
Journal of Cyber Security Technology

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tsec20

A Case Study of Cyber Subversion Attack based Design
Flaw in Service Oriented Component Application Logic

Faisal Nabi, Xujuan Zhou, Umna Iftikhar & Hafiz Muhammad Attaullah

To cite this article: Faisal Nabi, Xujuan Zhou, Umna Iftikhar & Hafiz Muhammad Attaullah
(2024) A Case Study of Cyber Subversion Attack based Design Flaw in Service Oriented
Component Application Logic, Journal of Cyber Security Technology, 8:3, 204-228, DOI:
10.1080/23742917.2023.2261169

To link to this article: https://doi.org/10.1080/23742917.2023.2261169

Published online: 09 Oct 2023.

Submit your article to this journal

Article views: 385

View related articles

View Crossmark data

Citing articles: 1 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tsec20

https://www.tandfonline.com/journals/tsec20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23742917.2023.2261169
https://doi.org/10.1080/23742917.2023.2261169
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2023.2261169?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2023.2261169?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2023.2261169&domain=pdf&date_stamp=09%20Oct%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2023.2261169&domain=pdf&date_stamp=09%20Oct%202023
https://www.tandfonline.com/doi/citedby/10.1080/23742917.2023.2261169?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/23742917.2023.2261169?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=tsec20

A Case Study of Cyber Subversion Attack based Design
Flaw in Service Oriented Component Application Logic
Faisal Nabi a, Xujuan Zhoub, Umna Iftikhara and Hafiz Muhammad Attaullaha

aFaculty Computer Science, Mohammad Ali Jinnah University, Karachi, Pakistan; bSchool of Business,
University of Southern Queensland, Springfield, Australia

ABSTRACT
Modern e-commerce systems are more likely focused on
mechanisms of security, such as secure transactional proto
cols, cryptographic schemes and parameter sanitization, and
it is assumed that putting these in place will guarantee a
secure e-commerce application. However, vulnerabilities in
the business application logic itself are often ignored which
can make the effect of these security mechanisms null and
void. Essentially, the weakest link can be at the server rather
than client because of business logic and insecure server-side
business components, its security ignoring is another factor,
which is done at developer’s peril. This paper focuses on the
weakest link (component’s logic subversion) in the e-com
merce system. We outline a logical attack (subversion attack,
class Design Flaw) that would not be prevented by the
deployment of the mechanisms commonly used in e-com
merce systems. To further investigate this problem, we pro
pose a security assurance methodology for service
component-oriented application that will be practiced
through threat modeling and component fault detection
model with further modeling component and its application
using unified modeling language secure-design approach
with a valid technique (verification, validation model for
security-by-design testing) for design flaw detection to
avoid the business logic problem in component-based e-
commerce applications from existing application logic.

ARTICLE HISTORY
Received 22 August 2023
Accepted 17 September 2023

KEYWORDS
Design flaws; subversion
attack; e-commerce system;
service component
architecture assurance

1. Introduction

There is no clear difference between service-oriented architecture and com
ponent-based software architecture because, by the rule of implementation,
it is the enhancement of components, where single components are repre
sented as service, which is connected to develop a new business logic.
Application business logic describes a particular ‘service’ (such as
a shopping basket) offered by an application [1] [2]. We are interested in
improving the security of applications built by integrating components

CONTACT Faisal Nabi faisal.nabi@yahoo.com Faculty Computer Science, Mohammad Ali Jinnah
University, Karachi, Pakistan

JOURNAL OF CYBER SECURITY TECHNOLOGY
2024, VOL. 8, NO. 3, 204–228
https://doi.org/10.1080/23742917.2023.2261169

© 2023 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0003-1804-2949
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2023.2261169&domain=pdf&date_stamp=2024-07-26

together to develop a service [3] [2]. There have been several attacks at the
application level that bypass the security mechanisms implemented.

At the level of the application infrastructure for secure software development,
for example, an online shopping service that allowed customers to order goods
and cancel but still receive the goods. This negates work done on improving the
security of the infrastructure [4]. Techniques do exist for secure software devel
opment, but they are not necessarily aimed at component-oriented software and
they do not take into account particular risks associated with rapid development
techniques [5] [6]. Similarly, existing software testing techniques that assist by
helping and verifying application design at design stage also develop tests that
can be used to validate the implementation, which in fact still respect the
constraints of the design. However, the biggest challenge is that these have
not been used to evaluate the secure design of an application [3]. A business
process can be attacked even when a very good network and infrastructure
security programme are in place (Sharon Nachigal 2009). For example, good
network perimeter defence using firewalls, honey pots, intrusion detection sys
tems and other network security components must still ensure the applications
can be accessed by legitimate users, and therefore at the same time can facilitate
an opportunity for legitimate users to attack the organization business informa
tion systems by abusing the vulnerable e-commerce business process at the
application interface level. The application logic and business process build on
the basis of two blocks: business logic and information flow (Faisal Nabi, 2017).
Most of the research community worked on information flow and developed
a business-process-oriented security approach [7]. The challenges addressed in
this approach related to e-business security but did not address the business
processing logic of a component at the design stage, when components are
integrated on the base of its business logic.

