 

17 28/06/2011 -27.69 153.12 

18 30/06/2011 -28.79 153.37 

19 3/07/2011 -30.73 152.83 

20 4/07/2011 -27.73 153.01 

21 11/07/2011 -16.89 145.57 

22 13/07/2011 -25.33 152.82 

23 14/07/2011 -28.72 153.35 

24 15/07/2011 -27.36 153.06 

25 22/07/2011 -26.75 150.62 
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26 24/07/2011 -28.54 153.5 

27 8/08/2011 -28.88 153.49 

28 12/08/2011 -28.54 153.43 

29 15/08/2011 -28.71 153.54 

30 23/08/2011 -28.18 153.43 

31 27/08/2011 -28.79 153.51 

32 9/10/2011 -27.11 153.01 

33 3/01/2012 -19.59 146.91 

34 26/05/2012 -23.39 150.59 

35 28/05/2012 -18.63 146.12 

36 26/06/2012 -20.99 148.98 

37 15/07/2012 -23.39 150.61 

 

38 27/07/2012 -16.93 145.69 

39 3/09/2012 -16.53 145.45 

40 1/11/2012 -18.66 146.27 

41 21/01/2013 -21.82 149.37 

42 19/02/2013 -16.88 145.57 

43 5/06/2013 -30.69 152.72 

44 25/06/2013 -27.51 152.55 

45 1/07/2013 -30.71 152.64 

46 5/07/2013 -28.06 153.35 

47 8/07/2013 -30.85 152.65 

48 10/07/2013 -31.09 152.84 

49 17/03/2014 -24.93 152.24 

50 2/06/2014 -27.78 153.19 

51 21/06/2014 -28.33 153.39 

52 16/07/2014 -23.98 151.19 
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A1.2 List of Permanent continuous Use Roosting Sites in the Study Area 

 

Table A1.2: List of permanent continuous use roosting sites in the study area 

(Source: EHP 2014). 

 

Longitude Latitude Name 

151.9837 -28.028 Allora (Dalrymple Creek) 

152.6799 -27.9919 Boonah, Bicentenial Park 

153.4277 -28.0222 Broadbeach, Cascade Gardens 

152.3387 -24.8615 Bundaberg, Harriet Island/Don Tallon Bridge 

153.4292 -28.0946 Burleigh, Marymount College 

146.2764 -26.3598 Charleville (Warrego) 

153.258 -27.5275 Cleveland, Black Swamp 

153.3812 -27.8883 Coombabah, Coombabah Creek 

153.4672 -28.1453 Currumbin Creek 

153.0519 -27.4841 East Brisbane, Norman Creek (Heath Park/Giffin Par 

152.4233 -27.2349 Esk 

153.1136 -27.444 Hemmant, Lytton Road 

152.8128 -25.2456 Hervey Bay, Gatakers bay 

152.7044 -26.4048 Kandanga, Hyne Estate Rd 

153.1437 -27.445 Lindum, Kianawah Rd. 

153.1837 -27.4641 Lota, Wynnum Hospital 

152.9255 -27.5444 Mount Ommaney - Westlake Drive 

152.7222 -27.4939 Pine Mountain (Camerons Scrub/Sapling Pocket) 

153.0988 -27.2315 Redcliffe Botanic Gardens 

148.8029 -26.5602 Roma, Bungil Creek 

153.0687 -27.3231 Sandgate, Curlew Park 

153.1279 -27.0804 Sandstone Point, Bestman Rd 

153.1373 -27.6402 Slacks Creek, Meakin Park 

153.4134 -27.9951 Southport Golf Club 

153.4136 -27.9797 Southport, Akes Avenue, 

152.9992 -27.412 Stafford, Sparkes Hill, Clover Street 

153.2767 -28.2174 Springbrook N.P, Natural Bridge 

153.1363 -27.61 Springwood, Parfrey Road 

151.8786 -26.9345 The Palms NP, Cooyar 

151.6566 -24.0818 Turkey Beach (now Central Region) 

152.926 -27.0809 Wararba Creek, Caboolture 

152.7485 -27.6031 Woodend 

152.7556 -27.6514 Yamanto 

152.2726 -27.5648 Gatton, Amaroo Retirement Village, Tenthill Creek 
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A1.3 List of Permanent Seasonal Use Roosting Sites in the Study Area 

 

Table A1.3: List of permanent seasonal use roosting sites in the study area (Source: 

EHP 2014). 

 

Longitude Latitude Name 

153.2263 -27.5026 Birkdale, Tarradarrapin 

152.6085 -28.0009 Boonah - Mount French 

152.9714 -27.1527 Burpengary 

152.5274 -25.2095 Burrum River (upper), Junction Cherwell River 

152.9206 -27.6315 Camira, Pilney Reserve (Barbara Street) 

153.1824 -28.0398 Canungra, Beachmont Rd 

152.98 -27.8558 Cedar Grove -Brushwood Cres. 

151.8965 -25.6147 Coalstoun Lakes Recreation Reserve 

153.3312 -27.5724 Coochiemudlo Island 

152.0166 -27.45 Crows Nest 

151.2601 -27.1897 Dalby, Myall Creek 

152.8254 -27.1971 Dayboro, Railway Street 

152.8316 -27.2069 Dayboro, Strong Road 

152.7272 -25.2682 Dundowran, O'Reagans Creek CP 

152.9479 -27.6142 Ellen Grove, Waterford Rd 

153.0226 -27.4424 Enoggera Creek Herston 

152.785 -27.7928 Flinders Peak, Peak Crossing 

153.0471 -25.4019 Fraser Island, Cornwell's Break 

151.6109 -25.6239 Gayndah Township 

152.6384 -26.1822 Gympie Township, Widgee Crossing 

152.0558 -27.3467 Hampton, Wockner Rd 

153.3343 -27.9012 Helensvale, Mildura Drive 

152.8929 -25.2888 Hervey Bay, Botanic Gardens 

152.8472 -25.2818 Hervey Bay, Tooan Tooan 

153.0115 -28.2192 Hillview 

152.3208 -25.2258 Horton, 59 Station Road 

152.9886 -27.5157 Indooroopilly Island 

151.8125 -26.5275 Kingaroy, Mt. Wooloorin Reserve 

152.1724 -24.7218 Kolan River, Avondale 

153.3753 -27.6274 Lamb Island 

152.9654 -26.7997 Landsborough, Vidler Crt 

152.5903 -27.4657 Lowood (Camp 2) Water Tower 

152.5886 -27.4688 Lowood Bend (Camp 1) Brisbane River 

153.085 -27.5707 MacGregor, Freesia Street 

153.3535 -27.6114 Macleay Island 
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152.7137 -25.556 Maryborough, Little Tinana Ck 

153.107 -26.6824 Mooloolaba, Goonawarra Drive 

153.1983 -27.737 Mount Warren Park - Yvonne Cr. 

153.3459 -28.0856 Mudgeeraba, Burke Crescent 

153.363 -28.1048 Mudgeeraba, Hardys Road/Appaloosa Crt 

153.402 -27.499 North Stradbroke Island, Dunwich (Mitchell Cres.) 

153.5276 -27.427 North Stradbroke Island, Point Lookout 

153.4789 -28.126 Palm Beach, M1 

153.0337 -27.6303 Parkinson, Avondale Crescent 

151.813 -28.554 Passchendaele SF 

152.8873 -26.8232 Peachester 

151.6388 -27.7085 Pittsworth, Int. Campbell St and Perham St 

152.8802 -27.5996 Redbank (Pan Pacific Peace Garden) 

153.3085 -27.6421 Redland Bay, Junee Street Wetlands 

153.3068 -27.6209 Redland Bay, Weinam Creek Wetlands (Moores Rd) 

152.9759 -26.3279 Ringtail Creek, Tronson Road 

152.8405 -27.3761 Samford, Days Road 

153.1028 -27.2029 Scarborough, Sunnyside Rd 

153.4033 -27.9581 Southport, Loders Creek 

153.0524 -27.5826 Sunnybank (Les Atkinson Park) 

152.9753 -26.6109 Parklands, Tallangatta Street 

153.1935 -27.9237 Tamborine NP (Joalah Sec) 

152.9926 -25.9175 Tin Can Bay, Snapper Point 

152.9276 -27.0823 Wararba Creek - Colburn way 

151.9949 -24.6942 Watalgan SF, Arthur's Ck Rd 

153.2355 -27.4952 Wellington Point, Crossley Drive 

153.0745 -26.4081 Weyba Creek 

152.6895 -27.6572 Willowbank 

152.0461 -25.5115 Woocoo NP, Aramara 

152.7763 -26.9503 Woodford 

153.1725 -27.4378 Wynnum Creek 
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A1.4 List of Temporary Occupied Roosting Sites in the Study Area 

 

Table A1.4: List of temporary occupied roosting sites in the study area (Source: EHP 

2014). 