In the case of a Web, application and its services are custom developed, and
the underlying components are referred to as core service logic (business logic).
Typically, a façade component spearheads the core service logic by providing the
technical interface that is used by runtime processors to translate message data to
and from the messaging format supported by the WSDL. The design of core
service logic (application logic) is affected by the application of service orienta
tion. Service Loose Coupling, Service Autonomy, Service Statelessness and Service
Composability in particular represent design principles that introduce several
specific design characteristics into core service logic and its underlying imple
mentation [6].

1.1. Problem statement

In this paper, we have discussed the challenges of design flaws that cause
subversion attack in the component-based application logic, in n-tier
applications.

JOURNAL OF CYBER SECURITY TECHNOLOGY 205

The weakest link (component’s logic subversion) in the e-commerce system is
the subject of this essay. We describe a logic attack (subversion attack, class Design
Flaw) that cannot be stopped by implementing the typical e-commerce system
defenses. To further explore this issue, we suggest a security assurance methodol
ogy for service component-oriented applications that will be put into practice
through threat modeling and component fault detection models with further
modeling of the component and its application using a unified modeling language
(UML) secure design approach with a valid technique (verification and validation
(V&V) model for security by design testing) for design flaw detection to avoid the
business logic issue in the component-based rapidly developing e-commerce.

1.2. Objective and contribution

This paper introduces three key novel contributions:

(1) Clarifying the Impact of Component Role Analysis on Design Flaws: The
paper explores a significant question: how can the reuse of design
specifications based on incorrect component role analysis lead to design
flaws and subsequent security issues at the application logic level? This
question is thoroughly examined, shedding light on the potential risks
and their underlying causes.

(2) Real-world Case Study: A comprehensive real-world case study is pre
sented, featuring an e-commerce component-based banking application.
This case study serves to vividly illustrate the identified issues, providing
a tangible context for understanding the implications of design flaws
stemming from incorrect component role analysis.

(3) Practical Security Assurance Methodology: The paper proposes a practical
approach for enhancing security assurance in service component-
oriented applications. This is achieved through a comprehensive metho
dology encompassing threat modeling, component fault detection mod
els and UML-based secure design techniques. Notably, the paper
introduces a robust V&V model for security by design testing and then
incorporates Java Crypto Algorithm (JCA) SHA 256 technique for
enhanced security. This approach effectively addresses the challenge of
customizing security assurance requirements in modern component-
based applications, contributing to the detection and prevention of
design flaw issues arising from potential attacks.

2. Impact of flaws in application business logic

The complexity of web applications increases the risk that developers may
introduce flaws that can be exploited by attackers. We believe that a key
problem is that web-based applications integrate numerous diverse

206 F. NABI ET AL.

components from disparate sources, including custom-built special-purpose
applications, customized ‘commercial-off-the-shelf software components and
third-party products’ [5]. The integration of these components is not straightfor
ward and essentially blind reuse can lead to the introduction of application-level
flaws [8]. These types of problems are higher level than software faults such as
buffer overflow problems and relate to the business logic, for example perform
ing authentication at the right time or correctly implementing cancellation
policies such that the application’s overall security policy is enforced [4].
Examples from the literature include flaws allowing fraud to be committed
leading to personal enrichment of attackers by exploiting flaws in business
logic [9]. Although we commonly focus on low-level coding problems, these
types of high-level software flaws are estimated to represent 50% of all software
flaws that are security [10].

We define web software application vulnerability definition as ‘web software
application vulnerability includes mismatches between application software
architectural/design logic and the assumptions about the environment made
during the development/implementation (code writing), operation of the pro
gram, and the environment in which the program executes’ [7]. For example,
a component may have been designed by its developers with assumption that
all accesses will be authenticated, but it may be reused in a context where pre-
authentication takes place, and the assumption is that this logic has been
implemented within the component. This is a trivial example, but our case
study provides a more detailed example of problems of reuse when the users
of components make assumptions that were not made by the developers.

3. Real-life example: Barclay Bank case study

This real-life case is a good example of a design flaw in application logic due to the
reuse of a component-caused component subversion. In this example, the devel
oper reused the same component that was already incorporated in the registra
tion functionality elsewhere within the application and violated the assumptions
of the component developer. This mistake leads to the introduction of an applica
tion-level flaw that allowed an attacker to access other clients’ bank accounts.
(Source of this case is taken from Barclay Bank IT section of application develop
ment and maintained through the method of walk-through technique, and
further details are not provided because of privacy act of banking policy.)

3.1. Application functionality and business process

Customers who did not register for online application are encouraged to do so. For
this purpose, the new users are required to provide basic personal information, such
as name, address and date of birth, but not any secret information like passwords/
PIN numbers, which ensures the degree of assurance of their identity. When this

JOURNAL OF CYBER SECURITY TECHNOLOGY 207

information is processed, the application sends a back-end system a registration
request to be processed. Upon successful registration, an information pack is mailed
to the registered user’s home address. This pack provides information about the
online activation access via telephonic call to the company’s call center and the use
of a one-time password to log in the system.

The designer of the application believed that this mechanism would protect
the unauthorized access to the application. The process of security is imple
mented in three ways of protection mechanism.

● At the initial stage, some modest amount of personal data are required in
defence to judge a malicious attacker or troublesome user who
attempts the initial registration process on behalf of other users.

● During this process, a key secret is transmitted out of hand: the registered
customer’s home address. The attacker needs to have access to the victim’s
personal mail.