 

Longitude Latitude Name 

153.2097 -27.5165 Alexandra Hills, Lawn Terrace 

152.616 -26.3607 Amamoor State Forest 

152.4689 -24.8316 Bargara, Larder Street 

152.5734 -25.1733 Burrum River (lower), Big Shaggy Island 

152.3737 -25.2258 Childers (Mango Hill) 

152.8264 -26.3375 Cooran - Yellow Belly Reserve 

151.2595 -27.1899 Dalby, Wood Street 

152.6259 -25.9274 Glenwood Varley Road 

150.2869 -28.5383 Goondiwindi (Macintyre River) Sandlewood St. 

151.0736 -28.416 Inglewood, Frey Street 

152.9275 -26.2886 Kinmond Creek, Cootharaba Road 

152.834 -28.0834 Kooralbyn (Routley Drive) 

152.3948 -27.6206 Laidley, Laidley Plainlands Road 

153.0712 -26.6508 Maroochydore, Stella Maris CS 

152.7224 -25.4734 Maryborough, Saltwater Creek 

151.0231 -24.7532 Monto 

153.3242 -28.003 Nerang, Gilston Road 

153.0699 -26.392 Noosaville, Goat Island CP 

153.037 -27.68 Regents Park, Emerald Drive 

153.412 -28.0629 Robina, Kiralee Dr 

152.9419 -27.4443 The Gap, Riaweena St 

153.1367 -26.7881 Tooway Creek 

151.943 -27.601 Toowoomba, Spring Street 

153.3044 -27.5801 Victoria Point, Marianne St/Egret Drive. 

153.1592 -27.079 Bongaree, Shirley Creek 

153.1773 -27.667 Loganholme, Timor Avenue 

153.3624 -28.0179 Carrara, Edelsten Court 

152.9631 -27.8147 Undulluh, Homestead Drive (Flagstone) 

153.4272 -27.9842 Surfers Paradise, Macintosh Island 

153.073 -27.3987 Northgate reserve 

152.9553 -27.1605 Burpengary Equestrian 

153.3916 -28.0332 Carrara, Gooding Drive 

151.7204 -27.4356 Oakey - Campbell St 

151.857 -28.2677 Warwick, Rockland Rd 

152.7199 -26.7276 Conondale, Herron Rd 

153.3973 -27.9481 Labrador, Government Rd 
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152.8127 -27.6124 Bundamba, Paice St 

152.9456 -27.4055 Ferny Hills, Kylie Ave 

153.0855 -26.5328 Coolum, Cassia Wildlife Corridor 

153.0376 -27.4376 Windsor, Enoggera Creek 

152.5687 -26.9415 Kilcoy, Kilcoy Creek (Anzac Park) 

153.0125 -27.8746 Cedar Vale, Banksia Court 

153.4238 -28.0681 Miami, Pizzey Drive 

153.1963 -27.709 Beenleigh, Lincoln St 

152.2784 -26.8413 Linville, John Street 

152.9929 -27.491 Toowong Perrin Park, Josling St 

151.6349 -27.7125 Pittsworth, 1 Thomas Street 

152.1227 -27.5483 Helidon, Gunn Street 

153.1424 -27.0578 Bellara, Warrigal Street 
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A1.5 List of Temporary Unoccupied Roosting Sites in the Study Area 

 

Table A1.5: List of temporary unoccupied roosting sites in the study area (Source: 

EHP 2014). 

 

Longitude Latitude Name 

151.9847 -28.0314 Allora (Dalrymple Park Reserve) 

153.3809 -27.9479 Arundal, Biggera Creek 

152.0364 -24.5105 Baffle Estuary, Baffle Creek 

153.0365 -27.6212 Calamvale, Earnshaw St. 

153.3596 -28.0066 Carrara, Nerang Broadbeach Road 

152.0978 -28.3992 Cherry Gully, Warwick 

150.5813 -26.8012 Chinchilla 

153.4223 -28.1865 Coolamon, Currumbin Valley (Nicolls Scrub) 

153.0866 -26.5485 Coolum, Hyatt 

153.2167 -27.7 Eagleby, Dreyer Road (Carbrook Golf Course) 

152.9145 -26.4721 Eerwah Vale 

151.6622 -25.5859 Gayndah, Brambah Ck 

152.9028 -27.6049 Goodna, Woogaroo Creek 

152.778 -26.0485 Goomboorian, Anderleigh Rd Ginger Creek 

150.2876 -28.5373 Goondiwindi (Macintyre River) Cairns St. 

152.4102 -27.6381 Laidley (Whites Road) 

153.1876 -27.7015 Loganholme, Alexander Clark Park 

152.7185 -25.5097 Maryborough, Albion Rd Wetlands (Island Plantation 

152.7131 -25.5436 Maryborough, Kent Street 

152.8185 -27.827 Mount Elliot 

152.9737 -26.6113 Nambour, Tallangatta St. 

153.3226 -27.9885 Nerang, Bushmead Street 

153.3157 -28.0039 Nerang, Riverpark Dr. 

153.3138 -28.0025 Nerang, Winchester Dr. 

153.2429 -27.7758 Ormeau, Carob Court 

152.9726 -26.6073 Parklands, Nambour Bypass (SC) 

153.0687 -25.9763 Rainbow Beach, Seary's Creek 

153.3038 -27.6166 Redland Bay, Pitt St 

153.0481 -27.67 Regents Park - Bennets Drive 

153.3888 -27.7037 Russell Island 

151.9311 -28.6519 Stanthorpe (Gleason Park - Quart Pot Ck) 

152.7692 -25.3749 Sunshine Acres, Black Swamp Creek 

153.4448 -28.1144 Tallebudgera Creek 

152.6789 -25.5404 Tinana, Franklins Close 

151.9315 -27.6009 Toowoomba (Japanese Gardens/University) 

151.9972 -27.5633 Toowoomba (Redwood Park) 

152.0296 -28.2081 Warwick - Dragon Street 
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151.9714 -27.5257 Withcott 

153.3432 -28.0619 Worongary, Worongary Road 

153.157 -27.4338 Wynnum North, Meilandt Street 

150.6229 -26.7506 Chinchilla, Dorney Street 

152.87 -25.61 Boonaroo Point, Maroom 

153.4193 -28.0093 Surfers Paradise, Girung Island 

152.954 -26.691 Palmwoods, Dunning Street 

152.7912 -27.568 Chuwar, Brodzig Road 

152.8742 -25.6133 maaroom, Esplanade 

152.7501 -25.2749 Dundowran, Jimilee Street 

152.7122 -25.5609 Maryborough, Tinana Island, 
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A1.6 List of Abandoned Roosting Sites in the Study Area 

 

Table A1.6: List of abandoned roosting sites in the study area (Source: EHP 2014). 

 

 

Longitude Latitude Name 

153.2253 -27.5112 Birkdale, Birkdale Tip 

151.889 -28.7226 Glen Aplin Caravan Park 

150.3058 -28.5431 Goondiwindi, Herbert Street 

152.3753 -27.7209 Mulgowie 

151.3011 -25.5845 Mundubbera Township, Jones' Weir 

152.7566 -25.9983 Neerdie, Power St. 