● In order to authenticate himself, customer required to telephone call center
as it is the normal way, based on personal information and selected digits
from a PIN number. The design was supposed to be well defended but the
logical flaw was in actual implementation of design mechanism. The per
sonal data is to be stored which is based on correlate this with a unique
customer identity in a company database, and the developer needs to
develop the registration mechanism. The developer was eager to reuse
existing component code that was already used within the application
somewhere else.

class CCustomer
{

String
firstName;
String
lastName;
CDoB dob;
CAddress
homeAddress;long
custNumber;
. . . }

After this process is completed, this object is instantiated, inhabited with
provided information that is stored in the user session. In this process, applica
tion verifies user details, and if it matches, it retrieves that user’s unique
customer number which was used within company’s system. This number is
added in the Object with some other personal information. This Object com
municates with the back-end system for completion of registration request to

208 F. NABI ET AL.

be processed. The developer supposes that using this code would be harmless
and would not be reason of any security problem. However, it was a serious
mistake that caused flaws in the actual design.

3.2. Exploitation

The registration functionality incorporated with the CCustomer component that
consist as ‘(use case logic + Process and Entity Type Logic)’ within the applica
tion, including core functionally. This process allows the user to authenticate
and grant access to the application components such as ‘Account details
component’, ‘Statement’s component’, ‘Funds transfers component’, ‘Debit
component, Credit component and other information component’. After having
authenticated user itself to the application through registration process, the
same Object instantiates and saves in the session key information related to the
identity.

The components of application within functionally referenced informa
tion related to the *CCustomer (Component)* object in order to carry out
its actions because *CCustomer (Component)* object is a candidate com
ponent (Process and Entity Type logic) within the majority of application.
For example, account details shown on the main page of the user were
generated based on customer unique number that contained within this
component. In this way, composition or reuse of component code was
already used within the application. It clearly shows that developer assump
tion leads to a flaw in reuse of application logic design. This caused the
birth of vulnerability of subversion attack on application business logic. It
was a serious mistake, and it is subtle to detect and exploit.

To exploit this logic flaw, an attacker may need to perform the following steps:
(as shown in Figure 1)

● The first step is to ‘log in’ into the application using own valid account
information.

● In a result of the authenticated session, and access of registration function
ality, try to input some other customer’ personal information. This will
result in overwriting the original ‘CCustomer’ (Component) object in the
attacker session with new object of targeted customer.

● After this process, get back to application functionality and try to
target another customer’s account. It is hard to detect without clearly
understanding the application logic as a whole and the use of
different kinds of components in the application logic layer. The
flawed assumption by the developer caused subversion attack class
vulnerability.

JOURNAL OF CYBER SECURITY TECHNOLOGY 209

Although the vulnerability stated earlier was serious, it was in fact relatively
subtle for intruders to detect and exploit. Access to the main application
functionality was protected by access controls at several layers (channel
level security) and a user needs to have a fully authenticated session to
pass these controls. A second security defense was fraud management. This
process is defined as table in (as shown in Tables 1 and 2).

Figure 1. Customer information handling and reused component business process.

Table 1. Advantages and disadvantages of existing works.
Aspect Advantages Disadvantages

Innovation - Brings new ideas and concepts to the field. - May lack practicality or feasibility.
Experience - Builds on prior knowledge and expertise. - May be influenced by outdated

practices.
Efficiency - Can streamline processes and save time. - Implementation costs and learning

curve.
Benchmarking - Provides a basis for performance comparison. - May limit creativity and originality.
Validation - Tested and proven solutions reduce risk. - May not address unique or novel

challenges.
Collaboration - Encourages collaboration and knowledge

sharing.
- May lead to groupthink or lack of

diversity.
Cost-Effective - Can save resources compared to starting from

scratch.
- May require licensing fees or royalties.

210 F. NABI ET AL.

3.3. Overview of the proposed strategy as compared to other three industry
methods

In light of the following, how might issues with the reuse of design specifica
tions based on incorrect component logical role analysis result in design flaws at
the application logic level security issues? First, we addressed the issue raised in
the question when considering the case study situation for a banking applica
tion, and we then suggested a security assurance approach to resolve the issue.
The technique of identifying vulnerability in the Banking Case is achieved via
matching a sequence of components in a system’s application design logic and
problem caused by ignoring business process integration of components at the
time of the application’s business process logic [17-18].

All three methods of penetration, which are being practiced in the industry,
rely on modern software development and are mostly based on SDLC and
controlling security at an early stage but could not address the security by design
methodology aspects of novelty, which is motivated by the fact that logical flaws
do not show attack patterns or signatures and, thus, their discovery cannot be
automated. Our main contribution is based on section contribution 1.3.

Our solution involves using Threat Modeling to tackle the issue, projecting
design flaws related to subversion attacks and application logic vulnerabilities.
This approach is supported by practical component and application modeling
using UML for secure design. We employ a robust design flaw detection tech
nique, the V&V model for security by design testing, to prevent customization
challenges in security assurance requirements for modern component-based
applications. This integrated approach enhances security and resilience against
design flaws, ensuring more secure software systems.