153.07 -25.8172 Rainbow Beach, Inskip Peninsula 

152.8665 -28.2149 Rathdowney, John Street 

153.3101 -27.6247 Redland Bay, Orchard Beach Wetlands (The Boulevard 

152.325 -27.7192 Mount Berryman, Scanlans Scrub 

152.9802 -25.768 Tin Can Bay, Dinnies Ck 

152.0593 -27.4616 Upper Rocky Creek, Murphys Creek 

153.0475 -26.6492 Maroochydore, Eudlo Creek CP 

151.3085 -27.6951 Brookstead, 1589 Pampas Horrane Rd 

152.3857 -27.6402 Laidley (Deborah Rd) 
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A1.7 List of Destroyed Roosting Sites in the Study Area 

 

Table A1.7: List of destroyed roosting sites in the study area (Source: EHP 2014). 

 

 

Longitude Latitude Name 

153.402 -28 Bundall, Gold Coast Turf Club 
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A1.8 Full Legend of Major Vegetation Groups (MVG) 

 

 
 

Figure A1.1: Full legend of MVG (Source: Department of the Environment and 

Energy 2015). 
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A1.9 Full Legend of Major Vegetation Subgroups (MVS) 
 

 

 

Figure A1.2: Full legend of MVS (Source: Department of the Environment and 

Energy 2015). 
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A1.10 List of MVG in the Study Area 

 

Table A1.8: List of MVG in the study area. 

 

VALUE COUNT MVG_NAME MVG_COMMON 

1 105669 Rainforests and Vine 

Thickets 

rainforests 

2 39389 Eucalypt Tall Open Forests tall eucalypt forests (trees 

taller than 30 m) 

3 419230 Eucalypt Open Forests eucalypt forests (trees 10 to 

30 m tall) 

5 153680 Eucalypt Woodlands eucalypt woodlands (tree 

crowns not touching) 

6 928 Acacia Forests and 

Woodlands 

acacia forests and woodlands 

8 3802 Casuarina Forests and 

Woodlands 

she-oak forests and 

woodlands 

9 26880 Melaleuca Forests and 

Woodlands 

paperbark forests and 

woodlands 

10 443 Other Forests and 

Woodlands 

other forests and woodlands 

11 48 Eucalypt Open Woodlands sparse eucalypt woodlands 

15 12148 Low Closed Forests and Tall 

Closed Shrublands 

tall dense thickets 

17 39 Other Shrublands other shrublands 

18 9349 Heathlands heathlands (low, dense, fine-

leaved shrublands) 

21 12066 Other Grasslands, Herblands, 

Sedgelands and Rushlands 

swampy grasses, sedges, etc. 

23 14503 Mangroves mangroves 

24 25727 Inland aquatic - freshwater, 

salt lakes, lagoons 

water 

25 1395168 Cleared, non-native 

vegetation, buildings 

cleared vegetation 

27 1152 Naturally bare - sand, rock, 

claypan, mudflat 

naturally bare 

28 10564 Sea and estuaries sea 

31 35 Other Open Woodlands other sparse woodlands 

99 77 Unknown/no data unknown 
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A1.11 List of MVS in the Study Area 

 

Table A1.9: List of MVS in the study area. 

 

VALUE COUNT MVS_NAME 

1 739 Cool temperate rainforest 

2 91553 Tropical or sub-tropical rainforest 

3 15836 Eucalyptus (+/- tall) open forest with a dense broad-leaved 

and/or tree-fern understorey (wet sclerophyll) 

4 157648 Eucalyptus open forests with a shrubby understorey 

5 227628 Eucalyptus open forests with a grassy understorey 

6 7452 Warm Temperate Rainforest 

8 11450 Eucalyptus woodlands with a shrubby understorey 

9 142246 Eucalyptus woodlands with a tussock grass understorey 

13 928 Brigalow (Acacia harpophylla) forests and woodlands 

15 26903 Melaleuca open forests and woodlands 

26 3911 Casuarina and Allocasuarina forests and woodlands 

28 12149 Low closed forest or tall closed shrublands (including 

Acacia, Melaleuca and Banksia) 

30 9350 Heathlands 

32 45 Other shrublands 

40 15232 Mangroves 

41 4892 Saline or brackish sedgelands or grasslands 

42 1272 Naturally bare, sand, rock, claypan, mudflat 

44 25775 Freshwater, dams, lakes, lagoons or aquatic plants 

46 61360 Sea, estuaries (includes seagrass) 

48 48 Eucalyptus open woodlands with a grassy understorey 

50 443 Banksia woodlands 

54 346 Eucalyptus tall open forest with a fine-leaved shrubby 

understorey 

60 57246 Eucalyptus tall open forests and open forests with ferns, 

herbs, sedges, rushes or wet tussock grasses 

62 6135 Dry rainforest or vine thickets 

63 7321 Sedgelands, rushs or reeds 

79 35 Other open woodlands 

98 1395023 Cleared, non-native vegetation, buildings 

99 90 Unknown/No data 
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A1.12 Data statistics calculated in the Study 

 

Table A1.10: Statistics calculated in the study of HeV dispersal (Main Source: 

Queensland Centre for Emerging Infectious Diseases 2014).  

 
Longitude Latitude HeV 

Events 

ff_per b_per g_per l_per Inci_rate Avg_dist Avg_preg 

153.0115 -28.2192 1 0.00149 0.000403 0.00329 0 0.013549 50 2.1 

153.363 -28.1048 1 0.005589 0.006804 0.00754 0 0.05081 50 2.45 

153.3459 -28.0856 1 0.046576 0.100796 0.022849 0 0.423417 50 2.8 

152.834 -28.0834 1 1.024669 0 0 4.601967 9.315173 30 2 

153.4238 -28.0681 1 0.000466 0.00126 0 0 0.004234 50 3 

153.412 -28.0629 1 0.013041 0.030239 0 0.008367 0.118557 47.14286 2.857143 

153.1824 -28.0398 3 8.212219 7.624751 13.22101 0.016734 223.9696 49.99093 2.343221 

153.3916 -28.0332 1 0.382295 0.792255 0.219355 0 3.475406 50 2.766082 

153.3624 -28.0179 1 0.557979 0.851221 0.596827 0 5.072535 50 2.56394 

153.3242 -28.003 1 0.115322 0.249974 0.052782 0.006275 1.04838 49.75767 2.801292 

152.6085 -28.0009 1 1.191504 1.244073 1.794595 0 10.83185 50 2.385975 

153.4272 -27.9842 1 0.005869 0.015069 0.000731 0 0.053351 50 2.949206 

153.4033 -27.9581 1 0.324373 0.853237 0.021981 0 2.948845 50 2.972374 

153.3973 -27.9481 1 0.004024 0.005241 0.005118 0 0.036583 50 2.481481 

153.1935 -27.9237 1 0.235767 0.081897 0.499489 0.008367 2.143337 49.84196 2.128408 

153.3343 -27.9012 1 7.010972 9.888575 7.882601 0.637582 63.73611 49.59503 2.521391 

153.0125 -27.8746 3 0.517924 0.600743 0.716559 0.016734 14.12519 49.85612 2.428777 

152.98 -27.8558 3 1.667416 2.06319 1.624001 1.08983 45.47498 47.08939 2.457408 

152.9631 -27.8147 2 0.050116 0.012096 0.111962 0 0.911193 50 2.089219 

153.1983 -27.737 3 1.610221 3.075029 1.159152 0.004184 43.91511 49.98843 2.705947 

153.1963 -27.709 3 0.291938 0.760253 0.026734 0 7.961932 50 2.962668 

153.037 -27.68 2 2.822497 2.133596 0.921518 7.44682 51.31813 38.25083 2.279439 

153.1773 -27.667 3 0.302743 0.447534 0.180054 0.286995 8.25663 45.77846 2.546462 

152.6895 -27.6572 1 0.002608 0.007056 0 0 0.023711 50 3 

153.3085 -27.6421 1 1.331511 1.12085 0.367876 3.445619 12.10464 38.47628 2.31118 
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152.9206 -27.6315 2 3.459841 3.311748 4.642916 1.539567 62.90621 48.01842 2.353842 

153.0337 -27.6303 2 3.739203 1.946116 7.09658 0.568971 67.98552 49.32239 2.192397 

153.3753 -27.6274 1 0.27014 0.636022 0.085914 0 2.455818 50 2.870345 

153.3068 -27.6209 1 0.752387 1.28807 0.677577 0 6.839877 50 2.632859 

152.3948 -27.6206 1 0.415457 0.74095 0.250521 0.17705 3.776879 48.10224 2.659283 

152.9479 -27.6142 2 0.415457 0.74095 0.250521 0.17705 7.553758 48.10224 2.659283 

152.8127 -27.6124 1 0.049762 0.115109 0.017685 0 0.452379 50 2.85511 

153.3535 -27.6114 1 0.000373 0.001008 0 0 0.003387 50 3 

152.8802 -27.5996 1 0.123352 0.287268 0.037519 0.008367 1.121377 49.69793 2.860897 

153.0524 -27.5826 2 0.087246 0.151496 0.076637 0 1.586289 50 2.641896 

153.3044 -27.5801 1 0.884662 1.625938 0.67511 0.037652 8.042381 49.81047 2.679415 

153.3312 -27.5724 1 0.14582 0.110019 0.257925 0 1.325634 50 2.278906 

153.085 -27.5707 1 1.019266 2.125784 0.572607 0 9.266056 50 2.770974 

152.1227 -27.5483 1 2.808692 0.013053 0 12.59266 25.53357 30.03436 2.001718 

153.2097 -27.5165 1 0.804831 1.422229 0.684569 0 7.316645 50 2.653241 

152.9886 -27.5157 1 2.817001 4.955526 2.260313 0.285824 25.6091 49.54816 2.650296 

153.2263 -27.5026 1 0.879539 2.358119 0.019194 0 7.995806 50 2.991104 

153.402 -27.499 1 0.717082 1.069645 0.688225 0.184581 6.518927 48.85373 2.551416 

153.2355 -27.4952 1 0.149266 0.39774 0.005484 0 1.356967 50 2.985022 

152.9929 -27.491 1 0.090543 0.160769 0.076317 0 0.823123 50 2.656379 

152.5886 -27.4688 1 3.541815 4.5786 3.892906 1.177685 32.19832 48.51928 2.477876 

152.5903 -27.4657 1 0.558445 0.698969 0.371121 0.668122 5.076769 44.67223 2.462686 

152.9419 -27.4443 1 0.253634 0.117074 0.515986 0 2.305759 50 2.170633 

153.0226 -27.4424 1 0.116999 0.262876 0.048624 0 1.063623 50 2.830573 

153.1725 -27.4378 1 0.011961 0.032355 0 0 0.108733 50 3 

153.0376 -27.4376 1 0.4652 1.258436 0 0 4.229088 50 3 

152.9456 -27.4055 1 0.869106 0.587136 1.599461 0 7.90096 50 2.249732 

153.073 -27.3987 1 0.267811 0.699271 0.022849 0 2.434647 50 2.965217 

152.8405 -27.3761 1 2.687781 2.045349 4.738289 0 24.43438 50 2.281308 

152.8316 -27.2069 1 1.660895 0.950505 3.139057 0.133875 15.09905 49.64105 2.211554 
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153.1028 -27.2029 2 0.082327 0.222708 0 0 1.496864 50 3 

152.8254 -27.1971 1 2.522549 2.190041 4.201784 0 22.93226 50 2.320938 

152.9553 -27.1605 1 0.286013 0.482056 0.173062 0.167344 2.600119 47.39448 2.623046 

152.9714 -27.1527 1 0.11303 0.209504 0.087285 0 1.027548 50 2.685182 

152.9276 -27.0823 1 3.175859 2.378126 3.417363 4.058099 28.87145 44.30975 2.27681 

153.1592 -27.079 1 0.167673 0.050398 0 0.669377 1.524301 32.22222 2.111111 

153.1424 -27.0578 1 0.011625 0.029886 0.001417 0 0.105685 50 2.950321 

152.7763 -26.9503 1 5.083811 3.074878 6.761105 5.348072 46.21647 45.31534 2.223587 

152.5687 -26.9415 1 0.139728 0.307427 0.063978 0 1.270251 50 2.813333 

152.2784 -26.8413 1 0.027387 0.05443 0.017823 0 0.248969 50 2.734694 

152.8873 -26.8232 1 0.612938 0.34321 1.192284 0 5.572167 50 2.206991 

152.9654 -26.7997 1 0.964847 0.551756 1.86456 0.003347 8.771336 49.98455 2.211396 

153.1367 -26.7881 1 0.537672 0.802234 0.362941 0.418361 4.887925 46.535 2.551559 

152.7199 -26.7276 1 0.279455 0.665253 0.082258 0 2.540502 50 2.88 

153.107 -26.6824 1 0.101591 0.113043 0.032629 0.208846 0.923557 40.84541 2.411333 

153.0712 -26.6508 1 4.551393 5.315468 6.337522 0.012551 41.3763 49.98772 2.431723 

152.9753 -26.6109 1 1.656424 2.179962 2.086383 0 15.0584 50 2.486503 

153.0855 -26.5328 1 0.255236 0.514059 0.159946 0 2.320325 50 2.744526 

153.0745 -26.4081 1 1.05839 0.445014 0.243118 3.569453 9.621727 34.98152 2.15543 

153.0699 -26.392 1 0.037261 0.080637 0.01828 0 0.338734 50 2.8 

152.8264 -26.3375 1 0.290577 0.380958 0.367328 0 2.641614 50 2.484644 

152.9759 -26.3279 1 0.037261 0.06718 0.030481 0 0.338734 50 2.6665 

152.9275 -26.2886 1 0.566735 0.161173 1.244015 0 5.152137 50 2.105128 

153.0491 -26.4007 1 8.708047 0.11783 0 38.91373 79.16406 30.10004 2.005002 

153.1373 -27.6402 1 0.931517 1.511938 0.913978 0 8.468339 50 2.6 

152.9268 -27.0816 3 0.931517 0.100796 0.091398 3.848918 25.40502 31.6 2.04 

152.7763 -26.9503 1 0.931517 0.403183 0.091398 3.346885 8.468339 34 2.16 

152.4233 -27.2349 1 0.931517 0.503979 1.028225 1.464262 8.468339 43 2.2 

153.4277 -28.0222 1 0.001118 0 0.002742 0 0.010162 50 2 

153.4448 -28.1144 1 0.100604 0.201592 0.063978 0 0.914581 50 2.740741 
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153.4136 -27.9797 1 0.01863 0 0.045699 0 0.169367 50 2 

152.6799 -27.9919 1 0.027946 0.030239 0.041129 0 0.25405 50 2.4 

152.3753 -27.7209 1 0.149043 0 0.365591 0 1.354934 50 2 

152.8185 -27.827 1 0.083837 0 0.205645 0 0.76215 50 2 

152.8405 -27.3761 1 0.010098 0.019101 0.007449 0 0.091797 50 2.699262 

153.1279 -27.0804 1 0.419183 0.340186 0.719758 0 3.810752 50 2.3 

152.9943 -27.3111 1 0.074521 0.075597 0.114247 0 0.677467 50 2.375 

152.6799 -27.9919 1 0.149043 0.302388 0.091398 0 1.354934 50 2.75 

153.4277 -28.0222 1 0.232879 0.566977 0.057124 0 2.117085 50 2.9 

153.4292 -28.0946 1 0.279455 0.680372 0.068548 0 2.540502 50 2.9 

153.258 -27.5275 1 0.014904 0.040318 0 0 0.135493 50 3 

153.3812 -27.8883 1 0.046576 0.100796 0.022849 0 0.423417 50 2.8 

153.4672 -28.1453 1 0.009315 0.015119 0.00914 0 0.084683 50 2.6 

153.0519 -27.4841 1 0.02761 0.053775 0.018965 0 0.251002 50 2.719973 

152.4233 -27.2349 1 0.065206 0.123475 0.047984 0 0.592784 50 2.7 

153.1136 -27.444 1 0.093152 0.125995 0.114247 0 0.846834 50 2.5 

153.1437 -27.445 2 0.027014 0.054833 0.016543 0 0.491164 50 2.750345 

153.1837 -27.4641 1 0.026138 0.069297 0.00128 0 0.237622 50 2.980043 

152.9255 -27.5444 1 0.093152 0.125995 0.114247 0 0.846834 50 2.5 

152.7222 -27.4939 1 0.01863 0.050398 0 0 0.169367 50 3 

153.0988 -27.2315 2 0.279455 0.100796 0.594086 0 5.081003 50 2.133333 

153.0687 -27.3231 1 0.013041 0.020159 0 0.025102 0.118557 41.42857 2.571429 

153.1279 -27.0804 1 0.093152 0.125995 0.114247 0 0.846834 50 2.5 

153.1373 -27.6402 3 0.139728 0.226791 0.034274 0.188262 3.810752 44 2.6 

153.4134 -27.9951 1 0.139728 0.226791 0.034274 0.188262 1.270251 44 2.6 

153.4136 -27.9797 1 0.015929 0 0.039073 0 0.144809 50 2 

152.9992 -27.412 1 0.037261 0.085676 0.01371 0 0.338734 50 2.85 

153.2767 -28.2174 1 0.048159 0.097722 0.029521 0 0.437813 50 2.750097 

153.1363 -27.61 2 0.020493 0.055438 0 0 0.372607 50 3 

152.926 -27.0809 1 0.037261 0.100796 0 0 0.338734 50 3 
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152.7485 -27.6031 1 0.014159 0.038302 0 0 0.128719 50 3 