4. Proposed security assurance methodology

A security assurance methodology is designed to overcome the problem of
design flaw (service component-oriented application logic) in e-commerce

Table 2. Summarizing the main differences between various attacks.
Attack Focus Goal Detection Difficulty

Subversion Attacks Application
Logic

Undermine intended functionality Challenging

Circumvention Attacks Security
Controls

Bypass security measures Requires expertise

Business Logic Attacks Core
Functionality

Exploit flaws in business processes Challenging

Injection Attacks Database
Queries

Manipulate or extract data from
databases

Moderate

Cross-Site Scripting (XSS)
Attacks

User Input Inject malicious scripts into software
pages

Moderate

Denial of Service (DoS)
Attacks

Resource
Availability

Overwhelm and disrupt soft system
services

Varies depending on
sophistication

Phishing Attacks User Trust Deceive users into revealing sensitive
information

Can be challenging

JOURNAL OF CYBER SECURITY TECHNOLOGY 211

applications, which analyzes the security risks related to determine possible
attacks on system design, and on the basis of that, three stages are defined
to deal with the design-based flaw problem. The key element of this
methodology consists of formulation of well-established existing
approaches that help to design a new methodology: (1) threat modeling,
(2) taxonomy of software vulnerability model and (3) component fault
detection model. This further provides support to modeling the application
and its components without fault, which then leads to designing security by
design application modeling. This methodology is proved through the V&V
security assurance process followed by V&V model for security by design
testing approach, which is theoretically justified by designed model. Please
note that the contingency and probability models are out of scope based
on Case Scenario that is why it is not made a part of a solution strategy as
shown in Figure 4.

Figure 2. Event – attack – modeling and system exploitation in Barclay Bank.

212 F. NABI ET AL.

4.1. Security risk analysis

The most important step for security risk analysis is to determine possible attacks
on system design and their consequences when successful, such as the afore
mentioned case of e-commerce component-based web software application and
discovered logical vulnerability in the application layer of business-tier.

As attacks are going to be very specific to the particular applications, one of
the first steps in system design should be the analysis of the possible attacks
on specific system and their consequences when successful, such as the
aforementioned case of e-commerce component-based web software appli
cation and discovered logical vulnerability in the application layer of business-
tier. The technique of identifying vulnerability achieved via mismatching
a sequence of components in a system’s application design logic and problem
caused by ignoring business process integration of component at the time of
application’s business process logic (which can be mapped through scenario-
based approach business process flow as mentioned in Figure 3, which
represents a basic end-to-end system function, also decomposed into sub-
scenario, which identifies functionality of important sub-system’s component)
that permits the sequence of ‘Event Trigger’ in the attack pattern to occur
analysis of the description mentioned in light of case study and vulnerability
attack pattern reveals the event that transpire, what component is used to
exploit the vulnerability in Barclay Bank case. This analysis can be used to
define the countermeasures that need and will also be useful later to evaluate
the system security.

Figure 3. Subversion attack mapped through the business scenario-service flow.

JOURNAL OF CYBER SECURITY TECHNOLOGY 213

4.2. Threat modeling of application logic vulnerability

Threat modeling is an engineering that can be used to help identify threats,
attacks, vulnerabilities and countermeasures in the context of application sce
nario. In light of the aforementioned case study, we have examined class of
vulnerabilities in the application logic, these attacks which we classified in this
research Falls into the category of Design and Architecture Flaws based on
Logical, Design and architectural division of application logic. We propose
a Method of Threat Modeling approach to uncover the pattern of attack in the
application logic from the root cause, integrating information from the case study
of security breach. The threat model of an Attack Event and Attack, target method,
is defined as a flaw in logic and flaw in design: At this stage, a logical attack is
defined by some attacker access to targeted system under-attack that acts an
illegitimate action by using an attack method (Subvert logic/Circumvent logic).
A specification of an event attack method is to circumvent the logical flow of an
application which may cause further two steps: one is subversion attack
and second is circumvent actual application’s logic that results in Business Logic
Attack. The vulnerability is then described by some significant attack method
(logical flaw or Design flaw) and used to identify the threat that can be associated
with the components and to the whole system. It is also important to notice that
growing use of third-party software components and middleware represents one
of the biggest changes in the web-software-application systems so as Security;
integrity has threat because of the flaws in the design (as shown in Figure 5).

Figure 4. Security risk analysis model.

214 F. NABI ET AL.

The model in Figure 5 is explained the relationship between CBS-based
custom-developed components and COTS wrapped these components for
web software application. This combination of development generates risk
that attributes three main class of attributes: reliability, functionality and avail
ability. These three pillars are main focal points for security of such applications,
which often fall under integrity matters that cause threat. This threat gives birth
to most serious flaws in design called flaws logic that can be in design or logic,
which generates attack to subvert and circumvent the actual logic of application
in web software. This is called business logic attack. Our model helps developers
to identify flaws at design stage.

4.3. Taxonomy of software vulnerabilities model

Software vulnerability defects cause security breach problem which as a result
returns as software loopholes (Design Flaw, Coding Fault, Configuration Error).
We believe, in light of our research work, that a risk assessment in component-
based software web applications and systems is strongly connected with some
concepts traditionally derived from the field of computer security, in particular
‘Five Pillars’ are the attributes/elements of interest that need to be defined: the
concepts of Threat, Vulnerability, Attack, Risk and Asset [11]. Figure 6 clearly
depicts the causes of security breach in relationship to missing question as
explained. The taxonomy is based on five stages of software vulnerability,
discovered by the researchers.