152.7556 -27.6514 1 0.014904 0.036287 0.003656 0 0.135493 50 2.9 

152.2726 -27.5648 1 0.057903 0.155074 0.001417 0 0.526392 50 2.990026 

152.9206 -27.6315 1 0.093152 0.226791 0.022849 0 0.846834 50 2.9 

152.7485 -27.6031 1 0.009315 0.025199 0 0 0.084683 50 3 

152.9028 -27.6049 2 0.124078 0.26852 0.060871 0 2.255965 50 2.8 

152.8802 -27.5996 1 0.000932 0.00252 0 0 0.008468 50 3 

152.9028 -27.6049 2 0.007452 0.01008 0.00914 0 0.135493 50 2.5 

152.3948 -27.6206 1 0.023661 0.061485 0.002285 0 0.215096 50 2.96063 

152.2726 -27.5648 1 0.060176 0.089708 0.066263 0 0.547055 50 2.551084 

152.1227 -27.5483 1 0.242194 0 0 1.087738 2.201768 30 2 

153.1876 -27.7015 3 0.093152 0.25199 0 0 2.540502 50 3 

153.0481 -27.67 2 0.074521 0.120955 0.01828 0.100407 1.354934 44 2.6 

153.1983 -27.737 3 0.027946 0.075597 0 0 0.76215 50 3 

153.0988 -27.2315 2 0.186303 0.050398 0.41129 0 3.387336 50 2.1 

153.046 -26.3944 1 0.037261 0.080637 0.01828 0 0.338734 50 2.8 

153.0491 -26.4007 1 0.055891 0.105836 0.034274 0.012551 0.5081 49 2.7 

153.3535 -27.6114 1 0.014904 0.008064 0.029247 0 0.135493 50 2.2 

153.258 -27.5275 1 0.046576 0.125995 0 0 0.423417 50 3 

153.3044 -27.5801 1 0.025151 0.040822 0.024677 0 0.228645 50 2.6 

153.1824 -28.0398 3 0.040987 0.033263 0.070376 0 1.117821 50 2.3 

152.6799 -27.9919 1 0.006539 0.017639 4.57E-05 0 0.059448 50 2.997151 

152.5903 -27.4657 1 0.034 0.03679 0.05004 0 0.309094 50 2.4 

152.5886 -27.4688 1 0.037261 0.080637 0.01828 0 0.338734 50 2.8 

152.5687 -26.9415 1 0.093152 0.201592 0.045699 0 0.846834 50 2.8 

152.9145 -26.4721 1 0.01863 0.000504 0.045242 0 0.169367 50 2.01 

152.9726 -26.6073 1 0.046576 0.062997 0.057124 0 0.423417 50 2.5 

152.9654 -26.7997 1 0.030367 0.004082 0.070788 0 0.276068 50 2.049693 

152.9753 -26.6109 1 0.065206 0.151194 0.022849 0 0.592784 50 2.857143 

152.8264 -26.3375 1 0.003726 0.00504 0.00457 0 0.033873 50 2.5 



  

253 | P a g e  
 

153.107 -26.6824 1 0.372607 0.503979 0.456989 0 3.387336 50 2.5 

153.0855 -26.5328 1 0.027946 0.075597 0 0 0.25405 50 3 

152.954 -26.691 1 0.037261 0.070557 0.027419 0 0.338734 50 2.7 

153.1136 -27.444 1 0.024219 0.065517 0 0 0.220177 50 3 

152.7485 -27.6031 1 0.372607 0.907163 0.091398 0 3.387336 50 2.9 

152.9028 -27.6049 1 0.037261 0.090716 0.00914 0 0.338734 50 2.9 

153.1963 -27.709 3 0.040987 0 0.100538 0 1.117821 50 2 

153.0519 -27.4841 1 0.232879 0.566977 0.057124 0 2.117085 50 2.9 

153.2429 -27.7758 1 0.046576 0.113395 0.011425 0 0.423417 50 2.9 

153.3343 -27.9012 2 0.093152 0.176393 0.068548 0 1.693668 50 2.7 

153.1373 -27.6402 1 0.55891 0.302388 1.096773 0 5.081003 50 2.2 

153.0481 -27.67 1 0.260825 0.423343 0.255914 0 2.371135 50 2.6 

153.3085 -27.6421 1 0.014904 0.032255 0.007312 0 0.135493 50 2.8 

153.1935 -27.9237 1 0.020493 0 0.050269 0 0.186303 50 2 

152.4233 -27.2349 1 0.694446 0.375716 0.68137 1.247552 6.313147 42 2.2 
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Appendix – 2 

 

Regression Model Calibration Results 

 

A2.1 GWR Result of Significant Model 1 (ArcGIS) 

 

 

 

Figure A2.1: GWR result of the significant model 1 using ArcGIS. 
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A2.2 GWR Result of Significant Model 1 (GWR4.0 for Spatial Variability)  

 

 

 

Figure A2.2: GWR result of the significant model 1 using GWR4.0 (Spatial 

Variability Test). 
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A2.3 Spatial Autocorrelation Report of the Significant Model 1 Residuals 

 

 

 

Figure A2.3: Spatial Autocorrelation test of significant model 1 residuals. 
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A2.4 GWR Result of Significant Model 2 (ArcGIS) 

 

 

 

Figure A2.4: GWR result of the significant model 2 using ArcGIS. 
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A2.5 GWR Result of Significant Model 2 (GWR4.0 for Spatial Variability)  

 

 

 

Figure A2.5: GWR result of the significant model 2 using GWR4.0 (Spatial 

Variability Test). 
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A2.6 Spatial Autocorrelation Report of the Significant Model 2 Residuals 

 

 

 

Figure A2.6: Spatial Autocorrelation test of significant model 2 residuals. 
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A2.7 GWR Result of Significant Model 3 (ArcGIS) 

 

 

 

Figure A2.7: GWR result of the final model using ArcGIS. 
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A2.8 GWR Result of Significant Model 3 (GWR4.0 for Spatial Variability)  

 

 

 

Figure A2.8: GWR result of the final model using GWR4.0 (Spatial Variability 

Test). 
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A2.9 Spatial Autocorrelation Report of the Significant Model 3 Residuals 

 

 

 

Figure A2.9: Spatial Autocorrelation test of the final model residuals. 
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Appendix – 3 

  

Spatial Autocorrelation and Regression Analysis  

 
A3.1 Spatial Autocorrelation Report of the Black Flying Foxes at 20 kms 

 

 

 

Figure A3.1: Spatial Autocorrelation report of the black flying foxes at their 

minimum foraging range.  
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A3.2 Spatial Autocorrelation Report of the Grey-headed Flying Foxes at 20 kms 

 

 

 

Figure A3.2: Spatial Autocorrelation report of the grey-headed flying foxes at their 

minimum foraging range.  
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A3.3 Spatial Autocorrelation Report of the Little Red Flying Foxes at 20 kms 

 

 

 

Figure A3.3: Spatial Autocorrelation report of the little red flying foxes at their 

minimum foraging range.  
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A3.4 Summary of the OLS Results  

 

 

 

Figure A3.4: Summary of the OLS results. 

 

A3.5 Variable Distributions and Relationships of the OLS Model  

 

 

 

Figure A3.5: The variable distributions and relationships of the OLS model. 
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A3.6 Histogram of the OLS Model’s Standard Residuals 

 

 

 

Figure A3.6: The histogram of the OLS model’s standard residuals. 
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A3.7 Spatial Autocorrelation Report of the OLS Standard Residuals 

 

 
 

Figure A3.7: Spatial Autocorrelation report of the OLS standard residuals. 
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A3.8 GWR – Significantly Positive Estimates of Black Flying Foxes 

 

Table A3.1: Significantly positive estimates of black flying foxes in the study. 

Longitude Latitude t_perB 

153.2355 -27.4952 1.977073 

153.1424 -27.0578 1.991723 

153.107 -26.6824 1.992049 

153.107 -26.6824 1.992049 

153.0712 -26.6508 2.058989 

153.1592 -27.079 2.068613 

152.9943 -27.3111 2.075467 

152.9886 -27.5157 2.081071 

152.9753 -26.6109 2.08645 

152.9753 -26.6109 2.08645 

152.9726 -26.6073 2.091106 

153.1279 -27.0804 2.092699 

153.1279 -27.0804 2.092699 

152.926 -27.0809 2.110843 

152.9276 -27.0823 2.114754 

152.9268 -27.0816 2.115554 

152.8254 -27.1971 2.14875 

153.2263 -27.5026 2.204321 

152.8405 -27.3761 2.205218 

152.8405 -27.3761 2.205218 

152.8316 -27.2069 2.222608 

153.402 -27.499 2.228568 

152.9553 -27.1605 2.296992 

152.9145 -26.4721 2.307189 

152.9714 -27.1527 2.316948 

152.9255 -27.5444 2.33432 

153.0855 -26.5328 2.335555 

153.0855 -26.5328 2.335555 

153.2097 -27.5165 2.354085 

153.0988 -27.2315 2.359386 

153.0988 -27.2315 2.359386 

152.8264 -26.3375 2.422655 

152.8264 -26.3375 2.422655 

153.1028 -27.2029 2.42798 

152.7556 -27.6514 2.472741 

153.0491 -26.4007 2.488751 

153.0491 -26.4007 2.488751 

153.046 -26.3944 2.495121 

153.0745 -26.4081 2.498721 

153.0699 -26.392 2.512301 

152.9759 -26.3279 2.515952 

152.9275 -26.2886 2.521906 

153.258 -27.5275 2.723098 

153.258 -27.5275 2.723098 

152.8127 -27.6124 2.765369 

153.3312 -27.5724 2.777747 

152.9479 -27.6142 2.783501 

152.8802 -27.5996 2.795979 

152.8802 -27.5996 2.795979 

152.6085 -28.0009 2.799839 

152.9028 -27.6049 2.82481 

152.9028 -27.6049 2.82481 

152.9028 -27.6049 2.82481 

153.3535 -27.6114 2.847462 

153.3535 -27.6114 2.847462 

153.0524 -27.5826 2.891925 

153.085 -27.5707 2.913427 

153.3753 -27.6274 2.950768 

153.3044 -27.5801 2.975222 

153.3044 -27.5801 2.975222 
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153.3068 -27.6209 3.036823 

153.3085 -27.6421 3.111871 

153.3085 -27.6421 3.111871 

152.9206 -27.6315 3.153736 

152.9206 -27.6315 3.153736 

153.0337 -27.6303 3.691208 

153.363 -28.1048 3.74396 

152.834 -28.0834 3.74396 

153.1983 -27.737 3.862661 

153.1983 -27.737 3.862661 

152.6799 -27.9919 3.910496 

152.6799 -27.9919 3.910496 

152.6799 -27.9919 3.910496 

153.1363 -27.61 4.010195 

153.1963 -27.709 4.078136 

153.1963 -27.709 4.078136 

153.1876 -27.7015 4.452935 

153.1373 -27.6402 4.648864 

153.1373 -27.6402 4.648864 

153.1373 -27.6402 4.648864 

153.1773 -27.667 4.801027 

153.0481 -27.67 4.81446 

153.0481 -27.67 4.81446 

153.037 -27.68 4.95088 

153.0125 -27.8746 5.114505 

152.8185 -27.827 5.408792 

152.98 -27.8558 6.782161 

152.9631 -27.8147 6.832482 
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A3.9 GWR – Significantly Positive Estimates of Grey-headed Flying Foxes 

 

Table A3.2: Significantly positive estimates of grey-headed flying foxes in the study. 

 
Longitude Latitude t_perG 

152.2784 -26.8413 1.988214 

152.3753 -27.7209 2.023214 

152.9943 -27.3111 2.22698 

153.3535 -27.6114 2.247036 

153.3535 -27.6114 2.247036 

152.5903 -27.4657 2.499218 

152.5903 -27.4657 2.499218 

152.5886 -27.4688 2.507069 

152.5886 -27.4688 2.507069 

152.8405 -27.3761 2.507216 

152.8405 -27.3761 2.507216 

153.0687 -27.3231 2.647021 

153.402 -27.499 3.145594 

153.3085 -27.6421 3.274762 

153.3085 -27.6421 3.274762 

153.1983 -27.737 3.664597 

153.1983 -27.737 3.664597 

153.3068 -27.6209 3.940209 

152.9456 -27.4055 4.006327 

152.7222 -27.4939 4.044717 

153.3312 -27.5724 4.125248 

153.1963 -27.709 4.424874 

153.1963 -27.709 4.424874 

152.8185 -27.827 4.431801 

152.6799 -27.9919 4.620385 

152.6799 -27.9919 4.620385 

152.6799 -27.9919 4.620385 

153.1876 -27.7015 4.641239 

153.3044 -27.5801 4.693948 

153.3044 -27.5801 4.693948 

152.9419 -27.4443 5.054344 

153.0481 -27.67 5.086084 

153.0481 -27.67 5.086084 

153.037 -27.68 5.103839 

153.1773 -27.667 5.219118 

152.9992 -27.412 5.341215 

153.1373 -27.6402 5.365255 

153.1373 -27.6402 5.365255 

153.1373 -27.6402 5.365255 

153.2355 -27.4952 5.403071 

153.0337 -27.6303 5.536634 

153.1363 -27.61 5.575357 

153.258 -27.5275 5.593176 

153.258 -27.5275 5.593176 

153.2263 -27.5026 5.664311 

153.1725 -27.4378 5.675319 

153.1437 -27.445 5.692899 

153.073 -27.3987 5.703284 

153.2097 -27.5165 5.812297 

152.7485 -27.6031 5.813112 

152.7485 -27.6031 5.813112 

152.7485 -27.6031 5.813112 

153.1837 -27.4641 5.818728 

152.6895 -27.6572 5.823178 
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153.1136 -27.444 5.842799 

153.1136 -27.444 5.842799 

152.9479 -27.6142 5.856523 

152.6085 -28.0009 5.884588 

153.0524 -27.5826 5.900043 

153.085 -27.5707 5.997791 

152.9206 -27.6315 6.025978 

152.9206 -27.6315 6.025978 

152.9255 -27.5444 6.087288 

152.7556 -27.6514 6.116684 

152.8127 -27.6124 6.13014 

152.9028 -27.6049 6.134064 

152.9028 -27.6049 6.134064 

152.9028 -27.6049 6.134064 

152.8802 -27.5996 6.154785 

152.8802 -27.5996 6.154785 

152.9886 -27.5157 6.297904 

153.0226 -27.4424 6.303629 

152.9929 -27.491 6.33866 

153.0376 -27.4376 6.353046 

153.0519 -27.4841 6.545723 

153.0519 -27.4841 6.545723 

152.9631 -27.8147 6.583615 

152.834 -28.0834 6.698205 

152.98 -27.8558 7.717512 

153.2429 -27.7758 8.02133 

153.0125 -27.8746 10.20315 

153.0115 -28.2192 16.80109 

153.3812 -27.8883 17.15241 

153.1935 -27.9237 17.19 

153.1935 -27.9237 17.19 

153.3343 -27.9012 17.36283 

153.3343 -27.9012 17.36283 

153.1824 -28.0398 17.4745 

153.1824 -28.0398 17.4745 

153.3973 -27.9481 17.50434 

153.4033 -27.9581 17.52036 

153.4272 -27.9842 17.53264 

153.4136 -27.9797 17.54608 

153.4136 -27.9797 17.54608 

153.2767 -28.2174 17.5636 

153.4134 -27.9951 17.56649 

153.4672 -28.1453 17.56983 

153.4277 -28.0222 17.57322 

153.4277 -28.0222 17.57322 

153.4448 -28.1144 17.58548 

153.4292 -28.0946 17.59191 

153.4238 -28.0681 17.59318 

153.412 -28.0629 17.59866 

153.3242 -28.003 17.59982 

153.3916 -28.0332 17.60324 

153.3624 -28.0179 17.6041 

153.363 -28.1048 17.64172 

153.3459 -28.0856 17.65492 
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A3.10 GWR – Significantly Negative Estimates of Grey-headed Flying Foxes 

 

Table A3.3: Significantly negative estimates of grey-headed flying foxes in the 

study. 