Figure 5. Threat modeling of subversion Attack.

JOURNAL OF CYBER SECURITY TECHNOLOGY 215

Flaws are the software problems that exist in the software’s design. A flaw
may or may not represent vulnerability in the underlying software. Mitigating
a flaw typically involves significantly more effort than simply modifying a few
lines of code [3]. The problem does not lie solely in the implementation; the
underlying design is Flawed. Therefore, any implementation that follows the
design would contain the flaw [7]. For example, performing sensitive business
logic in an untrusted client application is a design flaw that cannot be mitigated
by a simple measure such as modifying array bounds.

4.4. Component fault detection model

Component fault detection is basically the state of the art in paradigm of
security by design technique. However, fault detection is a preliminary element
of fault tolerance technology. Therefore, fault detection and diagnosis-based
fault tolerance technologies are hard to define separately. So many approaches
have been introduced, such as fault detection method, based on the system’s
internal data exchange and inter-component communication, but no approach
covers the system’s broken component risk analysis, especially when code is not
available. Therefore, under such circumstances, a technique is required that can
model the component and system design on multi-tier specification through
the UML modeling.

We designed a model for component fault detection scheme that detects
faults on the base of component design specification which is tested
through test requirements and diagnostic specification of component, as
mentioned in the diagram. It divides the model into system tier and
component tier, where component 1 to component N is modeled based
on the stated specification, which then test and diagnose the overall design
specification of the whole model for fault detection in system design or
component.

Figure 6. Taxonomy of software vulnerability mode.

216 F. NABI ET AL.

Validity of this proposed CFDM is projected through the V&V model for
security by design Technique in section 4.3.

4.4.1. Novelty of CFDM as a practical example
In order to test the component fault detection model, it is important to
address the practical testing example. For this purpose, we have chosen an
air control system. The applicability of the proposed CFD model fault
detection is practiced through an air control system. This is based on two
main components, operator user interface component and control station
component, in which sub-components are component 1 which is ON and
Component 2 which is Off connected with a contract point where there is
another component 3 that supports the system having assumption of fault
tolerance. The applicability of component function gets failed during the
operation to communicate with the main component in the system as
depicted in the model.

That shows fault in the system detected through UMLsec 2.0, keeping in
view design specification based on test requirements and diagnosis speci
fication of component and system. At this stage, where system design is
considered as a whole model as depicted in the component and system
fault detection model, which illustrates practical application of fault detect
in component and system.

5. Modeling the application and its components without fault

CBSE (Component based Software Engineering) focus on different aspects of
software engineering, for instance, different phases (in the design phase, com
ponents as reusable design parts; in the implementation phase, components
confirmed to a specific component model, at run time, binary packages, dis
tributed components), business aspects (business components, service compo
nents, COTS components), architectural issues (UML components) [12]. To
enable the application and its components to be modeled, we must ensure
that every aspect of the application’s design is clearly and sufficiently detailed to
understand every assumption and designed functional logic within the applica
tion by designer.

Mandate that all components of an application should be clearly commented
to include the following information throughout to make security assurance of
application and its underlying logic.

● The purpose and intended use of each component (if the component code
is available, the code can also be provided, if not, its functional business
logic within the component by defining a usage contract).

JOURNAL OF CYBER SECURITY TECHNOLOGY 217

● The assumptions and logic made by each component about anything that
is outside of its direct control.

● Reference to all client-component which makes use of the component
clear documentation to this effect could have prevented the logic flaw
within the online registration functionality in the Barclay Bank example
(note: client here does not refer to the user-end of the client–server
relationship but to other component (code) for which the component
being considered is an immediate dependency).

● There are three main steps making up the risk analysis to assure security
requirements for component-based applications. The first is to determine
possible attacks on system design, the second is architectural risk analysis
for component-based business logic security and the third is analysis at the
component level.

6. Designing security by design application modeling

Designing of application for e-commerce distributed system in a tier is also
very important since many attacks are caused by design flaws (subversion of
attack) as mentioned in the aforementioned case study of e-commerce
application. These logical flaws do not often refer to component-based
flaws but also architectural, where component modeling has to set the
logic of application while using business rules related to the business or
activity. Therefore, it is important to clearly define architectural design of
topology in which system is going to design to deploy by separating each
tier clearly. The second stage focuses on the application logic design strategy
andpolicy with that component must function under given business defined
rule/policy. The third stage refers to design strategy for components in which
dynamic web content is used to tailor an individual’s interactions with
a website and provide users with more interactive information. Dynamic
content may be rendered in various forms, such as static HTML files, Java
Script or JSP file, rendered using component-supported environment such as
Java servlets in a J2EE that invokes business – logic application hosted
middle tier to access back-end business data.

In a normal scenario, an application developer considers the approach, in
which components are combined to be assembled for a particular business
requirement and to create a solution. A composite application consists of new
components that are created especially for business applications and existing
components that are reused from other applications.

To theoretically justify the approach, the concept of Service Component
Oriented system development technique is basically a collective set of specifica
tions that propose programming model for developing applications and sys
tems. This promotes the previous approaches to implementing services and
supports the developing open standards like Web services.

218 F. NABI ET AL.

Therefore, keeping in view theoretical justification, if we dissect a component
structure, a simple component has two states: one is ‘Service’ and the other is
‘Reference’. A service is considered that addresses interface for component
which keeps one or more operations, whereas a reference is a dependency
based on a service (functionality) that is required by another component.