 
Longitude  Latitude  t_perG 

153.0699 -26.392 -0.47518 

152.9759 -26.3279 -0.46257 

152.9275 -26.2886 -0.45976 

153.0745 -26.4081 -0.45455 

153.046 -26.3944 -0.44445 

153.0491 -26.4007 -0.43021 

153.0491 -26.4007 -0.43021 

152.8264 -26.3375 -0.26563 

152.8264 -26.3375 -0.26563 

153.0855 -26.5328 -0.19587 

153.0855 -26.5328 -0.19587 

152.9145 -26.4721 -0.08518 
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A3.11 GWR – Significantly Negative Estimates of Pregnancy/Birth Period 

 

Table A3.4: Significantly negative estimates of pregnancy/birth period in the study. 

 
Longitude Latitude  t_pregR 

152.1227 -27.5483 -1.90201 

152.1227 -27.5483 -1.90201 

152.9553 -27.1605 -1.86312 

153.037 -27.68 -1.85979 

153.0481 -27.67 -1.8447 

153.0481 -27.67 -1.8447 

152.926 -27.0809 -1.83001 

152.9276 -27.0823 -1.82963 

152.9268 -27.0816 -1.82923 

152.9714 -27.1527 -1.8109 

152.2726 -27.5648 -1.73539 

152.2726 -27.5648 -1.73539 

152.9479 -27.6142 -1.72758 

152.7763 -26.9503 -1.64797 

152.7763 -26.9503 -1.64797 

152.4233 -27.2349 -1.59545 

152.4233 -27.2349 -1.59545 

152.4233 -27.2349 -1.59545 

153.0524 -27.5826 -1.56208 

152.9206 -27.6315 -1.53991 

152.9206 -27.6315 -1.53991 

152.5687 -26.9415 -1.46177 

152.5687 -26.9415 -1.46177 

153.1279 -27.0804 -1.387 

153.1279 -27.0804 -1.387 

152.3948 -27.6206 -1.35478 

152.3948 -27.6206 -1.35478 

152.3753 -27.7209 -1.34618 

152.2784 -26.8413 -1.34402 

153.1424 -27.0578 -1.33949 

153.1592 -27.079 -1.30087 

153.1028 -27.2029 -1.27243 

153.085 -27.5707 -1.26456 

152.9028 -27.6049 -1.2023 

152.9028 -27.6049 -1.2023 

152.9028 -27.6049 -1.2023 

153.0988 -27.2315 -1.13981 

153.0988 -27.2315 -1.13981 

152.8185 -27.827 -1.00232 

152.8802 -27.5996 -0.99716 

152.8802 -27.5996 -0.99716 

153.1373 -27.6402 -0.96871 

153.1373 -27.6402 -0.96871 

153.1373 -27.6402 -0.96871 

153.1363 -27.61 -0.96758 

152.9631 -27.8147 -0.9505 

153.1963 -27.709 -0.81794 

153.1963 -27.709 -0.81794 

152.9943 -27.3111 -0.79495 

153.1876 -27.7015 -0.79306 

152.8127 -27.6124 -0.77176 

152.98 -27.8558 -0.7572 

153.1983 -27.737 -0.7357 

153.1983 -27.737 -0.7357 
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152.9255 -27.5444 -0.67276 

152.834 -28.0834 -0.6562 

153.1773 -27.667 -0.64613 

152.7556 -27.6514 -0.62096 

152.6799 -27.9919 -0.56116 

152.6799 -27.9919 -0.56116 

152.6799 -27.9919 -0.56116 

152.9886 -27.5157 -0.51943 

153.3085 -27.6421 -0.5096 

153.3085 -27.6421 -0.5096 

153.3068 -27.6209 -0.50359 

153.3753 -27.6274 -0.46767 

153.3535 -27.6114 -0.41753 

153.3535 -27.6114 -0.41753 

152.6085 -28.0009 -0.40495 

153.3044 -27.5801 -0.38729 

153.3044 -27.5801 -0.38729 

153.3312 -27.5724 -0.34841 

152.7485 -27.6031 -0.34279 

152.7485 -27.6031 -0.34279 

152.7485 -27.6031 -0.34279 

153.0687 -27.3231 -0.32994 

152.6895 -27.6572 -0.28692 

153.0125 -27.8746 -0.24696 

153.258 -27.5275 -0.22125 

153.258 -27.5275 -0.22125 

153.2097 -27.5165 -0.2212 

153.402 -27.499 -0.18917 

152.9929 -27.491 -0.18831 

153.2263 -27.5026 -0.14257 

153.0519 -27.4841 -0.12116 

153.0519 -27.4841 -0.12116 

152.8405 -27.3761 -0.10901 

152.8405 -27.3761 -0.10901 

152.5886 -27.4688 -0.09805 

152.5886 -27.4688 -0.09805 

152.5903 -27.4657 -0.09365 

152.5903 -27.4657 -0.09365 

153.2355 -27.4952 -0.06739 
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Appendix – 4 
 

Food Source Vegetation Analysis 

 
A4.1 List of MVS Identified within 20 Kms Range of Black Flying Foxes 

 

 
 

Figure A4.1: Legend of the MVS identified within 20 kms range of the black flying 

fox roosting sites in the study area. 
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A4.2 High/Low Clustering Reports of the Black flying Foxes Food Source 

Vegetation at 3, 5 and 10 Kms 

 

 
 

Figure A4.2 (a): High/Low Clustering report of the food source vegetation of black 

flying foxes at 3 kms. 

 

 
 

Figure A4.2 (b): High/Low Clustering report of the food source vegetation of black 

flying foxes at 5 kms. 
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Figure A4.2 (c): High/Low Clustering report of the food source vegetation of black 

flying foxes at 10 kms. 
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A4.3 List of MVS Identified within 20 Kms Range of Grey-headed Flying Foxes 

 

 
 

Figure A4.3: Legend of the MVS identified within 20 kms range of the grey-headed 

flying fox roosting sites in the study area. 
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A4.4 High/Low Clustering Reports of the Grey-headed flying Foxes Food 

Source Vegetation at 3, 5 and 10 Kms 

 

 
 

Figure A4.4 (a): High/Low Clustering report of the food source vegetation of grey-

headed flying foxes at 3 kms. 

 

 
 

Figure A4.4 (b): High/Low Clustering report of the food source vegetation of grey-

headed flying foxes at 5 kms. 
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Figure A4.4 (c): High/Low Clustering report of the food source vegetation of grey-

headed flying foxes at 10 kms. 
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A4.5 List of MVS Identified within 10 Kms Range of HeV Incidents 

 

 
 

Figure A4.5: Legend of the MVS identified within 10 kms range of the HeV 

incidents in the study area. 

 

 

 

 

 

 

 

 



  

283 | P a g e  
 

A4.6 High/Low Clustering Reports of the Food Source Vegetation of Flying 

Foxes within 10 kms Range of the Incidents at 3, 4, 5 and 10 Kms 

 

 
 

Figure A4.6 (a): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms incident range at 3 kms. 

 

 
 

Figure A4.6 (b): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms incident range at 4 kms. 
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Figure A4.6 (c): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms incident range at 5 kms. 