Composite applications are created on the base of (SCA) stated specifications.
The concept supports that a composite application is developed by combining
one to more components, which then develops the business logic for a new
application. A component consists of application program that creates business
logic and related configuration information. The developer can deal with the
same application program while adopting different configurations to form differ
ent components. A component role is to provide a service to other components,
where in return it consumes functions offered by other services which uses service
oriented interface [13].

Therefore, we have modeled a system (Figure 10) in a scenario, in which
technique consist of system and component two different levels. The system
level focuses on design product, while specification for individual component
that participating in system development is modelled as UMLsec design
approach. This is a multi-specification architecture of component-based system
in which different layers of components are modelled based on their business rule
and process, execution within the system. The component integration strategies
at run time are compared to its requirement and design specifications.

Component-oriented programming concept promotes the implementa
tion of service, where security by design technique supports the UML-
based design modeling for system security early at design stage or while
reusing the component from existing application. For this purpose, we have
practiced UML-based security by design system modeling through the concept
of Service Component oriented software engineering. In this exercise Business
Domain Components and service Components are being modelled, which is
based on multi-tier specification of architectural design of topology in which
system going to design for deploy by separating each tier. The first tier consists
of Business System Interface which relates to a service component (rendering
logic) that correspond to the second tier Business Component and Application
Component. From this stage mid- tier service is invoked from Business EDC and
sub-component as realized use case. Furthermore, this process corresponds with
the back-end service and application components. These components provide
Consumer Service and Business Component service provider in order to process
system function (defined as component’s business logic), as depicted in the
figure given below. The component integration strategies at run time are also
clearly defined through inter-connections among all system and application
components, while considering requirement and design specifications of service
description.

JOURNAL OF CYBER SECURITY TECHNOLOGY 219

7. Case-study-based research method

Case-study-based research plan is also called exploratory cases for experimenta
tion [14]. The exploratory research case study investigates well-defined phenom
ena (business logic vulnerability) classified by scientific detailed research
formulated event-based attack modeling approach for test generation that can
be tested within the research environment using exploratory case study method.
This sort of case study is very often applied as an exploratory research design
exploring a completely new field of scientific investigation [15]. In light of given
explanation of exploratory case study method, as shown in Figure 9, the research
design will be further extend by exploring real life case study from that we take
out the test design for service-oriented web-based banking system. This will
follow further stages, such as the component integration strategies at run time
will be compared to its requirement and design specifications (as can be seen in
Figure 7b–8), while modeling component and its application. Further step is,
considering attack event scenarios, which is based on connections between
business components and its workflow, to analyze security risk related to case
(as shown in Figure 2). Therefore, considering component secure method prac
tice, multi-tire specification scenario modeling will be practiced using UMLsec 2.0.

There are three case studies that usually studied in computer science three
main types of case study: intrinsic, instrumental and collective. We are taking
collective-based exploratory case technique. The technique is further divided into
two phases of process. The first phase represents system tier, while the second
phase represents component tier. The first phase, system tier, focuses on design
product, while the second phase considers the design, test and distinctive symp
tom specification for individual component that participates in system develop
ing (as projected in Figure 8). The next phase is to consider the security assurance
approach that helps to detect integration-based logical flaws in system which is
proved through the validation and verification security assurance process fol
lowed by the V&V security using design testing model, which is theoretically
justified by the designed model for security using design testing technique. This
will validate the proposed solution called Security by Design approach for com
ponent-oriented service and its application.

7.1. A validation and verification method

To validate and verify the security assurance process, the technique would
follow the V&V model for security using design testing approach that would
be set as a test-bed model, in which there is no need of all component realiza
tions. Normally, models are available at earlier stage as compared to realizations.
This technique makes the process easier and makes it possible for earlier
detection of design flaw, especially in the case of comparing/matching the real-
time system testing.

220 F. NABI ET AL.

Figure 7. (a) Component fault detection model (CFDM).(b) Air Control system modeling by
incorporating CFDM. The basic purpose of this example is to justify the aforementioned model in
Figure 7a, keeping in view that CFDM incorporates the modeling application of Air Control system.
The reason to do so is to exemplify the process of unification assurance process of component-based
development system’s in Java that helps to generate the security by design as well as logical
functionality. One comparison of this component based system is to introduce Java-based design
component ware software that is used in whether business prospective wise or some mission critical
systems such as Mars Pollarding project 1999. Therefore, our technique is unique and novel, which is
not only business-oriented software but also mission critical system application as well. This proves
the significance of our proposed model in modern component-based systems.

JOURNAL OF CYBER SECURITY TECHNOLOGY 221

Figure 8. UMLsec 2.0 security by design approach multi-specification J2EE system modeling.

Figure 9. The case study model.

222 F. NABI ET AL.

In addition, adaptation and configuration are normally allowed by model as
compared to realizations that is appropriate for system testing in unrelated
conditions for assurance purpose. It is easier that models are used as an alter
native of realizations, especially when exceptional behavior testing, and when
broken component are the condition.

In addition to that, test quality is improved and the ability of models at
a great rate changes test conditions also improve the state of test execution.
In return, it not only makes model-based testing simple and easy but also
ensures less chances of risk during test process.

Theoretically justified by designed model security assurance process, dia
gram 11 illustrates the graphical display of V&V model for security using the
design testing approach. It consider the components of C1 and Cn those are
only illustrated, above the figure depict component C1 is shown/referred by M1
model, whereas Cn is shown/referred by realization Zn. IMZ is an infrastructure
integration model, and both M1 and Zn need to be integrated, which refers to
model and its realization so that equation is made {M1, Zn} IMZ. Therefore, this
initial depict of the system considered for test at system early stage which
extract from R&D, system requirements, and design, that is shown by the dashed
arrow. The R system requirement and D design specifications are captured in
order for M1 model and Zn realization to be tested using integration of IMZ for
infrastructure integration model. This process of the model justified the security
assurance service component-oriented applications in context of aforemen
tioned process related to the methodology.

Hence, in light of V&V model, we have exemplified a case scenario of
‘Domain Model System’ in correspondence with the CFDM for its applicability
into the proposed V&V model, in the context of aforementioned process

Figure 10. V&V model for security by design testing.

JOURNAL OF CYBER SECURITY TECHNOLOGY 223

related to the methodology. That is demonstrated with the UML modeling to
detect the flaw or fault in component or system design. The diagram
illustrates model as Core System and Model Threat, which then constitute
the component- and sub-components-based system. In this process, fault is
detected keeping in view the equation {M1, Zn} IMZ, where all components
realization is not required, especially when exceptional behavior testing and
when broken component are the condition. The requirement R and design
D of the Domain Model system information are gathered with specification of
M1 and Zn realization with, respectively, C1 and Cn to be tested using
integration IMZ. The threat model also explains the fault cause of error in
the process of communication (event-based messaging) that gets failed and
may cause of hazard vulnerability in underlying application logic. The techni
que of identifying vulnerability in the Domain Model System is achieved via
matching a sequence of component and its sub-component in a system
application logic and problem caused by ignoring business process integra
tion of component at the run time of which resulted fault or design flaw.

In light of Figure 11a,b, the process clearly defines the integration of security
functional requirements to enhance the security as defined encryption stages in
this figure. This constitutes the application of security integration features that
support the functional logic SSL support.

Figure 11. (a) Application of fault detection in correspondence CFDM.(a) Java crypto algorithm
process to encrypt and decrypt business logic functional communication method.

224 F. NABI ET AL.

To use JCA, an application simply requests a particular type of object (such as
a Message Digest) and a particular algorithm or service (such as the ‘SHA-256’
algorithm) and gets an implementation from one of the installed providers.
Alternatively, the program can request the objects from a specific provider. Each
provider has a name used to refer to it.

md = MessageDigest.getInstance(‘SHA-256’);
md = MessageDigest.getInstance(‘SHA-256’, ‘ProviderC’);

The following figures illustrate requesting an ‘SHA-256’ message digest imple
mentation. The figures show three different providers that implement various
message digest algorithms (‘SHA-256’, ‘SHA-384’ and ‘SHA-512’). The providers
are ordered by preference from left to right (1–3). In the first illustration, an
application requests an SHA-256 algorithm implementation without specifying
a provider name. The providers are searched in preference order, and the
implementation from the first provider supplying that particular algorithm,

Figure 11. (Continued).

JOURNAL OF CYBER SECURITY TECHNOLOGY 225

ProviderB, is returned. In the second figure, the application requests the SHA-
256 algorithm implementation from a specific provider, ProviderC. This time, the
implementation from ProviderC is returned, even though a provider with
a higher preference order, ProviderB, also supplies an SHA-256 implementation.

7.2. Lessons learned from case study

The key point here is to consider that the component itself was correctly
designed, as long as the design specification of the component matches
with respect to boundary profile condition of each layer (functional speci
fication requirement) in n-tier architecture of e-commerce application. This
respects existing application logic in the overall system’s function and its
behavior [16]. The problem is that the designer of the component and the
application developer are likely to be different individuals (indeed, this is
the generally preferred scenario!). What is required over here, a technique
of assurance unification process for validating the design before imple
mentation to determine whether the overall application behavior is unde
sirable when the components are integrated with respect to component
software artifact model and its functional processing logic based on inter
face driven design specification together to form a particular solution. This
is quite different to technical implementation as the components inte
grated at this level are modeled through security risks, but their semantics
and functional behavior were incompatible! The applicability of this
learned lesson could also be beneficial for ‘Department. of Defense
Software Community’ while designing component-based application solu
tion by reusing component from existing application’s logic, keeping in
view design specification of different layers component and their role
performance in the particular solution, such as Arian Rocket failure case
(ESA), indicate that reused component software compatibility was pro
posed based on component software model artifacts but developer totally
ignored the component interface driven established logical constraints by
using ‘used and offered interfaces’ of component between the overall
logical structure design by contract strategy during the composition,
which caused failure to comply the solution and functional specific
boundary profile condition compare to design specific boundary profile
condition, result (ESA) Mission Arian failed.