 

 
 

Figure A4.6 (d): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms incident range at 10 kms. 
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A4.7 List of MVS Identified within 10 Kms Range of Registered Equine 

Properties 

 

 
 

Figure A4.7: Legend of the MVS identified within 10 kms range of the registered 

equine properties in the study area. 
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A4.8 High/Low Clustering Reports of the Food Source Vegetation of Flying 

Foxes within 10 kms Range of the Equine Properties at 3, 5 and 10 Kms 

 

 
 

Figure A4.8 (a): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms range of equine properties at 3 kms. 

 

 
 

Figure A4.8 (b): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms range of equine properties at 5 kms. 
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Figure A4.8 (c): High/Low Clustering report of the flying foxes food source 

vegetation within 10 kms range of equine properties at 10 kms. 
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A4.9 High/Low Clustering Reports of the Food Source Vegetation of the Black 

Flying Foxes near the Equine Properties ‘at risk’ at 3, 5, 10, 15 and 20 Kms 

 

 
 

Figure A4.9 (a): High/Low Clustering report of the black flying foxes food source 

vegetation near the equine Properties ‘at risk’ at 3 kms. 

 

 
 

Figure A4.9 (b): High/Low Clustering report of the black flying foxes food source 

vegetation near the equine properties ‘at risk’ at 5 kms. 
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Figure A4.9 (c): High/Low Clustering report of the black flying foxes food source 

Vegetation near the equine properties ‘at risk’ at 10 kms. 

 

 
 

Figure A4.9 (d): High/Low Clustering report of the black flying foxes food source 

Vegetation near the equine properties ‘at risk’ at 15 kms. 
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Figure A4.9 (e): High/Low Clustering report of the black flying foxes food source 

Vegetation near the equine properties ‘at risk’ at 20 kms. 
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A4.10 High/Low Clustering Reports of the Food Source Vegetation of the Grey-

headed Flying Foxes near the Equine Properties ‘at risk’ at 3, 5, 10, 15 and 20 

Kms 

 

 
 

Figure A4.10 (a): High/Low Clustering report of the grey-headed flying foxes food 

source vegetation near the equine properties ‘at risk’ at 3 kms. 

 

 
 

Figure A4.10 (b): High/Low Clustering report of the grey-headed flying foxes food 

source vegetation near the equine properties ‘at risk’ at 5 kms. 
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Figure A4.10 (c): High/Low Clustering report of the grey-headed flying foxes food 

source vegetation near the equine properties ‘at risk’ at 10 kms. 

 

 
 

Figure A4.10 (d): High/Low Clustering report of the grey-headed flying foxes food 

source vegetation near the equine properties ‘at risk’ at 15 kms. 
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Figure A4.10 (e): High/Low Clustering report of the grey-headed flying foxes food 

source vegetation near the equine properties ‘at risk’ at 20 kms. 
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Appendix – 5 

 

Abstracts of the Associated Publications 

 

A5.1 Preliminary Spatial Analysis of Hendra Disease Outbreaks in South East 

Queensland 

 

 

Abstract: HeV was first reported in the suburb of Hendra, Brisbane in 1994. It has 

proven to be fatal to both humans and horses, with the first outbreak resulting in the 

death of 13 horses and a trainer. Since then, there have been several other outbreaks 

reported across Queensland, from Cairns to the New South Wales border at 

Murwillumbah. Due to the frequent incidents of the virus outbreak, the Queensland 

Government’s Department of Agriculture, Fisheries and Forestry (DAFF) stated that 

there is a pressing need for current research on the spatial and temporal occurrences 

of the virus infections (DAFF 2012). This paper presents an overview of the 

research, and the preliminary results of the relationship between the Hendra disease 

outbreaks and the roosting sites of flying-foxes in the south-east Queensland. The 

results show a strong relationship (92% of the incidents) between temporary and 

seasonal roosting sites (rather than the permanent continuous roosting sites) and the 

outbreak locations. This finding suggests the need for detailed cluster analysis and 

regression models to identify the risk factors for the spread of the disease.  

 

Keywords: Hendra disease, Horses, Flying-foxes, Outbreaks, Spatial analysis 
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A5.2 Factors Explaining the Dispersal of HeV Disease in South East Queensland 

 

Abstract: HeV (HeV) was first described in 1994 following the outbreak of a new 

disease fatally affecting horses and humans in south-east Queensland. The disease 

kills 70% of the infected horses and under some circumstances the virus is spread to 

humans who have had close contact with the infected horses. Fruit bats (Pteropus 

spp.) commonly known as flying-foxes have been identified as the natural host of the 

virus. A preliminary analysis of the incidents and the flying-fox roosting sites 

revealed a strong relationship between the temporary and seasonal roosting sites in 

the south-east Queensland (Burnham et al. 2014). The aim of this paper is to 

determine the potential factors that can explain the dispersal of HeV incidents in the 

study area. Based on the preliminary results, a further analysis was done on the 

roosting sites by considering factors such as the species of flying-foxes, foraging 

range and pregnancy period. Spatial autocorrelation (Global Moran’s I) revealed 

significant clustering of P.alecto and P.scapulatus species. Kernel density estimation 

analysis helped in identifying a strong relationship between P. alecto and 

P.scapulatus species density and the outbreak events in the study area. Buffer 

analysis established an initial relationship between P. alecto and P.poliocephalus 

species birth periods and the incidents. Ordinary least squares (OLS) regression 

identified P. poliocephalus species as statistically significant at a global context 

across the study area. Geographically weighted regression (GWR) analysis was 

performed to study the local spatial variations of the explanatory variables. P. alecto 

and P. poliocephalus species exhibited a significant positive relationship in most of 

the regions where as pregnancy period variable exhibited a significant negative 

relationship to the HeV incidents in the study area. 

 

Keywords: Hendra disease, Incidents, Dispersal, Flying-foxes, Spatial Analysis 
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A5.3 An Investigation of the Food Sources and Roosting Sites as Potential 

Factors of HeV Dispersion in South East Queensland, Australia 

 

Abstract: HeV (HeV) was first identified in 1994 following the outbreak of a new 

disease which is fatally affecting horses and humans in south-east Queensland. Since 

this outbreak, there have been subsequent incidents reported in south-east 

Queensland. Fruits Bats (Pteropus spp.) commonly known as flying-foxes have been 

identified as the natural host of the virus. In this paper, an in-depth analysis is carried 

out to determine the correlation between food source vegetation and the flying-foxes 

roosting sites. This investigation may determine whether clustered or dispersed 

vegetation has more impact on the incidence. Using spatial analyst tools, the major 

vegetation subgroups (MVS) present within 20 kilometers buffer range of grey 

headed flying-foxes and black flying-foxes roosting sites are identified. The 

identification of abundance of food sources for individual species within their 

minimum foraging range indicated a strong correlation between their site locations 

and vegetation subgroups present. A 10 kms range vegetation study on the incident 

locations identified the presence of ‘food sources’ of both species. The clustering of 

the food resource vegetation present near the incidence was studied using Getis-Ord 

General G Statistic method, which indicated statistically high clustering with 99% 

confidence level at 3 kms distance threshold. The findings suggest that the presence 

of potential ‘food resource’ of the flying-foxes within certain proximity increases the 

risk of HeV disease transmission to horses. 

 

Keywords: Flying-foxes, Vegetation, Clustering 
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A5.4 Examining the Spatial Relationship between Equine Population and Food 

Source Vegetation of Flying-foxes in South East Queensland, Australia 

 

Abstract: HeV (HeV) was first identified and described in 1994 following the 

outbreak of a new disease fatally affecting horses and humans in south-east 

Queensland. Since the outbreak, there are subsequent incidents reported in eastern 

Australia mainly in south-east Queensland. Fruits Bats (Pteropus spp.) commonly 

known as flying-foxes have been identified as the natural host of the virus. This 

paper examines the spatial relationship(s) between the equine population and food 

source vegetation of flying-foxes in the study area. A 10 Km range vegetation study 

on the equine properties in the study area identified the food source vegetation of 

both black and grey headed flying-foxes. The clustering of the food source 

vegetation present near the equine properties was studied using Getis-Ord General G 

Statistic method, which indicated statistically significant high clustering at 3, 5 and 

10 Km distance thresholds. 

 

Keywords: HeV, Flying-foxes, Food source vegetation, Equine population 

 

 