8. Conclusion

The lesson derived from the case study is that it teaches the developers to
always consider the key point that a component must be itself correctly
designed, and as far as the design specification of the component is

226 F. NABI ET AL.

concerned, it must be matched with respect to boundary profile condition of
each layer functional specification requirement within the architecture, which
respects existing application logic in the overall system’s function and its
behavior. Therefore, keeping this point in view, we have practiced a security
assurance methodology for service component-oriented application through
threat modeling and component fault detection model with further modeling
component and its application using UML secure design approach and devel
oped a valid technique for design flaw detection, which will increase level of
assurance during the designing component-based rapidly developing web
application software and deploying business logic into e-commerce system.
The proposed approach would also support for the developers to design
secure component-based application while re-using existing components
from application’s business logic. This will ensure a secure design-based
modeling technique for security by design method.

Acknowledgments

The authors would like to thank Prof. Jianming Yong for support and cooperation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

No funding is granted for this particular project.

ORCID

Faisal Nabi http://orcid.org/0000-0003-1804-2949

Availability of data and material

No data have been provided for that project as it is not allowed.

References

[1] Ghosh AK. Security & privacy for e-business. ISBN 0-471-384211-6: John Wiley & Sons;
2001.

[2] Nabi F, Yong J. Xiaohui Tao: A novel approach for component based application logic
event attack modeling. Int J Netw Secur. 2020;22(3):435–441.

[3] Nabi F. Designing a framework method for secure. Business application logic integrity
in e-commerce systems. Int J Netw Secur. 2011 Jan;12(1):29–41.

JOURNAL OF CYBER SECURITY TECHNOLOGY 227

[4] Ritchie P. The security risks of Ajax/web 2.0 application. Network Security: Elsevier;
2007.

[5] Offutt J. Quality attributes of web software applications. IEEE software. March-April
2002;19(2):25–32. doi:10.1109/52.991329

[6] Nabi F, Yong J, Tao X. Xiaohui Tao: classification of logical vulnerability based on group
attack method. J Ubiquitous Syst Pervasive Networks. 2021;14(1):19–26. doi:10.5383/
JUSPN.14.01.004

[7] Agirre A, Parra J, Armentia A, et al. QoS aware middleware support for dynamically
reconfigurable component based IoT applications. Int J Distrib Sens Netw. 2016;12
(4):2702789. doi: 10.1155/2016/2702789

[8] Allan D, Web application security; automated scanning or manual penetration testing,
watch paper from watch fire, 2006.

[9] McGraw G. Software security: building security in. Boston, MA:Addison-Wesley; 2006.
Available from: http://www.buildingsecurityin.com .

[10] Zhang H, A formal security modeling and analysis in B2B e-commerce, [PhD thesis],
Auckland University, 2006.

[11] Jones A, Ashenden D. Risk management for Computer security: protecting your net
work & information assets. Elsevier; 2005 March.

[12] Rodríguez M, Zalama E, González I. Integración automática de dispositivos en el Hogar
Digital a través de la generación de adaptadores dirigida por modelos. Revista
Iberoamericana de Automática e Informática Industrial RIAI. 2016;13(3):363–369. doi:
10.1016/j.riai.2016.03.007

[13] Agirre A, Armentia A, Estévez E, et al. A component-based approach for securing indoor
home care applications. Sensors. 2018;18(2):46. doi: 10.3390/s18010046

[14] Singh K. Quantitative social research methods. SAGE Publications India Pvt Ltd; 2007. p.
64. doi: 10.4135/9789351507741

[15] Streb CK. Encyclopaedia of case study research. ISBN: 9781412956703. SAGE
Publications, Inc, Print; 2012. pp. 1–10.

[16] Malohlava M, Hnetynka P, Bures T. SOFA 2 component framework and its ecosystem.
Electron. Notes Theor Comput Sci. 2013;295:101–106. doi: 10.1016/j.entcs.2013.04.009

[17] Nabi F. Secure business application logic for e-commerce systems. Elsevier J Comput
Secur. 2005;24(3):208–217. doi: 10.1016/j.cose.2004.08.008

[18] Agirre A, Marcos M, Estevez E Distributed applications management platform based on
service component architecture. In Proceedings of the 17th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Krakow,
Poland, 17–21 September 2012.

228 F. NABI ET AL.

https://doi.org/10.1109/52.991329
https://doi.org/10.5383/JUSPN.14.01.004
https://doi.org/10.5383/JUSPN.14.01.004
https://doi.org/10.1155/2016/2702789
http://www.buildingsecurityin.com
https://doi.org/10.1016/j.riai.2016.03.007
https://doi.org/10.1016/j.riai.2016.03.007
https://doi.org/10.3390/s18010046
https://doi.org/10.4135/9789351507741
https://doi.org/10.1016/j.entcs.2013.04.009
https://doi.org/10.1016/j.cose.2004.08.008

	Abstract
	1. Introduction
	1.1. Problem statement
	1.2. Objective and contribution

	2. Impact of flaws in application business logic
	3. Real-life example: Barclay Bank case study
	3.1. Application functionality and business process
	3.2. Exploitation
	3.3. Overview of the proposed strategy as compared to other three industry methods

	4. Proposed security assurance methodology
	4.1. Security risk analysis
	4.2. Threat modeling of application logic vulnerability
	4.3. Taxonomy of software vulnerabilities model
	4.4. Component fault detection model
	4.4.1. Novelty of CFDM as a practical example

	5. Modeling the application and its components without fault
	6. Designing security by design application modeling
	7. Case-study-based research method
	7.1. A validation and verification method
	7.2. Lessons learned from case study

	8. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	Availability of data and material
	References

